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Abstract

This paper studies collusion in repeated auctions when bidders communicate prior

to each stage auction. The paper presents a folk theorem for independent and correlated

private signals and general interdependent values. Specifically, it identifies conditions under

which an equilibrium collusion scheme is fully efficient in the sense that the bidders’ payoff

is close to what they get when the object is allocated to the highest valuation bidder at
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1. Introduction

Collusion is a wide-spread phenomenon in auctions as noted by many authors.1 In

particular, economic theory suggests that repeated auctions where the same set of bidders

meet time and time again provide an ideal ground for collusion: In repeated auctions,

not only is it easy to enforce the collusive agreement through the threat of reversion to

competitive bidding in the event of a deviation, but it is also possible to transfer payoffs

within a cartel without explicit exchange of money. For example, bidders in repeated

auctions can employ a simple bid rotation collusion scheme which appoints the winning

bidder of a stage auction in turn and hence transfers the continuation payoff from the

current winner to other members of the cartel.

From the point of view of bidders, the optimal collusion scheme is one which is fully

efficient in the sense that their equilibrium payoff is close to what they would get when

the object is allocated at the reserve price to the highest valuation bidder in every stage

auction. For example, the simple bid rotation collusion scheme as described above may be

an improvement over the one-shot equilibrium, but is not fully efficient since the highest

valuation bidder may not win just because it is not his turn. One important question

then is if and when there exists a fully efficient equilibrium collusion scheme. This paper

attempts to answer this question in a model of collusion with bidder communication.

Formally, the model of repeated auctions considered in this paper is a repeated game

with private information in which the players’ private signals are drawn identically and

independently across periods. Because of the presence of private signals, it is known that

standard folk theorems for repeated games do not apply except for some special cases

as noted below. This paper shows, however, that with communication among bidders, an

appropriate modification of the enforceability technique does yield an analytical framework

for this class of games.

We formulate a collusion scheme in which bidders communicate their private signals

with one another prior to every stage auction. At the beginning of each period, the bidders

report their private signals to the center, which then return instructions to them based on

the reported signal profile. An instruction rule is a functional relationship between the

reported signal profile and the resulting instructions. For efficient collusion, of course, it is

1See, for example, Baldwin et al. (1997), Marshall and Meurer (1995), Pesendorfer (2000),
Porter and Zona (1993), etc.
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desirable to use the efficient instruction rule, which, based on the report profile, instructs

the highest valuation bidder to bid the reserve price in the stage auction and all other

bidders to stay out. It is easy to see, however, that this instruction rule is not incentive

compatible as it gives the bidders an incentive to overstate their signals. Appropriate

adjustment of continuation payoffs hence becomes important for the enforcement of such

an instruction rule. We will show that this can be accomplished by transition to a collection

of instruction rules that entail efficient allocation only within a subset of bidder(s).

In standard repeated games without private information, the enforceability conditions

are expressed in terms of action profiles: They check whether taking a certain action is

optimal given the discounted sum of today’s stage payoff and the continuation payoff from

tomorrow on. With private information, the enforceability conditions are instead expressed

in terms of instruction rules. In other words, they check whether truth-telling is incentive

compatible given the discounted sum of the current stage payoff implied by the instruction

rule, and the continuation payoff.

By the standard argument, identifying the set of equilibrium payoff set reduces to

finding a self-decomposable set of repeated game payoffs.2 Following Fudenberg et al.

(1994), the present paper solves the latter problem by finding a profile of transfer rules

that satisfy weighted budget balance conditions. It describes when such a transfer rule

profile exists in problems with two bidders and those with three or more bidders separately.

It is shown that a fully efficient collusion scheme exists under fairly permissive conditions.

In repeated auctions with two bidders, we assume that the private signals are linearly

ordered and affiliated across bidders. Under these conditions, we construct a redistribution

mechanism in which the bidder who has reported the higher signal becomes the winner

and his surplus is redistributed to the other bidder in the form of continuation payoffs.

With only two bidders, one bidder’s gain in the continuation payoff is necessarily the other

bidder’s loss. As will be seen, this trade-off creates a bound on the enforceable payoffs. In

actual problems, it is easy to check if full efficiency can be achieved despite this bound.

When there are three or more bidders, we assume that signals are either (i) linearly

ordered and independent across bidders, or (ii) correlated. In both cases, we show that

there exists a desirable continuation payoff function profile that enforces any relevant

2See, for example, Abreu et al. (1990), and Fudenberg et al. (1994).
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instruction rule. With three or more bidders, the key is to dissociate the inducement of

truth-telling from the budget balance considerations. In other words, we can choose a

continuation payoff function that ignores some bidder’s report while letting him “absorb”

the surplus or deficit caused by the inducement of truth-telling from another bidder.

In the analysis of repeated games with imperfect public monitoring, Fudenberg et al.

(1994) discuss repeated adverse selection with communication. Specifically, they show that

when players publicly announce their private signals, a folk theorem holds for an adverse

selection model with independent private values, where private signals are independent

across players and their values depend only on their own signals. Their theorem readily

implies that under the independent private values assumption, fully efficient collusion is

possible in repeated auctions when the bidders are sufficiently patient. On the other hand,

it is not easy to see how we may generalize this construction to a more general environment

without the independence of signals and/or the privateness of valuations. This paper takes

an entirely different approach to enforceability and shows that the independent private

values assumption is not crucial for a folk theorem.

The paper that is most closely related to the present one is Aoyagi (2002), which proves

the existence of a collusion scheme in repeated auctions that improves on the one-shot Nash

equilibrium of the stage auction and the simple bid rotation scheme as described above.

It develops the idea of dynamic bid rotation whereby intertemporal transition between

instruction rules takes place as a function of the reported signals. It does not, however,

show the existence of a fully efficient collusion scheme. The key difference is that in Aoyagi

(2002), the signal set is the unit interval [0, 1], while it is finite in the present paper.

The stronger conclusion in this paper benefits from the self-decomposability techniques

available for finite-action games, and its extension to a continuous signal problem is not

straightforward.

Skrypacz and Hopenhayn (2002) and Blume and Heidues (2002) both study tacit col-

lusion in repeated auctions, where bidders do not communicate prior to each stage auction.

They show that a certain degree of improvement over one-shot Nash equilibrium as well as

simple bid rotation is possible in independent private values models. The difference in our

modeling choice is based on the following considerations: First, bidder communication is

often an integrated part of actual collusion practice, and it is important to understand its
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implications. Second, with communication or not, little is known about the full scope of

collusion in repeated auctions. It is hence useful to present a simple framework in which

full efficiency can be achieved.

Communication mediated by the center as assumed in this paper mimics the direct

revelation mechanism applied to each stage and hence represents a natural mode of infor-

mation transmission. It also allows for a clean presentation of the enforceability conditions

through the use of an instruction rule. However, what is essential for the argument is the

functional relationship between a report profile and bidding behavior in the stage auction

as well as continuation play, and the folk theorem continues to hold if we instead assume

public communication, where bidders publicly reveal their private signals.

Although the discussion in this paper is completely embedded in the repeated auctions

framework, its analysis applies to other problems of repeated adverse selection including,

for example, collusion in repeated Bertrand oligopoly with private cost signals as analyzed

by Athey and Bagwell (2000) and Athey et al. (1998). Another interesting application that

does not seem to have been studied elsewhere is a budget allocation problem in a dynamic

setting. For example, consider the problem faced by a scientific foundation, which wants

to allocate a unit of indivisible budget to the most promissing research project each year.

