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Abstract

I analyze a cheap talk model in which an informed sender and an uninformed
receiver engage in finite-period communication before the receiver chooses a
project. During the communication phase, the sender can gradually convey in-
formation through multistage cheap talk communication and the receiver can
pay money to the sender voluntarily whenever she receives a message. My re-
sults show that under some conditions, (i) the receiver can extract more detailed
information from the sender than that in the model of one-shot cheap talk com-
munication and (ii) there exists an equilibrium whose outcome Pareto-dominates
all the equilibrium outcomes in the model of one-shot cheap talk communication.
Moreover, I find an upper bound of the receiver’s equilibrium payoff and provide
a sufficient condition for it to be approximated by the receiver’s payoff under a
certain equilibrium. This result shows that multistage information transmission
with voluntary monetary transfer can be more beneficial for the receiver than a
wide class of other communication protocols (e.g., mediation and arbitration).
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1. Introduction

A lack of information typically leads to inefficient decisions. Therefore, in many eco-
nomic situations, decision makers need to gather the relevant information before mak-
ing their decisions. One canonical way of gathering information is consulting informed
experts. For example, CEOs consult management consultants; politicians seek advice
from strategic planners; and law enforcement officers hire informants. In the above-
mentioned examples, the individuals who supply information are often paid for doing
so.

Contract theory indicates that a properly designed contract containing information-
contingent payments helps the decision maker to screen the information possessed by
the informed expert. However, if information is transmitted through ordinary and
informal talk, or equivalently, through “cheap talk,” contractibility does not always
exist. In such situations, the decision maker cannot commit to information-contingent
payments. Hence, it seems that allowing the decision maker to make “voluntary”
payments does not affect information transmission. Nevertheless, the information
transmitted via cheap talk is often bought and sold without signing a contract.

Can voluntary payments by the decision maker facilitate cheap talk communica-
tion? If they can, how should the decision maker pay for cheap talk messages? To
address this question, I enrich the canonical cheap talk model originally provided by
Crawford and Sobel (1982) (hereafter, CS). Specifically, I analyze a sender–receiver
game in which an informed expert (sender or he) and an uninformed decision maker
(receiver or she) engage in finite-period communication. During the communication
phase, in each period, the sender sends a cheap talk message to the receiver, and then
the receiver pays money to the sender voluntarily. Once the communication phase is
over, the receiver chooses a project.

In the CS model, the project choice and underlying asymmetric information are
one-dimensional. Moreover, the sender’s most desirable project is always higher than
that of the receiver to a certain degree. Hence, the sender has an incentive to cheat the
receiver into choosing a higher project than the receiver’s most profitable one. This
fact prevents detailed information transmission. By contrast, if the receiver can make
message-contingent payments, by paying more money for the messages inducing the
lower projects, the receiver can weaken the sender’s exaggeration incentive. However,
when the information transmission is one shot, the receiver never pays since making
payments after receiving a message is a waste of money. In the present study, I
consider a scenario in which information is conveyed in a gradual fashion and show
that by combining multistage information transmission with the receiver’s voluntary
payments, a message-contingent payment scheme can be self-enforcing.1 As a result,
information transmission can be improved even in situations in which there is no
contractibility.

1Without monetary transfer, allowing multiple rounds of unilateral (one-sided) communication in the
CS model does not affect the set of equilibria identified by the original model. Krishna and Morgan (2004)
show that allowing multiple rounds of “bilateral” (face-to-face or two-sided) communication in the CS
model leads to Pareto improvements.
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I find that under some conditions (i) the receiver can obtain more detailed infor-
mation from the sender than in the CS model2 and (ii) an equilibrium whose outcome
Pareto-dominates all the equilibrium outcomes in the CS model can exist.3 I also
show that no fully separating equilibrium exists in my model. This result implies that
information transmission is still limited even in my communication procedure. By
considering the well-known uniform-quadratic model, i.e., with quadratic preferences
regarding the project and a uniform type distribution, I find an upper bound of the re-
ceiver’s equilibrium payoff and provide a sufficient condition for it to be approximated
by the receiver’s payoff under an equilibrium.

To demonstrate the benefit of multistage information transmission with voluntary
transfer payments, I construct an interval partition equilibrium in which information
about the state of the world is conveyed in order from the right-most interval on
the state space. Specifically, in the first period, if the sender sends a message that
means that the true state belongs to the right-most interval, the receiver will neither
pay money nor obtain additional information in the future. Otherwise, the receiver
pays a certain amount of money to the sender. After this payment, in the second
period, the sender conveys whether the true state belongs to the second right-most
interval that is the neighbor to the left of the first one. If the receiver learns that the
true state belongs to the second right-most interval, she will neither pay money nor
obtain additional information in the future. Otherwise, the receiver pays money to the
sender and then the sender conveys additional information in the next period. This
information elicitation is repeated in the communication phase. If the receiver deviates
in terms of payment in a period, the sender conveys no information thereafter. Once
communication is over, the receiver chooses her best project based on the information
she has.

The logic underlying this equilibrium is as follows. First, under the information
elicitation explained above, the receiver pays money to the sender whenever the in-
formation opposite to the sender’s bias is conveyed. As a result, the receiver makes
message-contingent payments on the equilibrium path: a higher payment for infor-
mation inducing a lower project. As noted earlier, this payment scheme weakens the
sender’s exaggeration incentive. Second, since the sender can gradually convey his
information, he can punish the receiver for not paying by babbling. Thus, the receiver
makes a payment in the current period to prevent the sender’s babbling in the future.
Roughly speaking, similar to Benoit and Krishna (1985), the dependence of the selec-
tion of the future equilibrium on players’ past behavior constructs punishments for
their deviation. This fact enables the receiver to make message-contingent payments

2This result means that there exists an equilibrium whose partition has a greater number of elements
than that achieved in any equilibrium in the CS model.

3In my model, there always exists an equilibrium in which the receiver never pays money to the
sender. For instance, irrespective of the number of periods in the communication phase, there exists an
equilibrium in which the sender sends an informative message to the receiver only in the first period
and the receiver never pays. The equilibrium partition achieved in such an equilibrium is achievable in
the CS model. Obviously, players waste time on pointless communication; in other words, the receiver
does not use long-term communication effectively. Therefore, by constructing equilibria inducing Pareto
improvements, I show the benefit of multistage information transmission.
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to some extent during the communication phase.
The model I describe is potentially applicable for studying the effective use of infor-

mants. The Federal Bureau of Investigation (FBI) mentions that the “use of informants
to assist in the investigation of criminal activity may involve an element of decep-
tion, ... or cooperation with persons whose reliability and motivation may be open
to question.“4 This statement suggests that informants are often biased and that their
information might neither be credible nor certifiable. Alemany (2002) indicates that co-
operation agreements between the Drug Enforcement Agency (DEA) and informants
are often silent with respect to the compensation of the latter. This fact implies that the
parties may not always be able to sign a contract containing information-contingent
payments. Indeed, there are numerous cases of oral promises made by DEA agents
to informants subsequently being broken.5 The present study shows that by using
multistage information elicitation and voluntary transfer payments, information trans-
mission can be improved even in situations in which there is no contractibility.

My results have important implications for the theory of organizational economics
regarding designing communication protocols and organizational structures. I show
that multistage information transmission with voluntary transfer payments can be
more beneficial for the receiver than a wide range of other communication protocols.
It is well known that information transmission can be improved when more general
communication protocols (i.e., noisy communication) are available.6 By considering
a mediation model under the uniform-quadratic assumption,7 Goltsman et al. (2009)
characterize the optimal level of noise in the communication. I compare my commu-
nication procedure with the optimal mediation that maximizes the receiver’s ex ante
expected payoff and show that under some conditions, the receiver prefers the former
to the latter.

Dessein (2002) studies a simple delegation problem8 and establishes the remarkable
result that the receiver prefers full delegation to communication as long as the incentive
conflict is not too large. Since the work of Dessein (2002), designing “who decides what”
has been extensively studied. Many works investigate general settings in which the
parties can commit to an information-contingent decision rule.9 Under the uniform-

4FBI, Frequently Asked Questions, “What is the FBI’s policy on the use of informants?”
(https://www.fbi.gov/about/faqs/what-is-the-fbis-policy-on-the-use-of-informants).

5For details, see Alemany (2002).
6Many studies highlight that noisy communication leads to improved information transmission (e.g.,

Krishna and Morgan, 2004; Blume et al., 2007; Goltsman et al., 2009; Ivanov, 2010; and Ambrus et al.,
2013). Goltsman et al. (2009) characterize the optimal mediation mechanism that controls the noise in
communication. Blume et al. (2007) and Krishna and Morgan (2004) show that the optimal mediation
mechanism can be implemented under some communication protocols without monetary transfer.

7Under mediation analyzed by Goltsman et al. (2009), a neutral third party (mediator) asks the sender
for information and advises the receiver who chooses a project.

8The receiver chooses whether to communicate with the sender. She decides herself after cheap talk
communication or fully delegates the decision-making authority to the sender.

9One simple decision rule for the receiver is to delegate authority to the sender, but possibly to constrain
the set of available decisions. This class of mechanisms (analyzed by Holmström, 1977; Melumad and
Shibano, 1991; and Alonso and Matouschek, 2008) is called delegation mechanism. Goltsman et al. (2009)
show that the optimal arbitration mechanism is deterministic as a consequence and that the optimal
arbitration includes the optimal delegation mechanism.
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quadratic assumption, Goltsman et al. (2009) characterize an optimal information-
contingent decision rule, the optimal arbitration.10 Although, under arbitration, players
benefit from a “formal contract” that forces them to commit to the predetermined
decision rule, surprisingly, my results show that the receiver can obtain a higher ex ante
expected payoff in my communication procedure than under the optimal arbitration.

Related Literature A seminal analysis of the strategic information transmission be-
tween an informed sender and an uninformed receiver was provided by CS. In the
CS model, the sender sends a costless and unverifiable11 message about his private
information to the receiver, who then decides on the project that affects the payoffs
of both players. CS obtain a complete characterization of the set of equilibria in their
model and show that the existence of the incentive conflict prevents the full revela-
tion of information. In the present study, I investigate how information transmission
can be improved under multistage information transmission with voluntary monetary
transfers.

Krishna and Morgan (2008) study an amendment to the CS model by allowing the
parties to write a contract containing message-contingent payments. They show that
full information revelation is feasible but not optimal and they characterize the optimal
contract. In their model, there is a crucial assumption that the receiver can commit
herself to compensate the sender for his message. I show that when the communication
phase has multiple periods, the receiver can control the sender’s incentive through
voluntary payments even though there is no contractibility.

My results are closely related to those of Krishna and Morgan (2004). Both their
study and my analysis investigate how information transmission can be improved
through the receiver’s active participation in the communication process. Krishna and
Morgan (2004) add a long communication protocol to the CS model.12 They show that
if bilateral (face-to-face) communication between the receiver and sender is possible
before the sender sends a message about his private information to the receiver, there
exists an equilibrium whose outcome Pareto-dominates all the equilibrium outcomes
in the CS model. The key factor to their results is that after the sender conveys some
information in the face-to-face communication, multiple equilibria exist in the remain-
ing game. The outcome of this face-to-face communication, which could be random,
determines which of these equilibria is played in the future. This affects what the

10Under arbitration, a neutral third party (arbitrator) asks the sender for information and chooses a
project according to a predetermined potentially stochastic decision rule.

11Seidmann and Winter (1997) and Mathis (2008) study the sender–receiver game in which the message
sent by the sender is (partially) verifiable, that is, the set of available messages depends on the sender’s
type. These authors provide the sufficient conditions (Mathis (2008) provides the necessary and sufficient
conditions) for the existence of a fully revealing equilibrium. Forges and Koessler (2008) study a multistage
sender–receiver game with certifiable messages and geometrically characterize the set of equilibrium
payoffs.

12Aumann and Hart (2003) study a finite simultaneous-move (long conversation) game in which there
are two players, one being better informed than the other. They provide a complete geometrical charac-
terization of the set of equilibrium payoffs when the state of the world is finite and long communication is
possible. In this study, the state space and players’ action space must be finite. Therefore, I cannot directly
apply the results of Aumann and Hart (2003) to my model.
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sender conveys during the face-to-face communication. Therefore, in Krishna and
Morgan (2004), the receiver tries to control the sender’s incentive by controlling the
degree of uncertainty associated with the outcome of the face-to-face communication.
By contrast, in my model, the receiver tries to control the sender’s incentive directly
through voluntary transfer payments.

Spence (1973) shows that costly signaling helps people convey their private infor-
mation credibly. In the framework of the CS model, Austen-Smith and Banks (2000),
Kartik (2007), and Karamychev and Visser (2016) show that information transmission
can be improved when the sender can send a costly message (money burning, or equiv-
alently, paying money to the receiver) to signal information.13 In their settings, a fully
separating equilibrium that is optimal from the receiver’s perspective can exist. How-
ever, in the equilibrium that maximizes the sender’s ex ante expected payoff, the sender
does not pay money to separate an interval of states. Karamychev and Visser (2016)
show that in the sender’s optimal equilibrium, he pays to adjust the pooling intervals.
In the present study, I focus on the situation in which the sender cannot pay money (or
equivalently, cannot send a costly signal) to the receiver and show that the signaling
structure can be endogenously generated by the receiver’s voluntary payment. More-
over, Section 4.5 shows that under the uniform-quadratic assumption, the receiver can
obtain the higher ex ante expected payoff than that under the sender’s optimal equilib-
rium in the model analyzed in Karamychev and Visser (2016). This result suggests that
in some cases, it might be better for the receiver to generate the signaling structure by
herself through voluntary payments rather than to rely on the sender’s costly signaling.

In the present study, I focus on information transmission via cheap talk communi-
cation and show the benefit of long-term communication with voluntary transfers. By
contrast, Hörner and Skrzypacz (2016) study a model of gradual persuasion in which
the sender is paid and gradually reveals “certifiable” information. They show that
the sequential revelation of partially informative signals can increase payments to the
sender who is trying to sell his information to the receiver.

In all the abovementioned studies, once the communication phase is over, the
receiver chooses a project; that is, the project choice is once and for all. By contrast,
in the studies mentioned hereafter, there are multiple rounds of communication and
actions. More precisely, in each period, the sender sends a message and the receiver
chooses a project. Hence, these models differ from mine.

Golosov et al. (2014) study strategic information transmission in a finitely repeated
cheap talk game. Only the sender knows the state of the world, which remains constant
through out the game. They show that the sender can condition his message on the
receiver’s past actions; in addition, the receiver can choose actions that reward the
sender for following a path of messages that eventually leads to the full revelation of
information. In contrast to this result, there is no fully revealing equilibrium in my
model.

Kolotilin and Li (2017) investigate the optimal relational contracts in an infinitely
repeated cheap talk game. In their model, both the sender and receiver can pay

13Relatedly, Kartik et al. (2007) and Kartik (2009) study amendments to the CS model with other means
of costly signals such as lying costs.
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each other. Therefore, there are equilibria in which the sender always reveals his
private information completely. They show that full separation can be attained in the
equilibrium, whereas partial or complete pooling is optimal if preferences are divergent.
In contrast to my study, the sender’s private information is not persistent in their model.
Hence, gradual information transmission does not appear.

Paper Outline The rest of the paper is organized as follows. Section 2 introduces the
model. Section 3 derives the general properties of the perfect Bayesian equilibria in
the model. Section 4 analyzes the uniform-quadratic model and shows the benefits of
multistage information transmission with voluntary monetary transfers. Section 4.1
shows the two main results by constructing an equilibrium in which information is
transmitted within two periods. Section 4.2 shows the benefit of long-term commu-
nication. Section 4.3 provides some properties of the optimal equilibria. Section 4.4
discusses the implications for organization design. In Section 4.5, I compare my com-
munication procedure with the sender’s optimal signaling. Section 5 generalizes the
players’ payoff functions and prior probability distribution, and describes two results
that correspond to the results in Section 4.1. Section 6 gives some concluding remarks.

2. Model

There are two players, a sender (S) and a receiver (R). R has the authority to choose a
project y ∈ Y ≡ R+, but the outcome produced by project y depends on S’s private in-
formation, θ ∈ Θ ≡ [0, 1], which is distributed according to a differentiable distribution
function G(·) with density g(·).

Before R chooses a project, R and S engage in T-period communication. Each period
consists of two stages, stage 1 and stage 2. At stage 1, S sends a costless and unverifiable
message to R. Let M ≡ [0, 1] be S’s message space. I denote by mt a message sent by S
at stage 1 in period t. At stage 2, R voluntarily pays money to S. Let W ≡ R+ be the set
of the amount of payment possible for R. I denote by wt a payment amount, which R
pays to S at stage 2 in period t. After T-period communication, the game proceeds to
period T + 1, in which R chooses a project.

