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Abstract

This paper studies allocation correspondences in the house allocation prob-
lems with collective initial endowments. We examine the implications of two
axioms, namely “consistency” and “unanimity.” Consistency requires the al-
location correspondence be invariant under reductions of population. Una-
nimity requires the allocation correspondence respect unanimity, that is, it
assigns to every agent the object that ranks best for him whenever possible.
We prove that if an allocation correspondence satisfies these two axioms, then
it is a subcorrespondence of the Pareto correspondence. Further, we give a
characterization of the Pareto correspondence using a version of “converse
consistency.”
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0 Introduction

0.1 Background

This paper studies allocation correspondences for house allocation problems.
In particular, we study the case of collective initial endowments, i.e. no ob-
jects are initially owned by agents. In a house allocation problem, there is a set
of finitely many agents, and a set of indivisible objects. The objects are initially
owned collectively by the set of agents, and to be allocated to the agents so that
each agent receives exactly one object. Each agent has a preference over the set of
objects. This kind of problems arise in various real life situations in which mone-
tary compensation is not feasible. Since the problem has been first considered by
Shapley and Scarf (1974), numerous papers have studied this theme. In particular,
a growing number of papers have appeared in recent years.

The purpose of this study is to examine properties of allocation correspondences
that satisfy two axioms, namely “consistency” and “unanimity.”

“Consistency” is a unifying property that is used many axiomatic studies of
game-theoretic models of resource allocation. It is worth noting that many allo-
cation rules in various models are characterized using consistency. (For survey,
Thomson 1996, 1998.) Consistency basically requires the allocation rule be “in-
variant” to reduction of population: To be illustrative, consider a group of agents
facing an allocation problem and some “allocation method” with which we want to
solve this problem. Let us apply this allocation method to the problem, and obtain
an allocation x. Then suppose that some of the agents have left the scene, and the
remaining agents faces the “same” problem again, which is called the “reduced”
problem. Now the allocation method being “consistent” means that applying the
allocation method to the “reduced” problem again yields the allocation x restricted
to the remaining group. In defining consistency for each specific environment, it
is essential how to define “reduced” problems. In the case of the present environ-
ment, there is the natural definition due to Ergin (2000), which we will use in this
paper, too.

“Unanimity” is simple and uncontroversial principle in collective decision mak-
ing in general. The axiom requires the rule adopt those choices (whenever available)
which is unanimously approved by the agents. This seems a minimum requirement
in terms of collective welfare. In the present context, unanimity is implied by
Pareto efficiency .

Consistent allocation correspondences (and single-valued rules, too) for this
environment has first considered by Ergin (2000), and subsequently studied by
Ehlers and Klaus (2005) and others. In the previous studies, Pareto efficiency is
a prevalent axiom. To our knowledge, however, no authors have ever explicitly
considered unanimity or similar axioms in this context.

0.2 Results

As the main theorem, we prove that if an allocation correspondence is consistent
and unanimous, then the correspondence is a subcorrespondence of the Pareto
correspondence. Since the Pareto correspondence itself is consistent and unani-



mous, the Pareto correspondence is the unique maximal correspondence that sat-
isfies these two axioms. In the previous studies of consistency in this environment,
Pareto efficiency constantly has been considered as an axiom. That is, they require
allocation correspondences to be Pareto efficient, and examine its consequences to-
gether with other axioms. In contrast, the present study obtains Pareto efficiency
as a result, rather than requiring it. By this result, all the foregoing characteriza-
tion using consistency and Pareto efficiency simultaneously (such as Ergin (2000),
and Ehlers and Klaus (2005)) can be strengthen by replacing Pareto efficiency with
unanimity.

Further, we provide an axiomatic characterization of the Pareto correspondence
using a version of “converse consistency” (which is different from the version in the
previous studies of this model) together with the two axioms. It is worth noting
that although the Pareto correspondence has been treated as one of important
concepts, there has not been axiomatic support to the correspondence itself.

The present study exclusively deals with the case of collective initial endow-
ments. In the companion piece (Takamiya, 2006), however, we are dealing with
the case of private initial endowments. There, we introduce an extended defi-
nition of house allocation problems with private endowments that allows a natural
operation of population reduction. And we show that consistency and unanimity,
the counterpart of the axioms as considered in the present work, characterizes the
core correspondence. We suppose that it is of some interest to compare the
results in the cases of collective and individual initial endowments.