There is a fixed set of researchers, and each one of them comes up with a project every

year whose true quality is random and privately observed. The foundation elicits proposals

from the researchers to assess the quality of their projects, but cannot receive monetary

transfer from them in return for awarding the budget. This problem has the same structure

as our model once the foundation is reinterpreted as the center.

The paper is organized as follows: A model of repeated auctions is formulated in the

next section. The enforceability of an instruction rule is defined in Section 3. Section

4 describes the feasible as well as self-decomposable payoff sets. Sections 5 and 6 study

collusion by two bidders and by three or more bidders, respectively.

2. Model

The set I of I risk-neutral bidders participate in an infinite sequence of auctions,

where a single indivisible object is sold in every period through a fixed auction format.3

In each period, bidder i draws a private signal si from a finite set Si. The signal profile

3Note that the symbol I represents both the set of bidders and its cardinality.
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s = (s1, . . . , sI) of I bidders has the joint distribution p in every period and is independent

across periods.

Bidder i’s valuation of the object sold in each period is a function of the signal profile

s = (s1, . . . , sI) in that period and denoted vi(s) ≥ 0. A stage auction is any transaction
mechanism that determines the allocation of the good as well as monetary transfer based

on a single sealed bid submitted by each bidder.4 Participation in the stage auction is

voluntary so that the set of each bidder’s generalized bids is expressed as B1 = · · · = BI =
{N}∪R+, where N represents “no participation.” The rule of the auction is summarized

by mappings ωi and ξi (i ∈ I) on the set B = B1× · · ·×BI of bid profiles b = (b1, . . . , bI):
ωi(b) is the probability that bidder i is awarded the good, and ξi(b) is his expected payment

to the auctioneer. We assume that ωi and ξi satisfy the following conditions.

(i) A bidder makes no payment when he does not participate: ξi(b) = 0 if bi = N .

(ii) A bidder may win the object only if he submits a bid at or above the reserve price

R ∈ £0,maxs,i vi(s)¢: ωi(b) = 0 if bi ∈ {N} ∪ [0, R).
(iii) If only one bidder participates and submits bid R, then he wins the object at price R:

ωi(b) = 1 and ξi(b) = R if bi = R and bj = N for all j 6= i.

Note that the above conditions hold for most standard auctions including the first- and

second-price auctions. Consider the Bayesian game in which bidder i’s (pure) strategy is

a mapping ηi : Si → Bi and his (ex ante) payoff function isX
s∈S

p(s)
©
ωi(η(s))vi(s)− ξi(η(s))

ª
.

Let ∆Bi denote the probability distribution over Bi, and η̃i : Si → ∆Bi denote bidder

i’s mixed strategy in this game. We assume that this game has a (mixed) Nash equilib-

rium η̃0 = (η̃01 , . . . , η̃
0
I ), which describes the non-cooperative bidding behavior in the stage

auction. Let g0i be the corresponding (ex ante) Nash equilibrium payoff to bidder i.

Collusion in the repeated auction takes the following form: At the beginning of each

period, all bidders report their private signals si to the center. Upon receiving the report

profile ŝ = (ŝ1, . . . , ŝI) ∈ S, the center chooses instruction to each bidder i on what

(generalized) bid to submit in the stage auction.

4The restriction to a seal-bid auction is purely for simplicity.
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In general, the bidders may report a false signal, and/or disobey the instruction.

Bidder i’s reporting rule λi : Si → Si chooses report ŝi as a function of his true signal

si, and his bidding rule µi : S
2
i × B → B chooses bid bi in the stage action as a function

of his signal, report and instruction. The reporting rule is honest if it always reports the

true signal, and the bidding rule is obedient if it always obeys the instruction. Denote by

λ∗i and µ
∗
i bidder i’s honest reporting rule and obedient action rule, respectively.

For simplicity, we assume that the (generalized) bids in the stage auction are observ-

able to every party including the center.5 It follows that any disobedience to the center’s

instruction is an observable deviation, while misreporting of one’s signal is an unobservable

deviation.

The center is simply a device that transforms the report profile into instructions.

A (pure) instruction rule d = (d1, . . . , dI) : S → B chooses an instruction to every

bidder based on the report profile ŝ. Formally, it is possible to suppose that the one-shot

Nash equilibrium η̃0 of the stage auction specified above is played through the center if

randomization over instructions is allowed. A mixed instruction rule is a mapping d : S →
∆B with the interpretation that d(ŝ) is a probability distribution over instruction profiles

when the report profile is ŝ.6 Let d0 be the (possibly) mixed instruction rule such that

d0i (ŝ) = η̃0i (ŝi).

Bidder i’s communication history in period t in the repeated auction game is the

sequence of his reports and instructions in periods 1, . . . , t− 1. On the other hand, bidder
i’s private history in period t is the sequence of his private signals si in periods 1, . . . , t−1.
Furthermore, the public history in period t is a sequence of instruction rules used by the

center in periods 1, . . . , t and (generalized) bid profiles in the stage auctions in periods

1, . . . , t− 1.
Bidder i’s (pure) strategy σi in the repeated auction chooses the pair (λi, µi) of re-

porting and bidding rules in each period t as a function of his communication and private

histories in t, and the public history in t. Let σ∗i be bidder i’s honest and obedient strategy

which plays the pair (λ∗i , µ
∗
i ) of the honest reporting rule and obedient bidding rule for all

5If the center does not have monitoring capability, we can assume that the bidders report
others’ bids to the center so that the instructions in the next period will be conditioned
on those reports.
6Note that the actual instruction to each player i is still an element of Bi.
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histories.

The collusion scheme τ describes the center’s choice of an instruction rule in every

period as a function of communication and public histories. At the beginning of each

period, it publicly informs the bidders which instruction rule is used in that period.

Our analysis will focus on the following class of “grim-trigger” collusion schemes with

two phases: The game starts in the collusion phase, and reverts to the punishment phase

forever if and only if there is disobedience by at least one bidder. In the punishment phase,

the center chooses the one-shot Nash equilibrium instruction rule d0 specified above.

Let δ < 1 be the bidders’ common discount factor, and Πi(σ, τ, δ) be bidder i’s average

discounted payoff (normalized by (1− δ)) in the repeated game under the strategy profile
(σ, τ). The collusion scheme τ is an equilibrium if the profile σ∗ = (σ∗1 , . . . , σ

∗
I ) of honest

and obedient strategies constitutes a Nash equilibrium of the repeated game: Πi(σ
∗, τ, δ) ≥

Πi(σ
0
i,σ
∗
−i, τ, δ) for any σ

0
i and i ∈ I.

3. Enforceability of Instruction Rules

Denote by q(s, ŝ | λ) the joint probability of the signal profile s and the report profile
ŝ when the bidders use the reporting rule profile λ = (λ1, . . . ,λI) ∈ Λ:

q(s, ŝ | λ) =
½
p(s) if λ(s) = ŝ,

0 otherwise.

Let q(ŝ | λ) be the corresponding (marginal) probability of ŝ:

q(ŝ | λ) =
X
s∈S

q(s, ŝ | λ).

