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1 Introduction

When a firm launches new products and/or services in a market, determining the product

characteristics is one of its important decisions. For example, a fast food chain operator

opening a new restaurant needs to decide its location considering the demand in the area

as well as the competition with other firms. Another example is a manufacturing company

that considers what kind of products to develop taking into account the future demand.

In the marketing literature, several studies such as Bronnenberg and Mahajan (2001), and

Cleeren et al. (2010) show that product positions greatly influence the pricing decisions

of retailing and marketing firms.

Because of the importance of product positioning, many theoretical studies investi-

gate the factors determining the product positions of firms in various contexts by using

the Hotelling linear city models. These studies include d’Aspremont et al. (1979), Fried-

man and Thisse (1993), Tabuchi and Thisse (1995), Kim and Serfes (2006), Matsushima

(2009), and Lai and Tabuchi (2012).1 Although the existing studies offer many interest-

ing insights, they are derived using static or discrete-time models with only a few periods

because consumers purchase products at most several times, implying robust results over

the markets where the demand is quite stable for a long time. However, if we consider

the consumers’ repeated purchases in growing or changing markets, entry timing is an

important strategic decision for firms.

In actual situations, the uncertainty of future demand of products affect the decisions

on location, product positioning, entry timing, and so on. Uncertainty is especially im-

portant for firms facing competition because the strategies of entry timing and product

positioning may have a bigger and mutual impact on the strategies of other firms without

uncertainty. In summary, a firm needs to take uncertainty and competition into account

1 Several empirical studies also investigate the problems of positioning (e.g., Thomadsen, 2007; Hwang
et al., 2010).
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when deciding on product positioning and entry timing.2

Recently, Huisman and Kort (2015) studied the problem where two asymmetric firms

choose not only their investment timing but also their production capacity at investment.

Market size is a state variable and follows a geometric Brownian motion as in the real

options literature.3 Huisman and Kort (2015) is novel in that two symmetric firms op-

timally choose two strategic variables. This approach can be applied to many industrial

organization (hereafter IO for short) problems.4 They find that the leader firm overin-

vests in capacity to deter the entry of the follower and that greater uncertainty makes

entry deterrence more likely. From their article, uncertainty is of great importance for the

decision making of firms facing competition, and that the multiple dimension of decision

making may lead to different results compared to a single-dimension case.

In the IO literature, Ebina et al. (2015) extend Lambertini (2002) to study the entry

timing of firms facing competition. They construct a continuous-time spatial competition

model a la d’Aspremont et al. (1979). In the model, two firms optimally determine their

locations and prices as well as the follower’s entry timing, but the leader’s entry time

is exogenously fixed as in Lambertini (2002). The main finding of the study is that the

leader has an incentive to locate close to the center to delay the follower’s entry, leading to

a non-maximum outcome from the viewpoint of social welfare. The study also sheds light

on the importance of multiple dimensions for the firm’s decision-making. It is noteworthy

that the demand for the product grows at a constant rate, indicating no uncertainty in

their model.

In this article, we investigate the entry decisions of firms that endogenously determine

their product positions in a market whose size is evolving stochastically. To this end, we

2 In the context of spatial competition with sequential entry, Neven (1987) and Bonanno (1987) are
the pioneering works, which have been extended to several directions (e.g., Loertscher and Muehlheusser,
2011).

3A good survey is presented by Chevalier-Roignant et al. (2011)
4 Nielsen (2002), Weeds (2002), Huisman and Kort (2003), and Pawlina and Kort (2006) study the

IO problems within a real options framework, but with firms choosing only their timing in the models.
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substantially extend Ebina et al. (2015), which does not assume uncertainty on the growth

path. Furthermore, we endogenize the leader’s entry timing; this is also a significant

extension of Ebina et al. (2015). We describe uncertainty as the product demand following

a geometric Brownian motion, as in Pawlina and Kort (2006) and Huisman and Kort

(2015). By doing so, we can analyze the effect of uncertainty on the two firms’ entry

timing and location strategies in a Hotelling model. Finally, for welfare analysis, we

consider a situation in which a social planner locates two firms sequentially, whereas they

compete and optimally set their prices to maximize their own profits after entry. Thus,

we obtain implications from the viewpoint of social welfare by comparing the outcomes

of the subgame perfect Nash equilibrium (hereafter SPNE) with those of social optimum

for the planner.

The major findings of the study are as follows. First, the entry threshold of the follower

firm is not monotonic in the volatility of the state variable. In the real options literature,

the threshold is always an increasing function of volatility, irrespective of whether the firm

is a leader or a follower if there is a negative externality.5 To the authors’ best knowledge,

this article is the first to show that greater uncertainty can lead to early entry of the

follower firm in some cases. This finding indicates the importance of multiple dimensions

for decision making. We also present some intuitive remarks on why non-monotonicity

occurs.

Second, the leader firm optimally chooses the center as its location in case of low

volatility, and the edge in case of high volatility. In addition, in case of high volatility,

the delay of the follower’s entry occurs in accordance with the maximum differentiation

by the leader, contrasting with the standard intuition in which the leader’s maximum

differentiation induces the follower to enter earlier (e.g., Ebina et al., 2015). This is quite

surprising in the context of spatial competition. Our paper is the first study to construct

5Mason and Weeds (2010) show that the threshold of a leader is non-monotonic if there is a positive
externality. However, under the assumption of a negative externality, the thresholds of the leader and
the follower are increasing in the volatility.
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a model in which demand evolves stochastically forever, and to examine the effect of

uncertainty on locations within a continuous-time setting where both firms dynamically

optimize their objectives.6

Third, using welfare analysis, we numerically find that the social planner sets the

leader’s and follower’s thresholds much lower and higher, respectively, than the sequen-

tial equilibrium in an autonomous economy. This finding indicates that the time interval

between the two firms’ optimal entry timings is narrower than that chosen by the so-

cial planner. Moreover, increasing uncertainty causes completely different effects on the

locations and investment thresholds in an autonomous economy as well as in the social

planner’s choice. Thus, we conclude that uncertainty in the market may lead to a large

social loss and that a policy might be needed from the viewpoint of welfare.

In summary, the analysis shows that multiple dimensions of strategies complicate the

problem and may give different results from those in a single-dimension case, as shown in

the real options literature.

The remaining part of the article is organized as follows. Section 2 sets up our model

and formulates our problem. Section 3 derives the optimal timing and location of the

follower firm. In Section 4, we first categorize the equilibrium type and then derive

the optimal timing and location of the follower firm in a sequential equilibrium. We

implement numerical calculations to examine how the leader’s entry threshold and location

are affected by exogenous parameters in Section 5. We also conduct welfare analysis and

examine how social surplus is lost in an autonomous economy with two asymmetric firms

in Section 6. Finally, some concluding remarks are presented in Section 7.

6 In static frameworks, several studies investigate how uncertainty affects the optimal locations in the
IO literature (e.g., Christou and Vettas, 2005; Meagher and Zauner, 2004).
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2 The Model

In this section, we construct our model based on Ebina et al. (2015) and introduce un-

certainty into it as in Pawlina and Kort (2006).

