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We consider situations where a society tries to efficiently allocate several homogeneous
and indivisible goods among agents. Each agent receives at most one unit of the good.
For example, suppose that a government wishes to allocate a fixed number of licenses to
operate in its country to private companies with highest abilities to utilize the licenses.
Usually companies with higher abilities can make more profits by licenses and are willing
to pay higher prices for them. Thus, auction mechanisms are often employed to extract
the information on companies’ abilities and to allocate licenses efficiently. However, if
prices are too high, they may damage companies’ abilities to operate. Generally high
prices may change the benefits agents obtain from the goods unless agents’ preferences are
quasi-linear, and we call it “income effect”. In this paper, we establish that on domains
including nonquasi-linear preferences, that is, preferences exhibiting income effect, an
allocation rule which satisfies Pareto-efficiency, strategy-proofness, individual rationality,
and nonnegative payment uniquely exists and it is the Vickrey allocation rule.

1This article is dedicated to the memory of the late Jennifer Mao, who motivated Serizawa to analyze
the problem addressed in this article. We thank the participants of the Seventh International Meeting
of Social Choice and Welfare (2004, July) and Rokko Forum of Kobe University (2005 December) for
their useful comments on the first version, and we also thank Professor Masaki Aoyagi for his helpful
comments.



1. Introduction

We consider situations where a society tries to efficiently allocate m homogeneous and
indivisible goods among n agents. Each agent receives at most one unit of the good.
For example, suppose that a government wishes to allocate a fixed number of licenses to
operate in its country to private companies with highest abilities to utilize the licenses2.
Usually companies with higher abilities can make more profits by licenses and are willing
to pay higher prices for them. Thus, auction mechanisms are often employed to extract
the information on companies’ abilities and to allocate licenses efficiently. However, if
prices are too high, they may damage companies’ abilities to operate. Generally high
prices may change the benefits agents obtain from the goods unless agents’ preferences
are quasi-linear3, and we call it “income effect”. The society must take this effect into
account when it tries to efficiently allocate the goods. In this paper, we study rules
allocating goods efficiently even if income effect exists.
An allocation rule is generally formulated as a function from the set of possible agents’

preference profiles to the feasible set, and the set of possible agents’ preference profiles is
called “domain”. Given an allocation rule, since agents’ private preferences are not known
to the others, there may be incentives for agents to misrepresent their preferences in order
to manipulate the final outcomes to their favor. As a result, the actual outcomes may
not constitute an efficient allocation relative to agents’ true preferences. Thus allocation
rules need to be immune to such strategic misrepresentation in order to surely attain
an efficient allocation for agents’ true preferences. If an allocation rule is immune to
strategic behavior by any agent, that is, if it is a dominant strategy for each agent to
announce his true preferences, then the allocation rule is said to be strategy-proof. To
induce agents’ voluntary participation, it is desirable for allocation rules to satisfy the
property of individual rationality; it never assigns an allocation which makes some agent
worse off than he would be if he receives no good and pays nothing. Nonnegative payment
is also a natural requirement; it says that agents’ payment should not be negative. Thus
it is important to know what allocation rules satisfy Pareto-efficiency, strategy-proofness,
individual rationality, and nonnegative payment.
The Vickrey allocation rule is the rule originally defined on the quasi-linear domain4

such that agents with m highest valuations5 of the goods receive the goods and pay the
(m + 1)-th valuation, and other agents pay nothing. The Vickrey allocation rule can be
generalized to domains including nonquasi-linear preferences, that is, preferences exhibit-
ing income effect. In this paper, we establish that on these domains, an allocation rule
which satisfies Pareto-efficiency, strategy-proofness, individual rationality, and nonnega-
tive payment uniquely exists and it is the Vickrey allocation rule.
Holmstrom (1979) studies public good models, and establish that an allocation rule

is strategy-proof and provides the efficient level of the public good on the quasi-linear
domain if and only if it is a Groves rule. The Vickrey allocation rule is the counterpart
of the Groves rule in the auction model. Holmstrom’s (1979) results can be also applied

2The frequency auctions recently implemented in many countries are such examples. See Klemperer
(2001) for the details.

