ANALYSIS OF HEALTH AND ACTIVITY LIMITATION INDEX (HALex), ITS DISTRIBUTION, AND<br>ITS DISTRIBUTION BY INCOME IN JAPAN, 1989 AND 1998<br>Yukiko Asada<br>and<br>Yasushi Ohkusa

November 2002

The Institute of Social and Economic Research
Osaka University
6-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

# Analysis of Health and Activity Limitation Index (HALex), Its Distribution, and Its Distribution by Income in Japan, 1989 and 1998 

Yukiko Asada ${ }^{*}$ and Yasushi Ohkusa**


#### Abstract

It is a widely shared view in the population health field that the future of the analysis of population health lies in the assessment both of the length of life and health-adjusted quality of life, and the parallel examination of the average health and health distribution within a population. Using a nationally representative sample of the 1989 and 1998 wave of the Japanese Comprehensive Survey of Living Conditions of the People on Health and Welfare (CSLC), this research aims to conduct such assessment of the health of Japanese people: examination of the average health-adjusted quality of life, its distribution, and its distribution by income share. This study departs from previous health inequality analyses in the following two ways: (1) construction of a health state measure in the CSLC equivalent to the Health and Activity Limitation Index (HALex) and its application to health inequality analysis, and (2) inclusion of the dead in health inequality analysis. This study found that between 1989 and 1998 overall in Japan the HALex on average slightly reduced ( 0.005 reduction), its inequality by income slightly reduced ( 0.002 reduction in the difference between the top $20 \%$ and bottom $20 \%$ income share groups), and its inequality measured by the Gini Coefficient slightly increased ( 0.002 increase). Women's HALex was almost always lower than men's, except in earlier ages younger than ten years old. The HALex was more unequally distributed among women than men and in older ages. This analysis shows that the success in the improvement in the length of life in Japan did not always coincide with the improvement in the health-adjusted quality of life and provides a basis for the future population health research.


[^0]
## Introduction

Recently, there is a growing interest in health inequality. Such an influential health policy-making body as the World Health Organization (WHO) now claims that a traditional average health of a population does not provide enough information as a population health measure, and investigation of the distribution of health within a population is necessary (World Health Organization 2000). The goals of improving the health of a population are thus often expressed as the increase in the average level of health and the decrease in health inequality. These two objectives are, for example, clearly specified in the Healthy People 2000 (U.S. Department of Health and Human Services 1991) and the World Health Report 2000 (World Health Organization 2000).

Analysis of health inequality in Japan should attract keen interest by many. Japanese people's average health attainment is already received as a miracle. In the past decades, for example, the average health of Japanese people measured by life expectancy has improved dramatically - life expectancy was 63.6 years for men and 67.8 years for women in 1955 and 77.1 years for men and 84.0 years for women in 1999 (Statistics and Information Department 1999). In the World Health Report 2000, Disability-adjusted Life Expectancy or DALE at birth for Japanese people in 1997-1999 is estimated as 74.5 years and ranked the top among 191 countries (World Health Organization 2000). Explanation of exactly what brought this dramatic health improvement remains unsatisfactory beyond such general speculations as the public health system, work ethic, diet, and economy in Japan (Marmot and Smith 1989). In addition to the wonder at this dramatic improvement of health among Japanese people, there is also a general perception of the Japanese society as "egalitarian." Is this perception true - more precisely, regarding health, has the health improvement occurred equally to everyone? How has health distribution changed during the rapid improvement of the average health? Might the high overall health attainment relate to how health is distributed among Japanese people?

With a rapidly growing interest in health inequality in general and that of Japan in particular, analysis of health inequality in Japan has just begun. At the overall country level, the WHO ranks equality of child survival in Japan as the third among its 191 member countries (World Health Organization 2000). Regarding inequalities in health beyond survival and health of older ages, we must wait for further research. In terms of so-called socioeconomic differences in health (Murray, Gakidou, and Frenk 1999), there are a few studies suggesting differences in health by income in Japan. Shibuya, Hashimoto, and Yano found a graded inverse relationship statistically significant at the $\mathrm{p}<0.05$ level between the household income and self-reported health
among a nationally representative sample of about 81,000 people who were 15 years of age and older in 1995 (2002). Using all persons who were 65 years of age and older in one city as study subjects ( $\mathrm{N}=5124$ ), Kondo reported that, adjusting for sex and age, every decrement of $\$ 10,000$ household income increased the risk for requiring care from others among the elderly 1.69 times ( $95 \%$ confidence interval (CI): 1.49-1.92) (2000).

Studies have also reported geographic differences in health in Japan. Using cross-sectional data, Hasegawa found prefectual differences in infant mortality dropped as the infant mortality for the entire nation increased (2001). The absolute rate difference between the best and the worst prefecture was 100 infant deaths per 1000 in 1930, less than 30 per 1000 in 1960, and less than 3 per 1000 in 1990. The Gini coefficient for prefectual differences in life expectancy was greater than 0.3 before the Second World War, and 0.05 after that war. There have also been reports on geographic difference in mortality using a smaller unit, for example, in Kawasaki city, and the increasing geographic difference in life expectancy in Tokyo district between 1970 and 1990 (Takano 1998).

Furthermore, it has also been suggested that differences in health by occupation exist in Japan. Using vital statistics between 1965 and 1990, Hasegawa examined occupational differences in age-adjusted mortality rates for men (2001). He found that all occupational groups experienced decline in mortality rates, but the benefit was not equal among occupational groups. The managerial, professional/technical, clerical and sales workers improved their mortality rates more than workers in the service and agriculture, fishery, and forestry categories. Interestingly, the same analysis using the 1980-1990 data for women suggested that female clerical workers had the lowest mortality rates, lower than professional/technical. The author speculated that this might have reflected the difficulty for Japanese women to seek professional jobs in the Japanese society.

With these few studies, each of which has focused on different aspects of health inequalities, it is difficult to provide an overall picture of how health per se or health in relation to other goods (e.g., income, geographic location, or occupation) is distributed within the country. Nonetheless, these studies suggest that we should think that health inequalities do exist in Japan, and it is unwise of anyone blindly to accept the "egalitarian" perception of the Japanese society and put the research endeavor aside.

We investigate a trend of health inequality in Japan between 1989 and 1998 using the nationally representative sample of the Comprehensive Survey of Living Conditions of the People on Health and Welfare (CSLC). This analysis departs from
previous health inequality analyses in Japan in the following two ways: (1) construction of a health state measure in the CSLC equivalent to the Health and Activity Limitation Index (HALex), that is, the quality of life part of the Years of Health Life (YHL) in the US and its application to health inequality analysis, and (2) inclusion of the dead in health inequality analysis.
"Health state measures" are a cutting-edge health measure. In our appreciation of health, we value both "living long" and "living well." In addition to the former, the most traditional concern of health, health state measures attempt to capture the latter, the health-adjusted quality of life that goes along with the length of life. Various health state measures have been developed by different research groups, including the EQ/5D, the Health Utilities Index (HUI), the Quality of Well-being, the SF-36, and the YHL (for an excellent, comprehensive guide, see McDowell and Newll 1996). None of these measures is perfect, but the development is rapid and their use is expeditiously expanding. For example, the gold standard measure of the improvement of health in cost-effectiveness analysis is now considered to be quality-adjusted life years (QALYs) obtained by these health state measures (Gold et al. 1998; Russell et al. 1996). Also, in the effort of assessing the health-adjusted quality of life among its people, the Canadian government began to include the HUI questions in population health surveys (Statistics Canada).

The HALex was created for the purpose of assisting one of the three goals of Healthy People 2000: increasing the span of healthy life for Americans. Monitoring both quality and quantity aspects of the health of the population, a new variable, the HALex, was developed. Often constructing a health state measure requires an explicit value assessment, yet there was no resource to conduct such a value assessment. Erickson and her colleagues then based a new measurement on existing information, the life table of the US population and morbidity information from the National Health Interview Survey (NHIS) (Erickson, Wilson, and Shannon 1995). Its construct and incremental validity have later been evaluated and confirmed (Erickson 1998).

While many industrialized countries are keen on introducing health state measures, Japan is slow in this regard. The EQ-5D, the HUI, and the SF-36 were translated into Japanese (see, for example, the special issue of Kosei no shihyo), but their application has been limited to small, exploratory samples and never been applied to a nationally representative sample. This research is the first to use a cutting-edge health state measure in analysis of the health of a nationally representative sample of Japanese people. Cross-national application of a health state measure is challenging and at times problematic, yet we believe that this attempt is an important step forward
for a better analysis of the population health in Japan.
The second feature of this research is the inclusion of the dead in analysis of health inequality, despite the use of a cross-sectional survey. A cross-sectional health survey usually only collects health information of the living and neglects the dead of the target population. Recognizing death as a health outcome, one might argue that analysis of the health of the living only provides partial information of the population health. However healthy the living population may be, if there were also a great proportion of deaths in the population, we may not be able to capture the state of the population health merely by looking at the health of the living. Accordingly, in this analysis, we attempt to assess the health of the Japanese population not only by the living but also including the dead.

We set the following three objectives in this research:
(1) What was the average health-adjusted quality of life measured by the HALex in Japan, overall, by sex and by age group in 1989 and 1998?
(2) How was the HALex distributed by income share in Japan, overall, by sex and by age group in 1989 and 1998 ?
(3) How was the HALex, from death to the "full" health, distributed in Japan, overall, by sex and by age group in 1989 and 1998?

The plan of this report is as follows. First, we explain data sources, construction of the HALex, and health inequality measures used in this study. Second, we present results in order of the three questions above. Finally, we discuss issues raised in this analysis and make policy recommendations.

Before proceeding, a word of caution is in order. There is as yet no commonly accepted definition of "health inequality." In this report, "health distribution" is a way in which health is spread among individuals or groups of people in a population of concern, "health equality" suggests the health distribution in which health is spread equally to every party of focus in a population, and "health inequality" means all health distributions that are otherwise.

## METHODS

Data Sources

## The living

Data of the living come from the Comprehensive Survey of Living Conditions of the People on Health and Welfare (CSLC) conducted by the Ministry of Health, Labor and Welfare, Japan (Statistics and Information Department 1989a; Statistics and Information Department 1998a). This cross-sectional survey consists of four parts: household,
health, income, and assets. The purpose of the survey is to collect basic information on health, health care, pension, welfare, and income of Japanese people useful for national health policy-making. Data on all four parts have been collected every three years since 1986. This study used household, health, and income data in 1989 and 1998, the earliest and the latest available years that provide all necessary variables for our analysis.

The survey sample consists of a nationally representative sample of non-institutionalized individuals selected by probability sampling methods. There is no oversampling. One-stage cluster sampling with equal probabilities is used for the household and health parts: for the 1998 data, all 276,289 households were chosen from 5,240 census units randomly selected from the 1995 census units. Each census unit contains about 50 households. The response rate (i.e., number of questionnaires collected / number of questionnaires distributed) for the household and health part in 1998 was $89.7 \%$. Two-stage cluster sampling with equal probabilities is used for the income and asset parts: all 40,430 households were chosen from 2,000 sub-census units randomly selected from these 5,240 census units. Each sub-census unit contains 20-30 households. In 1989, about 260,000 households were selected for the household and health part, and about 50,000 households for the income and asset part. The response rate for the income and asset parts in 1998 was $80.6 \%$. Once a household is chosen, all family members are invited to complete the survey. Ministry officials interview respondents at their home for income and assets information. For the household and health part, they distribute and collected the questionnaires, but respondents answer the health part of the survey in a self-administered manner. Surrogate responses are used for children younger than 12 years old and people with difficulties answering the questionnaire by themselves.

The original sample size of the 1989 household and health data is 803,228 and the 1998 household and health data, 721,403 . For the income part, the original sample size is 125,492 for 1989 and 90,059 for 1998. For this analysis, we used data of individuals between 6 years and 94 years of age who had answered all questions necessary for this analysis, resulting in the sample size of 700,421 for the 1989 health data, 630,521 for the 1998 health data, 109,492 for the 1989 income data, and 79,377 for the 1998 income data. We excluded data of individuals younger than 6 years old because they had not been invited to answer questions on activity limitations. We excluded data of individuals 95 years of age and older because it was not possible to obtain data of the dead for this cohort of individuals (see below).

## The dead

A cross-sectional survey only collects information of the living. We imputed the number of the dead and included them in our analysis of distribution of health. The most straightforward dead imputation might appear to be calculating the number of people who died between their births and the time of the survey and adding them into the existing living sample. This strategy unfortunately suffers from technical and conceptual difficulties. Although it is theoretically possible to trace back a number of the dead from the vital statistics, the data quality may be questionable. Also, adjusting the vital statistics for migration of multiple years will be cumbersome, if not impossible. Moreover, even if we could obtain good quality vital statistics and adjust them for migration perfectly, results emerging from this sample of the living and the dead combined would not be of much use for policy-making. Some of the dead in this sample have "just died," that is, deaths occurred last year, while others among the dead have been dead for many years. This mixture of various deaths makes it difficult to make policy recommendation useful at the current time. In other words, it is conceptually confusing to treat deaths spreading over years cross-sectionally and to look at deaths occurred over years and health states of the living captured at a much shorter period of time.

Thus, we instead focus on deaths occurring around the survey years. We used the mortality rate of each age between 6 and 94 years old published in the abridged life tables for Japan 1989 and 1998 (Statistics and Information Department 1989b; Statistics and Information Department 1998b) and computed how many people in our living sample of 1989 and 1998 would be dead on the following years. A drawback of this method is that a number of imputed deaths will always be smaller than the actual number of deaths because the mortality rates we used are not adjusted for health states. Our results, therefore, should be regarded as being biased towards the healthy. Tables 1-6 show the process of the dead calculation and a resulting number of the imputed dead for 1989 and 1998, overall, by sex, and by sex and age group (6-14, 15-24, 25-44, 45-64, 65-74, 75-94), along with the corresponding living populations.

Table 1. Calculation of the dead for male, 1989

| age | Number in 1989 data | 1989 mortality rate | Number of deaths in 1990 among the 1989 sample | Total number including the dead |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 4506 | 0.00025 | 1 | 4507 |
| 7 | 4782 | 0.00023 | 1 | 4783 |
| 8 | 4987 | 0.00021 | 1 | 4988 |
| 9 | 5318 | 0.00018 | 1 | 5319 |
| 10 | 5502 | 0.00016 | 1 | 5503 |
| 11 | 5717 | 0.00015 | 1 | 5718 |
| 12 | 5825 | 0.00015 | 1 | 5826 |
| 13 | 6104 | 0.00017 | 1 | 6105 |
| 14 | 6384 | 0.00023 | 1 | 6385 |
| 15 | 6580 | 0.00036 | 2 | 6582 |
| 16 | 6663 | 0.00052 | 3 | 6666 |
| 17 | 6338 | 0.00069 | 4 | 6342 |
| 18 | 5476 | 0.00081 | 4 | 5480 |
| 19 | 4942 | 0.00087 | 4 | 4946 |
| 20 | 4801 | 0.00087 | 4 | 4805 |
| 21 | 4651 | 0.00083 | 4 | 4655 |
| 22 | 4198 | 0.00077 | 3 | 4201 |
| 23 | 4100 | 0.00073 | 3 | 4103 |
| 24 | 4398 | 0.00072 | 3 | 4401 |
| 25 | 4277 | 0.00074 | 3 | 4280 |
| 26 | 4196 | 0.00076 | 3 | 4199 |
| 27 | 4246 | 0.00076 | 3 | 4249 |
| 28 | 4255 | 0.00076 | 3 | 4258 |
| 29 | 4441 | 0.00076 | 3 | 4444 |
| 30 | 4710 | 0.00078 | 4 | 4714 |
| 31 | 4520 | 0.0008 | 4 | 4524 |
| 32 | 4617 | 0.00082 | 4 | 4621 |
| 33 | 4810 | 0.00086 | 4 | 4814 |
| 34 | 5252 | 0.00091 | 5 | 5257 |
| 35 | 5233 | 0.00097 | 5 | 5238 |
| 36 | 5601 | 0.00105 | 6 | 5607 |
| 37 | 5937 | 0.00115 | 7 | 5944 |
| 38 | 6464 | 0.00127 | 8 | 6472 |
| 39 | 7020 | 0.0014 | 10 | 7030 |
| 40 | 7329 | 0.00155 | 11 | 7340 |
| 41 | 7607 | 0.00172 | 13 | 7620 |
| 42 | 6328 | 0.00192 | 12 | 6340 |
| 43 | 3945 | 0.00216 | 9 | 3954 |
| 44 | 5026 | 0.0024 | 12 | 5038 |
| 45 | 5763 | 0.00264 | 15 | 5778 |
| 46 | 5366 | 0.00286 | 15 | 5381 |
| 47 | 5819 | 0.00308 | 18 | 5837 |
| 48 | 5363 | 0.00336 | 18 | 5381 |
| 49 | 4865 | 0.00372 | 18 | 4883 |
| 50 | 4410 | 0.00416 | 18 | 4428 |

Table 1. Calculation of the dead for male, 1989, cont.

| age | Number in 1989 data | 1989 mortality rate | Number of deaths in 1990 among the 1989 sample | Total number including the dead |
| :---: | :---: | :---: | :---: | :---: |
| 51 | 4998 | 0.00464 | 23 | 5021 |
| 52 | 4850 | 0.00518 | 25 | 4875 |
| 53 | 5045 | 0.00579 | 29 | 5074 |
| 54 | 4737 | 0.00648 | 31 | 4768 |
| 55 | 4740 | 0.00727 | 34 | 4774 |
| 56 | 4740 | 0.00808 | 38 | 4778 |
| 57 | 4723 | 0.00888 | 42 | 4765 |
| 58 | 4724 | 0.00963 | 45 | 4769 |
| 59 | 4405 | 0.01034 | 46 | 4451 |
| 60 | 4413 | 0.01108 | 49 | 4462 |
| 61 | 4170 | 0.0119 | 50 | 4220 |
| 62 | 4153 | 0.01286 | 53 | 4206 |
| 63 | 3882 | 0.01397 | 54 | 3936 |
| 64 | 3608 | 0.01518 | 55 | 3663 |
| 65 | 3275 | 0.01654 | 54 | 3329 |
| 66 | 2798 | 0.01803 | 50 | 2848 |
| 67 | 2572 | 0.01977 | 51 | 2623 |
| 68 | 2527 | 0.02176 | 55 | 2582 |
| 69 | 2377 | 0.0241 | 57 | 2434 |
| 70 | 2182 | 0.02675 | 58 | 2240 |
| 71 | 2005 | 0.02975 | 60 | 2065 |
| 72 | 1988 | 0.03308 | 66 | 2054 |
| 73 | 1932 | 0.03673 | 71 | 2003 |
| 74 | 1832 | 0.04067 | 75 | 1907 |
| 75 | 1742 | 0.04527 | 79 | 1821 |
| 76 | 1582 | 0.05071 | 80 | 1662 |
| 77 | 1486 | 0.05698 | 85 | 1571 |
| 78 | 1294 | 0.064 | 83 | 1377 |
| 79 | 1254 | 0.07189 | 90 | 1344 |
| 80 | 1033 | 0.07987 | 83 | 1116 |
| 81 | 907 | 0.08861 | 80 | 987 |
| 82 | 783 | 0.09805 | 77 | 860 |
| 83 | 634 | 0.10824 | 69 | 703 |
| 84 | 495 | 0.11922 | 59 | 554 |
| 85 | 436 | 0.13106 | 57 | 493 |
| 86 | 381 | 0.14379 | 55 | 436 |
| 87 | 266 | 0.15747 | 42 | 308 |
| 88 | 217 | 0.17214 | 37 | 254 |
| 89 | 170 | 0.18787 | 32 | 202 |
| 90 | 120 | 0.20468 | 25 | 145 |
| 91 | 88 | 0.22264 | 20 | 108 |
| 92 | 61 | 0.24176 | 15 | 76 |
| 93 | 38 | 0.2621 | 10 | 48 |
| 94 | 26 | 0.28366 | 7 | 33 |