Two firms, indexed by i ∈ {1, 2}, produce homogeneous goods. Consumers are uni-

formly distributed over the unit segment [0, 1], as proposed by Hotelling (1929).7 The

density of consumer distribution at time t is Yt, which stochastically changes as explained

later. Each consumer is indexed by x ∈ [0, 1] and repeatedly purchases at each instance

[t, t + dt) at most one unit of the good. He chooses the firm to purchase from when he

actually decides to purchase.8 The consumption of a unit of the good entails a positive

utility. On the other hand, the consumer at point x ∈ [0, 1] incurs a quadratic transporta-

tion cost c(xi − x)2 and the price pit at time t ∈ [0,∞) when buying a good from firm

i located at xi ∈ [0, 1]. To summarize, the utility of the consumer at point x ∈ [0, 1] at

time t ∈ [0,∞) is given by

ut(x;x1, x2, p1t, p2t) =


ū− p1t − c(x1 − x)2 if purchased from firm 1,

ū− p2t − c(x2 − x)2 if purchased from firm 2,

0 otherwise,

(1)

where ū denotes the gross surplus each consumer enjoys from purchasing the good and c

is a parameter describing the level of transportation cost or product differentiation. The

following assumption can make the equilibrium meaningful.9

Assumption 1. (i) ū > 3c. (ii) c ≥ 1.

Now, we introduce uncertainty into our market model. The density of consumer

distribution, or the market size Yt, is dynamically stochastic. We impose the following

assumption on Y .

7 This setting and the following assumptions are standard in the literature on spatial economics.
8 In equilibrium, all consumers purchase a unit of the product at all times, according to Assumption

1 presented below.
9 Assumption 1 guarantees that at least one of the two firms has an incentive to supply a positive

amount of goods after maximizing its profit wherever it is located.
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Assumption 2. Process Y follows a geometric Brownian motion as

dYt = αYtdt+ σYtdWt,

where α is the expected growth rate, σ is the market volatility, and {Wt}t≥0 is a standard

Brownian motion. The initial value of the state process, Y0 ≡ y0, is sufficiently low.

Assumption 2 states that the future profit flow of each firm is uncertain and follows a

geometric Brownian motion.10 The assumption on the initial value y0 is standard in the

real options literature, and means that the market is too small and that neither firm has

made an entry into the market at the initial time.

The game in this article proceeds as follows. Firm i chooses the time of entry Ti ∈

[0,∞) and the location xi ∈ [0, 1] simultaneously. The entry incurs an irreversible cost

Fi at Ti. Existing firm(s) simultaneously choose the price pit at each time t, observing all

available information such as the realization of Y and their location(s) xi. Although firm

i can vary the price pit at any time, its location is fixed forever after the determination of

xi. We consider the Nash equilibrium in which firm i maximizes its present value of cash

flows with respect to (Ti, xi, {pit}t≥Ti
) given the other firm’s strategy.

We present the following assumptions for the entry cost Fi.

Assumption 3. F1 = F < κF = F2, where κ > 1.

Assumption 3 states that firm 1 has an advantage in the entry cost over firm 2.

Because asymmetry occurs only in the cost, we conjecture that firm 1 is always the leader

for market entry in our model. Superscripts ℓ and f represent the leader and the follower,

respectively.

Now, let us describe the present value of the firms at time t ∈ [0,∞) given that firm

j enters the market at point xj at time t = Tj. Here, T
ℓ
i denotes the entry time of firm i

10 Exponential market growth is seen to be valid in many industries; for example, see Lages and
Fernandes (2005) on telecommunication services, Victor and Ausubel (2002) on DRAM, and Vakratsas
and Kolsarici (2008) on pharmaceuticals.
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when it is the leader, and T f
j denotes that of firm j when it is the follower. As the model

is time-homogeneous, the optimal entry time is expressed as the first hitting time; that

is,

Ti(y
ℓ
i ) = inf{t ≥ 0;Yt ≥ yℓi} and Tj(y

f
j ) = inf{t ≥ 0;Yt ≥ yfj },

where yℓi and y
f
j are the thresholds of the leader and the follower, respectively.

Let x̄ ∈ [0, 1] be a point at which the consumer is indifferent between purchasing from

firm 1 and purchasing from 2. We can easily verify from (1) that

x̄ =
p2t − p1t + c(x22 − x21)

2c(x2 − x1)
, (2)

which indicates that the optimal price of each firm depends on the locations of both firms

(x1, x2). Therefore, the value function of firm j at time t when it is the follower is written

with discount rate r as

V f
j (y; y

f
j , x

ℓ
i , x

f
j , p

ℓ
it, p

f
jt) = Ey

[∫ ∞

Tj(y
f
j )

e−r(s−t)Ys

∫ 1

x̄

pfjsdxds− e−r(Tj(y
f
j )−t)Fj

]
, (3)

where Ey denotes the expectation operator conditional on Yt = y. We assume that r > α

to ensure finiteness of the value function.11

On the other hand, the value function of firm i as the leader, denoted by V ℓ
i , is

expressed as

V ℓ
i (y; y

ℓ
i , y

f
j , x

ℓ
i , x

f
j , p

ℓ
it, p

f
jt)

= Ey

[∫ Tj(y
f
j )

Ti(yℓi )

e−r(s−t)Ys

∫ 1

0

pℓitdxds+

∫ ∞

Tj(y
f
j )

e−r(s−t)Ys

∫ x̄

0

pℓitdxds− e−r(Ti(y
ℓ
i )−t)Fi

]
.

(4)

The first term in the right-hand side of (4) describes the discounted cash flow whereas

firm i is the monopolist, and the second term is the discounted cash flow after the other

firm’s entry. More concretely, if firm i is the leader, it earns a monopoly profit flow for

t ∈ [Ti, Tj) and a duopoly profit flow for t ≥ Tj.

11 If r ≤ α, the integral of equation (3) diverges to positive infinity by choosing a larger time T2,
meaning that waiting for a longer time would always be a better strategy, and an optimal entry timing
would not exist.

8



3 Follower’s Value Functions

In this section, we derive the optimal price, location, and timing outcomes of the follower

firm. As in the literature, we implement backward induction for the derivation of the

solutions. First, given the locations x1 and x2, we consider the problem of optimal prices

at each time t before and after the entry of firm 2.

From (2), we can conclude that the uncertainty of Y does not affect the equilibrium

prices. Therefore, we obtain the following lemma, which describes the equilibrium prices

of both firms. We omit the proof because the derivation is exactly the same as for Lemma

1 of Ebina et al. (2015).

Lemma 1. The prices set by the leader firm i and the follower firm j(̸= i) are, respectively,

p̂ℓit =

{
pMi (xi) = ū− c(1− xi)

2, t ∈ [Ti, Tj),

pDℓ
i (xi, xj) =

c
3
(xj − xi)(2 + xi + xj), t ∈ [Tj,∞),

(5)

p̂fjt = pDf
j (xj, xi) =

c

3
(xj − xi)(4− xi − xj), t ∈ [Tj,∞). (6)

Suppose that firm i is the leader. Because the population of consumers on the unit

interval is symmetric at 1/2, we can assume xi ≤ 1/2 without loss of generality. Moreover,

firm i has monopolistic power over the price at t ∈ [Ti, Tj) such that all consumers purchase

its good. Then, the optimal price of firm i before the entry of firm j is the price at which

the consumer at location 1 is indifferent between purchasing and not purchasing the good.

The optimal monopolistic price pMi in Lemma 1 satisfies this condition. The optimal price

for the duopoly pDi (i = 1, 2) is based on the standard calculation in the context of spatial

competition (e.g., d’Aspremont et al., 1979).

