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Abstract

This paper studies the application of the notion of secure implementa-
tion (Cason, Saijo, Sjöström, and Yamato, 2006; Saijo, Sjöström, and Yamato,
2007) to the problem of allocating indivisible objects with monetary transfers.
We propose a new domain-richness condition, termed as minimal richness. We
then establish that on any minimally rich domain, only constant social choice
functions are securely implementable.
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1 Introduction

In this paper, we study the problem of allocating indivisible objects when monetary
transfers are possible.1 We assume that each agent consumes one and only one
indivisible object. To illustrate the problem, let us consider a situation where a group
of regions jointly construct various types of public facilities. When a region accepts
a desirable facility such as a library, it can enjoy a utility. On the other hand, when
another region accepts an undesirable facility such as a garbage disposal facility,
it must bear a disutility. Thus, there arises a need to assign such facilities among
regions and simultaneously distribute money to compensate for the differences in
the characteristics of facilities. This problem also applies to the allocation of houses
or rooms or to the assignment of jobs. In this model, each allocation consists of an
assignment of indivisible objects and the specification of an amount of money for
each agent. A social choice function (or direct revelation mechanism) is the function
that associates an allocation with each preference profile.

Strategy-proofness, which states that no one gains by preference misrepresenta-
tion, is a primary requirement in mechanism design. Saijo, Sjöström, and Yam-
ato (2007) indicate that many strategy-proof mechanisms (to be exact, the direct
revelation mechanisms associated with strategy-proof social choice functions) admit
multiple Nash equilibrium outcomes that are different from the “true” outcome,
thereby making these mechanisms somewhat ineffective.2 Therefore, Cason, Saijo,
Sjöström, and Yamato (2006) and Saijo, Sjöström, and Yamato (2007) develop a new
concept, namely, secure implementation. A social choice function is securely imple-
mentable if there exists a mechanism that implements it through dominant strategy
equilibria and if the set of dominant strategy equilibrium outcomes coincides with
the set of Nash equilibrium outcomes.3

Our purpose is to examine the social choice functions that are securely imple-
mentable in our economies.4 We provide a new mild domain-richness condition,
termed as minimal richness. Then, we show that on any minimally rich domain,
only constant social choice functions are securely implementable.

This paper is organized as follows: Section 2 defines the basic notions as well
as the concept of secure implementation, and introduces the concept of minimal
richness. Section 3 provides the primary result. Section 4 concludes the paper.

1Basic models of economies with indivisible objects and monetary transfers were provided by
Svensson (1983) and Alkan, Demange, and Gale (1991).

2The results of the experiments conducted by Cason, Saijo, Sjöström, and Yamato (2006)
support this idea.

3In other words, secure implementation signifies double implementation in dominant strategy
equilibria and Nash equilibria. Fujinaka and Sakai (2006) present a study of Nash implementation
in our economies.

4In several economic environments, some results on secure implementation have been estab-
lished. For example, Saijo, Sjöström, and Yamato (2007) for economies with a public good and
money, and Bochet and Sakai (2007) for allotment economies with single-peaked preferences.
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2 Model

2.1 Basic Notion

Let I ≡ {1, 2, . . . , n} be a finite set of agents. There are finite types of indivisible
objects T ≡ {1, 2, . . . , s} and a divisible good which is called “money.” For each
type t ∈ T , let αt ≥ 1 be the integer number of type-t indivisible objects. In this
paper, we assume the following.

A1.
∑

t∈T αt ≥ n.

A2. Each agent i ∈ I has the consumption space denoted by T × R.

A1 states that the total number of indivisible objects is at least as great as the
number of agents, while A2 states that each agent consumes precisely one indivisible
object and an amount of money. A consumption bundle in T × R is denoted by
(t,mi), where t ∈ T denotes a type-t object, and mi ≥ 0 (mi < 0) denotes the
amount of money that agent i receives (pays).

