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1 Introduction

This article analyzes axiomatically the probabilistic allotment problems of
homogeneous indivisible objects among agents with single-peaked and risk-
averse von Neumann-Morgenstern expected utility functions, especially by
the axiom of coalitional strategy-proofness.

Sprumont (1991) initiates an axiomatic analysis of the allotment prob-
lems. He analyzes the deterministic model with a perfectly divisible object,
that is, the model in which there is a perfectly divisible object and allo-
cation rules are deterministic. In this model, he assumes that agents have
“single-peaked” preferences over their consumption levels, and characterizes
“the uniform rule”1. A preference is single-peaked if there is some point
called a “peak”, and consumption levels closer to the peak are preferred.
The uniform rule is the rule such that agents are allowed to choose their
preferred consumption subject to a common upper or lower bound, which is
chosen to obtain feasibility. Sprumont (1991) shows that the uniform rule
is a unique allocation rule satisfying strategy-proofness2, Pareto-efficiency,
and anonymity3. Many authors follow Sprumont (1991) in analyzing the
uniform rule from different perspectives by employing various axioms.4

In the real world, the objects to be allocated are often not perfectly di-
visible. For example, consider the situation where a professor assigns her
graduate students several units of teaching-assistant work. Although time
is perfectly divisible in principle, teaching assistants’ working time is of-
ten institutionally restricted by units of one hour or so on. Sasaki (1997)
investigates the problem of allocating finite units of indivisible objects prob-
abilistically. He assumes that agents have single-peaked and “risk-averse”
utility functions satisfying von Neumann-Morgenstern expected utility, and
establishes a counterpart of Sprumont (1991); “the uniform probabilistic
rule”5, a probabilistic variant of the uniform rule, is a unique rule satisfying
strategy-proofness, Pareto-efficiency, and anonymity. Several authors also
follow Sasaki (1997).6

In his recent work, Serizawa (2006) shows that in the deterministic model
of a perfectly divisible object, the uniform rule is a unique rule satisfying
“effectively pairwise strategy-proofness”, “respect for unanimity” and sym-

1The uniform rule is first considered by Benassy (1982) for the analysis of a fixed price
economy.

2Strategy-proofness is a frequently employed incentive compatibility property. It re-
quires that it is a weakly dominant strategy for each agent to represent her true preference.

3Anonymity requires that the name of each agent does not matter for the outcome
allocation.

4For example, Ching (1994), Thomson (1994a, 1994b, 1995), Barberà, Jackson and
Neme (1997), Chun (2006), and Klaus (2006).

5Sasaki (1997) himself calls this rule “randomized uniform allocation mechanisms”.
6For example, Kureishi (2000), Ehlers and Klaus (2003), and Kureishi and Mizukami

(2007).
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metry7. Effective pairwise strategy-proofness requires that rules are strategy-
proof and that no pair of agents has an incentive to manipulate the rule in
such a way that no agent of the pair has the incentive to betray her partner.
Respect for unanimity requires that if the sum of agents’ peaks equals the
endowment, all agents receive their peak consumptions. This property is
much weaker than Pareto-efficiency. Because, as shown in Sasaki (1997),
the counterpart of Sprumont (1991) holds in the probabilistic model, it is
natural to conjecture that the counterpart of Serizawa (2006) also holds in
the probabilistic model.

However, in this article, we find that the counterpart of Serizawa (2006)
does not hold in the probabilistic model. That is, although the uniform prob-
abilistic rule satisfies effectively pairwise strategy-proofness, respect for una-
nimity, and symmetry, it is not a unique rule satisfying the three properties.
This is true even though symmetry is strengthened to “strong symmetry”8,
and effective pairwise strategy-proofness is strengthened to a much stronger
concept of “coalitional strategy-proofness”. Coalitional strategy-proofness
requires that by coalitional manipulation, no coalition can increase the util-
ity of any member in the coalition without decreasing the utility of some
other member in it. In situations where planners cannot observe agents’
preferences and agents can cooperate in manipulation, the property of coali-
tional strategy-proofness is beneficial for making agents reveal their true
preferences certainly.

Furthermore, we find that even with additional requirements of “peaks-
onlyness” 9 and “continuity”10, the uniqueness of the uniform probabilistic
rule does not hold, that is, the uniform probabilistic rule is not a unique allo-
cation rule satisfying peaks-onlyness and continuity in addition to coalitional
strategy-proofness, strong symmetry, and respect for unanimity. Theses re-
sults demonstrate the differences between the deterministic model with a
perfectly divisible object and the probabilistic model with indivisible ob-
jects.

Owing to these differences, we impose “same-sideness”11, together with
coalitional strategy-proofness, on allocation rules, which is an efficiency

7Symmetry requires that whenever two agents have the same preferences, they receive
the indifferent consumptions.

8Strong symmetry requires that whenever two agents have the same preferences, the
objects are distributed to them by the same probability distribution.

9Peaks-onlyness requires that the outcome allocation depends only on the peak profile.
10Continuity requires that small changes in the utility profile cause only small changes

in the outcome allocation.
11Same-sideness requires that if the sum of the amount of the peak profile is in excess

demand, any agent receives an amount less than or equal to her peak. Similarly if there
is in excess supply, any agent receives an amount greater than or equal to her peak.
Same-sideness is a weaker property than Pareto-efficiency in the probabilistic model of
homogeneous indivisible objects, even though it is equivalent to Pareto-efficiency in the
model of a perfectly divisible object.
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property stronger than respect for unanimity, but still weaker than Pareto-
efficiency. In this article, we show that the uniform probabilistic rule is
a unique rule satisfying coalitional strategy-proofness, same-sideness and
strong symmetry.

This paper organized as follows: Section 2 describes the model and the
results, Section 3 presents the proofs, and Section 4 concludes the paper.

2 The model and the results

There are k ∈ Z++
12 units of homogeneous indivisible objects. We con-

sider the problem of alloting k units of the objects to a set of agents
N = {1, · · · , n}. Let K = {0, 1, · · · , k}. We call a = (x1, · · · , xn) ∈ Kn

a feasible allocation if
∑

i∈N xi = k. Let A denote the set of all feasible
allocations.

A (probability) distribution over A is interpreted as a lottery on A.
For A = {a1, · · · , a|A|}13, we denote such a distribution over A by [p̃1 ◦
a1, · · · , p̃|A| ◦ a|A|] where for all l ∈ {1, · · · , |A|}, p̃l ∈ [0, 1] is the probability
of al, and

∑|A|
l=1 p̃l = 1. For convenience, to express a distribution, we write

only feasible allocations al that occur with a strictly positive probability
p̃l > 0. For example, instead of [12 ◦ a1, 1

2 ◦ a2, 0 ◦ a3, · · · , 0 ◦ a|A|], we write
[12 ◦ a1, 1

2 ◦ a2]. Let P̃ denote the set of all distributions over A.
Let Pi denote the set of all marginal (probability) distributions for i ∈ N

over her allotments in K, induced by all p̃ ∈ P̃ . Each agent i ∈ N only cares
for her marginal distribution pi ∈ Pi on K. Given pi ∈ Pi and K ′ ⊆ K,
pi(K ′) denotes the probability that the marginal distribution pi places over
K ′. If K ′ = {x}, we write simply pi(x) instead of pi(K ′) to refer to the
probability that agent i receives x units through the marginal distribution
pi.