With the prices p̂ℓit and p̂
f
jt, the instantaneous profit flows of the two firms are expressed

9



as Ytπ
ℓ
it and Ytπ

f
jt, respectively, where

πℓ
it(xi, xj) =

{
πMℓ
i (xi) = ū− c(1− xi)

2, t ∈ [Ti, Tj),

πDℓ
i (xi, xj) =

c
18
(xj − xi)(2 + xi + xj)

2, t ∈ [Tj,∞),
(7)

πf
jt(xi, xj) =

{
0, t ∈ [0, Tj),

πDf
j (xi, xj) =

c
18
(xj − xi)(4− xi − xj)

2, t ∈ [Tj,∞)
(8)

as x̄ = (2 + x1 + x2)/6 in equilibrium.

Suppose that the current time is 0 and firm i enters the market. The net present

values of firm i when it is the leader and when it is the follower, including the option

value of the future profit flows, are expressed as, respectively,

V ℓ
i (y; y

f
j , xi, xj) = Ey

[∫ Tj(y
f
j )

t

e−r(s−t)πMℓ
i (xi)Ysds+

∫ ∞

Tj(y
f
j )

e−r(s−t)πDℓ
i (xi, xj)Ysds− Fi

]
(9)

and

V f
j (y; y

f
j , xi, xj) = Ey

[∫ ∞

Tj(y
f
j )

e−r(s−t)πDf
j (xi, xj)Ysds− e−r(Tj(y

f
j )−t)Fj

]
. (10)

3.1 Optimal location and entry threshold

First, we consider the problem of the follower relating to when it enters and where it

locates in the market. We assume that firm i is the leader and has already invested and

located at xi ∈ [0, 1/2]. We write the value function of the follower as

V̂ f
j (y; y

ℓ
i , xi) = max

yfj ,xj

V f
j (y; y

f
j , xi, xj).

Note that the function V̂ f
j depends on the other firm’s location as the instantaneous

profit flow πDf
j depends on xi. This implies that the pair of optimal strategies (yfj , xj)

also depends on xi. However, with regard to the location of the follower firm j, we have

the following lemma.

Lemma 2. In equilibrium, the follower firm j always locates at xfj = 1.
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Proof. Suppose that Yt = yfj . From (8) and (10), by differentiating V f
j with respect to

xj, we have

∂V f
j

∂xj
(y; yfj , xi, xj)

∣∣∣∣∣
y=yjf

=
1

r − α

c

18
(4 + x1 − 3x2)(4− x1 − x2),

which is positive for any (xi, xj) ∈ [0, 1]2 when r − α > 0 and c > 0. Thus, the optimal

location of firm j should be xfj = 1 when it is the follower.

Once the optimal location is obtained, the optimal timing can easily be derived as in

the following lemma. We omit the proof because it is an easy exercise.

Lemma 3. The value function of firm j as the follower is given by

V̂ f
j (y; xi) =


(

yfj (xi)π
Df
j (xi,1)

r−α
− Fj

)(
y

yfj (xi)

)β

, if y < yfj (xi),

yπDf
j (xi,1)

r−α
− Fj, if y ≥ yfj (xi),

where

β =
1

2
− α

σ2
+

√(
1

2
− α

σ2

)2

+
2r

σ2
,

and the investment threshold of the follower is

yfj (xi) =
β

β − 1

(r − α)

πDf
j (xi, 1)

Fj. (11)

From Lemma 2, the follower firm always locates as far away from the location of the

leader as possible when entering the market. This replicates the results of Lambertini

(2002) and Ebina et al. (2015) and seems to be robust to the endogeneity of the follower’s

entry timing under uncertainty.

From (11), we easily obtain the following corollary:

Corollary 1. If x1 is increased, the optimal threshold for the follower to enter yf2 (x1) is

increased.
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The corollary shows that the leader can obstruct the follower’s entry by choosing its

location close to 1/2. On the other hand, setting xi close to 1/2 can induce tougher price

competition after the follower’s entry. The leader firm faces the trade-off between the two

with regard to location.

4 Leader’s Strategy and Equilibria

In this section, we derive the outcome of subgame Nash equilibrium. We face two diffi-

culties when deriving the equilibria, compared to the process used in Pawlina and Kort

(2006). The first difficulty arises because the value functions of our model are determined

by the firms’ entry timings as well as location choices, but in the previous study, these

functions are determined by only their entry timings. Thus, the location choice in our

model entails complexity, making it difficult to derive an equilibrium.

The second difficulty arises from the asymmetry of the firms’ profits. Because the firms’

location choices may not be symmetric on the Hotelling interval [0, 1], the profits πDl
i (xi, 1)

and πDf
j (xi, 1) may have different values, leading to a situation where an equilibrium

becomes more complicated to derive.

To derive an equilibrium, we need to consider the leader’s optimization problem given

the follower’s strategy. Suppose that firm i immediately enters the market with location

xi. Given the other firm’s strategy (yj, xj) = (yfj (xi), 1), the present value of the leader

firm i (9) is

V ℓ
i (y; y

f
j (xi), xi, 1) =


yπM

i (xi)

r−α
− Fi −

yfj (π
M
i (xi)−πDℓ

i (xi,1))

r−α

(
y

yfj (xi)

)β

for y ≤ yfj (xi),

yπDℓ
i (xi,1)

r−α
− Fi for y > yfj (xi).

(12)

The firm chooses its location xi such that (12) is maximized. Thus, we write

Ṽ ℓ
i (y) = max

xi∈[0,1/2]
V ℓ
i (y; y

f
j (xi), xi, 1) and x̃ℓi(y) = argmax

xi∈[0,1/2]
V ℓ
i (y; y

f
j (xi), xi, 1). (13)

Now, we investigate the outcome of the SPNE. Following Pawlina and Kort (2006),

three types of equilibria occur: preemptive, sequential, and simultaneous. The leader’s
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location choice and threshold are key to investigate the equilibrium, because the follower’s

strategy for location and entry timing is dominant in that the follower chooses its location

xj = 1 and threshold yfj after the leader enters the market.

4.1 Simultaneous equilibrium

First, we consider a simultaneous equilibrium and show that it cannot occur.

Lemma 4. A simultaneous equilibrium cannot occur as an outcome of SPNE.

Proof. Proposition 3 in Pawlina and Kort (2006) presents the condition for a simultaneous

equilibrium to occur. According to the proposition, the parameter κ that determines the

type of equilibrium should be smaller than some threshold κ∗∗. In our setting, we can

easily show that κ∗∗ = 1 and κ > 1, thus completing the proof.

Intuitively, when there is no cash flow in advance of the entry, the two firms have

no incentive to coordinate under cost asymmetry, and hence a simultaneous equilibrium

cannot occur.

4.2 Preemptive equilibrium

Second, we consider the second type of equilibrium, preemption equilibrium. Pawlina and

Kort (2006) define a preemptive equilibrium as the situation in which firm 2, which is

disadvantaged in an investment cost, has an incentive to become the leader. In this case,

firm 1 needs to note that firm 2 would enter the market before the state variable Y for

firm 1 reaches the optimal threshold.

Let yP21(x1) be the lowest level of the state variable y for which firm 2 is indifferent

between being the leader and being the follower, given firm 1’s location x1. Formally,

yPij(xj) is the smallest solution to ξi(y; xj) = 0, where ξi(y;xj) is defined as

ξi(y;xj) ≡ Ṽ ℓ
i (y)− V̂ f

i (y; xj), (14)
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and Ṽ ℓ
i (y) and V̂

f
i are given by equations (13) and (10), respectively. Intuitively, a positive

ξi indicates that firm i prefers immediate entry as the leader to waiting to be the follower.

