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We propose the minimum approval mechanism (MAM) for a standard linear public good
environment with two players. Players simultaneously and privately choose their
contributions to the public good in the first stage. In the second stage, they simultaneously
decide whether to approve the other’s choice. Both contribute what they choose in the first
stage if both players approve; otherwise, both contribute the minimum of the two choices
in the first stage. The MAM implements the Pareto-efficient allocation in backward
elimination of weakly dominated strategies (BEWDS) and is unique under plausible
conditions. Contributions in the MAM experiment overall averaged 94.9%. The data
support BEWDS rather than subgame perfect Nash equilibria. Quantifying subjects’
responses to the questionnaire showed that the majority of subjects in the MAM found a
heuristic or an algorithm named diagonalization and supported the notions of minimax regret

and iterated best response, all of which mimic BEWDS outcomes.
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1. Introduction

Ever since the findings of Samuelson (1954) highlighted the inefficiency of market
mechanism-based allocations, dominant strategy, Nash, and subgame perfect Nash have
been the major equilibrium concepts that players are assumed to follow when theorists
design public good mechanisms that implement the efficient allocation. For example, Green
and Laffont (1977) characterized the class of dominant strategy mechanisms, while Groves
and Ledyard (1977) theoretically designed a budget-balanced mechanism that implements
the efficient allocation in Nash equilibrium outcomes.! Experimental research that emerged
at around the same time began to evaluate the performances of these and other
mechanisms.

Much experimental research has since focused on evaluating the performances of
single-stage mechanisms with efficient dominant strategy equilibria or Nash equilibria
(NE). Contrary to the theoretical stance put forward above, subjects have actually been
found to frequently deviate from truthful dominant strategies and become stuck at weakly
dominated NE (Attiyeh et al., 2000). To solve this problem, Saijo et al. (2007) introduced
secure implementation (or double implementation in dominant strategy equilibria and NE).
Further, Cason et al. (2006) experimentally showed that the frequency of dominant strategy
play was significantly increased in a secure Groves-Clarke mechanism relative to a
non-secure pivotal mechanism, although the frequency was only slightly over 80%.

By contrast, the Groves-Ledyard (1977) and Walker (1981) mechanisms have
difficulty attaining efficient NE in one-shot play because of subjects’ bounded rationality.2
As a consequence, the papers by Chen and Gazzale (2004), Healy (2006), and Healy and
Mathevet (2012) characterized the stable mechanisms necessary to achieve NE as rest
points of various learning dynamics. Nonetheless, these studies still allow dozens of
repetitions, which may not be applicable in practical situations. A notable exception is
Falkinger et al. (2000), which used Falkinger’s (1996) mechanism to observe that
contributions approached NE in only a few periods.? However, this mechanism taxes or
subsidizes proportionally to how much a player’s contribution deviates from the mean
contribution and hence some players are forced to contribute more than they choose.

Experimentalists have also assessed the empirical validity of multi-stage
mechanisms. Based upon subgame perfect Nash equilibria (SPNE), Varian (1994) designed
a two-stage compensation mechanism where players decide how much to subsidize other
players before they make contributions; this mechanism was subsequently experimentally

assessed by Andreoni and Varian (1999) using asymmetric prisoner’s dilemma games. The

1 For arguments in a more general environment, see Laffont and Maskin (1982).
2 See Chen and Plott (1996) and Chen and Tang (1998).
3 Contributions averaged 90.5% of subjects’ endowment in the experiments with linear payoffs.
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authors found that approximately two-thirds of subsidy offers were sufficiently high to
incentivize the other player to cooperate, and by the end of the experiment 77.4% of
subjects learned to choose cooperation for such offers.* However, Hamaguchi et al. (2003)
observed systematic deviations from SPNE in emissions trading experiments using this
two-stage compensation mechanism. These findings confirm that compensation
mechanisms work well in simple environments but less so in complicated ones. Smith
(1979, 1980) began to apply continuous auction processes but their theoretical foundations
were not fully understood. Later, Banks et al. (1988) found that the trembling-hand perfect
equilibrium allocation is efficient in the Smith auction process,5 but their experimental
results were mixed. They showed that although the Smith auction process significantly
increased average contributions relative to the voluntary contribution mechanism (VCM),
it repeatedly decreased contributions instead of converging to the equilibrium play.

In summary, previous work has shown that multi-stage mechanisms facilitate the
efficient provision of public goods as well as single-stage mechanisms do, although the
former require subjects to perform more complicated strategic considerations than the
latter. Still, the theory is not fully in accordance with the experimental evidence, and this
gap may come from the commonly used research method, namely that theorists assume
one equilibrium concept a priori to construct public good mechanisms.

Motivated by this problem, Saijo et al. (2012) investigated several equilibrium
concepts under the mate choice mechanism (MCM), which they developed to implement
cooperative outcome in prisoner’s dilemma games. In the MCM, each player chooses to
approve or disapprove after observing the other player’s choice (cooperation or defection).
If both players approve, the outcome is what they chose in the first stage; otherwise, the
outcome is defection for both. Noteworthily, this prisoner’s dilemma experiment using the
MCM achieved a 93.2% cooperation rate under perfect stranger matching. The authors also
found that backward elimination of weakly dominated strategies (BEWDS) is more
compatible with experimental data than the NE, SPNE or neutrally stable strategies are.®

This paper thus develops the minimum approval mechanism (MAM) that
implements the Pareto-efficient allocation in BEWDS in linear public good environments
with two players, in the spirit of the approach presented by Saijo et al. (2012). In the first
stage of the MAM, players simultaneously and privately choose their contributions to the
public good. In the second stage, players simultaneously decide whether to approve the

other player’s choice after observing it. If both players approve, each player’s final

4 Charness et al. (2007) showed that 29-60% of subsidy offers were consistent with the subgame perfect
equilibrium in their prisoner’s dilemma experiments with this compensation mechanism.

5 This finding is based on the assumption that players bid once.

6 As Saijo et al. (2012) noted, Kalai (1981) used BEWDS.
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contribution is what he or she chooses in the first stage; otherwise, his or her final
contribution is the minimum of the two choices in the first stage.

Moreover, we define the class of approval mechanisms in order to show that the
MAM is a unique approval mechanism that satisfies the following three plausible
properties, implementing the Pareto-efficient allocation in BEWDS. Voluntariness ensures
that no player is forced to contribute more than he or she chooses in the first stage. In other
words, we only use refunds to players rather than coercive power. This notion of
voluntariness is a noteworthy feature of the MAM in contrast to tax/subsidy schemes such
as the Groves-Ledyard and Falkinger mechanisms. Monotonicity states that players’
contributions are weakly increasing in their first-stage choices. Forthrightness states that i) if
both players make the same first-stage choice or both approve, then they contribute what
they chose in the first stage and ii) given first-stage choices, disapproval by either player
results in the same outcome.”

This paper makes the following contributions to the body of knowledge on this
topic. In experiments under the perfect stranger matching protocol, we observe a rapid
convergence to the efficient allocation in the MAM. Starting from 76.9%, subjects
successfully sustained cooperation, reaching an overall average contribution rate of 94.9%
of endowments. A similar result is obtained for the simplified MAM (SMAM) treatment, in
which only the player that has the higher first-stage choice can proceed to the second stage.
These results contrast with those of experimental studies that need repetition to achieve
equilibrium (see Andreoni and Varian, 1999; Chen and Plott, 1996; Chen and Tang, 1998;
Healy, 2006). We also conduct the MCM so that unilateral disapproval results in no
contribution and find that this mechanism increases contributions to 28.4% from 10.2% for
the baseline VCM.

We compare the predictive performances of BEWDS and SPNE using two criteria
that deal with multiple equilibria and inclusion between the sets of equilibrium paths. This
approach is different to that presented in the behavioral game theory literature (see Ert et
al., 2011) where the distance between data and predictions is well defined. The first
criterion relates to the low number of equilibrium paths, while the second is the proportion
of equilibrium-consistent path data. Our evaluation method shows that BEWDS has a
superior predictive performance compared with SPNE in the MAM and SMAM. However,
we cannot conclude whether BEWDS or SPNE is more predictive in the MCM. By applying
the same argument to the second-stage decisions (with a slight modification of subgame

consistency based on the findings of Binmore et al., 2002), we finally conclude that BEWDS

7 Note also that because every pair of contributions can be a possible pair of contributions under the
MAM, the mechanism differs from the money back guarantee, assurance, or rebate rules mainly argued in
the literature on the provision of a threshold public good (see Croson, 2008).
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has a superior predictive performance compared with SPNE in our experiment.

In order to capture subjects’ reasoning processes, we adopt three behavioral
models that to a certain degree mimic BEWDS outcomes: diagonalization focuses on the
diagonal line of the payoff table and considerably reduces computational effort in the
MAM,; the minimax regret criterion concerns foregone payoffs (Renou and Schlag, 2011); and
iterative best response represents strategic sophistication (see Costa-Gomes and Crawford,
2006; Crawford and Iriberri, 2007). In the next step, in line with Cooper and Kagel (2005),
we apply a coding scheme to quantify subjects’ responses to open questions during and
after the session. It turns out that 96.7% of subjects in the MAM were deemed to have
found the diagonalization.® Moreover, 16.7% and 11.7% of subjects in the MAM and MCM
respectively followed the subgame perfect minimax regret equilibrium strategy and
approximately half of subjects in the MCM followed iterative best response.

The remainder of this paper is organized as follows. Section 2 overviews the MCM
originally presented in Saijo et al. (2012). Section 3 introduces the MAM with examples and
then presents the implementation results. Section 4 describes the proof of the uniqueness of
the MAM. Section 5 presents SPNE predictions under the proposed mechanisms. Section 6
describes the experimental design. Section 7 discusses the experimental results, notably the
superior predictive performance of BEWDS relative to SPNE. Section 8 offers three
alternative models that mimic BEWDS and shows their validity through a coding scheme.

Section 9 concludes.