Let w be a sequence of transfers, w ≡ (w1, . . . ,wT) ∈ WT. The players’ payoff
functions UR : Y ×Θ ×WT → R and US : Y ×Θ ×WT → R are defined as follows:

UR(y, θ,w) ≡ r · uR(y, θ) −
T∑

t=1

wt

US(y, θ,w) ≡ s · uS(y, θ, b) +
T∑

t=1

wt

where r, s, and b are positive constants. The term
∑T

t=1 wt represents the total amount
of payments.

Here, r · uR(y, θ) and s · uS(y, θ, b) denote utilities from project y for R and S, respec-
tively. The functions uR and uS satisfy CS’s assumptions:
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• uR(y, θ) ≡ uS(y, θ, 0);

• uS is twice-continuously differentiable in y, θ, and b for all y ∈ R+, θ ∈ Θ, and
b ∈ R+;

• for all θ ∈ Θ and b ∈ R+, there exists y ∈ R+ such that uS
1(y, θ, b) ≡ ∂uS

∂y (y, θ, b) = 0;
and

• uS
11(y, θ, b) ≡ ∂2uS

∂y2 (y, θ, b) < 0, uS
12(y, θ, b) ≡ ∂2uS

∂y∂θ (y, θ, b) > 0, and uS
13(y, θ, b) ≡

∂2uS

∂y∂b (y, θ, b) > 0 for all y ∈ R+, θ ∈ Θ, and b ∈ R+.

Under these assumptions, for each given (θ, b), there exists a unique maximizing project:
yR(θ) = arg maxy uR(y, θ) and yS(θ, b) = arg maxy uS(y, θ, b). Parameter b > 0 represents
“bias,” which measures how much S’s interest differs from R’s. Since uS

13(y, θ, b) > 0
and b > 0, I obtain yR(θ) < yS(θ, b). Constants r > 0 and s > 0 are scalar parameters
that measure the relative importance of the project choice versus transfer payments.

The timing of game is summarized as follows:

1. Before the game starts, nature randomly draws a state θ ∈ Θwith common prior
G(θ), and S observes θ privately.

2. R and S engage in T-period communication.

• At stage 1 in period t, S sends a message mt to the decision maker,

• At stage 2 in period t, R voluntarily pays wt to S.

3. After T-period communication, R chooses a project y and the game ends.

Hereafter, I denote by Γ(b, s, r,T) my T-period communication game.

2.1. History and Strategies

A (public) history h(t, j) is defined as a sequence of players’ past actions realized until
the beginning of stage j in period t.

h(t, j) ≡
(m1,w1, . . . ,mt−1,wt−1) if j = 1,

(m1,w1, . . . ,mt−1,wt−1,mt) if j = 2.

A (public) history hT+1 is defined as a sequence of players’ past actions realized until
the beginning of period T + 1, in which R chooses a project.

hT+1 ≡ (m1,w1, . . . ,mT,wT).

Let H(t, j) and HT+1 be the set of h(t, j) and hT+1, respectively. I assume that H(1,1) is a
singleton set {ϕ}. I denote the set of all histories at stage j by H j ≡ ∪T

t=1 H(t, j). Let
h(t,1)
θ
∈ Θ × H(t,1) ≡ H(t,1)

Θ
be S’s private history at stage 1 in period t. LetH1

Θ
be the set

of all private histories of S: H1
Θ
≡ Θ ×H1.
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S’s behavior strategy σ specifies a probability distribution of messages that S of
type θ sends at stage 1 in period t: σ : H1

Θ
→ ∆M.14 R’s pure strategy is a measurable

function ρ : H2 ∪HT+1 → R+, which specifies the payment amount and project. Note
that ρ(h(t,2)) ∈W, and ρ(hT+1) ∈ Y.15 A belief system, f : H2 ∪HT+1 → ∆Θ, specifies R’s
belief about S’s types at history h ∈ H2 ∪HT+1.

3. Equilibrium

I analyze (weak) perfect Bayesian equilibria16: both players’ strategies must maximize
their expected payoffs after all histories, and the system of beliefs f must be consistent
with the regular conditional probability derived from ((σ, ρ), f ) and G.17 The formal
definition of perfect Bayesian equilibria can be found in Appendix 3.A. Hereafter, I call
a perfect Bayesian equilibrium simply equilibrium. In this section, I derives the general
properties of the equilibria.

3.1. Relationship to the CS Model

I discuss the relationship between the equilibria in the CS model and those in Γ(b, s, r,T).
Since R cannot obtain additional information aboutθ after stage 2 in period T, she has no
incentive to choose wT > 0. Therefore, wT must be equal to 0 in any equilibrium. Conse-
quently, Γ(b, s, r, 1) is essentially equivalent to the CS model, and I call it the one-shot cheap
talk game. CS have shown that under the one-shot cheap talk communication, for every
b > 0, there exists a positive integer ñ(b) such that, for every n ∈ {1, . . . , ñ(b)}, there exists
at least one equilibrium with an n-element partition: {[an, an−1), [an−1, an−2), . . . , [a1, a0]}.
In this equilibrium, S’s type θ ∈ [ai+1, ai) conveys that his type belongs to this inter-
val, and after receiving the message that “θ belongs to [ai+1, ai),” R chooses the project
y(ai+1, ai) = arg maxy

∫ ai

ai+1
uR(y, θ)g(θ)dθ. I define y(a1, a0) = yR(a) for a1 = a0 = a. Since

uR is strictly concave, y(ai+1, ai) is uniquely determined. Moreover, since uR
12(y, θ) > 0,

y(ai+1, ai) is strictly increasing in both of its arguments. Since S whose type falls on a
boundary between adjacent intervals is indifferent between the associated values of y,
the following must be satisfied: for i = 1, . . . , n − 1,

s · uS(y(ai+1, ai), ai, b) − s · uS(y(ai, ai−1), ai, b) = 0; (1)

an = 0; (2)

a0 = 1. (3)

14I denote byB(X) the Borel algebra on a set X. S’s behavior strategy is a function σ : B(M)×H1
Θ
→ [0, 1]

with the following two properties: (1) for every M̃ ∈ B(M), function σ(M̃, ·) : H1
Θ
→ [0, 1] is measurable,

(2) for every h(t,1)
θ ∈ H1

Θ
, function σ(·, h(t,1)

θ ) : B(M) → [0, 1] is a probability measure. The definition of σ
originates from Milgrom and Weber (1985).

15Due to the strict concavity of R’s preference over projects, she never mixes projects in period T + 1.
16There always exists an equilibrium that is essentially equivalent to a perfect Bayesian equilibrium in

the CS model. Hence, in this study, I do not prove the existence theorem.
17Suppose that ((σ, ρ), f ) is an equilibrium. At any payment stage history h(t,2), R does not obtain

additional information about S’s type from her own action wt. Therefore, I require that at any h(t,2), any
deviation by R from ρ(h(t,2)) does not affect the beliefs she uses as the basis for belief updating.
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I call a sequence a ≡ {a0, . . . , an} a (backward) solution of (1) if a satisfies (1)–(3). I
impose the following monotonicity condition on a solution of (1).

Condition M . If a′ and a′′ are two solutions of (1) with a′0 = a′′0 and a′1 > a′′1 , then
a′i ≥ a′′i for all i ≥ 2.

This condition is met by the uniform-quadratic case: s · uS(y, θ, b) ≡ −s(y− (θ+ b))2,
r · uR(y, θ) ≡ −r(y − θ)2, and G(θ) is uniform distribution over [0, 1]. CS show that
Condition M also holds for more general specifications.

Consider a strategy profile such that S sends an informative message only at stage 1
in period 1 and R pays nothing to S at any payment stage. Obviously, if both S’s
behavior regarding sending m1 and R’s behavior regarding choosing y depending on
m1 are the same as an equilibrium in the CS model, then this strategy profile constitutes
an equilibrium in Γ(b, s, r,T). This outcome immediately yields the following Fact 1.

Fact 1. Any equilibrium partition achieved in the CS model can be achieved under an equilibrium
in Γ(b, s, r,T).

3.2. Relationship to Direct Contract

In this subsection, I first characterize the relationship between equilibria in Γ(b, s, r,T)
and those in a case in which R can sign a contract that specifies the transfer as functions
of messages sent by S.

Fix an equilibrium ξ = ((σ, ρ), f ). Let µξ : Θ → ∆(MT) be a probability distribution
induced by (σ, ρ) over MT. When a sequence of messages m ∈ MT is given, a sequence
of payments w ∈ WT and a project y are induced from ρ. Let ωξ : MT → WT and
yξ : MT → Y be the functions induced by ρ, respectively.

Now, consider the case in which R can write a indirect contract (MT, ωξ). By the
construction of ωξ : MT → WT, under this contract, the strategy profile and belief
system ((µξ, yξ), f ) constitutes an equilibrium whose outcome is equivalent to ξ in the
sense that both this equilibrium and ξ induce the same probability distribution over
WT × Y for any θ.

Next, I discuss the relationship between equilibria under this indirect contract
(MT, ωξ) and those under a direct contract in which R can sign a contract that specifies
the transfer as functions of the direct message m ∈ Θ sent by S. Let (Θ, ω) be a direct
contract under which S reports θ ∈ Θ and R pays ω(θ) for S. Let y : Θ → Y be R’s
strategy under the direct contract (Θ, ω). By the application of the result of Krishna and
Morgan (2008),18 I immediately obtain the following Fact 2.

Fact 2. Consider an equilibrium under (MT, ωξ). There exists a direct contract (Θ, ω) under
which there exists a pure strategy equilibrium that is outcome equivalent to the given equilibrium
under (MT, ωξ).

Finally, I characterize the relationship between equilibria in Γ(b, s, r,T) and those
under a direct contract (Θ, ω). The following Proposition 1 shows that given an equi-
librium ξ in Γ(b, s, r,T), there exists an equilibrium of a direct contract that is outcome

18For details, see Proposition 2 and Appendix B in Krishna and Morgan (2008).
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equivalent in the sense that it results in the same projects and transfer as in the original
equilibrium ξ for almost every state.

Proposition 1. Fix an equilibrium ξ in Γ(b, s, r,T). There exists a direct contract (Θ, ω) under
which there exists a pure strategy equilibrium that is outcome equivalent to ξ.

Proof. In the indirect contract cases, ωξ(m) specifies a sequence of payments, w1(m),
. . . , wT(m), dependently on m. In the direct contract case, ω(θ) specifies the resulting
transfer dependently on θ. Fact 2 shows that there exists a direct contract (Θ, ω) such
thatω(θ) =

∑T
t=1 wt(m) =

∑T
t=1 wt(m′) and y(θ) = yξ(m) = yξ(m′) for almost every θ and

for any m, m′ ∈ suppµξ(·|θ). This result means that the outcome of ξ can be replicated
by a direct contract (Θ, ω). □

3.3. Partition Equilibrium

As is the case in the CS model, all the equilibria in Γ(b, s, r,T) are interval partitional,
that is, all the equilibria are partition equilibria.

Definition 1 (Partition Equilibrium). Fix an equilibrium ξ in Γ(b, s, r,T). Consider a
pure strategy equilibrium, under a direct contract (Θ, ω), which is outcome equivalent
to ξ. If there exists a family of sets {Iλ}λ∈Λ over Θ such that

1. {Iλ}λ∈Λ constitutes an interval partition19 over Θ;

2. y(θ) = y(θ′) for all θ, θ′ ∈ Iλ; and

3. if λ , λ′, y(θ) , y(θ′) for all θ ∈ Iλ and θ′ ∈ Iλ′ ; then

I call ξ partition equilibrium, and {Iλ}λ∈Λ equilibrium partition.

First, I show the following Proposition 2.

Proposition 2. Any equilibrium under a direct contract (Θ, ω) is partition equilibrium.

The proof is in Appendix 3.B. As shown in Subsection 3.2, any equilibrium outcome
in Γ(b, s, r,T) is also achieved in equilibrium under a corresponding direct contract.
Therefore, Proposition 2 means that all equilibria in Γ(b, s, r,T) are partition equilibria.

Corollary 1. All equilibria in Γ(b, s, r,T) are partition equilibria.

The following Proposition 3 shows that there is no fully separating equilibria in
Γ(b, s, r,T).

Proposition 3. There exists no fully separating equilibrium in Γ(b, s, r,T).

The proof is in Appendix 3.C. If R can commit herself to compensating for S’s mes-
sage, fully separating equilibria (full revelation contracts) are always feasible. However,
in my model, since there is neither commitment nor contractibility, R pays money to
S only when paying money is optimal for her. For S’s truth telling to be incentive

19For all λ , λ′, Iλ ∩ Iλ′ = ∅. For all λ ∈ Λ, Iλ is convex, and
∪
λ∈Λ Iλ = Θ.
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compatible, the resulting sum of transfers must be different for each θ ∈ Θ. Precisely,
ω(θ) must be strictly decreasing in θ ∈ Θ. This means that if the given R’s payment
strategy leads to S’s truth telling, R almost certainly reaches a history where she pays a
certain amount of money to S even though she has already detected the true state. At
such a history, R has no incentive to pay. For this reason, there is no fully separating
equilibrium.

Whether the cardinality of the equilibrium partition is finite remains an open ques-
tion. Next, I provide a sufficient condition (Assumptions 1 and 2) for the cardinality of
the equilibrium partition to be finite.

Assumption 1. S’s utility function uS satisfies

uS(y, θ, b) = ψ(|y − θ − b|),

where ψ′′(·) < 0 and ψ′(0) = 0.

Assumption 2. The distribution G and R’s utility function uR jointly satisfy: for any colsed
interval [a, a] with 0 ≤ a ≤ a ≤ 1,

y(a, a) = arg max
y∈R

∫ a

a

[
g(θ)

G(a) − G(a)
uR(y, θ)

]
dθ <

a + a
2
+ b. (4)

Assumption 2 is mild. For example, suppose that uR(y, θ, b) = l(|y − θ|), where
l′′(·) < 0 and l′(0) = 0, and that G is non increasing. Then, the inequality (4) holds.

Proposition 4. Under Assumption 1 and 2, in any equilibrium, the equilibrium partition has
a finite number of elements.

The proof is in Appendix 3.D. Proposition 4 shows that under Assumptions 1 and
2, the equilibrium partition is a finite set. In Appendix 4.E, I discuss the fact that an
equilibrium which has separating intervals in its partition might exist if Assumption 2
is not satisfied.

Hereafter, [aλ, aλ−1) denotes Iλ, and ωλ denotes ω(θ) for θ ∈ [aλ, aλ−1). In any equi-
librium, there must exist λ̃ ∈ Λ such that ωλ̃+1 ≤ ωλ̃.20 From S’s incentive compatibility
condition,

ψ(|y(aλ̃+1, aλ̃) − aλ̃ − b|) ≥ ψ(|y(aλ̃, aλ̃−1) − aλ̃ − b|). (5)

Figure 1 illustrates the inequality (5). The blue curve is ψ(|y(aλ̃+1, aλ̃) − θ − b|), and
the red curve is ψ(|y(aλ̃, aλ̃−1) − θ − b|). Note that yλ̃+1 = y(aλ̃+1, aλ̃); yλ̃ = y(aλ̃, aλ̃−1);
ψλ̃+1 = ψ(|yλ̃+1 − aλ̃ − b|); and ψλ̃ = ψ(|yλ̃ − aλ̃ − b|).

Since y(aλ̃+1, aλ̃) < aλ̃, the left-hand side of the inequality (5) is less than ψ(b).
Moreover, from Assumption 2, the right-hand side of the inequality (5) is higher than
ψ([aλ̃−1 − aλ̃]/2). Therefore, I must have aλ̃−1 − aλ̃ > 2b irrespective of the length of the
communication phase.

20Suppose that this condition does not hold. If the true state belongs to the leftmost element of the
equilibrium partition, R almost certainly reaches a history where she pays a certain amount to S even
though she does not obtain additional information in the future.
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6
ψ(y, θ, b|y)

θ
aλ̃−1

yλ̃

aλ̃+1
yλ̃+1

aλ̃

•ψλ̃+1

•ψλ̃

Figure 1: (ωλ̃ − ωλ̃+1)/s = ψλ̃+1 − ψλ̃ ≥ 0

This result implies that in any equilibrium, at history hT+1 where R believes that
θ ∈ [aλ̃, aλ̃−1), R’s conditional expected utility from project is strictly less than the
optimal:

r
∫ aλ̃−1

aλ̃

[
g(θ)

G(aλ̃−1) − G(aλ̃)
uR(y(aλ̃, aλ̃−1), θ)

]
dθ < r

∫ aλ̃−1

aλ̃

[
g(θ)

G(aλ̃−1) − G(aλ̃)
uR(yR(θ), θ)

]
dθ.

