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Abstract

This paper develops an instrumental variable (IV) estimator for con-
sistent estimation of dynamic panel data models with a multifactor error
structure when both N and T', the cross-sectional and time series dimensions
respectively, are large. Our approach projects out the common factors from
observed variables, the exogenous regressors of the model, using principal
components analysis and then uses the defactored regressors as instruments
to estimate the unknown parameters, as in a standard 2SLS procedure.
The approach requires estimating solely the common factors contained in
the regressors, leaving those that only influence the dependent variable into
the errors. Hence our approach is computationally attractive. Since our
estimator is based on instrumental variables, it is not subject to the Nickell
bias that arises with least squares type estimators in dynamic panel data
models. The finite sample performance of the proposed estimator is inves-
tigated using simulated data. The results show that the estimator performs
well in terms of bias, RMSE and size. The performance of an overidentify-
ing restrictions test is also explored and the evidence suggests that it has
high power when the key assumption, strong exogeneity of (a subset of) the
regressors, is violated.
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1 Introduction

The rapid increase in the availability of panel data during the last few decades has
invoked a large interest in developing ways to model and analyse them effectively.
In particular, the issue of how to characterise ‘between group’ or cross-sectional
dependence, and then creating consistent estimation methods and making asymp-
totically valid inferences, has proven both popular and challenging. The factor
structure approach has been widely used to model cross-sectional dependence. It
escapes from the curse of dimensionality by asserting that there exists a com-
mon component, which is a linear combination of a finite number of time-varying
common factors with individual-specific factor loadings. One can provide different
interpretations of this approach, depending on the application in mind. In macroe-
conomic panels the unobserved factors are frequently viewed as economy-wide
shocks, affecting all individuals albeit with different intensities; see e.g. Favero
et al. (2005). In microeconomic panels the factor error structure may be thought
to reflect distinct sources of unobserved individual-specific heterogeneity, the im-
pact of which varies over time. For instance, in a model of wage determination
the factor loadings may represent several unmeasured skills, specific to each in-
dividual, while the factors may capture the price of these skills, which changes
intertemporally in an arbitrary way; see e.g. Carneiro et al. (2003) and Heckman
et al. (2006).

A large body of the literature has focused on developing statistical inference
for models with an error factor structure. For large panels, two estimation meth-
ods have been popular: Pesaran (2006) proposed the Common Correlated Effects
(CCE) estimator, that consists of approximating the unobserved factors by the
linear combinations of cross section averages of the dependent and explanatory
variables. Bai (2009) proposed an iterative least squares estimator with bias cor-
rection, approximating the unobserved factors by principal components (PC).! For
both estimators it is assumed that the regressors are strictly exogenous with re-
spect to the idiosyncratic error component, whereas possible correlation between
the regressors and the error factor component is permitted. Under somewhat
weaker assumptions, Moon and Weidner (2015) show that the estimator of Bai
(2009) is interpretable as a quasi maximum likelihood estimator (QMLE), the con-
sistency of which is maintained even when the number of factors is not specified
correctly, so long as it is larger than or equal to the true number of factors.

In this paper we consider estimation of linear dynamic panel data models with
an error factor structure in large panels.? Recently, the CCE and the PC estima-
tors have been shown to remain consistent in such models. In particular, Chudik
and Pesaran (2015a) propose mean group CCE estimation for panel autoregressive
distributed lag models. Notably they allow cross-sectionally heterogenous slope
coefficients, and they propose to alleviate the small sample bias using jackknife
bias correction. The cost of allowing this generality is twofold. First, when the

1See Westerlund and Urbain (2015) for comparison analysis of the CCE and PC estimation.
Chudik and Pesaran (2015b), Sarafidis and Wansbeek (2012) and Bai and Wang (2016) also
provide excellent surveys on the related literature.

2Estimation of such models for short panel is considered by Ahn et al. (2013) and Robertson
and Sarafidis (2015).



number of unobserved factors is larger than the number of right-hand side vari-
ables plus one, a set of external variables, which are not in the original model
of interest but form a part of the dynamic system with the dependent variable,
should be found. In practice, this may not be a trivial exercise. Second, in order
to mitigate the effects of weak exogeneity, the CCE approach potentially requires
augmenting the model by several lags of weakly exogenous variables.®> This can
result in a large loss of degrees of freedom.

On the other hand, Moon and Weidner (2017) propose a bias-corrected PC (or
QMLE) estimator and put forward three classical likelihood based test statistics.
However, the statistical properties of the estimator are shown to be sensitive to
the quality of the estimate of the number of factors. In particular, There can be
a considerable loss of efficiency of the PC estimator when the number of factors
specified is larger than the true number.? Finally, there is evidence suggesting
that the bias-corrected PC estimator can still exhibit some finite sample bias for
the model with exogenous regressors.”

In this paper we propose an instrumental variable (IV) estimator for dynamic
linear panel data models with error factor structure when both cross section and
time dimensions are large. Our estimator is potentially robust to the above prob-
lems and computationally attractive®. Our approach asymptotically projects out
the common component from the regressors using principal components analysis
at first stage and then uses the defactored regressors as instruments to estimate
the structural parameters. Our methodology can be regarded as an extension of
the approach taken by Sarafidis et al. (2009). The required assumption underlying
our approach is that endogeneity of the covariates arises due to the non-zero corre-
lation between the common components in the covariates and in the disturbance.
Importantly, this assumption can be tested using an overidentifying restrictions
test.

Although both our approach and the QMLE approach of Moon and Weid-
ner (2017) are based on principal components, there are important differences in
practice; firstly, our method estimates the factors from observed data (the covari-
ates), rather than the disturbances. In addition, our procedure requires estimating
solely the common factors included in the regressors. Due to these differences, it
is expected that our approach will be less sensitive to possible overestimation of
the number of factors. Moreover, since our estimator is an instrumental variable
estimator, it is not subject to the Nickell bias that arises with least squares type
estimators in dynamic panel data models. Finally, we employ the PC approach
rather than the CCE type approach for defactoring the exogenous regressors, since
with the former approach it is not necessary to seek external variables to approxi-
mate the factors when the number of unobserved factors is larger than the number
of regressors plus one.

Our approach can be regarded as the opposite one employed by Bai and Ng
(2010) and Kapetanios and Marcellino (2010). In specific, in their model the

3See equation (24) and the discussion around it in Chudik and Pesaran (2015a).

4See, for example, Table 2 in Moon and Weidner (2017).

®See Table V in Appendix E in the supplement to Bai (2009).

SWe only consider the models with cross-sectionally homogeneous slopes. See Chudik and
Pesaran (2015a) for the estimation of such models.



idiosyncratic errors of the reduced form regression of the endogenous variable cause
endogeneity, therefore, no error factor structure is considered in the structural
model of interest. They propose finding instruments for the endogenous regressors
by extracting the common components from external variables and the endogenous
regressors in the model. Our approach essentially complements theirs.

Using simulated data, the finite sample performance of the proposed IV esti-
mator and the associated t-test is investigated, along with the QMLE estimator
of Moon and Weidner (2017). The results show that the proposed estimator per-
forms well under a variety of designs both in terms of bias and size of the t-test.
Furthermore, the overidentifying restrictions test appears to have high power when
the key assumption, strong exogeneity, is violated.

The paper is organised as follows. Section 2 sets out the model and assump-
tions, and puts forward the proposed estimation approach. Section 3 extends the
results to the more general case. Section 4 studies the performance of the esti-
mator in small samples using simulated data. Section 5 contains some concluding
remarks. Proofs of propositions, theorems and corollaries, together with necessary
lemmas, are contained in Appendix A. The proofs of the lemmas are available in
Supplemental Material.

2 Model and Estimation Method

Consider the following autoregressive distributed lag, ARDL(1,0), panel data
model with a multi-factor error structure:

yz‘t:OK+Pyz‘,t—1+,3,Xz't+Uit; 1= 1727“‘7N; t= 1727"‘7T7 (1)

with
Uy = 7;fx,t + A;fy,t + €t (2)

where |p| < 1, B = (B, B, ..., Br)’ with at least one of {ﬁg}if:l being non-zero,
Xit = (T1ity Taity -, Thit)' 18 @ k x 1 vector of regressors, f, 1 = (fr1t, frots oy frimat)
and £,; = (fy16, fy2t, - fym,¢) denote m, x 1 and m, x 1 vectors of unobservable
factors, respectively. The m, x 1 vector ~; and the m, x 1 vector A; contain factor
loadings associated with f,; and f,;, respectively, whereas ¢;; is an idiosyncratic
error. X;; is subject to the following process:

xi = Dl + v, (3)

where T'y; = (V14 Yaiy - Vi) denotes an m,, x k factor loading matrix and vy =
!/ . .« 1. .
(V1it, V2t - Vi) 1S an idiosyncratic error term.®

Remark 1 When time invariant individual effects exist in uy and xX;, one can
transform the variables, by taking first differences, applying the within transfor-
mation, or orthogonal deviations; this does not alter the discussion below.

“"The main results of this paper naturally extend to models with higher order lags, i.e.
ARDL(p,q) for p > 0 and ¢ > 0.

8We do not explicitly discuss the case in which u;; contains a subset of factor components in
X;; only, since it is easily seen that all the results in this paper will still hold.



Stacking the 7" observations for each 7 yields

yi = pyi—1 + X8 + u,, (4)
with

u;, = F,v, + Fy\ + &5, (5)
where y; = (Yi, Y2, -, i)', Yi—1 = L'y, = (Yio, Yits -, Yir—1)' With L’ be-
ing the j** lag operator, X; = (Xi1, Xi2y ooy Xir)s Wy = (U1, Usa, ..., wir)'s By =
(le, fx’g, ceey fx’T),, Fy = (fy,h fy’g, ceny fy,T)/ and g; = (81'1, Ei2y ouny giT),- Similarly,

where V; = (v;1, Via, ..., vir)" and F, is defined above.
Let W; = (y;_1,X;) and 8 = (p, 8')’. The model in (4) can be written more
concisely as follows:
yi = W,0 + u,. (7)

W, is heterogeneously cross sectionally correlated because the factor loadings vary
across 7. Also the composite error, u;, is allowed to be serially correlated through
serial correlation in the factors, f,; and f, ;.