Each agent i ∈ N has a utility function ui : K → R, which satisfies
the von Neumann-Morgenstern expected utility property. Given a marginal
distribution pi ∈ Pi, we denote the expected utility by

E(pi;ui) =
∑
x∈K

pi(x) · ui(x).

We introduce two properties of the utility function.

Definition. A utility function ui is single-peaked if there exists a unique
peak b(ui) ∈ K such that for all x, y ∈ K with x > y ≥ b(ui) or b(ui) ≥ y >
x, u(y) > u(x).

Definition. A utility function ui is risk-averse if for all x ∈ K\{0, k},
ui(x) − ui(x − 1) > ui(x + 1) − ui(x).

12
Z++ is the set of positive integers and Z+ is the set of nonnegative integers.

13|A| is the number of feasible allocations.
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Let U denote the class of all single-peaked and risk-averse von Neumann-
Morgenstern utility functions.14 Let Un denote the set of all von Neumann-
Morgenstern utility profiles u = (ui)i∈N such that for all i ∈ N , ui ∈ U .

Note that two distributions need not be equal even though their marginal
distributions are all the same, as illustrated by Example 1 below.

Example 1 (Ehlers and Klaus, 2003). Let N = {1, 2, 3}, k = 9, p̃ = [13 ◦
(3, 6, 0), 1

3 ◦(0, 3, 6), 1
3 ◦(6, 0, 3)], and p̃′ = [13 ◦(3, 0, 6), 1

3 ◦(6, 3, 0), 1
3 ◦(0, 6, 3)].

Let pi and p′i be the marginal distributions for i ∈ N induced by p̃ and p̃′.
Then, for all i ∈ N , pi = p′i, but p̃ �= p̃′.

If two distributions p̃, p̃′ ∈ P̃ have the same marginal distributions, i.e.,
pi = p′i for all i ∈ N , then p̃ and p̃′ are equivalent from the viewpoint of
agents. Thus, we focus on marginal distribution profiles instead of distribu-
tions on A. A marginal distribution profile p = (p1, · · · , pn) ∈ ∏

i∈N Pi is
feasible if there is a probability distribution p̃ ∈ P̃ such that for all i ∈ N , pi

is induced by p̃. We denote by P the set of all feasible marginal distribution
profiles.

We define two properties of marginal distribution profiles related to ef-
ficiency.

Definition. A marginal distribution profile p ∈ P satisfies Pareto-efficiency
with respect to u ∈ Un if there is no p′ ∈ P such that for all i ∈ N ,
E(p′i;ui) ≥ E(pi;ui) and for some j ∈ N , E(p′j ;uj) > E(pj ;uj).

Definition. A marginal distribution profile p ∈ P satisfies same-sideness
with respect to u ∈ Un if

∑
i∈N b(ui) ≥ k implies that for all i ∈ N ,

pi([0, b(ui)]) = 1, and
∑

i∈N b(ui) ≤ k implies that for all i ∈ N , pi([b(ui), k]) =
1.

Pareto-efficiency implies same-sideness, but Example 2 illustrates that
the inverse implication is not true.

Example 2. Let N = {1, 2} and k = 2. Let u ∈ U2 be such that u1 = u2,
u1(0) = 0, u1(1) = 2 and u1(2) = 3. Let p ∈ P be such that pi(0) = pi(2) =
1
2 for i = 1, 2 and p′ ∈ P be such that pi(1) = 1

2 for i = 1, 2.
Then, E(pi;ui) = 1.5 and E(p′i;ui) = 2 for i = 1, 2. p is same-sided with

respect to u but is not Pareto-efficient with respect to u.

We introduce a property called “at most binary”. It says that each agent
has strictly positive probabilities over at most two adjacent elements of K.
Fact 1 below implies that this property has an important role in this model.

14If a utility function exhibits risk-aversion, then it is weak single-peaked ; i.e., there exist
at most two adjacent peaks b(ui), b(ui)+1 ∈ K, and for all x, y ∈ K, if x > y ≥ b(ui)+1 or
b(ui) ≥ y > x, then u(y) > u(x). However, (strict) single-peakedness and risk-averseness
are independent.
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Definition. A marginal distribution profile p ∈ P satisfies at most binary
if for all i ∈ N , there exists x ∈ K\{k} such that pi(x) + pi(x + 1) = 1.

Fact 1 (Sasaki, 1997). A marginal distribution profile p ∈ P satisfies Pareto-
efficiency with respect to u if and only if it satisfies same-sideness with
respect to u and at most binary.

A probabilistic (allocation) rule is a function f : Un → P . Given a prob-
abilistic rule f , u ∈ Un and i ∈ N , fi(u) denotes the marginal distribution
of agent i when the utility profile is u under the rule f . Given K ′ ⊆ K,
fi(u)(K ′) denotes the probability that fi(u) places over K ′, and if K ′ = {x},
let fi(u)(x) denote fi(u)(K ′).

We introduce several properties of f . The first four properties are related
to the efficiency of f .

Definition. A probabilistic rule f satisfies Pareto-efficiency if for all u ∈
Un, f(u) is Pareto-efficient with respect to u.

Definition. A probabilistic rule f satisfies same-sideness if for all u ∈ Un,
f(u) is same-sided with respect to u.

Definition. A probabilistic rule f satisfies at most binary if for all u ∈ Un,
f(u) satisfies at most binary..

Definition. A probabilistic rule f satisfies respect for unanimity if for all
u ∈ Un such that

∑
i∈N b(ui) = k, and all i ∈ N , fi(u)(b(ui)) = 1.

Note that a probabilistic rule f satisfies Pareto-efficiency if and only if it
satisfies same-sideness and at most binary, due to Fact 1. In addition, note
that same-sideness implies respect for unanimity.

The next two properties are related to the incentive compatibility for
agents to reveal their true utility functions. “Strategy-proofness” requires
that no agent can increase her utility by manipulating her revealed utility.
“Coalitional strategy-proofness” is a stronger condition; it requires that no
coalition can increase the utility of any member in the coalition via coali-
tional manipulation without decreasing the utility of some other member in
the coalition.

Definition. A probabilistic rule f satisfies strategy-proofness if for all u ∈
Un, for all i ∈ N , and all ûi ∈ U , E(fi(u);ui) ≥ E(fi(ûi, u−i);ui).

Definition. A probabilistic rule f satisfies coalitional strategy-proofness if
for all u ∈ Un, all N ′ ⊆ N , and all ûN ′ ∈ UN ′

, whenever there is i ∈ N ′

such that E(fi(ûN ′ , u−N ′);ui) > E(fi(u);ui), there exists j ∈ N ′ such that
E(fj(u);uj) > E(fj(ûN ′ , u−N ′);uj).
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In addition, we introduce properties related to fairness. “Anonymity”
requires that the name of each agent does not matter. “Strong symmetry”
requires that agents with the same utility functions have the same marginal
distributions. “Symmetry” requires that agents with the same utility func-
tions obtain the same expected utilities. Note that anonymity implies strong
symmetry, and strong symmetry implies symmetry.