(6)

Moreover, R reaches such a history with probability G(aλ̃−1) − G(aλ̃). Hence, in any
equilibrium, R’s expected payoff is strictly less than

U ≡ r
∫ aλ̃−1

aλ̃

[
g(θ)uR(y(aλ̃, aλ̃−1), θ)

]
dθ + r

∫
θ<[aλ̃,aλ̃−1]

[
g(θ)uR(yR(θ), θ)

]
dθ

< r
∫ 1

0

[
g(θ)uR(yR(θ), θ)

]
dθ.

To make the characterization more specific, I assume the following.

Assumption 3. R’s utility from project uR satisfies

uR(y, θ) = l(|y − θ|),

where l′′(·) < 0 and l′(0) = 0.

Assumption 4. The distribution G is the uniform distribution.

Under Assumptions 3 and 4, Assumption 2 is satisfied.

Proposition 5. Under Assumptions 1, 3, and 4, the upper bound of R’s equilibrium payoff is
given by

U(b, r) = r
∫
θ∈[0,4b]

l(|2b − θ|)dθ.

The proof is in Appendix 3.F. One of the main findings in my analysis is that
when T is sufficiently high and s/r is small enough, this upper bound U(b, r) can be
approximated by R’s equilibrium payoff. For the details of this result, see Proposition 11
in Section 4.
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4. The Uniform-quadratic Case

In this section, I show the benefits of multistage information transmission with volun-
tary payments, concentrating on the well-known uniform-quadratic case: r · uR(y, θ) =
−r(y − θ)2, s · uS(y, θ, b) = −s(y − (θ + b))2, and G(θ) is a uniform distribution over Θ.

4.1. Two-period Information Elicitation

The key idea on which I build the analysis is that the dependence of future information
on past payments ensures that R makes message-contingent payments. To under-
stand the intuition behind this idea, I construct an equilibrium in which information
is transmitted within two periods and R pays a positive amount of money to S on
the equilibrium path. By constructing such an equilibrium, I show that multistage
information transmission with voluntary payments can be more beneficial for both
S and R than the one-shot cheap talk communication. In Section 5, I generalize the
players’ payoff functions and prior probability distribution and show the results that
correspond to those in this subsection.

Suppose that b ∈ (1/12, 1/4). Then, there are two equilibria in the one-shot cheap
talk game. One is the uninformative equilibrium: the babbling equilibrium. The other
is a partially informative equilibrium: a0 = 1, a1 = 1/2 − 2b and a2 = 0. CS have shown
that both S and R prefer the partially informative equilibrium to the uninformative
equilibrium. In the partially informative equilibrium, the ex ante expected payoff of R
is −r(1/48 + b2) whereas that of S is −s(1/48 + b2) − sb2.

The first result establishes that if T ≥ 2 and r is large relative to s, there exists an
equilibrium whose partition has more steps than the one-shot cheap talk game does.

Proposition 6. Fix b ∈ (1/12, 1/4). If s/r < (1 − 4b)/(1 + 12b), there is a continuum of
3-element partition equilibria.

I characterize a class of 3-element partition equilibria in which information is trans-
mitted in order from the rightmost element of the equilibrium partition. In the equi-
librium, S gradually conveys his information within the first and second period. If S
conveys information contrary to his bias in the first period, then R pays to S in order
to extract more precise information in the second period. If R does not pay in the first
period, then S never gives additional information. As s becomes smaller, the necessary
payment becomes smaller since the effect of the message-contingent payment on S’s in-
centive becomes larger. Furthermore, as r becomes higher, the punishment by babbling
message becomes more severe. This is the reason why s/r needs to be small enough.

Proof. Consider a strategy profile under which the information is transmitted in the
following steps. At stage 1 in period 1, S of type θ < a1 randomly sends a message m1

according to a uniform distribution over [0, a1), and S of type θ ≥ a1 randomly sends
a message m1 according to a uniform distribution over [a1, 1]. If R receives m1 < a1

at stage 1 in period 1, then she pays w1 = w to S. Otherwise, she pays nothing to S
at stage 2 in period 1. At stage 1 in period 2, if m1 < a1 and w1 ≥ w, then S of type
θ < a2 randomly sends a message m2 according to a uniform distribution over [0, a2),
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and S of type θ ≥ a2 randomly sends a message m2 according to a uniform distribution
over [a2, 1]. Otherwise, S conveys no information, i.e., any type of S randomly sends
a message m2 according to a uniform distribution over [0, 1]. In period t ≥ 2, R pays
nothing to S. In period t ≥ 3, S conveys no information.

Once communication is over, R chooses her best project based on the information
she has. At hT+1 such that m1 ≥ a1, since R believes θ is uniformly distributed over
[a1, 1], the optimal project for R is y1 = (a1+1)/2. At hT+1 such that m1 < a1, w1 ≥ w, and
m2 ≥ a2, since R believes θ is uniformly distributed over [a2, a1), the optimal project for
R is y2 = (a2 + a1)/2. At hT+1 such that m1 < a1, w1 ≥ w, and m2 < a2, since R believes
θ is uniformly distributed over [0, a2), the optimal project for R is y3 = a2/2. At hT+1

such that m1 < a1 and w1 < w, since R believes θ is uniformly distributed over [0, a1),
the optimal project for R is ỹ = a1/2. Figure 2 illustrates the equilibrium strategy.

θ
0
a3

1
a0m1

?
(w1 = 0)

m2 =babbling

?(w2 = 0)

y1 =
1+a1

2

a1 -�m1 -�

?
w1 = w

?

θ
0
a3

1
a0a2 (a1)m2 -� m2� -

?
w2 = 0

?
y = a2

2

?
w2 = 0

?
y2 =

a1+a2
2

?
(w1 < w)

m2 =babbling

?(w2 = 0)

ỹ3 =
a1
2

Figure 2: Equilibrium Strategy

In what follows, I ensure that by taking a1, a2 and w suitably, I can construct an
equilibrium in which S and R follow the abovementioned strategy profile.

In period t ≥ 2, R always pays nothing to S. Therefore, the partition {[0, a2), [a2, a1)}
must coincide with the 2-element equilibrium partition achieved in the one-shot cheap
talk game in which θ is drawn from the uniform distribution over [0, a1). By CS, the
following must be satisfied:

a2 = a1/2 − 2b. (7)

Since I now focus on a 3-element partition equilibrium, I must have a2 > 0. Hence,
a1 > 4b must be satisfied.

Under the abovementioned strategy profile, S of type θ ∈ (ai, ai−1) sends messages
so that yi would be chosen by R. Hence, S’s payoff is derived as follows:

− s(y3 − (θ + b))2 + w for θ ∈ [0, a2);

− s(y2 − (θ + b))2 + w for θ ∈ [a2, a1);

− s(y1 − (θ + b))2 for θ ∈ [a1, 1].
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Since I suppose that a2 = a1/2 − 2b, I obtain

− s(y3 − (θ + b))2 > −s(y2 − (θ + b))2 for θ ∈ [0, a2);

− s(y3 − (θ + b))2 < −s(y2 − (θ + b))2 for θ ∈ (a2, 1];

− s(y3 − (θ + b))2 = −s(y2 − (θ + b))2 for θ = a2.

Clearly, at stage 1 in period 2 such that m1 < a1 and w1 ≥ w, S has no incentive to deviate
from the given strategy. Moreover, if m1 < a1 and w1 < w, or if m1 ≥ a1, S conveys no
information. Therefore, S has no incentive to deviate at such a history. The same can
be said in period t ≥ 3. Hence, I conclude that S has no incentive to deviate in period
t ≥ 2 when a2 = a1/2 − 2b.

At stage 1 in period 1, if S of type θ sends m1 ≥ a1, then he obtains −s(y1 − (θ+ b))2.
Otherwise, S of type θ ≥ a2 obtains −s(y2 − (θ + b))2 + w, and S of type θ < a2 obtains
−s(y3 − (θ + b))2 + w. If the following equation (8) holds, then the inequalities (9) and
(10) hold.

−s(y1 − (a1 + b))2 = −s(y2 − (a1 + b))2 + w; (8)

−s(y1 − (θ + b))2 ≥ max
j∈{1,2}

{−s(y j+1 − (θ + b))2 + w} for θ ≥ a1; (9)

−s(y j+1 − (θ + b))2 + w > −s(y1 − (θ + b))2 for j = {1, 2} and θ ∈ [a j+1, a j). (10)

If (9) and (10) hold, S has no incentive to deviate at stage 1 in period 1.
By equation (8), I obtain

w = w(a1) ≡ s[(2 + 4b − a1)(−2 + 12b + 3a1)]/16. (11)

Since w(a1) is strictly increasing in a1 ∈ [4b, 1], I have an inverse function of w(·) such
that w−1(w) ≡ a1(w) is strictly increasing in w ∈ [w(4b),w(1)]. Moreover, since I suppose
that b ∈ (1/12, 1/4), R’s payment is nonnegative: w(4b) = s(12b − 1)/4 > 0. Note that
a1(w) = 2

3

{
2 −

√
(1 + 6b)2 − 12w/s

}
and a1(w) ∈ (4b, 1) where w ∈ (w(4b),w(1)).

In summary, I conclude that S has no incentive to deviate from the given strategy
when the boundaries of the partition satisfy the following conditions:

ai(w) ≡


1 for i = 0,
2
3

{
2 −

√
(1 + 6b)2 − 12w/s

}
for i = 1,

1
3

{
2 −

√
(1 + 6b)2 − 12w/s

}
− 2b for i = 2,

0 for i = 3.

(12)

where w ∈ (w(4b),w(1)). Figure 3 illustrates S’s incentive compatibility conditions.
At any h(t,2), R has no incentive to increase the amount of payment because it would

not affect S’s behavior. Therefore, I have only to ensure that paying w is optimal for R
after receiving m1 < a1.

If R pays w1 ≥ w after receiving m1 < a1, then she obtains u∗(w1):
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US(y, θ,w|y)
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6
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w
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y2

6

?
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1y1

Blue curve: s · uS(y3, θ, b) + w
Red curve: s · uS(y2, θ, b) + w
Black curve: s · uS(y1, θ, b)

Figure 3: S’s payoff on the equilibrium path

u∗(w1) = −w1 −
1
a1

2∑
i=1

∫ ai

ai+1

r
[ai+1 + ai

2
− θ

]2
dθ

= −w1 −
r

12a1

2∑
i=1

(ai − ai+1)3

= −w1 −
r

12a1
(a3

2 + (a1 − a2)3).

On the other hand, by paying w1 < w, R obtains u(w1):

u(w1) = −w1 +

∫ a1

0

1
a1

UR
(a1

2
, θ

)
dθ

= −w1 −
r
a1

∫ a1

0

(a1

2
− θ

)2
dθ

= −w1 −
a2

1

12
r .

The payoffs u∗(w1) and u(w1) have a unique maximum at w1 = w and w1 = 0, respec-
tively. Thus, paying w is an optimal decision for R if and only if u∗(w) ≥ u(0). Using
condition (12) yields

u∗(w) ≥ u(0) ⇐⇒ r
(
{a1(w)}2

16
− b2

)
≥ w. (13)

Since a1(w) ≡ 2
3

{
2 −

√
(1 + 6b)2 − 12w/s

}
, for any w ∈ (w(4b),w(1))

• a1(w) is strictly increasing in w;

• {a1(w)}2
16 − b2 > 0 and {a1(w(4b))}2

16 − b2 = 0;
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• d2

dw2 {a1(w)}2 > 0.

Hence, if r({a1(w(1))}2/16 − b2) > w(1), then there exists w ∈ (w(4b),w(1)) such that for
all w ∈ [w,w(1)), the inequality (13) holds.

Since a1(w(1)) = 1 and w(1) = s(1 + 4b)(1 + 12b)/16, the inequality r({a1(w(1))}2/16 −
b2) > w(1) can be simplified into

s
r
<

1 − 4b
1 + 12b

.

Therefore, if s/r < (1 − 4b)/(1 + 12b), then the given strategy profile and the system
of beliefs constitute an equilibrium when w ∈ [w,w(1)) and the boundaries of partition
satisfy the condition (12). □

Remark 1. In the equilibrium, meaningful information transmission must occur after
R pays w. For this reason, in the equilibrium outlined above, it is necessary that
a2 = a1/2 − 2b > 0. Hence, both 4b < a1 and b < 1/4 must be satisfied.

There is a possibility of the existence of a 3-element partition equilibrium in which S
conveys information in a different order. For example, consider the following strategy
profile. In period 1, S reveals whether θ ≥ a2. If θ ≥ a2, then R pays w̃, and then, S
reveals whether θ < a1. Note that a2 < a1. The following Proposition 7 shows that there
is no equilibrium where information is transmitted in such a way.

Proposition 7. Fix b ∈ (1/12, 1/4). There exists no 3-element partition equilibrium such that
information is transmitted in order from the leftmost element of the equilibrium partition.

The proof of is in Appendix 4.A. Under the abovementioned strategy profile, R
pays w̃ > 0 only when she receive the message that means θ ≥ a2. Intuitively, this pay-
ment strategy affects S’s incentive for misrepresentation negatively, since it strengthens
S’s exaggeration incentive. Hence, I cannot have equilibria in which information is
transmitted in order from the leftmost element of the equilibrium partition.

It can be confirmed that if r is large relative to s, R can obtain the greater expected
“revenue from the project” under a 3-element partition equilibrium constructed in
Proposition 6 than under the 2-element partition equilibrium in the one-shot cheap
talk game. This result is due to the fact that R can obtain more detailed information
about S’s type. However, since R has to make a payment under the 3-element partition
equilibrium, multistage information transmission with voluntary transfer payments is
not always beneficial to R. I now show the second result that when r is large relative
to s, multistage information transmission with voluntary transfer payments is more
beneficial to both R and S than the one-shot cheap talk communication.

In the one-shot cheap talk game, both players always strictly prefer the 2-element
partition equilibrium to the babbling equilibrium from the ex-ante perspective. Let EÛκ

be the ex ante expected payoff of κ ∈ {R, S} under the 2-element partition equilibrium
in the one-shot cheap talk game. I denote by {[ã2, ã1)[ã1, ã0] the equilibrium partition.
As noted earlier, ã1 = 1/2 − 2b. Let EU

κ
(x) be the ex ante expected payoff of κ ∈ {R, S}

in the 3-element partition equilibrium with x = a1 and a2 = x/2 − 2b.

17



The following lemma shows that if r is large relative to s, there exists a 3-element
partition equilibrium that R prefers to all the equilibria in the one-shot cheap talk game.

Lemma 1. There exists a positive value η∗(b) such that if s/r < η∗(b), for some x ∈ (a, 1),

EU
R

(x) > EÛR.

Proof. Suppose that s/r < (1 − 4b)/(1 + 12b). Fix a 3-element partition equilibrium
constructed in the proof of Proposition 6. By the definition of a1(w), I have

w(x) ≡ a−1
1 (x) = s[(2 + 4b − x)(−2 + 12b + 3x)]/16 for x = a1 ∈ [a, 1).

Hereafter, I denote by s · α(b, x) the function w(x). Recall that s · α(b, x) is strictly greater
than zero for x ∈ [a, 1).

R’s expected payoff EU
R

(x) is given by

EU
R

(x) = −
3∑

i=1

∫ ai−1(x)

ai(x)
r
[
ai−1(x) + ai(x)

2
− θ

]2

dθ − xs · α(b, x)

= −r
{

x3

48
+ xb2

}
− r

12
(1 − x)3 − xs · α(b, x).

CS show that

EÛR = −
2∑

i=1

∫ ãi−1

ãi

r
[ ãi−1 + ãi

2
− θ

]2
dθ

= − r
48
− rb2.

Let δ(b, x) ≡ 1
r {EU

R
(x) − EÛR}. I obtain

δ(b, x) = − 1
16

(1 − x3) +
x
4

(1 − x) + b2(1 − x) − s
r
xα(b, x).

δ(b, x) > 0 holds if and only if

η∗(b, x) ≡
− 1

16 (1 − x3) + x
4 (1 − x) + b2(1 − x)

xα(b, x)
>

s
r
.

∂η∗

∂x |x=1 < 0 and η∗(b, 1) = 0. Since infx∈[a,1) xα(b, x) = aα(b, a) > 0, η∗(b, x) has a least upper
bound η∗(b) = supx∈[a,1) η

∗(b, x) > 0. Therefore, if s/r < η∗(b), then δ(b, x) > 0 for some
x ∈ (a, 1). This completes the proof of Lemma 1. □

Remark 2. Note that x is almost equal to 1. Then, boundaries of the 3-element partition
equilibrium almost coincide with boundaries of the 2-element partition equilibrium
in the one-shot cheap talk game. Nevertheless, the payment of monetary transfer is
strictly higher than 0. Therefore, if s/r < (1 − 4b)/(1 + 12b), there always exists a 3-
element partition equilibrium that is unfavorable to R: there exists ε̂ > 0 such that
η∗(b, x) < s/r for all x ∈ (1 − ε̂, 1).
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Next, I show the following lemma.