Define

gdi (λ) =
X
s∈S

q(s, ŝ | λ)©ωi(ŝ) vi(s)− ξi(ŝ)ª.
to be bidder i’s ex ante expected stage payoff under the instruction rule d when the bidders

use the reporting rule profile λ = (λ1, . . . ,λI) and obey the center’s instruction.

The construction below is an adaptation of Fudenberg et al. (1994) to the repeated

adverse selection framework.

LetW ⊂ RI be a set of payoff vectors. The instruction rule d is (truthfully) enforceable

with respect to δ and W if there exists y = (y1, . . . , yI) : S →W , a profile of continuation

7



payoff functions taking values in W , such that for every i ∈ I and λi ∈ Λi,

(1− δ) gdi (λ∗) + δ
X
ŝ∈S

q(ŝ | λ∗) yi(ŝ) ≥ (1− δ) gdi (λi,λ∗−i) + δ
X
ŝ∈S

q(ŝ | λi,λ∗−i) yi(ŝ).

In other words, truth-telling maximizes the (discounted) sum of today’s stage payoff and

the continuation payoff from tomorrow on among all possible reporting rules. Given a

collection D of instruction rules, the set W is locally self-decomposable with respect to D

if for each w ∈ W , there exist a discount factor δ < 1 and an open neighborhood U of w

such that for any u = (u1, . . . , uI) ∈ U , there exists an instruction rule d ∈ D such that d

is enforceable with respect to δ and W through some continuation payoff function profile

y = (y1, . . . , yI) : S →W , and

ui = (1− δ) gdi (λ∗) + δ
X
ŝ∈S

q(ŝ | λ∗) yi(ŝ)

for every i ∈ I.
It readily follows from Lemma 4.2 of Fudenberg et al. (1994) that if W is compact,

convex, and locally self-decomposable with respect to some D, then there exists a discount

factor δ < 1 such that for any δ > δ, any point w ∈ W is sustained as a payoff vector of

an equilibrium collusion scheme whose instruction rules are chosen from D.

Given vectors α, ζ ∈ RI such that α 6= 0, let H(α, ζ) denote the hyperplane in RI

through ζ with the normal vector α. Suppose that d is enforceable with respect to δ < 1

and W = H(α, ζ) through y : S → W . Then for any δ0 < 1 and ζ 0 ∈ RI , if we define

y0 : S →W 0 ≡ H(α, ζ 0) by

y0(ŝ) = ζ 0 +
δ(1− δ0)
δ0(1− δ) {y(ŝ)− ζ},

then d is enforceable with respect to δ0 and W 0 through y0. For this reason, we may simply

say that d is enforceable with respect to α when it is enforceable with respect to some δ

and W = H(α, ζ).

The set W ⊂ RI is smooth if it is closed and convex, and if its interior is non-empty

and its boundary is a C2-manifold. As in Fudenberg et al. (1994), we will associate the local

self-decomposability of a smooth set W with enforceability with respect to its supporting

hyperplanes. Formally, a smooth set W is decomposable on tangent hyperplanes (given
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the set D of instruction rules) if for every point w on the boundary of W , there exists

an instruction rule d ∈ D such that (i) gd(λ∗) and W are separated by the supporting

hyperplane H of W at w, and (ii) d is enforceable with respect to H.

Finally, by Theorem 4.1 of Fudenberg et al. (1994), if a smooth set W is decom-

posable on tangent hyperplanes given the set D of instruction rules, then W is locally

self-decomposable with respect to D.

4. Feasible and Self-Decomposable Payoff Sets

For efficient collusion, the bidder with the highest valuation should be instructed to

bid the reserve price in the stage auction while other bidders are instructed to stay out.

We begin with the description of such an instruction rule.

Since the signal space Si is finite, more than one bidder may share the same highest

valuation with positive probability. This suggests the possible multiplicity of efficient allo-

cations according to different tie-breaking rules. To capture this possibility, we introduce

a permutation on I that describes each player’s rank in tie-breaking. Let ΦI be the set of

permuations on I: each φ ∈ ΦI is a one-to-one mapping from I to itself. For any φ ∈ ΦI ,
let dφ∗ denote the efficient instruction rule defined as follows: Given the report profile

ŝ ∈ S, dφ∗ instructs the bidder with the highest valuation (based on ŝ) to bid R if his

valuation is higher than the reserve price R. If there exist two or more bidders with the

highest valuation, then bidder i becomes the winner if and only if his “rank” φ(i) according

to φ is the smallest among all such bidders. Any other bidder is instructed to stay out. If

we let I∗(s) = argmaxj∈I vj(s) be the set of bidders with the highest valuation under the

signal profile s, then dφ∗ can formally be described as:

dφ∗i (ŝ) =
½
R if i ∈ I∗(ŝ), φ(i) ≤ φ(j) for every j ∈ I∗(ŝ), and vi(ŝ) ≥ R,
N otherwise.

For each i ∈ I, denote by gφ∗i bidder i’s (ex ante) stage payoff gd
φ∗
i (λ∗) associated with

dφ∗. If we let

F = Co {gφ∗ : φ ∈ ΦI},

then F is the set of (first-best) efficient payoff vectors. Our analysis will assume that

collusion is potentially profitable, i.e., the one-shot Nash equilibrium is (strictly) Pareto

dominated by any point on F : g0i < g
φ∗
i for every i ∈ I and φ ∈ ΦI .
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We will next describe instruction rules that are used for the adjustment of continuation

payoffs. For each i ∈ I, let di be an asymmetric instruction rule defined as follows: Given
the report profile ŝ ∈ S, di instructs (i) bidder i to bid R if his valuation vj(ŝ) exceeds R,
and to stay out otherwise, and (ii) bidder j (j 6= i) to stay out:

dii(ŝ) =

½
R if vi(ŝ) > R

N otherwise,
and dij(ŝ) = N for any ŝ.

In other words, bidder i is the only potential winner under di. Let gij = g
di

j (λ
∗) be bidder

j’s (ex ante) stage payoff under di. We have gij = 0 if j 6= i. For any i, we call di the

exclusion rule.

Lemma 4.1. For any α ∈ RI \ {0}, the instruction rules di (i ∈ I) and d0 are truthfully
enforceable with respect to α.

Proof: Let y(·) ≡ 0. Whether d = di or d = d0, gdi (λ∗) ≥ gdi (λi,λ∗−i) for every i ∈ I so
that d is enforceable with respect to α. //

Let V ⊂ RI be defined by

V = Co
©
g0, (gi)i∈I , (gφ∗)φ∈ΦI

ª ∩ ©u ∈ RI : ui ≥ g0i for all i ∈ I
ª
.

It can be seen that the efficiency frontier of V is given by F . Our analysis in what follows

focuses on whether payoff vectors in V can be supported by equilibrium collusion schemes.

To this end, let d be any instruction rule, and

A(d) =
©
α ∈ RI \ {0} : d is enforceable with respect to αª.

Given the set D of instruction rules, define

V ∗(D) =
©
u ∈ V :α · u ≤ α · gd(λ∗) and α ∈ A(d) for some d ∈ Dª.

The following lemma states that V ∗(D) is the set of equilibrium payoffs when the in-

struction rule in any period is chosen from D, provided that the bidders are sufficiently

patient.

Lemma 4.2. Suppose that V ∗(D) has a non-empty interior for some set D of instruction

rules. Then any smooth subset W of the interior of V ∗(D) is locally self-decomposable.
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Hence, for any u ∈ V ∗(D) and ² > 0, there exists δ < 1 such that the following holds if

δ > δ: There exists an equilibrium collusion scheme τ which chooses instruction rules from

D and yields the payoff vector Π(τ,σ∗, δ) satisfying kΠ(τ, σ∗, δ)− uk < ².