3A preference is quasi-linear if the benefits from consuming the good are independent of payments.
4The quasi-linear domain is the class of quasi-linear preference profiles
5If agents’ preference are quasi-linear, since their benefits from consuming the good are independent

of payments, their valuations of the goods are well-defined.
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to auction models when agents have only quasi-linear preferences, and imply the same
conclusion as ours.6

However, there are various cases in which preferences are not quasi-linear. In the
case where agents are households, as the prices of goods are higher, they can afford to
purchase less complements, and benefit less from the goods. Unless the prices of goods
are small enough compared to their incomes, this effect will give rise to innegligible degree
of nonquasi-linearity. The vehicle ownership license auction in Singapore is also one of
such examples, where license prices are often as high as the annual income of average
households. In the case where agents are private firms in auctions, high prices bring them
difficulties in raising the funds to invest for the effective uses of the auctioned items. Che
and Gale (1998) demonstrate that the imperfection of financial markets causes agents
to have nonquasi-liner preferences by citing a variety of examples. Holmstrom’s (1979)
results do not cover these cases while our results do.
Whether an allocation rule satisfies certain requirements or not depends on its domain.

A conclusion on one domain does not simply imply the same conclusion on other domains.
Even though the same conclusion happens to hold on different domains, the same proof
technique may not be applied to different domains. We emphasize that Holmstrom’s
(1979) proof technique does not work on domains including nonquasi-linear preferences.7

When preferences are quasi-linear, a Pareto-efficient allocation of goods is uniquely de-
termined by net benefit maximization. Owing to this fact, Holmstrom (1979) actually
characterizes payment rules satisfying his requirements. On the other hand, when prefer-
ences are not quasi-linear, whether an allocation of goods is Pareto-efficient or not depends
on how much agents pay, and therefore, both of the allocation of goods and payments
need to be analyzed simultaneously.
Demange, Gale and Sotomyer (1986) and Roth and Sotomyer (1990) also study the

strategy-proofness of Vickrey auction with mulitple units. Strengthing their results,
Miyake (1998) shows that the Vickrey allocation rule is the unique allocation rule among
“competitive allocation rules”8. Our characterization of the Vickrey allocation rule is
more general in the sense that we show the uniques among the general class of allocation
rules. Recently and independently Sakai (2005) establishes the same result as ours in the
case in which there is one unit of the auctioned good.
Section 2 sets up the model, defines basic notions, and states main results. Section 3

provides the proofs of our main results.

2. The Model and Main Results

We denote the set of agents by N = {1, 2, . . . , n} (n ≥ 2). There are m < n indivisible
and homogeneous goods to be allocated among agents. Each agent is admitted to receive

6Similar characterizations of Groves rules are previously established by Green and Laffont (1977), and
Walker (1978). However, the characterizations of the these two articles cannot be applied to auction
models since they assume that the class of admissible preferences include preferences which are not
admissible in auction models. Makowski and Ostroy (1987) apply Holmstrom’s (1979) result to more
general model, and obtain similar conclusion when preferences are quasi-linear. Chew and Serizawa
(2004) also characterize the Vickrey allocation rule in the auction model with quasi-linear domains by
induction logic.

7See Milgrom (2004) for the detailed explanation of Holmtrom’s technique.
8An allocation rule is a competitive allocation rule if the rule assigns to each preference profile a

competitive equilibrium allocation for the profile.
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at most one unit of the good. A good allocation is a n−tuple a = (a1, . . . , an) ∈ {0, 1}n
such that

P
ai = m. We denote the set of good allocations by A. We denote the

money agent i pays by ti ∈ R. A feasible allocation is a pair z = (a; t) ∈ A×Rn, where
t = (t1, . . . , tn).9 We denote the set of feasible allocations by Z.
Agents have preferences on {0, 1} × R. We abuse language and identify a preference

with its utility representation ui.

Definition: A preference ui on {0, 1} × R is classical if it satisfies the following
properties:
(Continuity) For all ai ∈ {0, 1}, ui(ai, ti) is continuous with respect to ti.
(Strict Monotonicity) For all ai ∈ {0, 1}, all ti ∈ R, and all bti ∈ R,
ui(1, ti) > ui(0, ti) &

£bti > ti ⇒ ui(ai, ti) > ui(ai,bti)¤.
(Finiteness) For all ti ∈ R, there exist d1 ∈ R++ and d2 ∈ R++ such that ui(0, ti) ≥
ui(1, ti + d1) and u

i(0, ti − d2) ≥ ui(1, ti).
We denote the class of agent i’s classical preferences by U iC , and UC = U

1
C×· · ·×UnC .

Definition: A classical preference ui on {0, 1} ×R is quasi-linear if there is a value
vi ∈ R++ such that for all ai ∈ {0, 1} and all ti ∈ R, ui(ai, ti) = vi · ai − ti.
We denote the class of agent i’s quasi-linear preferences by U iL , and UL = U

1
L×· · ·×UnL .

Examples below illustrate the situations in which agents have nonquasi-linear prefer-
ences.