2. The MCM

Consider a voluntary contribution game in the provision of a public good with
two participants. Each player has an initial endowment w > 0 and he or she must decide the
contribution s; €[0,w]. The sum of the contribution is multiplied by a.€ (0.5,1) and the
benefit passes to every player, which expresses the non-rivalness of the public good. Then,
s; =s, =0 is the dominant strategy equilibrium and hence no public good is provided.

When there are only two levels of the contribution (i.e., 0 or w) and where players
face the prisoner's dilemma, Saijo et al. (2012) introduced the notion of the MCM after the
dilemma decision. By knowing the other player’s choice between cooperation (contributing
w and abbreviated by C) and defection (contributing zero and abbreviated by D) in the

dilemma or the first stage, each player must approve (or y) or disapprove (or n) it. If both

8 This observation illustrates that players are able to find a solution by instinct and experience rather than
performing complex computations. We find another example in biochemical research on modeling the 3D
structure of the protein that activates the AIDS virus. Although enormous simulation failed to provide a
clear answer for decades, Khatib et al. (2011) sought ideas from the public through an online game called
“Foldit”, which give an improvement of model high score. Surprisingly, “Foldit” players, which had little
background in the field, characterized the 3D structure in only three weeks.
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players approve the choices of their counterparts in the first stage, the outcome or payoff
vector is whatever they choose. If either player disapproves, however, the outcome is that

when both choose D.

Figure 1 about here.

Figure 1 shows an example where w=10 and o =0.7. Note that this is an unusual
extensive form game tree. Consider the case where player 1 chooses D and player 2 chooses
C (termed subgame DC in Figure 1). If both choose y in the second stage, the payoff vector
is (17,7). Otherwise, it is (10,10). Then, player 1 compares (17,10) with (10,10) and chooses y
since y weakly dominates n. A vector p weakly dominates g if every component in p is at
least greater than or equal to that in g and there is at least one component with strict
inequality. Weak dominance between two choices is defined as weak dominance between
their associated payoff vectors as usual. Similarly, player 2 chooses 7 since (10,10) weakly
dominates (7,10). Therefore, the outcome in subgame DC is (10,10). In other words, (10,10)
appears at the location of (D,C) of the reduced normal form game above the four subgames.
By repeating the same procedure for every subgame, player 1 can construct the normal
form game. Then, player 1 must compare (14,10) with (10,10). Since (14,10) weakly
dominates (10,10), player 1 chooses C. Likewise, player 2 chooses C in the first stage and y
in the second stage. This procedure describes BEWDS. Thus, BEWDS achieves (C,C) in the
prisoner's dilemma game with the MCM.

Furthermore, neutrally stable strategies also attain (C,C), although the outcomes of
NE and SPNE show every possibility, namely (C,C), (C,D), (D,C), and (D,D). As shown in
Saijo et al. (2012), the strategies of BEWDS are a subset of neutrally stable strategies even
though both achieve (C,C). The 19-round experiment with 10 randomly matched and
unrepeated pairs presented in Saijo et al. (2012) showed almost full cooperation throughout
the rounds. With the help of a related experiment, the authors also showed that as a
behavioral principle BEWDS is most consistent with the data among the behavioral
principles based upon NE, SPNE, neutrally stable strategies, or BEWDS. Following Saijo et
al. (2012), we will use BEWDS as a basic behavioral principle, and restrict ourselves to the
class of mechanisms where each player chooses s; €[0,w] in the first stage and then y or n
in the second stage. We call this mechanism an approval mechanism. In other words, the

MCM is an approval mechanism.



However, the simple extension of the MCM? with two strategies 0 and w to the
case with continuous strategies in[0, w], namely if both players approve the contribution of
the other in the first stage, then both contribute what they choose, whereas if either one
disapproves, then both contribute zero, cannot implement the symmetric Pareto-efficient
outcome. Consider the case with w=10and o =0.7 again. For simplicity, each player can

choose a contribution from {0,2,4,6,8,10}. Then, player 1's payoff table is shown in Table 1.

Table 1 about here.

The following two cases are examples of subgames. Consider subgame (0,6), the
left-hand table in Table 2. Player 1 (the row player) chooses y since (14.2,10) weakly
dominates (10,10) and player 2 chooses 7 since (10,10) weakly dominates (8.2,10).

Table 2 about here.

In other words, (10,10) is the payoff of this subgame. Similarly, both players choose y in
subgame (6,10) where the payoff is (15.2, 11.2).

Table 3 shows player 1's payoff in the reduced normal form game. BEWDS deletes
choices 0, 8, and 10 and hence choices 2, 4, and 6 survive in the first elimination. (14,14)
Pareto dominates every payoff vector combined with choices 2, 4, and 6, and hence
BEWDSI cannot attain the symmetric Pareto-efficient outcome where 1 indicates the
number of elimination rounds in the reduced normal form game and BEWDS without the
number represents BEWDS]1. Consider the next elimination round in which choice 6 is then
eliminated. In the third elimination round, choice 4 is eliminated, and hence choice 2 is the
final choice with BEWDS3. If the set of contributions is every integer between 0 and 10,
(1,1) are the choices of BEWDSk for sufficiently large k. Since this example has finite
possible contributions, there exists BEWDSk with k rounds; however, with continuous

contributions, no BEWDSw exists, as the following proposition shows.

Table 3 about here.

9 We call a MCM with many strategies MCM hereafter.
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Proposition 1. The MCM cannot implement the symmetric Pareto-efficient outcome under

BEWDS and no BEWD Sco strategy exists.

Proof. Figure 2 shows player 1's payoff table of the reduced normal form game. Line 0-I
shows that the payoff of player 1 is the same as the endowment. In other words,

uy =(w—s;)+a(s; +s,)=w, and hence,s, =((1-a)/a)s,. If the choice vector in the first
stage is located in region A, player 1 chooses 1 in the second stage since the payoff with y is
less than w, and hence player 1's payoff is w in the region.10 Although player 1's payoff in
region B is greater than w, his or her payoff ends up at w in the region since player 2
chooses n. Region C={(s,,s,):(1-a)s, /o <s, <as, /(1—-a)} is the area where both
players choose y. Since du, / s, =1+ a <0, fixing player 2's contribution and reducing
player 1's contribution increase player 1's payoff. The arrow in Figure 2 shows this fact.
Therefore, w is weakly dominated by w—¢ for sufficiently small € >0 for player 1 and
hence (s;,s,)=(w,w)is not a part of a BEWDS strategy profile. In other words, the MCM
does not implement the symmetric Pareto-efficient outcome under BEWDS.

As Figure 2 shows, the choice s, =((1-a)/a)w (i.e., line a-b) weakly dominates
any choices, €[0]U((1-a)/a)w,w]. Furthermore, any choices, €(0,((1-a)/a)w]is not
dominated by any other choices. Therefore, s, €(0,(1—-a)/a)w]can go into the next round.
Since square 0-a-e-f is similar to square 0-c-d-g, we can repeat the same procedure. Since

(1-a)/a)e(0,1), lim,__ ((1-a)/a)" =0,and hence no BEWDSw strategy exists. |

Figure 2 about here.

3. The MAM

In order to implement the symmetric Pareto-efficient outcome we introduce the
MAM. In this mechanism, if both players approve the contribution of the other in the first
stage, then both contribute what they choose, whereas if either one disapproves, then both
contribute the minimum of the two contributions in the first stage. If this is the case, the
player who chooses a larger number can obtain a refund.

Using Table 1, let us consider two examples of subgames under the MAM.

10 We assume that players choose y when they are indifferent between y and n and that players eliminate
all weakly dominated strategies at once whenever possible.
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Consider first subgame (6,2). If either player disapproves the other’s choice, the mechanism
returns 4=6-2 to player 1, and hence players contribute (2,2) and the payoff is (10.8,10.8).
Therefore, player 1 chooses n since (10.8,10.8) weakly dominates (9.6,10.8) and player 2
chooses y since (13.6,10.8) weakly dominates (10.8,10.8). In other words, (10.8,10.8) is the

payoff outcome of this subgame.

Table 4 about here.

Next, consider subgame (8,10). Player 1 chooses y and player 2 chooses #; hence, the payoff
is (13.2,13.2). In other words, player 1 approves (disapproves) player 2’s first-stage choice if
his or her first-stage choice is smaller (larger) than that of player 2. Table 5 shows player 1's
payoff matrix in the reduced normal form game.

Clearly, choice 10 weakly dominates the rest, and hence (14,14) is the symmetric
Pareto-efficient outcome under BEWDS. Table 5 presents a special structure: the payoff in
subgame (m,m) is the same as that in (m,1) and (1,m) for all n > m, whereas the payoff in
(n,n) is greater than that in (m,m) for all n > m. If the payoff matrix satisfies these two

conditions, we say that it has an echelon structure.

Table 5 about here.

Proposition 2. The MAM implements the symmetric Pareto-efficient outcome in BEWDS.

Proof. First, we show that player 1's payoff matrix in the reduced normal form game under
the MAM has an echelon structure. Fix a€ [0, w], and choose any b€ [0, w]with b > a.
Consider subgame (a,b). Since {w—-a+a(a+a)}—{w-b+a(a+b)}=(b-a)(1-a)>0,
player 2 chooses 7 in the second stage. Then, player 1's payoff becomes w—a+ o(a+a). In
other words, the payoff in subgame (a,a) is the same as that in (a,b) for all b > a under the
MAM. Similarly, we find that the payoff in subgame (a,4) is the same as that in (b,a) for all b
> g under the MAM. Choose any 4, b [0, w] with b > a. Then, the payoff in subgame (b,b) is
greater than that in (a,a) sincew —b+20b—(w—-a+2aa)= (2a—-1)(b—a)>0.

We further show that choice w weakly dominates s, €[0,w). Consider the case

withs, €[0,s, ]. From the first part of the echelon structure, we have u,(s;,s,)=1u,(s,,5,)



=u,(w,s,). 1 Consider the case with s, e (s;,w). Using the two properties of the echelon
structure, we haveu, (s;,s,) =u;(s;,5,) <u;(s,,5,) =u,(w,s,). In other words, choice w

weakly dominatess, €[0,w). i

It should be emphasized that Proposition 2 holds in more general environment.
Even if two players have different preferences towards the public good o, # a,, we can
easily determine that the player with the higher (lower) first-stage choice still chooses 1 (y)
under BEWDS. Further, if initial endowments are heterogeneous, say w, # w,, the problem
reduces to a symmetric case if each player chooses a ratio of contribution to his or her own

endowment s; / w, €[0,1].