Proof: Take any smooth set W ⊂ intV ∗(D). Let w be a point on the boundary of

W , and α 6= 0 be the normal vector of the supporting hyperplane of W at w so that

α · u ≤ α ·w for any u ∈W . If α ∈ A(d) and α ·w ≤ α · gd(λ∗) for some d ∈ D, then W is

decomposable on the tangent hyperplane at w using d. Therefore, W is decomposable on

tangent hyperplanes, and hence that it is locally self-decomposable with respect to D by

Theorem 4.1 of Fudenberg et al. (1994). The desired conclusion then follows from their

Lemma 4.2. //

In what follows, we will study the relationship between V and V ∗(D) for an appro-

prioate choice of D.

5. Two Bidders: Redistribution Mechanism

In this section, we assume that the signals are linearly ordered in the sense below.

Assumption 1: For every i ∈ I, the signal set is such that Si = {s0, s1, . . . , sK} ⊂ R+

for s0 < s1 < · · · < sK . Furthermore, the probability distribution p of signal profile s has
full support over S, and satisfies the monotone likelihood ratio property :

(1)
pj(s

0
j | si)

pj(sj | si) ≤
pj(s

0
j | s0i)

pj(sj | s0i)
if s0i ≥ si and s0j ≥ sj (i = 1, 2, j 6= i).

With I = 2, the monotone likelihood ratio is equivalent to affiliation as specified by

Milgrom and Weber (1982).

Assumption 2: The valuation functions v1, . . . , vI are monotone (vi(s
0) ≥ vi(s) if s0 ≥ s)

and symmetric (vi(s) = vj(s
0) if s0i = sj , s

0
j = si and s

0
−i−j = s−i−j).

Note that Assumption 2 holds in a private values model where vi(s) = si for every

s ∈ S and i ∈ I. The symmetry of the value functions is assumed mainly for simplicity.
We also assume in this section that the reserve price R equals zero.

With two bidders, we consider a redistribution mechanism in which the winner’s sur-

plus in each stage auction is redistributed to the loser through an adjustment in continua-

tion payoffs. Such a transfer has a natural interpretation, and is most likely at the heart of

many actual collusion schemes. The theoretical analysis of such a mechanism is provided
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by McAfee and McMillan (1992) for the case where side transfer among bidders is possible.

Aoyagi (2002) extends their analysis and shows that monetary transfer can partially be

compensated by the adjustment in continuation payoffs for collusion without side transfer

in repeated auctions. This section presents a further extension of this result when the

signal space is finite.

For the permutation φ ∈ ΦI such that φ(i) = 1 and φ(j) = 2, we write dij∗ for dφ∗.
For i = 1, 2 and j 6= i, let

ρk,lj =
pj(s

l | si = sk)P
sj≤sl pj(sj | si = sk)

(k, l = 0, 1, . . . ,K).

By the monotone likelihood property (1), ρk,lj ≤ ρk
0,l
j if k ≤ k0. Define θij ≤ 1 by

θij = max
k

ρk−1,kj vi(s
k−1, sk)

vj(sk, sk)− {1− ρk−1,kj } vi(sk−1, sk)
.

We consider the continuation payoff function y = (yi, yj) that transfers payoff from the

winner of the stage auction to the loser. Specifically, let xi : Si → R+ and xj : Sj → R+

be non-negative functions of i’s and j’s reports, respectively, and let y be given by

(2) yi(ŝ) =

(−xi(ŝi) if ŝi ≥ ŝj
αj
αi
xj(ŝj) otherwise,

and yj(ŝ) =


αi
αj
xi(ŝi) if ŝi ≥ ŝj

−xj(ŝj) otherwise.

Clearly, α · y(ŝ) = 0 for any ŝ ∈ S. As seen, xi(ŝi) can interpreted as the compensation
made by bidder i when he wins with report ŝi. Write αj/αi = θ, and let xi and xj be

defined recursively by

xi(s
0) = xj(s

0) = 0,

xi(s
k) = xi(s

k−1) + ρk−1,kj

h
vi(s

k−1, sk)− tk−1

− ρk−1,k−1i

©
θvj(s

k−1, sk−1)− tk−1ªi,(3)

xj(s
k) = xj(s

k−1) + ρk−1,k−1i

h
vj(s

k−1, sk−1)− 1
θ
tk−1

i
(k = 1, . . . , K),

where tk = xi(s
k) + θxj(s

k). Write ∆ki = xi(s
k) − xi(sk−1) and ∆kj = xj(sk) − xj(sk−1)

(k = 1, . . . ,K).
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Lemma 5.1. Suppose that Assumptions 1 and 2 hold. For θ =
αj
αi
∈ [θij , 1], xi and xj are

non-decreasing: ∆ki , ∆
k
j ≥ 0 for k = 1, . . . ,K.

Lemma 5.2. Suppose that Assumptions 1 and 2 hold. If α = (α1,α2) is such that α1,

α2 > 0 and αj/αi ∈ [θij , 1], then the efficient instruction rule dij∗ is enforceable with
respect to α through y in (2) when xi and xj are defined by (3).

Lemma 5.2 essentially states that the exchange rate for transfer between the two

bidders should not be extreme. If, for example, money worth one dollar to bidder j is

worth very little to bidder i, then any monetary transfer to/from bidder j designed to

induce truth-telling from him will be insufficient to induce truth-telling from bidder i.

Let

V 0 = {u ∈ V : ui + θijuj ≤ gii for i = 1, 2, j 6= i},

and

D∗ = {d0, d1, d2, d12∗, d21∗}.

We now show that V 0 ⊂ V ∗(D∗). Take any u ∈ V 0. Let α 6= 0 be given. If α · u ≤ α · g0
or α · u ≤ maxi∈I α · gi, then we are done since α ∈ A(d0) = A(di) by Lemma 4.1. It can
be readily verified that this is indeed the case if α1 ≤ 0 and/or α2 ≤ 0. Suppose then that
αi ≥ αj > 0 and that α·u < α·gφ∗ for either φ = ij or φ = ji. Since gij∗i +gij∗j = gji∗i +gji∗j
and gij∗j ≤ gji∗j , we have

α · (gij∗ − gji∗) = (αi − αj)(gji∗j − gij∗j ) ≥ 0.

Therefore, α ·u ≤ α ·gij∗ must hold. If α ∈ A(dij∗), then the proof is complete. Otherwise,
αj/αi ≤ θij by Lemma 5.2 so that

α · u = αi

³
ui +

αj
αi
uj

´
≤ αi(ui + θijuj) ≤ αi g

i
i = α · gi.

We hence obtain the desired conclusion. This observation in conjunction with Lemma 5.2

yields the following theorem.

Theorem 5.3. Suppose that I = 2 and that Assumptions 1 and 2 hold. Then V 0 ⊂
V ∗(D∗). In other words, for any u ∈ V 0 and ² > 0, there exists δ < 1 such that the

following holds if δ > δ: There exists an equilibrium collusion scheme τ which chooses

13



instruction rules from D∗ = {d0, d1, d2, d12∗, d21∗} and yields the payoff vector Π(τ, σ∗, δ)
satisfying kΠ(τ, σ∗, δ)− uk < ².