Lemma 2. EU
R

(x) > EÛR implies that EU
S
(x) > EÛS.

Proof. Recall that EUS(x) denotes the ex ante expected payoff of S under the 3-element
partition equilibrium with a1 = x ∈ (a, 1). I obtain

EU
S
(x) = −

3∑
i=1

∫ ai−1(x)

ai(x)
s
[
ai−1(x) + ai(x)

2
− θ

]2

dθ − sb2 + x · w(x)

=
s
r

{
EU

R
(x) + x · w(x)

}
− sb2 + x · w(x).

CS show that

EÛS = −
2∑

i=1

∫ ãi−1

ãi

s
[ ãi−1 + ãi

2
− θ

]2
dθ − sb2

=
s
r
EÛR − sb2.

Clearly, if EU
R

(x) > EÛR, then EU
S
(x) > EÛS. □

From Lemma 1 and 2, I immediately have the following result.

Proposition 8. Fix b ∈ (1/12, 1/4). Then, there exists a positive value η∗(b) such that if
s/r < η∗(b), there exists a 3-element partition equilibrium whose outcome ex ante Pareto-
dominates all the equilibrium outcomes in the one-shot cheap talk game.

It is known that the existence of a non-strategic mediator leads to improved in-
formation transmission. Now, I compare my communication procedure with optimal
mediation. In the mediation model, S can send a message to an impartial media-
tor, who then passes on a recommendation to R according to some predetermined
stochastic rule. R chooses her best project based on the recommendation from media-
tor. Goltsman et al. (2009) characterize the optimal mediation under which R’s ex ante
expected payoff is −rb(1 − b)/3. The following Proposition 9 shows that in two-period
information elicitation with voluntary monetary transfer, R can obtain higher ex ante
expected payoff than that under the optimal mediation.

Proposition 9. Fix b ∈ (1/12, (4 +
√

3)/26).21 Then there exists η′(b) such that if s/r < η′(b),
for some x ∈ (a, 1),

EU
R

(x) > − r
3

b(1 − b).

Since this proposition can be proved in the same way as the proof of Lemma 1, the
formal proof is omitted. When b is almost equal to 1/4, boundaries of the 3-element
partition equilibrium almost coincide with those of the 2-element partition equilibrium
in the one-shot cheap talk game: a1 ≈ 1 and a2 ≈ 1/2 − 2b. The value of −rb(1 − b)/3
is always strictly higher than R’s equilibrium payoff under the 2-element partition
equilibrium in the one-shot cheap talk game. Therefore, the parameter b needs to be
strictly less than 1/4.

21Note that 1
5 <

1
26

(
4 +
√

3
)
< 1

4 .
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4.2. Effective Long-term Communication

In the previous subsection, I focus on the equilibrium in which information is trans-
mitted within only two periods, regardless of the length of communication. It seems
that R does not use T-period communication effectively. In this subsection, I show the
benefit of long-term communication.

Recall my earlier discussion of the upper bound of R’s equilibrium payoff. Propo-
sition 5 provides it as

U(b, r) = r
∫
θ∈[0,4b]

l(|2b − θ|)dθ

= −16rb3

3
.

One of the main findings in my analysis is that when T is long enough, this upper
bound U(b, r) = −16rb3/3 can be approximated by R’s equilibrium payoff.

First, I demonstrate that under a certain condition, there exists an equilibrium in
which information is transmitted within the whole T-period in order from the rightmost
element of the equilibrium partition. Specifically, I consider the following information
elicitation. In period 1, S conveys whether the value of θ is less than a1. If θ < a1, then
R pays a certain amount of money. After that, in period 2, S conveys whether the value
of θ is less than a2. If θ < a2, then R pays again. This information elicitation is repeated
until the last period in the communication phase. In the last period, S of type θ < aT−1

conveys whether the value of θ is less than aT. Under this communication process,
R eventually learns to which element of a partition {[at+1, at)}Tt=1 ∪ [a1, a0] the state θ
belongs. I call this communication process (monotone) effective T-period communication.22

Figure 4 illustrates this information elicitation.
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Figure 4: Effective T-period communication

22This information elicitation is similar to that in Ivanov (2015) and Hörner and Skrzypacz (2016).
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Proposition 10. Fix b ∈ (0, 1/4). If s/r < (1− 4b)/(1+ 12b), there exists an equilibrium with
effective T-period communication.

Under the effective T-period communication, the information is transmitted in the
following steps. At h(t,1) such that mt′ < at′ and wt′ ≥ w∗t′ for all t′ < t, S of type θ < at

randomly sends a message mt according to a uniform distribution over [0, at), and S
of type θ ≥ at randomly sends a message mt according to a uniform distribution over
[at, 1]. Otherwise, any type of S randomly sends a message according to the same
distribution, a uniform distribution over [0, 1]. If S conveys that θ < at at stage 1 in
period t, then R pays w∗t to S at stage 2. Otherwise, he pays nothing.

Let I(hT+1) be the closure of {θ ∈ Θ : f (θ|hT+1) > 0}. Under the abovementioned strat-
egy profile, for any hT+1, the closed set I(hT+1) belongs to {[at, at−1]}T+1

t=1 ∪ {[aT+1, at−1]}Tt=2,
and R’s posterior belief f (θ|hT+1) is a uniformly distribution on I(hT+1). Therefore, R
chooses y = min I(hT+1)+max I(hT+1)

2 at hT+1.
At h(T,2) such that mt′ < at′ and wt′ ≥ w∗t′ for all t′ < T, since R does not obtain

additional information after making a payment, w∗T must be equal to 0. Therefore,
{[aT+1, aT), [aT, aT−1)} coincides with the 2-element equilibrium partition achieved in the
one shot cheap talk game where Θ = [0, aT−1). Hence, I obtain

aT =
aT−1

2
− 2b.

This implies that aT−1 > 4b. Define at and w∗t as follows:

at ≡


1 − ta for t ∈ {1, . . . ,T − 1},
1−(T−1)a

2 − 2b for t = T,

0 for i = T + 1.

(14)

w∗t ≡


2bsa for t ∈ {0, . . . ,T − 2},
s

16 {1 + 12b − a(T + 1)}{1 + 4b − a(T − 3)} for t = T − 1,

0 for t = T.

(15)

Suppose that a < (1−4b)/(T−1). Then, 4b < aT−1 and at−1−at = a > 0 for t ∈ {1, . . . ,T−1}.
Note that w∗T−1 > 0 if a < min{(1 + 12b)/(T + 1), (1 + 4b)/(T − 3)}. Since I suppose that
T ≥ 3, I obtain (1 + 4b)/(T − 3) > (1 − 4b)/(T − 1). Therefore, if a < min{(1 − 4b)/(T −
1), (1 + 12b)/(T + 1)}, the given boundaries and payments are well-defined. Moreover,
for any t ∈ {1, . . . ,T − 1}, w∗t becomes a solution to an equation,

−s
(at + at−1

2
− (at + b)

)2
= −s

(at+1 + at

2
− (at + b)

)2
+ w∗t ,

induced by S’s incentive compatibility condition: S whose type falls on the boundaries
between adjacent intervals is indifferent between the associated values of y.

The abovementioned strategy profile and system of beliefs, hereafter ξT, cannot
always be an equilibrium. Whether it is so depends on the value of a. I show that ξT

can be an equilibrium when a is small enough. R’s payment w∗t in each t ≤ T − 2 goes
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to 0 as a goes to 0. Consider a history at stage 2 in period T − 1 such that mt < at for all
t ≤ T − 1 and wt ≥ w∗t for all t < T − 1. Then, there are two cheap talk equilibria in the
remaining game: the babbling equilibrium and the 2-element partition equilibrium.
Since I now suppose that a ≈ 0, if the 2-element partition equilibrium is chosen in
period T, R’s continuation payoff is approximated by −r(b2 − 1/48). Otherwise, R’s
continuation payoff is approximated by −r/12. Moreover, w∗T−1 ≈ s(1 + 12b)(1 + 4b)/16.
Since I suppose that s/r < (1 − 4b)/(1 + 12b), I have

−r
(
b2 − 1

48

)
−

(
− r

12

)
>

s
16

(1 + 12b)(1 + 4b).

Thus, R has an incentive to pay w∗T−1 at this history so that the babbling equilibrium
would not be chosen in the last period. Furthermore, at h(t,2) where R pays w∗t , if w∗t
is small enough, R pays to ensure that the babbling equilibrium would not be chosen
in the future. Hence, by taking a small enough, I can construct an equilibrium with
effective T-period communication. The formal proof is found in Appendix 4.B.

Proposition 10 shows only the possibility of the effective T-period communication.
In order for ξT to be an equilibrium, it might be necessary for aT−1 to be close to 1.
If aT−1 is close to 1, R reaches a history h(T,1) at which I(h(T,1)) = [0, aT−1] with a high
probability on the equilibrium path. Moreover, {[aT+1, aT), [aT, aT−1)} almost coincides
with the 2-element equilibrium partition achieved in the one-shot cheap talk game. In
such a case, the initial (T−1)-period communication does not have much meaning from
ex ante perspective. However, as S becomes less concerned with the project, the effects
of monetary transfer on S’s incentive becomes larger. In other words, the necessary
payments for controlling S’s incentive goes to 0 as s goes to 0. Hence, if s is small
enough, it is not necessary for aT−1 to be close to 1. This fact suggests that long-term
communication becomes more beneficial for R as s becomes smaller. To see this, I show
the following Proposition 11.

Proposition 11. Fix b ∈ (0, 1/4). For any d > 0, there exists T(b, d) and η(b, d) such that if

T ≥ T(b, d) and s/r < η(b, d), R can obtain a higher ex ante expected payoff than −16rb3/3− rd.

The proof is in Appendix 4.C. I earlier show that an upper bound of R’s equilibrium
payoff is −16rb3/3. This Proposition 11 shows that if the communication phase has a
sufficiently large number of periods and S weighs transfer payments more heavily than
the project choice, this upper bound can be approximated by R’s equilibrium payoff.

4.3. Some Properties of Optimal Equilibria

Having shown that the upper bound −16rb3/3 can be approximated by R’s equilibrium
payoff, it remains to identify the characteristics of an optimal equilibrium. Let ξd be an
equilibrium where R’s equilibrium payoff is higher than −16rb3/3 − rd. Proposition 11
shows that the set of parameters that guarantees the existence of ξd in Γ(b, s, r,T) is
open. Let Γ(d) be a game in which there exists ξd. I denote by Ξd the set of ξd in Γ(d). By
definition, all the optimal equilibria in Γ(d) belong to Ξd. In this subsection, focusing
on Γ(d) with small d > 0, I establish some key properties of optimal equilibria.
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Proposition 4 in Section 3.3 shows that all the equilibria in Γ(d) are finite partition
equilibria. I denote by Id ≡ {Id

λ}λ∈{1,...,Λ} the equilibrium partition of ξd: each element
of the equilibrium partition Id

λ is an interval [ad
λ, a

d
λ−1) such that ad

0 = 1 and ad
Λ
= 0. Let

ωλ be the resulting transfer that S of type θ ∈ [ad
λ, a

d
λ−1) receives under ξd.23

Since ωλ − ωλ+1 = −s((ad
λ+1 − ad

λ)/2 − b)2 + s((ad
λ−1 − ad

λ)/2 − b)2. if ωλ+1 ≤ ωλ, the
width of the interval Iλ is strictly higher than 4b: ad

λ − ad
λ+1 + 4b ≤ ad

λ−1 − ad
λ. Let Λ̃ be

the number of intervals such that ωλ+1 ≤ ωλ: Λ̃ ≡ #{λ ∈ {1, . . . ,Λ} : ωλ+1 ≤ ωλ}. The
following proposition establishes the relationship between d and Λ̃.

Proposition 12. Fix d > 0 and Γ(d). Then, in any ξd ∈ Ξd, the following must be satisfied:

3d
16b3 + 1 > Λ̃.

Proof. Under the given equilibrium ξd, the ex ante expected payoff of R is given by

EUR(d) = −r
Λ∑
λ=1

 (ad
λ − ad

λ−1)3

12
− (ad

λ − ad
λ−1)ωλ

 .
Moreover, ad

λ̃−1
− ad

λ̃
> 4b is satisfied for any λ̃ ∈ {λ ∈ {1, . . . ,Λ} : ωλ+1 ≤ ωλ}. This

finding implies that −16rb3Λ̃/3 > EUR(d). By the definition of ξd, I must have EUR(d) >
−16rb3/3 − rd. Therefore, −16rb3Λ̃/3 > −16rb3/3 − rd must be satisfied. This completes
the proof of Proposition 12. □

Corollary 2. Fix d ∈ (0, 16b3/3) and Γ(d). Then, in any ξd ∈ Ξd, Λ̃ = 1 is satisfied. Moreover,
∃!λ̃ , Λ such that ωΛ = ωλ̃.

Proof. Proposition 12 shows that Λ̃ ≤ 1 if d ∈ (0, 16b3/3). Now, suppose that Λ̃ = 0.
Then, ωΛ > ωλ for any λ < Λ. In this case, if the true state θ belongs to the interval
[ad
Λ
, ad
Λ−1), then R certainly reaches a history h(t,2) such that she pays a positive amount

of money even though she does not obtain additional information in the future: {θ ∈
Θ : f (θ|h(t,2)) > 0} = [ad

Λ
, ad
Λ−1] and ρ(h(t,2)) > 0. Hence, I conclude that Λ̃ = 1, and

ωΛ ≤ ωλ′ for some λ′ < Λ. In the same way as this result, the inequality ωλ′ ≤ ωΛ
holds. This completes the proof of Corollary 2. □

4.4. Comparison with Predetermined Decision Rules

Now, under the uniform-quadratic assumption, I compare my communication proce-
dure with both delegation and arbitration. When R delegates control, her payoff is
given by −rb2. As shown by CS, the ex ante expected payoff of R under the one-shot
cheap talk communication is given by

EUR
CS = −r

(
1

12n2 +
b2(n2 − 1)

3

)
,

23Suppose that (Θ, ωd) is a direct contract under which there exists a pure strategy equilibrium that is
outcome equivalent to ξd. Then, ωλ = ωd(θ) is satisfied for θ ∈ [ad

λ, a
d
λ−1).
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where n ∈ {1, . . . , ñ}. The maximum number of partition equilibrium outcomes ñ is
given by

ñ ≡
−1

2
+

1
2

(
1 +

2
b

) 1
2
 ,

where ⌈x⌉ denotes the smallest integer greater than or equal to x. Dessein (2002) shows
that EUR

CS < −rb2 for n ≥ 2, and thus, R prefers delegation to the one-shot cheap talk
communication whenever informative communication is possible, b < 1/4.

By contrast, in my model, if T ≥ T(b, d) and s/r < η(b, d), R can obtain the higher
equilibrium payoff than −16rb3/3 − rd. If b < 3/16 and d < b2 − 16b3/3, the inequality
−16rb3/3 − rd > −rb2 holds.

Next, consider the situation in which arbitration is available. Under arbitration, S
sends a message to a neutral third party (arbitrator), and after receiving the messages,
the arbitrator announces a project. This announcement serves as a binding recom-
mendation to R. In other words, R cannot choose any action that is different from the
recommended one. Goltsman et al. (2009) characterize the optimal arbitration rule
and show that R’s ex ante expected payoff under optimal arbitration is −rb2(1−4b/3).24

I immediately verify that if d < b2(1 − 4b/3) − 16b3/3 and b < 3/20, the inequality
−16rb3/3 − rd > −rb2(1 − 4b/3) holds.

Therefore, Proposition 11 implies that when the communication phase has a suffi-
ciently large number of periods and R places greater importance on the project than S
does, R can obtain higher ex ante expected payoff than under delegation and arbitra-
tion.25

4.5. Comparison with Sender-optimal Signaling

As noted in Section 1, costly signaling helps people convey their private information
credibly. Naturally enough, even in my setting, if S can send a costly message (paying
money to R) to signal information, a fully separating equilibrium that is optimal from
R’s perspective can exist. However, it is known that under general assumptions, the
perfect separation is never optimal from S’s perspective although it is feasible.26

Karamychev and Visser (2016) study an amendment to the CS model by allowing
S to use both costless and costly messages. They show that in S’s optimal equilib-
rium, S pays to adjust the pooling intervals. Moreover, under the uniform-quadratic
assumption, they characterize Sender-optimal equilibria whose partition has at most
ñ + 1 steps.27 In such equilibria, R’s expected payoff is less than −r/{12(ñ + 1)2}. Since
ñ ≡

⌈(
−1 +

√
1 + 2/b

)
/2

⌉
, the integer ñ satisfies that 2ñ(ñ + 1) ≤ b ≤ 2ñ(ñ − 1).