4. The MAM is Unique

There could be an infinite number of ways to implement the symmetric Pareto
outcome using approval mechanisms under BEWDS. For example, consider the average
approval mechanism (AAM): if either player disapproves, then both contribute the average
of the two contributions in the first stage. Table 6 shows the payoff table for player 1 in the
reduced normal form game under the AAM. This table shows that the full contribution of
10 units dominates every other contribution and thus that the symmetric Pareto outcome is
attained by the AAM under BEWDS.

Moreover, under the AAM, the player who chooses a larger number can obtain a
refund, whereas the player who chooses a smaller number must contribute more. In order
to exclude this coercion we state that an approval mechanism is voluntary if each player’s
contribution does not exceed his or her first-stage choice. Clearly, the MAM satisfies
voluntariness and the AAM does not. The budget-balanced mechanism proposed in
Falkinger et al. (2000), under which subjects contributed over 90% of endowments, is
similar to the AAM because it taxes (subsidizes) players with a contribution lower (higher)

than the mean of the group.

Table 6 about here.

Moreover, we show that the MAM is a unique mechanism for satisfying

1 Lett=(t,,t,)be the decision in the second stage. Then, we must write u,((s,, t,),(s,,t,)) . Thus,
u,(s,,s,) should beu,(s,,s,) = u;((s,,y),(s,,n)) . In other words, we must specify the decision in the second

stage in order to obtain the payoff of player 1. By slight abuse of notation, we can also use it both ways
whenever the decision in the second stage is clear.
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voluntariness andseveral other conditions. For this purpose, let us introduce the following
definitions. What players choose in each stage ((s;,t,),(s,,t,)) is referred to as a path. An
approval mechanism g is a function that associates a contribution

8((51,t1),(52,85)) = (&1 (51, £1), (5282)):82((51,11),(52,£5))) for every path ((s;,1),(s,,t,)) - First,
we require that approval mechanisms be forthright in the following manner: if both make
the same first-stage choice or if both choose y in the second stage, then they contribute
what they choose in the first stage; moreover, given first-stage choices, the outcomes when

either chooses 7 are the same. Formally, we have:

Definition 1. An approval mechanism g is forthright if:
i) 8((s1,7)(s2))=(51,8,) if s, =s, where
i) 8((s1,Y)(s24))=(51,8,) forevery (s;,s,);and

i) g((s1,7),(s2.y)) = 8((s1,),(82,1)) = 8((51,1), (5,.1)) for every (s;,s,).

“u o

indicates either y or n;

Note that forthrightness allows the possibility that the outcome when either player
disapproves depends on their first-stage choices. In the following, vector inequality is taken

component-wise as usual. The next property is voluntariness as argued above.

Definition 2. An approval mechanism g is voluntary if g((s;,t,),(5,,t,)) <(s;,5,) for every

path ((s;,1),(s,,1,)) -

The third property, monotonicity, is a plausible condition that reflects players’
willingness to pay more. It states that if players weakly increase their first-stage choices,

then their contributions weakly increase regardless of their decisions in the second stage.

Definition 3. An approval mechanism g is monotonic if g((s],t,),(S5,t)) = g((s1,t1),(5,,t,))

for every (sj,s,) and (s;,s,) suchthat (sj,s5)>(s;,s,) andevery (t,t,).

The above properties are sufficient for the uniqueness of the MAM.

Proposition 3. Suppose that a forthright approval mechanism implements the Pareto-efficient

allocation in BEWDS. If it is voluntary and monotonic, then it must be the MAM.

Proof. Let g be a forthright approval mechanism that implements the Pareto-efficient
allocation in BEWDS and that satisfies voluntariness and monotonicity. Let (s;,s,) be any

first-stage choice. If s, =s,, ((51,°),(S5,-)) = (51,5, ) according to condition i) of
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forthrightness, which shows the outcome of the MAM. Consider the case with s, #s,.

Without loss of generality, assume that s, > s, and consider two cases: s; =w and s, <w.
First, consider subgame (w,s,) with w > s,. In order to implement the efficient allocation
in BEWDS, w must weakly dominates, for player 2 in the reduced normal form game. In

other words,

(1) u5((w,),(w,) 2 u3 (W, t)5,15))

where uf is i’s payoff function induced by g12 and ¢, is player i's decision under BEWDS.
Suppose that t; =t, =y . Then, according to conditions i) and ii) of forthrightness,

we have

) u5((w,y)(52,9)) = (W =5,) + (W +5,) > (w = w) + o(w +w) = uf (w, ), (w,))

which contradicts (1). Thus, t; =n or ¢, =n. Together with condition iii) of forthrightness,
(1) and (2) show that S ((w, y) (52, )) > 15 (@, y)(s2,m)) = ((w,n),(52,¥)) =
us ((w,n),(s,,n)) . Hence, y weakly dominates 7 for player 2 in the second stage, namely
t, =y, which implies t, =n.

Consider now the reduced normal form game under g and compare the outcomes
in subgames (s,,s,) and (w, s, ). Since player 1 chooses w by assumption, we have
ui (w,n),(55,Y)) 24 ((5,°)(5,)) - Let g((w,n),(s,,)) =(81,8>)- Then,
S (@,1), (52, 9)) = 0= ) + gy +82)Z W5, + s, +,) = S ((5,),(5,,7) . Since g i
voluntary, (g,,9,)<(w,s,). Because of the monotonicity of g, (g;,%,)=(s;,5,) . The
intersection of these three inequalities shows (g;,¢,) =(s,,5,). Thus, according to condition

iii) of forthrightness, we have

(3) 8((w,m),(s2,¥)) = 8((w, ), (s2,m)) = &((w, 1), (55,1)) = (52,55)-

In other words, both players contribute s, , which is the minimum of (w, s, ) when at least
one player chooses 7.
Now take any s, € (s,,w). Together with (w,s,)>(s;,s,) > (s,,s,) and (3), since g is

monotonic, we have(s,,s,) = g((w, 1), (s, ) 2 §((1,1),(5,)) 2 §((52,1),(52,Y)) = (52,52)-
Hence, we have g((s;,1),(s,,y)) =(s,,5,). In other words, g is the MAM. |}

As far as a forthright approval mechanism implements the Pareto-efficient

12 We omit superscript ¢ when a mechanism is specified.
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allocation in BEWDS, Proposition 3 states that the mechanism is voluntary and monotonic
if and only if it is the MAM. Although it is artificial, the following forthright mechanism is
voluntary, but not monotonic. Consider a forthright rule in which a player who announces
a bigger contribution than the other does in the first stage must contribute zero and the
smaller player must contribute what he or she chooses in the first stage if either one
chooses 1 in the second stage. Apparently, this mechanism is voluntary. However, it is not
monotonic since g,((6,1),(2,y))=0<g,((2,n),(2,y))=2.13

5. SPNE outcomes under the MCM and MAM

A subgame perfect Nash equilibrium is often used to analyze multi-stage games.
We first show that under the MCM, any pair of contributions in region C in Figure 2 is
supported by SPNE.1* Although the MAM under BEWDS chooses a Pareto-efficient
outcome d in Figure 2, any symmetric pair of contributions is supported by SPNE. Fix an
approval mechanism g. Player i’s strategy is a pair of a first-stage choice s; and a function
t;(-) thatassociates y or n to each first-stage choice (s,,s,). A strategy profile
(s1,1()), (55,8, (-)) of the game induced by g is a Nash equilibrium if for each i, j with j =1,
us (5,4, 0)), (85,1 00)) 2w (1, £/()), (51, t;())) forall (s}, £())) . A Nash equilibrium
((si,£:()),(s;,t;())) is subgame perfect if ((s;,£;(-)),(s;,¢;("))) constitutes a Nash equilibrium
in every subgame.

To illustrate an example of SPNE, consider the case with w=10and o =0.7 again,
and let a strategy profile be ((6,£(*)), (8,t(*))), where #(6,8) = y and t(s,,s,) =nif
(1,5,) # (6,8). The left-hand side of Table 7 shows the payoff matrix for subgame (6,8).
The shaded cells indicate the Nash equilibrium outcomes of the subgame. Then,a Nash
equilibrium of subgame (6,8) is (y,y), which yields (13.8,11.8). Moreover, in every subgame,
(n,n) is another Nash equilibrium since the outcomes of (n,y), (n,y), and (n,1) are the same.
Thus, the strategy profile ((6,¢(+)), (8,£(+))) constitutes a Nash equilibrium in every

second-stage subgame.

Table 7 about here.

Thus, both players get 10 unless they choose (6,8) and hence (6,8) is a Nash

13 ]t is easy to check that the mechanism implements a Pareto-efficient allocation in BEWDS.
14 Given an equilibrium concept, we say contributions (41,42) are supported by an equilibrium if there
exists an equilibrium where contributions are (g1,42).
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equilibrium of the reduced normal form game. Therefore, the strategy profile is a subgame
perfect Nash equilibrium.

The drawback of the above subgame perfect Nash equilibrium is that players play
the Pareto-dominated Nash equilibrium off the equilibrium path in region C in Figure 2.
For the subgame (4,8) shown on the right-hand side of Table 7, we see that a Nash
equilibrium (n,n) with payoffs (10,10) is weakly dominated by (y,y) with payoffs (14.4,10.4).
BEWDS eliminates such possibilities since players approve if the first-stage choices are
located in region C including both (6,8) and (4,8). In a similar way, all contributions in

region C can be supported by SPNE. To summarize, we have Proposition 4.

Proposition 4. Under the MCM, i) for any first-stage choices (s,,s,), there exists a subgame
perfect Nash equilibrium where players choose (s,,s,); further, ii) contributions (q,,q,) are

supported by SPNE if and only if (1-a)q, /a<qg,<0q, /(1-a).