Note that ξi is already maximized with respect to its location xi, but this depends on the

other firm’s location xj.

Now, suppose that yP21(x̃
ℓ
1(y

Sℓ
1 )) < ySℓ1 , where

ySℓ1 = argmax
y1

Ey

[
e−r(T1(y1)−t)Ṽ ℓ

1 (y1)
]
.

For yP21(x̃
ℓ
1(y

Sℓ
1 )) ≤ y < ySℓ1 , firm 1 should take one of the following two actions to deter

the other firm’s entry: (i) immediate investment, or (ii) change of location x1. If firm 1

chooses an immediate investment, the location should be maximized at yP21(x̃
ℓ
1(y

Sℓ
1 )), such

that x1 can be expressed as

x̃ℓ1(y
P
21(x̃

ℓ
1(y

Sℓ
1 ))). (15)

On the other hand, firm 1 can change the location x1 to hinder the entry of firm 2. As

Corollary 1 shows, location x1 should be increased. Therefore, firm 1 actually changes

the location until the following inequality holds for x1 ̸= 0:

∂

∂x1
Ey

[
e−r(T1(yP21(x1))−t)Ṽ ℓ

1 (y
P
21(x1))

]
< 0.

From the above observation, a preemptive equilibrium is rather complicated and seems

hard to solve, even numerically. For example, x̃ℓ1 in (15) is solved through the maximiza-

tion (13) and non-linear equation (14). One reason for the difficulty is that the payoff of

a Hotelling-type model is a cubic function with respect to the state variable.12 Hence, we

assume that only a sequential equilibrium can occur, and that a cost-advantaged firm can

optimally choose its entry timing and location given the other firm’s strategy. It is worth

arguing that our model is still applicable to many realistic situations, for example, to a

market where one firm has a large cost advantage over the other. Therefore, we impose

the following assumption to eliminate the possibility of a preemptive equilibrium.

12 On the contrary, Huisman and Kort (2015) assume a quadratic payoff function, which allows them
to explicitly solve a preemptive equilibrium.
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Assumption 4. The order of entries is exogenously determined. More concretely, firm

1 is always the leader, with firm 2 as the follower.

If the cost asymmetry is substantial, there is only a sequential equilibrium. Pawlina

and Kort (2006) show the necessary and sufficiently condition for Assumption 4.

4.3 Sequential equilibrium

Now, we consider the third type of equilibrium, sequential equilibrium. In the following,

we derive the optimal threshold for firm 1 as the leader under Assumption 4.

Let Ti denote the timing at which the leader, firm 1, enters when the state variable Y

first touches ȳℓ1,

T1(ȳ
ℓ
1) = inf{t ≥ 0;Yt = ȳℓ1}.

Then, the option value of the entry for y < ȳℓ1 with location x1 is given by

V̂ ℓ
1 (y;x1) = Ey

[
e−r(T1(ȳℓ1)−t)Ṽ ℓ

1 (ȳ
ℓ
1;x1)

]
=

(
πMℓ
1 (x1)ȳ

ℓ
1

r − α
− [πMℓ

1 (x1)− πDℓ
1 (x1, 1)]y

f
2 (x1)

r − α

(
ȳℓ1

yf2 (x1)

)β

− Fi

)(
y

ȳℓ1

)β

.

Thus, the threshold of firm 1 that maximizes the above expression with respect to ȳℓ1 is

ȳSℓ1 (x1) =
β

β − 1

r − α

πMℓ
1 (x1)

F1. (16)

Note that ȳSℓ1 (x1) does not explicitly depend on the other firm’s strategy (y2, x2). By

substituting ySℓ1 (x1) into the first line of (12), we have the value function of the leader at

the sequential equilibrium before deciding its location as follows:

V̂ ℓ
1 (x1) =V̂

ℓ
1 (ȳ

Sℓ
1 (x1); x1) =

πMℓ
1 (x1)ȳ

Sℓ
1

r − α
− [πMℓ

1 (x1)− πDℓ
1 (x1)]y

f
2 (x1)

r − α

(
ȳSℓ1

yf2 (x1)

)β

− F1

=
F1

β − 1
− β

β − 1

πMℓ
1 (x1)− πDℓ

1 (x1)

πDf
2 (x1)

(
πDf
2 (x1)

πMℓ
1 (x1)

F1

F2

)β

F2. (17)
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The optimal location for the leader firm is expressed as

xSℓ1 = argmax
x1∈[0,1/2]

V̂ ℓ
1 (x1) = argmin

x1∈[0,1/2]
ψ1(x1; β), (18)

where

ψ1(x1β) :=
πMℓ
1 (x1)− πDℓ

1 (x1)

πDf
2 (x1)

(
πDf
2 (x1)

πMℓ
1 (x1)

)β

. (19)

Now, we have the following lemma.

Lemma 5. There exists a pair (β, β) such that

(i) xSℓ1 = 1/2 for β > β,

(ii) xSℓ1 = 0 for β < β.

Proof. Consider the function logψ1. By differentiating it, we have

d

dx1
logψ1(x1; β) =

πMℓ′
1 (x1)− πDℓ′

1 (x1)

πMℓ
1 (x1)− πDℓ

1 (x1)
− πDf ′

2 (x1)

πDf
2 (x1)

+ β

(
πDf ′
2 (x1)

πDf
2 (x1)

− πMℓ′
1 (x1)

πMℓ
1 (x1)

)
. (20)

Because πDf ′
2 (x1)/π

Df
2 (x1) − πMℓ′

1 (x1)/π
Mℓ
1 (x1) is strictly negative, (20) is also negative

for any x1 ∈ [0, 1/2] if β is sufficiently large. We verify the first part from the fact that

log is a monotonic function. We obtain the second part by noting that

lim
β↘1

d

dx1
logψ1(x1; β) =

πMℓ′
1 (x1)− πDℓ′

1 (x1)

πMℓ
1 (x1)− πDℓ

1 (x1)
− πMℓ′

1 (x1)

πMℓ
1 (x1)

=
πMℓ′
1 (x1)π

Dℓ
1 (x1)− πMℓ

1 (x1)π
Dℓ′
1 (x1)

πMℓ
1 (x1)

(
πMℓ
1 (x1)− πDℓ

1 (x1)
) ,

which is positive for any x1 ∈ [0, 1/2].

Note that parameter β is monotonically decreasing in the volatility parameter σ; that

is, ∂β/∂σ < 0. The above proposition implies that in a sequential equilibrium, the

location of the leader is the center if the volatility of the market size is sufficiently small.

On the other hand, if the uncertainty over the future size of the market is sufficiently
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large, the optimal location of the leader in a sequential equilibrium moves closer to the

edge. We can derive similar results for α and r, the expected growth rate of the market

size and the discount rate, because ∂β/∂α < 0 and ∂β/∂r > 0.

Proposition 1. (i) There exists a pair (σ, σ) such that

(a) xSℓ1 = 1/2 for σ < σ,

(b) xSℓ1 = 0 for σ > σ.

(ii) There exists a pair (α, α) such that

(a) xSℓ1 = 1/2 for α < α,

(b) xSℓ1 = 0 for α > α.