Table 2. Calculation of the dead for female, 1989

| age | Number in 1989 data | 1989 mortality rate | Number of deaths in 1990 among the 1989 sample | Total number including the dead |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 4241 | 0.00016 | 1 | 4242 |
| 7 | 4706 | 0.00015 | 1 | 4707 |
| 8 | 4702 | 0.00014 | 1 | 4703 |
| 9 | 5093 | 0.00013 | 1 | 5094 |
| 10 | 5243 | 0.00012 | 1 | 5244 |
| 11 | 5514 | 0.00012 | 1 | 5515 |
| 12 | 5484 | 0.00012 | 1 | 5485 |
| 13 | 5920 | 0.00012 | 1 | 5921 |
| 14 | 6174 | 0.00013 | 1 | 6175 |
| 15 | 6283 | 0.00016 | 1 | 6284 |
| 16 | 6329 | 0.0002 | 1 | 6330 |
| 17 | 6135 | 0.00024 | 1 | 6136 |
| 18 | 5534 | 0.00028 | 2 | 5536 |
| 19 | 5022 | 0.00031 | 2 | 5024 |
| 20 | 4948 | 0.00031 | 2 | 4950 |
| 21 | 4948 | 0.00031 | 2 | 4950 |
| 22 | 4403 | 0.0003 | 1 | 4404 |
| 23 | 4412 | 0.0003 | 1 | 4413 |
| 24 | 4777 | 0.00031 | 1 | 4778 |
| 25 | 4475 | 0.00032 | 1 | 4476 |
| 26 | 4446 | 0.00034 | 2 | 4448 |
| 27 | 4585 | 0.00036 | 2 | 4587 |
| 28 | 4591 | 0.00039 | 2 | 4593 |
| 29 | 4710 | 0.0004 | 2 | 4712 |
| 30 | 4901 | 0.00042 | 2 | 4903 |
| 31 | 4715 | 0.00043 | 2 | 4717 |
| 32 | 4726 | 0.00046 | 2 | 4728 |
| 33 | 4996 | 0.00049 | 2 | 4998 |
| 34 | 5277 | 0.00054 | 3 | 5280 |
| 35 | 5465 | 0.00059 | 3 | 5468 |
| 36 | 5807 | 0.00065 | 4 | 5811 |
| 37 | 5997 | 0.00072 | 4 | 6001 |
| 38 | 6606 | 0.00079 | 5 | 6611 |
| 39 | 7201 | 0.00087 | 6 | 7207 |
| 40 | 7300 | 0.00095 | 7 | 7307 |
| 41 | 7648 | 0.00102 | 8 | 7656 |
| 42 | 6273 | 0.0011 | 7 | 6280 |
| 43 | 3974 | 0.00118 | 5 | 3979 |
| 44 | 5182 | 0.00127 | 7 | 5189 |
| 45 | 5819 | 0.00138 | 8 | 5827 |
| 46 | 5496 | 0.00149 | 8 | 5504 |
| 47 | 5829 | 0.00163 | 10 | 5839 |
| 48 | 5361 | 0.0018 | 10 | 5371 |
| 49 | 5115 | 0.00199 | 10 | 5125 |
| 50 | 4445 | 0.00217 | 10 | 4455 |

Table 2. Calculation of the dead for female, 1989, cont.

| age | Number in 1989 data | 1989 mortality rate | Number of deaths in 1990 among the 1989 sample | Total number including the dead |
| :---: | :---: | :---: | :---: | :---: |
| 51 | 5146 | 0.00235 | 12 | 5158 |
| 52 | 5124 | 0.00253 | 13 | 5137 |
| 53 | 5185 | 0.00275 | 14 | 5199 |
| 54 | 5057 | 0.00301 | 15 | 5072 |
| 55 | 4904 | 0.00329 | 16 | 4920 |
| 56 | 5183 | 0.00358 | 19 | 5202 |
| 57 | 5047 | 0.00386 | 19 | 5066 |
| 58 | 4951 | 0.00416 | 21 | 4972 |
| 59 | 4664 | 0.00448 | 21 | 4685 |
| 60 | 4845 | 0.00483 | 23 | 4868 |
| 61 | 4644 | 0.00525 | 24 | 4668 |
| 62 | 4591 | 0.00573 | 26 | 4617 |
| 63 | 4518 | 0.00629 | 28 | 4546 |
| 64 | 4237 | 0.00695 | 29 | 4266 |
| 65 | 4047 | 0.00773 | 31 | 4078 |
| 66 | 3897 | 0.00859 | 33 | 3930 |
| 67 | 3816 | 0.00957 | 37 | 3853 |
| 68 | 3655 | 0.01069 | 39 | 3694 |
| 69 | 3405 | 0.01197 | 41 | 3446 |
| 70 | 2882 | 0.01341 | 39 | 2921 |
| 71 | 2883 | 0.01504 | 43 | 2926 |
| 72 | 2794 | 0.01689 | 47 | 2841 |
| 73 | 2847 | 0.01896 | 54 | 2901 |
| 74 | 2648 | 0.02138 | 57 | 2705 |
| 75 | 2499 | 0.02428 | 61 | 2560 |
| 76 | 2355 | 0.02771 | 65 | 2420 |
| 77 | 2235 | 0.03176 | 71 | 2306 |
| 78 | 2061 | 0.03662 | 75 | 2136 |
| 79 | 1816 | 0.04233 | 77 | 1893 |
| 80 | 1625 | 0.04856 | 79 | 1704 |
| 81 | 1416 | 0.05526 | 78 | 1494 |
| 82 | 1206 | 0.06272 | 76 | 1282 |
| 83 | 923 | 0.07101 | 66 | 989 |
| 84 | 842 | 0.08021 | 68 | 910 |
| 85 | 719 | 0.09043 | 65 | 784 |
| 86 | 608 | 0.10174 | 62 | 670 |
| 87 | 566 | 0.11426 | 65 | 631 |
| 88 | 426 | 0.12808 | 55 | 481 |
| 89 | 308 | 0.14332 | 44 | 352 |
| 90 | 237 | 0.1601 | 38 | 275 |
| 91 | 171 | 0.17851 | 31 | 202 |
| 92 | 111 | 0.19867 | 22 | 133 |
| 93 | 101 | 0.22068 | 22 | 123 |
| 94 | 57 | 0.24465 | 14 | 71 |

Table 3. Calculation of the dead for male, 1998

| age | Number in 1998 data | 1998 mortality rate | Number of deaths in 1999 among the 1998 sample | Total number including the dead |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 3109 | 0.0002 | 1 | 3110 |
| 7 | 3408 | 0.00019 | 1 | 3409 |
| 8 | 3640 | 0.00017 | 1 | 3641 |
| 9 | 3871 | 0.00014 | 1 | 3872 |
| 10 | 3834 | 0.00012 | 0 | 3834 |
| 11 | 4133 | 0.00012 | 0 | 4133 |
| 12 | 4172 | 0.00013 | 1 | 4173 |
| 13 | 4319 | 0.00017 | 1 | 4320 |
| 14 | 4488 | 0.00023 | 1 | 4489 |
| 15 | 4624 | 0.00031 | 1 | 4625 |
| 16 | 4650 | 0.00042 | 2 | 4652 |
| 17 | 4665 | 0.00053 | 2 | 4667 |
| 18 | 4402 | 0.00063 | 3 | 4405 |
| 19 | 4327 | 0.00069 | 3 | 4330 |
| 20 | 4256 | 0.0007 | 3 | 4259 |
| 21 | 4168 | 0.0007 | 3 | 4171 |
| 22 | 4305 | 0.00069 | 3 | 4308 |
| 23 | 4505 | 0.00068 | 3 | 4508 |
| 24 | 4517 | 0.00068 | 3 | 4520 |
| 25 | 4531 | 0.00068 | 3 | 4534 |
| 26 | 4298 | 0.00069 | 3 | 4301 |
| 27 | 4278 | 0.00071 | 3 | 4281 |
| 28 | 4174 | 0.00073 | 3 | 4177 |
| 29 | 4182 | 0.00075 | 3 | 4185 |
| 30 | 4169 | 0.00078 | 3 | 4172 |
| 31 | 3724 | 0.00082 | 3 | 3727 |
| 32 | 3620 | 0.00086 | 3 | 3623 |
| 33 | 4190 | 0.0009 | 4 | 4194 |
| 34 | 3907 | 0.00095 | 4 | 3911 |
| 35 | 3994 | 0.00102 | 4 | 3998 |
| 36 | 3947 | 0.0011 | 4 | 3951 |
| 37 | 4109 | 0.00118 | 5 | 4114 |
| 38 | 4153 | 0.00127 | 5 | 4158 |
| 39 | 4397 | 0.00137 | 6 | 4403 |
| 40 | 4240 | 0.00148 | 6 | 4246 |
| 41 | 4235 | 0.00162 | 7 | 4242 |
| 42 | 4269 | 0.00178 | 8 | 4277 |
| 43 | 4672 | 0.00196 | 9 | 4681 |
| 44 | 4735 | 0.00216 | 10 | 4745 |
| 45 | 5106 | 0.00241 | 12 | 5118 |
| 46 | 5230 | 0.00268 | 14 | 5244 |
| 47 | 5627 | 0.00299 | 17 | 5644 |
| 48 | 6063 | 0.00334 | 20 | 6083 |
| 49 | 6447 | 0.00371 | 24 | 6471 |
| 50 | 6564 | 0.00408 | 27 | 6591 |

Table 3. Calculation of the dead for male, 1998, cont.

| age | Number in 1998 data | 1998 mortality rate | Number of deaths in 1999 among the 1998 sample | Total number including the dead |
| :---: | :---: | :---: | :---: | :---: |
| 51 | 5387 | 0.0045 | 24 | 5411 |
| 52 | 3081 | 0.00494 | 15 | 3096 |
| 53 | 4127 | 0.0054 | 22 | 4149 |
| 54 | 4732 | 0.00585 | 28 | 4760 |
| 55 | 4478 | 0.00633 | 28 | 4506 |
| 56 | 4747 | 0.00681 | 32 | 4779 |
| 57 | 4521 | 0.00736 | 33 | 4554 |
| 58 | 4075 | 0.00801 | 33 | 4108 |
| 59 | 3784 | 0.00878 | 33 | 3817 |
| 60 | 4247 | 0.00966 | 41 | 4288 |
| 61 | 4036 | 0.01068 | 43 | 4079 |
| 62 | 3627 | 0.01184 | 43 | 3670 |
| 63 | 3928 | 0.01314 | 52 | 3980 |
| 64 | 3956 | 0.01457 | 58 | 4014 |
| 65 | 4046 | 0.01607 | 65 | 4111 |
| 66 | 3881 | 0.01762 | 68 | 3949 |
| 67 | 3704 | 0.01928 | 71 | 3775 |
| 68 | 3522 | 0.02105 | 74 | 3596 |
| 69 | 3470 | 0.02293 | 80 | 3550 |
| 70 | 3244 | 0.02494 | 81 | 3325 |
| 71 | 3155 | 0.02717 | 86 | 3241 |
| 72 | 2465 | 0.0297 | 73 | 2538 |
| 73 | 2455 | 0.03251 | 80 | 2535 |
| 74 | 2153 | 0.0358 | 77 | 2230 |
| 75 | 1860 | 0.0395 | 73 | 1933 |
| 76 | 1720 | 0.04381 | 75 | 1795 |
| 77 | 1570 | 0.04871 | 76 | 1646 |
| 78 | 1467 | 0.05419 | 79 | 1546 |
| 79 | 1138 | 0.0629 | 72 | 1210 |
| 80 | 1104 | 0.06712 | 74 | 1178 |
| 81 | 1038 | 0.07472 | 78 | 1116 |
| 82 | 815 | 0.0831 | 68 | 883 |
| 83 | 826 | 0.09185 | 76 | 902 |
| 84 | 758 | 0.10127 | 77 | 835 |
| 85 | 614 | 0.11155 | 68 | 682 |
| 86 | 508 | 0.12308 | 63 | 571 |
| 87 | 372 | 0.1364 | 51 | 423 |
| 88 | 285 | 0.15037 | 43 | 328 |
| 89 | 255 | 0.165 | 42 | 297 |
| 90 | 206 | 0.1803 | 37 | 243 |
| 91 | 139 | 0.1963 | 27 | 166 |
| 92 | 77 | 0.213 | 16 | 93 |
| 93 | 80 | 0.23041 | 18 | 98 |
| 94 | 38 | 0.24852 | 9 | 47 |

Table 4. Calculation of the dead for female, 1998

| age | Number in 1998 data | 1998 mortality rate | Number of deaths in 1999 among the 1998 sample | Total number including the dead |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 2892 | 0.00013 | 0 | 2892 |
| 7 | 3323 | 0.00013 | 0 | 3323 |
| 8 | 3413 | 0.00012 | 0 | 3413 |
| 9 | 3670 | 0.0001 | 0 | 3670 |
| 10 | 3694 | 0.00009 | 0 | 3694 |
| 11 | 3953 | 0.00009 | 0 | 3953 |
| 12 | 3890 | 0.0001 | 0 | 3890 |
| 13 | 4261 | 0.00011 | 0 | 4261 |
| 14 | 4247 | 0.00012 | 1 | 4248 |
| 15 | 4470 | 0.00014 | 1 | 4471 |
| 16 | 4423 | 0.00018 | 1 | 4424 |
| 17 | 4344 | 0.00022 | 1 | 4345 |
| 18 | 4109 | 0.00025 | 1 | 4110 |
| 19 | 4070 | 0.00027 | 1 | 4071 |
| 20 | 4265 | 0.00028 | 1 | 4266 |
| 21 | 4195 | 0.00028 | 1 | 4196 |
| 22 | 4347 | 0.00028 | 1 | 4348 |
| 23 | 4643 | 0.00029 | 1 | 4644 |
| 24 | 4691 | 0.0003 | 1 | 4692 |
| 25 | 4641 | 0.00031 | 1 | 4642 |
| 26 | 4547 | 0.00032 | 1 | 4548 |
| 27 | 4397 | 0.00034 | 1 | 4398 |
| 28 | 4255 | 0.00035 | 1 | 4256 |
| 29 | 4363 | 0.00036 | 2 | 4365 |
| 30 | 4346 | 0.00039 | 2 | 4348 |
| 31 | 4020 | 0.00042 | 2 | 4022 |
| 32 | 4017 | 0.00045 | 2 | 4019 |
| 33 | 4261 | 0.00049 | 2 | 4263 |
| 34 | 4172 | 0.00052 | 2 | 4174 |
| 35 | 4219 | 0.00055 | 2 | 4221 |
| 36 | 4055 | 0.00058 | 2 | 4057 |
| 37 | 4212 | 0.00062 | 3 | 4215 |
| 38 | 4300 | 0.00067 | 3 | 4303 |
| 39 | 4578 | 0.00074 | 3 | 4581 |
| 40 | 4230 | 0.00081 | 3 | 4233 |
| 41 | 4346 | 0.00088 | 4 | 4350 |
| 42 | 4834 | 0.00094 | 5 | 4839 |
| 43 | 4671 | 0.00102 | 5 | 4676 |
| 44 | 4734 | 0.00112 | 5 | 4739 |
| 45 | 5164 | 0.00124 | 6 | 5170 |
| 46 | 5398 | 0.00138 | 7 | 5405 |
| 47 | 5832 | 0.00153 | 9 | 5841 |
| 48 | 6108 | 0.0017 | 10 | 6118 |
| 49 | 6356 | 0.00188 | 12 | 6368 |
| 50 | 6330 | 0.00206 | 13 | 6343 |

Table 4. Calculation of the dead for female, 1998, cont.

| age | Number in 1998 data | 1998 mortality rate | Number of deaths in 1999 among the 1998 sample | Total number including the dead |
| :---: | :---: | :---: | :---: | :---: |
| 51 | 5229 | 0.00222 | 12 | 5241 |
| 52 | 3592 | 0.00236 | 8 | 3600 |
| 53 | 4353 | 0.00251 | 11 | 4364 |
| 54 | 4927 | 0.00268 | 13 | 4940 |
| 55 | 4664 | 0.00287 | 13 | 4677 |
| 56 | 4924 | 0.00305 | 15 | 4939 |
| 57 | 4613 | 0.00324 | 15 | 4628 |
| 58 | 4209 | 0.00348 | 15 | 4224 |
| 59 | 3820 | 0.00378 | 14 | 3834 |
| 60 | 4463 | 0.00412 | 18 | 4481 |
| 61 | 4304 | 0.00448 | 19 | 4323 |
| 62 | 5195 | 0.0049 | 25 | 5220 |
| 63 | 4310 | 0.00538 | 23 | 4333 |
| 64 | 4350 | 0.00593 | 26 | 4376 |
| 65 | 4464 | 0.00651 | 29 | 4493 |
| 66 | 4229 | 0.00712 | 30 | 4259 |
| 67 | 4281 | 0.0078 | 33 | 4314 |
| 68 | 3837 | 0.00859 | 33 | 3870 |
| 69 | 4042 | 0.00952 | 38 | 4080 |
| 70 | 3776 | 0.01055 | 40 | 3816 |
| 71 | 3621 | 0.01168 | 42 | 3663 |
| 72 | 3914 | 0.01302 | 51 | 3965 |
| 73 | 3263 | 0.01462 | 48 | 3311 |
| 74 | 3009 | 0.01662 | 50 | 3059 |
| 75 | 2919 | 0.01886 | 55 | 2974 |
| 76 | 2766 | 0.02142 | 59 | 2825 |
| 77 | 2584 | 0.02432 | 63 | 2647 |
| 78 | 2237 | 0.02769 | 62 | 2299 |
| 79 | 1977 | 0.03159 | 62 | 2039 |
| 80 | 1816 | 0.03613 | 66 | 1882 |
| 81 | 1771 | 0.04131 | 73 | 1844 |
| 82 | 1813 | 0.0469 | 85 | 1898 |
| 83 | 1478 | 0.05283 | 78 | 1556 |
| 84 | 1315 | 0.0596 | 78 | 1393 |
| 85 | 1144 | 0.06745 | 77 | 1221 |
| 86 | 950 | 0.07655 | 73 | 1023 |
| 87 | 835 | 0.08705 | 73 | 908 |
| 88 | 635 | 0.09865 | 63 | 698 |
| 89 | 494 | 0.11022 | 54 | 548 |
| 90 | 431 | 0.1223 | 53 | 484 |
| 91 | 290 | 0.13593 | 39 | 329 |
| 92 | 190 | 0.15001 | 29 | 219 |
| 93 | 157 | 0.16454 | 26 | 183 |
| 94 | 99 | 0.17952 | 18 | 117 |

Table 5. The living and dead populations, by sex and age group, 1989

| age group | Number in 1989 data | Number of deaths <br> in 1990 among the 1989 sample | Total number including the dead | Percent dead in the total sample | Percent living in the total sample |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Male |  |  |  |  |  |
| 6-14 years old | 49125 | 9 | 49134 | 0.02 | 99.98 |
| 15-24 | 52147 | 36 | 52183 | 0.07 | 99.93 |
| 25-44 | 105814 | 129 | 105943 | 0.12 | 99.88 |
| 45-64 | 94774 | 678 | 95452 | 0.71 | 99.29 |
| 65-74 | 23488 | 597 | 24085 | 2.48 | 97.52 |
| 75-94 | 13013 | 1083 | 14096 | 7.69 | 92.31 |
| Total | 338361 | 2532 | 340893 | 0.74 | 99.26 |
| Female |  |  |  |  |  |
| 6-14 years old | 47077 | 6 | 47083 | 0.01 | 99.99 |
| 15-24 | 52791 | 14 | 52805 | 0.03 | 99.97 |
| 25-44 | 108875 | 76 | 108951 | 0.07 | 99.93 |
| 45-64 | 100161 | 337 | 100498 | 0.34 | 99.66 |
| 65-74 | 32874 | 421 | 33295 | 1.26 | 98.74 |
| 75-94 | 20282 | 1132 | 21414 | 5.29 | 94.71 |
| Total | 362060 | 1986 | 364046 | 0.55 | 99.45 |

Table 6. The living and dead populations, by sex and age group, 1998

| age group | Number in 1998 data | Number of deaths in 1999 among the 1998 sample | Total number including the dead | Percent dead in the total sample | Percent living in the total sample |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Male |  |  |  |  |  |
| 6-14 years old | 34974 | 6 | 34980 | 0.02 | 99.98 |
| 15-24 | 44419 | 27 | 44446 | 0.06 | 99.94 |
| 25-44 | 83824 | 97 | 83921 | 0.12 | 99.88 |
| 45-64 | 93763 | 600 | 94363 | 0.64 | 99.36 |
| 65-74 | 32095 | 755 | 32850 | 2.30 | 97.70 |
| 75-94 | 14870 | 1124 | 15994 | 7.03 | 92.97 |
| Total | 303945 | 2609 | 306554 | 0.85 | 99.15 |
| Female |  |  |  |  |  |
| 6-14 years old | 33343 | 4 | 33347 | 0.01 | 99.99 |
| 15-24 | 43557 | 11 | 43568 | 0.02 | 99.98 |
| 25-44 | 87198 | 52 | 87250 | 0.06 | 99.94 |
| 45-64 | 98141 | 287 | 98428 | 0.29 | 99.71 |
| 65-74 | 38436 | 395 | 38831 | 1.02 | 98.98 |
| 75-94 | 25901 | 1186 | 27087 | 4.38 | 95.62 |
| Total | 326576 | 1935 | 328511 | 0.59 | 99.41 |

## Measure of Health: the Health and Activity Limitation Index (HALex)

We constructed the health variable using the Health and Activity Limitation Index (HALex), that is, the quality of life part of the Years of Healthy Life (YHL) (Erickson, Wilson, and Shannon 1995). For the health-related quality information, the HALex combines two types of questions asked in the National Health Interview Survey (NHIS), one assessing activity limitations and the other measuring self-perceived health. The activity limitation questions create six categories: (1) not limited, (2) limited in other activities, (3) limited in major activity, (4) unable to perform major activity, (5) unable to perform instrumental activities of daily living, and (6) unable to perform activities of daily living. Self-perceived health is in five categories: excellent, very good, good, fair, and poor. These two items together make up a matrix of 30 combinations. To assign a value to each of these 30 combinations, between zero, suggesting the dead, and one, the best health, first, the correspondence analysis determined the distance between different levels for each of the two dimensions, the activity limitation and self-perceived health. The general multiplicative model combined the information from the two dimensions, and the Health Utilities Index was used in addition. The completed HALex assigns values ranging from 1.00 for persons without any activity limitation and perceive the excellent health to 0.10 for persons limited in activities in daily living and perceive poor health.