Example 1: Nonlinear cost of payments. Suppose that agent i has budget I i, and
he has to incur interst cost if his payment exceeds his budget. Then, his cost ci(ti) of
payment ti is ti up to I i and is I i+(1+r) ·(ti−I i) above I i, where r > 0 is a interest rate.
Given a value vi and a budget I i, agent i’s utility function ui(·, ·; vi, Ii) is the function on
{0, 1} × R such that for all ai ∈ {0, 1} and all ti ∈ R, ui(ai, ti; vi, I i, ci) = vi · ai − ci(ti).
Unless I i =∞, ui(·, ·; vi, I i) is not quasi-linear.
Example 2: Surplus depending values. Suppose that agent i has budget I i and his

value of the good depends on the surplus mi = I i − ti. For instance, imagine that the
good is a license and the agent can use the license more effectively with more surplus, or
that the agent benefits more from the good with more surplus since he can puchase more
complements by the surplus. The agent has access to credit, and the surplus mi = I i− ti
can be negative. Then, his value vi of the good is a function from R to R. Assume that
the value function vi : R→ R is continuous. Given a value function vi and a budget
I i ∈ R, agent i’s utility function ui(·, ·; vi, I i) is the function on {0, 1} × R such that for
all ai ∈ {0, 1} and all ti ∈ R, ui(ai, ti; vi, I i) = vi(I i − ti) · ai + I i − ti. Unless vi : R→ R
is a constant function, ui(·, ·; vi, I i) is not quasi-linear.
Given ui ∈ U iC and ti ∈ R, we define willing to pay WP (ui, ti) ∈ R by ui(1, ti +

WP (ui, ti)) = ui(0, ti), and compensating transfer CT (ui, ti) ∈ R by ui(0, ti−CT (ui, ti)) =
ui(1, ti). Note that ui ∈ U iC implies (i) the existences of WP (ui, ti) and CT (ui, ti)
for all ti ∈ R, that continuity of ui implies (ii) WP (ui, ti) and CT (ui, ti) are contin-
uous with respect to ti, and that strict monotonicity implies (iii) WP (ui, ti) > 0 and
CT (ui, ti) > 0 for all ti ∈ R. Also note that CT (ui, ti +WP (ui, ti)) = WP (ui, ti) and
WP (ui, ti−CT (ui, ti)) = CT (ui, ti) for all ti ∈ R. Thus, (iv)WP (ui, ti) is increasing in ti
if and only if CT (ui, ti) is increasing in ti, (v) WP (ui, ti) is decreasing in ti if and only if

9Since t ∈ Rn, negative payments are admissible for feasible allocations.
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CT (ui, ti) is decreasing in ti, and (vi) WP (ui, ti) is constant in ti if and only if CT (ui, ti)
is constant in ti.
The values of willing to pay are the maximum prices agents demand for the good.

Income effect is the change of such values as the result of income change.

Definition: A classical preference ui on {0, 1} ×R exhibits positive income effect if
for all ti ∈ R and all bti ∈ R, ti < bti implies WP (ui, ti) > WP (ui,bti).
Definition: A classical preference ui on {0, 1}×R exhibits nonnegative income effect

if for all ti ∈ R and all bti ∈ R, ti ≤ bti implies WP (ui, ti) ≥WP (ui,bti).
Definition: A classical preference ui on {0, 1}×R exhibits negative income effect if

for all ti ∈ R and all bti ∈ R, ti < bti implies WP (ui, ti) < WP (ui,bti).
Definition: A classical preference ui on {0, 1}×R exhibits nonpositive income effect

if for all ti ∈ R and all bti ∈ R, ti ≤ bti implies WP (ui, ti) ≤WP (ui,bti).
We denote the class of agent i’s preferences exhibiting nonnegative income effect by

U i+, and U+ = U1+ × · · · × Un+. We denote the class of agent i’s preferences exhibiting
positive income effect by U i++, and U++ = U

1
++×· · ·×Un++. We denote the class of agent

i’s preferences exhibiting nonpositive income effect by U i− , and U− = U
1
−× · · · ×Un−. We

denote the class of agent i’s preferences exhibiting negative income effect by U i−−, and
U−− = U1−− × · · · × Un−−.
In Example 1 of nonlinear cost of payments, U iL ⊆ {ui(·, ·; vi, I i) : Ii ∈ R ∪ {∞}, vi ∈