Our proposed approach involves asymptotically eliminating at first stage the
common factors in X; by projecting them out, and then using the defactored
regressors as instruments to estimate the structural parameters of the model. To
see the main idea, consider the following projection matrices:

MF;C = IT - F:c (F;Fz)il F;; MFz,fl = IT - Fm,—l (F;,—IFI»—l)_l F:B,—l’ (8)

where F, _; = L'F,. If F, were observed, premultiplying X; by M, would yield
Mp, X; = Mp, V;. Assuming V; is independent from ¢;, F,,F,, it is easily seen
that E(X!Mp,u;) = E(V,Mpg,u;) = 0.
Furthermore, let
X;_;=LX;. (9)

So long as {yu,x,}, t = 0,1,...,T is observed, the T' x k matrix X; _; is also
observed. Using similar assumptions, one can show that F(X} Mg, _,Mp,u;) =
E(Vg’_lMFL,lMqui) =0.
Define
Z; = [Xi, Mg, X; 4] (T x 2k). (10)

Given the model in equation (7) it is clear that the defactored regressors satisfy
instrument relevance, i.e. E(ZMp, W;) # 0. Therefore, it is straightforward to
apply instrumental variable (IV) estimation using Mg, Z; as an instrument vector
for VVZ

Remark 2 Since our approach makes use of transformed x’s as instruments,
identification of p requires that at least one element in 3 is not equal to zero. We
believe this is a mild restriction, especially compared to imposing 3 # 0. Specif-
ically, identification of the autoregressive parameter can be achieved based on the
covariate(s) and lagged value(s) corresponding to the non-zero slope coefficient(s).
Notably, it is not necessary to know which covariates have non-zero coefficients
since by construction the 2SLS procedure does not require that all instruments are
relevant to all endogenous regressors.



More instruments become available when further lags of x;; are observed. In
particular, given model (3), when {xit}tT:O_j for j > 0 are observable, (j + 1)k
instruments, {X; __1)}/7], become available. Furthermore, as V; is strictly ex-
ogenous, we could exploit (j+1)kT? moment conditions for asymptotically efficient
estimation. However, in such case it is well known that the estimator will be sub-
ject to the overfitting bias that arises in GMM estimation with a large number of
instruments; for further analysis see Alvarez and Arellano (2003) among others.
To avoid this issue we stick to the set as in (10), such that the number of instru-
ments is fixed and does not depend on 7. The analysis of overfitting bias with a
large number of instruments is beyond the scope of this paper.

The assumption that V; is independent of €;, F, and F,, implies that the covari-
ates are strongly exogenous with respect to the idiosyncratic error component (i.e.
E(e;X;) = 0). Dynamic panel data models with strongly exogenous regressors is a
widely used framework in the economics literature; some examples include partial
adjustment models for labour supply (e.g. Bover, 1991), household consumption
models with habits (e.g. Becker et al., 1994) and production functions with adjust-
ment costs (e.g. Blundell and Bond, 2000). In these applications the autoregressive
parameter captures consumption inertia due to habits, or costs of adjustment, so
it has a structural significance; see e.g. Arellano (2003, Ch. 7). Notwithstanding
strong exogeneity with respect to the idiosyncratic disturbance, it is reasonable
to expect that the regressors may be correlated with the unobserved common fac-
tors and are, therefore, endogenous. For instance, in a production function the
input decisions of the firm are likely to be correlated with its individual-specific
unobserved characteristics, «;, that may or may not vary over time. Likewise,
determinants of labour supply, such as the level of wage offered to an individ-
ual, are likely to be correlated with the common factors influencing supply itself.
Essentially, this is the standard fixed effects assumption employed in panel data
models, extended to the factor structure. However, notice that under the current,
more general, framework, first-differencing does not remove endogeneity since the
factor component remains in the residuals. The strong exogeneity assumption of
the covariates with respect to the purely idiosyncratic error component can be
tested using an overidentifying restrictions test, as shown below.

Note that our model can be extended to allow for additional regressors which
are weakly exogenous or endogenous with respect to the idiosyncratic disturbance,
provided that there are appropriate instruments available. For example, such sets
of instruments can be formed based on lagged values of the endogenous regressors,
if these are not correlated with the common factor component. This case is anal-
ysed in detail by Sarafidis, Yamagata and Robertson (2009). External instruments
may be used in (10) if one wishes to allow for weakly exogenous regressors that are
correlated with the common factor component, as in a standard two-stage least
squares procedure. This case is analysed by Harding and Lamarche (2011).

In practice, Mg, is not known because the factors F, are not observed. As
a result, we propose estimating F, using the principal components approach, as
advanced in Bai (2003) and Bai (2009).° To obtain our results it is sufficient to

We could also adopt Pesaran’s (2006) approach to estimate the common factors in the
regressors.



make the following assumptions, where tr [A] and ||A|| = /tr [A’A] denote the
trace and Frobenius (Euclidean) norm of matrix A, respectively, and A is a finite
positive constant.

Assumption 1 (idiosyncratic error in y): &; is independently distributed
across i and ¢, with mean zero, E(e2) = o2,,, and E |e;,[*"" < A < o0 for
small positive constant §.

Assumption 2 (idiosyncratic error in x): (i) vy is independently distributed
across ¢ and group-wise independent from ey; (ii) E (vy) = 0 and
846 _ T T 1)
Eloal™™ < A < oo (i) TS0, S0, Blusseal ™ < A < oc;

(iv) E ’N*I/Q Zf\il [VgisVois — E(’Ugisl)git)]‘ < A < oo for every ¢, t and s;

(v) N7'T2 Zi\il Zthl Zle ZrTzl Zgﬂ |cov (VeisUrit, VeirVeiw)| < A < 005
(vi) the largest eigenvalue of E (v;v);) is bounded uniformly for every ¢, i

and 7.

Assumption 3 (stationary factors): f,;, = C,(L)ey,; and f,;, = C(L)ey, ¢,
where C,(L) and C,(L) are absolutely summable, ey, ; ~ iid(0,X;,) and
e, ~ itd(0,Xy,), where Xy, and Xy, are positive definite matrices. Each
element of ey, ; and ey, ; has finite fourth order moments and are group-wise
independent from v;; and ;.

Assumption 4 (random factor loadings): (i) I'y; ~ #id(0, Xr,), 7; ~ d(0, X,),
Ai ~ 1id(0, Xy ), where X, is positive definite and X, and X are positive
semi-definite, and each element of I';, 7, and A; has finite fourth order mo-
ments. I'y;, v, and A; are independent groups from &4, v, e, and ey, ¢;
(ii) T'y; and A; are independent of each other.

Assumption 5 (identification of 0): (i) A;r = T 'Z:Mr, W, and B, r =
T~1Z!Mp,Z; have full column rank for all ¢ and T; (ii) F ||AZ-7T||2+25 <AL
0o and E | B 7[> < A < oo for all i and T (iii) E HgoFiT,t”QH <A <0
for all i and T', where @p,p = T~Y2Z/Mp, w;, and E(@p;r@ir) is a positive
definite matrix for any ¢, T'. In addition, limy 7 N* ZZ]\; E(@pirPrir) =
2, which is a fixed positive definite matrix.

The assumptions above require some discussion. First of all, notice that
Assumption 1 allows non-normality and (unconditional) times-series and cross-
sectional heteroskedasticity in the idiosyncratic errors in the equation for y. As-
sumptions 2 and 3 allow for serial correlation in the idiosyncratic errors in the
equation for z and the factors. Assumption 2 is in line with Bai (2003) but
assumes independence across ¢, which can be relaxed such that the factors and
(€it, vit) and/or €;; and €;5 are weakly dependent, provided that there exist higher
order moments; see Assumptions D-F in Bai (2003)!°. Assumptions 3 and 4 are
standard in the principal components literature; see e.g. Bai (2003) among oth-
ers. Notice that the zero-mean restriction on the factor loadings is not binding
because for large N one can always remove the non-zero mean by transforming

10This includes conditional heteroskedasticity, such as ARCH or GARCH processes.



the variables in terms of deviations from time-specific averages or by adding time
dummies into the model (4). The resulting correlation between the factor load-
ings is clearly O,(1/N), thus the results we obtain below are not affected by this
transformation; see Sarafidis et al. (2009) for more details. Assumption 4 allows
for possible non-zero correlations between the loadings associated with the same
factors in the y and z equations, i.e. E(v,v};) # 0 for £ = 1,2,...,k. Since the
variables y;; and x;; of the same individual unit 7 can be affected in a related
manner by the same common shocks, allowing for this possibility is potentially
important in practice. Meanwhile Assumption 4(ii) implies that E(\;y};) = 0 for
¢ =1,2,...,k, i.e. the loadings of the factors entering only the process for y are
uncorrelated with those in . This can be seen admissible in some empirical ap-
plications, where different common shocks are thought to have associated effects
on cross-section units in unrelated ways. However, to pursue more general results,
we will relax this assumption in Section 3.

Finally, Assumption 5(i)-(ii) is common in overidentified instrumental variable
(IV) estimation; for example, see Wooldridge (2002, Ch5). Assumption 5(iii)
is required for identification of the estimator, the consistency property of the
variance-covariance estimator and the asymptotic normality of the estimator as
N and T tend to infinity jointly.

The first step of our approach is to consistently estimate the number of factors
in X; using, for example, the method proposed by Bai and Ng (2002), as T and N
tend jointly to infinity. Since these estimators are consistent, our discussion below
treats the number of factors, m,, as known. Given m,, the factors are extracted
using principal components from {X;}¥ ;. Define F, as /T times the eigenvectors
corresponding to the m, largest eigenvalues of the T" x T" matrix ﬁ Zf\il XX
]?‘m’_l is defined in the same way, but this time based on ﬁ Zf\; Xi,_ngﬁl. Note
that F, and I',; are estimated up to an invertible m, X m, matrix transformation.
Since our aim is to marginalise out the unobservable common components, the
principal components estimator F, can be treated as consistent, without loss of
generality.

The empirical counterpart of the projection matrices defined in (8) is given by

A

~ A~ -1 . ~ ~ ~ -1 .
My, =T~ B, (FF,) Bl My =T =B (B, ) B (1)
The associated transformed instrument matrix discussed above is
Mpzzz, where Zz = <X17 M}jﬂx _1Xi,71> . (12)

We propose the following instrumental variable (IV) or two-stage least squares
estimator of 6:

. N T,
Oy = <A/]VTB]_\71TANT> Al Byrgnr, (13)



Firstly we show consistency of the above estimator. To begin with, from (7)
and (13) we obtain

VNT (61 - 8) = (AxrBirAnr) A'NTANT( ﬁz ) (15)

Slnce the asymptotm properties of the estimator are primarily determined by those
of F ZZ 1 Z M. u;, we focus on this term. It turns out that the asymptotic

effect of the replacement of F, with F, is O, (%) , which is either O, (\/;>

or O, (ﬁ) The result of formal analysis is provided as a proposition below,

where (N, T) EAISNS signifies that N and T tend to infinity jointly.