Definition. Let Πn be the class of all permutations on N . For all u ∈ Un

and all π ∈ Πn, let uπ = (uπ(i))i∈N . A probabilistic rule f satisfies anonymity
if for all u ∈ Un, all π ∈ Πn, and all i ∈ N , fπ(i)(u) = fi(uπ).

Definition. A probabilistic rule f satisfies strong symmetry if for all u ∈ Un

and all i, j ∈ N such that ui = uj , fi(u) = fj(u).

Definition. A probabilistic rule f satisfies symmetry if for all u ∈ Un and
all i, j ∈ N such that ui = uj , E(fi(u);ui) = E(fj(u);uj).

We define the uniform probabilistic rule. The uniform probabilistic rule
assigns each utility profile the marginal distribution profile that depends
on the common bound. Let λ : Un → R+ be the function such that
if

∑
i∈N b(ui) ≥ k,

∑
i∈N min{b(ui), λ(u)} = k, and if

∑
i∈N b(ui) < k,∑

i∈N max{b(ui), λ(u)} = k. Let xλ : Un → K be the function such
that if

∑
i∈N b(ui) ≥ k, λ(u) ∈ [xλ(u), xλ(u) + 1) and if

∑
i∈N b(ui) < k,

λ(u) ∈ (xλ(u), xλ(u) + 1].

Definition (Sasaki, 1997). The uniform probabilistic rule is the probabilis-
tic rule f such that for all u ∈ Un, the following holds:
(i) If

∑
i∈N b(ui) > k (excess demand) , then for all i ∈ N ,

b(ui) ≤ xλ(u) =⇒ fi(u)(b(ui)) = 1, and

b(ui) ≥ xλ(u) + 1 =⇒
{

fi(u)(xλ(u) + 1) = λ(u) − xλ(u)
fi(u)(xλ(u)) = 1 − (λ(u) − xλ(u)).

(ii) If
∑

i∈N b(ui) = k (balanced demand), then for all i ∈ N , fi(u)(b(ui)) =
1.
(iii) If

∑
i∈N b(ui) < k (excess supply), then for all i ∈ N ,

b(ui) ≥ xλ(u) + 1 =⇒ fi(u)(b(ui)) = 1, and

b(ui) ≤ xλ(u) =⇒
{

fi(u)(xλ(u) + 1) = λ(u) − xλ(u)
fi(u)(xλ(u)) = 1 − (λ(u) − xλ(u)).

Example 3 below provides illustrations of the uniform probabilistic rule.

Example 3 (Sasaki, 1997). (i) Let N = {1, 2, 3, 4} and k = 15. Assume
b(u1) = 1, b(u2) = b(u3) = 2, and b(u4) = 5. In this case,

∑
i∈N b(ui) < k.

Calculate λ = 10
3 . The uniform probabilistic rule f induces for all i ∈
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{2, 3, 4}, fi(u)(3) = 2
3 , fi(u)(4) = 1

3 , and f4(u)(5) = 1.
(ii) Let N = {1, 2, 3, 4} and k = 12. Assume b(u1) = 4, b(u2) = 2,
b(u3) = 10, and b(u4) = 3. In this case,

∑
i∈N b(ui) > k. Calculate λ = 7

2 .
The uniform probabilistic rule f induces for all i ∈ {1, 3}, fi(u)(3) = 1

2 ,
fi(u)(4) = 1

2 , f2(u)(2) = 1, and f4(u)(3) = 1.

In the previous investigation of the probabilistic model, Sasaki (1997)
shows that the uniform probabilistic rule is the only rule satisfying strategy-
proofness, Pareto-efficiency, and anonymity. Kureishi (2000) weakens anonymity
to symmetry and shows the uniqueness of the uniform probabilistic rule sat-
isfying the properties. These results for the probabilistic model are parallel
to those of Sprumont (1991) and Ching (1994), respectively, who originally
studied a deterministic model in which the objects are perfectly divisible.

In the deterministic model with a perfectly divisible object, Serizawa
(2006) recently showed that the uniform rule is the only rule satisfying ef-
fectively pairwise strategy-proofness, respect for unanimity, and symmetry.
Thus, it is an interesting question whether a result parallel to Serizawa
(2006) also holds in the probabilistic model. However, Example 4 below
illustrates that Serizawa’s uniqueness result does not hold in the probabilis-
tic model even though effectively pairwise strategy-proofness and symmetry
are respectively strengthened to coalitional strategy-proofness and strong
symmetry.

Example 4. Let n = 3 and k = 2. We define the probabilistic rule f as
below:
If u ∈ U3 is such that for one agent, say i, b(ui) = 1 and for any other agent
j ∈ N\{i}, b(uj) = 0, then, (i) in the case of ui(1) − ui(0) ≥ ui(1) − ui(2),{

fi(u)(1) = 18
20 , fi(u)(2) = 2

20

fj(u)(0) = 11
20 , fj(u)(1) = 9

20

and (ii) in the case of ui(1) − ui(0) < ui(1) − ui(2),{
fi(u)(0) = 2

20 , fi(u)(1) = 18
20

fj(u)(0) = 9
20 , fj(u)(1) = 11

20 .

Otherwise, f induces the same marginal distribution profile as the uniform
probabilistic rule.

Then, although the probabilistic rule f satisfy coalitional strategy-proofness,
respect for unanimity, and strong symmetry, it is not the uniform probabilis-
tic rule.

“Peaks-onlyness” requires that the outcome marginal distribution profile
depends only on the peak profile. If a rule satisfies peaks-onlyness, we can
reduce the necessary information for a planner to the peak profile. “Con-
tinuity” requires that small changes in the utility profile cause only small
changes in the outcome allocation.
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Definition. A probabilistic rule f satisfies peaks-onlyness if for all u, u′ ∈
Un such that for all i ∈ N , b(ui) = b(u′

i), f(u) = f(u′).

Definition. A probabilistic rule f satisfies continuity if for all u ∈ Un and
any ε > 0, there exists δ > 0 such that for all u′ ∈ Un,

[∀i ∈ N,∀x ∈ K, ‖ ui(x) − u′
i(x) ‖< δ]

=⇒[∀i ∈ N,∀x ∈ K, ‖ fi(u)(x) − fi(u′)(x) ‖< ε].

In the deterministic model with a perfectly divisible object, these two
properties are standard and are often obtained from strategy-proofness with
auxiliary properties. However, note that the rule in Example 4 does not sat-
isfy peaks-onlyness or continuity, even though it satisfies coalitional strategy-
proofness, respect for unanimity, and strong symmetry. Thus, in the prob-
abilistic model, these three properties do not imply peak-onlyness or conti-
nuity.

In this model, peaks-onlyness implies continuity.

Fact 2. If a probabilistic rule f satisfies peaks-onlyness, then it satisfies
continuity.

The proof of Fact 2 is in the Appendix.
Example 5 below illustrates that even though we impose peaks-onlyness

as well as the previous three properties, we cannot characterize the uniform
probabilistic rule as a unique rule satisfying such properties. In addition,
owing to Fact 2, adding continuity with these properties has no effect.

Example 5. Let n = 4 and k = 2. We define a probabilistic rule f as
below:
If u ∈ U4 is such that for one agent, say i, b(ui) = 0, and for any other agent
j ∈ N\{i}, b(uj) ≥ 1, then{

fi(u)(0) = 27
30 , fi(u)(1) = 3

30

fj(u)(0) = 11
30 , fj(u)(1) = 19

30 .