Tables 8 and 9 show the NHIS questions from which the HALex was constructed and the CSLC questions that we used as equivalent to them. For most of these NHIS questions, one can find corresponding questions in the CSLC, except one question: "Does any impairment or health problem NOW keep XXX from attending school/working at a job or business/doing any housework at all?" For this, we used the CSLC question: "For the past month, how many days were you in the bed all day?" The answers were categorical: none, 1-3, 4-6, 7-14, and 15+ days, and the distribution of the answers is shown in Table 7. We treated answers equal to or more than 4 bed-ridden days as being unable to attend school/work at a job or business/do any housework at all.

Table 7. Distribution of a number of bed-ridden days in the past month, 1989, 1998

| Number of bed-ridden | 1989 |  | 1998 |  |
| :--- | ---: | ---: | ---: | ---: |
| days in the past month | Freq. | Percent | Freq. | Percent |
| None | 649040 | 92.8 | 587716 | 93.68 |
| 1-3 days | 38724 | 5.54 | 30162 | 4.81 |
| 4-6 days | 5903 | 0.84 | 4857 | 0.77 |
| 7-14 days | 2982 | 0.43 | 2599 | 0.41 |
| 15+ days | 2737 | 0.39 | 2027 | 0.32 |
| Total | 699386 | 100 | 627361 | 100 |

Table 8. Questions for the HALex: activity limitations

| HALex Categories | NHIS Questions | English Translation of Equivalent Questions in the CSLC |
| :---: | :---: | :---: |
| 5-17 years |  |  |
| Unable to perform major activity | Does any impairment or health problem NOW keep xxx from attending school? | For the past month, how many days were you in the bed all day? (four or more days) |
| Limited in performing major activity | Does xxx attend a special school or special classes because of any impariment or health problem? |  |
|  | Does xxx need to attend a special school or special classes because of any impairment or health problem? |  |
|  | Is xxx limited in school attendance because of health? | Do you have any problem of work, housework, or study because of health? |
| Limited in other activities | Is $x x x$ limited in ANY WAY in any activities because of an impariment or health problem? | Do you have any problem of usual activities, going out, exercise, or any other [activities] because of health? |
| 18-64 years |  |  |
| Unable to perform major activity | Does any impairment or health problem NOW keep xxx from working at a job or business? | For the past month, how many days were you in the bed all day? (four or more days) |
|  | Does any impairment or health problem NOW keep xxx from doing any housework at all? |  |
| Limited in performing major activity | Is $x x x$ limited in the kind OR amount of work xxx can do because of any impariment or health problem? | Do you have any problem of work, housework, or study because of health? |
|  | Is $x x x$ limited in the kind OR amount of housework xxx can do because of any impariment or health problem? |  |
| Limited in other activities | Is xxx limited in ANY WAY in any activities because of an impariment or health problem? | Do you have any problem of usual activities, going out, exercise, or any other [activities] because of health? |

Table 8. Questions for the HALex: activity limitations, cont.

| HALex Categories | NHIS Questions | English Translation of Equivalent Questions in the CSLC |
| :---: | :--- | :--- |
| $\mathbf{6 5}$ years and older | Limited in activities of <br> daily living | Because of any impariment or health problem, <br> does xxx need the help of other persons with xxx <br> personal care needs, such as eating, bathing, <br> dressing, or getting around this home? | Do you have any problem of usual activities because of health?

Table 9. Questions for the HALex: self-perceived health

| NHIS Questions | English Translation of Equivalent Questions in the CSLC |
| :--- | :--- |
| Would you say your health in general is excellent, |  |
| very good, good, fair, or poor? |  | | How do you assess your current health condition? Please choose one |
| :--- |
| number: 1. Good, 2. Fairly good, 3. Usual, 4. Not very good, 5. Not good |

Despite the similarities in questions between the NHIS and the CSLC, one should doubt whether the HALex constructed based on the NHIS can be legitimately applied to the CSLC. Both surveys, for example, use five-category answers for the self-perceived health question, but words assigned to these five categories of both surveys are very different (Table 9). Does the difference in wording only reflect the degrees of expressiveness of Americans and Japanese? Or might the best category in the CSLC assess the same level of self-perceived health of the middle category of the NHIS?

In order to examine the legitimacy, we compared distributions of activity limitations and self-perceived health in the 1989 CSLC data aged 0 to 98 to those of the 1990 NHIS (Table 1 and 2 of Erickson, Wilson, and Shannon 1995), based on which the HALex was constructed. Recall that the HALex is based on joint distributions of these two health variables. If distributions of activity limitations were different but those of self-perceived health were similar, we could assume that the scoring was appropriate for the CSLC and differences in the HALex would come from differences in distributions of disabilities. If, on the other hand, distributions of self-perceived health were different but those of activity limitations were similar, we should assume that perceptions of the same disability states would be different in these countries and the US-based scoring may not be right for assessing the health of Japanese people.

Figure1., Table 10. Distribution of activity limitations in the US and Japan


|  | Limited in <br> ADL | Limited in <br> IADL | Unable- <br> major | Limited- <br> major | Limited- <br> other | Not <br> limited |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Japan | 1.6 | 2.0 | 0.9 | 2.4 | 2.7 | 90.5 |
| the US | 1.1 | 2.0 | 1.9 | 3.4 | 5.2 | 86.2 |

Figure2., Table 11. Distribution of self-perceived health in the US and Japan


| Self-perceived | Poor | Fair | Good | Very good | Excellent |
| :---: | ---: | ---: | ---: | ---: | ---: |
| Health | Not good | Not very good | Usual | Fairly good | Good |
| Japan | 1.1 | 9.9 | 41.1 | 16.2 | 31.7 |
| the US | 2.5 | 6.8 | 22.5 | 28.6 | 39.4 |

Figures 1 and 2 and Tables 10 and 11 show distributions of activity limitations and self-perceived health in the US and Japan. We judged that distributions of activity limitations in these two countries were similar but not those of self-perceived health, thereby, we might need to consider adjustment of the scoring system for its application to Japanese data.

One possible post-adjustment of the HALex is to use its frequency distributions in the NHIS and the CSLC data. Figure 3 illustrates how this post-adjustment can be proceeded. In this hypothetical case, the US frequency distribution, cumulative 10 percent is 0.2 HALex score, while in the Japanese frequency distribution, the same cumulative 10 percent is 0.8 HALex score. We make ad hoc adjustment so the Japanese 0.8 HALex score becomes 0.2 HALex score. When we repeat this process for every HALex score point, post-adjustment of the HALex for Japanese data is complete.


Figure 4 and Table 12 show the actual frequency distributions of the HALex in the US (the 1990 NHIS) and Japan (the 1989 CSLC). Figure 4 and Table 12 suggest that distributions of the HALex in the US and Japan are actually not much different. Most of the difference occurs between 0.72 and 0.92 reflecting differences in the upper three categories of self-perceived health (good, very good, and excellent). The post-adjustment explained above would inflate the Japanese 0.84 score to some degree, but its effect would be primarily limited to this value. Consequently, we judged that making a limited ad hoc adjustment would not be worth pursuing. Legitimacy of applying the US-based HALex score to Japanese data remains an issue, but in this analysis we left it aside for the future development.

Figure 4. Actual cumulative distributions of the HALex in the US and Japan

Table 12. Actual cumulative distribution of the HALex in Japan and the US

| HALex |  |  | Japan 1989 |  |  | the US 1990 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Self-perceived Health | Activity Limitation | Score | Freq. | Percent | Cum. | Freq. | Percent | Cum. |
| Poor | Limited in ADL | 0.10 | 1323 | 0.19 | 0.19 | 1203 | 0.49 | 0.49 |
| Poor | Limited in IADL | 0.17 | 1004 | 0.14 | 0.33 | 1451 | 0.59 | 1.08 |
| Fair | Limited in ADL | 0.21 | 4015 | 0.57 | 0.91 | 692 | 0.28 | 1.37 |
| Poor | Unable-major | 0.25 | 1291 | 0.18 | 1.09 | 1283 | 0.52 | 1.89 |
| Fair | Limited in IADL | 0.29 | 7290 | 1.04 | 2.13 | 1586 | 0.65 | 2.54 |
| Poor | Limited-major | 0.34 | 1562 | 0.22 | 2.35 | 529 | 0.22 | 2.75 |
| Good | Limited in ADL | 0.36 | 1682 | 0.24 | 2.59 | 555 | 0.23 | 2.98 |
| Fair/Unable-major, Poor | oor/Limited-other | 0.38 | 4224 | 0.60 | 3.20 | 2548 | 1.04 | 4.02 |
| Very good | Limited in ADL | 0.41 | 487 | 0.07 | 3.27 | 206 | 0.08 | 4.11 |
| Good | Limited in IADL | 0.45 | 3748 | 0.53 | 3.80 | 1242 | 0.51 | 4.61 |
| Excellent/Limited in ADL | L, Poor/Not limited | 0.47 | 1619 | 0.23 | 4.03 | 933 | 0.38 | 4.99 |
| Fair | Limited-major | 0.48 | 10751 | 1.53 | 5.57 | 1828 | 0.75 | 5.74 |
| Very good | Limited in IADL | 0.51 | 827 | 0.12 | 5.68 | 470 | 0.19 | 5.93 |
| Fair | Limited-other | 0.52 | 7764 | 1.11 | 6.79 | 3087 | 1.26 | 7.19 |
| Good | Unable-major | 0.55 | 1588 | 0.23 | 7.02 | 1303 | 0.53 | 7.73 |
| Excellent | Limited in IADL | 0.57 | 208 | 0.03 | 7.05 | 237 | 0.10 | 7.82 |
| Very good | Unable-major | 0.62 | 474 | 0.07 | 7.12 | 455 | 0.19 | 8.01 |
| Fair | Not limited | 0.63 | 35663 | 5.09 | 12.21 | 8127 | 3.32 | 11.33 |
| Good | Limited-major | 0.67 | 6065 | 0.87 | 13.07 | 3075 | 1.26 | 12.58 |
| Excellent | Unable-major | 0.68 | 395 | 0.06 | 13.13 | 261 | 0.11 | 12.69 |
| Good | Limited-other | 0.72 | 7836 | 1.12 | 14.25 | 4316 | 1.76 | 14.45 |
| Very good | Limited-major | 0.74 | 1356 | 0.19 | 14.44 | 1823 | 0.74 | 15.20 |
| Very good | Limited-other | 0.79 | 2175 | 0.31 | 14.75 | 2709 | 1.11 | 16.30 |
| Excellent | Limited-major | 0.81 | 526 | 0.08 | 14.83 | 1131 | 0.46 | 16.77 |
| Good | Not limited | 0.84 | 267511 | 38.18 | 53.01 | 44538 | 18.19 | 34.96 |
| Excellent | Limited-other | 0.87 | 1395 | 0.20 | 53.21 | 1558 | 0.64 | 35.59 |
| Very good | Not limited | 0.92 | 108815 | 15.53 | 68.74 | 64336 | 26.28 | 61.87 |
| Excellent | Not limited | 1.00 | 218976 | 31.26 | 100.00 | 93362 | 38.13 | 100.00 |
|  |  | Total | 700570 | 100 |  | 244844 | 100 |  |

## Measure of Health Inequality by Income

To examine if the HALex differed by income level, we compared the average HALex of five income share groups (the bottom $20 \%$, the bottom $20-40 \%$, the middle $20 \%$, the top $20-40 \%$, and the top $20 \%$ income share groups). Following the recommendation by the Panel on Poverty and Family Assistance: Concepts, Information Needs, and Measurement Methods in the US National Research Council (1995), we adjusted the household income for the family size and economies of scale. More precisely, the scale value we used for this analysis is as follows:

$$
\text { Scale Value }=(\mathrm{A}+0.70 \mathrm{~K})^{0.70}
$$

Where, A is a number of adults in the household, and K is a number of children in the household.

The advantage of using income share, as opposed to the absolute income level, is the ease of comparison; in this way, without further adjustment, we could compare health inequality by income in different years, by sex, and by age group. Judging the degree of health inequality by income, we calculated the difference in the HALex between the top $20 \%$ and the bottom $20 \%$ income share groups, and the middle $20 \%$ and the bottom $20 \%$ income share groups.

## Measure of Health Inequality

We used the Gini Coefficient as the measure of health inequality. Which health inequality measure to use is an important question, but for this analysis, we assumed that its use is justifiable and followed previous studies (Illsley and Le Grand 1987; Le Grand 1987). The Gini Coefficient can be understood most easily by the Lorenz Curve. If used for the distribution of the HALex, the Lorenz curve can be illustrated in Figure 5. Imagine that we line up people in the population of focus from the sickest to the healthiest horizontally and these people's health share, in this analysis, the cumulative percentage of the HALex, vertically. The resulting curve AC is called the Lorenz Curve. When the population is perfectly equal, the Lorenz Curve is diagonal, AC. When the population is most unequal one person is alive with or without health-adjusted quality and all others are dead - the Lorenz Curve follows AB and BC . The Gini Coefficient is the shaded area in the graph divided by the triangle, ABC . It presents a value between zero when the Lorenz Curve is diagonal, thus, perfectly equal, and one when the Lorenz Curve goes AB and BC , the most unequal.

Figure 5. Lorenz Curve


Arithmetically, the Gini Coefficient (G) is shown to be the same as the relative mean difference, and expressed as:
$G=\frac{1}{2} \sum_{i=1}^{n} \sum_{J=1}^{n} \frac{\left|y_{i}-y_{j}\right|}{n^{2} \mu}$
Where the population of focus holds $n$ people, each of them presents the health level, $y$, and the average HALex in the population is $\mu$.

## Statistical Analysis

This study consists of three parts: analysis of the average HALex, analysis of distributions of the HALex by income share, and analysis of distributions of the HALex. All three parts used both 1989 and 1998 data and analyzed the overall picture, that is, including both sexes and all ages, and by sex and age group (6-14, 15-24, 25-44, 45-64, 65-74, 75-94 years old). These age groups are intended to reflect epidemiological profiles, human development, and policy relevance at different stages of human life. The elderly 75 years of age and older are, for example, often categorized as the "oldest old" in the delivery of health care in Japan.

In addition, the analysis of distributions of the HALex was conducted both for the living only population and the population of the living and the dead combined. We believe that health inequality analysis should target populations including the dead, because neglecting a health state, death, only provides a partial picture of the population health. Yet
we all must die at some point in our lives, and we usually wish deaths to happen at older ages. This suggests that a greater degree of health inequality due to deaths at younger ages and older ages should be treated differently and we are not yet quite certain about how exactly we should deal with deaths at older ages in health inequality analysis. For this reason, in this analysis, we report health inequalities of both living only population and population of the living and the dead combined.

We used unweighted data for this analysis. The CSLC uses the cluster sampling, in which clusters are constructed based on a number of households. We can thus consider that the CSLC uses the cluster sampling with equal probabilities, and the resulting sample is self-weighting, that is, every individual in the sample has the same weight and represents the same number of units in the population. Our point estimates then would not be biased due to sampling. To estimate accurate standard errors, one must still account for the cluster sampling. But in this analysis we are only concerned about point estimates, and this consideration is irrelevant.

## RESULTS

(1) What was the average health-adjusted quality of life measured by the HALex in the Japanese living population, overall, by sex and by age group in 1989 and 1998 ?

## Overall HALex in 1989 and 1998

Table 13 shows life expectancies for male and female in 1989 and 1998 (Statistics and Information Department 1989b; Statistics and Information Department 1998b), and Table 14 presents the health-adjusted quality of life measured by the HALex for the living population in these years. Between 1989 and 1998, overall Japanese people's health improved in terms of the length of life (1.25-year increase for men, 2.24-year increase for women), but not the health-adjusted quality of life measured by the HALex ( 0.006 decrease for male, 0.004 decrease for female).

Table 13. Life expectancy

|  | Male | Female |
| :---: | :---: | :---: |
| 1989 | 75.91 | 81.77 |
| 1998 | 77.16 | 84.01 |

Table 14. Health-adjusted quality of life measured by the HALex

|  | Total | Male | Female |
| :---: | :---: | :---: | :---: |
| 1989 | 0.857 | 0.868 | 0.847 |
| 1998 | 0.852 | 0.862 | 0.843 |

## The HALex by age group

Figure 6 and Table 15 suggest that the change in the HALex of the living population between 1989 and 1998 was not consistent at every age. Between 1989 and 1998, overall, the HALex stayed the same for the young children ( $6-8$ years olds) and the middle age (24-48 years olds), but decreased for the adolescents and young adults (9-23 years old), and increased for older ages (49 years old+). Men and women followed the same trend (Figures 7 and 8). The sudden drop at 65 years old appears to be due to the HALex construction. The HALex uses two different scoring systems, one is for those who younger than 65, and the other for those who are 65 years of age and older. Scores of the system for the older people are more spread at lower values than ones of the system for the younger people. While a greater number of old people are likely to present lower scores, the sudden drop at age 65 is perhaps an artifact. Fluctuation of the HALex at older ages may be due to the small number of observations.

Figure 6. The average HALex in 1989 (o) and 1998 (the solid line; both sexes)


Figure 7. The average HALex in 1989 (o) and 1998 (the solid line), male


Figure 8. The average HALex in 1989 (o) and 1998 (the solid line), female

Table 15. Average HALex by age, 1989 and 1998
(Shaded ages suggest ones whose HALex was worse in 1998 than in 1989)

| Age | Total |  |  | Male |  |  | Female |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | $\mathbf{1 9 8 9}$ | $\mathbf{1 9 9 8}$ | $\mathbf{9 8 - 8 9}$ | $\mathbf{1 9 8 9}$ | $\mathbf{1 9 9 8}$ | $\mathbf{9 8 - 8 9}$ | $\mathbf{1 9 8 9}$ | $\mathbf{1 9 9 8}$ | $\mathbf{9 8 - 8 9}$ |
| $\mathbf{6}$ | 0.929 | 0.932 | 0.002 | 0.928 | 0.932 | 0.005 | 0.931 | 0.931 | 0.000 |
| $\mathbf{7}$ | 0.928 | 0.931 | 0.004 | 0.927 | 0.927 | 0.000 | 0.928 | 0.935 | 0.007 |
| $\mathbf{8}$ | 0.930 | 0.932 | 0.002 | 0.929 | 0.931 | 0.003 | 0.931 | 0.932 | 0.001 |
| $\mathbf{9}$ | 0.930 | 0.929 | -0.001 | 0.929 | 0.928 | -0.001 | 0.931 | 0.930 | -0.001 |
| $\mathbf{1 0}$ | 0.930 | 0.928 | -0.001 | 0.930 | 0.927 | -0.003 | 0.930 | 0.930 | 0.000 |
| $\mathbf{1 1}$ | 0.930 | 0.927 | -0.003 | 0.929 | 0.927 | -0.002 | 0.930 | 0.927 | -0.003 |
| $\mathbf{1 2}$ | 0.929 | 0.923 | -0.006 | 0.929 | 0.923 | -0.006 | 0.929 | 0.923 | -0.006 |
| $\mathbf{1 3}$ | 0.926 | 0.916 | -0.011 | 0.928 | 0.916 | -0.012 | 0.925 | 0.915 | -0.010 |
| $\mathbf{1 4}$ | 0.921 | 0.907 | -0.014 | 0.922 | 0.911 | -0.012 | 0.920 | 0.903 | -0.016 |
| $\mathbf{1 5}$ | 0.922 | 0.905 | -0.017 | 0.926 | 0.909 | -0.018 | 0.917 | 0.902 | -0.015 |
| $\mathbf{1 6}$ | 0.917 | 0.901 | -0.016 | 0.923 | 0.906 | -0.017 | 0.911 | 0.895 | -0.016 |
| $\mathbf{1 7}$ | 0.915 | 0.901 | -0.013 | 0.921 | 0.906 | -0.014 | 0.909 | 0.896 | -0.013 |
| $\mathbf{1 8}$ | 0.911 | 0.897 | -0.014 | 0.917 | 0.902 | -0.016 | 0.904 | 0.892 | -0.013 |
| $\mathbf{1 9}$ | 0.907 | 0.899 | -0.008 | 0.912 | 0.905 | -0.007 | 0.902 | 0.893 | -0.009 |
| $\mathbf{2 0}$ | 0.902 | 0.896 | -0.006 | 0.909 | 0.901 | -0.008 | 0.895 | 0.891 | -0.004 |
| $\mathbf{2 1}$ | 0.899 | 0.896 | -0.002 | 0.907 | 0.903 | -0.004 | 0.891 | 0.890 | -0.001 |
| $\mathbf{2 2}$ | 0.900 | 0.895 | -0.005 | 0.909 | 0.903 | -0.006 | 0.892 | 0.888 | -0.004 |
| $\mathbf{2 3}$ | 0.897 | 0.895 | -0.001 | 0.905 | 0.903 | -0.002 | 0.889 | 0.888 | -0.001 |
| $\mathbf{2 4}$ | 0.894 | 0.894 | 0.000 | 0.902 | 0.900 | -0.001 | 0.887 | 0.887 | 0.001 |
| $\mathbf{2 5}$ | 0.890 | 0.894 | 0.005 | 0.899 | 0.901 | 0.002 | 0.881 | 0.888 | 0.006 |
| $\mathbf{2 6}$ | 0.890 | 0.890 | 0.000 | 0.898 | 0.898 | 0.000 | 0.882 | 0.883 | 0.001 |
| $\mathbf{2 7}$ | 0.885 | 0.887 | 0.002 | 0.894 | 0.896 | 0.001 | 0.876 | 0.879 | 0.002 |
| $\mathbf{2 8}$ | 0.887 | 0.889 | 0.002 | 0.896 | 0.895 | -0.001 | 0.879 | 0.883 | 0.004 |
| $\mathbf{2 9}$ | 0.884 | 0.886 | 0.002 | 0.892 | 0.892 | 0.000 | 0.877 | 0.881 | 0.004 |
| $\mathbf{3 0}$ | 0.881 | 0.882 | 0.001 | 0.889 | 0.890 | 0.001 | 0.874 | 0.875 | 0.001 |