It should be noted that A1 allows us to deal with the case where the number
of indivisible objects are less than the number of agents. To observe this, let us
consider a situation where there is the only one type of indivisible object and the
number of objects of this type is one, i.e., T = {1} and α1 = 1. In this situation, all
the agents, except one, cannot receive any indivisible object. Therefore, they cannot
enjoy any utility from the assignment of the indivisible object. Now, we additionally
consider a fictitious object, say, a “null” object, from whose type no agent can gain
any utility. If we regard the null object as a type-2 object, we can rewrite the
situation as follows: T ′ = {1, 2}, α1 = 1, and α2 = n − 1. If we interpret that the
agents who are initially not assigned a type-1 object receive a type-2 object, each
analysis on the new situation corresponds to one on the initial situation. Therefore,
based on our assumptions, we can deal with the situation where there is only one
indivisible object.

Each agent’s preferences over T × R are quasi-linear with respect to money.
If agent i consumes a type-t object and her monetary transfer is mi ∈ R, then her
utility level is vi(t)+mi, where vi(t) ∈ R is agent i’s valuation for a type-t object. Let
Vi(t) ⊆ R be a non-empty set of i’s valuation for a type-t object. Agent i’s valuation
vector is vi ≡ (vi(t))t∈T ∈ RT . Let Vi ≡

∏
t∈T Vi(t) ⊆ RT be the set of valuation

vectors for agent i. We denote a profile of valuation vectors by v ≡ (v1, v2, . . . , vn),
and the set of profiles of valuation vectors by V ≡

∏
i∈I Vi. The set V is called a

domain. Since agents’ preferences are usually unknown to a mechanism designer,
the following assumption is natural and reasonable.

A3. There exist i ∈ I and t ∈ T such that |Vi(t)| ≥ 2.5

We often denote I \ {i} by “−i,” and I \ {i, j} by “−i, j.” With this notation,
(v′

i, v−i) is the profile of valuation vectors where agent i has v′
i and agent j 6= i has

vj. We define (v′
i, v

′
j, v−i,j) similarly.

5Given a set A, we denote the cardinality of A by |A|.
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An assignment is a list σ ≡ (σ1, σ2, . . . , σn) such that

σi ∈ T for each i ∈ I,

|{i ∈ I : σi = t}| ≤ αt for each t ∈ T.

Given i ∈ I, σi is the object assigned to agent i, and σi = t means that agent i
receives a type-t object. A monetary transfer is a list m ≡ (m1,m2, . . . ,mn) such
that mi ∈ R for each i ∈ I. Note that we do not require any feasibility constraint
on monetary transfers. If we establish an impossibility result, this strengthens the
result. An allocation is a list (σ,m) ∈ T I × RI such that σ is an assignment and m
is a monetary transfer.

A social choice function on a domain V is a function f : V → T I ×RI associating
with each profile of valuation vectors v ∈ V an allocation f(v) ≡ (fi(v))i∈I ∈ T I×RI .
For convenience, given v ∈ V and i ∈ I, we write fi(v) ≡ (σi(v),mi(v)).

2.2 Secure Implementation

A social choice function is securely implementable if there exists a mechanism that
simultaneously implements the social choice function in dominant strategy equilibria
and Nash equilibria.6 In this paper, we would like to characterize the class of
securely implementable social choice functions in our economies. Saijo, Sjöström,
and Yamato (2007) provide a characterization of the class in the general model7: A
social choice function is securely implementable if and only if it satisfies strategy-
proofness and the rectangular property.

Strategy-proofness: For each v ∈ V , each i ∈ I, and each v′
i ∈ Vi, vi(σi(v)) +

mi(v) ≥ vi(σi(v
′
i, v−i)) + mi(v

′
i, v−i).

Rectangular Property: For each v, v′ ∈ V , if vi(σi(v
′))+mi(v

′) = vi(σi(vi, v
′
−i))+

mi(vi, v
′
−i) for each i ∈ I, then f(v′) = f(v).

2.3 Minimal Richness

We now present a new domain-richness condition, called minimal richness. In order
to formally define minimal richness, we use the following notation. Given i ∈ I,
vi ∈ Vi, and t′, t′′ ∈ T , let ∆vi(t

′; t′′) ≡ vi(t
′) − vi(t

′′).

Minimal Richness: For each i ∈ I, each v′
i, v

′′
i ∈ Vi, each t′, t′′ ∈ T , and each

M ∈ R, if ∆v′
i(t

′; t′′) > M > ∆v′′
i (t

′; t′′), there exists v∗
i ∈ Vi such that

(i) ∆v∗
i (t

′; t′′) = M ,

(ii) ∆v′
i(t; t

′′) ≥ ∆v∗
i (t; t

′′) for each t ∈ T \ {t′, t′′}.