R++} ⊆ U i+. In Exampl 2 of surplus depending values, given vi : R → R and I i ∈ R,
compensating transfer CT i(ui, ti) is the value such that ui(1, ti;ui, I i) = vi(Ii − ti) +
I i − ti = ui(0, ti − CT i(ui, ti); vi, I i) = I i − ti + CT i(ui, ti), i.e., compensating transfer
CT i(ui, ti) coincides with the value vi(I i − ti). Denote the set of continuous, positive
and increasing value functions by V i++, the set of continuous, positive and deccreasing
value functions by V i−−, and the set of positive and constant value functions by V

i
0 . Then,

since CT i(ui, ti) = vi(I i − ti) for all ti ∈ R, {ui(·, ·; vi, Ii) : I i ∈ R, vi ∈ V i++} = U i++,
{ui(·, ·; vi, Ii) : I i ∈ R, vi ∈ V i++} = U i−−, and {ui(·, ·; vi, I i) : Ii ∈ R, vi ∈ V i0} = U iL.
A preference profile is an n-tuple u = (u1, . . . , un) of agents’ preferences. A class

U = U1× · · · ×Un of preference profiles is a set such that U = U1× · · · ×Un ⊆ UC . The
sets U+, U++, U−, U−−, and UL are the examples of the class of preference profiles.

Definition: Given a class U of preference profiles, an (allocation) rule on U is a
function f from U to Z.

Given N 0 ⊆ N , let UN 0
=
Q
j∈N 0 U j. We denote generic elements of U , UN

0
and U−i

by u, uN
0
and u−i respectively. If u = (u1, . . . , un) ∈ U , N 0 ⊆ N , and i ∈ N are given in

advance, uN
0
denotes (uj)j∈N 0 and u−i denotes (uj)j∈N\{i}.

Given a rule f : U → Z and u ∈ U , we denote agent i’s outcome consumption of the
good by f ia(u), and his outcome payment by f

i
t (u), and we write:

f(u) = (f1a (u), . . . , f
n
a (u); f

1
t (u), . . . , f

n
t (u)), f i(u) = (f ia(u), f

i
t (u)), f−i(u) = f(u)j 6=i.

Pareto-efficiency defined below takes the auctioneer’s preference into account but as-
sumes that he values the auctioned good at zero.

Definition: An allocation z ∈ Z is Pareto-efficient for u ∈ U if there is no allocationbz ∈ Z such that Pi∈N bti ≥Pi∈N t
i, ui(bzi) ≥ ui(zi) for all i ∈ N , and ui(bzi) > ui(zi) for

some i ∈ N . An allocation rule f is Pareto-efficient if f(u) is efficient for any u ∈ U .
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Remark: An allocation z is Pareto-efficient for u ∈ U if and only if there is no
allocation bz ∈ Z such that Pi∈N bti >Pi∈N t

i, and ui(bzi) ≥ ui(zi) for all i ∈ N .
Definition: A rule f is strategy-proof if for any u ∈ u, any i ∈ N , and any bui ∈ U i,

ui(f i(u)) ≥ ui(f i(bui, u−i)).
Definition: A rule f is individually rational if for any u ∈ U and any i ∈ N ,

ui(f i(u)) ≥ ui(0, 0).

Definition: A rule f satisfies nonnegative payment if for any u ∈ U and any i ∈ N ,
f it (u) ≥ 0.
Given u ∈ U , we rank agents’ values, WP (ui, 0), i ∈ N , of willing to pay, and denote

the agent with 1st highest willing to pay by i(u, 1), the agent with 2nd highest willing to
pay by i(u, 2), and so on. Ties are broken arbitrarily. Under the Vickrey allocation rule
defined below, agents with m highest values of willing to pay receive the goods and pay
the (m+ 1)−th highest value, WP (ui(u,m+1), 0), and other agents pay nothing.
Definition: The Vickrey allocation rule is a rule g such that for any u ∈ U,
ga(u) ∈ argmax

©P
i∈N a

i ·WP (ui, 0) : a = (ai)i∈N ∈ A
ª
, and

git(u) =

(
WP (ui(u,m+1), 0) if gia(u) = 1, and

0 otherwise

To be precise, the Vickrey allocation rule is not unique, since the way to break tie is
not unique. In other words, there are as many Vickrey allocation rules as the ways to
break ties. However, in view of Remark below, we treat a Vickrey allocation rule as if it
is unique.

Remark: Let g and ĝ be Vickrey rules. Then
(i)
P

i∈N g
i
t(u) =

P
i∈N ĝ

i
t(u) for any u ∈ U .

(ii) ui(gi(u)) = ui(ĝi(u)) for any u ∈ U and any i ∈ N .
The following theorems characterize the Vickrey allocation rule as the unique alloca-

tion rule satisfying Pareto-efficiency, strategy-proofness, nonnegative payment, and indi-
vidual rationality on various domains.

Theorem 1: Let U be a superset of the class UL of quasi-linear preferences and be a
subset of the class UC of classical preferences, that is, UL ⊆ U ⊆ UC . The Vickrey alloca-
tion rule is the unique allocation rule that satisfies Pareto-efficiency, strategy-proofness,
nonnegative payment, and individual rationality on U .