(iii) There exists a pair (r, r) such that

(a) xSℓ1 = 0 for r < r,

(b) xSℓ1 = 1/2 for r > r.

In what follows, we present some intuitive explanation on the relationship between σ

and xSℓ1 . We have already obtained the value function of the leader as (17). Through

calculations, we interpret the first term of (17) as the present value of the monopolistic

profit flows and the second term as the negative option value associated with the other

firm’s entry. Note that the first term is totally independent of the leader’s location.

Thus, the leader firm chooses the optimal location x1 such that the negative option value

is minimized. In other words, x1 is a minimizer of ψ1 defined by (19).

We find that ψ1 consists of two terms, (πMℓ
1 (x1)−πDℓ

1 (x1))/π
Df
2 (x1) and (πDf

2 (x1)F1/π
Mℓ
1 (x1)F2)

β.

The first term represents the change in profit flows induced by the follower’s entry, or the

negative effect on the leader’s profit flows when the follower actually enters the market.

Of course, this term is increasing in x1, indicating that x1 should be lower if firm 1 takes

this effect into account. On the other hand, the second term represents the expected time

17



of the follower firm’s entry. More concretely, the term is proportional to E[e−rT2 ]. This

term is decreasing in x1 because πMℓ′
1 > 0 and πDf ′

2 < 0. In other words, firm 1 can deter

the entry of firm 2 by a high value of x1. As a whole, to minimize ψ1, firm 1 needs to

consider the trade-off.

Suppose that σ is sufficiently large. Then, β is close to 1 and the effect of x1 on the

follower’s entry time is quite marginal. In this case, the first effect dominates the second

one, indicating that firm 1 optimally chooses xSℓ1 = 0 as its location. The story is the

opposite for a small σ. In this case, β is significantly large and thus firm 1 can hinder the

entry of firm 2 by choosing its location as close to the center as possible. In other words,

the second effect dominates the first one and the optimal location is given by 1/2.

In the standard real options literature, most studies consider the case of only the

optimal entry timing. Then, σ affects ψ1 only through β and always has a positive effect

on the value function of the leader (17). However, under our setting, where each firm

chooses the timing as well as location, the problem is not simple, with results differing

from those in the standard model. In fact, Section 5 presents a novel result due to the

multi-dimensionality of strategies.

Finally, by substituting xSℓ1 for each case in Proposition 1, we have the following

proposition stating the outcomes of SPNE.

Proposition 2. Let (yEℓ
1 , yEf

2 , xEℓ
1 , xEf

2 , pEℓ
1 , pEf

2 ) be the equilibrium solution of the loca-

tions, thresholds, and prices. Then, we have the following three cases.

(a) If Equation (20) is negative for any x1 ∈ [0, 1/2], the outcome of the subgame per-

fect equilibrium is expressed as (yEℓ
1 , yEf

2 , xEℓ
1 , xEf

2 , pEℓ
1 , pEf

2 ) = (y∗1, y
∗
2, x

∗
1, x

∗
2, p

∗
1, p

∗
2),
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where

y∗1 ≡ β

β − 1

4(r − α)F

4ū− c
, y∗2 ≡ β

β − 1

144(r − α)κF

25c
,

x∗1 ≡
1

2
, x∗2 ≡ 1,

p∗1t ≡

{
pM1 (x∗1) = ū− c

4
for t ∈ [T1(y

∗
1), T2(y

∗
2))

pD1 (x
∗
1, x

∗
2) =

7c
12

for t ∈ [T2(y
∗
2),∞),

p∗2t ≡pD2 (x∗1, x∗2) =
5c

12
for t ∈ [T2(y

∗
2),∞).

The consumer at x̄∗ ≡ 7
12

is indifferent between purchasing the good from firm 1 and

purchasing it from firm 2.

(b) If Equation (20) is positive for any x1 ∈ [0, 1/2], the outcome of the subgame perfect

equilibrium is expressed as (yEℓ
1 , yEf

2 , xEℓ
1 , xEf

2 , pEℓ
1 , pEf

2 ) = (y∗∗1 , y
∗∗
2 , x

∗∗
1 , x

∗∗
2 , p

∗∗
1 , p

∗∗
2 ),

where

y∗∗1 ≡ β

β − 1

(r − α)F

ū− c
, y∗∗2 ≡ β

β − 1

2(r − α)κF

c
,

x∗∗1 ≡ 0, x∗∗2 ≡ 1,

p∗∗1t ≡

{
pM1 (x∗∗1 ) = ū− c for t ∈ [T1(x

∗∗
1 ), T2(x

∗∗
2 ))

pD1 (x
∗∗
1 , x

∗∗
2 ) = c for t ∈ [T2(x

∗∗
2 ),∞),

p∗∗2t ≡pD2 (x∗∗1 , x∗∗2 ) = c for t ∈ [T2(x
∗∗
2 ),∞).

The consumer at x̄∗∗ = 1
2
is indifferent between purchasing the good from firm 1 and

purchasing it from firm 2.

Remark 1. We cannot analytically prove the presence of an inner solution

(yEℓ
1 , yEf

2 , xEℓ
1 , xEf

2 , pEℓ
1 , pEf

2 ) = (y∗∗∗1 , y∗∗∗2 , x∗∗∗1 , x∗∗∗2 , p∗∗∗1 , p∗∗∗2 )

with x∗∗∗1 ∈ (0, 1/2) when β < β < β. Fortunately, from our numerical analysis, there

exists an inner solution under a wide range of parameter settings if β is intermediate and

ū is large enough.
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Proposition 2 shows three cases for the leader’s location in our sequential equilibrium.

Which case occurs depends on the parameters describing the dynamics of the market size

α, σ, and so on. To grasp the intuition behind the two propositions, we proceed with a

numerical analysis in the next section.

5 Numerical Analysis

In this section, we investigate in depth the underlying properties of our model using

numerical analysis. First, we investigate the parameter effects, especially σ, on firm

1’s equilibrium location. Second, we derive the outcome of SPNE and discuss how the

parameters influence the firms’ behavior in equilibrium.

5.1 Leader’s equilibrium location

This subsection numerically examines the effects of σ and α on the leader’s location xEℓ
1 .

We set the parameters as ū = 30, c = 1, r = 0.1, κ = 2, and F = 10. Figure 1 illustrates

how the parameters σ and α affect the equilibrium location of the leader.

First, we discuss the relationship between xEℓ
1 and α. From the figure, xEℓ

1 = 1/2

always holds when α ≤ 0.096; this is depicted at the upper left-hand side. On the other

hand, xE1 = 0 always holds when α ≥ 0.099, as depicted at the lower right-hand side for

any σ ∈ (0, 1]. Consequently, one finds that if the expected growth rate of the market

size α is sufficiently large (small), the equilibrium location of firm 1, xEℓ
1 , is always at

the center (edge) for any σ ∈ (0, 1]. If α takes an intermediate value, xEℓ
1 is interior in

the interval (0, 1/2). These results are consistent with the analytical properties shown in

Proposition 1. Ebina et al. (2015) obtain a similar result with their numerical analysis in

pages 908–910. In addition, the figure illustrates that xEℓ
1 is decreasing in α on the range

[0.0965, 0.099]. This observation confirms the existence of the inner solution mentioned

in Remark 1.