Otherwise, f induces the same marginal distribution profile as the uniform
probabilistic rule.

Then, althoug the rule f satisfies the four properties; coalitional strategy-
proofness, respect for unanimity, strong symmetry, and peaks-onlyness, it is
not the uniform probabilistic rule.

In these probabilistic allotment economies, to characterize the uniform
probabilistic rule, we need a stronger efficiency property than respect for
unanimity. Our main characterization employs same-sideness instead of re-
spect for unanimity.

9



Theorem. A probabilistic rule f satisfies coalitional strategy-proofness, same-
sideness and strong symmetry if and only if it is the uniform probabilistic
rule.

Since same-sideness is weaker than Pareto-efficiency in the probabilistic
model, this characterization is independent from Sasaki (1997), Kureishi
(2000), and Ehlers and Klaus (2003).

Although coalitional strategy-proofness is stronger than strategy-proofness,
we emphasize that coalitional strategy-proofness and same-sideness do not
imply at most binary. This fact is illustrated by Example 6 below.

Example 6. Let n = 3 and k = 2. We define the probabilistic rule f as
below:
For all u ∈ U3, if b(u1) = 2 and b(u2) = b(u3) ≥ 1,{

f1(u)(0) = 1
15 , f1(u)(2) = 14

15

f2(u)(0) = f3(u)(0) = 14
15 , f2(u)(1) = f3(u)(1) = 1

15 ,

and if b(u1) = 1 and b(u2) = b(u3) ≥ 1,{
f1(u)(0) = 1

15 , f1(u)(1) = 14
15

f2(u)(0) = f3(u)(0) = 7
15 , f2(u)(1) = f3(u)(1) = 8

15 .

Otherwise, f induces the same marginal distribution profile as the uniform
probabilistic rule.

Then, the rule f satisfies coalitional strategy-proofness and same-sideness,
even though it violates at most binary.

3 Proof of the Theorem

This section is devoted to the proof of the theorem in Section 2. It is easy
to check the if part of the theorem. Here, we show the only if part. First
we introduce three lemmas.

Lemma 1. For all u ∈ Un, if p, p′ ∈ P are both Pareto-efficient with respect
to u, and for all i ∈ N , E(pi;ui) = E(p′i;ui), then p = p′.

Proof of Lemma 1. Let u ∈ Un, let p, p′ ∈ P be Pareto-efficient with respect
to u, and let E(pi;ui) = E(p′i;ui) for all i ∈ N . We show p = p′.

Suppose, on the contrary, that there exists i ∈ N such that pi �= p′i, and
we derive a contradiction.

Since both p and p′ are Pareto-efficient with respect to u, Fact 1 implies
that p and p′ satisfy same-sideness with respect to u and at most binary.

From at most binary, there exist x ∈ K such that pi(x) > 0 and pi(x) +
pi(x + 1) = 1, and y ∈ K such that p′i(y) > 0 and p′i(y) + p′i(y + 1) = 1.15

15In the case of x = k, pi(x) = 1. Similarly, in the case of y = k, pi(y) = 1.
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Case 1: x �= y.

Without loss of generality, assume x > y. If
∑

i∈N b(ui) ≥ k, by same-
sideness, y < y + 1 ≤ x < x + 1 ≤ b(ui).16 Then by single-peakedness and
p′i(y) > 0, E(pi;ui) = pi(x) · u(x) + pi(x + 1) · u(x + 1) > p′i(y) · u(y) +
p′i(y + 1) · u(y + 1) = E(pi;ui). It is a contradiction to the assumption
E(pi;ui) = E(p′i;ui).

If
∑

i∈N b(ui) < k, by same-sideness, b(ui) ≤ y < y + 1 ≤ x. Then by
single-peakedness and p′i(y) > 0, E(pi;ui) = pi(x)·u(x)+pi(x+1)·u(x+1) <
p′i(y) · u(y) + p′i(y + 1) · u(y + 1) = E(p′i;ui). It is a contradiction to the
assumption E(pi;ui) = E(p′i;ui).

Case 2: x = y.

Without loss of generality, assume pi(x) > p′i(x). If
∑

i∈N b(ui) ≥ k, then
by same-sideness and single-peakedness, E(pi;ui) = pi(x) · u(x) + pi(x + 1) ·
u(x+ 1) < p′i(x) ·u(x)+ p′i(x+ 1) ·u(x+ 1) = E(p′i;ui). It is a contradiction
to the assumption E(pi;ui) = E(p′i;ui).

If
∑

i∈N b(ui) < k, then by same-sideness and single-peakedness, E(pi;ui) =
pi(x) ·u(x)+pi(x+1) ·u(x+1) > p′i(y) ·u(y)+p′i(y+1) ·u(y+1) = E(p′i;ui).
It is a contradiction to the assumption E(pi;ui) = E(p′i;ui).

From Cases 1 and 2, we have p = p′.

Lemma 2. Let f be a rule satisfying coalitional strategy-proofness and
symmetry. For all u ∈ Un such that u1 = · · · = un and all u′ ∈ N such that
for all i ∈ N , b(u′

i) = b(ui), if f(u) is Pareto-efficient with respect to u, then
f(u) = f(u′).

Proof of Lemma 2. Let u, u′ ∈ Un be such that u1 = · · · = un, for all
i ∈ N , b(u′

i) = b(ui), and f(u) is Pareto-efficient with respect to u. We
show f(u) = f(u′) by mathematical induction.

Step A: If u′
1 = · · · = u′

n, then f(u) = f(u′).

By symmetry, E(f1(u);u1) = · · · = E(fn(u);un) and E(f1(u′);u′
1) =

· · · = E(fn(u′);u′
n). Since f(u) is Pareto-efficient with respect to u, Fact

1 implies that f(u) satisfies same-sideness with respect to u and at most
binary. Since b(ui) = b(u′

i) for all i ∈ N , f(u) also satisfies same-sideness
with respect to u′. Thus, f(u) is Pareto-efficient with respect to u′.

If for some j ∈ N , E(fj(u);u′
j) < E(fj(u′);u′

j), then by symmetry, for
all i ∈ N , E(fi(u);u′

i) < E(fi(u′);u′
i). It contradicts Pareto-efficiency of

f(u) with respect to u′. Thus, for all i ∈ N , E(fi(u);u′
i) ≥ E(fi(u′);u′

i).
If for some j ∈ N , E(fj(u);u′

j) > E(fj(u′);u′
j), then by symmetry, for

all i ∈ N , E(fi(u);u′
i) > E(fi(u′);u′

i). Then, the coalition of all agents N

16If x = b(ui), then same-sideness implies pi(x) = 1 and pi(x + 1) = 0 even though
b(ui) < x + 1. Thus, the proof still works.
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with profile u′ manipulates the rule via u and increases the utilities of all
members. It is a contradiction to coalitional strategy-proofness.

Therefore, for all i ∈ N , E(fi(u);u′
i) = E(fi(u′);u′

i). By Lemma 1,
f(u) = f(u′).

Step B: Let h ∈ N . Assume that if u′
1 = · · · = u′

h, f(u) = f(u′). Then, if
u′

1 = · · · = u′
h−1, f(u) = f(u′).