Proposition 1 Consider the model in equations (1)-(3). Under Assumptions 1-
4(i)(ii), as (N, T) % oo such that N/T — ¢ with 0 < ¢ < oo,

N N
1 - 1 T
T 2 B = e 3 EM e\ b 0, (1),
=1 =1

where Z;, M. , Z; and Mg, are defined in (12), (11), (10) and (8), respectively,
binr = [Plinr: Blany] with

\AY F.F,\ ' Flu,
e = 30 Vo i ()

= 1]1
V’,1 Fo1 YV F' F,\ " Flu,
-b _ 7 x,—1 I1/ T* xr
v zz () B

where Vi = Vi—x 500 Vil Yy Tos, Vit = Vioi— Y00, Vi Do Tia T,
k N
and Yipn = % D tm1 i YeiYiie

Remark 3 The source of the bias term in Proposition 1 is different than the bias
terms reported in Bai (2009) and Moon and Weidner (2017). In particular, the
bias term of our estimator arises primarily due to the correlation between the
factor loadings associated with ¥, in x and the error term in the equation of vy,
w;. On the other hand, the two bias terms in Bai (2009) and Moon and Weidner
(2017) arise from error serial dependence and weak cross-sectional dependence.
In our case, error serial correlation in the idiosyncratic part of the x process, vy,
does not result in bias because vy 1s not correlated with the error term in the y
equation, ;. Also note that Moon and Weidner (2017) report additional bias term
that generalizes the Nickell bias which typically occurs in dynamic panel models
with fized effects. Our estimator is not subject to incidental parameter problem as
it is based on instrumental variables, therefore such a bias term does not arise in
our case.



Remark 4 Qur expression of the bias estimator involves the composite error wg;,
rather than the idiosyncratic error, ;. This underlines the simplicity and robust-
ness of our approach, which does not require estimation of the factor components
in the error term for bias correction or statistical inference of the estimator.

From the result stated in Proposition 1 it is easily seen that \/% Zf\il Z;M 7 W

is O, (1) and tends to a multivariate normal random variable. In addition, \/%bl NT

is O,(1) as T'/N tends to a finite positive constant ¢ (0 < ¢ < co) when N and T’
— oo jointly. Therefore, in such situation the IV estimator is v/ NT-consistent.
The above discussion is summarised in the following theorem:

Theorem 1 Consider model (1)-(3) and suppose that Assumptions 1-5(i)(ii)(iii)
hold true. Then, A

Oy —050
as N and T — oo jointly in such a way that T/N — c with 0 < ¢ < oo, where
0,y is defined in (13).

Now we turn our attention to the asymptotic normality properties of the esti-
mator. To this end, we propose a bias corrected estimator; otherwise the limiting

distribution of v NT' (é v — 0) will not be centered at zero. Based on the result
in Proposition 1 the bias corrected estimator is defined as

2 . i A a 1. .1 .
O =0 — <A§VTBN1TANT> A/NTBNITWI)NT’ (16)

~ ~

where BNT = \/%/BlNT with BlNT = [blllNT7 bllQNT]lv and

. T T
=1 j=1
2/
N N v X =~
~ 1 VZ-AMFI Vi . L Fa,
leNT - N ;1 ]El T m]TkN T )

N
LR
Yin = N Z Z’?éi’?léi; Yoo =T 'Fixe; 0 =y; — Wilpy; Vi = My Xy

The following theorem proves asymptotic normality of the distribution of the
bias adjusted estimator, based on Hansen’s (2007) law of large numbers and central
limit theorem, which are restated as Lemmas 1 and 2 in Appendix A.

Theorem 2 Suppose that Assumptions 1-5(i)(ii)(iii) hold true under model (1)-
(3). Then, assuming that plimyr—ebyr = b ezists,



(i) as N and T — oo jointly in such a way that T/N — ¢ with 0 < ¢ < 00

VNT <§W - 0) 4 N(0,¥),

where 7y is defined by (16) and

¥ - (AB'A)A'B'OB'A (A'B7'A)
is a positive definite matriz, A = plimy Ayr and B = plimy 7, Byr with
Anr and Byt defined in (14), and Q2 is defined in Assumption 5.

(ii) Uy —® 5 0 as N and T — oo jointly in such a way that T/N — ¢ with
0 < ¢ < o0, where

and ﬁl =Yy — Wié[\/.

Define the two-step bias corrected IV estimator as

= ~ ~ ~ o -1 . ~ 1 -
Orv2 =0z — (M) Al —~—bur (19)
with .
Orve = (A§VTQ]_VITANT> AN QyrENT. (20)

The following corollary describes the asymptotic properties of the estimator:

Corollary 1 Suppose that Assumptions 1-5(1)(ii)(iii) hold true under model (1)-
(3). Then, as N and T — oo jointly in such a way that T/N — ¢ with 0 < ¢ < o0,

VNT (ﬁm . 0) LYY (0, (A’Q”A)_1> ,

where Oy is defined by (19), A = plimy 1, Anr and Q is defined in Assump-
tion 9.

The associated overidentifying restrictions test statistic is given by

N N
1 o~ 5 |\ &- 5 =
SNT = NT <; uiMﬁzZi> Qnr (Z Z;Mﬁzui> ) (21)

i=1

where 1; = yi — W0y, and € is defined by (18). Hansen (2007) shows in the
context of a standard panel fixed effects estimation that the t-test based on the
variance estimator (17) is asymptotically valid even when 7" and N tend jointly
to infinity. Using similar arguments, the asymptotic validity of the two-step IV
estimator and the associated overidentifying restrictions test can be verified. The
result is summarised in the following theorem:
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Theorem 3 Suppose that Assumptions 1-5(i)(ii)(iii) hold true under model (1)-
(8). Then, as N and T — oo jointly in such a way that T/N — ¢ with 0 < ¢ < o0

d
SNT = Xi—15 (22)

for k > 1, under the null hypothesis of strong exogeneity of the covariates, where

Syt is defined in (21).

The overidentifying restrictions test is particularly useful in our approach in
order to test the assumption of strong exogeneity of the idiosyncratic error in the
equation for z.

3 The Case of Correlated Factor Loadings

In the previous section, we placed Assumption 4(ii) which leads to zero correlation
between the loadings of the factors that enter only y and those in x, i.e. E(Ay};) =
0 for £ = 1,2, ..., k. In this section, we drop this assumption. This is an important
extension to consider, since, in our approach, we only estimate the factors in the
regressors, leaving the factor components exclusively in v unestimated.

Note that if F, were observed, even with such correlated loadings, the factor
component would be projected out from X; completely, and so the defactored
regressors, Mg, X;, would be free from F ;. However, since in practice the factors
are unobserved, in the absence of Assumption 4(ii) estimation of F, can induces
additional non-zero correlations, which in turn imply extra asymptotic bias terms.

First, for a purely theoretical derivation purpose, we introduce the following:

7, = [X Mp,  Xi (23)

- N N -
where X; = X, —+ 3V X, I/ YAl X; 1 =X, 1 —+ 30 X0 I, YiaT
Note that we will not make use of Z; or its estimated version to compute our es-
timates. Then, we replace Assumption 5(iii) with a version appropriate for Z;:

2+4

Assumption 5(iv) E HSNOFth” < A < oo for all ¢ and T, where @p,;p =

T-'?Z'Mp,u; and E (cp FirPrer) are positive definite for any ¢, T. In addi-
tion, Hmy 7 oo N™' 0N | E(@rir@rir) = Q, which is a fixed positive defi-
nite matrix.!!

The asymptotic expansion of \/#—T Zf\il Z;M 7, 1; is summarised in the follow-
ing proposition.

Proposition 2 Under Assumptions 1-3,4(i),5(1)(ii)(iv), as (N,T) 2 o such
that N/T — ¢ with 0 < ¢ < 00,

\/_ZZ/ Al \/_ZZ Mp u; + A/ blNT—F\/ b2NT+Op

1 Assumption 5(iv) is in line with Assumption F in Bai (2003).
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where Z;, Mg , Z; and Mg, are defined by (12), (11), (23) and (8), respectively,

l’SlNT = [BlllNTv BII2NT]/7 l32NT = [BI21NT7B/22NT]/7 with

N N -1
~ 1 Z Z ViV, F'F, F' u;

, T T T
i=1 j=1
N N < -1
”" 1 V; 71V.7.771 / -1 F;: —1F:v,71 F;: flMqui
bionr = N ,Zl ]Zl TrijkN < T ) T
N N 1 -1
i i Z Vg,—1MFz,_1Vj T YL F;Fz F;ui ;
N T w TN AT T
i=1 j=1
N —1
~ 1 F'F, —
boinT = “NT Z | N ( Zﬂ ) F Y vt Mp, u;;
i=1
N —1
~ 1 _ F; Fx 1 —
boont = “NT ZF;ZTM% ( : IT ) F, 1 Zint,1Mp, Mg,

where Bjnr = % Z§:1 Zjvzl E (ijVZj) and ynr,1 = % 25:1 Zjvﬂ E (ij,—lvéj,A)'

Remark 5 In comparison with the asymptotic bias term bynr arising under As-
sumption 4 (i) in Proposition 1, dropping this assumption results in additional
asymptotic bias terms: b21NT, b22NT and the first term of b12NT These terms
arise due to that fact that pre-multiplying u; by Mp, does not eliminate the factor
component Fy\;, which will be correlated with ¥,I';; in the absence of Assumption

4(ii).
Since ﬁ SN ZM 7 1; is Op (1), the following theorem verifies consistency of

the estimator:

Theorem 4 Consider model (1)-(3) and suppose that Assumptions 1-3,4(i),5(i)(ii)(iv)
hold true. Then, A
6y — 650

as N and T — oo jointly such that T/N — ¢ with 0 < ¢ < oo, where Oy is
defined in (13).