Theorem 1 implies the characterizations of the Vickrey allocation rule on the class
UL of quasi-linear preferences, the class U+ of preferences exhibiting non-negative income
effect, the class U− of preferences exhibiting non-positive income effect, etc. Theorem 1
can be also applied to the situation described in Example 1. However, Theorem 1 cannot
be applied to the class U++ of preferences exhibiting positive income effect or the class
U−− of preferences exhibiting negative income effect since these domains do not include
UL. Theorems 2 and 3 characterize the Vickrey allocation rules on the two domains.
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Theorem 2: The Vickrey allocation rule is the unique allocation rule that satisfies
Pareto-efficiency, strategy-proofness, nonnegative payment, and individual rationality on
the class U++ of preferences exhibiting positive income effect.

Theorem 3: The Vickrey allocation rule is the unique allocation rule that satisfies
Pareto-efficiency, strategy-proofness, nonnegative payment, and individual rationality on
the class U−− of preferences exhibiting negative income effect.

A mechanism is a pair (S, h) of an action space S and an outcome function h such
that S = S1 × · · · × Sn, Si is agent i’s action space, and h is a function from S to Z.
A mechanism (S, h) implements an allocation rule f : U → Z in dominant strategies if
there is a dominant strategy si : U i → Si for each agent i ∈ N and h(s(u)) = f(u) for all
u ∈ U , where s(u) = (s1(u1), ..., sn(un)). A (closed) auction mechanism is a mechanism
(S, h) such that Si = R+ for all i ∈ N , and agents who choose m highest values of si

receive the goods. In auction mechanisms, an action ai ∈ Si = R+ is called a “bid”.
The Vickrey auction is the auction mechanism such that agents receiving the goods

pay the (m + 1)-th highest bid, and others pay nothing. In the Vickrey auction, it is a
dominant strategy for each agent to bid his willing to pay WP (ui, 0). Thus, the Vickrey
auction implements the Vickrey allocation rule in dominant strategies.

3. Proof of Theorems

This section is devoted to the proofs of Theorems 1, 2 and 3. First we prove that the
Vickrey rule g satisfies efficiency, strategy-proofness, nonnegative payment and individual
rationality on the class UC of classical preferences (Proposition 1). This result implies
that the Vickrey rule also satisfies the four properties on any subclass U of UC . The
proofs of our three theorems have the same structure. Thus, we prove only Theorem 1 in
detail, and explain how Theorem 1’s proof needs to be modified for Theorems 2 and 3.

Proposition 1: The Vickrey rule g satisfies efficiency, strategy-proofness, nonnega-
tive payment and individual rationality on the class UC of classical preferences.

Proof of Proposition 1: Since individual rationality and nonnegative payment are
trivial, we show efficiency and strategy-proofness only.

Pareto-Efficiency. Let u ∈ UC . By contradiction, suppose that there is an allocation
z that Pareto-dominates g(u).Without loss of generality, assume that WP (u1, 0) ≥ · · · ≥
WP (un, 0). Let N0 = {i ∈ N : gia(u) = zia = 0}, N1 = {i ∈ N : gia(u) = 1&zia = 0},
N2 = {i ∈ N : gia(u) = 0&zia = 1}, and N3 = {i ∈ N : gia(u) = zia = 1}. Note thatP

i∈N g
i
t(u) = m ·WP (um+1, 0). Also note that for all i ∈ N , if ui(zi) ≥ ui(gi(u)),

i ∈ N0 ⇒ zit ≤ 0
i ∈ N1 ⇒ zit ≤ 0
i ∈ N2 ⇒ zit ≤WP (ui, 0)
i ∈ N3 ⇒ zit ≤ git(u) =WP (um+1, 0)

and if ui(zi) > ui(gi(u)), the inequalities above are strict. Since z Pareto-dominates g(u),P
i∈N g

i
t(u) ≤

P
i∈N z

i
t, u

i(zi) ≥ ui(f i(u)) for all i ∈ N, and ui(zi) > ui(f i(u)) for some

6



i ∈ N . Thus, we haveX
i∈N

zit <
X
i∈N2

WP (ui, 0) + (#N3) ·WP (um+1, 0)

≤ (#N2 +#N3) ·WP (um+1, 0)
≤ m ·WP (um+1, 0) =

X
i∈N

git(u).

This contradicts to
P

i∈N g
i
t(u) ≤

P
i∈N z

i
t.