Proof. See Appendix. i

By contrast, the set of SPNE contributions under the MAM coincides with the set
of symmetric contribution profiles. In contrast to the MCM, no subgame perfect Nash

equilibrium strategy involves the Pareto-dominated Nash equilibrium.

Proposition 5. Under the MAM, 1) for any symmetric first-stage choices (s,s), there exists a
subgame perfect Nash equilibrium where players choose (s,s) and contribute (q,,9,)=(s,s);
further, i) there exists no subgame perfect Nash equilibrium with asymmetric first-stage choices or

contributions.

Proof. See Appendix. i

From Propositions 2, 3, 4, and 5, we see that both in the MAM and MCM the set of
BEWDS paths is a subset of SPNE paths, although the former is not a refinement of the

latter.

6. Experimental Design

We conducted four treatments in order to test the performances of the approval
mechanisms. The VCM was the control treatment, while the other three treatments were
the MCM, MAM, and SMAM. The SMAM also implements the efficient allocation in
BEWDS. To consider the SMAM, we relax the assumption that both players proceed to the
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second stage. Recall that under the MAM, the player who follows BEWDS approves
(disapproves) if his or her choice is smaller (larger) than that of the other player and is
indifferent between approval and disapproval when both players make the same choice
(see Section 3). Hence, the decision by the player with the higher first-stage choice alone
determines the outcome in every second stage. Then, we define the SMAM as follows. If
both players make the same first-stage choice, the game ends. Otherwise, only the player
with the higher first-stage choice proceeds to the second stage. If he or she approves, they
contribute what they choose in the first stage. If he or she disapproves, both players
contribute the minimum of their choices in the first stage.1>

Each of the above-mentioned four treatments had three experimental sessions.
These 12 sessions were all conducted at Osaka University in March, April, September and
November 2011. Subjects were recruited from Osaka University through campus-wide
advertisement and were inexperienced in this particular type of experiment. No individual
participated in more than one session. The experiment was computerized using the
experimental software z-Tree (Fischbacher, 2007). In each session, 20 subjects participated.
Each was seated at a computer terminal assigned by lottery. All terminals were separated
by partitions. No communication between subjects was allowed.

Each subject had a set of printed instructions, a record sheet, and a payoff table
(these materials are included in Appendix D; the payoff table was called the points table in
the experiment). Table A8 shows the payoff table for every treatment. Each subject was
considered to be player 1. The first column of this table lists player 1’s contribution to the
public good (called “your investment”), while the first row lists player 2’s contribution to
the public good (called “the investment of your counterpart”). Each cell contains both
players” payoffs, shown in blue and red for player 1 and 2, respectively. Player i’s payoff is
given by u; =300{(24-4,)+0.7(q, +g,)} for each contribution (g,,q,).Since we consider
two players with identical utility functions and endowments, the payoff table is identical
for all subjects. Subjects were informed that they have identical payoff tables.

Instructions were read aloud by an experimenter for approximately 10 minutes.
After that, subjects were given another 10 minutes to ask questions. Then, we proceeded to
the payment periods. There was no practice period. Each session consisted of 19 periods
under the perfect stranger matching protocol. We informed subjects that each of them
would meet any other subject in each period.

The MAM and MCM treatments continued as follows. At the beginning of each
period, all subjects endowed with 24 tokens were anonymously matched into pairs. In the

first stage (called the “choice stage”), subjects were asked to enter their contributions as

15 The SPE outcome of the SMAM is the same as that of the MAM.
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nonnegative integers into a box in the display and write down their choices along with
their reasoning in the corresponding row of the record sheet. Once all subjects had finished
their tasks, they clicked the OK button.

In the second stage (called the “decision stage”), the first-stage choices of both
players and the payoff matrix in the second stage were displayed. After all players wrote
down the first-stage choices of their counterparts, they chose to approve or disapprove by
clicking the radio buttons and recording the decision along with the reasoning. Once all
subjects in the second stage had finished the above tasks and clicked the OK button, they
proceeded to the results screen.

The results screen included the first-stage choices of both players, their “approve”
or “disapprove” decisions, and their payoffs (points earned) in the period. No information
on the choices of the other nine groups was provided to subjects. Finally, subjects wrote
down the decisions of their counterparts and the points they earned and clicked the Next
button to begin the next period.

If a subject in the SMAM did not proceed to the second stage, he or she simply
wrote down the first-stage choice of his or her counterpart before other subjects finished
the second stage and circled “none” while facing the waiting screen. The treatment without
the decision stage became the VCM treatment.

After playing the 19 periods, subjects completed a questionnaire and they were
paid privately in cash immediately. Each subject was paid an amount proportional to the
sum of the points that he or she had earned for the 19 periods. Individual payments ranged
from $49.91 to $87.97.

7. Experimental Results
7.1. Average contributions

Figure 3 shows the time path of average contributions over the 19 periods
arranged by mechanism. Individual contributions were evaluated after the second stage,
except for the baseline VCM. Table 8 compares contributions for the four treatments using

a two-tailed Mann-Whitney test.

Figure 3 about here.

We first assess the results of the VCM. The time path of average contribution in

the VCM shows a similar pattern to that of previous VCM experiments (e.g., Ledyard,

16



1995). In the first round, subjects contributed 15.3% of endowments (3.68 tokens), with
contribution rates gradually decreasing to 5.7% (1.37 tokens) in the last period. The
hypothesis test based on Spearman’s rank correlation coefficient showed that the
downward trend in average contributions was statistically significant

(p=-0.9158,p = 0.00005) . When the data were pooled across all 19 periods and three
sessions, subjects contributed 10.2% of endowments (2.44 tokens). Out of 570 outcomes (10
pairs x 19 periods x 3 sessions), there was no case where both players contributed all

endowments.

Table 8 about here.

Result 1. Subjects in the MAM successfully sustained cooperation and contributed on average

94.9% of endowments when pooled across all 19 periods and three sessions.

Introducing the MAM facilitates almost full contributions among subjects, even in
the earlier period. Contributions in the first period averaged 76.9% of endowments (18.45
tokens). They then rose repeatedly for the first five periods, achieving 97.8% (23.47 tokens)
in period 5. Then, cooperation was sustained with an average contribution rate of over 95%
in every period except for the final one. Moreover, the convergence to the efficient
allocation under the MAM was statistically supported by Spearman’s rank correlation test
to examine the upward trend in average contributions (p =0.5566,p =0.009) . When the
data were pooled across all 19 periods and three sessions, subjects in the MAM contributed
on average 94.9% of endowments (22.78 tokens). Out of 570 outcomes, there were 475
outcomes where both players contributed all endowments. A two-tailed Mann-Whitney
test showed that subjects in the MAM contributed significantly more than those in the
VCM with the test statistic z=9.445 (p<0.001).16

Result 2. The simplification of the second stage significantly decreased the average contribution rate

in the SMAM compared with the MAM.

The contributions in the SMAM show similar patterns to those in the MAM. It

16 The null hypothesis is that contribution rates are the same between the MAM and VCM. We used the
same method as that presented by Andreoni and Miller (1993) and Charness et al. (2007). We first
calculated the average contribution rate of each subject across periods and then calculated the test statistic
using these averages in order to eliminate cross-period correlation.
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took five periods to achieve a contribution rate of over 90% and almost all subjects
maintained full contributions until the end of the session. Spearman’s rank correlation test
shows that the upward trend in average contributions was statistically significant
(p=0.62484,p =0.004) . Overall, the average contribution rate of the SMAM was 89.9%. Out
of 570 outcomes, there were 424 outcomes where both players contributed all endowments.
The contribution rate was also significantly higher than that of the VCM (two-tailed
Mann-Whitney test, z=9.275, p<0.001). However, the contribution rate of the SMAM was
significantly lower than that of the MAM (two-tailed Mann-Whitney test, z=3.799,
p<0.001).

Result 3. The MCM increases contributions relative to the VCM, but it does not lead to the efficient
provision of the public good.

In contrast to the MAM and SMAM, only seven out of 540 pairs of the MCM
achieved full contributions and the approval of both players. The average contribution
under the MCM fluctuated within a relatively narrow range, but decreased repeatedly, and
remained higher than that of the VCM in every period. Spearman’s rank correlation test
showed that the downward trend in average contributions was statistically significant. The
overall average contribution rate of the MCM was 28.4% (6.83 tokens), which was
significantly higher than that of the VCM (two-tailed Mann-Whitney test, z= 7.284,
p<0.001). However, the contribution rate was significantly lower than that of the MAM and
SMAM (two-tailed Mann-Whitney test, z=9.450 and p<0.001 for the test of the MCM vs.
MAM and z=9.133 and p<0.001 for MCM vs. SMAM).

7.2. Why was the contribution rate in the SMAM significantly lower than that in the MAM?
We argue that the significant difference shown in Result 2 occurred mainly

because of the choices of two subjects in the third session of the SMAM.

Result 4. A simplification of the second stage does not have a significant effect on the average
contribution rate when we compare the MAM with the SMAM after excluding the data from groups
including either of the two subjects who did not understand the rules of the experiment until the end

and who strategically kept making low first-stage choices.

Table 9 shows average contribution rates per subject. In the MAM, all subjects
contributed on average more than 80% of endowments. In the SMAM, by contrast, one

subject (subject 13 in the third session) contributed only 5.26% of endowments (24 tokens in
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total across 19 periods) throughout the session.

Table 9 about here.

According to the record sheet and post-experiment questionnaire, this subject
seems to have thought that he or she has to allocate 24 tokens across 19 periods even
though he or she wanted to contribute more.1” Clearly, this subject did not understand the
rules of the experiment. Furthermore, all of his or her paired subjects except for one chose
disapproval because it was beneficial for them. This resulted in a lower contribution rate in
the SMAM compared with that in the MAM. If we exclude the data from subject 13 in the
third session and those from the other subjects when they were matched with him or her,
the average contribution rate of the SMAM rose to 92.3%, still significantly lower than that
of the MAM at the 5% significance level (two-tailed Mann-Whitney test, z=-2.395, p=0.017).
Subject 9 in the third session also contributed far less compared with the other subjects. He
or she contributed on average 57.5% of endowments. This subject intentionally chose low
contributions, expecting that his or her matched subjects might approve by giving up a
small amount of their points and allowing him or her to earn more points. However, his or
her contributions were disapproved by all 17 counterparts, who proceeded to the second
stage.1® Similar to the above case, we also performed a two-tailed Mann-Whitney test after
excluding the data from the groups in which subjects 9 or 13 in the third session
participated. Then, the contribution rate of the SMAM became 94.0%, which was not
significantly different from that of the MAM at the 10% level (z=-1.392, p=0.164).