This paper is organized as follows: Section 1 provides preliminaries. Section 2
states the results. And Section 3 gives the proofs of the theorems.

1 Preliminaries

Let NV be the set of potential agents. And let H be the set of objects. A house
allocation problem (simply, problem, henceforth) is a list £ = (N, H, R). Here,
NCN, N#(,and HCH, H # () such that #N = #H. And R := (R%);cn is a
preference profile. Assume each R is a linear ordering (“a ranking with no ties”)
over H. That is, R’ is a complete, transitive and anti-symmetric binary relation
over H. Asusual, P* (I*, resp.) denotes the asymmetric (symmetric, resp.) part of
R'. For H' C H, max R'(H') denote the element = € H’ such that for any y € H’,
zRYy.

Let a problem & = (N, H,R) be given. An allocation z is a bijection from
N onto H. z(i) denotes the object allocated to i. Let A(E) denote the set of
allocations in problem £. Let x and y be allocations. And let R be a preference
profile. z Pareto dominates y under R if for each i € N, z(i)R'y(i), and there
exists some j € N such that z(j)P/y(j). = is Pareto efficient under R if no
allocation Pareto dominates x under R.

An allocation correspondence (or correspondence, henceforth) is a multi-
valued function which associates each problem with a set of allocations in that
problem. Let ¢ denote a correspondence. The Pareto correspondence is the
correspondence that specifies the set of Pareto efficient allocations for each problem.



Let us denote the Pareto correspondence by P.
Let 4° denote the correspondence such that for any & = (N,H, R),

UE) :={x | Vi € N, x(i) = max R'(H)}.

¢ is unanimous if for every problem & = (N, H, R), (&) = U°(E) if U°(E) is
nonempty.

Let a problem & = (N, H, R) be given. Let N' C N (N’ #0) and z € A(€). A
reduced problem of & relative to N’ and x is a problem 7y ;) (€) = (N', H', R').
Here H' = x(N') and R’ = (R");en/, where R" = R'|ys for each i € N'. ¢ is
consistent if for every problem & = (N, H, R), and every N’ C N (N’ # ()) and
r € A(E), it is satisfied that x € ¢(€) implies x|n € ©(r(n2)(E))-

2 Results
The main theorem of this paper is the following.

Theorem 1 If a correspondence @ is consistent and unanimous, then ¢ is a sub-
correspondence of the Pareto correspondence.

The proof of Theorem 1 will be provided in Section 3. By this result, all the
foregoing characterizations using consistency and Pareto efficiency simultaneously
(such as Ergin (2000), and Ehlers and Klaus (2005)) can be strengthen by replacing
Pareto efficiency with unanimity.

Given Theorem 1, in the sequel we are going for characterizations of the Pareto
correspondence. Let us start with the following lemma.

Lemma 1 The Pareto correspondence is consistent and unanimous.

The proof of Lemma 1 is straightforward thus we omit it. Theorem 1 and
Lemma 1 together yield the following characterization.

Theorem 2 The Pareto correspondence is the unique mazimal correspondence
that is consistent and unanimous.

Although Theorem 2 provides a characterization of the Pareto correspondence,
this is not a full axiomatization of the correspondence. Here we will give a full
axiomatization using “converse consistency.” However, since the existing definition
of converse consistency by Ergin (2000) does not work for this purpose, we have
to modify the definition.

Ergin (2000) introduced the following definition of converse consistency: ¢ is
conversely consistent if for any problem £ = (N, H, R) with #N > 2, if for any
N'C N with #N = 2, and any = € A(E), z|n € ¢(r(n/2)(E)), then z € p(&). Tt
is pointed out in Ergin’s paper that the Pareto correspondence is not conversely
consistent.



For our purpose, we have to weaken Ergin’s definition in the following way. Let
U denote the correspondence defined as follows: For any £ = (N, H, R),

_JulE) ifudE) #0,
Ut = { A(E)  otherwise.

¢ is U-conversely consistent if for any problem & = (N, H, R) with #N > 2, if
for any N’ C N with ) # N’ # N, and any = € A(E), z|n' € o(r(n 2 (€E)) and
x €U(E), then = € p(€).