Strategy-Proofness. Let u ∈ UC , i ∈ N , and bui ∈ U iC .We show ui(gi(u)) ≥ ui(gi(bui, u−i)).
Let N1 = {j ∈ N : gia(u) = 1} and N0 = {j ∈ N : gia(u) = 0}.
Case 1: i ∈ N1. Note that git(u) = max{WP (uj, 0) : j ∈ N0}. By individual ra-

tionality, ui(gi(u)) ≥ ui(0, 0). If WP (bui, 0) > git(u), then g
i(bui, u−i) = gi(u), and so

ui(gi(bui, u−i)) = ui(gi(u)). IfWP (bui, 0) < git(u), then gi(bui, u−i) = 0, and so ui(gi(bui, u−i)) =
ui(0, 0) ≤ ui(gi(u)). If WP (bui, 0) = git(u) and g

i
a(bui, u−i) = 1, then gi(bui, u−i) = gi(u),

and so ui(gi(bui, u−i)) = ui(gi(u)). If WP (bui, 0) = git(u), and g
i
a(bui, u−i) = 0, then

ui(gi(bui, u−i)) = ui(0, 0) ≤ ui(gi(u)).
Case 2: i ∈ N0. Note that gi(u) = (0, 0), and WP (ui, 0) ≤ min{WP (uj, 0) : j ∈ N1}.

IfWP (bui, 0) < min{WP (uj, 0) : j ∈ N1}, then gi(bui, u−i) = (0, 0), and so ui(gi(bui, u−i)) =
ui(gi(u)). IfWP (bui, 0) > min{WP (uj, 0) : j ∈ N1}, then gi(bui, u−i) = (1,min{WP (uj, 0) :
j ∈ N1}), and so by WP (ui, 0) ≤ min{WP (uj, 0) : j ∈ N1}, ui(gi(bui, u−i)) ≤ ui(gi(u)).
If WP (bui, 0) = min{WP (uj, 0) : j ∈ N1}, then ui(gi(bui, u−i)) = ui(gi(u)) whether
gia(bui, u−i) = 0 or gia(bui, u−i) = 1.
We have established Proposition 1.

Proof of Theorem 1:

Owing to Proposition 1, we only need to show uniqueness. LetUL ⊆ U = U 1 × · · · ×U n ⊆ UC .
Let f be a rule on U that satisfies Pareto-efficiency, strategy-proofness, individual ratio-
nality and nonnegative payment. We prove f = g. Fact 1.1 below directly follows from
individual rationality and nonnegative payment.

Fact 1.1: For all i ∈ N and all u ∈ U , if f ia(u) = 0, f it (u) = 0, and if f ia(u) = 1,
f it (u) ≤WP (ui, 0).
Fact 1.2: For all i, j ∈ N and all u ∈ U ,

[WP (ui, 0) < WP (uj, 0), ui ∈ UL, and f ia(u) = 1] ⇒ f ja(u) = 1.

Proof of Fact 1.2: By contradiction, suppose f ja(u) = 0. By Fact 1.1, f jt (u) = 0.
Fact 1.1 also implies f it (u) ≤WP (ui, 0). Then the allocation bz such that bzi = (0, f it (u)−
WP (ui, 0)), bzj = (1,WP (uj, 0)), and bzk = fk(u) for all k 6= i, j Pareto-dominates f(u)
since

P
k∈N bzk = P

k∈N f
k(u) + WP (uj, 0) − WP (ui, 0).10 This is a contradiction to

Pareto-efficiency. Q.E.D.

Fact 1.3: For all i ∈ N and all u ∈ U , if f ia(u) = 1, f it (u) ≥WP (ui(u,m+1), 0).
Proof of Fact 1.3: Suppose the contrary so that f ia(u) = 1 and f

i
t (u) < WP (u

i(u,m+1), 0)
for some i ∈ N and u ∈ U . Let bui ∈ UL be such that f it (u) < WP (bui, 0) < WP (ui(u,m+1), 0).
10It may be the case that agent i’s payment f it (u)−WP (ui, 0) of the allocation bz is negative. Such an

allocation is admissible since we only assume the nonnegative payment of the allocation rule f .
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If f ia(bui, u−i) = 1, then by Fact 1.2, for all j ∈ N with WP (uj, 0) ≥ WP (ui(u,m+1), 0),
f ja(bui, u−i) = 1. This implies

P
j∈N f

j
a(bui, u−i) > m, contradicting feasibility. Thus, we

have f ia(bui, u−i) = 0, and so by Fact 1.1, f it (bui, u−i) = 0. Strategy-proofness then implies
0 = bui(f i(bui, u−i)) ≥ bui(f i(u)) = WP (bui, 0) − f it (u), i.e., f it (u) ≥ WP (bui, 0). This is a
contradiction to f it (u) < WP (bui, 0).

Q.E.D.

Fact 1.4: For all i ∈ N and all u ∈ U ,

WP (ui, 0) =WP (ui(u,m+1), 0) ⇒ ui(f i(u)) = ui(0, 0).