7.3. Evaluation of the predictive performances of BEWDS and SPNE
7.3.1. Evaluation based on the equilibria of the whole game

From the aggregate data of the MAM and SMAM, subjects’ choices are apparently
consistent with BEWDS since they sustainably contributed nearly 95% of their endowments.
In this subsection, we thus examine the data from individual groups in order to provide
more evidence that BEWDS better describes the data compared with SPNE.

In order to evaluate several equilibrium concepts and learning models, the

17 In the post-experiment questionnaire, this subject wrote: “Many subjects chose 24. ... I could not
contribute more because I have only 24 tokens.”

18 In the post-experiment questionnaire, this subject wrote: “My matched subjects chose a higher
contribution than I did, and so my choice was disapproved in most periods. However, I wanted to choose
the number, expecting that my matched subjects might approve.”
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behavioral game theory literature sometimes abstracts the economic environment and sets
various types of games in which each equilibrium concept or learning rule predicts a
unique outcome and their predictions differ. Thus, performance can be evaluated based on
how close the experimental data and these equilibrium predictions are, for example by
analyzing mean squared deviations (see Ert et al., 2011).1° By contrast, in our study the
public good environment and mechanisms are given. Thus, the BEWDS paths are included
in the SPNE paths and may not always be unique as shown in the theoretical section. These
facts lead to two problems. One problem is how to evaluate the inclusion of equilibrium
paths. Another is overcoming the difficulty of defining the distance between the
experimental data and equilibrium predictions because of their multiplicity. Hence, we
need to evaluate the equilibrium in an alternative manner.

To solve these problems, we use two criteria to evaluate BEWDS and SPNE for
each approval mechanism treatment g.20 The first criterion is the number of equilibrium
paths, while the second is the proportion of the path data ((s,,t;),(s,,t,)) that is consistent
with the equilibrium paths (for the derivation of the equilibrium paths including BEWDSk,
k=2,3,4,5, see Appendix B). We conclude that one equilibrium concept has a superior
predictive performance compared with the other concept under g if this (first) concept has
fewer paths than the other concept and the proportion of equilibrium-consistent path data
is significantly higher than the other. The followings are for the case of a tie in one criterion.
If the two equilibrium concepts have an equal number of equilibrium paths and the
proportion of the consistent path data of one is significantly higher than the other, this
(first) concept shows a superior performance. Further, if one equilibrium concept has fewer
paths than the other and the proportion of the consistent path data is not significantly
different, this (first) concept shows a superior performance.

The statistical significance of the difference in the proportions of
equilibrium-consistent paths between BEWDS and SPNE, denoted by b® and p?,
respectively, is tested using McNemar's exact test for the null hypothesis H,, : b = p?

against the alternative H, :b® = p*.
Note that these two criteria are complementary. If our evaluation were based only

on the proportion of equilibrium-consistent path data, then the trivial equilibrium concept

that predicts all possible paths would not be bettered by any other equilibrium concept.

19 Using games with a unique equilibrium has another advantage, namely avoiding multiple supergame
equilibria. Using various types of games (e.g., entry games and trust games) helps confirm the robustness
of equilibrium or learning models (see Erev and Roth (1998) and Nyarko and Schotter (2002) for strategic
form games and Stahl and Haruvy (2009) and Ert et al. (2011) for extensive form games). By contrast, our
situation is similar to the experimental studies of Brandts and Holt (1992), Banks et al. (1994), and Cooper
and Kagel (2008), which evaluated Nash refinements using signaling games.

20 We omit data on the VCM since both BEWDS and SPE predict zero contributions.
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Thus, we can avoid this problem by preferring a smaller number of equilibrium paths. By
contrast, even if the number of equilibrium paths were small, it would not serve our
purpose to find subjects” behavioral principles as long as the equilibrium paths failed to fit
the data. Thus, the proportion of equilibrium-consistent path data should always be

considered. Therefore, we have:

Result 5. i) In the MAM, the number of BEWDS paths is four, while that of SPNE paths is 100.
There is no significant difference in the proportion of equilibrium-consistent path data between
BEWDS (83.3%) and SPNE (83.9%).

ii) In the SMAM, the number of BEWDS paths is one, while that of SPNE paths is 25. There is no
significant difference in the proportion of equilibrium-consistent path data between BEWDS
(74.4%) and SPNE (74.6%).

iii) In the MCM, the number of BEWDS paths is 123, while that of SPNE paths is 1160. The
proportion of BEWDS-consistent path data (46.3%) is significantly smaller than that of SPNE
(86.8%).

Table 10 lends support to Result 5. The third column shows the equilibrium paths.
Let us begin with the MAM.

Table 10 about here.

First, as shown in the fourth column of Table 10, BEWDS predicts four payoff-equivalent
paths ((24,-),(24,)), while SPNE predicts 100 paths where players make the same first-stage
choice. Dividing the number of equilibrium-consistent paths in the fifth column by the total
number of paths suggests that BEWDS explains 83.3% (=475/570) of the data in the MAM,
slightly lower than SPNE (83.9% =478 /570). However, McNemar's exact test does not reject
H, atthe 10% significance level. Since BEWDS has a smaller number of equilibrium paths
than SPNE and because the proportions of the equilibrium-consistent data are not
statistically different between them, we conclude that BEWDS is more predictive than
SPNE in the MAM.

We obtain the same conclusion in the SMAM, where BEWDS predicts (24,24) and
SPNE 25 paths. SPNE can thus explain only one additional data point that BEWDS cannot
(74.4% =424/570 for BEWDS vs. 74.6% =425/570 for SPNE). Again, McNemar's exact test

does not reject H,, at the 10% significance level.
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We obtain inconclusive results in the MCM, however, in which BEWDS predicts
123 paths and SPNE 1160 paths. Further, SPNE explains nearly twice as many observed
paths as BEWDS (86.8% =495/570 vs. 46.3% =264/570). McNemar's exact test rejects H,,
at the 1% significance level, suggesting that SPNE explains a significantly larger proportion
of data than BEWDS. Hence, we cannot determine whether BEWDS or SPNE has a superior

predictive performance.

7.3.2. Evaluation based on the equilibria of subgames

Thus far, we have only examined whether path data are consistent with some
equilibrium path. In this subsection, we focus on second-stage decisions. By fixing
mechanism treatment ¢ and equilibrium concept BEWDS (SPNE), we say that the path data
((51,t1),(s5,t,)) is subgame-consistent if second-stage decisions (t,,t,) are consistent with
the elimination of weakly dominated strategies for both players (NE) in subgame (s;,s,)
under ¢.2! Similar to the argument in the previous subsection, we perform
McNemar's exact test for the equality of the proportion of subgame-consistent path data
between BEWDS and SPNE by treatment. We omit the path data where both subjects are

indifferent between approval and disapproval. Then, we have:

Result 6. i) In the MAM, BEWDS prediction is unique, while there are two SPNE predictions in
every subgame. There is no significant difference in the proportion of subgame-consistent path data
between BEWDS (85.9%) and SPNE (90.2% ).

ii) In the SMAM, both BEWDS and SPNE predict a unique and identical decision in every subgame.
The proportion of subgame-consistent path data is 97.2%.

iii) In the MCM, BEWDS predicts one fewer decision than SPNE in every subgame. There is no
significant difference in the proportion of subgame-consistent path data between BEWDS (86.3%)
and SPNE (86.8%).

iv) Among the proportions of second-stage decisions consistent with neither BEWDS nor SPNE,
(n,y) when s1<0.752/0.3 in the MCM ranks at the top with 15.8%, followed by (y,y) in the MAM
with 9.8%, (y,y) in the MCM when s1>0.752/0.3 with 3.4% and (y,-) in the SMAM with 2.8%.

Table 11 lists the frequencies of subgame-consistent path data under BEWDS and

SPNE by treatment. In the MCM, second-stage subgames are classified into three rows

21 In order to deal with multiple equilibrium concepts and multiple equilibria in the imperfect information
games induced by our mechanisms, we slightly modified the definition of subgame consistency for perfect
information game experiments proposed by Binmore et al. (2002). This requires that for every subgame, if
subjects reach there, they make the choices prescribed by the unique subgame perfect Nash equilibrium.
For perfect information games, our subgame consistency is identical to that presented by Binmore et al.
(2002).
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depending on BEWDS predictions. The middle four columns list the frequencies of the
second-stage decisions. The shaded cells represent subgame consistency under BEWDS.
Tables A9 and A10 show the BEWDS-consistent decisions for each second-stage subgame.
As shown in the proofs of Propositions 4 and 5, SPNE predictions contains (1,1) other than
BEWDS predictions in every subgame of both the MAM and MCM. Note that both BEWDS
and SPNE predict # in every subgame of the SMAM.

A large proportion of path data is subgame-consistent under BEWDS for every
approval mechanism treatment, as shown in the third column from the right. The
proportions are 85.9% (=79/(9+79+4)) in the MAM, 97.2% (=141/ (4+141)) in the SMAM,
and 86.3% (=(377+2+2+111)/570) in the MCM.

Table 11 about here.

For SPNE, by contrast, these proportions are 90.2% (=(79+4)/(9+79+4)) in the
MAM, 97.2% (=141/(4+141)) in the SMAM, and 86.8% (=(377+2+2+111+1+2)/570) in the
MCM. McNemar's exact test does not reject the equality of the proportion of
subgame-consistent path data between BEWDS and SPNE at the 10% significance level in
all treatments.?? In other words, SPNE does not significantly improve the explanation of
our data compared with BEWDS. By applying the evaluation presented in the previous
subsection, we conclude that BEWDS is more predictive than SPNE in terms of subgame
consistency both in the MAM and in the MCM.