Let u′ ∈ Un be such that u′
1 = · · · = u′

h−1. Then by symmetry,
E(f1(u′);u′

1) = · · · = E(fh−1(u′);u′
h−1). Thus, if for some i ∈ {1, · · · , h−1},

E(fi(u);u′
i) > E(fi(u′);u′

i), then for all i ∈ {1, · · · , h − 1}, E(fi(u);u′
i) >

E(fi(u′);u′
i). Then, the coalition {1, · · · , h − 1} with u′

{1,··· ,h−1} manipu-
lates the rule via û{1,··· ,h−1} such that for all i ∈ {1, · · · , h − 1}, ûi = u′

h.
Then, any i ∈ {1, · · · , h − 1} obtains fi(u) and increases her utility by the
induction hypothesis. It is a contradiction to coalitional strategy-proofness.
Therefore, for all i ∈ {1, · · · , h − 1}, E(fi(u);u′

i) ≤ E(fi(u′);u′
i).

If, for some j ∈ {h, · · · , n}, E(fj(u);u′
j) > E(fj(u′);u′

j), then j with
u′

j manipulates the rule via ûj = u′
1 and obtains fj(u) by the induction

hypothesis. It is a contradiction to strategy-proofness. Thus, for all j ∈
{h, · · · , n}, E(fj(u);u′

j) ≤ E(fj(u′);u′
j).

Therefore, for all i ∈ N , E(fi(u);u′
i) ≤ E(fi(u′);u′

i). Similarly to Step
A, We can show that f(u) is Pareto-efficient with respect to u′. Thus, for all
i ∈ N , E(fi(u);u′

i) = E(fi(u′);u′
i). Therefore, by Lemma 1, f(u) = f(u′).

From Step A and B, we have the statement of the lemma.

Lemma 3. If f satisfies same-sideness, then it respects unanimity.

Proof of Lemma 3. By same-sideness,
∑

i∈N b(ui) = k implies that for all
i ∈ N , fi(u)([0, b(ui)]) = 1 and fi(u)([b(ui), k]) = 1. Thus for all i ∈ N ,
fi(u)(b(ui)) = 1.

We prove the theorem by five steps. Hereafter, let f be a rule satisfying
coalitional strategy-proofness, same-sideness, and strong symmetry.

Step 1. For all u ∈ Un such that
∑

i∈N b(ui) = k and all i ∈ N , fi(u)(b(ui)) =
1.

Proof of Step 1. By Lemma 3, the statement is directly implied.

Step 2. Let x ∈ K be such that k
n ∈ [x, x + 1). Let u ∈ Un be such that

for all i ∈ N , b(ui) = x. Then for all i ∈ N , fi(u)(x) = x + 1 − k
n and

fi(u)(x + 1) = k
n − x.

Proof of Step 2. For all z ∈ K such that x + 2 ≤ z ≤ k , let rz(ui) ∈ R be
such that rz(ui) · [ui(x)−ui(x+1)] = ui(x+1)−ui(z). Note that by single-
peakedness of ui with b(ui) = x, for all z ∈ K such that x + 2 ≤ z ≤ k − 1,

12



rz(ui) < rz+1(ui). By single-peakedness and risk-averseness, we also have
that for all z ∈ K such that x + 2 ≤ z ≤ k − 1,

0 < rz(ui) − [z − (x + 1)] < rz+1(ui) − [(z + 1) − (x + 1)]. (1)

[Figure 1 enters here.]

Let p ∈ P be such that for all i ∈ N , pi(x) = x + 1 − k
n and pi(x + 1) =

k
n − x. We show f(u) = p.

Case A: n · x = k.

By Step 1, for all i ∈ N , fi(u)(x) = 1 and fi(u)(x + 1) = 0. Thus the
statement holds.

Case B: n · x < k

Step B-1. First, we consider the case where u1 = · · · = un. By same-
sideness, for all i ∈ N , fi(u)([x, k]) = 1. Let u′ ∈ Un be such that b(u′

1) =
· · · = b(u′

k−nx) = x + 1 and b(u′
k−nx+1) = · · · = b(u′

n) = x. Then, we have∑
i∈N b(u′

i) = k. Thus, by Step 1, for all i ∈ {1, · · · , k−nx}, fi(u′)(x+1) = 1
and for all for all i ∈ {k − nx + 1, · · · , k}, fi(u′)(x) = 1.

Thus, coalitional strategy-proofness and symmetry imply that for all
i ∈ {1, · · · , k − nx}, E(fi(u);ui) ≥ E(fi(u′);ui) = ui(x + 1). By symmetry,
for all i ∈ N , E(fi(u);ui) ≥ ui(x + 1). Note that

E(fi(u);ui) ≥ ui(x + 1)

⇐⇒
∑

z∈[x,k]

fi(u)(z) · ui(z) ≥ ui(x + 1) (by same-sideness)

⇐⇒
∑

z∈[x,k]

fi(u)(z) · [ui(z) − ui(x + 1)] ≥ 0

⇐⇒ fi(u)(x) · [ui(x) − ui(x + 1)]

−
∑

z∈[x+2,k]

fi(u)(z) · [ui(x + 1) − ui(z)] ≥ 0. (2)

By using the notation r, we rewrite (2) as: for all i ∈ N ,

fi(u)(x) −
∑

z∈[x+2,k]

fi(u)(z) · rz(ui) ≥ 0. (3)

We show that for all i ∈ N , fi(u)([x+2, k]) = 0 by mathematical induction.

Step B-1-1: For all i ∈ N , fi(u)(k) = 0.
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Suppose, on the contrary, for some j ∈ N , fi(u)(k) > 0. Then, by
strong symmetry and u1 = · · · un, for all i ∈ N , fi(u)(k) > 0. We derive a
contradiction.

Let û ∈ Un be such that û1 = · · · = ûn, for all i ∈ N , b(ûi) = x, and
rx+2(ûi) > 1

fi(u)(k) . By strong symmetry, f1(û) = · · · = fn(û).
Suppose for some j ∈ N , fj(û)([x + 2, k]) ≥ fj(u)(k). Then,

fj(û)(x) −
∑

z∈[x+2,k]

fj(û)(z) · rz(ûj)

≤ fj(û)(x) −
∑

z∈[x+2,k]

fj(û)(z) · rx+2(ûj)

(by rx+2(ûj) ≤ rz(ûj) for all z ∈ [x + 2, k])
= fj(û)(x) − fj(û)([x + 2, k]) · rx+2(ûj)
≤ fj(û)(x) − fj(u)(k) · rx+2(ûj)

< fj(û)(x) − 1 (by rx+2(ûj) >
1

fj(u)(k)
)

≤ 0.

It is a contradiction since û ∈ Un also has to satisfy (3). Thus, for all i ∈ N ,∑
z∈[x+2,k]

fi(û)(z) < fi(u)(k). (4)

By feasibility,
∑

i∈N

∑
z∈K fi(û)(z) · z =

∑
i∈N

∑
z∈K fi(u)(z) · z = k.

Thus, by strong symmetry, for all i ∈ N ,

∑
z∈K

fi(û)(z) · z =
∑
z∈K

fi(u)(z) · z =
k

n
.