24Having restricted attention to deterministic mechanism, Melumad and Shibano (1991) provide the
optimal arbitration (optimal delegation) rule.

25Since the optimal arbitration rule dominates the optimal mediation rule, my communication protocol
could strictly dominate the optimal mediation rule.

26de Haan et al. (2015) experimentally study the strategic information transmission in a setting where
both cheap talk and burning money are available, and they find that the individuals who supply infor-
mation prefer to communicate through cheap talk.

27See Proposition 4 in Karamychev and Visser (2016).
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Therefore, if ñ > 4 holds, I obtain

−16rb3

3
≥ − r

12(ñ + 1)3 > −
r

12(ñ + 1)2 .

This inequality and Proposition 11 suggest that in some cases, it might be better for R
to generate the signaling structure by herself through voluntary payment rather than
to rely on S’s costly signaling.

5. Generalization of Proposition 6 and Proposition 8

In this section, under the more general settings where the players’ payoff function and
the prior probability of the state are kept as is in Section 2, I show two results that
correspond to the results in Section 4.1.

Recall that ñ (≡ ñ(b) in Section 3.1) denotes the maximum number of elements of
equilibrium partition achievable in the one-shot cheap talk game. As can be observed
from the uniform-quadratic case, under my equilibrium construction in Proposition 6,
after S conveys some information in period 1, there must be multiple equilibria in the
remaining game. Therefore, I assume that ñ ≥ 2. In the one-shot cheap talk game,
if Condition M holds, then the most informative equilibrium is ñ-element partition
equilibrium where {[ãñ, ãñ−1), . . . [ã1, ã0]}, and 0 = ãñ < ãñ−1 < · · · < ã1 < ã0 = 1.

The following Proposition 13 establishes that an equilibrium whose partition has
more steps that that in the one-shot cheap talk game exists.

Proposition 13. Fix b > 0 and suppose that ñ ≥ 2. Then, there exists a positive value η(b)
such that if s/r < η(b), there is a continuum of (ñ + 1)-element partition equilibria.

To prove this Proposition, I construct a strategy profile that induces a (ñ+1)-element
partition: {[âñ+1, âñ), . . . [â1, â0]}, and 0 = âñ+1 < âñ < · · · < â1 < â0 = 1. The following
strategy profile is an extension of the strategy profile that I construct in Section 4.1.

At stage 1 in period 1, S conveys whether θ < â1. If θ < â1, then R pays a certain
amount of money, w∗, to S at stage 2 in period 1. Otherwise, she pays nothing to S. Ifθ <
â1 and w1 ≥ w∗, at stage 1 in period 2, S conveys to which element of {[âñ+1, âñ), . . . [â2, â1)}
the true state θ belongs. Otherwise, S conveys no information regardless of his type.
In period t ≥ 2, R always pays nothing to S. In period t ≥ 3, S conveys no information.
In period T+1, R chooses a project ρ(hT+1) = arg maxy

∫
uR(y, θ) f (θ|hT+1)dθ. In the rest

of this section, I denote by (σ̂, ρ̂) the strategy profile defined above, and denote by f̂ the
belief system derived from (σ̂, ρ̂).

Under the strategy profile outlined above, I have to take an equilibrium partition
whose boundaries {âñ+1, . . . , â1} coincide with those of the ñ-element partition equilib-
rium in the one-shot cheap talk game, where the state space is [0, â1). The following
inequality must hold for R’s payment w∗ to be optimal.

r
G(â1)

ñ∑
i=1

∫ âi

âi+1

uR(y(âi+1, âi), θ)g(θ)dθ − r
G(â1)

∫ â1

0
uR (

y(0, â1), θ
)

g(θ)dθ ≥ w∗, (16)
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y(âñ+1, âñ)
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Figure 5: Equilibrium

where y(âi+1, âi) = arg maxy
∫ âi

âi+1
uR(y(âi+1, âi), θ)g(θ)dθ. The left-hand side of this in-

equality represents the value of additional information, that is, the value of the partition
{[0, âñ), . . . , [â2, â1)} that R receives in period 2 by paying w∗ after receiving a message that
means θ < â1. It is obvious that R always strictly prefers partition {[0, âñ), . . . , [â2, â1)} to
partition {[0, â1)}, which implies that the left-hand side of the inequality (16) is positive
and increasing in r when ñ ≥ 2. Since w∗ = s · uS(y(â1, 1), â1, b) − s · uS(y(â2, â1), â1, b),28

the right-hand side of the inequality (16) is decreasing in s and goes to 0 as s goes to 0.
Therefore, if r is large enough relative to s, then paying w∗ is optimal for R.

In Appendix 5.A, I ensure that there exists η(b) > 0 such that if s
r < η(b), by

taking the boundaries of partition {[âñ+1, âñ), . . . .[â1, â0]} suitably, ((σ̂, ρ̂), f̂ ) constitutes
an equilibrium.

Next, I show that under some conditions, multistage information transmission with
voluntary monetary transfer is more beneficial to both R and S than one-shot cheap talk
communication. To observe this, I focus on equilibrium, ((σ̂, ρ̂), f̂ ), which I construct in
Proposition 13.

Let {[âx
ñ+1, â

x
ñ), . . . , [âx

1, â
x
0]} be the partition whose boundaries {âx

ñ+1, . . . , â
x
1} coincide

with those of the ñ-element partition equilibrium in the one-shot cheap talk game,
where the state space is [0, x). I denote by EÛR(x) the ex ante expected payoff of R under
((σ̂, ρ̂), f̂ ) with (ñ+ 1)-element partition: {[âx

ñ+1, â
x
ñ), . . . [âx

1, â
x
0]}where âx

1 ≡ x ∈ [a1(s/r), 1).
Let a1(s/r) be the infimum value of z such that (16) holds for all x ∈ [z, 1).

I obtain

EÛR(x) = Ŵ(x) − E[w∗],

where Ŵ(x) denotes R’s ex ante expected utility from project:

Ŵ(x) ≡ r
ñ+1∑
i=1

∫ âx
i−1

âx
i

uR(y(âx
i , â

x
i−1), θ)g(θ)dθ.

28Recall Figure 3 in Section 4.1.
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CS show that in the one-shot cheap talk game, under Condition M, R always strictly
prefers ñ-element partition equilibrium to any other equilibria. I denote by EUR

CS the
ex ante expected payoff of R under the ñ-element partition equilibrium in the one-shot
cheap talk game. I obtain

EUR
CS = r

ñ∑
i=1

∫ ãi−1

ãi

uR(y(ãi, ãi−1), θ)g(θ)dθ.

The boundaries {âx
ñ+1, â

x
ñ, . . . , â

x
1} almost coincide with the boundaries {ãñ, ãñ−1, . . . , ã0}

induced by ñ-element partition equilibrium in the one-shot cheap talk game when x ≈ 1.
Therefore, I have limx↑1 Ŵ(x) = EUR

CS. This implies that if the following Condition C
holds, Ŵ(x) > EUR

CS for some x ∈ (a1(s/r), 1).

Condition C . dŴ
dx

∣∣∣∣
x=1

< 0.

Under Condition C, for some x ∈ (a1(s/r), 1), the partition {[âx
ñ+1, â

x
ñ), . . . [âx

1, â
x
0]} is

finer than the partition {[ãñ, ãñ−1), . . . [ã1, ã0]}. Hereafter, I restrict attention to ((uR, uS),G)
under which Condition C holds. Note that there exists a pair of players’ payoff functions
and the prior distribution of state, ((uR, uS),G), under which Condition C holds. It is
not true that Condition M implies that Condition C. In Remark 6 in Appendix 5.C, I
provide an example in which Condition M is satisfied, while Condition C is not.

I now show the following Proposition 14.

Proposition 14. Fix b > 0 and suppose that ñ ≥ 2 and Condition C holds. Then, there exists
a positive value η̃(b) such that if s/r < η̃(b), there exists a (ñ+ 1)-element partition equilibrium
whose outcome ex ante Pareto-dominates all the equilibrium outcomes in the one-shot cheap talk
game.

I prove Proposition 14 by three steps. Let ((σ̂, ρ̂), f̂ ) be a partition equilibrium
constructed in Proposition 13. First, I show that if s/r < η(b), the set of (ñ + 1)-element
partition equilibria that S prefers to all equilibria in Γ(b, s, r, 1) is nonempty. Second, I
show that there exists a positive value η(b) such that if s/r < η(b), the set of (ñ+1)-element
partition equilibria that R prefers to all the equilibria in Γ(b, s, r, 1) is nonempty. Finally,
I show that there exists a positive value η̃(b) such that if s/r < η̃(b), the intersection of
the above two sets is nonempty: The formal proof is in Appendix 5.B.

Finally, I show that Condition C is not necessary for a Prato improvement.

Proposition 15. Fix b > 0 and suppose that ñ ≥ 3. Then, there exists a positive value η̈(b)
such that if s/r < η̈(b), there exists a ñ-element partition equilibrium whose outcome ex ante
Pareto-dominates all the equilibrium outcomes in the one-shot cheap talk game.

Under the strategy profile on which I focus here, information is elicited in the same
way as the previous Proposition 13 and 14, whereas the number of elements of the
equilibrium partition is ñ. Let {[ãx

ñ, ã
x
ñ−1), . . . , [ãx

1, ã
x
0]} be the equilibrium partition with

ã1
x = x ∈ (ã1, 1). The boundaries {ãx

ñ, . . . , ã
x
1} coincide with those of the (ñ − 1)-element

partition equilibrium in the one-shot cheap talk game, where the state space is [0, x). By
the definition, if x = ã1, the boundaries {ãx

ñ, . . . , ã
x
0} coincide with those of the ñ-element

partition equilibrium in the one-shot cheap talk game. In Appendix 5.D, I show that the
above strategy profile can constitute an equilibrium that leads to a Pareto improvement.
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6. Concluding Remarks

In this study, I analyzed a cheap talk game in which an informed sender and an
uninformed receiver engage in finite-period communication before the receiver makes
a decision. During the communication phase, the sender sends a (cheap talk) message
more than once and the receiver can pay money to the sender whenever she receives
a message. I have shown that the dependence of future information on past payments
creates an incentive for the receiver to pay money. This result ensures that the receiver
makes message-contingent payments to some extent even in the situation in which
there is no contractibility, and consequently, information transmission can be improved
relative to the one-shot cheap talk communication without transfer payments.

Under the assumption of quadratic preferences and a uniform type distribution, I
found the upper bound of the receiver’s equilibrium payoff, and provided a sufficient
condition for it to be approximated by the receiver’s payoff under a certain equilib-
rium. Consequently, when the communication phase has a sufficiently large number of
periods and the receiver places greater importance on the project than the sender does,
multistage information transmission with voluntary payments can be more beneficial
for the receiver than a wide class of other communication protocols (e.g., mediation,
arbitration, and the sender’s optimal signaling).

In this paper, I focused on the multistage unilateral communication. Intuitively,
it seems that the sender’s punishment by babbling message can create the receiver’s
payment incentive even in situations in which players engage in more general com-
munication protocols such as multistage bilateral communication. Hence, a natural
question to ask is whether the receiver’s voluntary payment can work jointly with
such general communication protocols? Considering such a model remains for further
research.

Appendix

Appendix 3.A Perfect Bayesian Equilibria

LetH ≡ Θ ×M1 ×W1 × · · · ×MT ×WT × Y be the set of sequences of the realized state
and players’ actions, (θ,m1,w1, . . . ,mT,wT, y).29 Let B(H) be the Borel algebra on H.
Given a strategy profile and a prior distribution, ((σ, ρ),G), a probability measure P
on the measurable space (H,B(H)) is uniquely determined. Given h ∈ H, the values
of players’ payoffs, both UR and US, are uniquely derived. Moreover, the functions
UR : H → R and US : H → R are measurable. Therefore, the players’ ex ante
expected payoffs E[UR(y, θ,w)|(σ, ρ)] and E[UR(y, θ,w)|(σ, ρ)] are well-defined. Let
VS(σ, ρ|h(t,1)

θ
,mt) and VR((σ, ρ), f |h(t,2),wt) be the continuation payoff of S after sending

mt at h(t,1)
θ

and the continuation payoff of R after paying wt at history h(t,2), respectively.

Definition 2. A strategy profile (σ, ρ) and a belief system f constitute a perfect Bayesian
equilibrium if the following conditions hold. For any t ∈ {1, . . . ,T},

29In order to avoid confusion, I add a time operator to the players’ action space.
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1. for any h(t,1)
θ
∈ H(t,1)

Θ
and mt ∈ supp{σ(·|h(t,1)

θ
)},

mt ∈ arg max
m′t

VS(σ, ρ|h(t,1)
θ
,m′t),

2. for any h(t,2) ∈ H(t,2),

ρ(h(t,2)) ∈ arg max
w′t

{
VR((σ, ρ), f |h(t,2),w′t) − w′t

}
,

3. for any hT+1 ∈ HT+1,

ρ(hT+1) ∈ arg max
y′

r
∫

uR(y′, θ) f (dθ|hT+1),

4. the belief system f is consistent with (σ, ρ).

Consistency of the belief system

Given h(t,2), the belief system induces a probability measure f (·|h(t,2)) on (Θ,B(Θ)).
Moreover, since S’s behavior strategy σ(M̃, ·|h(t,2),wt) : Θ→ [0, 1] is measurable for any
M̃ ∈ B(Mt+1) and wt ∈ Wt, I can uniquely define probability measure P̂(·|h(t,2),wt) on
(Θ ×Mt+1,B(Θ) ⊗ B(Mt+1)) as follows: for Θ̃ ∈ B(Θ) and M̃ ∈ B(Mt+1),

P̂(Θ̃ × M̃|h(t,2),wt) ≡
∫
Θ̃

σ(M̃, θ|h(t,2),wt) f (dθ|h(t,2)).

Therefore, I calculate the posterior belief: if P̂(Θ × M̃|h(t,2),wt) > 0, then

f (Θ̃|h(t,2),wt, M̃) =
P̂(Θ̃ × M̃|h(t,2),wt)

P̂(Θ × M̃|h(t,2),wt)
.

Moreover, fix Θ̃ ∈ B(Θ), then P̂(Θ̃, ·|h(t,2),wt)/P̂(Θ, ·|h(t,2),wt) induce measures ν̃ on
(Mt+1,B(Mt+1)). Since ν̃ is absolutely continuous with respect to the Borel measure
ν on (Mt+1,B(Mt+1)) and both measures are σ-finite, there exists a Radon–Nikodym
derivative ζ(mt+1|Θ̃, h(t,2),wt) such that for any M̃ ∈ B(Mt+1),

ν̃ =

∫
M̃
ζ(mt+1|Θ̃, h(t,2),wt)ν(dmt+1).

Hence, I require that for mt+1 ∈ supp(ν),

f (Θ̃|h(t+1,2)) = ζ(mt+1|Θ̃, h(t,2),wt),

where h(t+1,2) = (h(t,2),wt,mt+1).
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Appendix 3.B Proof of Proposition 2

Fix a pure strategy equilibrium under a direct contract (Θ, ω). Then, the existence of
a partition {Iλ}λ∈Λ that satisfies the conditions 2–3 in Definition 1 is trivial. Hence, I
have only to ensure that Iλ is convex for each λ ∈ Λ. First, I show that R’s strategy
regarding the project, y : Θ→ Y, satisfies the following property.

Lemma 3. In a pure strategy equilibrium under a direct contract (Θ, ω), R’s strategy regarding
the project, y(θ), is nondecreasing.

Proof of Lemma 3. From S’s incentive compatibility condition, for any θ, θ′ ∈ Θ,

uS(y(θ), θ, b) + ω(θ) ≥ uS(y(θ′), θ, b) + ω(θ′), and

uS(y(θ′), θ′, b) + ω(θ′) ≥ uS(y(θ), θ′, b) + ω(θ).

These inequalities can be simplified into

uS(y(θ), θ, b) − uS(y(θ′), θ, b) ≥ uS(y(θ), θ′, b) − uS(y(θ′), θ′, b)

My assumption uS
12(y, θ, b) > 0 yields y(θ) ≥ y(θ′) for θ > θ′. □

From Lemma 3, I immediately obtain the following lemma.

Lemma 4. In a pure strategy equilibrium under a direct contract (Θ, ω), if y(θ) = y(θ) for
θ < θ, then y(θ) = y(θ) = y(θ) for all θ ∈ [θ, θ]. Moreover, ω(θ) = ω(θ) = ω(θ) for all
θ ∈ [θ, θ].