6See Saijo, Sjöström, and Yamato (2007) for the formal definition of secure implementation.
7Mizukami and Wakayama (2007) provide an alternative characterization of securely imple-

mentable social choice functions.
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Minimal richness requires that for any agent i ∈ I, any distinct valuation vectors
v′

i, v
′′
i ∈ Vi, any distinct types t′, t′′ ∈ T , and any real number M ∈ R, if the number

M lies in the range from ∆v′′
i (t

′; t′′) to ∆v′
i(t

′; t′′), there exists another valuation
vector v∗

i ∈ Vi satisfying the following: (i) ∆v∗
i (t

′; t′′) is equal to the number M , and
(ii) the value of t′′ for v∗

i , relative to any other types, is greater than or equal to that
of t′′ for v′

i.
Since many reasonable domains satisfy minimal richness, it is considered as a

mild requirement for domains in our model. The following domain, which is referred
to as a box-shaped domain, is an example of a minimally rich domain.8 It roughly
states that Vi(t) takes the form of a certain interval for each i ∈ I and each t ∈ T .

Box-shapedness: For each i ∈ I, each t ∈ T , and each vi(t), v
′
i(t) ∈ Vi(t) with

v′
i(t) ≥ vi(t), v′′

i (t) ∈ Vi(t) for each v′′
i (t) ∈ [vi(t), v

′
i(t)].

Let V U , V G, and V B be domains such that any vector of valuations are possible,
each type of indivisible object is “good” and each is “bad”; i.e., for each i ∈ I
and each t ∈ T , V U

i (t) = R, V G
i (t) = R+, and V B

i (t) = R−.9 By the definition of
box-shapedness, these are box-shaped domains, and therefore, are minimally rich
domains.

Given t ∈ T , if Vi(t) = {0} for each i ∈ I, i.e., no agent gains any utility from the
type-t object, then type-t objects can be interpreted as “null.” Box-shaped domains
include the case where some types are null objects, since the singleton is an interval.
Thus, minimally rich domains also include the abovementioned case.

We will now provide an example of non-minimally rich domains.

Example 1. Let I = {1, 2} and T = {1, 2}. Let V ∗ be such that V ∗
1 (2) = V ∗

2 (2) =
{0}, V ∗

1 (1) = R \ {1}, and V ∗
2 (1) = R. To observe that V ∗ is not minimally rich, let

v′
1, v

′′
1 ∈ V ∗

1 be such that v′
1(1) = 2 and v′′

1(1) = 0. Let M = 1. Then, there is no
v∗

1 ∈ V ∗
1 such that v∗

1(1) − v∗
1(2) = M . ¥

The key is that V ∗
1 is not connected. In the domain V ∗, it is not permissible for

agent 1 to have the valuation vector (1, 0); nevertheless, valuation vectors arbitrarily
close to (1, 0) are permissible. In this sense, such non-connected domains are not
reasonable. Therefore, we can consider that minimal richness is a mild requirement.

3 Theorem

In this section, we consider the set of securely implementable social choice functions
whose domains are minimally rich. The next proposition characterizes the class of
social choice functions satisfying strategy-proofness and the rectangular property.

8The relationship between the two domain conditions is discussed in the supplementary note
that is available online at: http://www.iser.osaka-u.ac.jp/library/dp/2007/DP0699N.pdf

9R+ and R− denote the set of nonnegative real numbers and nonpositive real numbers, respec-
tively.
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Proposition 1. Suppose that V is minimally rich. Then, a social choice function
f on V satisfies strategy-proofness and the rectangular property if and only if it is
constant.

Proof. Since the “if” part is obvious, we only show the “only if ” part. Suppose that
V is a minimally rich domain and that a social choice function f satisfies strategy-
proofness and the rectangular property. In what follows, we will prove the following
four claims.