Based on the result of Proposition 2, the bias corrected estimator is defined as

= R A A -1
Oy =01y — (AQVTBJ_VlTANT> A,NTBNlT\/_bNT’ (24)

BNT =1/ NBINT + \/ TBQNTy (25)

where

12



al al 2l al
with blNT = [bHNT, bionr!s b2NT = [b21NT7 byoyr)'s and

N N &'~ .
b 1 V7,V Al o F;ﬁz
B = o3 Vel 1
i=1 j=1
al
N N ~; I ~ R
S 1 Vi,V",lA, . B M
TRV 5 DAL S
i=1 j=1
~
N N v A~ .
: Vi*lMF'- 1VJ & F’ 4,
AT ’ & I‘ 'T—l x
" Nz;; T = SN T
N ~ —
2 1 Nl o F Ynrt;, F XovrF, F 4
b = —— T T
21NT N ; xi —~ kN ( T T T :
b -5 if/ o (Pt Devr it _ v 1B, L,
= N =1 o T T T

T T

We have chosen a Newey-West type estimator:

x tUg ]t'Uth + Z Z ( S I 1) @Z,jtﬁf,jtfs (fx tuzt s + fx,tsa;t>] ,

k N

EkNTuz Z ]1[ Z;

where FzEkNTFm, FxﬁlEkNT,_lui, F$7712kNT,—1FCE,—1 and Fx,flszT,—lFﬂf are
defined in an analogous manner. We set S = |T'/4].
We introduce the following assumption:!?

s=1 t=s+1

Assumption 6:
N
1 ~ d ~
e N ZMpu %N (o, Q) . (26)
i=1
The asymptotic normality of the IV estimators is ready to be shown:

Theorem 5 Suppose that Assumptions 1-3,4(1),5(i)(ii)(iv) and 6 hold true under

model (1)-(3). Then, assuming that plimNﬁT%mf)NT =Db exists, as N and T — 00
jointly in such a way that T/N — ¢ with 0 < ¢ < 00

N VNT (EW — 0) 4N (0, \if> , (27)

where Oy is defined by (24), and

B — (A'B’lA)_l A/BAﬁBAA (A/B—lA)_l (28)

12This assumption is in line with Assumption E of Bai (2009).
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is a positive definite matriz, whereAle is defined in Assumption 5(iv);
(i) ¥ Ny — W =0, (1), where Wyt is defined by (17);
(iii)
= ~ ~1
VNT <0m - 0) 4 N (0, (A’Q—1A> ) , (29)

where

D))

~ ~ aA—1 =~ =1 ~_
! /
e = 0y — (ANTQNTANT> AL

R
——=>b 30
NT\/W NT ( )

with @14 defined by (20).

The asymptotic properties of the overidentifying restrictions test statistic is
given in the following theorem.

Theorem 6 Suppose that Assumptions 1-3,4(1),5(i)(ii)(iv) and 6 hold true under
model (1)-(3). Then, as N and T — oo jointly in such a way that T/N — ¢ with
0<ec<oo )

Snt X34, (31)

for k > 1, under the null hypothesis of strong exogeneity of the covariates, where

N N

~ 1 =~ A\ oAl A =

Syr = ~7 (§ :uiMszi) Qyh <§ z;Mqui) , (32)
i=1 =1

4 Monte Carlo Experiments

This section investigates the finite sample behaviour of the proposed estimator
by means of Monte Carlo experiments. In particular, we focus on bias, standard
deviation, root mean square error (RMSE), empirical size of the t-test of the bias-

corrected two-step estimator ] 1va, which is defined by (30), as well as size and
power of the overidentifying restrictions test, where the test statistic is given by
(32). The small sample performance of our estimator is also compared to the
performance of the bias-corrected quasi maximum likelihood estimator (QMLE)
recently proposed by Moon and Weidner (2017), as defined in Corollary 3.7 in
their paper.'?

4.1 Design

We consider the following panel data model with two covariates and three factors:

2 2
Yit = QG + pYir—1 + Z Bexpir + Wig; Uip = Ni fyp + Z Vsifw,st + Eit

/=1 s=1

i=1,2,..,N; t=—49,—48,...,T, (33)

13We are grateful to Martin Weidner for providing us the computational algorithm for the
QMLE estimator.
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where o; ~ 7.i.d.N(0, (1 — p)*), A ~ i.i.d.N(0,1), 75 ~ 3.i.d.N(0,1) for s = 1,2,
and
Jut = Py fyi—1+ (1 — P?fy)l/QCy,tS

fm,st = pfx,sf:v,stfl + (1 - p?”x,s)l/QCx,stu
with (¢ ~ 1.0.d.N(0,1) and ;5 ~ 7.9.d.N(0,1) for s =1, 2.

The idiosyncratic error, €;, is non-normal and heteroskedastic across both i
and t, such that e; = .oy (€ —1)/V?2, €54 ~ i.i.d.x3, with 02 = nipy, n; ~ iidx3/2,
and ¢, = t/T for t = 0,1,...,T and unity otherwise.

The process for the covariates is given by

2
Ton = pei + D Vesifrst + s 1 =1,2,., Nit = —49,-48, . T,

s=1

for £ = 1,2, which means that only a subset of the factors in y enter the process
for x; and z».

The individual-specific effects in z; and x5 are allowed to be correlated with
those in the equation for y in the following way:

pei = pueci + (1= oy )i, wi ~ i.0.d.N(0, (1 = p)?)
for £ = 1,2. Furthermore, the factor loadings of x; are drawn as

Tsi = Py,157si + (1 - p?y,ls)l/Qflsi; glsz’ ~ ZZdN(Oa 1)7

and the factor loadings of x5 are generated by

Yasi = Prashi + (1= p2 50) Pbosis &asi ~ 1.i.d.N(0,1),

for s = 1,2. This allows for the case where Assumption 4(ii) is violated, that
is, the factor loadings in the process for x5 are both correlated with the loadings
corresponding to the non-overlapping factor in y, namely ;.

The idiosyncratic errors of the process for the covariates are serially correlated,
such that
Vit = poviir—1+(1=p ) P, @i ~ 1..d.N(0,202 2 ~id.dU[0.5,1.5],

AR )’ sz,z

for { =1,2.

We consider p € {0.5,0.8}, whereas we set §; = 3 and 5, = 1 as a benchmark
case following Bai(2009). In order to investigate the properties of the estimator
when one of the slope coefficients is equal to zero, we specify f; = 3 and [, = 0.
Moreover, we set p, = 0.5, py¢ = 0.5, pyzs = 0.5, py, =0.5, p,, = 0.5for £ = 1,2,
s=1,2.

It is straightforward to see that overall average of var(wg;) over i and ¢ is ¢2,
for £ = 1,2, since 02, merely allows for cross-sectional heteroskedasticity and

wWe,i

FE (02 ) = 1. Let m, denote the proportion of the variance of x;; that is due to

We,i
vy for all £. That is, we define 7, := ¢2/ (mx +¢2+(1— pv)Z). Solving in terms
of 2 yields
2 Ty 2
=— |14+ (1—p,)°.
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Thus, for example, 7, = 3/4 means that, for each of the covariates, the variance
of the idiosyncratic error accounts for 75% of the total variance in x. In this
case most of the variation in the covariates is due to the idiosyncratic component
and the factor structure has relatively minor significance. We set ¢? such that
e € {1/4, 3/4}. These values are motivated by the results in Sargent and Sims
(1977), who show that two common factors explain a large proportion of the
variation in many macroeconomic series.*

It is easily seen that the DGP ensures that the overall average of 02 = E (¢2,)
over 7 and ¢ is ¢?. Denoting p, = p, ¢, ¢ = 1,2, we define the signal-to-noise ratio of
the model, conditional on the factor structure and the individual-specific effects,
as follows:

ﬁerﬁz ) 952 9
oo vl —anie)  (FF) s i -
var (gi) 2

where L is the information set that contains the factor structure and the individual-

specific effects,'® and var (g;) is the overall average of E (¢2,) over i and t. Solving

for ¢2 yields 1

2 512 + 53 2 P?; -

= ( 1—p2 >§“ {SNR 1—p%} '
We set ¢2 such that SNR = 2. We consider all the combinations of (T, N), for
T € {25,50,100,200} and N € {25, 50,100, 200}.

In order to investigate the power of the overidentifying restrictions test, which
is defined in (21), we change the DGP such that vy = pyeveie_1 + (1 — p2)Y*w0,
Do = Teir + (1 — 722 005 With gy ~ i.i.d.N(0,1), £ = 1,2. We set 7, = 0.5 and
79 = 0 so that the idiosyncratic error of xzy; is correlated with e;.

All results are obtained based on 2,000 replications, and all tests are conducted
at the 5% significance level.

4.2 Results

Table 1 reports the bias, standard deviation, RMSE and size of the t-test based on
the IV and QMLE estimators for the panel dynamic model with p = 0.5, g; = 3,
Bs = 1.16 Panel A reports the results of the estimators of p, and Panel B those
for By. The results for 5; are not reported here as they are qualitatively similar
to those for fy (which are available upon request from the authors). IV refers
to the bias-corrected two-step instrumental variables estimator defined in (30),
whereas QMLE stands for the bias-corrected quasi maximum likelihood estimator
proposed by Moon and Weidner (2017; Corollary 3.7)

When using the IV estimator, an estimate of m,, i.e. m,, is obtained in
each replication, which is based on the information criteria I'C proposed by Bai

“Indicatively, they find that two common factors explain about 93% of the variation in real
GNP, 86% of the variation in unemployment rate and 26% of the variation in residential con-
struction.

15The reason we condition on these variables is that they influence both the composite error
in the equation for the dependent variable and the covariates.

16The quantities reported for bias, standard deviation and RMSE are scaled by a factor of 10
in order to make the results easier to discern.
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and Ng (2002). We set the maximum number of factors equal to three.!” The
estimate of common factors is denoted by F,, which is a T x 1, matrix obtained
by extracting the principal components from Zf\il (XZ — XZ-) (Xz — Xi),, where
X; =ty x T7'Y°x), and ¢7 is a T x 1 column vector of ones. In order to deal

t
with individual specific effects, we use the matrix that projects out the common
factors including a column of ones, such that H = |:LT; Fx} with Mg = I —

ﬁ(ﬁ’ ﬁ)_lﬁ’ , rather than Mz . By doing so, we swipe away the individual effects
in x;;. As for the QMLE, (y;;,x/,) are transformed prior to estimation by taking
deviations from individual-specific averages, while m, 4+ m,, is estimated from the
residuals of the model using the same criteria of Bai and Ng (2002), IC}, where
the maximum number of factors is set equal to four.

First let us discuss the small sample properties of the estimators of p, where the
results are presented in Panel A, Table 1. We see that the IV estimator appears
to have virtually no bias. The largest absolute bias reported in Table 1 is 0.0011
for N =T = 25, and it decreases in magnitude as N or T increases. There is
little evidence that the value of 7, affects the bias of IV estimator. Absolute
bias of the QMLE reported in Table 1 is always much larger than that of the IV
estimator, and it seems to be sensitive to the values taken by 7', N and 7,. When
7, = 1/4, the bias of the QMLE is negative in most of the cases considered, and
the bias decreases in absolute value as T increases. For instance, when N = 50, for
T = 25,50, 100, 200, the biases of QMLE are -0.0060, -0.0026, -0.0012 and -0.0005,
respectively. On the other hand, when 7, = 3/4, the bias does not necessarily
decrease monotonically as 7' increases, unless N is sufficiently large.