| Age | Total |  |  |  | Male |  |  |  | Female |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | :---: | :---: |
|  | $\mathbf{1 9 8 9}$ | $\mathbf{1 9 9 8}$ | $\mathbf{9 8 - 8 9}$ | $\mathbf{1 9 8 9}$ | $\mathbf{1 9 9 8}$ | $\mathbf{9 8 - 8 9}$ | $\mathbf{1 9 8 9}$ | $\mathbf{1 9 9 8}$ | $\mathbf{9 8 - 8 9}$ |  |  |
| $\mathbf{6 5}$ | 0.775 | 0.791 | 0.016 | 0.788 | 0.799 | 0.010 | 0.764 | 0.783 | 0.019 |  |  |
| $\mathbf{6 6}$ | 0.774 | 0.788 | 0.014 | 0.789 | 0.798 | 0.009 | 0.763 | 0.778 | 0.015 |  |  |
| $\mathbf{6 7}$ | 0.759 | 0.781 | 0.023 | 0.771 | 0.785 | 0.014 | 0.751 | 0.778 | 0.027 |  |  |
| $\mathbf{6 8}$ | 0.752 | 0.772 | 0.020 | 0.759 | 0.774 | 0.016 | 0.748 | 0.770 | 0.023 |  |  |
| $\mathbf{6 9}$ | 0.748 | 0.771 | 0.024 | 0.762 | 0.781 | 0.020 | 0.738 | 0.763 | 0.025 |  |  |
| $\mathbf{7 0}$ | 0.735 | 0.765 | 0.030 | 0.737 | 0.775 | 0.038 | 0.733 | 0.755 | 0.022 |  |  |
| $\mathbf{7 1}$ | 0.728 | 0.756 | 0.028 | 0.743 | 0.773 | 0.030 | 0.717 | 0.742 | 0.024 |  |  |
| $\mathbf{7 2}$ | 0.725 | 0.746 | 0.021 | 0.734 | 0.756 | 0.022 | 0.719 | 0.740 | 0.021 |  |  |
| $\mathbf{7 3}$ | 0.720 | 0.739 | 0.019 | 0.734 | 0.753 | 0.019 | 0.711 | 0.729 | 0.018 |  |  |
| $\mathbf{7 4}$ | 0.711 | 0.733 | 0.022 | 0.725 | 0.745 | 0.020 | 0.701 | 0.725 | 0.024 |  |  |
| $\mathbf{7 5}$ | 0.705 | 0.730 | 0.025 | 0.727 | 0.746 | 0.020 | 0.690 | 0.720 | 0.030 |  |  |
| $\mathbf{7 6}$ | 0.704 | 0.716 | 0.012 | 0.717 | 0.729 | 0.012 | 0.694 | 0.708 | 0.014 |  |  |
| $\mathbf{7 7}$ | 0.692 | 0.707 | 0.015 | 0.712 | 0.721 | 0.009 | 0.678 | 0.698 | 0.020 |  |  |
| $\mathbf{7 8}$ | 0.684 | 0.704 | 0.019 | 0.688 | 0.719 | 0.032 | 0.682 | 0.693 | 0.011 |  |  |
| $\mathbf{7 9}$ | 0.679 | 0.703 | 0.024 | 0.679 | 0.706 | 0.027 | 0.679 | 0.702 | 0.023 |  |  |
| $\mathbf{8 0}$ | 0.681 | 0.695 | 0.014 | 0.692 | 0.697 | 0.005 | 0.674 | 0.693 | 0.019 |  |  |
| $\mathbf{8 1}$ | 0.679 | 0.691 | 0.012 | 0.690 | 0.698 | 0.008 | 0.671 | 0.686 | 0.015 |  |  |
| $\mathbf{8 2}$ | 0.673 | 0.690 | 0.017 | 0.687 | 0.699 | 0.012 | 0.664 | 0.686 | 0.022 |  |  |
| $\mathbf{8 3}$ | 0.668 | 0.683 | 0.015 | 0.690 | 0.704 | 0.014 | 0.654 | 0.672 | 0.018 |  |  |
| $\mathbf{8 4}$ | 0.651 | 0.684 | 0.033 | 0.666 | 0.700 | 0.033 | 0.642 | 0.675 | 0.033 |  |  |
| $\mathbf{8 5}$ | 0.656 | 0.665 | 0.009 | 0.647 | 0.676 | 0.029 | 0.661 | 0.659 | -0.002 |  |  |
| $\mathbf{8 6}$ | 0.656 | 0.670 | 0.014 | 0.666 | 0.676 | 0.010 | 0.649 | 0.666 | 0.017 |  |  |
| $\mathbf{8 7}$ | 0.650 | 0.652 | 0.002 | 0.637 | 0.660 | 0.022 | 0.656 | 0.649 | -0.007 |  |  |
| $\mathbf{8 8}$ | 0.660 | 0.659 | -0.001 | 0.695 | 0.673 | -0.022 | 0.642 | 0.653 | 0.011 |  |  |
| $\mathbf{8 9}$ | 0.645 | 0.658 | 0.014 | 0.675 | 0.649 | -0.025 | 0.628 | 0.663 | 0.035 |  |  |
| $\mathbf{9 0}$ | 0.639 | 0.662 | 0.023 | 0.659 | 0.674 | 0.015 | 0.629 | 0.657 | 0.028 |  |  |
| $\mathbf{9 1}$ | 0.666 | 0.675 | 0.008 | 0.648 | 0.688 | 0.040 | 0.676 | 0.668 | -0.008 |  |  |
| $\mathbf{9 2}$ | 0.642 | 0.653 | 0.010 | 0.592 | 0.700 | 0.108 | 0.670 | 0.634 | -0.036 |  |  |
| $\mathbf{9 3}$ | 0.616 | 0.651 | 0.035 | 0.614 | 0.636 | 0.022 | 0.617 | 0.659 | 0.042 |  |  |
| $\mathbf{9 4}$ | 0.671 | 0.659 | -0.012 | 0.706 | 0.722 | 0.015 | 0.655 | 0.635 | -0.020 |  |  |

Difference in the HALex by sex
Japanese women are believed to be the healthiest people in the world. Their life expectancy is higher than any other group of people in the world, and it is often used as a benchmark (for example, for the calculation of the Disability Adjusted Life Years by the World Health Organization (Murray and Lopez 1996). This claim, however, may be based on the length of life that Japanese women on average live but not the quality of life it goes with. The average HALex of the living population at each age by sex suggests that Japanese women's HALex was almost always lower than Japanese men's, except in earlier ages, younger than ten (Figures 9 and 10, Table 16).

Figure 9. The average HALex, men (o) and women (the solid line) in 1989


Figure 10. The average HALex, men (o) and women (the solid line) in 1998


Table16. Difference in the HALex by Sex, 1989 and 1998
(Shaded ages suggest that men's HALex was worse than women's)

| Age | $\mathbf{1 9 8 9}$ |  |  |  |  | $\mathbf{1 9 9 8}$ |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
|  | Male | Female | M-F | Male | Female | M-F |  |  |
| $\mathbf{6}$ | 0.928 | 0.931 | -0.004 | 0.932 | 0.931 | 0.001 |  |  |
| $\mathbf{7}$ | 0.927 | 0.928 | -0.001 | 0.927 | 0.935 | -0.008 |  |  |
| $\mathbf{8}$ | 0.929 | 0.931 | -0.003 | 0.931 | 0.932 | 0.000 |  |  |
| $\mathbf{9}$ | 0.929 | 0.931 | -0.002 | 0.928 | 0.930 | -0.002 |  |  |
| $\mathbf{1 0}$ | 0.930 | 0.930 | 0.001 | 0.927 | 0.930 | -0.003 |  |  |
| $\mathbf{1 1}$ | 0.929 | 0.930 | -0.001 | 0.927 | 0.927 | 0.000 |  |  |
| $\mathbf{1 2}$ | 0.929 | 0.929 | 0.000 | 0.923 | 0.923 | 0.000 |  |  |
| $\mathbf{1 3}$ | 0.928 | 0.925 | 0.003 | 0.916 | 0.915 | 0.001 |  |  |
| $\mathbf{1 4}$ | 0.922 | 0.920 | 0.003 | 0.911 | 0.903 | 0.007 |  |  |
| $\mathbf{1 5}$ | 0.926 | 0.917 | 0.009 | 0.909 | 0.902 | 0.007 |  |  |
| $\mathbf{1 6}$ | 0.923 | 0.911 | 0.012 | 0.906 | 0.895 | 0.011 |  |  |
| $\mathbf{1 7}$ | 0.921 | 0.909 | 0.012 | 0.906 | 0.896 | 0.010 |  |  |
| $\mathbf{1 8}$ | 0.917 | 0.904 | 0.013 | 0.902 | 0.892 | 0.010 |  |  |
| $\mathbf{1 9}$ | 0.912 | 0.902 | 0.010 | 0.905 | 0.893 | 0.012 |  |  |
| $\mathbf{2 0}$ | 0.909 | 0.895 | 0.014 | 0.901 | 0.891 | 0.010 |  |  |
| $\mathbf{2 1}$ | 0.907 | 0.891 | 0.017 | 0.903 | 0.890 | 0.014 |  |  |
| $\mathbf{2 2}$ | 0.909 | 0.892 | 0.017 | 0.903 | 0.888 | 0.015 |  |  |
| $\mathbf{2 3}$ | 0.905 | 0.889 | 0.016 | 0.903 | 0.888 | 0.015 |  |  |
| $\mathbf{2 4}$ | 0.902 | 0.887 | 0.015 | 0.900 | 0.887 | 0.013 |  |  |
| $\mathbf{2 5}$ | 0.899 | 0.881 | 0.017 | 0.901 | 0.888 | 0.013 |  |  |
| $\mathbf{2 6}$ | 0.898 | 0.882 | 0.016 | 0.898 | 0.883 | 0.014 |  |  |
| $\mathbf{2 7}$ | 0.894 | 0.876 | 0.018 | 0.896 | 0.879 | 0.017 |  |  |
| $\mathbf{2 8}$ | 0.896 | 0.879 | 0.017 | 0.895 | 0.883 | 0.012 |  |  |
| $\mathbf{2 9}$ | 0.892 | 0.877 | 0.015 | 0.892 | 0.881 | 0.011 |  |  |
| $\mathbf{3 0}$ | 0.889 | 0.874 | 0.014 | 0.890 | 0.875 | 0.014 |  |  |
| $\mathbf{3 1}$ | 0.888 | 0.872 | 0.016 | 0.888 | 0.875 | 0.013 |  |  |
| $\mathbf{3 2}$ | 0.885 | 0.873 | 0.011 | 0.883 | 0.874 | 0.009 |  |  |
| $\mathbf{3 3}$ | 0.882 | 0.874 | 0.008 | 0.885 | 0.873 | 0.013 |  |  |
| $\mathbf{3 4}$ | 0.881 | 0.875 | 0.005 | 0.881 | 0.873 | 0.009 |  |  |
| $\mathbf{3 5}$ | 0.882 | 0.871 | 0.010 | 0.880 | 0.870 | 0.010 |  |  |
| $\mathbf{3 6}$ | 0.881 | 0.877 | 0.003 | 0.879 | 0.871 | 0.008 |  |  |
| $\mathbf{3 7}$ | 0.879 | 0.867 | 0.012 | 0.879 | 0.870 | 0.009 |  |  |
| $\mathbf{3 8}$ | 0.882 | 0.868 | 0.015 | 0.879 | 0.868 | 0.011 |  |  |
| $\mathbf{3 9}$ | 0.877 | 0.866 | 0.011 | 0.876 | 0.869 | 0.007 |  |  |
| $\mathbf{4 0}$ | 0.875 | 0.864 | 0.012 | 0.875 | 0.867 | 0.008 |  |  |
| $\mathbf{4 1}$ | 0.873 | 0.860 | 0.013 | 0.873 | 0.863 | 0.010 |  |  |
| $\mathbf{4 2}$ | 0.873 | 0.865 | 0.008 | 0.871 | 0.861 | 0.010 |  |  |
| $\mathbf{4 3}$ | 0.870 | 0.857 | 0.013 | 0.871 | 0.860 | 0.011 |  |  |
| $\mathbf{4 4}$ | 0.874 | 0.853 | 0.022 | 0.868 | 0.861 | 0.007 |  |  |
|  |  |  |  |  |  |  |  |  |


| Age | 1989 |  |  | 1998 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Male | Female | M-F | Male | Female | M-F |
| 45 | 0.867 | 0.852 | 0.015 | 0.867 | 0.860 | 0.007 |
| 46 | 0.871 | 0.848 | 0.023 | 0.868 | 0.855 | 0.012 |
| 47 | 0.868 | 0.849 | 0.020 | 0.865 | 0.853 | 0.012 |
| 48 | 0.864 | 0.840 | 0.025 | 0.861 | 0.847 | 0.014 |
| 49 | 0.862 | 0.838 | 0.024 | 0.864 | 0.848 | 0.016 |
| 50 | 0.860 | 0.837 | 0.023 | 0.863 | 0.847 | 0.016 |
| 51 | 0.855 | 0.833 | 0.023 | 0.862 | 0.844 | 0.019 |
| 52 | 0.851 | 0.830 | 0.021 | 0.862 | 0.841 | 0.020 |
| 53 | 0.850 | 0.826 | 0.024 | 0.855 | 0.838 | 0.017 |
| 54 | 0.845 | 0.829 | 0.016 | 0.854 | 0.841 | 0.013 |
| 55 | 0.844 | 0.824 | 0.020 | 0.861 | 0.838 | 0.023 |
| 56 | 0.838 | 0.822 | 0.016 | 0.852 | 0.839 | 0.013 |
| 57 | 0.834 | 0.821 | 0.013 | 0.851 | 0.840 | 0.011 |
| 58 | 0.835 | 0.817 | 0.018 | 0.847 | 0.839 | 0.009 |
| 59 | 0.831 | 0.816 | 0.015 | 0.847 | 0.831 | 0.016 |
| 60 | 0.827 | 0.820 | 0.007 | 0.839 | 0.829 | 0.010 |
| 61 | 0.830 | 0.810 | 0.019 | 0.842 | 0.828 | 0.014 |
| 62 | 0.821 | 0.809 | 0.012 | 0.838 | 0.828 | 0.009 |
| 63 | 0.813 | 0.804 | 0.009 | 0.833 | 0.818 | 0.015 |
| 64 | 0.821 | 0.802 | 0.019 | 0.827 | 0.820 | 0.007 |
| 65 | 0.788 | 0.764 | 0.024 | 0.799 | 0.783 | 0.015 |
| 66 | 0.789 | 0.763 | 0.026 | 0.798 | 0.778 | 0.020 |
| 67 | 0.771 | 0.751 | 0.020 | 0.785 | 0.778 | 0.007 |
| 68 | 0.759 | 0.748 | 0.011 | 0.774 | 0.770 | 0.004 |
| 69 | 0.762 | 0.738 | 0.024 | 0.781 | 0.763 | 0.019 |
| 70 | 0.737 | 0.733 | 0.004 | 0.775 | 0.755 | 0.019 |
| 71 | 0.743 | 0.717 | 0.026 | 0.773 | 0.742 | 0.031 |
| 72 | 0.734 | 0.719 | 0.014 | 0.756 | 0.740 | 0.016 |
| 73 | 0.734 | 0.711 | 0.023 | 0.753 | 0.729 | 0.024 |
| 74 | 0.725 | 0.701 | 0.024 | 0.745 | 0.725 | 0.020 |
| 75 | 0.727 | 0.690 | 0.037 | 0.746 | 0.720 | 0.026 |
| 76 | 0.717 | 0.694 | 0.023 | 0.729 | 0.708 | 0.021 |
| 77 | 0.712 | 0.678 | 0.034 | 0.721 | 0.698 | 0.024 |
| 78 | 0.688 | 0.682 | 0.006 | 0.719 | 0.693 | 0.026 |
| 79 | 0.679 | 0.679 | 0.000 | 0.706 | 0.702 | 0.003 |
| 80 | 0.692 | 0.674 | 0.018 | 0.697 | 0.693 | 0.004 |
| 81 | 0.690 | 0.671 | 0.019 | 0.698 | 0.686 | 0.012 |
| 82 | 0.687 | 0.664 | 0.023 | 0.699 | 0.686 | 0.013 |
| 83 | 0.690 | 0.654 | 0.036 | 0.704 | 0.672 | 0.033 |
| 84 | 0.666 | 0.642 | 0.025 | 0.700 | 0.675 | 0.025 |
| 85 | 0.647 | 0.661 | -0.014 | 0.676 | 0.659 | 0.017 |
| 86 | 0.666 | 0.649 | 0.017 | 0.676 | 0.666 | 0.010 |
| 87 | 0.637 | 0.656 | -0.019 | 0.660 | 0.649 | 0.011 |
| 88 | 0.695 | 0.642 | 0.053 | 0.673 | 0.653 | 0.020 |
| 89 | 0.675 | 0.628 | 0.046 | 0.649 | 0.663 | -0.013 |
| 90 | 0.659 | 0.629 | 0.030 | 0.674 | 0.657 | 0.017 |
| 91 | 0.648 | 0.676 | -0.027 | 0.688 | 0.668 | 0.020 |
| 92 | 0.592 | 0.670 | -0.078 | 0.700 | 0.634 | 0.066 |
| 93 | 0.614 | 0.617 | -0.004 | 0.636 | 0.659 | -0.023 |
| 94 | 0.706 | 0.655 | 0.051 | 0.722 | 0.635 | 0.087 |

Why was Japanese women's HALex almost always lower than men's? Full investigation is beyond the scope of this analysis, but we looked at distributions of two components of the HALex, activity limitation and self-perceived health (Figures 11 and 12, Tables 17 and 18). In both variables, we observe a general tendency that men were healthier than women, that is, women had more activity limitations and perceived their health conditions lower than men. Judging from the magnitude of these differences by sex, women's lower HALex is likely to be driven more by self-perceived health than activity limitations.

Table 17. Activity limitations by sex in 1989 and 1998

| Activity limitations |  |  | $\begin{gathered} \hline \text { Limited in } \\ \text { ADL } \\ \hline \end{gathered}$ | Limtied in IADL | Unablemajor | Limitedmajor | Limitedother | $\begin{gathered} \text { Not } \\ \text { limited } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1989 | Male | Freq. | 2992 | 4915 | 3268 | 8962 | 9572 | 308652 |
|  | Male | Percent | 0.88 | 1.45 | 0.97 | 2.65 | 2.83 | 91.22 |
|  | Female | Freq. | 4663 | 8137 | 4002 | 11298 | 10299 | 323661 |
|  | Female | Percent | 1.29 | 2.25 | 1.11 | 3.12 | 2.84 | 89.39 |
| 1998 |  | Freq. | 3622 | 5008 | 2401 | 6697 | 8309 | 277908 |
|  |  | Percent | 1.19 | 1.65 | 0.79 | 2.2 | 2.73 | 91.43 |
|  | Fer | Freq. | 6112 | 7492 | 3081 | 8345 | 8640 | 292906 |
|  |  | Percent | 1.87 | 2.29 | 0.94 | 2.56 | 2.65 | 89.69 |

Table 18. Self-perceived health by sex in 1989 and 1998

| Self-perceived health |  |  | Not good | Not very <br> good | Usual | Fairly <br> good | Good |
| :---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: |
| 1989 | Male | Freq. | 3524 | 28967 | 132548 | 55990 | 117332 |
|  |  | Percent | 1.04 | 8.56 | 39.17 | 16.55 | 34.68 |
|  | Female | Freq. | 3786 | 39994 | 155819 | 58126 | 104335 |
|  |  | Percent | 1.05 | 11.05 | 43.04 | 16.05 | 28.82 |
| 1998 | Male | Freq. | 3028 | 26360 | 126389 | 53308 | 94860 |
|  |  | Percent | 1.00 | 8.67 | 41.58 | 17.54 | 31.21 |
|  | Female | Freq. | 3561 | 36404 | 144508 | 55895 | 86208 |
|  | Percent | 1.09 | 11.15 | 44.25 | 17.12 | 26.4 |  |

Figures 12-13. Percentage difference of activity limitation and self-perceived health (female-male)


(2) How was the HALex distributed by income share among the living population in Japan, overall, by sex and by age group in 1989 and 1998 ?