Proof of Fact 1.4: If f ia(u) = 0, then the result follows from Fact 1.1. Let f ia(u) = 1.
Since WP (ui, 0) = WP (ui(u,m+1), 0), Fact 1.1 and Fact 1.3 imply WP (ui(u,m+1), 0) ≥
f it (u) ≥WP (ui(u,m+1), 0). Thus we have f it (u) =WP (ui(u,m+1), 0). Therefore, ui(f i(u)) =
ui(0, 0).

Q.E.D.

Let u ∈ U be given. Without loss of generality, we assume that WP (u1, 0) ≥ · · · ≥
WP (un, 0), and we define the sets N+, N0, and N− by

N+ = {i ∈ N :WP (ui, 0) > WP (um+1, 0)},
N0 = {i ∈ N :WP (ui, 0) =WP (um+1, 0)}, and
N− = {i ∈ N :WP (ui, 0) < WP (um+1, 0)}.

In order to show that f is a Vickrey rule, we have only to show that

f i(u) =

(
(1,WP (um+1, 0)) if i ∈ N+,
(0, 0) if i ∈ N−, and

ui(f i(u)) = ui(0, 0) if i ∈ N0.

Fact 1.5: For all i ∈ N−, f i(u) = (0, 0).
Proof of Fact 1.5: Let i ∈ N−. Suppose on the contrary f ia(u) = 1. By Facts 1.1
and 1.3, WP (um+1, 0) ≤ f it (u) ≤ WP (ui, 0). This is a contradiction to i ∈ N−. Thus
f ia(u) = 0. Then, Facts 1.1 implies f

i(u) = (0, 0).
Q.E.D.

Fact 1.6: For all i ∈ N+, f i(u) = (1,WP (um+1, 0)).
Proof of Fact 1.6: We proceed this proof by two steps.
Step 1: f ia(u) = 1 for all i ∈ N+. Suppose on the contrary that there is i ∈ N+

such that f ia(u) = 0. By Fact 1.1, f
i
t (u) = 0. Note that there is j ∈ N0 ∪ N− such that

f ja(u) = 1. Fact 1.5 implies j ∈ N0. Moreover, Fact 1.4 implies f jt (u) = WP (um+1, 0).
Then the allocation bz such that bzi = (1,WP (ui, 0)), bzj = (0, 0), and bzk = fk(u) for all k 6=
i, j Pareto-dominates f(u) since

P
k∈N bzk = Pk∈N f

k(u) +WP (ui, 0) −WP (um+1, 0) >P
k∈N f

k(u). This is a contradiction.
Step 2: f it (u) =WP (u

m+1, 0) for all i ∈ N+. Let i ∈ N+. By Step 1, f ia(u) = 1. Fact
1.3 implies f it (u) ≥ WP (um+1, 0). By contradiction, suppose that f it (u) > WP (um+1, 0).
Let bui ∈ UL be such that f it (u) > WP (bui, 0) > WP (um+1, 0). Then, Step 1 implies
f ia(bui, u−i) = 1. Thus by Fact 1.1, f it (bui, u−i) ≤WP (bui, 0) < f it (u). This is a contradiction
to strategy-proofness. Q.E.D.
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Fact 1.4, Fact 1.5, and Fact 1.6 imply that f is a Vickrey rule.
We have established Theorem 1.

Proofs of Theorems 2 and 3:

Let f be a rule on U++ that satisfies Pareto-efficiency, strategy-proofness, individual
rationality and nonnegative payment to prove Theorem 2. (Let f be a rule on U−− that
satisfies Pareto-efficiency, strategy-proofness, individual rationality and nonnegative pay-
ment to prove Theorem 3.) We prove f = g. Facts 2.1 and 3.1 below are the counterparts
of Fact 1 on U++ and U−− respectively. They directly follow from individual rationality
and nonnegative payment.

Fact 2.1: For all i ∈ N and all u ∈ U++, if f ia(u) = 0, f it (u) = 0, and if f ia(u) = 1,
f it (u) ≤WP (ui, 0).
Fact 3.1: For all i ∈ N and all u ∈ U−−, if f ia(u) = 0, f it (u) = 0, and if f ia(u) = 1,

f it (u) ≤WP (ui, 0).
Facts 2.2 and 3.2 below are the counterparts of Fact 1.2 on U++ and U−− respectively.
Fact 2.2: For all i, j ∈ N and all u ∈ U++,

[f ia(u) = 1, and ∀ti ∈ [0,WP (ui, 0)], CT (ui, ti) < WP (uj, 0)] ⇒ f ja(u) = 1.