Proof: See the Appendix.

In order to determine whether or not efficient collusion is possible, hence, we only

need to check if F ∩ V 0 6= φ. This is typically a straightforward task as demonstrated by

the following example.

Example 1: Suppose that the signals are independently drawn from the set S1 = S2 =

{0, 1/K, . . . , 1−1/K, 1} according to the uniform probability distribution pi(si) = 1/(K+
1) for any si ∈ Si (i = 1, 2). The value function is given by vi(si, sj) = csi + (1− c)sj for
i = 1, 2, and j 6= i, where c ∈ [0, 1] is a constant. The efficient payoffs corresponding to
d12∗ can be calculated as:

g12∗1 =

KX
k=0

kX
l=0

ck + (1− c)l
K

1

(K + 1)2
=

1+ c

2K(K + 1)2

KX
k=0

k(1+ k) =
1+ c

2

K + 2

3(K + 1)
,

g12∗2 =
KX
k=0

k−1X
l=0

ck + (1− c)l
K

1

(K + 1)2
=

1+ c

2K(K + 1)2

KX
k=0

k2 =
1+ c

2

2K + 1

6(K + 1)
.

The symmetric efficient payoff g∗i is hence given by

g∗i =
1

2

X
s∈S

p(s) max {s1, s2} = 1

2
(g12∗1 + g12∗2 ) =

1+ c

2

4K + 5

12(K + 1)
.

On the other hand, bidder i’s exclusion payoff equals gii = 1/2, and the bounds on the

exchange rate are given by

θ12 = θ21 =
K − c
K(1+ c)

.

It can be verified that

g∗1 + θ12 g
∗
2 =

(4K + 5) {(2 + c)K − c}
24K(K + 1)

<
1

2
.

As depicted in Figure 1, hence, the symmetric efficient vector g∗ = (g∗1 , g
∗
2) ∈ V 0. By

Theorem 5.3, therefore, there exists an equilibrium collusion scheme whose payoff vector

approximates g∗ provided that the discount factor is close to one.

6. Three or More Bidders

14



With three or more bidders, it is necessary to use a wider class of instruction rules

to support efficient payoffs. Given the signal profile s ∈ S and a subset J ⊂ I of bidders,
denote by I∗(s, J) = argmaxi∈J vi(s) the set of bidders with the highest valuation among

those in set J . For each permutation φ ∈ ΦJ on the set J , define d(· | φ, J) to be the
instruction rule such that

di(ŝ | φ, J) =
½
R if i ∈ I∗(ŝ, J) and φ(i) ≤ φ(j) for any j ∈ I∗(ŝ, J),
N otherwise.

In other words, this instruction rule allocates the good efficiently within the set J but

excludes all other bidders. If J = I, then d(· | φ, I) is equivalent to the efficient instruction
rule dφ∗, and if J = {i}, then it is equivalent to the exclusion rule di.

Given any α, let Jα = {j : αj > 0}. Our objective is to identify conditions under
which d(· | φ, Jα) is enforceable with respect to α.

Since d(· | φ, {i}) = di is enforceable with respect to any α 6= 0 by Lemma 4.1,

suppose that Jα = {1, . . . , n} for some n ≥ 2, and let φ ∈ ΦJα be given. By the definition
of d(· | φ, Jα), the enforceability conditions for bidders n+ 1, . . . , I are satisfied if we take
yn+1(·) = · · · = yI(·) ≡ 0. For bidders 1, . . . , n, we express their enforceability conditions
in matrix form. For each i = 1, . . . , n, let Λ0i = Λi \ {λ∗i }, mi = |Λ0i | and m =

Pn
i=1 mi.

For any reporting rule profile λ, let q(· | λ) = ¡q(ŝ | λ)¢
ŝ∈S represent the |S|-dimensional

vector of probability distributions of report profiles under λ. Denote by Bi the mi × |S|
matrix whose row equals

bi(λi) = q(· | λ∗)− q(· | λi,λ∗−i) (λi ∈ Λ0i ).

In other words, each row of Bi corresponds to the difference in probability distributions

of report profiles between λ∗i and λi (6= λ∗i ). Write d = d(· | φ, Jα) for simplicity, and let
v̂i(λi) = g

d
i (λi,λ

∗
−i)− gdi (λ∗), and v̂i be the mi-dimensional vector v̂i =

¡
v̂i(λi)

¢
λi∈Λ0i

. It

follows that d is enforceable with respect to α if there exist y1, . . . , yn ∈ RS such that

(4) Bi yi ≥ v̂i for i = 1, . . . , n, and
nX
i=1

αiyi = 0.

Note that we have set δ = 1/2 in the expression of enforceability above based on the remark

in Section 3. Eliminating yn using the second condition and writing βi = αi/αn > 0

(i = 1, . . . , n− 1), we can further rewrite (4) as:

(5) B ŷ ≥ v̂,
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where

B =


B1 O

. . .

O Bn−1
−β1Bn · · · −βn−1Bn

 , ŷ =

 y1
...

yn−1

 , and v̂ =

 v̂1...
v̂n

 .
Therefore, d is enforceable with respect to α if the inequality (5) has a solution ŷ. The

following lemma is a simple application of the theorem of the alternatives.

Lemma 6.1. Inequality (5) has a solution ŷ if and only if for any (γ1, . . . , γn) such that

γi ∈ Rmi
+ (i = 1, . . . , n),

γiBi − βiγnBn = 0 for every i = 1, . . . , n− 1 ⇒
nX
i=1

γi · v̂i ≤ 0.

Proof: See the Appendix.

The following lemma states the conditions under which the hyperplane requirementP
i αiyi = 0 can be ignored.

Lemma 6.2. For every i ∈ J = {1, . . . , n} and j 6= i, if there exists z : S → R such that

Bi z ≥ v̂i and Bj z = 0, then there exists y = (y1, . . . , yn) : S → Rn that satisfies (4).

Proof: In view of Lemma 6.1, suppose that γiBi − βiγnBn = 0 (i = 1, . . . , n − 1) for
some (γ1, . . . , γn) ≥ 0. For any i < n, if we multiply from the right zi ∈ RS such that

Bi zi ≥ v̂i and Bn zi = 0, then

0 = γiBi zi − βiγnBn zi = γiBi zi ≥ γi · v̂i.

Likewise, if we multiply zn ∈ RS such that Bi zn = 0 and Bn zn ≥ v̂n, then

0 = γiBi zn − βiγnBn zn = −βiγnBn zn ≤ −βiγn · v̂n,

which implies γn · vn ≤ 0. It hence follows that
Pn

i=1 γi · v̂i ≤ 0. //
The simplest way to have z such that Bj z = 0 for any j ∈ I is to make z independent of

j’s report as shown in the lemma below. For j ∈ I, let Gj ⊂ RS be the set of continuation

payoff functions that do not depend on j’s report:

Gj =
©
z ∈ RS : z(ŝ) = z(ŝ0j) if ŝ−j = ŝ

0
−j
ª
.

The following lemma is immediate.
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Lemma 6.3. If z ∈ Gj , then Bj z = 0.

Proof: See the Appendix.

Refine D∗ to be the set of the following instruction rules: the one-shot Nash equilib-

rium instruction rule d0, exclusion rules d1, . . . , dI , and d(· | φ, J) for all J ⊂ I such that
|J | ≥ 2 and φ ∈ ΦJ .