The standard deviation of both the IV estimator and QMLE becomes smaller as
the values of either 7" and/or N increases. Even though the standard deviation of
IV estimator is comparable to that of QMLE, the standard deviation of the QMLE
is smaller than that of IV estimator in most of the cases under consideration. This
is expected because the IV estimator is based on estimating the common factors
in x only, whereas the factors in the error term of y are also estimated when using
the QMLE. This difference in dispersion of two estimators is, however, smaller
when 7, = 3/4, since the IV estimator gains efficiency when 7, gets larger, as it
increases the correlation between the instruments and the endogenous variables.

The performance in terms of RMSE reflects the insights drawn from the results
of bias and standard deviation discussed above. When 7, = 1/4, the smaller
standard deviation overwhelms the larger bias of the QMLE, so that the RMSE of
QMLE is smaller for all the combinations of N and 7" considered. When 7, = 3/4,
the larger bias of QMLE and improved relative efficiency of the IV estimator make
the RMSEs of IV estimator and QMLE very similar in magnitude. Indeed, in seven
cases out of 16 combinations of NV and T', the RMSE of IV estimator is smaller than
that of QMLE. Notwithstanding, the size of t-test based on the QMLE appears
to be quite severely distorted. Even when N =T = 200 and 7, = 1/4, which can

17Simulations in Bai and Ng (2002) show that the performance of this information criterion is
robust provided min{N,T} > 40. Our results show that notwithstanding that min{N,T} < 40
our IV estimator appears to perform very well. Intuitively, this is because in our experiment the
results suggest that for small values of either N or T', the information criterion tends to overshoot
the true number of factors, which however does not affect consistency for our estimator.

17



be seen as the most favorable case for QMLE, the size of the t-test is 13.4% at the
5% nominal level. In contrast, the size of the t-test based on the IV estimator is
very close to nominal size of 5% for all the combinations of N and T" and for both
7y = 1/4 and 3/4.

Now let us turn our attention to Panel B in Table 1, which summarizes the
results for the estimators of #5. Surprisingly, the QMLE of £, exhibits much larger
bias than that of p, and it gets larger in magnitude when the value of 7, increases.
For example, when N =T = 50 and 7, = 1/4, the bias of QMLE is 0.0208, but it
becomes 0.106 with 7, = 3/4, which is a positive bias of 10.6%. On the other hand,
the results reported in Panel B in Table 1 suggest that the bias of IV estimator
is very small in absolute value. Furthermore, the performance of IV estimator in
terms of standard deviation dominates that of QMLE. In fact, in seven (fifteen)
cases out of 16 combinations of N and 7', the standard deviation of IV estimator
is smaller than that of QMLE when 7, = 1/4 (7w, = 3/4). As for the RMSE, the
superior relative performance of IV estimator is even more pronounced. When
7, = 3/4, the value of RMSE of IV estimator is twice as small as that of QMLE
in a vast majority of cases. Similarly as results reported in Panel A, the empirical
size of the t-test based on the QMLE presented in Panel B exhibits considerable
upward distortions, whereas very small or no size distortions are seen for the t-test
based on the IV estimator.

Table 2 provides the results obtained using the IV estimator and QMLE to
estimate the dynamic panel model with p = 0.5, 51 = 3, o = 0. Similar conclu-
sions are drawn based on these results, so we do not discuss them in detail to save
space. In order to see how the small sample performance of the two estimators is
affected when the DGP exhibits higher degree of persistency, further experiments
with p = 0.8, f; = 3, f2 = 1 are implemented and the results are summarized in
Table 3. The relative performance of the IV estimator and QMLE is qualitatively
similar to that under p = 0.5, but the differences in results described above are
more apparent. In particular, the bias of QMLE of [, is very large in magni-
tude when p = 0.8 (see Panel B, Table 3) and much more severe than that under
p = 0.5. For example, when p = 0.5, 7, = 3/4 and N = T = 50, the bias of QMLE
of 33 is 0.106 (see Panel B, Table 1), while it is 0.206 when p = 0.8 (see Panel B,
Table 3). More surprisingly, when 7, = 1/4 with p = 0.8 and N = T = 50, the
bias of QMLE is even larger in absolute value compared to the previous two cases
and it is equal to 0.401. The corresponding bias of the IV estimator is smaller
in magnitude and takes values of -0.0022, -0.0080 and -0.0103, respectively. The
large values of absolute bias of the QMLE result in bigger RMSE and more severe
size distortions of the t-test based on this estimator.

Finally, Table 4 reports the empirical size and power of the overidentifying
restrictions test. The size of test is very close to the nominal value in most of
combinations of N and T, unless N is very small, in which case it is slightly
distorted downwards. Notably, the test has high power when the idiosyncratic
error in x equation is correlated with the idiosyncratic error in y equation. Thus, it
appears that this test can be a reliable statistical tool to check the key assumption
within our approach.
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5 Concluding Remarks

This paper has proposed a computationally attractive instrumental variables pro-
cedure for consistent estimation of dynamic linear panel data models with error
cross-sectional dependence when both N and 7" are large. Our approach involves
projecting out the common factors from the regressors at first stage, and then
using the defactored regressors as instruments for the endogenous variables. The
estimated number of factors and the factors themselves are obtained from observed
variables rather than residuals. Since our procedure is based on instrumental vari-
ables, there is no need to correct for Nickell bias induced due to predeterminedness.

Aside from computational simplicity the method has the feature that it does
not require estimating possible distinct factors that enter directly only into the y
process, thus leaving these factors in the residuals. Therefore, full specification of
the error term of the model for y is not required.

The finite sample evidence reported in the paper suggests that the proposed
estimator performs reasonably well under all circumstances examined, and there-
fore it presents a good alternative way of estimation to existing approaches. In
particular, the estimator appears to have little bias, and small dispersion unless
either V or T is small. Furthermore, the empirical size of the t-test appears to be
close to nominal one in most cases, which makes our estimator particularly suit-
able for inferential purposes. The results of the overidentifying restrictions test
statistic suggest that the test statistic has good power to detect violations from
basic assumptions employed within our approach.

In practice, it is also possible that (a subset of) the factors that hit the covari-
ates are orthogonal to the composite disturbance of the y process. In this case the
proposed approach in this paper is asymptotically valid, though, full defactoring
is not necessary for consistency of the IV estimator. Empirically, this issue can be
addressed using a sequential testing method based on the overidentifying restric-
tions test that we have explored in this paper. In particular, one may start by
testing whether the untransformed covariates are strongly exogenous with respect
to the composite disturbance. Notice that the null hypothesis will also be satisfied
if the covariates do not have a factor structure at all. If the null is rejected, one
may project out one factor (based on the largest eigenvalue) and test whether the
defactored regressors yield valid instruments using the same statistic. If the null
is rejected, one may project out two factors and so on. Naturally, the significance
level used for this sequential method needs to be appropriately adjusted. The
interested reader is recommended to refer to Proposition 2 of Ahn et al. (2013).

Finally, notice that although the proofs of our results require N and T both
large, under certain restrictions imposed in the covariates — in particular, asymp-
totic homoskedasticity and serial uncorrelatedness — it is possible to derive consis-
tency and asymptotic normality of our estimator even for T fixed; see Bai (2003).
On the other hand, the simulation evidence we have presented suggests that even
if these conditions are not met in practice, the bias of the estimator appears to
be small and the size of the t-test satisfactory unless both N and T are small.
Therefore, we hope that our approach provides a computationally attractive way
to estimate dynamic panel data models with multi-factor residual structures, even
in cases where either T" or N are moderately small.
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Table 1: Bias, Standard Deviation, RMSE and Size of the t-test of IV and QMEL
estimators, for the Panel Dynamic Model with p = .5, f; = 3 and 5y = 1.

PANEL A: Bais, standard deviation, RMSE and size of t-test of the estimates of p

v QMLE
Ty =1/4 Ty = 3/4 Ty =1/4 Ty = 3/4
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
biasx10

25 -.011 .000 -.004 .000 -.011 -.001 -.003 .001 -.060 -.070 -.081 -.085 -.055 -.079 -.114 -.140

50 .004 .006 .000 .000 .005 .006 .000 -.001 -.026 -.039 .040 .040 .140 -.007 -.041 -.068

100 .001 .005 .001 .001 .001 .004 .001 .001 -.012 -.019 -.019 -.012 .043 .019 -.011 -.038

200 -.002 .001 -.002 -.001 -.001 .001 -.001 -.001 -.005 -.010 -.009 -.010 .062 .035 .001 -.002
st.dev.x10

25 .371 257 177 125 325 .233 153 .109 149 100 .081 .053 203 162 .134 .117

50 .216 .154 .109 .078 .183 .133 .094 .066 .081 .057 .039 .027 .132 .104 .078 .061

100 .145 .102 .070 .050 .123 .086 .060 .042 .053 .037 .024 .024 .087 .067 .052 .036

200 .101 .070 .048 .035 .085 .059 .042 .030 .037 .025 .017 .011 .066 .050 .036 .023
RMSEx10

25 .371 257 177 125 325 .233 .153 .109 150 124 .108 .100 210 .180 .176 .183

50 .216 .154 .109 .078 .183 .134 .094 .066 .085 .069 .056 .055 .132 .104 .088 .091

100 .145 .102 .070 .050 .123 .086 .060 .042 .055 .041 .031 .026 .097 .070 .053 .052

200 .101 .070 .048 .035 .085 .059 .042 .030 .037 .026 .019 .015 .090 .060 .036 .032
size of t-test

25 .069 .061 .047 .045 .078 .063 .049 .045 .208 .136 .107 .090 .210 .251 .409 .603

50 .059 .056 .050 .058 .070 .060 .060 .065 .259 .172 .115 .093 .170 .173 .240 .449

100 .061 .060 .041 .044 .075 .064 .053 .056 .380 .245 .145 .088 .171 .164 .150 .319

200 .073 .050 .049 .049 .081 .059 .059 .058 .593 .395 .222 .134 .301 .230 .131 .221
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Table 1, continued.