Lemma 4 implies the convexity of Iλ. ^

Appendix 3.C Proof of Proposition 3

Suppose that a fully separating equilibrium ξF exists. Let (Θ, ωF) be a direct contract
under which there exists a pure strategy equilibrium that is outcome equivalent to
ξF. Let yF(θ) be R’s equilibrium strategy under (Θ, ωF). Obviously, yF(θ) = yR(θ) =
arg maxy uR(y, θ). For truth telling to be incentive compatible, it is necessary to satisfy
the following condition:

s · uS(yR(θ), θ, b) + ωF(θ) ≥ s · uS(yR(θ′), θ, b) + ωF(θ′) for all θ′ , θ.

From the first-order condition, I obtain the differential equation

d
dθ
ωF(θ) = −s · uS

1(yR(θ), θ, b)
d

dθ
yR(θ).

Since uS
1(yR(θ), θ, b) > 0 and y′R(θ) ≡ d

dθ yR(θ) > 0, S’s incentive compatibility condition
requires that

ωF(θ) = ωF(1) +
∫ 1

θ
s · uS

1(yR(z), z, b)y′R(z)dz. (17)
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From condition (17), the compensation schedule that induces full revelation is strictly
decreasing in θ.

Finally, I show that R’s payment strategy satisfying condition (17) never satisfies
the equilibrium condition. Let H(θ) be supp{P̃(·|θ)} where P̃(·|θ) is the probability
measure on (HT+1,B(HT+1)) induced by (σ, ρ) given θ: the set of hT+1 that has a positive
probability under the given ξF when the true state is θ.

Step 1: Fix θ ∈ (0, 1) and (m1,w1, . . . ,mT,wT) ∈ H(θ). Then, there exists t < T
such that wt > 0 and wt = 0 for any t > t. Moreover,

∑t
t=1 wt = ωF(θ) holds. If

supp{ f (·|(m1,w1, . . . ,mt)} = {θ}, R has no incentive to pay wt at this history. There-
fore, there exists a θ , θ such that θ ∈ supp{ f (·|(m1,w1, . . . ,mt)}. Furthermore, since
ωF(θ) < ωF(θ) for θ > θ, I must have θ < θ. This implies that there must exist
(m1,w1, . . . ,mT,wT) ∈ H(θ) such that (m1,w1, . . . ,wt) = (m1,w1, . . . ,wt), and wt > 0 for
some t ∈ {t + 1,T − 1} ≡ T1.

Step 2: Let t be the maximum number that satisfies wt > 0. From the definition
of t,

∑t
t=1 wt = ωF(θ) is satisfied. Similar to Step 1, there exists a θ̃ < θ such that

θ̃ ∈ supp{ f (·|(m1,w1, . . . ,mt)}. Furthermore, there must exist (m̃1, w̃1, . . . , m̃T, w̃T) ∈ H(θ̃)
such that (m̃1, w̃1, . . . , w̃t) = (m1,w1, . . . ,wt), and w̃t > 0 for some t ∈ {t + 1,T − 1} ≡ T2.

For ξF to be an equilibrium, the above operation must be repeated infinitely regard-
less of its start point θ. However, this is impossible in the set of finite numbers. Hence,
I conclude that there exists no fully separating equilibrium. ^

Appendix 3.D Proof of Proposition 4

Fix an equilibrium ξ. Let (Θ, ω) be a direct contract under which there exists a pure
strategy equilibrium that is outcome equivalent to ξ. Let y(θ) be R’s equilibrium
strategy under (Θ, ω). Proposition 2 shows that ξ is a partition equilibrium.

Let [a′, a′′] be an element of the equilibrium partition30 such that a′ < a′′. Then, I
have

• limθ↓a′ s · uS(y(θ), θ, b) + ω(θ) = s · ψ(|y(a′, a′′) − θ′ − b|) + ω(a′), and

• s · ψ(|y(a′, a′′) − a′′ − b|) + ω(a′′) = limθ↑a′′ s · uS(y(θ), θ, b) + ω(θ),

where ω(a) = ω(a′) = ω(a′′) and y(θ) = y(a′, a′′) for any θ ∈ [a′, a′′]. Moreover, since I
assume that y(a′, a′′) < (a′ + a′′)/2 + b, I obtain

s · ψ(|y(a′, a′′) − a′ − b|) > s · ψ(|y(a′, a′′) − a′′ − b|). (18)

Let Θ̂ be the set of all boundaries of equilibrium partition. First, I show the following
Claim 1.

Claim 1. If there exists closed intervals [θk+1, θk] and [θ j, θ j−1] such that θk+1 < θk < θ j <

θ j−1 and [θk+1, θk], [θ j, θ j−1] ⊂ Θ̂,31 then

30The same argument holds for the cases of [a′, a′′), (a′, a′′], and (a′, a′′)
31If (θk+1, θk) ⊂ Θ̂ is satisfied, the [θk+1, θk] ⊂ Θ̂ is also satisfied since Θ̂ is the set of the boundaries of

equilibrium partition.
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• ω is strictly decreasing in θ over [θk+1, θk] and [θ j, θ j−1], and

• limθ↑θk ω(θ) ≡ ω > ω ≡ limθ↓θ j ω(θ).

Proof of Claim 1. First, I show that ω is strictly decreasing in θ over [θk+1, θk] and
[θ j, θ j−1]. For all θ ∈ [θk+1, θk], the truth telling to be a best response requires that

s · uS(yR(θ), θ, b) + ω(θ) ≥ s · uS(yR(θ′), θ, b) + ω(θ′) for all θ′, θ ∈ [θk+1, θk].

The first-order condition for S results in the differential equation

d
dθ
ω(θ) = −s · uS

1(yR(θ), θ, b)
d

dθ
yR(θ).

Since uS
1(yR(θ), θ, b) > 0, and y′R(θ) ≡ d

dθ yR(θ) > 0, S’s incentive compatibility condition
requires that

ω(θ) = ω(θk) +
∫ θk

θ
s · uS

1(yR(z), z, b)y′R(z)dz. (19)

The same argument holds for interval [θ j, θ j−1]. Hence, I obtain

ω(θ) = ω(θ j−1) +
∫ θ j−1

θ
s · uS

1(yR(z), z, b)y′R(z)dz. (20)

From conditions (19) and (20), the given compensation schedule is strictly decreas-
ing in θ over [θk+1, θk] and [θ j, θ j−1]. To simplify the proof, I now suppose that there
exists no closed interval [θ, θ] ⊂ (θk, θ j) such that [θ, θ] ⊂ Θ̂. The equilibrium payoffs
of S of type θk and θ j are s · ψ(b) + ω and s · ψ(b) + ω, respectively.

From condition (18), I conclude that s · uS(y(θ), θ, b) + ω(θ) is strictly decreasing in
θ over [θk, θ j] ∩ Θ̂. Therefore, the following must be satisfied

lim
θ↑θk

s · uS(y(θ), θ, b) + ω(θ) = s · ψ(b) + ω

> s · ψ(b) + ω = lim
θ↓θ j

s · uS(y(θ), θ, b).

This outcome completes the proof of Claim 1. □

Now, I suppose that there exists an interval which is subset of Θ̂. Let [θk+1, θk] be
the leftmost interval such that [θk+1, θk] ⊂ Θ̂ and θk+1 < θk. By Claim 1, for almost
every θ ∈ [θk+1, θk], there is no θ̃ ∈ Θ \ [θk+1, θk] such that ω(θ̃) = ω(θ). In the same
way as the proof of Appendix 3.C, I can prove that this result contradicts the fact that
the given strategy profile is an equilibrium.32 Therefore, the equilibrium partition does
not include any separating interval.

Next, I show that the cardinality of Θ̂ is finite. I prove this by contradiction. Suppose
that the cardinality of Θ̂ is countably infinite: {Iλ}λ∈N. Let [an+1, an) and [an, an−1) be
adjacent elements of equilibrium partition. I denote by ω j the payment amount S of
type θ ∈ [a j, a j−1) receives. I have the following Claim 2.

32The proof is a straightforward application of each step I take in Appendix 3.C. Therefore, it is omitted.
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Claim 2. # {[an, an−1) ∈ {Iλ}λ∈N : ωn ≥ ωn+1} < +∞.

Proof of Claim 2. Since S of type θ = an is indifferent between [an+1, an) and [an, an−1), the
following must be satisfied:

s · ψ(|y(an+1, an) − an − b|) + ωn+1 = s · ψ(|y(an, an−1) − an − b|) + ωn.

Hence, if ωn ≥ ωn+1 holds, I have s · ψ(|y(an+1, an) − an − b|) ≥ s · ψ(|y(an, an−1) − an − b|).
Since s · ψ(|y(an+1, an) − an − b|) is increasing in an+1 ∈ [0, an], if ωn ≥ ωn+1 holds, I must
have

s · ψ(b) ≥ s · ψ(|y(an, an−1) − an − b|).

ψ(|y − an − b|) is strictly increasing in y ∈ [0, an + b] and strictly decreasing in
y ∈ [an + b,∞), and an < y(an, an−1) < (an + an−1)/2 + b. Therefore, if an−1 − an ≤ b is
satisfied, s ·ψ(b) < s ·ψ(|y(an, an−1)− an − b|). This means that if ωn ≥ ωn+1 holds, I must
have an−1−an > b. Therefore, it is satisfied that # {[an, an−1) ∈ {Iλ}λ∈N : ωn ≥ ωn+1} < 1/b.
This completes the proof of Claim 2. □

Claim 2 implies that if the cardinality of Θ̂ is countably infinite, there exists an
infinite sequence {[a j, a j−1)} j∈N ⊂ {Iλ}λ∈N such that ω j < ω j+1, and ω j , ω(θ) for
θ ∈ [0, 1] \ {[a j, a j−1)} j∈N. In the same way as the proof of Appendix 3.C, I can prove
that this result contradicts the fact that the given strategy profile is an equilibrium.33

Therefore, the cardinality of Θ̂ must be finite. Claim 1 and Claim 2 conclude that all
equilibria are finite partition equilibria. ^

Appendix 3.E Discussion of Assumption 2

Assumption 2 guarantees Claim 1 that plays a critical role to prove the finiteness of
equilibrium partition. To see this, suppose that Assumption 2 does not hold. Then, if
there is a pair of θ, θ1, and θ such that

1. 0 < θ < θ1 < θ < 1, and 1 − θ = θ;

2. ω(θ) = ω1 for θ ∈ (θ, θ), and

ω(θ) =

ω̂ +
∫ 1
θ

s · uS
1(yR(z), z, b)y′R(z)dz for θ ∈ [θ, 1],

ω̂ +
∫ θ
θ

s · uS
1(yR(z), z, b)y′R(z)dz for θ ∈ [0, θ],

where uS = ψ;34

3. s ·ψ(|y(θ, θ1)−θ−b|) = s ·ψ(|y(θ1, θ)−θ1−b|), s ·ψ(b)+ω̂ = s ·ψ(|y(θ, θ1)−θ−b|)+ω1,

and s · ψ(|y(θ1, θ) − θ − b|) + ω1 = s · ψ(b) + ω̂ +
∫ 1
θ

s · uS
1(yR(z), z, b)y′R(z)dz; then

the following strategy profile can be constitute an equilibrium, which has separating
intervals.

33The proof is a straightforward application of each step I take in Appendix 3.C. Therefore, it is omitted.
34Clearly, the given ω(θ) does not hold Claim 1.
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In the first period, S reveals whether θ belongs to (θ, θ). If θ ∈ (θ, θ), R pays ŵ, and
then, S reveals whether θ < θ1. If θ < (θ, θ), R pays ω1 in period 2. After this payment,
S’s types {ϵ, ϵ + θ} pool together and send message mϵ. After receiving mϵ, R pays

ω(ϵ) =
∫ θ
ϵ

s · uS
1(yR(z), z, b)y′R(z)dz in period 2. Note that ω(ϵ) = ω(θ+ ϵ) since 1− θ = θ.

After receiving ω(ϵ), S reveals whether θ = ϵ or ϵ+θ. If R deviates in terms of payment
in a period, S conveys no information thereafter. S’s incentive compatibility condition is
met by the second and third condition of the abovementioned requirements. Moreover,
if s/r is small enough, R makes a payment to prevent S’s babbling. However, even if
the Assumption 2 is not satisfied, the existence of the pair (θ, θ1, θ) is not guaranteed.
It remains an open question.

Appendix 3.F Proof of Proposition 5

Since G is the uniform distribution and uR(y, θ, b) = l(|y − θ|), the optimal project for R
is given by y(aλ̃, aλ̃−1) = (aλ̃ + aλ̃−1)/2 for any [aλ̃, aλ̃−1) ⊂ [0, 1]. Recall that ωλ̃+1 ≤ ωλ̃.
Therefore, I obtain

ψ(|(aλ̃+1 − aλ̃)/2 − b|) − ψ(|(aλ̃−1 − aλ̃)/2 − b|) = (ωλ̃ − ωλ̃+1)/s ≥ 0. (21)

Since aλ̃+1 < aλ̃, the inequality (21) can be simplified into

ψ(b) ≥ ψ(|(aλ̃−1 − aλ̃)/2 − b|). (22)

Moreover, since aλ̃ < aλ̃−1, I obtain

b ≤ (aλ̃−1 − aλ̃)/2 − b ⇔ aλ̃−1 − aλ̃ ≥ 4b. (23)

Therefore, I obtain

r
∫ aλ̃−1

aλ̃

g(θ)uR(y(aλ̃, aλ̃−1), θ)dθ = r
∫ aλ̃−1

aλ̃

l(|(aλ̃−1 − aλ̃)/2 − θ|)

< r
∫ 4b

0
l(|2b − θ|).

Appendix 4.A Proof of Proposition 7

For S’s incentive compatibility condition to be satisfied, the partition {[a2, a1), [a1, 1]}
must coincide with the 2-element equilibrium partition achieved in the one-shot cheap
talk game where θ is drawn from the uniform distribution over [0, a1). By CS, the
boundary a1 satisfies that

−s
(a1

2
− a1 − b

)2
= −s

(a1 + a2

2
− a1 − b

)2
.

This equation implies that

1 − a1 = a1 − a2 + 4b. (24)
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Moreover, similar to the condition (8), the indifference condition for S of type θ = a2

induces the following equation:

w̃ = s{(a2 + a1)/2 − (a2 + b)}2 − s(a2/2 − (a2 + b))2.

The value of w̃ is positive if and only if a1 − a2 > a2 + 4b. This means that a1 − a2 > 4b.
Hence, I obtain

(a2 − 0) + (a1 − a2) + (1 − a1) = 2(a1 − a2) + 4b + a2

> 12b + 3a2.

Since I now suppose that b ∈ (1/12, 1/4), I obtain 12b + 3a2 > 1. Therefore, boundaries
of the partition and the payment w̃ are not well defined. This outcome implies that I
cannot construct a 3-element partition equilibrium described in Proposition 7. ^

Appendix 4.B Proof of Proposition 10

First, I now ensure of the optimality of S’s strategy. At history h(t,1) such that wt′ < w∗t′
or mt′ ≥ at′ for some t′ < t, any type of S randomly sends a message according to the
same distribution, a uniform distribution over [0, 1]. Therefore, there is no profitable
deviation for S at such a history.

At history h(1,1) or h(t,1) such that mt′ < at′ and wt′ ≥ w∗t′ for all t′ < t, if S of
type θ sends mt ≥ at, then he will obtain −s ((at + at−1)/2 − (θ + b))2 in the future.
Otherwise, the continuation payoff of S can be −s ((at̃+1 + at̃)/2 − (θ + b))2 +

∑t̃
l=t w∗l for

some t̃ ∈ {t, . . . ,T}. Since at and w∗t satisfy (14)–(15), it is easy to verify that for any
t̃ ∈ {t, . . . ,T},

−s
(at + at−1

2
− (θ + b)

)2
> −s

(at̃+1 + at̃

2
− (θ + b)

)2
+

t̃∑
l=t

w∗l for any θ > at, (25)

−s
(at + at−1

2
− (θ + b)

)2
< −s

(at̃+1 + at̃

2
− (θ + b)

)2
+

t̃∑
l=t

w∗l for any θ ∈ [at̃+1, at̃), (26)

−s
(at + at−1

2
− (θ + b)

)2
= −s

(at+1 + at

2
− (θ + b)

)2
+ w∗t for θ = at. (27)

Moreover, take θ = at, then t solves

max
t̃∈{t,...,T}

−s
(at̃+1 + at̃

2
− (θ + b)

)2
+

t̃∑
l=t

w∗l

 .
Hence, (25)–(27) imply that there is no profitable deviation for S from ξT.

Next, I ensure of the optimality of R’s strategy. At any history hT+1 ∈ HT+1, the
posterior belief f (θ|hT+1 ≡ (h(T,2),wT)) = f (θ|h(T,2)) is a uniform distribution sup-

ported on an interval whose mid-point is equal to min I(hT+1)+max I(hT+1)
2 . Therefore,

y = min I(hT+1)+max I(hT+1)
2 is an optimal project for R at any hT+1 ∈ HT+1.