## Overall differences in the HALex by income

Figure 13 and Table 19 show differences in the HALex of the living population by income share in 1989 and 1998. Consistent with the analysis of the overall HALex change between 1989 and 1998, at every income group, the HALex in 1998 was slightly lower than that of 1989. The pattern stayed the same in 1989 and 1998: the HALex was higher at a higher income group at every step, except the two highest income groups in 1998. Comparing the average HALex of the top $20 \%$ group and the bottom $20 \%$ group, the difference is 0.034 in 1989 and 0.032 in 1998, thus the slope is steeper in 1989 by 0.002 .

Figure 13. Average HALex by income in 1989 \& 1998


Table 19. Average HALex by income in 1989 and 1998

|  | 1989 |  | 1998 |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| Income group | Mean <br> HALex | Median <br> HALex | Mean <br> HALex | Median <br> HALex |  |  |  |  |  |
| Bottom 20\% | 0.833 | 0.84 | 0.829 | 0.84 |  |  |  |  |  |
| Bottom 20-40\% | 0.856 | 0.84 | 0.848 | 0.84 |  |  |  |  |  |
| Middle 20\% | 0.864 | 0.84 | 0.859 | 0.84 |  |  |  |  |  |
| Top 40-20\% | 0.866 | 0.84 | 0.861 | 0.84 |  |  |  |  |  |
| Top 20\% | 0.867 | 0.84 | 0.861 | 0.84 |  |  |  |  |  |
| (Top 20\%) - (Bottom 20\%) | 0.034 |  | 0.032 |  |  |  |  |  |  |
| (Middle 20\%) - (Bottom 20\%) |  |  |  |  |  | 0.031 |  | 0.030 |  |

## Differences in the HALex by income and sex

Figures 14 and 15 and Tables 20 and 21 break down differences in the HALex by income share by sex. As the analysis of the HALex by sex above suggests, here we also observe that women's HALex were lower than men's HALex in every income group both in 1989 and 1998. Differences in the HALex by income share suggest a gentle slope all the way through the five income groups for men, but not for women. Among women, the highest two income groups showed the highest HALex in 1989, and the second highest income group in 1998; gradients of the HALex by income were only present at lower income groups. 1989 observed steeper gradients than in 1998 by 0.002 between the top $20 \%$ and the bottom $20 \%$ among men. The same was true for partial gradients observed among women.

Figure 14. Average HALex by income in 1989


Figure 15. Average HALex by income in 1998


Table 20. HALex by income, both sexes, male, and female, in 1989 Income is in 10,000 yen, this also applies to later tables.

| Income group | Income range | Mean HALex | Median HALex |
| :---: | :---: | :---: | :---: |
| Both sexes |  |  |  |
| Bottom 20\% | <128.9952 | 0.833 | 0.84 |
| Bottom20-40\% | [128.9952, 186.2178) | 0.856 | 0.84 |
| Middle 20\% | [186.2178, 246.3398) | 0.864 | 0.84 |
| Top 40-20\% | [246.3398, 336.1242) | 0.866 | 0.84 |
| Top 20\% | >=336.1242 | 0.867 | 0.84 |
|  | op 20\%) - (Bottom 20\%) | 0.034 |  |
| (Midd | dle 20\%) - (Bottom 20\%) | 0.031 |  |
| Male |  |  |  |
| Bottom 20\% | <132.2182 | 0.847 | 0.84 |
| Bottom20-40\% | [132.2182, 189.5564) | 0.869 | 0.84 |
| Middle 20\% | [189.5564, 249.8874) | 0.873 | 0.84 |
| Top 40-20\% | [249.8874, 339.3803) | 0.875 | 0.84 |
| Top 20\% | >=339.3803 | 0.878 | 0.84 |
|  | op 20\%) - (Bottom 20\%) | 0.031 |  |
| (Midd | dle 20\%) - (Bottom 20\%) | 0.026 |  |
| Female |  |  |  |
| Bottom 20\% | <126.6196 | 0.821 | 0.84 |
| Bottom20-40\% | [126.6196, 183.5905) | 0.846 | 0.84 |
| Middle 20\% | [183.5905, 243.6592) | 0.854 | 0.84 |
| Top 40-20\% | [243.6592,333.0632) | 0.856 | 0.84 |
| Top 20\% | >=333.0632 | 0.856 | 0.84 |
|  |  | 0.035 |  |
| (Middle 20\%) - (Bottom 20\%) |  | 0.033 |  |

Table 20. HALex by income, both sexes, male, and female, in 1998

| Income group | Income range | Mean HALex | Median HALex |
| :---: | :---: | :---: | :---: |
| Both sexes |  |  |  |
| Bottom 20\% | <170 | 0.829 | 0.84 |
| Bottom20-40\% | [170, 246.3039) | 0.848 | 0.84 |
| Middle 20\% | [246.3039, 327.3672) | 0.859 | 0.84 |
| Top 40-20\% | [327.3672, 448.2736) | 0.861 | 0.84 |
| Top 20\% | $>=448.2736$ | 0.861 | 0.84 |
| (Top 20\%) - (Bottom 20\%) <br> (Middle 20\%) - (Bottom 20\%) |  | 0.032 |  |
|  |  | 0.030 |  |
| Male |  |  |  |
| Bottom 20\% | <177.6813 | 0.842 | 0.84 |
| Bottom20-40\% | [177.6813, 252.5874) | 0.859 | 0.84 |
| Middle 20\% | [252.5874, 333.6934) | 0.866 | 0.84 |
| Top 40-20\% | [333.6934, 457.0046) | 0.870 | 0.84 |
| Top 20\% | $>=457.0046$ | 0.871 | 0.84 |
| (Top 20\%) - (Bottom 20\%) <br> (Middle 20\%) - (Bottom 20\%) |  | 0.029 |  |
|  |  | 0.024 |  |
| Female |  |  |  |
| Bottom 20\% | <165.2131 | 0.820 | 0.84 |
| Bottom20-40\% | [165.2131, 240.1099) | 0.837 | 0.84 |
| Middle 20\% | [240.1099, 321.4948) | 0.851 | 0.84 |
| Top 40-20\% | [321.4948, 440.2015 ) | 0.854 | 0.84 |
| Top 20\% | $>=440.2015$ | 0.851 | 0.84 |
| (Top 20\%) - (Bottom 20\%) |  | 0.031 |  |
| (Middle 20\%) - (Bottom 20\%) |  | 0.031 |  |

## Differences in the HALex by income and age group

Figures 16-19 and tables 22-25 show how the HALex changed by income at different age groups. In both 1989 and 1998 and both sexes, only the middle age group (45-64 years old) showed a clear gradient of the HALex by income, though even in this case the degree of the gradient was small (0.031-0.038). Among men, the slope in 1989 ( 0.038 difference between the top $20 \%$ and the bottom $20 \%$ income groups) was about the same as that of 1998 (0.039), while among women, the 1998 slope ( 0.031 ) was less steep than the 1989 slope ( 0.038 ). Children (6-14 years old), adolescents (15-24 years old), and the oldest old (75-94 years old) did not present such a gradient in both sexes and both survey years. Differences in the HALex by income among young adults (25-44 years old) and the young old (65-74 years old) were not clear whether they should be treated as gradients. Although the HALex did not improve at every higher income group, the male young old (65-74 years old) presented the biggest gap between the top $20 \%$ and the bottom $20 \%$ income group: 0.083 in 1989 and 0.058 in 1998.

Figure 16. The HALex by income by age group, male, 1989


Figure 17. The HALex by income by age group, female, 1989


Figure 18. The HALex by income by age group, male, 1998


Figure 19. The HALex by income by age group, female, 1998


Table 22. The HALex, male, 1989

| Income group | Income range | Mean HALex | Median HALex |
| :---: | :---: | :---: | :---: |
| 6-14 years old |  |  |  |
| Bottom 20\% | <126.951 | 0.926 | 1 |
| Bottom20-40\% | [126.951, 177.9012) | 0.922 | 1 |
| Middle 20\% | [177.9012, 226.3039) | 0.928 | 1 |
| Top 40-20\% | [226.3039, 293.8737) | 0.925 | 1 |
| Top 20\% | >=293.8737 | 0.937 | 1 |
| $\begin{array}{r} \text { (Top 20\%) - (Bottom 20\%) } \\ \text { (Middle 20\%) - (Bottom 20\%) } \\ \hline \end{array}$ |  | 0.011 |  |
|  |  | 0.002 |  |
| 15-24 years old |  |  |  |
| Bottom 20\% | <128.2835 | 0.916 | 1 |
| Bottom20-40\% | [128.2835, 189.8435) | 0.911 | 1 |
| Middle 20\% | [189.8435, 256.874) | 0.912 | 1 |
| Top 40-20\% | [256.874, 341.1088) | 0.906 | 1 |
| Top 20\% | >=341.1088 | 0.917 | 1 |
|  | p 20\%) - (Bottom 20\%) | 0.001 |  |
|  | le 20\%) - (Bottom 20\%) | -0.004 |  |
| 25-44 years old |  |  |  |
| Bottom 20\% | <139.7022 | 0.874 | 0.84 |
| Bottom20-40\% | [139.7022, 191.4102) | 0.884 | 0.84 |
| Middle 20\% | [191.4102, 243.7119) | 0.881 | 0.84 |
| Top 40-20\% | [243.7119, 323.791) | 0.884 | 0.84 |
| Top 20\% | > $=323.791$ | 0.891 | 0.84 |
|  | p 20\%) - (Bottom 20\%) | 0.017 |  |
|  | le 20\%) - (Bottom 20\%) | 0.007 |  |
| 45-64 years old |  |  |  |
| Bottom 20\% | <145.275 | 0.823 | 0.84 |
| Bottom20-40\% | [145.275, 212.2262) | 0.844 | 0.84 |
| Middle 20\% | [212.2262, 286.403) | 0.850 | 0.84 |
| Top 40-20\% | [286.403, 391.8127) | 0.858 | 0.84 |
| Top 20\% | >=391.8127 | 0.861 | 0.84 |
| (Top 20\%) - (Bottom 20\%) <br> (Middle 20\%) - (Bottom 20\%) |  | 0.038 |  |
|  |  | 0.027 |  |
| 65-74 years old |  |  |  |
| Bottom 20\% | <107.7251 | 0.722 | 0.84 |
| Bottom20-40\% | [107.7251, 158.8176) | 0.756 | 0.84 |
| Middle 20\% | [158.8176, 212.9582) | 0.767 | 0.84 |
| Top 40-20\% | [212.9582, 297.8767) | 0.767 | 0.84 |
| Top 20\% | >=297.8767 | 0.805 | 0.84 |
| $\begin{array}{r} \text { (Top 20\%) - (Bottom 20\%) } \\ \text { (Middle 20\%) - (Bottom 20\%) } \\ \hline \end{array}$ |  | 0.083 |  |
|  |  | 0.045 |  |
| 75-94 years old |  |  |  |
| Bottom 20\% | <95.00993 | 0.676 | 0.84 |
| Bottom20-40\% | [95.00993, 140.966) | 0.684 | 0.84 |
| Middle 20\% | [140.966, 198.0778) | 0.738 | 0.84 |
| Top 40-20\% | [198.0778, 286.2466) | 0.718 | 0.84 |
| Top 20\% | $>=286.2466$ | 0.728 | 0.84 |
| (Top 20\%) - (Bottom 20\%) |  | 0.052 |  |
| (Middle 20\%) - (Bottom 20\%) |  | 0.062 |  |

Table 23. The HALex, female, 1989

| Income group | Income range | Mean HALex | Median HALex |
| :---: | :---: | :---: | :---: |
| 6-14 years old |  |  |  |
| Bottom 20\% | <126.8556 | 0.926 |  |
| Bottom20-40\% | [126.8556, 178.0196) | 0.922 |  |
| Middle 20\% | [178.0196, 225.0253) | 0.924 |  |
| Top 40-20\% | [225.0253, 292.7413) | 0.928 |  |
| Top 20\% | > 292.7413 | 0.930 | 1 |
| (Top 20\%) - (Bottom 20\%) <br> (Middle 20\%) - (Bottom 20\%) |  | 0.004 |  |
|  |  | -0.002 |  |
| 15-24 years old |  |  |  |
| Bottom 20\% | <135.3662 | 0.895 |  |
| Bottom20-40\% | [135.3662, 195.6896) | 0.901 |  |
| Middle 20\% | [195.6896, 262.2222) | 0.897 |  |
| Top 40-20\% | [262.2222, 352.7229) | 0.902 |  |
| Top 20\% | > $=352.7229$ | 0.908 | 1 |
| (Middle 20\%) - (Bottom 20\%) |  | 0.013 |  |
|  |  | 0.002 |  |
| 25-44 years old |  |  |  |
| Bottom 20\% | <134.9004 | 0.862 | 0.84 |
| Bottom20-40\% | [134.9004, 187.6002) | 0.866 | 0.84 |
| Middle 20\% | [187.6002, 240.4874) | 0.873 | 0.84 |
| Top 40-20\% | [240.4874, 316.9428) | 0.865 | 0.84 |
| Top 20\% | $>=316.9428$ | 0.877 | 0.84 |
| (Top 20\%) - (Bottom 20\%) <br> (Middle 20\%) - (Bottom 20\%) |  | 0.015 |  |
|  |  | 0.011 |  |
| 45-64 years old |  |  |  |
| Bottom 20\% | <131.8673 | 0.804 | 0.84 |
| Bottom20-40\% | [131.8673, 195.5274) | 0.822 | 0.84 |
| Middle 20\% | [195.5274, 269.7975) | 0.830 | 0.84 |
| Top 40-20\% | [269.7975, 378.9291) | 0.836 | 0.84 |
| Top 20\% | $>=378.9291$ | 0.842 | 0.84 |
| $\begin{array}{r} \text { (Top 20\%) - (Bottom 20\%) } \\ \text { (Middle 20\%) - (Bottom 20\%) } \\ \hline \end{array}$ |  | 0.038 |  |
|  |  | 0.026 |  |
| 65-74 years old |  |  |  |
| Bottom 20\% | <97.26041 | 0.719 | 0.84 |
| Bottom20-40\% | [97.26041, 144.1915) | 0.735 | 0.84 |
| Middle 20\% | [144.1915, 199.2912) | 0.734 | 0.84 |
| Top 40-20\% | [199.2912, 278.0778) | 0.747 | 0.84 |
| Top 20\% | > $=278.0778$ | 0.751 | 0.84 |
| $\begin{array}{r} \text { (Top 20\%) - (Bottom 20\%) } \\ \text { (Middle 20\%) - (Bottom 20\%) } \\ \hline \end{array}$ |  | 0.032 |  |
|  |  | 0.015 |  |
| 75-94 years old |  |  |  |
| Bottom 20\% | <95.47339 | 0.660 | 0.84 |
| Bottom20-40\% | [95.47339, 149.1849) | 0.666 | 0.84 |
| Middle 20\% | [149.1849, 208.8494) | 0.684 | 0.84 |
| Top 40-20\% | [208.8494, 309.8957) | 0.694 | 0.84 |
| Top 20\% | > $=309.8957$ | 0.670 | 0.84 |
| (Top 20\%) - (Bottom 20\%) |  | 0.010 |  |
| (Middle 20\%) - (Bottom 20\%) |  | 0.024 |  |

Table 24. The HALex, male, 1998

| Income group | Income range | Mean HALex | Median HALex |
| :---: | :---: | :---: | :---: |
| 6-14 years old |  |  |  |
| Bottom 20\% | <169.834 | 0.921 | 1 |
| Bottom20-40\% | [169.834, 233.7171) | 0.924 | 1 |
| Middle 20\% | [233.7171, 293.3883) | 0.922 | 1 |
| Top 40-20\% | [293.3883, 376.1824) | 0.918 | 1 |
| Top 20\% | >=376.1824 | 0.926 | 1 |
| $\begin{array}{r} \text { (Top 20\%) - (Bottom 20\%) } \\ \text { (Middle 20\%) - (Bottom 20\%) } \\ \hline \end{array}$ |  | 0.005 |  |
|  |  | 0.001 |  |
| 15-24 years old |  |  |  |
| Bottom 20\% | <159.4235 | 0.903 | 1 |
| Bottom20-40\% | [159.4235, 241.3354) | 0.901 | 1 |
| Middle 20\% | [241.3354, 327.0485) | 0.906 | 1 |
| Top 40-20\% | [327.0485, 435.9307) | 0.896 | 1 |
| Top 20\% | $>=435.9307$ | 0.904 | 1 |
| $\begin{array}{r} \text { (Top 20\%) - (Bottom 20\%) } \\ \text { (Middle 20\%) - (Bottom 20\%) } \\ \hline \end{array}$ |  | 0.001 |  |
|  |  | 0.003 |  |
| 25-44 years old |  |  |  |
| Bottom 20\% | <189.9975 | 0.870 | 0.84 |
| Bottom20-40\% | [189.9975, 256.6936) | 0.879 | 0.84 |
| Middle 20\% | [256.6936, 332.7907) | 0.884 | 0.84 |
| Top 40-20\% | [332.7907, 450) | 0.883 | 0.84 |
| Top 20\% | > $=450$ | 0.886 | 0.84 |
| $\begin{array}{r} \text { (Top 20\%) - (Bottom 20\%) } \\ \text { (Middle 20\%) - (Bottom 20\%) } \\ \hline \end{array}$ |  | 0.016 |  |
|  |  | 0.014 |  |
| 45-64 years old |  |  |  |
| Bottom 20\% | <199.078 | 0.830 | 0.84 |
| Bottom20-40\% | [199.078, 289.3189) | 0.849 | 0.84 |
| Middle 20\% | [289.3189, 386.5793) | 0.856 | 0.84 |
| Top 40-20\% | [386.5793, 523.7826) | 0.865 | 0.84 |
| Top 20\% | >=523.7826 | 0.869 | 0.84 |
| $\begin{array}{r} \text { (Top 20\%) - (Bottom 20\%) } \\ \text { (Middle 20\%) - (Bottom 20\%) } \\ \hline \end{array}$ |  | 0.039 |  |
|  |  | 0.026 |  |
| 65-74 years old |  |  |  |
| Bottom 20\% | <155.6712 | 0.751 | 0.84 |
| Bottom20-40\% | [155.6712, 214.9341) | 0.792 | 0.84 |
| Middle 20\% | [214.9341, 284.3943) | 0.794 | 0.84 |
| Top 40-20\% | [284.3943, 395.5854) | 0.789 | 0.84 |
| Top 20\% | >=395.5854 | 0.809 | 0.84 |
| (Top 20\%) - (Bottom 20\%) <br> (Middle 20\%) - (Bottom 20\%) |  | 0.058 |  |
|  |  | 0.043 |  |
| 75-94 years old |  |  |  |
| Bottom 20\% | <129.2702 | 0.694 | 0.84 |
| Bottom20-40\% | [129.2702, 198) | 0.708 | 0.84 |
| Middle 20\% | [198, 268.3895) | 0.725 | 0.84 |
| Top 40-20\% | [268.3895, 386.0404) | 0.710 | 0.84 |
| Top 20\% | >=386.0404 | 0.712 | 0.84 |
| (Top 20\%) - (Bottom 20\%) |  | 0.018 |  |
| (Middle 20\%) - (Bottom 20\%) |  | 0.031 |  |

Table 25. The HALex, female, 1998

| Income group | Income range | Mean HALex | Median HALex |
| :---: | :---: | :---: | :---: |
| 6-14 years old |  |  |  |
| Bottom 20\% | <169.834 | 0.922 | 1 |
| Bottom20-40\% | [169.834, 233.469) | 0.922 | 1 |
| Middle 20\% | [233.469, 298.4833) | 0.923 | 1 |
| Top 40-20\% | [298.4833, 382.1266) | 0.922 | 1 |
| Top 20\% | >=382.1266 | 0.926 | 1 |
|  | p 20\%) - (Bottom 20\%) | 0.004 |  |
|  | le 20\%) - (Bottom 20\%) | 0.001 |  |
| 15-24 years old |  |  |  |
| Bottom 20\% | <168.5483 | 0.884 | 0.84 |
| Bottom20-40\% | [168.5483, 254.7511) | 0.889 | 0.84 |
| Middle 20\% | [254.7511, 339.9396) | 0.896 | 1 |
| Top 40-20\% | [339.9396, 445.2417) | 0.884 | 0.84 |
| Top 20\% | $>=445.2417$ | 0.894 | 1 |
|  | p 20\%) - (Bottom 20\%) | 0.010 |  |
|  | le 20\%) - (Bottom 20\%) | 0.012 |  |
| 25-44 years old |  |  |  |
| Bottom 20\% | <179.5995 | 0.863 | 0.84 |
| Bottom20-40\% | [179.5995, 246.7132) | 0.867 | 0.84 |
| Middle 20\% | [246.7132, 318.4388) | 0.874 | 0.84 |
| Top 40-20\% | [318.4388, 424.5851) | 0.872 | 0.84 |
| Top 20\% | $>=424.5851$ | 0.874 | 0.84 |
|  | p 20\%) - (Bottom 20\%) | 0.011 |  |
|  | 20\%) - (Bottom 20\%) | 0.011 |  |
| 45-64 years old |  |  |  |
| Bottom 20\% | <177.2848 | 0.823 | 0.84 |
| Bottom20-40\% | [177.2848, 265.2504) | 0.838 | 0.84 |
| Middle 20\% | [265.2504, 362.572) | 0.848 | 0.84 |
| Top 40-20\% | [362.572, 504.3483) | 0.849 | 0.84 |
| Top 20\% | >=504.3483 | 0.854 | 0.84 |
|  | p 20\%) - (Bottom 20\%) | 0.031 |  |
| (Mid | le 20\%) - (Bottom 20\%) | 0.025 |  |
| 65-74 years old |  |  |  |
| Bottom 20\% | <137 | 0.749 | 0.84 |
| Bottom20-40\% | [137, 201.2921) | 0.764 | 0.84 |
| Middle 20\% | [201.2921, 269.0051) | 0.758 | 0.84 |
| Top 40-20\% | [269.0051, 377.2589) | 0.774 | 0.84 |
| Top 20\% | $>=377.2589$ | 0.773 | 0.84 |
|  | p 20\%) - (Bottom 20\%) | 0.024 |  |
|  | le 20\%) - (Bottom 20\%) | 0.009 |  |
| 75-94 years old |  |  |  |
| Bottom 20\% | <115.8658 | 0.681 | 0.84 |
| Bottom20-40\% | [115.8658, 185.82491) | 0.694 | 0.84 |
| Middle 20\% | [185.8249, 269.0051) | 0.683 | 0.84 |
| Top 40-20\% | [269.0051, 398.2752) | 0.698 | 0.84 |
| Top 20\% | >=398.2752 | 0.671 | 0.84 |
| (Top 20\%) - (Bottom 20\%)(Middle 20\%) - (Bottom 20\%) |  | -0.010 |  |
|  |  | 0.002 |  |

(3) How was the HALex, from death to the "full" health, distributed in Japan, overall, by sex and by age group in 1989 and 1998?