Then, by same-sideness,
∑

z∈[x,k] fi(û)(z) · z =
∑

z∈[x,k] fi(u)(z) · z. Note
that ∑

z∈[x,k]

fi(û)(z) · z =
∑

z∈[x,k]

fi(u)(z) · z

⇐⇒
∑

z∈[x,k]\{x+1}
[fi(û)(z) − fi(u)(z)] · z = −[fi(û)(x + 1) − fi(u)(x + 1)] · (x + 1)

⇐⇒
∑

z∈[x,k]\{x+1}
[fi(û)(z) − fi(u)(z)] · z

= −{[1 −
∑

z∈[x,k]\{x+1}
fi(û)(z)] − [1 −

∑
z∈[x,k]\{x+1}

fi(u)(z)]} · (x + 1)

⇐⇒
∑

z∈[x,k]\{x+1}
[fi(û)(z) − fi(u)(z)] · z
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= {
∑

z∈[x,k]\{x+1}
fi(û)(z) −

∑
z∈[x,k]\{x+1}

fi(u)(z)} · (x + 1)

⇐⇒
∑

z∈[x,k]\{x+1}
[fi(û)(z) − fi(u)(z)] · [z − (x + 1)] = 0

⇐⇒
∑

z∈[x+2,k]

[fi(û)(z) − fi(u)(z)] · [z − (x + 1)] = fi(û)(x) − fi(u)(x). (5)

Thus,

E(fi(û);ui) − E(fi(u);ui)

=
∑

z∈[x,k]\{x+1}
[fi(û)(z) − fi(u)(z)] · ui(z)

+ {[1 −
∑

z∈[x,k]\{x+1}
fi(û)(z)] − [(1 −

∑
z∈[x,k]\{x+1}

fi(u)(z)]} · ui(x + 1)

=
∑

z∈[x,k]\{x+1}
[fi(û)(z) − fi(u)(z)] · [ui(z) − ui(x + 1)]

= {
∑

z∈[x+2,k]

[fi(û)(z) − fi(u)(z)] · [z − (x + 1)]} · [ui(x) − ui(x + 1)]

+
∑

z∈[x+2,k]

[fi(û)(z) − fi(u)(z)] · [ui(z) − ui(x + 1)] (by (5) )

= {
∑

z∈[x+2,k]

[fi(û)(z) − fi(u)(z)] · [z − (x + 1)]} · [ui(x) − ui(x + 1)]

+
∑

z∈[x+2,k]

[fi(û)(z) − fi(u)(z)] · {−rz(ui) · [ui(x) − ui(x + 1)]}

(by the definition of r)

= [ui(x) − ui(x + 1)] · {
∑

z∈[x+2,k]

[fi(û)(z) − fi(u)(z)] · [z − (x + 1) − rz(ui)]}

= [ui(x) − ui(x + 1)]

· {
∑

z∈[x+2,k]

[fi(u)(z) − fi(û)(z)] · [rz(ui) − {z − (x + 1)}]} (6)

Note that ∑
z∈[x+2,k]

[fi(u)(z) − fi(û)(z)] · [rz(ui) − {z − (x + 1)}]

= [fi(u)(k) − fi(û)(k)] · [rk(ui) − {k − (x + 1)}]
+

∑
z∈[x+2,k−1]

[fi(u)(z) − fi(û)(z)] · [rz(ui) − {z − (x + 1)}]

≥ [fi(u)(k) − fi(û)(k)] · [rk(ui) − {k − (x + 1)}]
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−
∑

z∈[x+2,k−1]

fi(û)(z) · [rz(ui) − {z − (x + 1)}]

(by (1), for all z ∈ [x + 2, k − 1], rz(ui) − {z − (x + 1)} > 0)
≥ [fi(u)(k) − fi(û)(k)] · [rk(ui) − {k − (x + 1)}]

−
∑

z∈[x+2,k−1]

fi(û)(z) · [rk(ui) − {k − (x + 1)}] (by (1))

= [fi(u)(k) −
∑

z∈[x+2,k]

fi(û)(z)] · [rk(ui) − {k − (x + 1)}]

> 0 (by (4) and (1).) (7)

Then (6) and (7) together imply that for all i ∈ N , E(fi(û);ui)−E(fi(u);ui) >
0. It is a contradiction to coalitional strategy-proofness. Thus, for all i ∈ N ,
fi(u)(k) = 0.

Step B-1-2. Let y ∈ K be such that y ≥ x + 2. Assume that for all i ∈ N ,
fi(u)([y + 1, k]) = 0. Then, for all i ∈ N , fi(u)([y, k]) = 0.

By same-sideness and the induction hypothesis, for all i ∈ N , fi([x, y]) =
1. Then we apply a similar argument to Step B-1-1 by replacing k with y,
and we have that for all i ∈ N , fi(u)([y, k]) = 0.

Now, we have for all u ∈ Un such that u1 = · · · = un and b(ui) = x,
fi(u)([x, x + 1]) = 1. Symmetry and feasibility imply that for all i ∈ N ,
fi(u)(x) = x + 1 − k

n and fi(u)(x + 1) = k
n − x, i.e., f(u) = p.

Step B-2. Note that for all u ∈ Un such that for all i ∈ N , b(ui) = x, p is
Pareto-efficient with respect to u. Thus by Lemma 2 and Step B-1, for all
u ∈ Un such that for all i ∈ N , b(ui) = x, f(u) = p. We finish Case B.

From Cases A and B, the statement is established.

Step 3. Let x ∈ K be such that k
n ∈ [x, x + 1). Let u ∈ Un be such

that b(u1) = · · · = b(un). Then for all i ∈ N , fi(u)(x) = x + 1 − k
n and

fi(u)(x + 1) = k
n − x.

Proof of Step 3. Step A. First, we consider the case where u1 = · · · = un.
Let p ∈ P be such that for all i ∈ N , pi(x) = x + 1 − k

n and pi(x + 1) =
k
n −x. Then, p satisfies same-sideness with respect to u and at most binary.
Thus, it is Pareto-efficient with respect to u.

Let û ∈ Un be such that for all i ∈ N , b(ûi) = x. Then, by Step
2, f(û) = p. Since p is Pareto-efficient with respect to u, and symmetry
implies E(f1(u);u1) = · · · = E(fn(u);un), it follows that for all i ∈ N ,
E(fi(û);ui) = E(pi;ui) ≥ E(fi(u);ui). If E(fi(û);ui) > E(fi(u);ui), it
is a contradiction to coalitional strategy-proofness. Thus, for all i ∈ N ,
E(fi(u);ui) = E(fi(û);ui) = E(pi, ui).
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Therefore, by Lemma 1, f(u) = p.

Step B. From Lemma 2 and Step A, for all u ∈ Un such that b(u1) = · · · =
b(un), we have f(u) = p.

Step 4. Let x ∈ K be such that k
n ∈ [x, x + 1). Let u ∈ Un be such that

for all i ∈ N , b(ui) ≤ x, or for all i ∈ N , b(ui) ≥ x + 1. Then for all i ∈ N ,
fi(u)(x) = x + 1 − k

n and fi(u)(x + 1) = k
n − x.

Proof of Step 4. Assume that for all i ∈ N , b(ui) ≤ x, since the other
case can be treated symmetrically. Let p ∈ P be such that for all i ∈ N ,
pi(x) = x+1− k

n and pi(x+1) = k
n −x. We prove f(u) = p by mathematical

induction.