In defining U-converse consistency, we have made two modifications to Ergin’s
existing version: First, the present definition considers the reductions not only
to pair subsets of the grand coalition but to all the nonempty proper subsets.
Second, we condition that the allocation in consideration has to be a unanimous
allocation as long as such an allocation is available. The first point is a natural
weakening. The second point looks somewhat artificial. However, similar variations
are used elsewhere such as Peleg and Tijs (1996), Peleg, Potters and Tijs (1996)
and Takamiya (2001).1

Now we present a full axiomatization of the Pareto correspondence.

Theorem 3 A correspondence @ is the Pareto correspondence if, and only if, ¢
is consistent, unanimous and U-conversely consistent.

The proof of this theorem is provided in Section 3. The tightness of this
characterization is checked by the examples as follows.

Example 1 The correspondence U is unanimous and U-conversely consistent, but
not consistent. O

In Example 1, it is easy to see that ¢ violates consistency. Less obvious is to
see that ¢ is U-conversely consistent. This follows from Lemma 4 which comes up
shortly.

Example 2 Let ¢ be such that for any &,
p(&) = A(€)
Then ¢ is consistent and U-conversely consistent, but not unanimous. O

Example 3 Let = be a linear ordering over A. Let ¢ be such that for any
&= (N,H,R),
i1 = max = (N), o(i1) = {max R (H)}; and
Vk=2,...,#4#N, i = max > (N\{il,...ik_l}),
p(ir) = {max R*(H \ o({i1, ..., ir-1}))}.

In words, ¢ is the serial dictatorship with respect to the fixed order . Then ¢ is
consistent and unanimous, but not U-conversely consistent. O

!One can think of two other versions of converse consistency: One is the version in which only
the first modification is made to Ergin’s definition. The other is the one in which only the second
modification is made. We note that the Pareto correspondence does not satisfy either of these
versions of converse consistency thus they do not work for our purpose.



3 Proofs of the main theorems

This section provides the proofs of Theorems 1 and 3. Although this paper studies
the case of collective initial endowments only, in the following proofs, it will be
helpful to consider the case of private initial endowments, too. Let a problem
€ = (N,H,R) be given. And let w € A(£). Then a house allocation problem
with private initial endowments is (£,w) = (N, H, R, w).2

Let a problem (£,w) = (N, H, R,w) be given. Let z,y € A(£) and S C N.
Then x dominates y via S if the followings are satisfied:

2(5) = w(5),
Vi€ S, (i) Ry(i),
3j €S x()Py(j).

The core of (£,w) is the set of allocations that are not dominated by any alloca-
tions. It is well-known that the core is singleton for each preference profile by the
result of Roth and Postlewaite (1977).3 Let us denote the single element of the
core of (&£,w) by C(E,w).

There is a well-known algorithm called the “top trading cycle algorithm,” which
is attributed to David Gale (Shapley and Scarf, 1974), for computing the unique
core allocation for each preference profile. We will utilize this algorithm in the
proofs in the sequel. This algorithm works as follows:

(1) Let every agent i point out the agent j who has the object (as the initial
endowment) that ranks top to the agent i. Let us denote this by “i — j5.”
Then there will be at least one cycle ;1 — i3 — -+ — 9 — i1 With
igr1 = i1. Let T}, Ty, ... ,TJ\IJ1 denote the cycles formed at this stage. Let
all agents in these cycles allocate the objects so that if ¢ — j, then i receives
the object w(j).

(2) Let the agents in the T}, Ty, . .. ,T]bl leave the scene taking away the objects
allocated in the previous stage. And let the remaining agents do the same
thing as (1) with the remaining objects to obtain the cycles T2, 7%, ..., T%,. .

2

(3) Repeat the process recursively until all the objects have been allocated. Then
the set of cycles 7 := {TF, TF,... ,T]’\}k }e=1,....K is obtained.

In the subsequent proofs, we will use the following two lemmas. We omit the
proofs of these lemmas. The proof of Lemma 3 would be straightforward from the
algorithm.

Lemma 2 For any £, w € P(E) if, and only if, w=C(E,w).

Lemma 3 Let (£,w) = (N,H, R,w) be given. Let T be the top trading cycles
corresponding to the core of (E,w). For any T € T, and any i € T, C(E,w)(i) =
max R (w(T)).