Table 10 reports that the number of SPNE paths is 1160. Note that many of these
SPNE paths are constructed so that subjects play a Pareto-dominated Nash equilibrium
(n,n) on off-the-equilibrium paths at s1<0.7s2/0.3, as shown in Section 5. However, as we
observed only one case of (1,n), it is hard to justify that subjects follow SPNE.

It is uncertain why the violation of both BEWDS and SPNE occurs with a high
frequently of 15.8% =71/(377+71+1) in the MCM as (n,y) when 51<0.752/0.3 compared with
other cases: (y,y) in the MAM with 9.8% =9/(9+79+4); (y,-) in the SMAM with 2.8%
=4/(4+141)); and (y,y) in the MCM when 51>0.752/0.3 with 3.4% =4/ (4+111+2)). Note that
when 51<0.752/0.3, player 1 can be better off compared with his or her initial endowment
when both players approve. Hence, if player 1 deliberately chooses n while knowing that
player 2 chooses y following BEWDS, player 1 loses his or her payoff.

2 Since both BEWDS and SPE predict # in the SMAM, it is natural that McNemar's exact test provides a
p-value of 1.000.
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Inequality aversion explains these observations. Consider subgame (11,5) in the
MCM using Table A8. Because 11>5, player 2, who follows BEWDS, chooses y. Then, if
player 1 chooses y, he or she will be behind player 2 by 9060-7260=1800. If player 1 chooses
1, both players obtain the same payoff of 7200 and he or she is not disadvantaged in terms
of inequality. Hence, player 1 will choose n. A similar argument shows that
inequality-averse player 1 disapproves player 2’s choice when s; >s, in general. The
questionnaire analysis discussed in the next section shows that subjects who choose weakly
dominated disapproval are deemed to follow inequality aversion.

Although inequality aversion seems to be anomalous behavior in the MCM, it
provides new insights into the effectiveness of the MAM. Inequality-averse player 1 still
disapproves player 2’s choice when s; >s,. This is consistent with BEWDS. In other words,
even when a pair consists of a follower of inequality aversion and that of BEWDS, players
behave in the same manner in the second stage of the MAM. Although we do not formulate
the formal model for inequality aversion here, this fact suggests that MAM directs players
with heterogeneous behavioral rules towards cooperation. In the next section, we explore
this possibility in greater depth as a step towards designing workable public good

mechanisms.

8. Reasoning Processes in the MAM and MCM

As shown in Section 7, BEWDS has more predictive power in terms of path data
than SPNE both in the MAM and in the SMAM. However, this result does not imply that
subjects follow the underlying logic of BEWDS in the MAM. Subjects need high
computational ability to eliminate weakly dominated strategies in every subgame,
especially in the reduced normal form game that has a 2525 payoff table.

In this section, we investigate what underlying reasoning processes subjects
follow by examining their responses to the open-ended questions during and after the
experiment. First, we propose alternative models whose predictions are consistent with the
data in the MAM and MCM, according to the notable descriptions in the record sheets
completed during the experiment and to the post-experiment questionnaire. Then, we
employ a coding method in order to count the number of decisions that mention the idea of
alternative models. Furthermore, we count the number of decisions that mention the idea
of inequality aversion in the record sheet when players chose n even though BEWDS

prediction was y in order to support the conjecture presented in subsection 7.3.2.

8.1. Reasoning Processes in the MAM
Figure 4 illustrates the distribution of first-stage choices in the MAM. The striking
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feature of the data is that most subjects choose the full contribution. We now propose two
alternative models that predict that players make the full contribution (or the symmetric

Pareto-efficient outcome).

Figure 4 about here.

8.1.1. Diagonalization

The first alternative model simplifies backward induction. Some subjects seemed
to understand that if players in a pair chose different first-stage choices, then the player
with the higher contribution would disapprove the other’s choice. This results in the same
contribution for both players. Therefore, such players focused on the payoffs on the
diagonal line of the payoff table. Given this expectation, subjects found that the full
contribution maximizes their own payoffs among the contributions on the diagonal line.

We call this heuristic or algorithm diagonalization, which can be divided into two parts:

(D-1) Since a player who chooses the higher first-stage choice will disapprove the other’s
choice, both obtain the payoffs of the diagonal line in the payoff table; and
(D-2) Full contributions for both players attain the maximum payoff among the payoffs on

the diagonal line.
Then, we have the following simple proposition.

Proposition 6. If both players follow diagonalization in the MAM, then the outcome is symmetric
Pareto-efficient.

8.1.2. Regret minimization

The second alternative model is regret minimization coupled with subgame
perfection. Some subjects imagine foregone payoffs from unchosen strategies. This idea is
close to the simplest version of &-minimax regret equilibrium introduced by Renou and
Schlag (2011), who incorporated into game-theoretic models experimental evidence that
people avoid ambiguity and the decision-theoretic formulation of such behavior. Let g be
an approval mechanism. For every pure strategy profile ((s;,f;(-)),(s,,t,(-))), player s
regret at ((s;,t,(")),(5,,t,())) is defined by
Ri((si'ti('))/(Sj'tj('))) =maX () uf (s, (), (Sj'tj('))) - uzg((sz”ti('))’(sj'tj('))) , j#i.Thisis the
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difference between his or her maximal payoff when player i best responds to j’s strategy
((s;,%;()) and his or her payoff when he or she plays ((s;, (")) . A strategy profile
((51,1,()),(55,t,())) is a minimax regret equilibrium if for each i, j with j # i, and for all

(si £ (), max g oy Ri((si,£()), (s, £5()) <maxy ) Ri((si, (), (s}, £(-))) - In other words,
each player chooses the strategy that minimizes the largest possible regret in the
equilibrium.? We say that a minimax regret equilibrium is subgame perfect if the action
profile induced by ((s;,t,(-)),(s,,t,(-))) constitutes a minimax regret equilibrium in every

subgame.

Proposition 7. The MAM implements the symmetric Pareto-efficient outcome in the subgame

petfect minimax regret equilibria.
Proof. See Appendix. |}
Propositions 2 and 7 together imply the double implementation result.

Corollary. The MAM doubly implements the symmetric Pareto-efficient outcome in BEWDS and

the subgame perfect minimax regret equilibria.

8.2. Reasoning Processes in the MCM

As shown in subsection 7.3, BEWDS does not satisfactorily explain the data in the
MCM. Figure 5 illustrates the distribution of first-stage choices in the MCM. Remember
that in the MCM BEWDS predicts any contribution between one and 11 tokens. Figure 5
shows that 805 out of 1140 first-stage choices (70.6%) are in this range. However, BEWDS
alone cannot explain the additional feature of the distribution that the spikes appear at five,
six, 11, and 24 tokens. This indicates that some reasoning processes other than BEWDS

might work. The alternative models presented here partially capture this feature.

Figure 5 about here.

8.2.1. Regret minimization

Certain subjects in the MCM also described a reasoning process that is consistent

2 Here, we assume complete uncertainty, namely each player believes that his or her opponent may choose
any strategy.
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with regret minimization.

Proposition 8. A unique contribution supported by the subgame perfect minimax regret equilibria

coincides with the maximal one supported by BEWDS under the MCM.

Proof. See Appendix. |}

Although regret minimization can explain the highest spike (11 tokens) in Figure 6, it does

not predict the spikes at five, six, and 24 tokens.

8.2.2. Iterated Best Response

An alternative model for the MCM is iterated best response in the reduced normal
form game coupled with the elimination of weakly dominated strategies in the second
stage.?* Selected subjects seemed to expect that the other player would choose 24 tokens in
the first stage. Assume that player 1 expects player 2 to choose 24 tokens and to eliminate
weakly dominated strategies in the second stage. As shown in Table A9, player 1 will know
that player 2 disapproves if and only if player 1 chooses no more than 10 tokens. Then,
player 1 can easily see that contributing 11 tokens is the best response. Another step of
iterated reasoning leads player 1 to contribute five tokens, which is the best response to the
11 tokens of player 2.2 To put this procedure formally, let B(k) be a sequence such that B(0)
= w and define iteratively B(k) = BR(B(k-1)) until B(k) = B(k-1), where BR(.) is the best
response to B(k-1) in the reduced normal form game. By contrast, the choice that survives
BEWDSk is {1, 2,..., B(k)}. Then, we have the following result.

Proposition 9. A sequence of first-stage choices from the iterated best response {B(k)} (k=1,2,3,...)
consists of the maximal choice that survives BEWD Sk under the MCM.

Proof. See Appendix. i

8.3. Coding Procedure

24 This model is based on the level-k theory literature, while we apply iterated best response to the
reduced normal form game. In the studies by Crawford and Iriberri (2007) and Costa-Gomes and
Crawford (2006), subject in a static, dominance solvable game is said to be type L1 if he or she best
responds to the type with the randomized choice, L0. Type Lk+1 is defined inductively as those who best
respond to type Lk. Johnson et al. (2002) is a notable exception, which examined the level of reasoning in
extensive form games, especially in six-stage bargaining games, but their classification was based on how
many future rounds subjects truncate.

% The third, fourth, and fifth iterations result in choosing three, two, and one tokens, respectively.
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In this subsection, we report the coding procedure in order to investigate which
type of reasoning process subjects described in the questionnaire during and after the
experiment, including diagonalization, regret minimization and iterated best response.
This method is similar to those presented by Cooper and Kagel (2005), Brandts and Cooper
(2007) and Chen and Chen (2011).26

The coding proceeded as follows. First, the authors separately read the responses
both in the MAM and in the MCM. Then, they created 30 sentence-based categories from
typical responses (Table 12). These categories include the responses seen only in the MAM,
only in the MCM, and in both treatments and are broadly separated into three groups:
behavioral description in the decision stage, behavioral description in the choice stage, and
subjects’ trend.