PANEL B: Bais, standard deviation, RMSE and size of t-test of the estimates of 5

v QMLE
T, =1/4 T = 3/4 Ty =1/4 T = 3/4
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
biasx 10

25 .013 -.011 .004 .017 .207 .101 .094 .091 1.13 .786 .359 .151 1.12 1.19 1.08 .966

50 .007 -.022 -.009 .009 .045 .006 .015 .027 .687 .208 .081 .035 1.15 1.06 .911 .667

100 -.005 .005 -.005 -.002 .016 .016 .005 .005 .435 .117 .026 .013 1.11 .942 .667 .311

200 -.001 .008 -.001 .005 .007 .010 .004 .006 .298 .044 .011 .010 1.06 .837 .435 .112
st.dev.x10

25 1.32 .896 .637 .453 1.05 .728 .523 .362 1.65 1.19 .742 453 1.00 .744 .576 .445

50 .869 .594 .426 .289 .693 .466 .333 .227 1.28 .696 .368 .233 .781 .588 .467 .369

100 .588 .412 .282 .198 455 .318 .221 .157 .998 .426 .233 .158 .676 .486 .411 .288

200 413 .295 .202 .146 .322 .222 .153 .113 .786 .263 .156 .107 .578 .451 .355 .178
RMSEx10

25 1.32 .896 .637 .453 1.07 .735 .531 .373 2.06 1.42 .824 477 1.59 1.40 1.22 1.06

50 .869 .594 .427 .289 .694 .466 .333 .229 1.46 .727 .376 .235 1.39 1.21 1.02 .762

100 .588 .412 .283 .198 455 .318 .221 .157 1.09 .442 .235 .159 1.32 1.06 .782 .424

200 413 .295 .202 .146 .322 .222 .153 .113 .841 .267 .157 .107 1.21 .951 .562 .207
size of t-test

25 .066 .064 .062 .060 .076 .072 .068 .063 .497 .384 .242 .151 .517 .643 .740 .823

50 .078 .057 .055 .051 .084 .058 .058 .052 .390 .192 .097 .078 .643 .756 .810 .774

100 .075 .068 .049 .049 .077 .060 .045 .055 .342 .138 .088 .076 .785 .824 .767 .485

200 .072 .073 .064 .063 .078 .062 .047 .059 .346 .115 .078 .061 .853 .862 .637 .218

Notes: The DGP follows yiz = o + pyit—1 + Yos—q Bexeit + Nifyt + Yooy Vsifa,st + €it, Where a; ~
1.0.d.N(0,(1 = p)*), N\i ~ i.4.d.N(0,1),7vs; ~ 5.i.d.-N(0,1) for s = 1,2,e; = seot(eir — 1)/2V/2, €y ~ iid.x3,
with a?t = nipt, Ni ~ i.i.d.x%/Q, pt = t/T for t = 0,...,T, otherwise unity. =gz = pe; + 23:1 Yesifst + Vit
for all ¢, where pp; = pueoi + (1 — pi’e)l/zwh-, wei ~ i.i.d.N(0,(1—p)?). The factor loadings, ~vss;,
in g are drawn as Yes; = pPvy,es%si + (1 — p?%gs)l/ngSM Eosi ~ 1.0.d.N(0,1) for £ = 1 and s = 1,2,
whereas vpsi = pyeshi + (1 — ,037183)1/2{251-7 &si ~ 1.4.d.N(0,1) for £ = 2 and s = 1,2. Moreover,
.fz,st = pfz,sfw,st—l “F(l*p?x“s)l/zgz,sta and fy,t = Pfyfy,t—l “F(l*p;y)l/2<y,t with Cz,st ~ ZZdN(07 1), s = 17 2
and Cy,¢ ~ .0.d.N(0,1). wvgsx = py eveir—1 + (1 — p%ye)lmwgit, wpie ~ 4.5.d.N(0, qga,?wvi). We set p,¢ = 0.5,
Pyes = 0.5, pfas = pgy = 0.5, py ¢ = 0.5 for all £ and s. §52 is set such that SNR = 2, while ¢2 is determined by
7z, the proportion of the total variance in « due to the idiosyncratic component. w, € {1/4, 3/4}, p = {0.5,0.8}
with 81 = 3, whereas 82 = {1,0}. IV refers to the bias-corrected two-step instrumental variables estimator
defined in (30). QMLE refers to the bias-corrected quasi maximum likelihood estimator put forward by Moon
and Weidner (2017; Corollary 3.7). For IV and QMLE, the number of factors are estimated using IC; proposed
by Bai and Ng (2002). All experiments are based on 2,000 replications and nominal level of the test is set to 5%.
The results for the estimates of 81 are very similar and not reported (available upon request from the authors).
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Table 2: Bias, Standard Deviation, RMSE and Size of the t-test of IV and QMEL
estimators, for the Panel Dynamic Model with p = .5, f; = 3 and 5y = 0.

PANEL A: Bais, standard deviation, RMSE and size of t-test of the estimates of p

v QMLE
Ty =1/4 T = 3/4 e =1/4 e = 3/4
T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
biasx10

25 -.011 .001 -.004 .001 -.007 .000 -.002 .002 -.064 -.074 -.014 -.085 -.053 -.082 -.120 -.146

50 .005 .006 .001 -.001 .006 .005 .000 .000 -.026 -.039 -.019 .040 .015 -.008 -.044 -.072

100 .001 .004 .002 .001 .001 .003 .002 .000 -.014 -.019 -.019 -.019 .045 .018 -.014 -.040

200 .000 .002 -.002 -.001 .000 .002 -.002 -.001 -.005 -.010 -.009 -.010 .063 .032 -.002 -.024
st.dev.x10

25 .379 .259 .177 .125 329 .225 152 .109 143 .082 .054 .052 206 .167 .136 .117

50 .223 .156 .111 .079 .186 .134 .094 .067 .081 .057 .036 .027 .134 .105 .078 .060

100 .148 .103 .071 .051 .125 .086 .060 .042 .054 .036 .024 .018 .090 .069 .052 .035

200 .102 .070 .050 .035 .085 .059 .042 .029 .037 .025 .017 .011 .068 .051 .037 .022
RMSEx10

25 .379 .259 .177 .125 329 .225 152 .109 156 .086 .055 .100 213 186 .181 .187

50 .223 .156 .111 .079 .186 .134 .094 .067 .085 .069 .041 .055 .135 .105 .089 .094

100 .148 .103 .071 .051 .125 .086 .060 .042 .055 .041 .031 .026 .101 .071 .054 .054

200 .102 .070 .050 .035 .085 .059 .042 .029 .037 .027 .019 .015 .092 .060 .037 .033
size of t-test

25 .067 .055 .047 .044 .081 .063 .049 .050 .207 .251 .371 .584 212 .264 413 .612

50 .064 .052 .050 .054 .066 .067 .059 .064 .138 .174 .245 .398 .167 .166 .244 .473

100 .059 .061 .046 .042 .078 .064 .056 .055 .111 .109 .145 .209 .185 .153 .154 .337

200 .074 .046 .047 .048 .083 .056 .058 .052 .096 .091 .092 .063 .303 .241 .137 .237

22



Table 2, continued.

PANEL B: Bais, standard deviation, RMSE and size of t-test of the estimates of /5

v QMLE
Ty =1/4 Ty = 3/4 Ty =1/4 Ty = 3/4
T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
biasx 10

25 .010 -.009 .003 .017 .200 .102 .092 .091 1.07 .622 .266 .089 1.16 1.10 .965 .835

50 .007 -.021 -.009 .008 .047 .009 .015 .027 .554 .140 .046 .012 1.10 .984 .802 .530

100 -.004 .007 -.004 -.001 .018 .019 .006 .005 .343 .082 .011 .001 1.09 .868 .555 .212

200 -.003 .008 -.002 .005 .006 .011 .003 .005 .221 .023 .004 .004 1.03 .763 .337 .065
st.dev.x10

25 1.29 870 .617 .437 1.01 .694 .498 .343 1.60 1.10 .664 .406 .979 .729 .568 .433

50 .837 .575 .412 .280 .652 .441 .314 .215 1.19 .626 .331 .219 .767 .583 .463 .361

100 .571 400 .273 .191 .433 .300 .208 .147 .904 .375 .219 .149 .672 .485 .406 .258

200 .400 .286 .195 .142 .304 .209 .145 .107 .686 .236 .147 .101 .578 .452 .334 .144
RMSEx10

25 1.29 870 .617 .438 1.02 .701 .506 .354 1.92 1.27 .711 .415 1.52 1.32 1.12 .941

50 .837 576 .412 .280 .654 .441 .315 .217 1.31 .642 .334 .220 1.34 1.14 .926 .642

100  .571 400 .273 .191 .433 .301 .208 .147 .967 .384 .219 .159 1.28 .994 .688 .334

200 .400 .286 .195 .142 .305 .209 .145 .107 .721 .238 .147 .101 1.18 .887 .475 .158
size of t-test

25 .067 .065 .065 .060 .079 .072 .071 .065 .465 .339 .203 .155 .518 .617 .691 .755

50 .076 .055 .056 .053 .082 .060 .054 .052 .357 .161 .088 .075 .638 .741 .738 .659

100 .076 .067 .049 .048 .080 .064 .049 .054 .300 .122 .086 .072 .774 .796 .674 .363

200 .074 .075 .065 .062 .079 .065 .053 .061 .300 .105 .076 .063 .843 .828 .537 .147

Notes: See notes to Table 1.
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Table 3: Bias, Standard Deviation, RMSE and Size of the t-test of IV and QMEL

estimators, for the Panel Dynamic Model with p = .8, §; = 3 and [y = 1.

PANEL A: Bais, standard deviation, RMSE and size of t-test of the estimates of p

v QMLE
T, =1/4 Ty = 3/4 Ty =1/4 e = 3/4
T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
biasx 10

25 -.053 -.005 -.012 .006 -.053 -.010 -.014 .005 -.219 -.300 -.490 -.980 -.528 -.596 -.795 -1.37

50 .012 .016 -.001 -.004 .015 .015 -.002 -.004 -.049 -.074 -.097 -.132 -.209 -.225 -.234 -.255

100 .002 .012 .004 .002 .002 .011 .004 .002 .013 -.002 -.025 -.058 -.080 -.085 -.094 -.098

200 -.004 .004 -.005 -.003 -.004 .004 -.005 -.003 .044 .030 .006 -.023 -.023 -.029 -.030 -.033
st.dev.x10

25 1.28 .852 .584 .405 1.33 .875 .597 .419 388 447 732 1.11 B81 521 .689 1.12

50 .639 .466 .325 .227 .637 .465 .324 .225 152 121 105 .098 225 174 .140 .130

100 .407 .283 .198 .139  .405 .279 .197 .136 .092 .068 .060 .046 .138 .102 .075 .057

200 .272 189 .134 .096 .267 .186 .132 .094 .060 .051 .037 .028 .087 .068 .048 .036
RMSEx10

25 1.28 .258 .584 .405 1.33 .875 .597 .419 446 .539 .881 1.48 .785 .792 1.05 1.77

50 .639 466 .325 .227 .637 .465 .324 .225 .160 .142 .142 .164 .306 .284 .273 .286

100 .407 .283 .198 .139  .405 .279 .197 .136 .092 .068 .065 .075 .160 .133 .120 .114

200 .277 189 .134 .096 .267 .186 .132 .094 .074 .059 .038 .037 .090 .074 .057 .049
size of t-test

25 .057 .049 .045 .045 .070 .056 .046 .045 .367 .522 .701 .887  .502 .688 .875 .974

50 .064 .060 .055 .062 .069 .063 .053 .065 @ .212 .298 .461 .706 .311 .472 .676 .861

100 .071 .064 .046 .055 .078 .062 .051 .053 .152 .139 .217 .524 .182 .237 .366 .580

200 .077 .060 .063 .059 .079 .062 .064 .060 .203 .245 .145 .279 .082 .123 .141 .226
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Table 3, continued.