*We avoid the notation ((N, H, R),w), which is accurate but more cumbersome.
3Recall that we have assumed that a preference profile is a linear ordering. This result does
not hold for the case in which weak preferences (ties) are permitted.



Proof of Theorem 1 Let ¢ be a correspondence. Suppose that ¢ is consistent
and unanimous, and that for some problem & = (N, H,R), ¢(£) ¢ P(E). Then
there is some x € A(E) such that z € (&) and z ¢ P(E). By Lemma 2, z & P(&)

implies
x #C(&, ).

Let us denote by 7 the top trading cycles associated with C(E,z). Let us
denote y = C(&, x). Then there is some coalition T' € 7 such that

x| #ylr (1)

Since T is a trading cycle arising from =z,
z(T) = y(T).

Thus T(zj) (5) = r(T,y) (8) )
Since y is the core allocation of (€, x), Lemma 3 implies y(i) = max R'(x(T))
for all ¢ € T. Then by the unanimity of ¢,

{ylr} = o(rira (€))-

On the other hand, since ¢ is consistent, z|r € ¢(r(14)(£)). Therefore,

z|r = ylr.

However, this contradicts (1). O

Next, we turn to the proof of Theorem 3. The proof is done by two steps. First,
we will check that the Pareto correspondence is U-conversely consistent. (We have
already known that the correspondence satisfies the other two axioms.) Second,
we will show the uniqueness: By Theorem 1, we have already known that if a
correspondence ¢ is consistent and unanimous, then ¢ C P. We will show that ¢
is U-converse consistent and unanimous, then ¢ D P. These entail ¢ = P.

Lemma 4 Let a correspondence ¢ be unanimous. Then if @ is a supercorrespon-
dence of the Pareto correspondence, then ¢ is U-conversely consistent.

Proof Suppose that ¢ D P. Let £ and x € A(E) be given. Suppose that x & ¢(&).
Then we show either of the following is true:

IN'CN:N' #N & z|n & o(rn 2)(E)), (2)
or
T gUE). (3)

Denote C(€,x) by y. Since ¢ D P by supposition, we have x ¢ P(£). Then
by Lemma 2, x # y. Let 7 denote the top trading cycles associated with y. Since



x # y, there is some T' € T such that z|p # y|p. And since T is a trading cycle
arising from z, x(T') = y(T'). Then Lemma 3 implies

zlr & {ylr} = U (rim (€)). (4)

Recall that ¢ is unanimous. Then if 7' # N, then (4) implies (2). If T'= N, (4)
implies (3). O

Lemma 5 Let a correspondence ¢ be U-conversely consistent and unanimous.
Then ¢ is a supercorrespondence of the Pareto correspondence.

Proof Let ¢ be a correspondence. Suppose that ¢ is U-conversely consistent and
unanimous, and that ¢ # P. Then there is some & = (N, H, R) such that z € P(E)
and x € ¢(€). Then since ¢ is U-conversely consistent, = & ¢(€) implies either of
the following is true:

AN'C N :N' #N & x|y & o(rin 2 (E)), ()
or

z dU(E). (6)

Suppose that U°(E) # (). Then since x € P(E), {x} = U"(£). Thus the unanimity
of ¢ implies {z} = p(£). This is a contradiction. Therefore, we conclude that
UY(E) = . In this case, U(E) = A(E) by definition, which implies z € U(E), the
negation of (6). This implies (5) has to be satisfied.

Let & := (N',H', R') denote the reduced problem 7y, (€) in (5). Then
since the above argument asserts (5) holds true, we have x|y & ¢(E’). Also by
the fact that P is consistent (by Lemma 1), x|y € P(E'). Thus we can apply
the same argument as above to this case, too. Further, recursively applying this
argument, we obtain some problem &£* which consists of only one agent i, and
satisfies x|y € ¢(€*) and z[(; € P(E*). However, the unanimity of ¢ implies
z|gy € p(E¥). This is a contradiction. O

Proof of Theorem 3 By Lemmas 1 and 4, the Pareto correspondence is con-
sistent, unanimous and U-conversely consistent. Conversely, suppose a correspon-
dence is consistent, unanimous and U-conversely consistent. Then by Theorem 1
and Lemma 5, the correspondence has to coincide with the Pareto correspondence.
O
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