Step A: If u1 = · · · = un, then f(u) = p.

The statement is from Step 3.

Step B: Let h ∈ N . Assume that for all u′ ∈ Un such that for all u′
1 =

· · · = u′
h, we have f(u) = p. Then, if u is such that u1 = · · · = uh−1, we

have f(u) = p.

Let u1 = · · · uh−1. By symmetry, E(f1(u);u1) = · · · = E(fh−1(u);uh−1).
Thus, if, for some j ∈ {1, · · · , h − 1}, E(pj(u);uj) > E(fj(u);uj), then
for all i ∈ {1, · · · , h − 1}, E(pi(u);ui) > E(fi(u);ui). Then, coalition
{1, · · · , h−1} with u{1,··· ,h−1} manipulates the rule via û{1,··· ,h−1} such that
for all i ∈ {1, · · · , h − 1}, ûi = uh, and any i ∈ {1, · · · , h − 1} obtains
pi by the induction hypothesis and increases her utility. It is a contradic-
tion to coalitional strategy-proofness. Therefore, for all i ∈ {1, · · · , h − 1},
E(pi;ui) ≤ E(fi(u);ui).

On the other hand, if, for some j ∈ {h, · · · , n}, E(pj(u);uj) > E(fj(u′);uj),
then j with uj manipulates the rule via ûj = u1. Then, j obtains pj by in-
duction hypothesis and increases her utility. It is a contradiction to strategy-
proofness. Therefore, for all j ∈ {h, · · · , n}, E(pj ;uj) ≤ E(fj(u);uj).

Thus, for all i ∈ N , E(pi;ui) ≤ E(fi(u);ui). Since p satisfies same-
sideness with respect to u and at most binary, Fact 1 implies that p is Pareto-
efficient with respect to u. Therefore, for all i ∈ N , E(fi(u);u′

i) = E(pi;ui).
By Lemma 1, f(u) = p.

By Step A and Step B, we have the statement of this step.

Step 5. (i) For all u ∈ Un, if
∑

i∈N b(ui) < k, then for all i ∈ N such that
b(ui) ≥ xλ(u)+1, fi(u)(b(ui)) = 1 and for all i ∈ N such that b(ui) ≤ xλ(u),
fi(u)(xλ(u) + 1) = λ(u) − xλ(u) and fi(u)(xλ(u)) = (xλ(u) + 1) − λ(u).
(ii) For all u ∈ Un, if

∑
i∈N b(ui) > k, then for all i ∈ N such that b(ui) ≤

xλ(u), fi(u)(b(ui)) = 1 and for all i ∈ N such that b(ui) ≥ xλ(u) + 1,
fi(u)(xλ(u) + 1) = λ(u) − xλ(u) and fi(u)(xλ(u)) = (xλ(u) + 1) − λ(u).
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Proof of Step 5. Given u ∈ Un, let N(u) = {i ∈ N : b(ui) ≥ xλ(u) + 1}
and N(u) = {i ∈ N : b(ui) ≤ xλ(u)}. In addition, let n(u) be the number
of agents in N(u), and n(u) be the number of agents in N(u). Note that
N(u) ∪ N(u) = N .

Without loss of generality, assume u ∈ Un is such that
∑

i∈N b(ui) <
k, since the other case is symmetrically proved. We prove this step by
mathematical induction on n(u).

Step A: For all u ∈ Un, if n(u) = 0, then for all i ∈ N(u) = N , fi(u)(xλ(u)+
1) = λ(u) − xλ(u) and fi(u)(xλ(u)) = (xλ(u) + 1) − λ(u).

In this case, λ(u) = k
n . Thus by Step 4, the statement is directly implied.

Step B: Let l ∈ N\{0, n}.17 Assume that for all u ∈ Un, if n(u) ≤ l − 1,
then for all i ∈ N(u), fi(u)(b(ui)) = 1 and for all i ∈ N(u), fi(u)(xλ(u)) =
xλ(u) + 1 − λ(u) and fi(u)(xλ(u) + 1) = λ(u) − xλ(u). Then for all u ∈
Un, if n(u) = l, for all i ∈ N(u), fi(u)(b(ui)) = 1 and for all i ∈ N(u),
fi(u)(xλ(u)) = xλ(u) + 1 − λ(u) and fi(u)(xλ(u) + 1) = λ(u) − xλ(u).

First, we show that for all i ∈ N(u), fi(u)(b(ui)) = 1. Here, we start a
new mathematical induction within Step B. Note that by same-sideness, we
have that for all i ∈ N(u), fi(u)([b(ui), k]) = 1.

Step B-i: For all i ∈ N(u), fi(u)(k) = 0.

Suppose, on the contrary, that for some i ∈ N(u), fi(u)(k) > 0. We
derive a contradiction.

Let u′
i ∈ U be such that b(u′

i) = 0. Then, fi(u′
i, u−i)(xλ(u′

i, u−i)) =
xλ(u′

i, u−i) + 1 − λ(u′
i, u−i) and fi(u′

i, u−i)(xλ(u′
i, u−i) + 1) = λ(u′

i, u−i) −
xλ(u′

i, u−i) by the induction hypothesis of Step B. Note that by the definition
of xλ, b(ui) ≥ xλ(u′

i, u−i) + 1.18

[Figure 2 enters here.]

Since fi(u)(k) > 0, there is ûi ∈ U such that b(ûi) = b(ui) and ûi(0) >
{1−fi(u)(k)}· ûi(b(ui))+fi(u)(k) · ûi(b(ui)+1). Suppose fi(ûi, u−i)([b(ui)+
1, k]) ≥ fi(u)(k). Then, by same-sideness, we have that

fi(ûi, u−i)(b(ui)) ≤ 1 − fi(u)(k). (8)

17We need not consider the case of l = n since if
P

i∈N b(ui) < k, n(u) cannot be equal
to n.

18Suppose, on the contrary, that b(ui) ≤ xλ(u′
i, u−i). Then, xλ(u′

i, u−i) = xλ(u) by
the definition of xλ in the case

P
i∈N b(ui) < k. This contradicts the assumption that

b(ui) ≥ xλ(u) + 1. Thus, b(ui) ≥ xλ(u′
i, u−i) + 1.
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Then,

E(fi(u′
i, u−i); ûi)

= fi(u′
i, u−i)(xλ(u′

i, u−i)) · ûi(xλ(u′
i, u−i))

+ fi(u′
i, u−i)(xλ(u′

i, u−i) + 1) · ûi(xλ(u′
i, u−i) + 1)

> ûi(0) (by b(ui) ≥ xλ(u′
i, u−i) + 1 and single-peakedness)

> {1 − fi(u)(k)} · ûi(b(ui)) + fi(u)(k) · ûi(b(ui) + 1)
(by the definition of ûi)

≥ fi(ûi, u−i)(b(ui)) · ûi(b(ui)) + fi(ûi, u−i)([b(ui) + 1, k]) · ûi(b(ui) + 1)
(by (8) and ûi(b(ui)) > ûi(b(ui) + 1))

≥ fi(ûi, u−i)(b(ui)) · ûi(b(ui)) +
∑

z∈[b(ui)+1,k]

fi(ûi, u−i)(z) · ûi(z)

(by single-peakedness)
= E(fi(ûi, u−i); ûi)

It is a contradiction to strategy-proofness. Thus

fi(ûi, u−i)([b(ui) + 1, k]) < fi(u)(k). (9)

Then,

E(fi(ûi, u−i);ui)

= fi(ûi, u−i)(b(ui)) · ui(b(ui)) +
∑

z∈[b(ui)+1,k]

fi(ûi, u−i)(z) · ui(z)

≥ fi(ûi, u−i)(b(ui)) · ui(b(ui)) + fi(ûi, u−i)([b(ui) + 1, k]) · ui(k)
(by single-peakedness)

> {1 − fi(u)(k)} · ui(b(ui)) + fi(u)(k) · ui(k) (by (9))

≥
∑

z∈[b(ui),k−1]

fi(u)(z) · ui(z) + fi(u)(k) · ui(k) (by single-peakedness)

= E(fi(u);ui).