Tables 26 presents the Gini Coefficients of the HALex among Japanese people in 1989 and 1998. In addition to the overall Gini Coefficient, we calculated it for men, women, and different age groups ( $6-14,15-24,25-44,45-64,65-74$, and $75-94$ years old). Furthermore, this table presents the Gini Coefficients for the sample including the dead and the sample of the living only reflecting the concern for the interpretation of death in health inequality analysis discussed in the method section above. Following to the Gini Coefficient table, we attach tables (Tables 27-34), histograms (Figures 20-27), and the Lorenz Curves (Figures 28-31) of distributions of the HALex for the overall population and by sex and age group.

## Overall distribution of the HALex

Between 1989 and 1998, the overall health inequality in Japan slightly increased (0.002). Health inequalities among men and women had the same trend of the slight increase between these years ( 0.001 increase for men, 0.002 increase for women). Health inequality trends between 1989 and 1998 differed by age groups, however: health inequalities increased among children (6-14 years old) and adolescents (15-24 years old), while they decreased among adults and the elderly ( $25-94$ years old).

## Distribution of the HALex by sex

Comparing health inequalities among men and women, both in 1989 and 1998, health was more unequally distributed among women than men ( 0.008 difference in 1989 and 0.009 difference in 1998). Looking at different age groups, it appears that there was no sex difference in health inequalities among children (6-14 years old), but for those who were 15 years of age and older, health was generally more unequally distributed among women than men. The increase in health inequalities among older men is most likely to be due to a greater number of deaths occurring to them than their female counterparts.

## Distribution of the HALex by age group

In both years and both sexes, health inequalities increased at older age groups. The Lorenz Curves by age groups in Figures 30 and 31 most clearly illustrate this. A distribution is perfectly equal when the Lorenz Curve coincides with the diagonal line, and it is most unequal when the Lorenz Curve follows the x -axis and the right vertical line. The Lorenz Curves in Figures 30 and 31 move between these extremes in order at every older age group. This trend of the increasing health inequalities at older age groups is not only due to the effect
of the increasing number of deaths, because this trend is also present among the samples of the living only.

Table 26. The Gini Coefficients in 1989 and 1998

| Age group | Both sexes |  | Male |  | Female |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{1 9 8 9}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 8 9}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 8 9}$ | $\mathbf{1 9 9 8}$ | | The living + the dead |
| :--- |
| All ages 0.096 0.098 0.092 0.093 <br> $6--14$ 0.050 0.051 0.050 0.052 <br> $15-24$ 0.059 0.062 0.050 0.060 <br> 0.049 0.062 0.051   <br> $25-44$ 0.072 0.070 0.070 0.068 <br> $45-64$ 0.096 0.086 0.096 0.086 <br> $65-74$ 0.181 0.163 0.184 0.165 <br> $75-94$ 0.264 0.247 0.271 0.255 |

The living only

| All ages | 0.091 | 0.091 | 0.085 | 0.086 | 0.095 | 0.096 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $6--14$ | 0.050 | 0.051 | 0.050 | 0.052 | 0.049 | 0.051 |
| $15-24$ | 0.059 | 0.061 | 0.056 | 0.059 | 0.061 | 0.064 |
| $25-44$ | 0.071 | 0.069 | 0.069 | 0.067 | 0.073 | 0.071 |
| $45-64$ | 0.092 | 0.082 | 0.089 | 0.080 | 0.093 | 0.084 |
| $65-74$ | 0.167 | 0.149 | 0.164 | 0.146 | 0.168 | 0.152 |
| $75-94$ | 0.215 | 0.205 | 0.211 | 0.199 | 0.217 | 0.208 |

Figure 20. Histograms of the HALex, male (sex=1), female (sex=2), and both sexes, 1986

Freq.



HALex
Table 27. The HALex, both sexes, male, and female, 1989

| HALex |  |  | Both sexes |  | Male |  | Female |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Self-perceived Health | Activity Limitation | Score | Freq. | Percent | Freq. | Percent | Freq. | Percent |
| Dead |  | 0 | 4518 | 0.64 | 2532 | 0.74 | 1986 | 0.55 |
| Poor | Limited in ADL | 0.1 | 1319 | 0.19 | 597 | 0.18 | 722 | 0.20 |
| Poor | Limited in IADL | 0.17 | 1004 | 0.14 | 452 | 0.13 | 552 | 0.15 |
| Fair | Limited in ADL | 0.21 | 3989 | 0.57 | 1469 | 0.43 | 2520 | 0.69 |
| Poor | Unable-major | 0.25 | 1291 | 0.18 | 637 | 0.19 | 654 | 0.18 |
| Fair | Limited in IADL | 0.29 | 7278 | 1.03 | 2669 | 0.78 | 4609 | 1.27 |
| Poor | Limited-major | 0.34 | 1562 | 0.22 | 779 | 0.23 | 783 | 0.22 |
| Good | Limited in ADL | 0.36 | 1676 | 0.24 | 634 | 0.19 | 1042 | 0.29 |
| Fair/Unable-major, | r/Limited-other | 0.38 | 4224 | 0.60 | 1846 | 0.54 | 2378 | 0.65 |
| Very good | Limited in ADL | 0.41 | 486 | 0.07 | 205 | 0.06 | 281 | 0.08 |
| Good | Limited in IADL | 0.45 | 3739 | 0.53 | 1369 | 0.40 | 2370 | 0.65 |
| Excellent/Limited in | Poor/Not limited | 0.47 | 1617 | 0.23 | 795 | 0.23 | 822 | 0.23 |
| Fair | Limited-major | 0.48 | 10751 | 1.53 | 4561 | 1.34 | 6190 | 1.70 |
| Very good | Limited in IADL | 0.51 | 825 | 0.12 | 330 | 0.10 | 495 | 0.14 |
| Fair | Limited-other | 0.52 | 7764 | 1.10 | 3531 | 1.04 | 4233 | 1.16 |
| Good | Unable-major | 0.55 | 1588 | 0.23 | 720 | 0.21 | 868 | 0.24 |
| Excellent | Limited in IADL | 0.57 | 206 | 0.03 | 95 | 0.03 | 111 | 0.03 |
| Very good | Unable-major | 0.62 | 474 | 0.07 | 218 | 0.06 | 256 | 0.07 |
| Fair | Not limited | 0.63 | 35657 | 5.06 | 15242 | 4.47 | 20415 | 5.61 |
| Good | Limited-major | 0.67 | 6065 | 0.86 | 2692 | 0.79 | 3373 | 0.93 |
| Excellent | Unable-major | 0.68 | 395 | 0.06 | 198 | 0.06 | 197 | 0.05 |
| Good | Limited-other | 0.72 | 7835 | 1.11 | 3808 | 1.12 | 4027 | 1.11 |
| Very good | Limited-major | 0.74 | 1356 | 0.19 | 639 | 0.19 | 717 | 0.20 |
| Very good | Limited-other | 0.79 | 2175 | 0.31 | 1120 | 0.33 | 1055 | 0.29 |
| Excellent | Limited-major | 0.81 | 526 | 0.07 | 291 | 0.09 | 235 | 0.06 |
| Good | Not limited | 0.84 | 267464 | 37.94 | 123325 | 36.18 | 144139 | 39.59 |
| Excellent | Limited-other | 0.87 | 1395 | 0.20 | 762 | 0.22 | 633 | 0.17 |
| Very good | Not limited | 0.92 | 108800 | 15.43 | 53478 | 15.69 | 55322 | 15.20 |
| Excellent | Not limited | 1 | 218960 | 31.06 | 115899 | 34.00 | 103061 | 28.31 |
| Total (the living + the dead) |  |  | 704939 | 100 | 340893 | 100 | 364046 | 100 |
| Total (the living only) |  |  | 700421 |  | 338361 |  | 362060 |  |

Figure 21. Histograms of the HALex, both sexes, male, and female, 1998

Table 28. The HALex, both sexes, male, and female, 1998

| HALex |  |  | Both sexes |  | Male |  | Female |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Self-perceived Health | Activity Limitation | Score | Freq. | Percent | Freq. | Percent | Freq. | Percent |
| Dead |  | 0 | 4544 | 0.72 | 2609 | 0.85 | 1935 | 0.59 |
| Poor | Limited in ADL | 0.1 | 1598 | 0.25 | 628 | 0.20 | 970 | 0.30 |
| Poor | Limited in IADL | 0.17 | 966 | 0.15 | 433 | 0.14 | 533 | 0.16 |
| Fair | Limited in ADL | 0.21 | 5101 | 0.80 | 1806 | 0.59 | 3295 | 1.00 |
| Poor | Unable-major | 0.25 | 739 | 0.12 | 345 | 0.11 | 394 | 0.12 |
| Fair | Limited in IADL | 0.29 | 6771 | 1.07 | 2699 | 0.88 | 4072 | 1.24 |
| Poor | Limited-major | 0.34 | 1259 | 0.20 | 626 | 0.20 | 633 | 0.19 |
| Good | Limited in ADL | 0.36 | 2231 | 0.35 | 860 | 0.28 | 1371 | 0.42 |
| Fair/Unable-major, | or/Limited-other | 0.38 | 3282 | 0.52 | 1436 | 0.47 | 1846 | 0.56 |
| Very good | Limited in ADL | 0.41 | 656 | 0.10 | 253 | 0.08 | 403 | 0.12 |
| Good | Limited in IADL | 0.45 | 3593 | 0.57 | 1380 | 0.45 | 2213 | 0.67 |
| Excellent/Limited in A | Poor/Not limited | 0.47 | 1356 | 0.21 | 648 | 0.21 | 708 | 0.22 |
| Fair | Limited-major | 0.48 | 7986 | 1.26 | 3408 | 1.11 | 4578 | 1.39 |
| Very good | Limited in IADL | 0.51 | 1000 | 0.16 | 417 | 0.14 | 583 | 0.18 |
| Fair | Limited-other | 0.52 | 6894 | 1.09 | 3218 | 1.05 | 3676 | 1.12 |
| Good | Unable-major | 0.55 | 1429 | 0.23 | 650 | 0.21 | 779 | 0.24 |
| Excellent | Limited in IADL | 0.57 | 170 | 0.03 | 79 | 0.03 | 91 | 0.03 |
| Very good | Unable-major | 0.62 | 535 | 0.08 | 232 | 0.08 | 303 | 0.09 |
| Fair | Not limited | 0.63 | 33549 | 5.28 | 14216 | 4.64 | 19333 | 5.89 |
| Good | Limited-major | 0.67 | 4340 | 0.68 | 1969 | 0.64 | 2371 | 0.72 |
| Excellent | Unable-major | 0.68 | 316 | 0.05 | 161 | 0.05 | 155 | 0.05 |
| Good | Limited-other | 0.72 | 6472 | 1.02 | 3162 | 1.03 | 3310 | 1.01 |
| Very good | Limited-major | 0.74 | 1166 | 0.18 | 524 | 0.17 | 642 | 0.20 |
| Very good | Limited-other | 0.79 | 1979 | 0.31 | 1053 | 0.34 | 926 | 0.28 |
| Excellent | Limited-major | 0.81 | 291 | 0.05 | 170 | 0.06 | 121 | 0.04 |
| Good | Not limited | 0.84 | 252832 | 39.81 | 118368 | 38.61 | 134464 | 40.93 |
| Excellent | Limited-other | 0.87 | 785 | 0.12 | 453 | 0.15 | 332 | 0.10 |
| Very good | Not limited | 0.92 | 103867 | 16.36 | 50829 | 16.58 | 53038 | 16.14 |
| Excellent | Not limited | 1 | 179358 | 28.24 | 93922 | 30.64 | 85436 | 26.01 |
| Total (the living + the dead) |  |  | 635065 | 100 | 306554 | 100 | 328511 | 100 |
| Total (the living only) |  |  | 630521 |  | 303945 |  | 326576 |  |

Figure 22. Histograms of the HALex by age, 1989
agegp $==1: 6-14$ years old, ageg $p=2: 15-24$ years old, agegp $==3: 25-44$ years old ageg $p==4: 45-64$ years old, agegp $==5: 65-74$ years old, agegp $=6: 75-94$ years old


Figure 23. Histograms of the HALex by age, 1998

Freq.



azegp $=5$


agegk $=6$


HALex
Table 29. The HALex by age, 1989

| HALex |  |  | 6-14 years old |  | 15-24 years old |  | 25-44 years old |  | 45-64 years old |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Self-perceived Health | Activity Limitation | Score | Freq. | Percent | Freq. | Percent | Freq. | Percent | Freq. | Percent |
| Dead |  | 0 | 15 | 0.02 | 50 | 0.05 | 205 | 0.1 | 1015 | 0.52 |
| Poor | Unable-major | 0.25 | 42 | 0.04 | 65 | 0.06 | 291 | 0.1 | 893 | 0.46 |
| Poor | Limited-major | 0.34 | 38 | 0.04 | 79 | 0.08 | 387 | 0.2 | 1058 | 0.54 |
| Fair/Unable-major, | r/Limited-other | 0.38 | 185 | 0.19 | 321 | 0.31 | 1182 | 0.6 | 2416 | 1.23 |
| Poor | Not limited | 0.47 | 44 | 0.05 | 140 | 0.13 | 295 | 0.1 | 514 | 0.26 |
| Fair | Limited-major | 0.48 | 233 | 0.24 | 628 | 0.60 | 3239 | 1.5 | 6651 | 3.39 |
| Fair | Limited-other | 0.52 | 393 | 0.41 | 558 | 0.53 | 1985 | 0.9 | 3741 | 1.91 |
| Good | Unable-major | 0.55 | 199 | 0.21 | 203 | 0.19 | 617 | 0.3 | 569 | 0.29 |
| Very good | Unable-major | 0.62 | 94 | 0.10 | 71 | 0.07 | 138 | 0.1 | 171 | 0.09 |
| Fair | Not limited | 0.63 | 1149 | 1.19 | 3018 | 2.87 | 10379 | 4.8 | 13251 | 6.76 |
| Good | Limited-major | 0.67 | 260 | 0.27 | 528 | 0.50 | 1852 | 0.9 | 3425 | 1.75 |
| Excellent | Unable-major | 0.68 | 100 | 0.10 | 60 | 0.06 | 121 | 0.1 | 114 | 0.06 |
| Good | Limited-other | 0.72 | 854 | 0.89 | 877 | 0.84 | 1975 | 0.9 | 3159 | 1.61 |
| Very good | Limited-major | 0.74 | 85 | 0.09 | 139 | 0.13 | 456 | 0.2 | 676 | 0.34 |
| Very good | Limited-other | 0.79 | 310 | 0.32 | 296 | 0.28 | 531 | 0.3 | 758 | 0.39 |
| Excellent | Limited-major | 0.81 | 51 | 0.05 | 94 | 0.09 | 153 | 0.1 | 228 | 0.12 |
| Good | Not limited | 0.84 | 26253 | 27.29 | 34242 | 32.62 | 87559 | 40.8 | 84416 | 43.08 |
| Excellent | Limited-other | 0.87 | 280 | 0.29 | 245 | 0.23 | 352 | 0.2 | 412 | 0.21 |
| Very good | Not limited | 0.92 | 14833 | 15.42 | 17728 | 16.89 | 36465 | 17.0 | 28540 | 14.56 |
| Excellent | Not limited | 1 | 50799 | 52.80 | 45646 | 43.48 | 66712 | 31.0 | 43943 | 22.43 |
| Total (the living + the dead) |  |  | 96217 | 100 | 104988 | 100 | 214894 | 100 | 195950 | 100 |
| Total (the living only) |  |  | 96202 |  | 104938 |  | 214689 |  | 194935 |  |

Table 29．The HALex by age，1989，cont．

| 001 | $\begin{array}{\|c} \hline \text { S6Z\&を } \\ \text { OLSSE } \\ \hline \end{array}$ | 001 | $\begin{aligned} & \text { Z9ع9G } \\ & 08 \varepsilon \angle 9 \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 61001 | 6198 | 9どゅし | しゃて8 | $\downarrow$ | рә！！ |  |
| 0ع＇01 | 6998 | Oでとし | GLGL | 260 | рәب！u！10N | роо6 Кəəへ |
| H．O | $8 \varepsilon$ | 21－0 | 89 | $\angle 8.0$ | ләц！о－рә！！и！ | ұนәีөэхヨ |
| 10＇ャ | LLOZL | $\downarrow 6.68$ | ＜l6zz | ャ8．0 | рәְ！u！ 10 N | роoэ |
| てて＇0 | 62 | sco | 10Z | 620 |  | poo6＜ıə＾ |
| $66^{\circ}$ | zse | 80 1 | 819 | 2LO | дәцъо－рә！！ш！ 7 | роos |
| 09．8 | 610ع | カャ゙8 | しゃ8t | E90 | рәֶ！u！10N | ！ |
| $9 \mathrm{Cl}^{\circ}$ | $\varepsilon 6$ | 0で0 | とレレ | LS 0 | 7 | ұиәөәงхヨ |
| $90 \cdot 1$ | ZLE | sでし | SLL | zs 0 | าәчю－рәи！ | ！！ |
| ع0＇ 1 | ¢98 | 080 | 09t | LS 0 | ר ר｜ | poo6 イıュ＾ |
| LL＇O | $\varepsilon \angle Z$ | 190 | LSE |  |  | $\forall$ u！рәиш！ |
| OL＇s | LL81 | $9 \varepsilon^{\circ} \mathrm{E}$ | 8261 | Sto | ר0V｜ | poos |
| $0<0$ | くって | でし | $6 \varepsilon 乙$ | レーフ |  | poo6 Кıə＾ |
| ع1＇0 | 9ヵ | ع1＇0 | †L | $88^{\circ}$ | ләчı－рәи！и！ | 100d |
| てガて | 198 | てガし | S18 | $98^{\circ}$ | רา רִ | роoo |
| 28．8 | Lعレع | とでく | くヵレ | 6て＇0 |  | ！e」 |
| $90 \cdot 9$ | ESLZ | Oで\＆ | 9と81 | しで0 | ר哓 | 」 |
| G1．1 | LOt | ＋0．1 | ＜69 | 21．0 |  | 100 d |
| S6． | $\varepsilon 69$ | 60＇ | 979 | $1 \cdot 0$ | רา | 1008 |
| ャで9 | sizz | LL． | 8101 | 0 |  | peəa |
|  | badg | ךиәэлad | bad | 2．03s |  |  |
| plo s．e | K $\downarrow 6$－SL | plo s．ee | K $\downarrow$ L－ 99 |  |  |  |