PANEL B: Bais, standard deviation, RMSE and size of t-test of the estimates of 5

v QMLE
Ty =1/4 T = 3/4 T, =1/4 T, = 3/4
T,N 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
biasx 10
25 .034 -.078 .003 .038 .266 .029 .078 .100 4.05 3.85 3.75 3.18 2.01 2.08 1.93 1.79
50 -.041 -.103 -.035 .028 -.032 -.080 -.017 .042 3.93 4.01 3.89 3.78 1.92 2.06 2.03 2.05
100 -.015 .008 -.007 -.002 .004 .002 .011 .004 3.99 3.91 3.79 3.42 1.89 1.98 2.02 2.01
200 -.004 .004 -.005 -.003 -.018 .015 .011 .015 3.86 3.87 3.65 2.73 1.91 1.95 1.93 1.92
st.dev.x10
25 441 292 204 141 4.08 2.80 1.99 1.37 2.03 1.59 1.33 1.51 2.82 2.02 1.60 1.30
50 271 1.83 1.31 .882 2.61 1.78 1.26 .863 1.70 1.14 .906 .703 1.86 1.42 1.04 .733
100 1.77 1.23 .858 .611 1.73 1.19 .833 .599 1.51 1.05 .816 .784 1.36 .944 .715 .518
200 1.24 .859 .596 .442 1.20 .829 .574 .427 1.38 1.04 .865 1.05 1.01 .723 .522 .371
RMSEx10
25 441 292 2.04 141 4.09 2.80 1.99 1.37 4.54 4.17 3.98 3.52 3.47 2.90 2.51 2.21
50 271 1.83 1.31 .882 2.61 1.78 1.26 .863 4.28 4.17 4.00 3.85 2.67 2.51 2.28 2.18
100 1.77 1.23 .858 .611 1.73 1.19 .833 .599 4.26 4.04 3.87 3.51 2.33 2.20 2.15 2.07
200 1.24 .859 .596 .442 1.20 .829 .574 .427 4.10 4.00 3.75 2.93 2.17 2.08 2.00 1.96
size of t-test
25 .051 .057 .055 .057 .058 .068 .063 .056 .367 .891 .935 .887 .273 .331 .428 .541
50 .068 .056 .052 .046 .081 .064 .056 .049 .899 .990 .994 .999 .324 .495 .651 .885
100 .073 .062 .044 .055 .081 .060 .045 .055 .960 .996 .998 .994 .459 .677 .903 .982
200 .071 .064 .046 .060 .078 .059 .048 .060 .980 .991 .994 .965 .660 .874 .987 1.00

Notes: See notes to Table 1.

25



Table 4: Estimated Size and Power of the Overidentifying Restrictions Test, for
the panel dynamic model with p = .5, f; =3 and f; =1

Size Power
TN 25 50 100 200 25 50 100 200
Ty =1/4
25  .042 .044 .045 .049 .389 .636 .888 .992
50  .034 .050 .049 .050 .678 .993 .994 1.00
100 .049 .049 .050 .047 .912 .995 1.00 1.00
200 .039 .049 .058 .046 .995 1.00 1.00 1.00
Ty = 3/4
25  .039 .044 .047 .053 .643 .932 .996 1.00
50  .038 .046 .050 .053 .934 1.00 1.00 1.00
100 .054 .050 .048 .049 .998 1.00 1.00 1.00
200 .038 .050 .049 .045 1.00 1.00 1.00 1.00

Notes: The DGP is the same as that for Table 1, except that follows vgir = po,eveir—1 + (1 — p?)lﬂwzu,
wpie = Tegit + (1 — 7'52)1/29&,5 with gg;¢ ~ 4.4.d.N(0,1), £ = 1,2. We set 1 = 0.5 and 72 = 0 so that the
idiosyncratic error of x1;; is correlated with €;;. The overidentifying restrictions test statistic is defined by (21),
and the 5% critical value from X% distribution is used for the test. All the experiments are based on 2,000
replications.
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Appendix A: Proofs of Main Results

We rely on the law of large numbers and central limit theorem results, which are stated in
Lemmas 1 and 2; see Hansen (2007) for more details. The proofs of all the Lemmas are provided
in the Appendix B in the Supplemental Material.

Lemma 1 Suppose {X; r} are independent across i =1,2,...,N for all T with E (X; 1) = i,
and E |XZ-,T|1+6 < A < oo for some § >0 and all i, T. Then N~! vazl (Xir — pir) 20 as
(N, T) % oo

Lemma 2 Suppose {x; 7}, h X 1 random vectors, are independent across i =1,2,.... N for all
T with E (x;7) =0, E (xl Tx;T) =37 and E szT||2+5 < A < o0 for some § >0 and all i,
T. Assume ¥ =limy 700 N~ Zz 1 24,1 18 positive definite and the smallest eigenvalue of
is strictly positive. Then, N~1/2 E X7 4N (0,%) as (N,T) %

Consistency of factor estimators and other related results are in line with the discussion in
Bai (2009). The proof of some elementary results are very similar to Bai (2009) and are therefore
omitted; readers are invited to refer to these papers for this purpose. In what follows, we define
ont =1/ min {VN,VT}, 633 = 1/ min {N, T}.

Since our aim is to marginalize out the unobservable common components, we assume the
principal component estimator ¥, (Fm’,l) is consistent for F, (F, _1) without loss of generality.
This is valid because the factors and factor loadings in the model can always be redefined as F, G
(F; 1G*) and G™'T'y; (G*7'T;;), respectively, for some invertible matrix G (G*). However,
we clarify this difference when necessary.

Next, since our instruments are MF,T X,; and MFx Mpzy_lxi’,l, we consider first

;X
7T E X;,ilMﬁ‘zuZ',
i=1
followed by
1
— E X Mg u;
i £, Y
VNT —

where Xi,fl = MI:_' Xi,fl-

Let =y and lEkl NT,—1 be my X m, diagonal matrices that consist of the first m,, largest
eigenvalues of = SV XX/ and ~7 >N Xi,—1X] _;, respectively. As it is well known, the
factor estimator is up to the rotation, which is sufficient for our purposes. Denote the T x m,
matrix of true factors FO and m, x k matrix of true factor loadings as T'%,. In a similar way,
denote by FJ, 49 and A the true factors and factor loadings in y equation, which are T' x m,,
mg X 1 and my x 1 matrices, correspondingly.

For any invertible m, x m, matrices G and G*, now define

F,=F)G,I,,=G 'T, and F; , =F) ,G*, I'};=G"'TY,.

Then, My, = Iy — FOG (G'FYFIG) ' G'FY = Iy — FIG (G) ' (FUF)) ™ (G)) ' G/FY =
Mo, so that Mp, F) = MpoFo= 0. In the same way, we have Mp: K= Mpo ng _,=0.
This implies that the consistent estimators F, of F, and Fm —1 of F} _; serve the purpose of
marginalizing out the effect of the factor components F? and Fg 1 respectlvely The following

restrictions are imposed

E

N
T'F.F, =1, Z Z"/zﬂlei is diagonal,
(=1 i=1



and
kE N
T~'Fy _\F, | = ,Z Z’YZ’)’Z is diagonal,
(=1 i=1
so we have
TP F, =1,,,and T'F, F, 1 =1,,.

Following the discussion in Bai (2009), p.1266, we write

E N kE N
L 1 1
F.EunT = ﬁ ZZFQ{Y&V& ﬁ ZZV€77€/FO/F
(=1 i=1 =1 i=1
1 E N 1 E N
“ 0 (25
+ W ; ; flv& Ni Z Z 7[7.721]?1 F
=E; +Es +E;+E,4. (A.1)
Define
kN - N Z Z'Yef)’ha 0F, = Tﬁnglﬁ‘m- (A.2)
=1 i=1
Observing that
E, = F)Y) Ay, (A.3)
we have )
F.2uNT — FgrgNAm =E; +E; + E;. (A.4)

Post-multiplying the above equation by Q = (Tg NA, Fw) yields

F.Z:vrQ —F) = (B, + E, + E3) Q. (A.5)

Let .
G= (EkNTQ> ) (A.6)

where By is assumed to be invertible (the invertibility of E;nr is proved in Bai 2009, p.1267)
so that

F,G'—F’ = (E, +E2+E3)Q

Z Z Fm’YthF Q + N Z Z VoY Z/Fg/FIQ

lel [111

1 k N o
NT Z Z veivy Fr Q. (A7)

(=1 1i=1

Similarly, we have

I *—1 0
F, .G - Fm,fl =

M=
e

0 0.,/ o A JN
FO 1 v0ivi 1 Fe1Q t N7 Z ZV& 1713 Y QY

1
NT
/=1 i=1 Z 11:=1
ML
+ NT Z Zvéi,71V2¢771Fz,lefla (A.8)
=1 i=1
~ -1 ~
where G* = (EkNTﬁlel) , with Epn7,—1 being assumed to be invertible, Q_; =

-1

(Tionﬁm,_l) and Ayp | =T 'FY_F, ..
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Lemma 3 Under Assumptions 2-3, the following statements hold for ¢ = 1,2,...,k and s =
1,2,..,T:

N T 2
1
E TNT Z Z £ [eiveis — E (vsigvis)]|| <A < oo, (A.9)
=1 t=1
, XT 2
E T SN £ eiave s — E (veigves)]|| <A < oo, (A.10)
=1 t=1
1 N T 2
E JNT Z Zvit [vei 1vei,s — E (Ve veis)]|| < A < oo, (A.11)
=1 t=1
, Xz 2
Bl SO eiaveis — B (veigvs)l| <A < oo, (A.12)
=1 t=1
, XoT 2
E INT DO viea eaves — E (v s)]|| <A < oo (A.13)
=1 t=1
, NI 2
E INT sz;t [ei,t—1Vei,5—1 — E (Vi p—10e5,s-1)]|| < A < oo, (A.14)
=1 t=1
| NI 2
E INT Z ng,t [Vei t—1V0i,5—1 — E (ei 1—1vei,5-1)]|| < A < o0, (A.15)
=1 =1
, NT 2
E \ﬁT Z Z Vit (Vi =100 s—1 — E (Vi =100, s-1)]|| < A < o0. (A.16)