Theorem 6.4. Suppose that for any α ∈ RI such that |Jα| ≥ 2 and φ ∈ ΦJα , d(· | φ, Jα)
is enforceable with respect to α. Then V ⊂ V ∗(D∗). In other words, for any u ∈ V and

² > 0, there exists δ < 1 such that the following holds if δ > δ: There exists a collusion

scheme τ which chooses instruction rules from D∗ and yields payoff Π(τ, σ∗, δ) such that

kΠ(τ,σ∗, δ)− uk < ².

Proof: See the Appendix.

6.1. Independent Signals

In this section, we make the following assumption about the signal distribution.

Assumption 3: For every i ∈ I, the signal set Si = {s0, s1, . . . , sK} ⊂ R+ for s
0 < s1 <

· · · < sK . Furthermore, the probability distribution p of signal profile s has full support
over S, and is independent : p(s) =

Q
i pi(si).

We also maintain Assumption 2 of Section 5 and suppose that the valuation functions

are symmetric and monotone. Fix any J ⊂ I such that |J | ≥ 2 and φ ∈ ΦJ and consider
the instruction rule d = d(· | φ, J). For i ∈ J and l = 1, . . . , K, let Z̄i(s

l | φ, J) ⊂ S−i
be the set of signal profiles s−i = (sj)j 6=i of bidders other than i such that according to

d(· | φ, J), i is designated the winner and instructed to bid R under (si = sl, s−i):

Z̄i(s
l | φ, J) =

n
s−i ∈ S−i : di(si = sl, s−i | φ, J) = R

o
.

Let Zi(s
l | φ, J) = Z̄i(s

l | φ, J) \ Z̄i(sl−1 | φ, J). In other words, Zi(sl | φ, J) is the
set of s−i’s against which bidder i wins when reporting ŝi = sl but loses when reporting

ŝi = s
l−1. For any i ∈ J , j 6= i, k = 0, 1, . . . , K, and l = 1, . . . , K, define

wji (s
k, sl | φ, J) =

P
s−i∈Zi(sl|φ,J) vi(si = s

k, s−i) p−i(s−i)

pj(sj = sl)
.
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Since vi is monotone increasing by Assumption 2, it can be immediately verified that for

any k, k0 = 0, 1 . . . ,K and l = 1, . . . ,K,

(6) wji (s
k, sl | φ, J) ≤ wji (sk

0
, sl | φ, J) if k ≤ k0.

For any j 6= i, let
ρlj =

pj(sj = s
l)P

sj≤sl pj(sj)
(l = 0, 1, . . . ,K),

and consider a continuation payoff function z : S → R such that

(7) z(ŝ) =

½−xi(ŝi) if ŝi ≥ ŝj
0 otherwise,

where xi : Si → R+ is a non-negative function of i’s report defined recursively by

xi(s
0) = 0,(8)

xi(s
k) = ρkj w

j
i (s

k−1, sk | φ, J) + (1− ρkj ) xi(sk−1) (k = 1, . . . ,K).

Lemma 6.5. Under Assumptions 2 and 3, Bi z ≥ v̂i for z given in (7).

Proof: See the Appendix.

Since z is a function of the reports of only two bidders, there is at least one other

bidder h for whom z ∈ Gh and hence Bh z = 0 by Lemma 6.3. This along with Lemma
6.5 and Theorem 6.4 yields the following theorem.

Theorem 6.6. Suppose that Assumptions 2 and 3 hold. For any u ∈ V and ² > 0, there

exists δ < 1 such that the following holds if δ > δ: There exists an equilibrium collusion

scheme τ which chooses instruction rules from D∗ and yields the payoff vector Π(τ, σ∗, δ)

satisfying kΠ(τ, σ∗, δ)− uk < ².

6.2. Correlated Signals

When private signals are correlated, continuation payoffs can be determined using the

functional relationship between a bidder’s private signal and the probability distribution

of other bidders’ signal profiles. When there exist three or more bidders, use of such a

mechanism yields an extremely powerful conclusion that does not depend on the detailed

specification of the valuation functions or the signal distribution. The analysis in this

subsection draws heavily on Aoyagi (1998).
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For each si ∈ Si, let p−i(· | si) and p−i−j(· | si) denote the following vectors of
conditional probabilities:

p−i(· | si) =
¡
p−i(s−i | si)

¢
s−i∈s−i ,

p−i−j(· | si) =
¡
p−i−j(s−i−j | si)

¢
s−i−j∈S−i−j .

Assumption 4: For any i 6= j, p−i−j(· | si) 6= p−i−j(· | s0i) for any si 6= s0i.
When the set of probability distributions p of s ∈ S is identified with the (|S| − 1)-

dimensional simplex ∆|S|−1, Assumption 4 holds generically in this set as long as |Si| ≥ 2
for each i ∈ I. In particular, it holds when the distribution satisfies affiliation with strict
inequality. Fix any J ⊂ I such that |J | ≥ 2 and φ ∈ ΦJ and consider the instruction rule
d = d(· | φ, J).

Lemma 6.7. Suppose that Assumption 4 holds. For any i, j ∈ I (i 6= j), there exists a

continuation payoff function z ∈ Gj such that Bi z ≥ v̂i.

Proof: See the Appendix.

Combining Lemmas 6.2 and 6.7 and Theorem 6.4, we obtain the following theorem.

Theorem 6.8. Suppose that I ≥ 3 and that Assumption 4 holds. Then for any u ∈ V and
² > 0, there exists δ < 1 such that the following holds if δ > δ: There exists an equilibrium

collusion scheme τ which chooses instruction rules from D∗ and yields the payoff vector

Π(τ,σ, δ) satisfying kΠ(τ,σ, δ)− uk < ².

Appendix

Proof of Lemma 5.1: We first show by induction that

tk ≤ θvj(s
k, sk) and tk ≤ vi(s

k, sk+1)− ρk,ki θvj(s
k, sk)

1− ρk,ki
.

for k = 0, 1, . . . , K. These clearly hold when k = 0. For k ≥ 1, (3) implies that tk satisfies

tk = ρk−1,kj vi(s
k−1, sk)

+ ρk−1,k−1i {1− ρk−1,kj } θvj(sk−1, sk−1)(b1)

+ {1− ρk−1,k−1i }{1− ρk−1,kj } tk−1.
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Suppose that tk−1 ≤ θvj(s
k−1, sk−1). Then (b1) implies that

tk ≤ ρk−1,kj vi(s
k−1, sk) + ρk−1,k−1i {1− ρk−1,kj } θvj(sk−1, sk−1)

+ {1− ρk−1,k−1i }{1− ρk−1,kj } θvj(sk−1, sk−1)
= ρk−1,kj vi(s

k−1, sk) + {1− ρk−1,kj } θvj(sk−1, sk−1).

Since θ ≥ θij , the RHS is ≤ θvj(s
k, sk) as desired. Suppose next that

tk−1 ≤ vi(s
k−1, sk)− ρk−1,k−1i θvj(s

k−1, sk−1)

1− ρk−1,k−1i

.

It then follows from (b1) that

tk ≤ ρk−1,kj vi(s
k−1, sk)

+ ρk−1,k−1i {1− ρk−1,kj } θvj(sk−1, sk−1)
+ {1− ρk−1,kj }©vi(sk−1, sk)− ρk−1,k−1i θvj(s

k−1, sk−1)
ª

= vi(s
k−1, sk).