Consider a history h(t,2) for t ∈ {1, . . . ,T − 1}. If wt′ < w∗t′ or mt′ ≥ at′ for some t′ < t,
then R has no chance to obtain additional information in the future. Therefore, she
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must pay nothing to S at such a history. If mt′ < at′ and wt′ ≥ w∗t′ for all t′ < t and
mt < at,35 by paying wt ≥ w∗t , R obtains u∗t(wt):

u∗t(wt) = −wt −
T∑

i=t+1

w∗i
ai

at
− r

T∑
i=t

∫ ai

ai+1

1
at

(ai+1 + ai

2
− θ

)2
dθ

= −wt −
T∑

i=t+1

w∗i
ai

at
− r

(
aT−1b2

at
+

(aT−1)3

48at
+ (T − 1 − t)

(a)3

48at

)
.

On the other hand, by paying wt < w∗t , she obtains ut(wt):

ut(wt) = −wt − r
∫ at

0

1
at

(at

2
− θ

)2
dθ

= −wt − r
(at)2

12
.

Clearly, u∗t(wt) and ut(wt) have a maximum at wt = w∗t and wt = 0, respectively.
Therefore, paying w∗t is optimal for R if and only if u∗t(w

∗
t) ≥ ut(0)

⇐⇒ r
(
−aT−1b2

at
− (aT−1)3

48at
− (T − 1 − t)

(a)3

48at
+

(at)2

12

)
≥

T∑
i=t

w∗i
ai

at
. (28)

By making a sufficiently close to 0, the left-hand side of this inequality can be made as
close to r(1/16 − b2) as desired and the right-hand side of this inequality can be made
as close to s(1 + 12)(1 + 4b)/16 as desired. It is obvious that if s/r < (1 − 4b)/(1 + 12b),
there exists ã(b,T) > 0 such that if a < ã(b,T), then u∗t > ut for any t ∈ {1, . . . ,T − 1}. Take
a < min

{
1+12b
T+1 ,

1−4b
T−1 , ã(b,T)

}
. Then, ξT constitutes an equilibrium. ^

Appendix 4.C Proof of Proposition 11

I now impose a condition, a = {1 − (4b + ε)}/(T − 1), on ξT. Since aT−1 = 4b + ε ∈ (4b, 1),
ε ∈ (0, 1 − 4b) must be satisfied. Moreover, a = {1 − (4b + ε)}/(T − 1) < (1 − 4b)/(T − 1) <
(1+4b)/(T−3) holds. Therefore, if a < (1+12b)/(T+1), ai and w∗t are well defined. I now
suppose that T > T̃(b) ≡ 1/8b+ 1/2, and then a < (1+ 12b)/(T + 1) for any ε ∈ (0, 1− 4b).
Let ξε be this modified strategy profile and system of beliefs. The following lemma
shows that if r is large relative to s, then ξε can be an equilibrium.

Lemma 5. Fix b ∈ (0, 1/4), and T ≥ T̃(b). Then, for any ε ∈ (0, 1 − 4b), there exists η(b,T, ε)
such that if s/r < η(b,T, ε), then ξε can be an equilibrium.

Proof of Lemma 5. It is obvious that the restriction a = {1 − (4b + ε)}/(T − 1) affects only
R’s optimal decision at h(t,2) such that mt′ < at′ and wt′ ≥ w∗t′ for all t′ < t− 1 and mt < at.
Therefore, I have only to ensure whether inequality (28) holds.

The left-hand side of the inequality (28) can be simplified into

r
aT−1

at

{
4(at)3 − (aT−1)3 − (T − 1 − t)a3

48aT−1
− aT−1

at
b2

}
.

35R learns θ < at at the immediately preceding stage.
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Since at = aT−1 + (T − 1 − t)a, I obtain

4(at)3 − (aT−1)3 − (T − 1 − t)a3

48aT−1
>

(at)3

16aT−1
>

(at)2

16
> b2 >

aT−1

at
b2.

This implies that

aT−1

at

{
4(at)3 − (aT−1)3 − (T − 1 − t)a3

48aT−1
− aT−1

at
b2

}
> 0.

Moreover, since w∗t > 0 , the right-hand side of the inequality (28) is higher than 0.
Therefore, I obtain

u∗t(w
∗
t) ≥ ut(0) ⇐⇒

s
r
<

aT−1
at

{
4(at)3−(aT−1)3−(T−1−t)a3

48aT−1
− aT−1

at
b2

}
1
s
∑T

i=t w∗i
ai
at

. (29)

Note that the value of w∗i/s does not depend on s. Now, I conclude that there exists
η(b,T, ε) such that if s/r < η(b,T, ε), then the inequality (29) holds and ξε constitutes an
equilibrium. □

I denote by EUR(ε) the ex ante expected payoff of R under a strategy profile ξε.

EUR(ε) = rW(ε) −
T∑

i=1

w∗i ai.

rW(ε) denotes the expected revenue from the project under ξε:

rW(ε) = −r
T+1∑
i=1

∫ ai−1

ai

(ai + ai−1

2
− θ

)2
dθ

= r
[
−(4b + ε)b2 − (4b + ε)3

48
− 1

48
{1 − (4b + ε)}3

(T − 1)2

]
.

There exists ε(b, d) > 0 such that if ε ∈ (0, ε(b, d)), then

r
[
−(4b + ε)b2 − (4b + ε)3

48

]
> −16

3
rb3 − rd.

This implies that for any ε ∈ (0, ε(b, d)), there exists T(b, ε, d) such that for any T ≥
T(b, ε, d),

rW(ε) > −16
3

rb3 − rd. (30)

Recall that w∗i is linearly increasing in s for all i ∈ {1, . . . ,T}. Suppose that T ≥
T(b, ε, d). Then, for any ε ∈ (0, ε(b, d)), there exists η̂(b,T, ε, d) such that

s/r < η̂(b,T, ε, d) ≡ W(ε) + 16b3/3 + d
1
s
∑T

i=1 w∗i ai
=⇒ EUR(ε) > −16rb3/3 − rd.
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By Lemma 5, if s/r < η(b,T, ε), then ξε constitutes an equilibrium. Therefore,
if s/r < η̃(b,T, ε, d) ≡ min{η̂(b,T, ε, d), η(b,T, ε)}, the strategy profile ξε constitutes an
equilibrium under which EUR(ε) > −16rb3/3 − rd.

I define T(b, d) and E(b, d) as follows.

T(b, d) ≡ max
{

min
ε∈(0,ε(b,d))

T(b, ε, d), T̃(b)
}
, and

E(b, d) ≡
{
ε ∈ (0, ε(b, d)) : T(b, ε, d) = T(b, d)

}
.

Define η(b,T, d) as follows:

η(b,T, d) ≡ sup
ε∈E(b,d)

η̃(b,T, ε, d).

Suppose that ξε constitutes an equilibrium of Γ(b, s, r,T) where R obtains EUR(ε) >
−16rb3/3 − rd. Consider Γ(b, s, r,T′) where T′ > T. Now, construct a strategy profile
ξ′ε by modifying ξε. In particular, under ξ′ε, players follow ξε until period T, and then
S conveys no information and R never pays money to S in the future. It is obvious
that ξ′ε constitutes an equilibrium of Γ(b, s, r,T′) and R’s equilibrium payoff is equal to
EUR(ε) > −16rb3/3 − rd. Hence, by taking η(b, d) as η(b,T(b, d), d), I complete the proof.
^

Appendix 5.A Proof of Proposition 13

Formally, the strategy profile (σ̂, ρ̂) is defined as follows. At stage 1 in period 1, S of type
θ ≥ â1 sends a message m1 randomly according to a uniform distribution over [â1, 1],
and S of type θ < â1 sends a message m1 randomly according to a uniform distribution
over [0, â1). If m1 < â1, then R pays a certain amount of money, w∗, to S at stage 2 in
period 1. Otherwise, she pays nothing to S. If m1 < â1 and w1 ≥ w∗, then, at stage 1
in period 2, S of type θ ≥ â2 randomly sends a message m2 according to a uniform
distribution over [â2, 1], and S of type θ ∈ [âi+1, âi), for i ∈ {2, . . . , ñ}, randomly sends a
message m2 according to a uniform distribution over [âi+1, âi). Otherwise, S randomly
sends a message m2 according to uniform distribution over [0, 1] regardless of his type.
In period t ≥ 2, R always pays nothing to S. In period t ≥ 3, S always sends babbling
message. In period T + 1, R chooses a project ρ(hT+1) ≡ arg maxy

∫
uR(y, θ) f (θ|hT+1)dθ.

LetH be the set of all histories where R makes a decision,H ≡ {∪T
t=1 H(t,2)} ∪HT+1.

I denote by I(h) the closure of the set {θ ∈ Θ : f (θ|h ∈ H) > 0}. Under the belief system
f̂ , I obtain I(hT+1) ∈ {[âñ+1, âñ], . . . [â1, â0], [âñ+1, â1]} for any hT+1 ∈ HT+1. Therefore, at
hT+1 such that I(hT+1) = [âi+1, âi] for i ∈ {0, . . . ñ}, the optimal project for R is y(âi+1, âi) =

arg maxy
∫ âi

âi+1
uR(y, θ)g(θ)dθ, and at hT+1 such that I(hT+1) = [âñ+1, â1], the optimal project

for R is y(âñ+1, â1) = arg maxy
∫ â1

âñ+1
uR(y, θ)g(θ)dθ. Hence, ρ̂(hT+1) becomes y(âi+1, âi) at

hT+1 such that I(hT+1) = [âi+1, âi] for i ∈ {0, . . . ñ}, and ρ̂(hT+1) becomes y(âñ+1, â1) at hT+1

such that I(hT+1) = [âñ+1, â1].
In period t ≥ 2, R always pays nothing to S, which implies that {[âi+1, âi)}ñi=1

must coincide with the ñ-element equilibrium partition achieved in a model with
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one-shot information transmission where θ is drawn from a distribution with density
{g(θ)/G(â1)} · 1[0,â1)(θ). Therefore, the boundaries of this partition, {[âi+1, âi)}ñi=1, must
be solutions to the following non-linear difference equation whose initial and terminal
conditions are a1 = â1 and añ+1 = 0: for i = 2, . . . , ñ,

s · uS(y(ai+1, ai), ai, b) − s · uS(y(ai, ai−1), ai, b) = 0. (31)

When â1 = 1, the solution to (31) induces a partition that coincides with ñ-element
equilibrium partition in the one-shot cheap talk game.36 Moreover, the solution to (31)
varies continuously with respect to initial condition a1 = â1. Recall that a solution to
(1)–(3) in Section 3.1 induces a partition: 0 = ãñ < · · · < ã1 < ã0 = 1. Therefore, there
exists x ∈ (ã1, 1) such that (31) is well defined for all â1 ∈ (x, 1). Let a1 be the minimum
value of x such that for all â1 ∈ (x, 1), the solution to (31) induces an ñ-element partition:
0 = âñ+1 < âñ < · · · < â1 = â1. Since the solution to (31) does not depends on both s and
r, the value of a1 also does not depends on both s and r.

Suppose that {â2, . . . , âñ+1} is a solution to (31) where â1 ∈ (a1, 1). Then, there is no
profitable deviation for S from σ̂ at any h(2,1)

θ
such that m1 < â1 and w1 ≥ w∗. Moreover,

S conveys no information at any h(2,1)
θ

such that m1 ≥ â1, or m1 < a1 and w1 < w∗. The

same can be said at any h(t,1)
θ

for t ≥ 3. This implies that if {â1, . . . , âñ+1} is a solution to

(31) where â1 ∈ (a1, 1), then σ̂ is optimal for S at any h(t,1)
θ

for t ≥ 2.
At stage 1 in period 1, if S of type θ sends m1 ≥ â1, then he obtains s ·uS (

y(â1, 1), θ, b
)
.

Otherwise, S of typeθ ≥ â2 obtains s·uS (
y(â2, â1), θ, b

)
+w∗, and S of typeθ ∈ [âi+1, âi), for

i ≥ 2, obtains s ·uS (
y(âi+1, âi), θ, b

)
+w∗. I assume that uS

11(y, θ, b) < 0 and uS
12(y, θ, b) > 0.

Moreover, y(âi+1, âi) > y(âi, âi−1) holds. Therefore, if the following is satisfied

s · uS (
y(â1, 1), â1, b

) − s · uS (
y(â2, â1), â1, b

)
= w∗, then (32)

s · uS (
y(â1, 1), θ, b

) ≥ max
j∈{1,...,ñ}

s · uS
(
y(â j+1, â j), θ, b

)
+ w∗ for θ ≥ â1, and (33)

s · uS (
y(âi+1, âi), θ, b

)
+ w∗ > s · uS (

y(â1, 1), θ, b
)

for i ≥ 1 and θ ∈ [âi+1, âi). (34)

When (33) and (34) hold, S has no incentive to deviate from σ̂ at stage 1 in period 1. Since
I assume that R’s payment must be non-negative, w∗must be non-negative. If w∗(â1) = 0
for some â1 ∈ (a1, 1), then (1)–(3) has a solution: 0 = âñ+1 < âñ < · · · < â0 = 1. This is
incompatible with the definition of ñ. Hence, R’s payment, w∗(â1) ≡ s·uS (

y(â1, 1), â1, b
)−

s · uS (
y(â2, â1), â1, b

)
, which holds for equation (32), is positive for any â1 ∈ (a1, 1). Since

y(â1, 1), y(â2, â1) and â2 is continuous in â1 ∈ (a1, 1], w∗(â1) is continuous in â1 ∈ (a1, 1].
Moreover, since â2 = ã1 when â1 = 1, I obtain w∗(1) = s ·uS(yR(1), 1, b)−s ·uS(y(ã1, 1), 1, b).
Note that w∗(1) > 0 since uS

11(y, θ, b) < 0 and y(ã1, 1) < yR(1) < yS(1, b). Therefore,
w∗(â1) > 0 for any â1 ∈ (a1, 1].

At any h(t,2), R has no incentive to increase the amount of payment because that
does not affect S’s behavior. Therefore, I have only to ensure the optimality of ρ at h(1,2)

such that m1 < â1. At this history, if R pays w1 < w∗, then she obtains u(w1):

u(w1) = −w1 +
r

G(â1)

∫ â1

0
uR (

y(0, â1), θ
)

g(θ)dθ.

36Condition M ensures that the above difference equation has at most one solution for the given ñ. See
pages 1444–1445 of CS (1982).
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On the other hand, by paying w1 ≥ w∗ at history h(1,2) such that m1 < a1, she obtains
u∗(w1):

u∗(w1) = −w1 +
r

G(â1)

ñ∑
i=1

∫ âi

âi+1

uR(y(âi+1, âi), θ)g(θ)dθ.

Therefore, paying w∗ is an optimal decision for R at h(1,2) such that m1 < â1 if and
only if u∗(w∗) ≥ u(0)⇐⇒

r
G(â1)

ñ∑
i=1

∫ âi

âi+1

uR(y(âi+1, âi), θ)g(θ)dθ − r
G(â1)

∫ â1

0
uR (

y(0, â1), θ
)

g(θ)dθ ≥ w∗. (35)

I denote by r · V(â1) the left-hand side of inequality (35). V(â1) is continuous in
â1 ∈ (a1, 1], and V(â1) > 0 for â1 ∈ (a1, 1]. Moreover, V(1) = EUR

CS,ñ − EUR
CS,ui where

EUR
CS,ñ ≡

∑ñ
i=1

∫ ãi−1

ãi
uR(y(ãi, ãi−1), θ)g(θ)dθ and EUR

CS,ui ≡
∫ 1

0 uR(y(0, 1), θ)g(θ)dθ. Let

α(â1) be uS (
y(â1, 1), â1, b

) − uS (
y(â2, â1), â1, b

)
. In the following part, s · α(â1) denotes R’s

payment, w∗(â1), which holds for equation (32). Inequality (35) can be simplified into
s/r ≤ V(â1)/α(â1). It is obvious that V(â1)/α(â1) is continuous in â1 ∈ (a1, 1], and

V(1)
α(1)

=
EUR

CS,ñ − EUR
CS,ui

uS(y∗(1), 1, b) − uS(y(ã1, 1), 1, b)
> 0.

Therefore, if s/r < η(b) ≡ V(1)/α(1), then {â1 ∈ (a1, 1) : s/r ≤ V(â1)/α(â1)} , ∅. This
outcome implies that if s/r < η(b), there exists a non-empty set {â1 ∈ (a1, 1) : s/r ≤
V(â1)/α(â1)} such that ((σ̂, ρ̂), f̂ ) constitutes an (ñ + 1)-element partition equilibrium
when â1 ∈ {â1 ∈ (a1, 1) : s/r ≤ V(â1)/α(â1)}. ^

Remark 3. Since V(â1)/α(â1) > 0 for â1 ∈ (a1, 1] and V(â1)/α(â1) is continuous in â1 ∈
(a1, 1], there exists z ∈ (a1, 1) such that s/r ≤ V(â1)/α(â1) holds for any â1 ∈ (z, 1). Let
a1(s/r) be the infimum value of z. Then, the value of a1(s/r) is strictly decreasing and
goes to a1 as s/r goes to 0.