Two research assistants (hereafter coders) were independently instructed and
each performed the coding for all 120 subjects in the MAM and MCM. The instructions for
coders are included in Appendix E. The coders were required to read subjects” descriptions
and determine, for each subject, to which categories his or her descriptions belong and to
check all relevant categories (O=description does not fall into the category, 1=description
falls into the category). We refer to a coder’s binary decision as the rating. Coders never met
face-to-face and no efforts were made to reconcile the differences in individual coding.

The above-described design is suitable for three reasons. First, setting as many as
30 categories including descriptions in both treatments allows us to analyze subjects’
responses inclusively. Second, using fixed categories across treatments helps coders make
unbiased decisions. Third, sentence-based categories can capture whether subjects describe
the idea of diagonalization, regret minimization and iterated best response more precisely
compared with the word-based categories typically used in the literature. As a check of
validity, we also calculated the cross-coder correlation by category. The overall average
cross-coder correlation was 0.450 and the average cross-coder correlation across the five

most frequent categories was 0.421.2

Table 12 about here.

2 Note that our experiments did not allow communication among subjects, while the above literature
studied which specific words and attitudes in informal communication facilitated cooperation among
group members.

27 These values are comparable to the results presented by Cooper and Kagel (2005): the overall average
cross-coder correlation in their paper was 0.388, while the average cross-coder correlation across the five
most frequent categories was 0.570.
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8.4. Coding Results for MAM sessions

For diagonalization, Categories 5, 10, and 14 were designed to capture the
reasoning step (D-1) introduced in subsection 8.1.1, which can be expressed in several ways.
Similarly, Category 8 refers to step (D-2). Category 12 was designed to capture regret

minimization in the first stage.282

Result 7. i) Categories 5, 10, and 14 for (D-1), Category 8 for (D-2), and Category 12 for regret
minimization are the third, 12th, fourth, first, and 14th most frequent responses.

ii) 96.7 % of subjects are deemed to follow diagonalization by either coder. Among them, 38.3% of
subjects are deemed to follow it by both coders.

ii1) 16.7% of subjects are deemed to follow regret minimization by either coder. Among them, 3.3%

of subjects are deemed to follow it by both coders.

Table 13 summarizes the coding results of the MAM for the alternative models
mentioned above. The leftmost column specifies alternative models. The second column
lists the category numbers that represent the idea of the alternative model. The next three
columns present the distribution of subjects according to the total rating of both coders in
the category and the last column shows the average ratings of both coders in the category
along with the relative ranking in parentheses.?0 In Appendix F, Table A11 lists the average

rating of all 30 categories.

Table 13 about here.

Let us begin with the categories for diagonalization. Category 8 for (D-2) ranks
top among the 30 categories with an average rating of 0.767. Furthermore, Categories 5 and
14 for (D-1) rank third and fourth, respectively.3! This result means that descriptions

consistent with diagonalization are most frequently found in these responses. By contrast,

2 We did not make the categories consistent with regret minimization in the decision stage because we
could not find such responses from the questionnaires.

29 When coders engaged in coding, Category 13 in Table 12 was classified as regret minimization.
However, we found that the sentence of that category was too imprecise to capture regret minimization.
Therefore, we do not consider Category 13 to describe regret minimization in the analysis.

30 Given a treatment and category k, let 7} be the number of subjects rated as 1 by coder i=1,2. Since

we have 60 subjects in one treatment, the average rating is (1} /60 +n5 /60) /2.

31 The second highest average rating was Category 3, which says that the subject decides to approve or not
to maximize his or her points.
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regret minimization (Category 12) ranks 14th with an average rating of 0.100. Hence, regret
minimization is deemed to be a relatively minor reasoning process among subjects.

We further count the number of subjects that received a rating of 1 from at least
one coder in Categories 5, 10, and 14 (D-1) and from at least one coder in Category 8 (D-2).
These subjects are deemed to be followers of diagonalization. This number reaches 58 out
of 60 subjects (96.7%). Moreover, 23 out of 60 subjects (38.3%) received a rating of 1 by both
coders in both (D-1) and (D-2) categories. By contrast, only 10 out of 60 subjects (16.7%)
received a rating of 1 from either coder for regret minimization. Among them, both coders
rated just two out of 60 subjects (3.3%) as followers of regret minimization. This result
supports the notion that subjects considered diagonalization (albeit subconsciously) but

did not consider regret minimization.

8.5. Coding Results for MCM Sessions
Categories 16 and 17 were designed to capture the first and second rounds of

iterated best response in the first stage, respectively.

Result 8. i) Categories 16 and 17 for iterated best response and Category 12 for regret minimization
are the 12th, sixth, and 19th most frequent responses.

ii) 21.7% of subjects are deemed to follow the first round of iterated best response by either coder.
Among them, 6.7% of subjects are deemed to follow it by both coders. 45.0% of subjects are deemed
to follow the second round of iterated best response by either coder. Among them, 23.3% of subjects
are deemed to follow it by both coders.

iii) 11.7% of subjects are deemed to follow regret minimization by either coder. Among them, 3.3%

of subjects are deemed to follow it by both coders.

Table 14 reports the coding results in the MCM. Because Category 12 ranks 19th for regret
minimization with an average rating of 0.075, this explains only a proportion of subjects’
choices and descriptions as well as it did in the MAM. Iterated best response also does not

receive a majority.

Table 14 about here.

Among the 30 categories, Category 16 ranks 12th for the first-round iteration with
an average rating of 0.142, while Category 17 comes ahead of Category 16 for the
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second-round iteration (sixth with an average rating of 0.342). Nevertheless, it is
worthwhile noting that Category 17 has the highest average rating among all categories in
the first stage (see Table A11).

In the MCM, the highest and second highest average rankings are Categories 3
and 4, which concern the maximization of points in the second stage. The third highest
average ranking is Category 28, which concerns the adjustment of the contribution given
the previous choice of the counterpart.

By counting subjects that received a rating of 1 from at least one coder and from
both coders, 11.7% (=(5+2)/60) and 3.3% (=2/60) of subjects fall into Category 12 for regret
minimization, respectively. Moreover, 21.7% (=(9+4)/60) and 6.7% (=4/60) of subjects fall
into Category 16 for the first round of iterated best response, while 45.0% (=(13+14)/60)
and 23.3% (=14/60) of subjects fall into Category 17 for the second round of iterated best

response, respectively.

8.6. Inequality Aversion in the Second Stage of the MCM

As shown in subsection 7.3.2, we observed weakly dominated disapproval in the
second stage of the MCM. We conjecture that this result is brought about by inequality
aversion. We thus recalculate the coding results when a subject with a higher first-stage
choice than the other player chose 1 even though the BEWDS prediction is y. We find that
60.6% of decisions in this situation are given by either coder a positive rating in Category 1
or 7, which is consistent with the notion of inequality aversion.32 Further, 28.2% of
decisions are undetermined because neither coder rated subjects. It is remarkable that 34
out of the 71 weakly dominated disapprovals introduced in subsection 7.3.2 occur because
of the groups that included the four subjects in the first session who kept choosing 24
tokens and disapproved the other subject’s choice in most periods. When we focus on these
four subjects, we obtain a similar result, namely that 60% of decisions are given a rating of
1 by either coder and that the remaining decisions are undetermined. This result lends

support to the argument presented in subsection 7.3.2.

9. Concluding Remarks
This paper theoretically and experimentally showed that the MAM leads to the

efficient provision of public goods within a standard linear public goods game framework.

32 Coders recorded the period or questionnaire in which the subject’s description is relevant to the
category. If the decision is not rated as Category 1 or 7 by a coder, but the description is the same as that
given a rating of 1 in earlier periods, we counted it as having received a rating of 1. If the decision is given
arating of 1 in Category 1 or 7, but is also given a rating of 1 in other categories in the decision stage that
are inconsistent with inequality aversion, we did not count it as having received a rating of 1.
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One important theoretical departure from the literature is implementation in BEWDS
rather than in dominant strategy equilibria, NE, or SPNE. In addition, the MAM has a
distinctive feature of voluntariness compared with the mechanisms typically proposed in
the literature that rely on coercive tax power (see Groves and Ledyard, 1977; Falkinger,
1996).

In the presented experiments, we observed rapid convergence towards the
efficient allocation in MAM sessions. Although our environmental setting is simple, our
result is in stark contrast to recent studies of public good mechanisms, which have often
needed dozens of repetitions to attain efficiency in their experiments (see Chen and Plott,
1996; Andreoni and Varian, 1999; Chen and Gazzale, 2004; Healy, 2006). By using two
criteria in order to compare the predictive performances of equilibrium concepts in both
stages and in the second stage only, we found that subjects consistently chose BEWDS.
Indeed, SPNE did not significantly improve the explanation of our data relative to BEWDS
in all treatments. Further, our inclusive coding of subjects’ responses helped to pinpoint
their reasoning processes which produce outcomes consistent with BEWDS. Beyond the
authors” expectations, the majority of subjects in the MAM explicitly described the idea of
diagonalization. We also confirmed that certain subjects followed regret minimization both
in the MAM and in the MCM, whereas they followed iterated best response and inequality
aversion in the MCM.

One direction for further research is to evaluate experimentally BEWDS
implementation mechanisms including approval mechanisms in more general
environments. As noted in Section 3, when there are only two players that have different
endowments and preferences to the public good, we can almost directly apply the MAM
by reducing the problem to the symmetric case through asking players to choose the ratio
of contribution to his or her endowment. Using homogeneous n-person public good
environments with binary choices, Huang et al. (2012) succeeded in constructing a variant
of an n-person approval mechanism. However, the SMAM introduced in this paper
extends the mechanism of Huang et al. (2012) to homogeneous n-person public good
environments with continuous contributions and linear payoffs by selecting players who
proceed to the second stage. Future work might also compare BEWDS implementation
mechanisms with existing Nash or subgame perfect Nash implementation mechanisms in
order to shed new light on the rationality assumptions that underlie the design of public
good mechanisms.