Since θ ≤ 1, we obtain the desired conclusion. Note next that ∆ki = xi(sk)− xi(sk−1) and
∆kj = xj(s

k)− xj(sk−1) can be expressed in terms of tk−1 as

∆ki = ρk−1,kj

h
vi(s

k−1, sk)− tk−1 − ρk−1,k−1i

©
θvj(s

k−1, sk−1)− tk−1ªi,
∆kj = ρk−1,k−1i

h
vj(s

k−1, sk−1)− 1
θ
tk−1

i
for k = 1, . . . ,K. The above conclusions then imply that ∆ki , ∆

k
j ≥ 0 for k = 1, . . . ,K. //

Proof of Lemma 5.2: Let πi(si, ŝi | d, y) denote bidder i’s (interim) expected payoff
under the instruction rule d and the continuation payoff function profile y when he has

signal si and reports ŝi, and other bidders report their signals truthfully. The conclusion

follows if

(b2) πi(si, si | dij∗, y) ≥ πi(si, ŝi | dij∗, y)

for any si, ŝi ∈ Si, and

(b3) πj(sj , sj | dij∗, y) ≥ πj(sj , ŝj | dij∗, y)
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for any sj , ŝj ∈ Sj . We will first show that xi and xj defined in (3) satisfy the inequalities
(b4)-(b7) below for k = 1, . . . , K. We will then show that these inequalities imply (b2)

and (b3).

1

ρk−1,kj

∆ki + θ∆kj ≥ vi(sk−1, sk)− tk−1,(b4)

1

ρk,kj
∆ki + θ∆kj ≤ vi(sk, sk)− tk−1,(b5)

1

ρk−1,k−1i

∆kj ≥ vj(sk−1, sk−1)−
1

θ
tk−1,(b6)

1

ρk,k−1i

∆kj ≤ vj(sk, sk−1)−
1

θ
tk−1.(b7)

It can be readily verified that xi and xj defined in (3) satisfy (b4) and (b6) with equality.

Since ∆ki , ∆
k
j ≥ 0 by Lemma 1, (b5) holds since ρk,kj ≥ ρk−1,kj and vi(s

k, sk) ≥ vi(sk−1, sk),
and (b7) holds since ρk,k−1i ≥ ρk−1,k−1i and vj(s

k, sk−1) ≥ vj(sk−1, sk−1).
For y given in (2), πi(si, ŝi | dij∗, y) can be written as

πi(si, ŝi | dij∗, y) =
X
sj≤ŝi

vi(si, sj) pj(sj | si)

− xi(ŝi)
X
sj≤ŝi

pj(sj | si) +
X
sj>ŝi

θxj(sj) pj(sj | si).

Hence, (b2) for si = s
k−1 and ŝi = sk (i.e., the “one-step upward” incentive compatibility

condition) is equivalent to (k = 1, . . . ,K):

πi(s
k−1, sk−1 | dij∗, y)− πi(sk−1, sk | dij∗, y)

= −vi(sk−1, sk) pj(sk | si = sk−1) + xi(sk−1) pj(sk | si = sk−1)(b8)

+ θxj(s
k) pj(s

k | si = sk−1) +∆ki
X
sj≤sk

pj(sj | si = sk−1) ≥ 0,

and (b2) for si = s
k and ŝi = s

k−1 (i.e., the “one-step downward” incentive compatibility

condition) is equivalent to:

πi(s
k, sk | dij∗, y)− πi(sk, sk−1 | dij∗, y)

= vi(s
k, sk) pj(s

k | si = sk)− xi(sk−1) pj(sk | si = sk)(b9)

− θxj(sk) pj(sk | si = sk)−∆ki
X
sj≤sk

pj(sj | si = sk) ≥ 0.
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Rearranging, we see that (b8) and (b9) are equivalent to (b4) and (b5), respectively. For

bidder j, πj(sj , ŝj | dij∗, y) can be written as

πj(sj , ŝj | dij∗, y) =
X
si<ŝj

vj(sj , si) pi(si | sj)

− xj(ŝj)
X
si<ŝj

pi(si | sj) +
X
si≥ŝj

θ−1xi(si) pi(si | sj).

Hence, (b3) for sj = s
k−1 and ŝj = sk is equivalent to (k = 1, . . . , K):

πj(s
k−1, sk−1 | dij∗, y)− πj(sk−1, sk | dij∗, y)

= −vj(sk−1, sk−1) pi(sk−1 | sj = sk−1) + xj(sk−1) pi(sk−1 | sj = sk−1)(b10)

+ θ−1xi(sk−1) pi(sk−1 | sj = sk−1) +∆kj
X

si≤sk−1
pi(si | sj = sk−1) ≥ 0,

and (b3) for si = s
k and ŝi = s

k−1 is equivalent to:

πj(s
k, sk | dij∗, y)− πj(sk, sk−1 | dij∗, y)

= vj(s
k, sk−1) pi(sk−1 | sj = sk)− xj(sk−1) pi(sk−1 | sj = sk)(b11)

− θ−1xi(sk−1) pi(sk−1 | sj = sk)−∆kj
X

si≤sk−1
pi(si | sj = sk) ≥ 0.

Rearrangement shows that (b10) and (b11) are equivalent to (b6) and (b7), respectively.

As an induction hypothesis, suppose that (b2) holds for si = sk−1 and ŝi = sk+l−1

(l = 1, . . . ,K − k). When si = sk−1 and ŝi = sk+l, we have

πi(s
k−1, sk−1 | dij∗, y)− πi(sk−1, sk+l | dij∗, y)

= πi(s
k−1, sk−1 | dij∗, y)− πi(sk−1, sk+l−1 | dij∗, y)

+
©−vi(sk−1, sk+l) + θxj(s

k+l) + xi(s
k+l−1)

ª
pj(s

k+l | si = sk−1)
+∆k+li

X
sj≤sk+l

pj(sj | si = sk−1).

By the induction hypothesis, the RHS is ≥ 0 if

− vi(sk−1, sk+l) + θxj(s
k+l) + xi(s

k+l−1) +∆k+li

P
sj≤sk+l pj(sj | si = sk−1)
pj(sk+l | si = sk−1)

= −vi(sk−1, sk+l) + θ∆k+lj + tk+l−1 +
1

ρk+l,k−1j

∆k+li ≥ 0,
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or equivalently,
1

ρk+l,k−1j

∆k+li + θ∆k+lj ≥ vi(sk−1, sk+l)− tk+l−1.

Since ρk+l,k−1j ≤ ρk+l,k+l−1j by (1) and vi(s
k−1, sk+l) < vi(s

k+l−1, sk+l), (a1) for k + l

implies the above inequality. Therefore, (b2) holds for s = sk−1 and ŝ = sk+l (k = 1, . . . , K,

l = 0, . . . ,K − k − 1). We can show by an analogous argument that (b3) holds for s = sk
and ŝ = sk−l (k = 1, . . . ,K, l = 1, . . . , k). The argument for j is similar and is omitted.

//

Proof of Lemma 6.1: By the theorem of the alternatives (Rockafellar (1970, Theorem

22.1)), (5) has a solution if and only if for any γ ∈ Rs
+,

γB = 0 ⇒
nX
i=1

γi · v̂i ≤ 0.