Fact 3.2: For all i, j ∈ N and all u ∈ U−−,

[f ia(u) = 1, and ∀ti ∈ [0,WP (ui, 0)], CT (ui, ti) < WP (uj, 0)] ⇒ f ja(u) = 1.

Proof of Fact 2.2: By contradiction, suppose that f ja(u) = 0. By Fact 2.1, f
j
t (u) = 0.

Moreover, Fact 2.1 together with nonnegative payment implies 0 ≤ f it (u) ≤ WP (ui, 0),
so that CT (ui, f it (u)) < WP (uj, 0). Then the allocation bz such that bzi = (0, f it (u) −
CT (ui, f it (u))), bzj = (1,WP (uj, 0)), and bzk = fk(u) for all k 6= i, j Pareto-dominates
f(u) since

P
k∈N bzk =Pk∈N f

k(u) +WP (uj, 0)− CT (ui, f it (u))) >
P

k∈N f
k(u). This is

a contradiction to Pareto-efficiency. Q.E.D.

The proof of Fact 3.2 is the same as Fact 2.2 except that Fact 2.1 is replaced by Fact
3.1.
Facts 2.3 and 3.3 below are the counterparts of Fact 1.3 on U++ and U−− respectively.

Fact 2.3: For all i ∈ N and all u ∈ U++, if f ia(u) = 1, f it (u) ≥WP (ui(u,m+1), 0).
Fact 3.3: For all i ∈ N and all u ∈ U−−, if f ia(u) = 1, f it (u) ≥WP (ui(u,m+1), 0).

Proof of Fact 2.3: Suppose the contrary so that f ia(u) = 1 and f
i
t (u) < WP (u

i(u,m+1), 0)
for some i ∈ N and u ∈ U++. Let bui ∈ U i++ be such that f it (u) < WP (bui, 0) <
WP (ui(u,m+1), 0), and for all ti ∈ [0,WP (ui, 0)] and for all j 6= i with WP (uj, 0) ≥
WP (ui(u,m+1), 0), CT (bui, ti) < WP (uj, 0). If f ia(bui, u−i) = 1, then by Fact 2.2, for all j ∈
N with WP (uj, 0) ≥ WP (ui(u,m+1), 0), f ja(bui, u−i) = 1. This implies Pj∈N f

j
a(bui, u−i) >

m, contradicting feasibility. Thus, we have f ia(bui, u−i) = 0, and so by Fact 2.1, f it (bui, u−i) =
0. The definition ofWP and strategty-proofness then imply bui(1,WP (bui, 0)) = bui(0, 0) =bui(f i(bui, u−i)) ≥ bui(f i(u)) = bui(1, f it (u)). Thus, we have WP (bui, 0) ≤ f it (u). This is a
contradiction to f it (u) < WP (bui, 0). Q.E.D.

The proof of Fact 3.3 is the same as Fact 2.3 except that Fact 2.1, Fact 2.2, U++ and
U i++ are replaced by Fact Fact 3.1, Fact 3.2, U−− and U

i
−− respectively.
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Facts 2.4 and 3.4 below are the counterparts of Fact 1.4 on U++ and U−− respectively.
Similarly to Fact 1.4, Fact 2.4 follows from Facts 2.1 and 2.3, and Fact 3.4 follows from
Facts 3.1 and 3.3.

Fact 2.4: For all i ∈ N and all u ∈ U++, if WP (ui, 0) =WP (ui(u,m+1), 0), ui(f i(u)) =
ui(0, 0).

Fact 3.4: For all i ∈ N and all u ∈ U−−, if WP (ui, 0) =WP (ui(u,m+1), 0), ui(f i(u)) =
ui(0, 0).

Let u ∈ U++ be given to prove Theorem 2. (Let u ∈ U−− be given to prove Theorem
3.) Without loss of generality, we assume that WP (u1, 0) ≥ · · · ≥ WP (un, 0), and we
define the sets N+, N0, and N− as in the proof of Theorem 1.
Similarly to Fact 1.5, Fact 5 below directly follows from Facts 2.1 and 2.3 in the case

of u ∈ U++. (Fact 5 follows from Facts 3.1 and 3.3 in the case of u ∈ U−−.)
Fact 5: For all i ∈ N−, f i(u) = (0, 0).
Similarly to Fact 1.6, Fact 6 below follows from Facts 2.1, 2.3, 2.4 and 2.6 in the case

of u ∈ U++. (Fact 6 follows from Facts 2.1, 2.3, 2.4 and 2.6 in the case of u ∈ U−−.)
Fact 6: For all i ∈ N+, f i(u) = (1,WP (um+1, 0)).
Facts 2.4, 5 and 6 imply f = g on U++. Facts 3.4, 5 and 6 imply f = g on U−−.
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