Appendix 5.B Proof of Proposition 14

First, I show the following Lemma 6.

Lemma 6. Fix b > 0 and suppose that ñ ≥ 2. If s/r < η(b), there exists a (ñ + 1)-element
partition equilibrium ((σ̂, ρ̂), f̂ ) such that S always strictly prefers ((σ̂, ρ̂), f̂ ) to any equilibrium
in the one-shot cheap talk game.

Proof of Lemma 6. Now, I denote by EUS
CS the ex ante expected payoff of S under the ñ-

element partition equilibrium with {ãñ, . . . , ã0} in the one-shot cheap talk game. I denote
by EÛS(x) the ex ante expected payoffof S under the (ñ+1)-element partition equilibrium
((σ̂, ρ̂), f̂ ) with (ñ+ 1)-element partition: {[âx

ñ+1, â
x
ñ), . . . [âx

1, â
x
0]}where âx

1 ≡ x ∈ (a1(s/r), 1).
In the one-shot cheap talk game, under Condition M, S always strictly prefers ex

ante ñ-element partition equilibrium to any other equilibria. I have

EUS
CS = s

ñ∑
i=1

∫ ãi−1

ãi

uS(y(ãi, ãi−1), θ, b)g(θ)dθ.
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By Proposition 13, it must be satisfied that s/r < η(b) in order for an equilibrium
((σ̂, ρ̂), f̂ ) to exist. Therefore, in what follows, I suppose that s/r < η(b).

The ex ante expected payoff of S under ((σ̂, ρ̂), f̂ ) is

EÛS(x) = s

 ñ+1∑
i=1

∫ âx
i−1

âx
i

uS(y(âx
i , â

x
i−1), θ, b)g(θ)dθ + G(x) · α(x)

 .
Recall that s · α(x) ≡ w∗(x) = s · uS (

y(x, 1), x, b
) − s · uS

(
y(âx

2, x), x, b
)

is positive for
x > a1, and s · α(x) is continuous in x > a1.

Let ∆(x) denote EÛS(x) − EUS
CS. Since limx↑1 ∆(x) = α(1) > 0 and ∆(x) is continuous

in x ∈ (a1, 1], there exists d < 1 such that d ≥ a1(s/r) and

∆(x) > 0 for all x ∈ (d, 1) .

This completes the proof of Lemma 6. □

Remark 4. Define d(s/r) ≡ inf{d : d ≥ a1(s/r) and ∆(x) > 0 for all x ∈ (d, 1)}. Since a1(s/r)
is decreasing as s/r is decreasing and∆(x) does not depend on both s and r, the following
is satisfied: d(s/r) is decreasing (but not always strictly decreasing) as s/r is decreasing.

Next, I show the following Lemma 7.

Lemma 7. Fix b > 0 and suppose that ñ ≥ 2. Then, there exists a positive value η(b) such that
if s/r < η(b), there exists x ∈ (a1(s/r), 1) such that

EÛR(x) > EUR
CS.

Intuitively, R seems to prefer the (ñ + 1)-element partition with {âx
ñ+1, . . . , â

x
0} to the

ñ-element partition with {ãñ, . . . , ã0} since the former has more steps than the latter. As
I earlier show, if Condition C holds, then there exists x < 1 such that Ŵ(x) > EUR

CS. Fix
x, then Ŵ(x)−EUR

CS is increasing in r. Moreover, since w∗ is decreasing and goes to 0 as
s goes to 0, the expected payment E[w∗] is also decreasing and goes to 0 as s goes to 0.
Thus, if r is large enough relative to s, then there exists x such that EÛR(x) > EUR

CS.

Proof of Lemma 7. In common with the proof of Lemma 6, I suppose that s/r < η(b).
Let δ(x, s, r) denote {EÛR(x) − EUR

CS}/r. I obtain

δ(x, s, r) = Ŵ(x) − s
r
G(x) · α(x) −

ñ∑
i=1

∫ ãi−1

ãi

uR(y(ãi, ãi−1), θ)g(θ)dθ.

δ(x, s, r) > 0 holds if and only if

η(b, x) ≡
Ŵ(x) −∑ñ

i=1

∫ ãi−1

ãi
uR(y(ãi, ãi−1), θ)g(θ)dθ

G(x) · α(x)
>

s
r
.

Since x belongs to (a1(s/r), 1) and infx∈(a1(s/r),1) G(x)α(x) > 0, η(b, x) has a least upper
bound η(b|s/r) = supx∈(a1(s/r),1) η(b, x). Under Condition C, η(b, x) > 0 for some x ∈
(a1(s/r), 1). This implies that η(b|s/r) > 0. Moreover, since a1(s/r) is not increasing as
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s/r is decreasing, η(b|s/r) is not decreasing as s/r is decreasing. Therefore, I can take a
supremum of the value of s/r, which satisfies η(b|s/r) > s/r. I denote this supremum by
η(b). Note that η(b) < +∞, since Ŵ(x) −∑ñ

i=1

∫ ãi−1

ãi
uR(y(ãi, ãi−1), θ)g(θ)dθ < +∞ for any

x ∈ (a1, 1). This completes the proof of Lemma 7. □

Remark 5. Suppose that x almost equal to 1. Then, the partition under the (ñ + 1)-
element partition equilibrium almost coincides with the partition under the ñ-element
partition equilibrium in the one-shot cheap talk game. Nevertheless, the expected
payment of monetary transfer is high (almost coincides with sα(1)). Therefore, if
s/r < η(b), there always exists a (ñ+1)-element partition equilibrium that is unfavorable
to R. This means that there always exists x ≈ 1 such that EÛR(x) < EUR

CS.

Finally, I complete the proof of Proposition 14 by demonstrating that if r is large
enough relative to s, then I can take x ∈ (a1(s/r), 1) such that

EÛR(x) > EUR
CS and EÛS(x) > EUS

CS.

Pproof of Proposition 14 Suppose that s′′/r′′ < s′/r′ < η(b). In the proof of Lemma 7,
I show that {x ∈ (a1(s′/r′), 1) : δ(x, s′, r′) > 0} , ∅ and {x ∈ (a1(s′′/r′′), 1) : δ(x, s′′, r′′) >
0} , ∅. Since a1(s/r) is decreasing as s/r is decreasing,

{x ∈ (a1(s′/r′), 1) : δ(x, s′, r′) > 0} ⊂ {x ∈ (a1(s′′/r′′), 1) : δ(x, s′′, r′′) > 0}.

Moreover, since dŴ
dx

∣∣∣∣
x=1

< 0, dη
dx

∣∣∣∣
x=1

< 0. Furthermore, η(b, 1) = 0 andη(b, x) is continuous
in x ∈ (a1, 1). Therefore, I obtain

lim
s/r↓0

sup{x ∈ (a1(s/r), 1) : δ(x, s, r) > 0} = 1.

Since∆(x) > 0 for x ∈ (d(s/r), 1) and d(s/r) is not increasing as s/r is decreasing, there
exists η̃(b) such that if s/r < η̃(b), then {x ∈ (a1(s/r), 1) : δ(x, s, r) > 0} ∩ (d(s/r), 1) , ∅.
This completes the proof of Proposition 14. ^

Appendix 5.C Condition C

Suppose that s · uS(y, θ, b) ≡ −s(y − (θ + b))2, r · uR(y, θ) ≡ −r(y − θ)2, and G(θ) is
uniform distribution over [0, 1]. In this case, the boundaries of the partition induced
from ((σ̂, ρ̂), f̂ ) are given by

âx
i =


1 for i = 0,

x for i = 1,
ñ+1−i

ñ x − 2b(ñ + 1 − i)(i − 1) for i = 2, . . . , ñ,

0 for i = ñ + 1.

Proposition 13 shows that for ñ ≥ 2, there exists η(b) such that if s/r < η(b), then ((σ̂, ρ̂), f̂ )
constitutes an equilibrium whose partition is induced by âx

i where x ∈ (a1(s/r), 1). Note
that y(âx

i+1, â
x
i ) = (âx

i+1 + âx
i )/2 for i = 0, . . . , ñ.
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The envelope theorem yields

d
dx

Ŵ(x) =
ñ∑

i=1

g(âx
i )

dâx
i

dx
[uR(y(âx

i+1, â
x
i ), âx

i ) − uR(y(âx
i , â

x
i−1), âx

i )].

Since limx↑1 âx
i = ãi−1, I obtain

dŴ
dx

∣∣∣∣∣∣
x=1

=

ñ−1∑
j=1

g(ã j)[uR(y(ã j+1, ã j), ã j) − uR(y(ã j, ã j−1), ã j)]
dâx

j+1

dx

∣∣∣∣∣∣∣
x=1

+g(ã0)[uR(y(ã1, ã0), ã0) − uR(yR(ã0), ã0)]
dâx

1

dx

∣∣∣∣∣∣
x=1

.

Therefore, I obtain

dŴ
dx

∣∣∣∣∣∣
x=1
=

ñ−1∑
j=1

− (
ã j+1 − ã j

2

)2

+

(−ã j + ã j−1

2

)2 ñ − j
ñ
−

(1 − ã1

2

)2
.

Since ã j =
ñ− j

ñ − 2bj(ñ − j),

−
(

ã j+1 − ã j

2

)2

+

(−ã j + ã j−1

2

)2

> 0 for j = 1, . . . , ñ − 1.

Moreover,

ñ−1∑
j=1

− (
ã j+1 − ã j

2

)2

+

(−ã j + ã j−1

2

)2 ñ − j
ñ

<
ñ−1∑
j=1

− (
ã j+1 − ã j

2

)2

+

(−ã j + ã j−1

2

)2
<

(1 − ã1

2

)2
.

This establishes dŴ
dx

∣∣∣∣
x=1

< 0.

Remark 6. Suppose that s · uS(y, θ, b) ≡ −s(y − (θ + b))2, r · uR(y, θ) ≡ −r(y − θ)2, and
G(θ) is a distribution over [0, 1] with a density g(θ) = −2θ + 2. By Theorem 2 in CS,
any solution to (1) satisfies Condition M. By Condition M and uS

13(y, θ, b) > 0, I obtain
dâx

i /dx > 0 and

uR(y(ã j+1, ã j), ã j) − uR(y(ã j, ã j−1), ã j) ≥ uS(y(ã j+1, ã j), ã j, b) − uS(y(ã j, ã j−1), ã j, b) ≥ 0.

Since g(1) = 0, this means that dŴ
dx

∣∣∣∣
x=1

> 0.
The implication of this result is as follows. Let {[0, a), [a, 1)} be a 2-element equi-

librium partition under this setting. Take x ∈ (a, 1) and w∗(x) such that the 3-element
partition {[0, ax), [ax, x), [x, 1]} holds S’s incentive compatibility condition. Then, I ob-
tain x − ax > 1 − a for x ≈ 1. Namely, adding new interval [x, 1] distorts S’s incentive
significantly. Furthermore, the prior probability with which θ ∈ [x, 1] is almost equal
to 0. Hence, intuitively, the negative effect of the fact that the interval [x − ax) becomes
wider dominates the positive effect of adding a new interval.
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Appendix 5.D Proof of Proposition 15

Under the given strategy profile, If S reveals that θ < x in the first period, R pays
w̃(x) = s · uS(y(x, 1), x, b) − s · uS(y(ãx

2, x), x, b). Since each element of the boundaries
{ãx

ñ, . . . , ã
x
0} is continuous in x and converges to a corresponding element of {ãñ, . . . , ã0}

as x goes to 0, I must have w̃(ã1) = 0.
Let

{
[ãñ−1

ñ−1, ã
ñ−1
ñ−2), . . . , [ãñ−1

1 , ãñ−1
0 )

}
be the equilibrium partition of (ñ − 1)-element par-

tition equilibrium in the one-shot cheap talk game. I obtain w̃(1) = s · uS(yR(1), 1, b)− s ·
uS(y(ãñ−1

1 , 1), 1, b). Note that w̃(1) > 0 since uS
11(y, θ, b) < 0 and y(ã1, 1) < yR(1) < yS(1, b).

Condition M requires the uniqueness of the solution to the deference equation in Sec-
tion 3.1. The necessary payment w̃(x) is strictly positive in x ∈ (ã1, 1).

The following inequality must hold for R’s payment w̃(x) to be optimal.

r
G(x)

ñ−1∑
i=1

∫ ãx
i

ãx
i+1

uR(y(ãi+1, ãi), θ)g(θ)dθ − r
G(x)

∫ x

0
uR (

y(0, x), θ
)

g(θ)dθ ≥ w̃(x) (36)

The left-hand side of (36) is strictly positive when ñ ≥ 3 and x > ã1. Recall that
w̃(x) ≡ s·α̃(x, b) = s·uS(y(x, 1), x, b)−s·uS(y(ãx

2, x), x, b) > 0 for any x ∈ (ã1, 1). Summarizing
the above, I conclude that for any x ∈ (ã1, 1), there exists η̈(b, x) such that if s/r < η̈(b, x),
the given strategy profile constitutes a ñ-element partition equilibrium.

The players’ equilibrium payoffs are given as follows:

EŨR(x) = rW̃R(x) − s · α̃(x, b),

where W̃R(x) =
∑ñ

i=1

∫ ãx
i−1

ãx
i

uR(y(ãx
i , ã

x
i−1), θ)g(θ)dθ, and

EŨS(x) = sW̃S(x) + s · α̃(x, b),

where W̃S(x) = s
∑ñ

i=1

∫ ãx
i−1

ãx
i

uS(y(ãx
i , ã

x
i−1), θ)g(θ)dθ. By the definition of W̃R(x) and W̃S(x),

W̃R(ã1) = EUR
CS and W̃S(ã1) = EUS

CS, respectively.

Now I ensure that if Condition M holds, dW̃κ

dx

∣∣∣∣
x=ã1

> 0 for κ ∈ {R,S}. The envelope

theorem yields

d
dx

W̃R(x) =
ñ−1∑
i=1

g(ãx
i )

dãx
i

dx
[uR(y(ãx

i+1, ã
x
i ), ãx

i ) − uR(y(ãx
i , ã

x
i−1), ãx

i )],

dW̃R

dx

∣∣∣∣∣∣
x=ã1

=

ñ−1∑
i=1

g(ãi)[uR(y(ãi+1, ãi), ãi) − uR(y(ãi, ãi−1), ãi)]
dãx

i

dx

∣∣∣∣∣∣
x=ã1

.

Condition M guarantees that dax
i /dx > 0 for i ∈ {1, . . . , ñ − 1}, and

uR(y(ãi+1, ãi), ãi) − uR(y(ãi, ãi−1), ãi)

> uS(y(ãi+1, ãi), ãi) − uS(y(ãi, ãi−1), ãi) = 0
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The first inequality holds since y(ãi+1, ãi) < y(ãi, ãi−1), ∂2uS

∂y∂b

∣∣∣∣
b=0

> 0, and uR(y, θ) =

uS(y, θ, 0). The second equality holds since ãi is a solution of the deference equation in
Section 3.1.

The total derivative of W̃S(x) is

d
dx

W̃R(x) =
ñ−1∑
i=1

g(ãx
i )

dãx
i

dx
[us(y(ãx

i+1, ã
x
i ), ãx

i ) − us(y(ãx
i , ã

x
i−1), ãx

i )]

+

ñ−1∑
i=0

dy(ãx
i+1, ã

x
i )

dx

∫ ãx
i

ãx
i+1

[
uS

1(y(ãx
i+1, ã

x
i ), θ, b)g(θ)dθ

]
.

Since ãi is a solution of the deference equation in Section 3.1, the first term is equal to 0
at x = ã1. Hence,

dW̃S

dx

∣∣∣∣∣∣
x=ã1

= +

ñ−1∑
i=0

∫ ãi

ãi+1

uS
1(y(ãi+1, ãi), θ, b)g(θ)dθ

dy(ãx
i+1, ã

x
i )

dx

∣∣∣∣∣∣
x=ã1

 .
Condition M guarantees that

dy(ãx
i+1,ã

x
i )

dx

∣∣∣∣
x=ã1

> 0. Since, moreover, I assume that uS
13(y, θ, b) >

0, I obtain dW̃S

dx

∣∣∣∣
x=ã1

> 0.

I have already shown that s · α̃(x, b) > 0 for x ∈ (ã1, 1). Hence, these results conclude
that there exists η̈(b) such that for κ ∈ {R, S}, EŨκ(x) > EUκ

CS holds for some x ∈ (ã1, 1).
^
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