Take any γ ∈ Rs
+ and write γ = (γ1, . . . , γn), where γi is mi-dimensional. Simple algebra

shows that γB = 0 is equivalent to

γiBi − βiγnBn = 0 for i = 1, . . . , n− 1,

and that γ · v̂ ≤ 0 is equivalent to
nX
i=1

γi · v̂i ≤ 0.

Hence, the desired conclusion follows. //

Proof of Lemma 6.3: Fix any ŝj ∈ Sj . For any λj ∈ Λj ,

bj(λj) · z =
X
ŝ∈S

©
p(ŝ | λ∗)− p(ŝ | λj ,λ∗−j)

ª
z(ŝ)

=
X

ŝ−j∈S−j
z(ŝj , ŝ−j)

X
ŝj∈Sj

©
p(ŝj , ŝ−j | λ∗)− p(ŝj , ŝ−j | λj ,λ∗−j)

ª
=

X
ŝ−j∈S−j

z(ŝj , ŝ−j)
©
p(ŝ−j | λ∗−j)− p(ŝ−j | λ∗−j)

ª
= 0,

where the second equality follows since z(ŝ0j , ŝ−j) = z(ŝj , ŝ−j) for any ŝ
0
j ∈ Sj .
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Proof of Theorem 6.4: Let α 6= 0 be given. If αi ≤ 0 for every i ∈ I, then α ·u < α ·g0.
Otherwise, set J = Jα and write gi(φ, J) for g

d(·|φ,J)
i (λ∗).

If |J | = 1, then α ·u < α ·g11 and α ∈ A(d1). Suppose now that |J | ≥ 2. If α ·u < α ·g0
or α · u < α · gi for some i ∈ I, then we are done since α ∈ RI \ {0} = A(d0) = A(di).

Otherwise, we must have α · u < α · gφ∗ for some φ ∈ ΦI . Let φ̄ ∈ ΦJ be the restriction of
φ to J : For any i, j ∈ J ,

φ̄(i) ≤ φ̄(j)⇔ φ(i) ≤ φ(j).

In other words, the relative ranking between any pair of bidders in J under φ̄ is the same

as that under φ. Since gφ∗j ≤ gj(φ̄, J) for each j ∈ J and gj(φ̄, J) = 0 for each j /∈ J , we
have

α · gφ∗ ≤
nX
j=1

αjg
φ∗
j ≤ α · g(φ̄, J).

It then follows that α · u < α · g(φ̄, J). Since α ∈ A(d(· | φ̄, J)) by assumption, the proof
is complete. //

Proof of Lemma 6.5: As in the proof of Lemma 5.2, let πi(si, ŝi | d, y) denote bidder i’s
(interim) expected payoff under the instruction rule d and the continuation payoff function

y when he has signal si and reports ŝi, and other bidders report their signals truthfully.

Write d = d(· | φ, J) for simplicity. The conclusion follows if

(b12) πi(si, si | d, y) ≥ πi(si, ŝi | d, y)

for any si 6= ŝi. We will first show that xi defined in (8) satisfies (b13) and (b14) for

k = 1, . . . ,K. We will then show that xi satisfies (b12).

xi(s
k) ≥ ρkj w

j
i (s

k−1, sk) + (1− ρkj ) xi(sk−1),(b13)

xi(s
k) ≤ ρkj w

j
i (s

k, sk) + (1− ρkj ) xi(sk−1),(b14)

As xi satisfies (b13) with equality, it also satisfies (b14) since w
j
i (s

k−1, sk) ≤ wji (sk, sk) by
(6).

Note now that if y is such that yi = z for z given in (7), πi(si, ŝi | d, y) can be written
as

πi(si, ŝi | d, y) =
X

s−i∈Z̄i(ŝi)
vi(si, s−i) p−i(s−i)− xi(ŝi)

X
sj≤ŝi

pj(sj).
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Hence, (b12) for si = s
k−1 and ŝi = sk is equivalent to

πi(s
k−1, sk−1 | d, y)− πi(sk−1, sk | d, y)(b15)

= −wji (sk−1, sk) pj(sk) + xi(sk)
X
sj≤sk

pj(sj)− xi(sk−1)
X

sj≤sk−1
pj(sj) ≥ 0.

Since
P
sj≤sk−1 pj(sj) = (1−ρkj )

P
sj≤sk pj(sj), (b15) simplifies to (b13). Likewise, (b12)

for si = s
k and ŝi = s

k−1 is equivalent to (b14).

As an induction hypothesis, suppose that (b12) holds for si = s
k−1 and ŝi = sk+l−1

(l = 1, . . . ,K − k). When si = sk−1 and ŝi = sk+l, we have

πi(s
k−1, sk−1 | d, y)− πi(sk−1, sk+l | d, y)

= πi(s
k−1, sk−1 | d, y)− πi(sk−1, sk+l−1 | d, y)

− wji (sk−1, sk+l) pj(sk+l) + xi(sk+l)
X

sj≤sk+l
pj(sj)− xi(sk+l−1)

X
sj≤sk+l−1

pj(sj),

By the induction hypothesis, the RHS is ≥ 0 if

− wji (sk−1, sk+l) pj(sk+l) + xi(sk+l)
X

sj≤sk+l
pj(sj)− xi(sk+l−1)

X
sj≤sk+l−1

pj(sj)

=
n
xi(s

k+l)− ρk+lj wji (s
k−1, sk+l)− (1− ρk+lj ) xi(s

k+l−1)
o X
sj≤sk+l

pj(sj) ≥ 0.

Since wji (s
k−1, sk+l) ≤ wji (sk+l−1, sk+l) by (6), (b13) for k+ l implies the above inequality.

Therefore, (b12) holds for s = sk−1 and ŝ = sk+l (k = 1, . . . ,K, l = 0, . . . ,K − k − 1).
An analogous argument shows that (b12) holds for si = s

k and ŝi = s
k−l (k = 1, . . . , K,

l = 1, . . . , k). //

Proof of Lemma 6.7: Write k · k for the square norm, and let z ∈ Gj be defined by
z(si, sj , s−i−j) = z̄(si, s−i−j) for any (si, sj , s−i−j) ∈ S, where

z̄(si, ·) = p−i−j(· | si)
kp−i−j(· | si)k .

Then for any si, s
0
i ∈ Si,

z̄(si, ·) · p−i−j(· | si) = p−i−j(· | si) · p−i−j(· | si)
kp−i−j(· | si)k = kp−i−j(· | si)k, and

z̄(s0i, ·) · p−i−j(· | si) =
p−i−j(· | s0i) · p−i−j(· | si)

kp−i−j(· | s0i)k
.
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If si 6= s0i, then p−i−j(· | si) 6= p−i−j(· | s0i) by Assumption 4 and hence by the Cauchy-
Schwartz inequality,

p−i−j(· | si) · p−i−j(· | s0i) < kp−i−j(· | si)k kp−i−j(· | s0i)k.

It follows that

z̄(si, ·) · p−i−j(· | si) > z̄(s0i, ·) · p−i−j(· | si).

This further implies that for any λi ∈ Λ0i , we have

bi(λi) · z =
X
si∈Si

p(si)
©
z̄(si, ·) · p−i−j(· | si)− z̄(λi(si), ·) · p−i−j(· | si)

ª
> 0,

or equivalently, Bi z > 0. Therefore, we have Bi z ≥ v̂i if we redefine z to be kz for k > 0
sufficiently large. //
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