Claim 1. For each i ∈ I, each v`i ∈ V`i, and each vi, v
0
i ∈ Vi, if

σi(vi, v`i) = σi(v
0
i, v`i), then mi(vi, v`i) = mi(v

0
i, v`i): Suppose, by contra-

diction, that there exist i ∈ I, v−i ∈ V−i, and vi, v
′
i ∈ Vi such that σi(vi, v−i) =

σi(v
′
i, v−i) and mi(vi, v−i) 6= mi(v

′
i, v−i). Without loss of generality, mi(vi, v−i) >

mi(v
′
i, v−i). Then agent i with the valuation vector v′

i can gain by announcing the
false valuation vi, contradicting strategy-proofness.

Claim 1 states us that given agent j 6= i announce vj, agent i’s consumption
bundle depends on the type of the indivisible object that she receives. Thus, when
agent i is assigned to type-t object, we denote her consumption bundle allocated to
agent i by (t,mt

i). Let Oi(v−i) be the option set for agent i given v−i, defined by

Oi(v−i) ≡ {t ∈ T : ∃vi ∈ Vi such that fi(vi, v−i) = (t, mt
i)}.

This is the set of the types of indivisible objects that agent i can obtain by changing
her valuation vector.

Claim 2. For each v ∈ V , each i ∈ I, and each t ∈ T such that
fi(v) = (t,mt

i), if |Oi(v`i)| ≥ 2, then vi(t) + mt
i > vi(t

0) + mt0
i for each

t0 ∈ Oi(v`i) \ {t}: Suppose, by contradiction, that there exist v ∈ V , i ∈ I
and t ∈ T such that fi(v) = (t,mt

i), |Oi(v−i)| ≥ 2, and vi(t) + mt
i ≤ vi(t

′) + mt′
i

for some t′ ∈ Oi(v−i) \ {t}. Since t′ ∈ Oi(v−i), there exists v′
i ∈ Vi such that

fi(v
′
i, v−i) = (t′,mt′). There are two cases.

Case 2-1. vi(t) + mt
i < vi(t

0) + mt0
i : In this case, we have

vi(σi(v)) + mi(v) < vi(σi(v
′
i, v−i)) + mi(v

′
i, v−i),

which is a contradiction to strategy-proofness.

Case 2-2. vi(t)+mt
i = vi(t

0)+mt0
i : Since t 6= t′, f(v) 6= f(v′

i, v−i). However,
since vi(t) + mt

i = vi(t
′) + mt′

i , we have

vi(σi(v
′
i, v−i)) + mi(v

′
i, v−i) = vi(σi(v)) + mi(v),

vj(σj(v
′
i, vj, v−i,j)) + mj(v

′
i, vj, v−i,j) = vj(σj(v

′
i, vj, v−i,j)) + mj(v

′
i, vj, v−i,j) for each j 6= i,

which is a contradiction to the rectangular property.

Claim 3. For each i ∈ I and each v`i ∈ V`i, |Oi(v`i)| = 1: Suppose,
by contradiction, that there exist i ∈ I and v−i ∈ V−i such that |Oi(v−i)| ≥ 2. Let
t′ ∈ Oi(v−i). Since t′ ∈ Oi(v−i), there exists v′

i ∈ Vi such that fi(v
′
i, v−i) = (t′,mt′).
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Now, select any of the following:

t′′ ∈ arg max
t∈Oi(v−i)\{t′}

v′
i(t) + mt

i. (1)

Since t′′ ∈ Oi(v−i), there exists v′′
i ∈ Vi such that fi(v

′′
i , v−i) = (t′′,mt′′

i ). Let
M ≡ mt′′

i − mt′
i . By Claim 2, we have

∆v′
i(t

′; t′′) = v′
i(t

′) − v′
i(t

′′) > mt′′

i − mt′

i = M,

−∆v′′
i (t

′; t′′) = v′′
i (t

′′) − v′′
i (t

′) > mt′

i − mt′′

i = −M.

Therefore, ∆v′
i(t

′; t′′) > M > ∆v′′
i (t

′; t′′). Since V is minimally rich, there exists
v∗

i ∈ Vi such that (i) ∆v∗
i (t

′; t′′) = M and (ii) ∆v′
i(t; t

′′) ≥ ∆v∗
i (t; t

′′) for each
t ∈ T \ {t′, t′′}. Condition (i) implies that

v∗
i (t

′) + mt′

i = v∗
i (t

′′) + mt′′

i . (2)

Condition (ii) and (1) together imply that for each t ∈ Oi(v−i) \ {t′, t′′},

mt′′

i − mt
i ≥ ∆v′

i(t; t
′′) ≥ ∆v∗

i (t; t
′′).