Table 30. The HALex by age, 1998

| HALex |  |  | 6-14 years old |  | 15-24 years old |  | 25-44 years old |  | 45-64 years old |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Self-perceived Health | Activity Limitation | Score | Freq. | Percent | Freq. | Percent | Freq. | Percent | Freq. | Percent |
| Dead |  | 0 | 10 | 0.01 | 38 | 0.04 | 149 | 0.09 | 887 | 0.46 |
| Poor | Unable-major | 0.25 | 24 | 0.04 | 50 | 0.06 | 177 | 0.10 | 488 | 0.25 |
| Poor | Limited-major | 0.34 | 25 | 0.04 | 95 | 0.11 | 318 | 0.19 | 821 | 0.43 |
| Fair/Unable-major, | r/Limited-other | 0.38 | 136 | 0.20 | 282 | 0.32 | 879 | 0.51 | 1822 | 0.95 |
| Poor | Not limited | 0.47 | 30 | 0.04 | 151 | 0.17 | 244 | 0.14 | 390 | 0.20 |
| Fair | Limited-major | 0.48 | 201 | 0.29 | 523 | 0.59 | 2352 | 1.37 | 4910 | 2.55 |
| Fair | Limited-other | 0.52 | 331 | 0.48 | 512 | 0.58 | 1333 | 0.78 | 3289 | 1.71 |
| Good | Unable-major | 0.55 | 159 | 0.23 | 225 | 0.26 | 481 | 0.28 | 564 | 0.29 |
| Very good | Unable-major | 0.62 | 71 | 0.10 | 89 | 0.10 | 156 | 0.09 | 219 | 0.11 |
| Fair | Not limited | 0.63 | 1008 | 1.48 | 3063 | 3.48 | 8604 | 5.03 | 11786 | 6.11 |
| Good | Limited-major | 0.67 | 179 | 0.26 | 453 | 0.51 | 1303 | 0.76 | 2405 | 1.25 |
| Excellent | Unable-major | 0.68 | 78 | 0.11 | 71 | 0.08 | 93 | 0.05 | 74 | 0.04 |
| Good | Limited-other | 0.72 | 613 | 0.90 | 688 | 0.78 | 1252 | 0.73 | 2685 | 1.39 |
| Very good | Limited-major | 0.74 | 74 | 0.11 | 141 | 0.16 | 367 | 0.21 | 584 | 0.30 |
| Very good | Limited-other | 0.79 | 272 | 0.40 | 263 | 0.30 | 414 | 0.24 | 670 | 0.35 |
| Excellent | Limited-major | 0.81 | 31 | 0.05 | 50 | 0.06 | 83 | 0.05 | 127 | 0.07 |
| Good | Not limited | 0.84 | 18912 | 27.68 | 31770 | 36.10 | 69540 | 40.63 | 87030 | 45.14 |
| Excellent | Limited-other | 0.87 | 163 | 0.24 | 130 | 0.15 | 134 | 0.08 | 237 | 0.12 |
| Very good | Not limited | 0.92 | 11505 | 16.84 | 15750 | 17.89 | 30970 | 18.09 | 30159 | 15.64 |
| Excellent | Not limited | 1 | 34505 | 50.50 | 33670 | 38.26 | 52322 | 30.57 | 43644 | 22.64 |
| Total (the living + the dead)Total (the living only) |  |  | $68327$ | 100 | $88014$ | 100 | 171171 | 100 | 192791 | 100 |
|  |  |  | $68317$ |  | 87976 |  | 171022 |  | 191904 |  |

Table 30．The HALex by age，1998，cont．

| 001 | $\begin{aligned} & \text { LLLOt } \\ & \text { L8OEt } \end{aligned}$ | 001 | $\begin{aligned} & \hline 1 \varepsilon 90 \angle \\ & 1891 \angle \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＆で01 | 90ヶt | $80^{\circ} \mathrm{G}$ | LI801 | $\downarrow$ | рəサ！u！10N | ұนəขəอxヨ |
| カレでで | 8 8८9 | どャレ | sczol | 26.0 | рә！um！10 | рооб Көәへ |
| $60 \cdot 0$ | $6 \varepsilon$ | レレO | 乙8 | $\angle 8.0$ |  | ұนәฆə๐хヨ |
| $88^{\circ} 98$ | 00zs 1 | 8どで | 08ع0ع | 78．0 | рә\＃！u！ 10 N | poos |
| Lで0 | SLI | ャ¢0 | Stz | 620 | ләчı－рәи！и！ | poob Kıə |
| 01．1 | ZLt | 90＇ | z92 | zLO | ләцъо－рәи！и！ | рооэ |
| ¢8．8 | 9698 | $99^{\circ}$ | 267s | ع9\％ | рә！！u！ 10 N | ！e」 |
| Oで0 | 98 | 21．0 | †8 | $\angle 9^{\circ}$ | 7 ר\％｜ | ұนәөә๐хヨ |
| 61．1 | カレS | 8て＇し | SL6 | zs 0 | าәчю－рәэ！ | ！ |
| いい | LLD | $\varepsilon \ll 0$ | とZS | lso | ר ר相 | poob Кıə |
| $89^{\circ}$ | LsZ | Otio | 062 | $\angle \rightarrow 0$ |  | и！ррә！！ |
| Z6．$\varepsilon$ | L891 | 99.2 | 9061 | St．0 |  | poos |
| 28.0 | $\varepsilon ¢ \varepsilon$ | でく | ع0¢ | $1 \rightarrow 0$ | רוִוֹוֹן | poo6 Кıə＾ |
| St＇0 | ¢9 | カレ゚O | 66 | $8 \varepsilon^{\circ}$ | ләч⿺－рәө！ | 100d |
| $00 \varepsilon$ | 16Z1 | 1 ど | $0 \pm 6$ | $9 \varepsilon^{\circ}$ |  | роoэ |
| 09.9 | とャ8て | 85 S | 8268 | 6で0 | רา | 」10」 |
| $\varepsilon<\cdot 9$ | 6682 | $20 \cdot \varepsilon$ | zozz | しで0 |  | 」10」 |
| 96.0 | カレカ | L20 | ZSs | 210 |  | 100 d |
| 76． | $9 ¢ 8$ | $90^{\circ}$ | 292 | 10 | าロ＊u！pəplı！ | $100{ }^{\text {d }}$ |
| 98.9 | 01Ez | 09 1 | OGレレ | 0 |  | реә口 |
| 7иәЈлаd | bad」 | วиәэләd | beds | әı00s |  | पұІеән рәл！әэләd－э｜әS |
|  |  |  |  | хә7VH |  |  |

Figure 24. Histogram of the HALex for male by age, 1989


Figure 25. Histogram of the HALex for female by age, 1989

Table 31. The HALex for male by age, 1986

| HALex |  |  | 6-14 years old |  | 15-24 years old |  | 25-44 years old |  | 45-64 years old |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Self-perceived Health | Activity Limitation | Score | Freq. | Percent | Freq. | Percent | Freq. | Percent | Freq. | Percent |
| Dead |  | 0 | 9 | 0.02 | 36 | 0.07 | 129 | 0.12 | 678 | 0.71 |
| Poor | Unable-major | 0.25 | 24 | 0.05 | 30 | 0.06 | 139 | 0.13 | 444 | 0.47 |
| Poor | Limited-major | 0.34 | 21 | 0.04 | 38 | 0.07 | 198 | 0.19 | 522 | 0.55 |
| Fair/Unable-major, | or/Limited-other | 0.38 | 89 | 0.18 | 114 | 0.22 | 446 | 0.42 | 1134 | 1.19 |
| Poor | Not limited | 0.47 | 17 | 0.03 | 73 | 0.14 | 172 | 0.16 | 250 | 0.26 |
| Fair | Limited-major | 0.48 | 116 | 0.24 | 283 | 0.54 | 1356 | 1.28 | 2806 | 2.94 |
| Fair | Limited-other | 0.52 | 215 | 0.44 | 248 | 0.48 | 915 | 0.86 | 1667 | 1.75 |
| Good | Unable-major | 0.55 | 115 | 0.23 | 86 | 0.16 | 247 | 0.23 | 272 | 0.28 |
| Very good | Unable-major | 0.62 | 53 | 0.11 | 34 | 0.07 | 59 | 0.06 | 72 | 0.08 |
| Fair | Not limited | 0.63 | 594 | 1.21 | 1250 | 2.40 | 4849 | 4.58 | 5638 | 5.91 |
| Good | Limited-major | 0.67 | 138 | 0.28 | 238 | 0.46 | 800 | 0.76 | 1516 | 1.59 |
| Excellent | Unable-major | 0.68 | 53 | 0.11 | 24 | 0.05 | 58 | 0.05 | 63 | 0.07 |
| Good | Limited-other | 0.72 | 458 | 0.93 | 430 | 0.82 | 936 | 0.88 | 1559 | 1.63 |
| Very good | Limited-major | 0.74 | 49 | 0.10 | 82 | 0.16 | 197 | 0.19 | 311 | 0.33 |
| Very good | Limited-other | 0.79 | 176 | 0.36 | 155 | 0.30 | 280 | 0.26 | 375 | 0.39 |
| Excellent | Limited-major | 0.81 | 29 | 0.06 | 51 | 0.10 | 86 | 0.08 | 125 | 0.13 |
| Good | Not limited | 0.84 | 13257 | 26.98 | 15860 | 30.39 | 41445 | 39.12 | 39145 | 41.01 |
| Excellent | Limited-other | 0.87 | 150 | 0.31 | 130 | 0.25 | 196 | 0.19 | 226 | 0.24 |
| Very good | Not limited | 0.92 | 7589 | 15.45 | 8705 | 16.68 | 18092 | 17.08 | 14319 | 15.00 |
| Excellent | Not limited | 1 | 25982 | 52.88 | 24316 | 46.60 | 35343 | 33.36 | 24330 | 25.49 |
| Total (the living + the dead) |  |  | 49134 | 100 | 52183 | 100 | 105943 | 100 | 95452 | 100 |
| Total (the living only) |  |  | 49125 |  | 52147 |  | 105814 |  | 94774 |  |

Table 32. The HALex for male by age, 1986, cont.

| HALex |  |  | 65-74 years old |  | 75-94 years old |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Self-perceived Health | Activity Limitation | Score | Freq. | Percent | Freq. | Percent |
| Dead |  | 0 | 597 | 2.48 | 1083 | 7.68 |
| Poor | Limited in ADL | 0.1 | 296 | 1.23 | 301 | 2.14 |
| Poor | Limited in IADL | 0.17 | 282 | 1.17 | 170 | 1.21 |
| Fair | Limited in ADL | 0.21 | 705 | 2.93 | 764 | 5.42 |
| Fair | Limited in IADL | 0.29 | 1557 | 6.46 | 1112 | 7.89 |
| Good | Limited in ADL | 0.36 | 318 | 1.32 | 316 | 2.24 |
| Poor | Limited-other | 0.38 | 42 | 0.17 | 21 | 0.15 |
| Very good | Limited in ADL | 0.41 | 108 | 0.45 | 97 | 0.69 |
| Good | Limited in IADL | 0.45 | 722 | 3.00 | 647 | 4.59 |
| Excellent/Limited in | Poor/Not limited | 0.47 | 163 | 0.68 | 120 | 0.85 |
| Very good | Limited in IADL | 0.51 | 178 | 0.74 | 152 | 1.08 |
| Fair | Limited-other | 0.52 | 327 | 1.36 | 159 | 1.13 |
| Excellent | Limited in IADL | 0.57 | 56 | 0.23 | 39 | 0.28 |
| Fair | Not limited | 0.63 | 1774 | 7.37 | 1137 | 8.07 |
| Good | Limited-other | 0.72 | 296 | 1.23 | 129 | 0.92 |
| Very good | Limited-other | 0.79 | 94 | 0.39 | 40 | 0.28 |
| Good | Not limited | 0.84 | 9072 | 37.67 | 4546 | 32.25 |
| Excellent | Limited-other | 0.87 | 36 | 0.15 | 24 | 0.17 |
| Very good | Not limited | 0.92 | 3258 | 13.53 | 1515 | 10.75 |
| Excellent | Not limited | 1 | 4204 | 17.45 | 1724 | 12.23 |
| Total (the living + the dead) |  |  | 24085 | 100 | 14096 | 100 |
| Total (the living only) |  |  | 23488 |  | 13013 |  |

Table 32. The HALex for female by age, 1989

| HALex |  |  | 6-14 years old |  | 15-24 years old |  | 25-44 years old |  | 45-64 years old |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Self-perceived Health | Activity Limitation | Score | Freq. | Percent | Freq. | Percent | Freq. | Percent | Freq. | Percent |
| Dead |  | 0 | 6 | 0.010 | 14 | 0.03 | 76 | 0.07 | 337 | 0.34 |
| Poor | Unable-major | 0.25 | 18 | 0.040 | 35 | 0.07 | 152 | 0.14 | 449 | 0.45 |
| Poor | Limited-major | 0.34 | 17 | 0.040 | 41 | 0.08 | 189 | 0.17 | 536 | 0.53 |
| Fair/Unable-major, | r/Limited-other | 0.38 | 96 | 0.200 | 207 | 0.39 | 736 | 0.68 | 1282 | 1.28 |
| Poor | Not limited | 0.47 | 27 | 0.060 | 67 | 0.13 | 123 | 0.11 | 264 | 0.26 |
| Fair | Limited-major | 0.48 | 117 | 0.250 | 345 | 0.65 | 1883 | 1.73 | 3845 | 3.83 |
| Fair | Limited-other | 0.52 | 178 | 0.380 | 310 | 0.59 | 1070 | 0.98 | 2074 | 2.06 |
| Good | Unable-major | 0.55 | 84 | 0.180 | 117 | 0.22 | 370 | 0.34 | 297 | 0.30 |
| Very good | Unable-major | 0.62 | 41 | 0.090 | 37 | 0.07 | 79 | 0.07 | 99 | 0.10 |
| Fair | Not limited | 0.63 | 555 | 1.180 | 1768 | 3.35 | 5530 | 5.08 | 7613 | 7.58 |
| Good | Limited-major | 0.67 | 122 | 0.260 | 290 | 0.55 | 1052 | 0.97 | 1909 | 1.90 |
| Excellent | Unable-major | 0.68 | 47 | 0.100 | 36 | 0.07 | 63 | 0.06 | 51 | 0.05 |
| Good | Limited-other | 0.72 | 396 | 0.840 | 447 | 0.85 | 1039 | 0.95 | 1600 | 1.59 |
| Very good | Limited-major | 0.74 | 36 | 0.080 | 57 | 0.11 | 259 | 0.24 | 365 | 0.36 |
| Very good | Limited-other | 0.79 | 134 | 0.280 | 141 | 0.27 | 251 | 0.23 | 383 | 0.38 |
| Excellent | Limited-major | 0.81 | 22 | 0.050 | 43 | 0.08 | 67 | 0.06 | 103 | 0.10 |
| Good | Not limited | 0.84 | 12996 | 27.600 | 18382 | 34.81 | 46114 | 42.33 | 45271 | 45.05 |
| Excellent | Limited-other | 0.87 | 130 | 0.280 | 115 | 0.22 | 156 | 0.14 | 186 | 0.19 |
| Very good | Not limited | 0.92 | 7244 | 15.390 | 9023 | 17.09 | 18373 | 16.86 | 14221 | 14.15 |
| Excellent | Not limited | 1 | 24817 | 52.710 | 21330 | 40.39 | 31369 | 28.79 | 19613 | 19.52 |
| Total (the living + the dead) |  |  | 47083 | 100 | 52805 | 100 | 108951 | 100 | 100498 | 100 |
|  |  |  | 47077 |  | 52791 |  | 108875 |  | 100161 |  |

Table 32．The HALex for female by age，1989，cont．

| 001 | $\begin{aligned} & \text { Z8ZOZ } \\ & \text { tレレレZ } \end{aligned}$ | 001 | $\begin{aligned} & \hline \begin{array}{l} \dagger \angle 8 Z \varepsilon \\ \text { G6Z६६ } \end{array} \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 98．8 | S681 | でってl | LEOt | $\downarrow$ | рә！u！10N |  |
| 10.01 | カカレて | L6で | LLEt | 260 | рә！um 10 N | рооб＜ıə＾ |
| LOO | カレ | 010 | 乙\＆ | L80 | ләчъо－рәици！ | ұиәөәэхヨ |
| L＇¢¢ | LESL | 8G＊ | St8EL | ャ80 | рә！！u！ION | роos |
| 810 | $6 \varepsilon$ | てع० | LOL | 620 | ләчוо－рәии！ | poo6＜ıə＾ |
| $70 \cdot 1$ | とて乙 | L60 | て乙と | 2LO | ләчъо－рәи！и！ | роos |
| 62．8 | 2881 | Lで6 | L908 | E90 |  | 」10］ |
| sz＇0 | ¢¢ | L10 | LG | LS＇0 | 7 ר才｜ | ұนәөә๐хヨ |
| $66^{\circ}$ | として | L1．1 | $88 \varepsilon$ | 2s．0 | ләчъо－рәи！и！ | 」 |
| $66^{\circ} 0$ | として | 98．0 | 282 | LSO |  | poob イəコ |
| 120 | \＆ऽเ | 99．0 | 881 | くナー | рәı！ | $\forall$ и！рәә！！！！ |
| カガS | カ91レ | z9．$\varepsilon$ | 9021 | $9 \rightarrow 0$ | ר ר¢ | poos |
| $00^{\circ}$ | OSL | $68^{\circ}$ | เعเ | $1 \downarrow 0$ | רוֹ | poo6 Кıə＾ |
| てLO | sz | 01\％ | 乙\＆ | $88^{\circ}$ | ләчъо－рәи！ | $100{ }^{\text {d }}$ |
| ss ${ }^{\text {c }}$ | StS | $66^{\circ}$ | L6t | $98^{\circ}$ | רา רוֹ | роos |
| \＆が6 | 6102 | 82\％ | 069z | 6で0 | רםช｜ | 」 |
| 6ヶ．9 | 68\＆1 | 0ヶ¢ | เعıレ | しで0 |  | 」10］ |
| い＇レ | Lع乙 | 96.0 | G1E | 210 | ר70才） | 100 d |
| ع8． 1 | Z68 | 66.0 | 0¢ع | $1 \cdot 0$ | רוֹ | 100 d |
| 6 C＇G | てعレレ | 9で1 | しても | 0 |  | реә］ |
|  | ＇bad | ұиәэләd | bad」 | әл03S |  |  |
| plo s．see | 人 $\dagger 6$－s |  |  | хә7＊ |  |  |

Figure 26. Histogram of the HALex for male by age, 1998


Figure 27. Histogram of the HALex for female by age, 1998

Freq.