It is a contradiction to strategy-proofness. Thus, we have fi(u)(k) = 0 for
all i ∈ N(u).

Step B-ii: Let x ∈ K be such that b(ui) + 1 ≤ x ≤ k − 1. Assume that for
all i ∈ N(u), fi(u)([x + 1, k]) = 0. Then for all i ∈ N(u), fi(u)([x, k]) = 0.

Suppose, on the contrary, that for some i ∈ N(u), fi(u)([x, k]) > 0,
and we derive a contradiction. By fi(u)([x + 1, k]) = 0 (induction hypothe-
sis), fi(u)([b(ui), x]) > 0. Then we apply a similar argument Step B-ii by
replacing k with x, and we have that for all i ∈ N , fi(u)([x, k]) = 0.
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Now, we have that for all i ∈ N(u), fi(u)(b(ui)) = 1. Next, we show
that for all i ∈ N(u), fi(u)(xλ(u)) = xλ(u)+1−λ(u) and fi(u)(xλ(u)+1) =
λ(u) − xλ(u).

Let k′ = k − ∑
i∈N(u) b(ui). Since for all i ∈ N(u), fi(u)(b(ui)) = 1,∑

i∈N(u)

∑
xi∈K fi(u)(xi)xi = k′. Note that λ(u) = k′

n(u) and for all i ∈ N(u),
b(ui) < λ(u).

Then we can use a similar argument to Step 4 by replacing k with k′

and k
n by k′

n(u) . We omit the detailed proof.

By Steps A and B, we have for all i ∈ N such that b(ui) ≥ xλ(u) + 1,
fi(u)(b(ui)) = 1 and for all i ∈ N such that b(ui) ≤ xλ(u), fi(u)(xλ(u)+1) =
λ(u) − xλ(u) and fi(u)(xλ(u)) = (xλ(u) + 1) − λ(u).

Finally, by Step 1 and Step 5, a probabilistic rule satisfies coalitional
strategy-proofness, same-sideness, and strong symmetry if and only if it is
the uniform probabilistic rule.

4 Concluding Remarks

We have established that a rule satisfies coalitional strategy-proofness, same-
sideness, and strong symmetry if and only if it is the uniform probabilistic
rule. This result implies that the uniform probabilistic rule retains a very
important role in the probabilistic model of homogeneous indivisible objects
when a planner wishes to coalitionally strategy-proof property, similarly to
the consequence in the deterministic model. We also show, by constructing
examples, that if same-sideness is replaced by respect for unanimity, the
statement does not hold even with additional requirements of peaks-onlyness
and continuity. This fact emphasizes the difference between the probabilistic
model and the deterministic model. We hope that this paper will encourage
further studies on the similarities and differences of these two models.

Appendix

Proof of Fact 2. We introduce a lemma at first, and then prove the fact.

Lemma 4. For all u, u′ ∈ Un and all i ∈ N , if b(ui) �= b(u′
i), then there

exists x ∈ K such that ‖ ui(x) − u′
i(x) ‖> [ui(b(ui)) − ui(b(u′

i))]/2.

Proof of Lemma 4. Let u, u′ ∈ Un, i ∈ N and b(ui) �= b(u′
i). First, we show

that

‖ ui(b(ui)) − u′
i(b(ui)) ‖ + ‖ ui(b(u′

i)) − u′
i(b(u

′
i)) ‖

> ui(b(ui)) − ui(b(u′
i)). (10)
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Case 1. ui(b(u′
i)) ≥ u′

i(b(u
′
i))

Note that ui(b(ui)) − u′
i(b(ui)) > ui(b(ui)) − u′

i(b(u
′
i)) ≥ ui(b(ui)) −

ui(b(u′
i)). Thus, (10) holds.

Case 2. ui(b(ui)) ≤ u′
i(b(ui))

Note that u′
i(b(u

′
i)) − ui(b(u′

i)) > u′
i(b(ui)) − ui(b(u′

i)) ≥ ui(b(ui)) −
ui(b(u′

i)). Thus, (10) holds.

Case 3. ui(b(u′
i)) < u′

i(b(u
′
i)) and ui(b(ui)) > u′

i(b(ui))

In this case, ‖ ui(b(ui)) − u′
i(b(ui)) ‖ + ‖ ui(b(u′

i)) − u′
i(b(u

′
i)) ‖=

ui(b(ui)) − u′
i(b(ui)) + u′

i(b(u
′
i)) − ui(b(u′

i)) > ui(b(ui)) − ui(b(u′
i)). Thus,

(10) holds.

By the above three cases, we have (10). Thus max{‖ ui(b(ui))−u′
i(b(ui)) ‖

, ‖ ui(b(u′
i))− u′

i(b(u
′
i)) ‖} > [ui(b(ui))− ui(b(u′

i))]/2 and we have the state-
ment.

Let a probabilistic rule f satisfy peaks-onlyness. Let u ∈ Un and ε > 0.
Given i ∈ N , let yi = arg maxy∈K\b(ui) ui(y). Let δ > 0 be such that for all
i ∈ N , δ ≤ [ui(b(ui)) − ui(yi)]/2, and let u′ ∈ Un be such that for all i ∈ N
and all x ∈ K, ‖ ui(x) − u′

i(x) ‖< δ. We show that for all i ∈ N and all
x ∈ K, ‖ fi(u)(x) − fi(u′)(x) ‖< ε.

First, we show that for all i ∈ N , b(ui) = b(u′
i). Suppose there exists

i ∈ N such that b(ui) �= b(u′
i), and we derive a contradiction. By the

assumption, for all x ∈ K, ‖ ui(x) − u′
i(x) ‖< δ ≤ [ui(b(ui)) − ui(yi)]/2. By

the definition of yi, [ui(b(ui))−ui(y)]/2 ≤ [ui(b(ui))−ui(b(u′
i))]/2. Thus we

have that for all x ∈ K, ‖ ui(x) − u′
i(x) ‖< [ui(b(ui)) − ui(b(u′

i))]/2. It is a
contradiction to Lemma 4. Thus, we have that for all i ∈ N , b(ui) = b(u′

i).
Therefore, peaks-onlyness implies f(u) = f(u′), and we have the state-

ment of the fact.

References
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Figure 1. Illustration of rz(ui) in the proof of Step 2.
In this figure, ui(b(ui)) − ui(b(ui) + 1) is normalized to be one.
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Figure 2. Illustration of ui, u′
i and ûi in the proof of Step B-i of Step 5
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