Next, we discuss the relationship between xEℓ
1 and σ. From the figure, xEℓ

1 is decreasing
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Figure 1: The relationship between xEℓ
1 and α, or σ.

in σ and is between 0 and 1/2 when σ takes an intermediate value, again confirming the

existence of an inner solution. Further, if α is sufficiently large (small), xEℓ
1 is constant

and equal to 0 (1/2, respectively) for any σ ∈ (0, 1]. These two facts imply that xEℓ
1 is

non-increasing in σ for a wide variety of parameter settings.

We intuitively explain the above observation as follows. A large value of α means the

rapid market size growth on average, inducing the follower to enter the market earlier.

Then, the leader should avoid price competition with the follower. Thus, the leader firm

optimally chooses xEℓ
1 = 0.

On the other hand, Figure 1 confirms the analytical result presented in Proposition

2. If σ is large, the entry deterrence through a higher x1 is less effective, as explained in

the previous section. In other words, the follower firm should have an incentive to wait

longer irrespective of x1 because the uncertainty in market size is significant. Thus, the

leader firm optimally sets xEℓ
1 lower for a small σ.
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In sum, we conclude that the leader’s location in equilibrium is decreasing (or at least

non-increasing) in σ in most cases. Similar observations can be found for the effect of α

and r.

5.2 Subgame perfect Nash equilibrium

Here, we investigate how the most significant parameter of this study, σ, affects the

outcome of SPNE. We first set the parameters as ū = 30, c = 1, r = 0.1, α = 0.99, κ = 2,

and F = 10. Under this setting, the equilibrium is an inner solution for σ ∈ [0.4, 0.5]. The

outcomes of SPNE and the values of the leader and the follower at SPNE, V Eℓ
1 ≡ V̂1(y; x

Eℓ
1 )

and V̂ Ef
2 (y; xEℓ

1 ), are presented in Table 1 for σ ∈ {0.0001, 0.1, 0.2 . . . , 1}.

σ xEℓ
1 xEf

2 x̄ yEℓ
1 yEf

2 pM1 pD1 pD2 V Eℓ
1 V Ef

2

0.0001 0.5 1 0.583 0.0336 11.5 29.8 0.58 0.42 1.67 0.156
0.1 0.5 1 0.583 0.0353 12.1 29.8 0.58 0.42 1.61 0.157
0.2 0.5 1 0.583 0.0404 13.8 29.8 0.58 0.42 1.45 0.159
0.3 0.5 1 0.583 0.0488 16.7 29.8 0.58 0.42 1.23 0.161
0.4 0.263 1 0.548 0.0613 11.7 29.5 0.80 0.67 1.09 0.289
0.5 0.055 1 0.509 0.0775 9.9 29.1 0.96 0.93 0.954 0.435
0.6 0 1 0.5 0.0968 11.2 29 1 1 0.863 0.482
0.7 0 1 0.5 0.119 13.8 29 1 1 0.795 0.485
0.8 0 1 0.5 0.145 16.8 29 1 1 0.743 0.487
0.9 0 1 0.5 0.174 20.2 29 1 1 0.703 0.489
1 0 1 0.5 0.207 24.0 29 1 1 0.671 0.491

Table 1: The outcome of the subgame perfect equilibrium depends on the values of ū = 30,
c = 1, r = 0.1, α = 0.099, κ = 2, F = 10, and y = 0.001. The last two columns, V Eℓ

1

and V Ef
2 , represent the values of the leader and the follower at the subgame perfect

equilibrium.

First, we briefly discuss how the volatility σ influences the thresholds xEℓ
1 and xEf

2 .

Table 1 shows that the locations of the two firms xEℓ
1 is decreasing in σ, whereas xEf

2 = 1

always holds. Thus, σ affects only the equilibrium location of firm 1. Numerical calcula-

tions confirm the validity of Lemma 2 and Proposition 1.
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Second, we discuss the relationship between yEℓ
1 or yEf

2 and σ. To investigate the effect

of σ, the following decomposition is useful:

dyEi
dσ

=
dyEi (β(σ), x

Eℓ
1 (σ))

dσ
=
∂yEi
∂β

∂β

∂σ
+
∂yEi
∂x1

∂xEℓ
1

∂σ
, i = 1, 2. (21)

We call the first term of (21) the option effect; this is induced through the parameter β.

The option effect always appears in a standard real options model, and is monotonically

increasing in the volatility σ. The second term of (21), called the location effect, is

the effect induced through the leader’s location xEℓ
1 . The location effect is new in the

literature and should be considered in the model where the strategy of each firm is multi-

dimensional.

First, we examine the effect of σ on the threshold of the leader firm, yEℓ
1 . Note again

that the first term of (21) is strictly positive. For the second term, we easily verify that

∂yEℓ
1 /∂x1 and ∂xEℓ

1 /∂σ are both non-positive. In other words, the option and location

effects are both positive and the leader’s threshold is always increasing with respect to

volatility.

However, the story is different for the effect of σ on yEf
2 . This is because although the

option effect is still positive for yEf
2 , the location effect, or the effect of σ via the leader’s

location, can be negative, because ∂yEf
2 /∂x1 > 0 and ∂xEℓ

1 /∂σ is strictly negative when

xEℓ
1 is on (0, 1/2). In other words, the option effect is positive but the location effect

can be negative for the follower’s threshold. Further, the total effect (21) is negative if

the location effect dominates the option effect. Our numerical result shows that this can

happen with our parameter setting (see yEf
i when σ = 0.3, 0.4, 0.5 in Table 1).

Now, let us explain why σ has a negative effect on yEf
2 if it takes an intermediate

value. If xEℓ
1 = 0 or xEℓ

1 = 1/2, the follower knows that the leader would not change its

location xEℓ
1 for a marginal change in σ and thus considers only the option effect, leading

to σ having a positive effect on yEf
2 . On the other hand, if xEℓ

1 is between 0 and 1/2, the

follower actually takes the marginal change of xEℓ
1 that affects the present value of its own

future profit flows. Because the leader chooses a location closer to 0, the present value
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of the follower becomes higher and the follower can enter the market more easily. Hence,

the follower optimally chooses a lower yEf
2 .

Mason and Weeds (2010) show that the threshold of a leader is non-monotonic if there

is a positive externality. However, to the authors’ best knowledge, the negative effect of the

volatility on a threshold for some parameter settings is new in the real options literature

under the assumption of a negative externality. It should be mentioned that Mason and

Weeds (2010) investigate all three types of equilibria and that non-monotonicity occurs in

a preemptive equilibrium. Thus, the mechanism behind our result is quite different from

theirs. The result is due to our model setup in which each firm optimizes the threshold

and location, confirming the importance of the analysis of multi-dimensional strategies.

6 Welfare Analysis

In this section, we conduct welfare analysis of the case where a social planner can se-

quentially invest twice. There are many ways to assume by which variables the social

planner can choose the thresholds, locations, or prices.13 In particular, we examine one

of the seven cases where the social planner can freely choose its thresholds and locations.

This setting is similar to the welfare analysis presented in page 391 of Huisman and Kort

(2015).

13Some examples are presented below.

(1) First best, where the social planner can choose all the strategic variables - the entry timings,
locations, and prices.

(2-1) Second best, where the social planner can choose the entry timings and locations, but not the
prices.

(2-2) Second best, where the social planner can choose the entry timings and prices, but not the locations.

(2-3) Second best, where the social planner can choose the locations and prices, but not the entry
timings.

(3-1) Third best, where the social planner can choose the entry timings, but not the locations or prices.