Table 33. The HALex for male by age, 1998

| HALex |  |  | 6-14 years old |  | 15-24 years old |  | 25-44 years old |  | 45-64 years old |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Self-perceived Health | Activity Limitation | Score | Freq. | Percent | Freq. | Percent | Freq. | Percent | Freq. | Percent |
| Dead |  | 0 | 6 | 0.02 | 27 | 0.06 | 97 | 0.12 | 600 | 0.64 |
| Poor | Unable-major | 0.25 | 14 | 0.04 | 22 | 0.05 | 79 | 0.09 | 230 | 0.24 |
| Poor | Limited-major | 0.34 | 12 | 0.03 | 50 | 0.11 | 163 | 0.19 | 401 | 0.42 |
| Fair/Unable-major, | r/Limited-other | 0.38 | 75 | 0.21 | 122 | 0.27 | 333 | 0.40 | 815 | 0.86 |
| Poor | Not limited | 0.47 | 14 | 0.04 | 81 | 0.18 | 153 | 0.18 | 182 | 0.19 |
| Fair | Limited-major | 0.48 | 114 | 0.33 | 214 | 0.48 | 979 | 1.17 | 2101 | 2.23 |
| Fair | Limited-other | 0.52 | 185 | 0.53 | 245 | 0.55 | 621 | 0.74 | 1507 | 1.60 |
| Good | Unable-major | 0.55 | 85 | 0.24 | 96 | 0.22 | 198 | 0.24 | 271 | 0.29 |
| Very good | Unable-major | 0.62 | 36 | 0.10 | 42 | 0.09 | 52 | 0.06 | 102 | 0.11 |
| Fair | Not limited | 0.63 | 492 | 1.41 | 1277 | 2.87 | 3867 | 4.61 | 5087 | 5.39 |
| Good | Limited-major | 0.67 | 93 | 0.27 | 197 | 0.44 | 543 | 0.65 | 1136 | 1.20 |
| Excellent | Unable-major | 0.68 | 47 | 0.13 | 29 | 0.07 | 40 | 0.05 | 45 | 0.05 |
| Good | Limited-other | 0.72 | 332 | 0.95 | 364 | 0.82 | 595 | 0.71 | 1319 | 1.40 |
| Very good | Limited-major | 0.74 | 44 | 0.13 | 59 | 0.13 | 159 | 0.19 | 262 | 0.28 |
| Very good | Limited-other | 0.79 | 168 | 0.48 | 149 | 0.34 | 201 | 0.24 | 358 | 0.38 |
| Excellent | Limited-major | 0.81 | 18 | 0.05 | 31 | 0.07 | 50 | 0.06 | 71 | 0.08 |
| Good | Not limited | 0.84 | 9500 | 27.16 | 15432 | 34.72 | 33434 | 39.84 | 41278 | 43.74 |
| Excellent | Limited-other | 0.87 | 97 | 0.28 | 74 | 0.17 | 76 | 0.09 | 136 | 0.14 |
| Very good | Not limited | 0.92 | 5942 | 16.99 | 7923 | 17.83 | 15007 | 17.88 | 15204 | 16.11 |
| Excellent | Not limited | 1 | 17706 | 50.62 | 18012 | 40.53 | 27274 | 32.50 | 23258 | 24.65 |
| Total (the living + the dead) |  |  | 34980 | 100 | 44446 | 100 | 83921 | 100 | 94363 | 100 |
| Total (the living only) |  |  | 34974 |  | 44419 |  | 83824 |  | 93763 |  |

Table 33. The HALex for male by age, 1998, cont.

| HALex |  |  | 65-74 years old |  | 75-94 years old |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Self-perceived Health | Activity Limitation | Score | Freq. | Percent | Freq. | Percent |
| Dead |  | 0 | 755 | 2.3 | 1124 | 7.03 |
| Poor | Limited in ADL | 0.1 | 344 | 1.05 | 284 | 1.78 |
| Poor | Limited in IADL | 0.17 | 269 | 0.82 | 164 | 1.03 |
| Fair | Limited in ADL | 0.21 | 899 | 2.74 | 907 | 5.67 |
| Fair | Limited in IADL | 0.29 | 1646 | 5.01 | 1053 | 6.58 |
| Good | Limited in ADL | 0.36 | 433 | 1.32 | 427 | 2.67 |
| Poor | Limited-other | 0.38 | 59 | 0.18 | 32 | 0.2 |
| Very good | Limited in ADL | 0.41 | 120 | 0.37 | 133 | 0.83 |
| Good | Limited in IADL | 0.45 | 811 | 2.47 | 569 | 3.56 |
| Excellent/Limited in | Poor/Not limited | 0.47 | 120 | 0.37 | 98 | 0.61 |
| Very good | Limited in IADL | 0.51 | 236 | 0.72 | 181 | 1.13 |
| Fair | Limited-other | 0.52 | 451 | 1.37 | 209 | 1.31 |
| Excellent | Limited in IADL | 0.57 | 45 | 0.14 | 34 | 0.21 |
| Fair | Not limited | 0.63 | 2291 | 6.97 | 1202 | 7.52 |
| Good | Limited-other | 0.72 | 364 | 1.11 | 188 | 1.18 |
| Very good | Limited-other | 0.79 | 115 | 0.35 | 62 | 0.39 |
| Good | Not limited | 0.84 | 13314 | 40.53 | 5410 | 33.83 |
| Excellent | Limited-other | 0.87 | 53 | 0.16 | 17 | 0.11 |
| Very good | Not limited | 0.92 | 4775 | 14.54 | 1978 | 12.37 |
| Excellent | Not limited | 1 | 5750 | 17.5 | 1922 | 12.02 |
| Total (the living + the dead) |  |  | 32850 | 100 | 15994 | 100 |
| Total (the living only) |  |  | 32095 |  | 14870 |  |

Table 34. The HALex for female by age, 1998

| HALex |  |  | 6-14 years old |  | 15-24 years old |  | 25-44 years old |  | 45-64 years old |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Self-perceived Health | Activity Limitation | Score | Freq. | Percent | Freq. | Percent | Freq. | Percent | Freq. | Percent |
| Dead |  | 0 | 4 | 0.01 | 11 | 0.03 | 52 | 0.06 | 287 | 0.29 |
| Poor | Unable-major | 0.25 | 10 | 0.03 | 28 | 0.06 | 98 | 0.11 | 258 | 0.26 |
| Poor | Limited-major | 0.34 | 13 | 0.04 | 45 | 0.10 | 155 | 0.18 | 420 | 0.43 |
| Fair/Unable-major, | r/Limited-other | 0.38 | 61 | 0.18 | 160 | 0.37 | 546 | 0.63 | 1007 | 1.02 |
| Poor | Not limited | 0.47 | 16 | 0.05 | 70 | 0.16 | 91 | 0.10 | 208 | 0.21 |
| Fair | Limited-major | 0.48 | 87 | 0.26 | 309 | 0.71 | 1373 | 1.57 | 2809 | 2.85 |
| Fair | Limited-other | 0.52 | 146 | 0.44 | 267 | 0.61 | 712 | 0.82 | 1782 | 1.81 |
| Good | Unable-major | 0.55 | 74 | 0.22 | 129 | 0.30 | 283 | 0.32 | 293 | 0.30 |
| Very good | Unable-major | 0.62 | 35 | 0.10 | 47 | 0.11 | 104 | 0.12 | 117 | 0.12 |
| Fair | Not limited | 0.63 | 516 | 1.55 | 1786 | 4.10 | 4737 | 5.43 | 6699 | 6.81 |
| Good | Limited-major | 0.67 | 86 | 0.26 | 256 | 0.59 | 760 | 0.87 | 1269 | 1.29 |
| Excellent | Unable-major | 0.68 | 31 | 0.09 | 42 | 0.10 | 53 | 0.06 | 29 | 0.03 |
| Good | Limited-other | 0.72 | 281 | 0.84 | 324 | 0.74 | 657 | 0.75 | 1366 | 1.39 |
| Very good | Limited-major | 0.74 | 30 | 0.09 | 82 | 0.19 | 208 | 0.24 | 322 | 0.33 |
| Very good | Limited-other | 0.79 | 104 | 0.31 | 114 | 0.26 | 213 | 0.24 | 312 | 0.32 |
| Excellent | Limited-major | 0.81 | 13 | 0.04 | 19 | 0.04 | 33 | 0.04 | 56 | 0.06 |
| Good | Not limited | 0.84 | 9412 | 28.22 | 16338 | 37.50 | 36106 | 41.38 | 45752 | 46.48 |
| Excellent | Limited-other | 0.87 | 66 | 0.20 | 56 | 0.13 | 58 | 0.07 | 101 | 0.10 |
| Very good | Not limited | 0.92 | 5563 | 16.68 | 7827 | 17.97 | 15963 | 18.30 | 14955 | 15.19 |
| Excellent | Not limited | 1 | 16799 | 50.38 | 15658 | 35.94 | 25048 | 28.71 | 20386 | 20.71 |
| Total (the living + the dead) Total (the living only) |  |  | $\begin{gathered} 33347 \\ 33343 \end{gathered}$ | 100 | $\begin{aligned} & \hline 43568 \\ & 43557 \end{aligned}$ | 100 | $\begin{gathered} \hline 87250 \\ 87198 \end{gathered}$ | 100 | $\begin{array}{c\|} \hline 98428 \\ 98141 \\ \hline \end{array}$ | 100 |

Table 34. The HALex for female by age, 1998, cont.

| HALex |  |  | 65-74 years old |  | 75-94 years old |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Self-perceived Health | Activity Limitation | Score | Freq. | Percent | Freq. | Percent |
| Dead |  | 0 | 395 | 1.02 | 1186 | 4.38 |
| Poor | Limited in ADL | 0.1 | 418 | 1.08 | 552 | 2.04 |
| Poor | Limited in IADL | 0.17 | 283 | 0.73 | 250 | 0.92 |
| Fair | Limited in ADL | 0.21 | 1303 | 3.36 | 1992 | 7.35 |
| Fair | Limited in IADL | 0.29 | 2282 | 5.88 | 1790 | 6.61 |
| Good | Limited in ADL | 0.36 | 507 | 1.31 | 864 | 3.19 |
| Poor | Limited-other | 0.38 | 40 | 0.10 | 32 | 0.12 |
| Very good | Limited in ADL | 0.41 | 183 | 0.47 | 220 | 0.81 |
| Good | Limited in IADL | 0.45 | 1095 | 2.82 | 1118 | 4.13 |
| Excellent/Limited in | Poor/Not limited | 0.47 | 170 | 0.44 | 153 | 0.56 |
| Very good | Limited in IADL | 0.51 | 287 | 0.74 | 296 | 1.09 |
| Fair | Limited-other | 0.52 | 464 | 1.19 | 305 | 1.13 |
| Excellent | Limited in IADL | 0.57 | 39 | 0.10 | 52 | 0.19 |
| Fair | Not limited | 0.63 | 3201 | 8.24 | 2394 | 8.84 |
| Good | Limited-other | 0.72 | 398 | 1.02 | 284 | 1.05 |
| Very good | Limited-other | 0.79 | 130 | 0.33 | 53 | 0.20 |
| Good | Not limited | 0.84 | 17066 | 43.95 | 9790 | 36.14 |
| Excellent | Limited-other | 0.87 | 29 | 0.07 | 22 | 0.08 |
| Very good | Not limited | 0.92 | 5480 | 14.11 | 3250 | 12.00 |
| Excellent | Not limited | 1 | 5061 | 13.03 | 2484 | 9.17 |
| Total (the living + the dead)Total (the living only) |  |  | 38831 | 100 | 27087 | 100 |
|  |  |  | 38436 |  | 25901 |  |

Figure 28. Lorenz Curves for both sexes, male, female in 1989


Figure 29. Lorenz Curves for both sexes, male, female in 1998


Figure 30. Lorenz Curves for both sexes by age group in 1989


Figure 31. Lorenz Curves for both sexes by age group in 1998


## DISCUSSION

This study examined the average health-adjusted quality of life measured by the HALex, its distribution by income, and its distribution per se among Japanese people in 1989 and 1998. This cross-sectional analysis showed that between 1989 and 1998 overall in Japan the HALex on average slightly reduced ( 0.005 reduction in the HALex), its inequality by income slightly reduced ( 0.002 reduction in the difference between the top $20 \%$ and bottom $20 \%$ income share groups), and its inequality measured by the Gini Coefficient slightly increased ( 0.002 increase in the Gini Coefficient). These overall trends in the average HALex, its distribution by income, and its distribution per se were the same both for men and women.

Regarding differences by sex, the average HALex among women was almost always lower than that of men, except in earlier ages younger than ten. This appeared primarily to result from the lower perception of health among women than men. The HALex was more unequally distributed among women than men. A small inverse gradient in the HALex by income was observed throughout the five income share groups among men, but only at poorer income groups among women.

Age group analysis revealed interesting pictures that were invisible in the analysis of all ages combined. Between 1989 and 1998, the average HALex stayed the same at ages between 6 and 8 years old, and 25 and 48 years old, decreased at ages between 9 and 23 years old, and increased among those who were 49 years old or older. No inverse gradient in the HALex by income was observed among children (6-14 years old), adolescents (15-24 years old), and the oldest old (75-94 years old). In fact, a clear gradient was present only among the middle age (45-64 years old) in both sexes and survey years. Inequality in the HALex increased at older ages in both 1989 and 1998, and this was not only because of the increasing number of deaths among the elderly.

A difficulty in interpreting these results comes from the 0-1 unit that the HALex uses. We all know how long one year of life is, but it is not obvious how bad the 0.002 HALex reduction may be. For example, perhaps, the inverse gradient we observed in the HALex by income may be too clinically insignificant to be concerned as the "socioeconomic" gradient. Even among the middle age group (45-64 years old) that most clearly revealed the improvement in the HALex at every increment of income share groups, the gap of the HALex between the top $20 \%$ and the bottom $20 \%$ income groups was $0.031-0.038$. In the estimation of the health-adjusted quality of life scores between zero and one for various health conditions and diseases, Honda and Ohkusa report that suffering from dermatitis reduces the quality of life score about 0.033 , anemia, about 0.034 (Honda and Ohkusa 2001). Accordingly, roughly speaking, this result suggests that the degree of health inequality we are talking about here is equivalent to the world in which everyone with the bottom $20 \%$ of total income suffers
from nothing but anemia, while everyone who holds the top $20 \%$ of income share is in the "full" health. Should this be a concern of health policy?

It is well-known that we often reach different conclusions of varying degrees of health inequality, even when examining the same population, if we use different health variables. Shibuya, Hashimoto, and Yano, for example, used the sample of 80,899 persons older than 15 years old in the 1995 CSLC and discovered that, comparing people whose household income was equal to or more than 500 million yen, people whose household income was less than 1.5 million yen were 1.93 times more likely to perceive their own health as the worst two categories (not good or not very good) than the other three upper categories (good, fairly good, or usual; 95\% CI: 1.72-2.15) (2002). Their analysis and this analysis used very similar samples and health variables, yet impressions these two results give are rather different. Which analysis is more useful depends on what we want to know about health inequality. While such specification of a question is important, these two analyses may complement rather than compete with each other; various analyses with different focuses should help us identify what exactly is the aspect of health inequality we wish to assess.

Similar to the difficulty associated with the $0-1$ unit of the HALex, the use of the Gini Coefficient for health distributions is premature. The Gini Coefficient was developed and has been extensively used for income distribution. The Gini Coefficients for income distributions in industrialized countries are around 0.3 (Luxembourg Income Study 2001). Our analysis suggests that the Gini Coefficient for the health distribution in Japan is around 0.1. This means that, considering both income and health as a multi-purpose resource useful for any life plans, health is much more equally distributed than income. Whether the Gini Coefficient, 0.1 , is an acceptable degree of health inequality, we must wait for further research using different populations and the development of the conceptual framework within which these results can be meaningfully interpreted.

In addition to the difficulties above, this analysis has at least a couple of obvious limitations, including: the validity of the application of the HALex to the Japanese population may be questionable in a precise sense. Although the inclusion of the dead in cross-sectional data may be an interesting idea, we lack the conceptual framework for how to deal with deaths among the elderly in health inequality analysis. And, we only examined health inequality by income and health inequality per se with gaps between the top $20 \%$, middle $20 \%$, and bottom $20 \%$ income groups and the Gini Coefficient. It is widely known that different health inequality measures can lead to different conclusions. Although we did not expand our analysis to comparison of different health inequality measures, we hope that the extensive tables and graphs listed will be useful for anyone who might wish to apply different health inequality measures using these results in the future.

Despite a number of the shortcomings, we believe that this analysis provides useful policy implications. Most obviously, this study indicates that the success in the improvement in the length of life in Japan did not always coincide with the improvement in the health-adjusted quality of life. Further investigation is needed on the reduction in the health-adjusted quality of life at ages 9-23 years old between 1989 and 1998 and the disparity in the health-adjusted quality of life by sex. We also hope that this research provides a basis for health inequality analysis in Japan. With it, we can now begin to ask an interesting question related to health inequality, for example, we all knew that our health would on average deteriorate as we got older, but why is the health distributed more unequally as we get older?

It is a widely shared view among the academics and policy-makers in the population health field that the future of the analysis of population health lies in: (a) the assessment both of the length of life and health-adjusted quality of life, and (b) the parallel examination of the average health and its distribution within a population. We strongly encourage that a kind of analysis shown in this report will be included in the future assessment of the health of Japanese people led by the government. That would be the first promising step for Japan to be a leader not only in terms of the overall health attainment but also of its evaluation.

## ACKNOWLEDGEMENT

We would like to acknowledge helpful suggestions and comments from Profs. John Mullahy, David Kindig, Patrick Remington, Dennis Fryback, and Barbara Wolfe in the Department of Population Health Sciences in the University of Wisconsin-Madison and Prof. Alberto Palloni in the Center for Demography and Ecology in the University of Wisconsin-Madison. We claim responsibility for all remaining errors. The access and use of the Comprehensive Survey of Living Conditions of the People on Health and Welfare was approved under the Notification No. 617 of the Ministry of Public Management, Home Affairs, Posts and Telecommunications (2 October, 2001).

## References

Erickson, P. 1998. Evaluation of a Population-Based Measure of Quality of Life - The Health and Activity Limitation Index (HALex). Quality of Life Research 7 (2):101-114.

Erickson, Pennifer, Ronald Wilson, and Ildy Shannon. 1995. Years of Health Life. In Healthy People 2000, Statistical Notes: Centers for Disease Control and Prevention, National Center for Health Statistics,

Gold, M.R., P. Franks, K.I. McCoy, and D.G. Fryback. 1998. Toward Consistency in Cost-utility Analyses:

Using National Measures to Create Condition-specific Values. Medical Care 36 (6):778-92.
Hasegawa, Toshihiko. 2001. Japan: Historical and Current Dimensions of Health and Health Equity. In Challenging Inequalities in Health: From Ethics to Action, edited by T. Evans, M. Whitehead, F. Diderichsen, A. Bhuiya and M. Wirth. New York: Oxford University Press.

Health and Welfare Statistics Association. 1999. Thinking about Health Expectancy. Kosei no shihyo (Journal of Health and Welfare Statistics) in Japanese 46 (4).

Honda, Chika, and Yasushi Ohkusa. 2001. International Comparison of Subjective Health Evaluation - USA, UK and Japan. Discussion Paper of the Institute of Social and Economic Research, Osaka University 546.

Illsley, Raymond, and Julian Le Grand. 1987. Measurement of Inequality in Health. In Health in Economics, edited by A. Williams. London: Macmillan.

Kondo, Katsunori. 2000. Why Are There Many Elderly Who Need Care From Others in the Low-income Group? (in Japanese). Shakai hoken jun ho 2073:6-11.

Le Grand, J. 1987. Inequality in Health: Some International Comparison. European Economic Review 31:182-91.

Luxembourg Income Study. Luxembourg Income Study Key Figures: Income Inequality Measures. http://lisweb.ceps.lu/keyfigures/ineqtable.htm (last modified on November 26, 2001, last accessed January 24, 2002).

Marmot, M G, and George Davey Smith. 1989. Why Are the Japanese Living Longer? BMJ 299 (23-30, December):1547-51.

McDowell, Ian, and Claire Newll. 1996. Measuring Health: A Guide to Rating Scales and Questionnaires. 2nd ed. New York: Oxford University Press.

Murray, Christopher J. L., Emmanuela E. Gakidou, and Julio Frenk. 1999. Health Inequalities and Social Group Differences: What Should We Measure? Bulletin of the World Health Organization 77 (7):537-543.

Murray, Christopher J. L., and Alan D. Lopez, eds. 1996. The Global Burden of Disease. Vol. 1, Global Burden of Disease and Injury Series: Harvard University Press on behalf of the World Health Organization and the World Bank.

Russell, LB. , MR. Gold, JE. Siegel, N. Daniels, and MC. Weinstein. 1996. The Role of Cost-effectiveness Analysis in Health and Medicine. Panel on Cost-Effectiveness in Health and Medicine. JAMA 276 (14):1172-7.

Shibuya, Kenji, Hideki Hashimoto, and Eiji Yano. 2002. Individual Income, Income Distribution, and Self Rated Health in Japan: Cross Sectional Analysis of Nationally Representative Sample. British Medical Journal 324 (5 January):16-19.

Statistics and Information Department, Minister's Secretariat, Ministry of Health and Welfare. 1989a. 1989 Comprehensive Survey of Living Conditions of the People on Health and Welfare. 4 vols: Health and Welfare Statistics Association.

Statistics and Information Department, Minister's Secretariat, Ministry of Health and Welfare. 1989b. Abridged

Life Table for Japan 1989.
Statistics and Information Department, Minister's Secretariat, Ministry of Health and Welfare. 1998a. 1998 Comprehensive Survey of Living Conditions of the People on Health and Welfare. 4 vols: Health and Welfare Statistics Association.

Statistics and Information Department, Minister's Secretariat, Ministry of Health and Welfare. 1998b. Abridged Life Table for Japan 1998.

Statistics and Information Department, Minister's Secretariat, Ministry of Health and Welfare. 1999. Abridged Life Table for Japan 1999.

Statistics Canada. The Canadian Community Health Survey (CCHS).
http://www.statcan.ca/english/concepts/health/index.htm (last modified on November 15, 2001, last accessed January 24, 2002).
Takano, Takehito. 1998. Accumulation of Ill Health in Shita-machi Area of Tokyo (in Japanese). Minzoku Eisei 64 (1):5-25.

The Panel on Poverty and Family Assistance: Concepts, Information Needs, and Measurement Methods in the US National Research Council. 1995. Measuring Poverty: A New Approach. Edited by C. F. Citro and R. T. Michael.
U.S. Department of Health and Human Services. 1991. Healthy People 2000: National Health Promotion and Disease Prevention Objectives. Washington, DC: U.S: Government Printing Office.

World Health Organization. 2000. The World Health Report 2000: Health Systems: Improving Performance. Geneva: World Health Organization.


[^0]:    * Department of Population Health Sciences, University of Wisconsin-Madison, USA
    ** Institute of Social and Economic Research, Osaka University, Japan