Therefore, we have

v∗
i (t

′′) + mt′′

i ≥ v∗
i (t) + mt

i for each t ∈ Oi(v−i) \ {t′, t′′}. (3)

By (2) and (3),

v∗
i (t

′) + mt′

i = v∗
i (t

′′) + mt′′

i ≥ v∗
i (t) + mt

i for each t ∈ Oi(v−i). (4)

Let fi(v
∗
i , v−i) = (t∗,mt∗

i ). Thus, strategy-proofness and (4) together imply that

v∗
i (t

′) + mt′

i = v∗
i (t

′′) + mt′′

i = v∗
i (t

∗) + mt∗

i ,

which is a contradiction to Claim 2.

Claim 4. f(v) = f(v0) for each v, v0 ∈ V : Let v, v′ ∈ V . By Claim
3, fi(v

′
i, v

′
−i) = fi(vi, v

′
−i) for each i ∈ I. Therefore, vi(σi(v

′
i, v

′
−i)) + mi(v

′
i, v

′
−i) =

vi(σi(vi, v
′
−i)) + mi(vi, v

′
−i) for each i ∈ I. By the rectangular property, we can

conclude that f(v) = f(v′).

It can be easily checked the tightness of Proposition 1.10 Proposition 1 suggests
that strategy-proofness and the rectangular property together imply constancy. How-
ever, this impossibility result relies on the domain—on which social choice functions
are required to satisfy the two properties—being minimally rich. In fact, unless
the domain is minimally rich, there may exist a non-constant social choice function
satisfying the two properties. To observe this, we return to Example 1.

10The independence of axioms is established in the supplementary note that is available online
at: http://www.iser.osaka-u.ac.jp/library/dp/2007/DP0699N.pdf
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Example 1 (continued). Let f be a social choice function such that for each
v ∈ V ,

f(v) =

{
((1, 0), (2, 0)) if v1(1) > 1,
((2, 1), (1,−1)) otherwise.

Then, the social choice function f on V ∗ satisfies both strategy-proofness and the
rectangular property; however, it is not constant. ¥

Remark 1. Schummer (2000) proposes another domain-richness condition, called
monotonic closedness: For each i ∈ I, each v′

i ∈ Vi, and each t′ ∈ T , there exists
v′′

i ∈ Vi such that ∆v′′
i (t

′; t′′) > ∆v′
i(t

′; t′′) for each t′′ ∈ T \ {t′}. It is easy to observe
that V ∗ is monotonically closed. Thus, Example 1 implies that a monotonically
closed domain is not minimally rich and that on a monotonically closed domain,
there exists a non-constant social choice function that is securely implementable.

Based on Saijo, Sjöström, and Yamato (2007) and our proposition, we can obtain
that no non-constant social choice function can be securely implementable.

Theorem 1. Suppose that V is minimally rich. Then, a social choice function f on
V is securely implementable if and only if it is constant.

4 Conclusion

In this study, we applied the notion of secure implementation to the problem of
allocating indivisible objects with monetary transfers. We then established that
only constant social choice functions on a minimally rich domain can be securely
implemented. This negative result suggests that all non-trivial strategy-proof social
choice functions do not work well in our environment.

In the following, we discuss a remaining problem. Our study leaves open the
question of what class of social choice functions are securely implementable without
employing a minimally rich domain. We give a partial answer to the open question.
The discussion is based on dual dominance proposed by Saijo (1987). He shows that
a social choice function satisfies dual dominance and Maskin monotonicity (Maskin,
1999) if and only if it is constant. Therefore, it is easy to establish that a secure
implementable social choice function satisfies dual dominance if and only if it is
constant. Furthermore, we can strengthen this result by replacing dual dominance
by a weaker condition of social choice functions.11 However, it is open that ver-
ifying which social choice functions are securely implementable without imposing
additional conditions of social choice functions and minimal richness.

11See for detailed discussion the supplementary note which is available online at:
http://www.iser.osaka-u.ac.jp/library/dp/2007/DP0699N.pdf
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