(3-2) Third best, where the social planner can choose the locations, but not the entry timings or prices.

(3-3) Third best, where the social planner can choose the prices, but not the entry timings or locations.

Following Huisman and Kort (2015), we opt for (2-1) from among the seven cases.
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Under the assumption, a price competition occurs between two firms after their entry.

Then, the equilibrium prices are the same as in the autonomous economy studied in the

previous sections; they are given by pM1 (x1), p
Dℓ
1 (x1, x2), and p

Df
2 (x1, x2) in (5) and (6).

The social planner sets the thresholds and locations so as to maximize the social surplus

defined below.

6.1 Analytical results

In the social planner’s problem, we refer to firms 1 and 2 as the first and the second en-

trants, respectively. On the other hand, if we consider the main model of the autonomous

economy studied in the previous sections, we refer to the leader and the follower as the

first and the second entrants, respectively.

Before the analysis, let us define the consumer and producer surpluses. The total

expected consumer surplus is

CS(y; y1, y2, x1, x2) =Ey

[
e−r(T1(y1)−t)H1(y; y2, x1, x2)

]
, (22)

where

H1(y; y2, x1, x2) =Ey

[∫ T2(y2)

t

csM(x1)e
−r(s−t)Ysds+

∫ ∞

T2(y2)

csD(x1, x2)e
−r(s−t)Ysds

]
,

and

csM(x1) =

∫ 1

0

[
ū−

(
pM1 (x1) + c(x− x1)

2
)]

dx,

csD(x1, x2) =

∫ x̄

0

[
ū−

(
pDℓ
1 (x1, x2) + c(x− x1)

2
)]

dx

+

∫ 1

x̄

[
ū−

(
pDf
2 (x1, x2) + c(x− x2)

2
)]

dx.

The right-hand side of (22) can be easily calculated as

CS(y; y1, y2, x1, x2) =

(
y1cs

M(x1)

r − α

)(
y

y1

)β

+

(
y2
[
csD(x1, x2)− csM(x1)

]
r − α

)(
y

y2

)β

.
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On the other hand, the total expected producer surplus is equal to the sum of the values

of the two firms; that is,

PS(y; y1, y2, x1, x2) = V1(y; y1, y2, x1, x2) + V2(y; y1, y2, x1, x2).

Then, the total expected surplus is naturally defined by the sum of the consumer and

producer surpluses as

TS(y; y1, y2, x1, x2) = CS(y; y1, y2, x1, x2) + PS(y; y1, y2, x1, x2).

We can easily calculate that

TS(y; y1, y2, x1, x2, p1, p2)

=

(
y1ts

M(x1)

r − α
− F1

)(
y

y1

)β

+

(
y2
[
tsD(x1, x2)− tsM(x1)

]
r − α

− F2

)(
y

y2

)β

,
(23)

where

tsM(x1) =

∫ 1

0

[
ū− c(x− x1)

2
]
dx,

tsD(x1, x2) =

∫ x̄

0

[
ū− c(x− x1)

2
]
dx+

∫ 1

x̄

[
ū− c(x− x2)

2
]
dx.

The social planner chooses (y; y1, y2, x1, x2) such that TS is maximized. By solving

the social planner’s maximization problem, we have the following proposition.

Proposition 3. The optimal thresholds and locations of the social planner (yO1 , y
O
2 , x

O
1 , x

O
2 )

satisfy

xO1 ∈ (0, 1/2),

xO2 (x
O
1 ) =

28− 5x1 − 2
√

76− 70xO1 + 25(xO1 )
2

15
,

yO1 (x
O
1 ) =

β

β − 1

(r − α)F

tsM(xO1 )
,

yO2 (x
O
1 ) =

β

β − 1

(r − α)κF

[tsD(xO1 , x
O
2 )− tsM(xO1 )]

.
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Proof. See Appendix A.

From Proposition 3, we characterize the two locations and thresholds in our equilib-

rium solution by comparing the outcomes in the social planner’s problem. For exam-

ple, the two locations chosen by the social planner are always interior (xO1 ∈ (0, 1/2),

xO2 ∈ (4(7−
√
19)/15, (17− 2

√
21)/10)), whereas at least the follower’s location is at the

edge at the SPNE (xE2 = 1). From a consumers’ viewpoint, the equilibrium outcome in

the main model is worse than that in the social planner’s problem, because consumers

need to pay more transportation costs. A welfare loss apparently occurs in our main

model without a social planner.

As for the thresholds of the social optimum and the SPNE, we obtain the following

corollary:

Corollary 2. (i) yO1 ⋛ yEℓ
1 if and only if xEℓ

1 + (xEℓ
1 − xO1 )

[
1− (xEℓ

1 + xO1 )
]
⋛ 2/3.

Furthermore, yO1 < yEℓ
1 if xO1 ∈ [1/4, 1/2] or xO1 ≥ xEℓ

1 .

(ii) yO2 ⋛ yEf
2 if and only if 2(xEf

2 −xEℓ
1 )(4−xEℓ

1 −xEf
2 )2 ⋛ (xO2 −xO1 )(4−xO1 −xO2 )(8−

5xO1 − xO2 ). Furthermore, if xO1 > 0.162, then yO2 > yEf
2 .

Proof. See Appendix B.

Next we discuss Corollary 2 in more detail. Note that for the threshold of the leader,

the social planner sets firm 1 in the market earlier than the leader in the main model

(yO1 < yE1 ) for a fixed x1 because tsM(x1) > πMℓ
1 (x1). Inequality tsM(x1) > πMℓ

1 (x1) still

holds when xO1 ≥ xEℓ
1 and the difference between xO1 and xEℓ

1 is small. Then, the social

planner lets firm 1 enter earlier because the present value of the future profit is higher

than in the main model. Corollary 2 (i) confirms this observation.

For the threshold of the follower, the social planner should avoid price competition

between the two firms for a low value of y. Consequently, the time interval between the

two entries chosen by the firms in the main model is shorter than that chosen by the
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social planner, especially if xO1 is closer to 1/2. Corollary 2 (ii) can be justified by the

above explanation.

6.2 Numerical results

Finally, we conduct a numerical analysis of the results of the corollaries. As in Table 1,

we discuss how σ affects the strategic variables and levels of the social surplus. Table 2

shows the outcomes of the strategic variables and levels of the social surplus. Suppose

that the parameter values set are the same as in Table 1, ū = 30, c = 1, r = 0.1, α = 0.99,

κ = 2, F = 10, and y = 0.001.

σ xO1 xO2 x̄O yO1 yO2 pM1 pD1 pD2 WO WE

0.0001 0.430 0.776 0.534 0.0334 38 29.68 0.37 0.32 28.63 28.60
0.1 0.425 0.775 0.533 0.0351 39 29.67 0.37 0.33 28.68 28.65
0.2 0.413 0.774 0.531 0.0402 41 29.66 0.38 0.34 28.81 28.78
0.3 0.396 0.771 0.528 0.0486 46 29.64 0.40 0.35 28.97 28.94
0.4 0.378 0.769 0.525 0.0603 51 29.61 0.41 0.37 29.13 29.11
0.5 0.360 0.767 0.521 0.0754 59 29.59 0.42 0.39 29.27 29.22
0.6 0.345 0.764 0.518 0.0939 68 29.57 0.44 0.40 29.39 29.32
0.7 0.331 0.762 0.516 0.116 78 29.55 0.44 0.42 29.48 29.42
0.8 0.319 0.761 0.513 0.141 90 29.54 0.45 0.43 29.55 29.49
0.9 0.310 0.759 0.512 0.169 104 29.52 0.46 0.44 29.61 29.55
1 0.302 0.758 0.510 0.201 119 29.51 0.47 0.45 29.66 29.60

Table 2: The outcomes of the strategic variables when the social planners choose both the
thresholds and locations depending on the values of ū = 30, c = 1, r = 0.1, α = 0.099,
κ = 2, F = 10, and y = 0.001. The last two columns represent the level of social surplus
at the social optimum and SPNE.