This paper should at least stimulate constructive discussion on the theory of
mechanism designs that allow players to have heterogeneous reasoning processes

including BEWDS. The observed heterogeneity is in line with previous experimental
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research not only in terms of social preferences (see Cooper and Kagel, 2008 for a survey)
but also in terms of strategic sophistication (Crawford and Iriberri, 2007) and learning with
forgone payoffs (Ho et al., 1998). Even though our experiment used a simple public good
environment, this paper has important implications for practical mechanism design, which
should emphasize the alignment of players with various behavioral rules towards a social

optimum.
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Figure 1. Prisoner’s dilemma game with the MCM.

Figure 2. No BEWDSwo strategy exists.

Figure 3. Average contributions by period, sorted by mechanism.
Figure 4. Distribution of choices in the first stage of the MAM.
Figure 5. Distribution of choices in the first stage of the MCM.
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0 2 4 6 8 10

0 10 114 | 128 |142 |15.6 |17
2 9.4 108 |122 |13.6 |15 16.4
4 8.8 102 | 11.6 |13 144 | 158
6 8.2 9.6 11 124 |13.8 |15.2
8 7.6 9 104 | 11.8 |13.2 |14.6
10 |7 8.4 9.8 11.2 | 126 |14

Table 1. Player 1’s payoff table when w=10and o =0.7.



Yy n Yy n

(14.2,8.2) (10,10) y | (152,11.2) (10,10)
(10,10) (10,10) n | (10,10) (10,10)
Subgame (,6) Subgame (6,10)

Table 2. Payoff tables in subgames (0,6) and (6,10).



0 2 4 6 8 10
10 10 10 10 10 10
10 108 |122 |10 10 10
10 102 116 |13 144 |10
10 10 11 124 | 13.8 | 15.2
10 10 104 |11.8 |13.2 | 14.6
10 10 10 10 11.2 | 126 |14

x® O B~ NN O

Table 3. Player 1’s payoff table in the reduced normal form game under the MCM.



Y n Yy n

(9.613.6) |(108108) |y | (146,126) | (13.213.2)

(10.8,10.8) | (10.8108) |n | (13.2132) |(13.2,13.2)

Subgame 6,2) Subgame §,10)
Table 4. Payoff tables in subgames (6,2) and (8,10).



0 2 4 6 8 10
10 10 10 10 10 10
10 108 |10.8 |10.8 |10.8 |10.8
10 108 |116 |11.6 |11.6 |11.6
10 108 |[116 |124 |124 |124
10 108 |[116 |124 |13.2 |13.2
10 |10 108 |[116 |124 |132 |14

x® O B~ N O

Table 5. Player 1’s payoff table in the reduced normal form game under the MAM.



0 2 4 6 8 10
116 |12
116 |12 124
11.6 |12 124 | 128
11.6 |12 124 | 128 |13.2
11.6 |12 124 | 128 |13.2 |13.6
10 |12 124 (128 |132 |13.6 |14

Table 6. Player 1’s payoff table in the reduced normal form game under the AAM.



Y n Yy n

(13.8,11.8) | (10,10) y (14.4,10.4) | (10,10)
(10,10) (10,10) n (10,10) (10,10)
Subgame 6,8) Subgame (4,8)

Table 7. Payoff tables in subgames (8,10) and (4,8).



Table 8. Two-tailed Mann-Whitney test statistics for the equality of average contributions,

grouped by treatment.

Treatment SMAM MCM VCM
MAM 3.799**  9.450** 9.445**
SMAM 9.133*  9.275%*
MCM 7.284**

Notes: **p<0.01.




(%) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

MAM - - - - - - - - 13 47
SMAM 1 - - - - 1 - 2 15 41

Table 9. Distribution of average contribution rates per subject



# of equil.- McNemar's

Equil. . # of equil. .
Treatment Equil. paths consistent exact
concept paths
path data  p-value
BEWDS ((24, *),(24, *))” 4 475
MAM 0.250
SPNE ((s*)(s,*)), s=0,1,...,24 100 478
BEWDS (24, 24) 1 424
SMAM 1.000
SPNE (s,;5),5s=0,1,...,24 25 425
BEWDS (s 1,t1),(s2,t)), 51,5,=1,2,...,1179 123 264
MCM ((s1,t1)(52,E2)) 51,52 <0.000
SPNE ((S 1,0 1)/(52/7]2))/ S 1/52=O/1/~-~/24d) 1160 495

Notes : a) Since subjects in the MAM proceed to the decision stage when both players choose the

same choice in the first stage, there are four payoff equivalent BEWDS paths. On the other

hand, subjects in the SMAM does not proceed to the decision stage in such cases and hence
there is a unique BEWDS path. b) This prediction is based on BEWDSI.

<)

(t,ty) =

d)
(n,y)ifs, >0.7s, /0.3 (v,,v,)=(t,,t,)or(n,n)forall(s,,s,).
(v, y)or (n,y) if (s, ,s,) = (7,3),(14,6),(21,9)
(y,y)ifs, <0.7s, /0.3ands, <0.7s, /0.3

(v, y)or (y,n)if (s,,s,) = (3,7),(6,14),(9,21)
(y,n)ifs, >0.7s, /0.3
. y), (y,m), (ny)or (m,n)if (s,,s,) = (0,0).

Table 10. Evaluation of BEWDS and SPNE by treatment.
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# of % of subgame-

equil. .
o consistent path data McNemar's
Treatment Sub ') The second-stage decisions decisions exact
ubgames 8 pEwps, PEWDS:  SPNE: 1
-value
shaded shaded Py
SPNE
cells  cells+(n,n)
MAM wy) (ny) (yn) (mn)
51>8, 9 79 0 4 1 2 85.9 90.2 0.125
SMAM ) ()
51>8, 4 141 1 2 97.2 97.2 1.000
wy) (my) yn) (mn)
$4<0.7s,/0.3 377 71 0 1 1
MCM
s:=0.75,/0.3 2 2 0 0 2 3 86.3 86.8 0.250

$;>07s,/03 4 111 0 2 1

Notes: a) Without loss of generality we can assume s; >s, . b) The path data where both subjects are

ey

indifferent between approval and disapproval are omitted. c) indicates that player 2 does not proceed
to the decision stage in the SMAM. d) n is always the unique best response in the SMAM. e) Bold y
indicates that player 2 chooses iy under BEWDS.

Table 11. Subgame-consistent path data under BEWDS and SPNE by treatment.
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Large  Category Category and discriptions
category No.
1 (One's own motives 1) I disapprove when I lose by a wide margin.
2 (The counterparts' motives 1) Others disapprove when they lose by a wide margin.
3 (One's own motives 2) I decide to approve or not to maximize my points.
4 (The counterparts' motives 2) Others decide to approve or not to maximize their own points.
Decision 5 (Linking to approval or not with first-stage choices) Whenever two players choose different
stage investment in the choice stage, either will disapprove to maximize his or her own points.
6 (Trying to make a good impression) When approval and disapprovals are indifferent,  approve
so that other subjects have a good impression of me.
(Asking for cooperation even if points are lost ) I choose 24 tokens (or slightly smaller number)
7 to maximize the sum of points of the pair. If my counterpart chooses an even smaller number, 1
disapprove even if I lose my points.
3 (Profit maximization under symmetric contributions) If both players contribute the same
amount, I can maximize my points by choosing 24 tokens.
9 (Avoiding being disapproved) I choose investments to be approved, no matter how much
points I get.
10 (Referring to the diagonal line) I can get points only on the diagonal line of the points table.
11 (Expected utility maximization) I choose investments to maximize my expected points,
considering the past observations of my counterpart's strategies.
12 (Regret minimization 1) I made risk-free choices to lose points no matter what others choose in
the choice stage.
13 (Regret minimization 2) I made the first-stage choice to be approved no matter what others
Choice choose in the choice stage.
stage 14 (Difference in points earned between two players) Both end up receiving the same points.
15 (Optimistic prediction) Even when Islightly decrease my investment, my counterpart will
approve.
(Taking advantage of a cooperative subject 1) My counterpart will choose approximately 24
16 tokens. Then, I can maximize my points by choosing 11 tokens (or a slightly larger number) in
the choice stage given long as my counterpart approves.
(Taking advantage of a cooperative subject 2) My counterpart will choose approximately 11
17 tokens. Then, I can maximize my points by choosing five tokens (or a slightly larger number) in
the choice stage as long as my counterpart approves.
18 (Eliminating weakly dominated strategies) No matter what investment others choose, | would
be better off by choosing 11 tokens compared with choosing larger numbers.
19 (Trying to affect other subjects) Others should increase investments as I do.
20 (Expectation 1) I always anticipated what my counterpart would do in the choice stage.
21 (Expectation 2) I always anticipated what my counterpart would do in the decision stage.
22 (Expectation 3) Contributions tend to decrease.
23 (Expectation 4) Contributions will decrease until one.
24 (Imitation) I mimicked others” behavior.
25 (Dilemma) While I know that choosing large numbers is mutually beneficial, we cannot achieve
it.
(Estimation from past observations) Since counterparts adopt various strategies, it is important
Trend 26 . S . .
to estimate the distribution of their strategies.
27 (Reaction of the counterpart in the last period 1) Since I was disapproved in the last period, I
increased my investment in this period.
28 (Reaction of the counterpart in the last period 2) Since I was approved in the last period, I
decreased my investment in this period.
29 (Subjects who think differently) It is surprising that some subjects disapprove at the expense of
their own points.
30 (Subjects who think similarly) I confirmed that other subjects think the same way as I do.

Table 12. The full list of coding categories.
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C Number of subjects  Avera ge
Alternative model Ategory  with total r ating of rating
number .

0 1 5 (ranking)
5 4 30 26 0.683 (3)
Step D-1 10 48 7 5 0.142 (12)

Diagonalization

14 19 29 12 0.442 (4)
Step D-2 8 0 28 32 0.767 (1)
Regret minimization 12 50 8 2 0.100 (14)

Table 13. Coding results for alternative models for the MAM.
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Number of subjects  Average

Cat
Alternative model AEEOTY With total rating of rating
number (ranking)
0 1 5
Regret minimization 12 53 5 2 0.075 (19)
16 47 9 4 0.142 (12)
Iterated best response
17 33 13 14 0.342 (6)

Table 14. Coding results for alternative models for the MCM.
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