The major finding from Table 2 is that WO −WE is increasing in σ. In other words,

a welfare loss in the main model becomes larger as the volatility gets higher. This finding

can be explained by comparing xEℓ
1 and xO1 . Note that xO1 > 1/4, and that for a large

σ, the leader firm optimally choose xEℓ
1 = 0. Then, the difference between xEℓ

1 and xO1

is quite significant and the price competition is less severe in the main model, and this
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leads to a large welfare loss. Note that this finding is obtained only in our model with

multi-dimensional strategies. The novelty of the current study is confirmed by welfare

analysis.

7 Conclusion

In this article, we construct a Hotelling-type spatial model with uncertainty of market

demand in a real options framework. Contrary to the standard real options literature, the

strategy of each firm is multi-dimensional in that each firm maximizes its value function

with respect to multiple variables, entry timing, and location. This multi-dimensional

approach leads to many interesting results. One important finding is that the threshold

of the follower is not monotonically increasing in volatility, which is new in the literature,

and can be obtained only with multi-dimensional strategies. Also, although the follower’s

entry timing tends to be late as the volatility increases, the leader is more likely to locate

at the edge as the volatility gets higher. The observations on the locations and welfare

analysis also shed new light on the real options and IO literatures.

The most important point for a future study is the preemptive equilibrium in our

model. Other future studies need to consider a circular city model and generalize the

stochastic process Y , for example. However, as a final remark, we argue that the results

obtained in this study are not restrictive and can be applied to many actual situations in

the IO problems.

A Proof of Proposition 3

First, let us consider the second-entry problem of the social planner, y2 and x2. To solve

the second-entry problem, we differentiate (23) with respect to x2, to have

xO2 (x1) =
28− 5x1 − 2

√
76− 70x1 + 25x21
15

.
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Next, by differentiating (23) with respect to y2, we have

yO2 (x1) =
β

β − 1

(r − α)F2

[tsD(x1, xO2 (x1))− tsM(x1)]
.

Second, as with the second entry of the social planner, we consider the maximization

problem of the first entry. By differentiating Equation (23) with respect to y1, we obtain

the optimal threshold of the first entry as follows:

yO1 (x1) =
β

β − 1

(r − α)F1

tsM(x1)
.

To obtain the optimal location of the first entry, we differentiate (23) with respect to x1

and substitute the above optimal reaction functions with respect to x1, x
O
2 (x1), y

O
1 (x1),

and yO2 (x1), into the first-order derivative. Then, we have

∂TS(y; y1, y2, x1, x2)

∂x1
|y1=yO1 (x1),y2=yO2 (x1),x2=xO

2 (x1)

=
yO1 (x1)ts

M ′(x1)

r − α

(
y

yO1 (x1)

)β

+
yO2 (x1)

[
∂tsD(x1, x2)/∂x1|x2=xO

2 (x1) − tsM ′(x1)
]

r − α

(
y

yO2 (x1)

)β

.

(24)

Let the right-hand side of (24) denote Z1. The optimal location of the social planner is

interior if (24) becomes 0 for some x1 ∈ (0, 1.2). It can be calculated that

lim
x1→0

Z1 =
3F

4

β

β − 1

[
β − 1

β(r − α)F

]β {
4c
(
ū− c

3

)β−1

− 25β

35β52β−1

11 + 7
√
19(

19
√
19− 28

)β−1

cβ

κβ−1

}

>
3F

4

β

β − 1

[
β − 1

β(r − α)F

]β {
4c
(
3c− c

3

)β−1

− 25β

35β52β−1

11 + 7
√
19(

19
√
19− 28

)β−1

cβ

1β−1

}

=
3cβF

4

β

β − 1

[
β − 1

β(r − α)F

]β {
4

(
8

3

)β−1

− 25β

35β52β−1

11 + 7
√
19(

19
√
19− 28

)β−1

}
> 0

and

lim
x1→1/2

Z1 = − β

β − 1

2β+1(6 +
√
21)κF

3
(
27 + 7

√
21
)β (

(β − 1)c

β(r − α)κF

)β

< 0.

Thus, because Z1 is continuous in x1, the optimal location of the first entry for the social

planner becomes interior. That is, xO1 ∈ (0, 1/2).
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B Proof of Corollary 2

(i) We simply calculate the subtraction of yEll
1 and yO1 as

yO1 − yEℓ
1 =

β

β − 1

(r − α)F

tsM(xO1 )
− β

β − 1

(r − α)F

πMℓ
1 (xEℓ

1 )

=
β

β − 1

(r − α)F

tsM(xO1 )π
Mℓ
1 (xEℓ

1 )

(
πMℓ
1 (xEℓ

1 )− tsM(xO1 )
)

=
β

β − 1

(r − α)F

tsM(xO1 )π
Mℓ
1 (xEℓ

1 )
c

(
−2

3
+ 2xEℓ

1 − (xEℓ
1 )2 + (xO1 )

2 − xO1

)
=

β

β − 1

(r − α)F

tsM(xO1 )π
Mℓ
1 (xEℓ

1 )
c

(
1

12
−
(
1− xEℓ

1

)2
+

(
1

2
− xO1

)2
)

=
β

β − 1

(r − α)F

tsM(xO1 )π
Mℓ
1 (xEℓ

1 )
c

(
−2

3
+ xEℓ

1 + (xEℓ
1 − xO1 )

[
1− (xEℓ

1 + xO1 )
])

.

(ii) Similarly, we calculate the subtraction as

yO2 − yEℓ
2 =

β

β − 1

(r − α)F

[tsD(xO1 , x
O
2 )− tsM(xO1 )]π

Df
2 (xEℓ

1 )

(
πDf
2 (xEℓ

1 ) + tsM(xO1 )− tsD(xO1 , x
O
2 )
)

=
β

β − 1

(r − α)F

[tsD(xO1 , x
O
2 )− tsM(xO1 )]π

Df
2 (xEℓ

1 )

c

36

×
{
2(xEf

2 − xEℓ
1 )(4− xEℓ

1 − xEf
2 )2 − (xO2 − xO1 )(4− xO1 − xO2 )(8− 5xO1 − xO2 )

}
.

The first and second parts of the square brackets are denoted as XE ≡ 2(xEf
2 − xEℓ

1 )(4−

xEℓ
1 −xEf

2 )2 and XO ≡ (xO2 −xO1 )(4−xO1 −xO2 )(8−5xO1 −xO2 ), respectively. Note that both

XE and XO are decreasing in xE1 ∈ [0, 1/2] and xO1 ∈ (0, 1/2). Thus, XE is minimized at

xEℓ
1 = 1/2 and equals 25/4. By solving XO = 25/4, we have xO1 = 0.1619 · · · . Therefore, if

xO1 > 0.162, XE > XO holds for any xEℓ
1 ∈ [0, 1/2]. Thus, we have the desired results.
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