Lemma 4 Under Assumptions 1-3,4(i), as (N, T) 2y 00 such that N/T — ¢ with 0 < ¢ < 00,

xt_Gf

T
T’T/QHf‘x—FgGH —72y ’ =0, (637), r=1,2, (A.17)
t=1

T—'r‘/2 Hf‘m,—l _ Fg)_lG’*

Foot — G*’fg)t_IH =0, (653), 7 =1,2, (A.18)

T
" /2 Z
t=1

/

(Fm - FgG)' P, (ﬁm,,l - Fg,,lc;*) P, (Fm - FgG)' F,_

T = 0p (On7) 5 T =0y (97); =0y (97)
(A.19)
/ /
F, —F'G) F? F,_1-F_G*) F{ F,-FG) F)_,
( T ) =0, (Oy7); ( 7 ) =0, (0n7) 3 ( ) =0, (0n7) »
(A.20)
(F - F°G>/F0 (F . G*)/ FO
T x Yy _ x,— x,—1 Yy _
T =0, (5N2T) ) T =0p (5N2T) ’ (A.21)
(Fm — F?L,G)/Ei 9 (F%_l — Fg7_1G*)/€i 5
e (6n7) 5 7 =0, (6§7) fori=1,2,.,N, (A.22)
/ / !/
Fw — FgG Vy; FI’,l Fg 71G* Vyi Fm — FgG Vgi’,l
( T ) = Oy (O0n7) 5 ( T ) =0y (0n7); ( ) =0y (0n7)
(A.23)
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fori=1,2,..,. N and { =1,2,..,k,

(F. - FgG)/W

T =0, (657): 7 T =0, (657) fori=1,2,.,N,
(A.24)
/
1 & (Fw_F2G> Ve, 1/ o
VN 2 T Y =0 (N ) +0p (Oy7) for 0=1,2,. .k, (A.25)
i=1
/
N (F. FO .G*) v
1 z,—1 z,—1 0i
VN 2 ( T ) Vi =0 (N_1/2) + 0, (657) fort=1,2,..k,  (A.26)
i=1
N (F, —FG) vy._
1 T T li,—1
DD ( T ) V=0 (N—W) +0, (0§7) for £=1,2,.k, (A.27)
i=1
010 Y F -1
Ge - <FITFI> =0, (0y7): GG - (T) =0, (633, (A.28)
0/, Fo/ FI B ,
e 5 A and —esles 5 Ay as (N, T) 2 oo, where A and A_1 are invertible

T
(A.29)

My X My matrices.

Lemma 5 Under Assumptions 1- 34(2) as (N, T) —> oo such that N/T — ¢ with 0 < ¢ < o0,

|Pi, ~Pro| = 0y (05}) and [Py, _, - H = 0,(34).

Lemma 6 Under Assumptions 1-3,4(i), as (N, T) 2y 00 such that N/T — ¢ with 0 < ¢ < oo,

N
1 .

&MZ

1 .
NT | (Z;Mﬁl - Z;MFg) W, = 0,(1). (A.31)

Lemma 7 Under Assumptions 1-3,4(i), as (N, T) Iy 5o such that N/T = ¢ with 0 < ¢ < o0,

1 al T R | f“gFg - . _
W Zrm (TkN) T Fz (EkNT - EkNT) MFIU.Z‘
i=1
=0, (Tﬂ/z) +0, (657) +VTO, (65%) (A.32)
and
N —1
! F, _F) _ " _
W Z;I‘g/z (T% ) <’}71> F;,—l (EkNT,—l — EkNT,—1) MFL,IMqui
1=
=0, <T71/2> + 0, (657) +VTO, (635 . (A.33)

1 k N ’ 1 k N / 3
where TpNT = F D opmy 21 Ve Ve BNT,—1 =  D_p=y Doje1 Vej,—1Vy; 1 and Xpnr =
1 k N / ~— _ 1 k N . /
F T L B (Vv ) Sinror = % i X0 B (veoavi ).
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Lemma 8 Under Assumptions 1-3,4(i), as (N, T) 3y 00 such that N/T — ¢ with 0 < ¢ < 00,

N
—— Y TYFYM;

| 1 LN
0 0
AR () TV
i=1 j=1
N
1 -1 [ K/ FO
\/JVT3/2Z v (Xhw) ( ) F.ZintMp w;
+op(1), (A.34)
and
0/ 0
FZF:EIZ z/,flMFw,,lMFA‘wui
i=1
0 0
NZZF' (Y2n) TV Mg
=1 5=1
-1
4 (F _ FO .
0 z,—1+ z,—1
\ﬁTg/g ZF (i) <T ) Fo 1Tkt Mg Mp
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Lemma 9 Under Assumptions 1-3,4(i), as (N, T) 2y 00 such that N/T — ¢ with 0 < ¢ < 00,
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Lemma 10 Under Assumptions 1-3,4(i), as (N,T) 9y 00 such that N/T — ¢ with 0 < ¢ < 00,

N . -1
! o o 1 (B s
Vo 2T (Xiw) ( T ) e
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1 N ) jmeg 11 (FOFONTH
/ - r Tz S
= 7@ 32 il in (TkN) ( > FzIEkNTMF;JUi + Op (1) 5 (A38)
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Lemma 11 Under Assumptions 1-3,4(i), as (N,T) 2y 0 such that N/T — ¢ with 0 < ¢ < o0,
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Lemma 12 Under Assumptions 1-3,4(i)(ii), as (N,T) 2y 00 such that N/T — c with0 < ¢ <
m7

ZZI‘O’ (Yx) " TV Mpou, = 0,(1), (A.42)
i=1 j=1
N —1
1 0 1 (FYF? ore
ﬁ;r’(r N) (T FYSnrMpou; = o,(1), (A.43)
1 1 LY !
e 2 T (Xh) T TV M Mo, = o (1), (A.44)
i=1 j=1
N N ~x7/ 0/ -1 0/
1 \/v7 _1V‘),1 1 F —1F'r 1 ny_lMFQui
a3 Yty (T M
i=1 j=1
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:c,—lFac,—l

1 N FO/ 0 -1 _
7 DT (X0y) <T> FY_, SivroiMpo Mpow, = o,(1).  (A.46)
=1

Proof of Proposition 1. Consider

N

1 ~

— " ZM, (A.47)
NT & z

where Zl = |:Xi, MF,.

x,—1

Xi,,l} . We start with the second component of Zi, which is Mﬁﬂ . Xi—1-
By making use of the result in equation (A.57) in Proposition 2 obtained under Assumptions 1-3

and 4(i) as (N, T) % oo such that N/T — ¢ with 0 < ¢ < oo, and imposing further Assumption
4(ii) yields:

i
X, Mg Mg u
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N
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N 1 F _1Fz 4 _
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\/W P i,—1 F 7
+ T1 ii V;_lMES,—le v (TO )*1 Fg/Fg - Fg/ui
NN Pl T zj kN T T
To,(1), (A.48)

where the second equality is by Lemma 12. By dropping the superscript ”0” without loss of
generality and making use of Mg, _,F, 1 =0 and , we get

N
1
= Z(Vi,—l +F, 1Ty) Mg, Mp,u,,

NT —
N N ~x7/ -1
T1 Vi-1Mp, ,V; 1 (F,F, Flu;
Y FE DX g () )
i=1 j=1
- T
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where
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N N / —1
V lMF’I‘—lvj / -1 F;Fw F/zui
b = 3 3030 Ve Vg oy (K e
i=1 j=1

Next consider the first component of Z;, which is X;. By following the same steps as before
and using the result in equation (A.59) in Proposition 2 which is obtained under Assumptions
1, 2, 3 and 4(i) as (N,T) %

oo such that N/T — ¢ with 0 < ¢ < oo and imposing again
Assumption 4(ii), we get:
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where the second equality is obtained by using Lemma

12. Now, by getting rid of the
superscript 70”7 and making use of Mg F, = 0, we obtain
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where




By putting all the results together, we therefore have
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\/W; iMp, i + 1/ b + 0, (1),

where Z; = [XZ-,MFxﬁlX,»’,l} and biyr = [P}y, blanr), Which provides the required ex-
pression stated in Proposition 1.

Proof of Proposition 2. Consider

N

where ZZ = [Xi, MF’.T 71X¢,_1] . We begin with the second component of Zi, which is Mﬁm B

X1
Firstly, note that
1 N 1 N
0/ 120
U XMy M= o S TURY M Mg,
=1 i=1
;XN
+ VNT ZVQ,—lMﬁx,,lMﬁmui- (A.53)
i=1

By using the results of Lemmas 7 and 8, as (N, T) 7y o0 such that N/T — ¢ with 0 < ¢ < o0,
the first term in (A.53) is given by

N
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(A.54)

35



Then, by Lemmas 9 and 10, we have
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By making use of Lemma 11, the second term in (A.53) is given by
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So, by adding (A.55) and (A.56) together and rearranging the terms, we get
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By further using Mp, _,F; _1 = 0 and dropping the superscript ”70” without loss of gener-
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ality, we have
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As for the first component of Z;, which is X;, by following the same steps as before and
using again Lemmas 7, 8, 9, 10 and 11, we obtain
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Next, by using Mg, F, = 0 and suspending the superscript 70", we get
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where Z; = [XhMFw,leifl}a bine = [b)1nr, Blor] and bant = By, Bhoy]'s which
provides the expression given in Proposition 2. =

~@

Lemma 13 Under Assumptions 1-3,4(i)(ii), as (N,T) 2y 0o such that N/T — c with 0 < ¢ <
00, y/ Ebint — / EbinT = 0, (1).
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Lemma 14 Under Assumptions 1-3 4(z), as (N, T) % oo such that N/T — ¢ with 0 < ¢ < o0,
\/ ﬁblNT —\/Ebinr =0, (1) and \/ Lbont — \/ Lbont = 0, (1

For notational conciseness define

b
Z Mg — —, A.61
£F1T \/ﬁ ( )
Epir = ZiMp @ —L’ (A.62)
FiT — 1 NT’ .
£; —Z’M»u-—L (A.63)
Fir = SRR A ‘
£ oMy a2 (A.64)
FiT SRR T NT :
which are centred, where
. T
b = plimy 7, NblNT, (A.65)

_ _ T . N -
b = plimy 7, (\/ NblNT + 4/ TbQNT> ; (A.66)

which are assumed to exist.

Lemma 15 Under Assumptzons 1 3, 4(@)(22) and 5(i)(ii)(iii), as (N, T) oo such that N/T —
c with 0 < ¢ < 00, w7 Zi:l EFiTEF,iT = ¥ Zi:l sFiTEFiT + o0, (1), where €, and EFiT, are
defined by (A.61) and (A.62), respectively.
Lemma 16 Under Assumptzons 1-8, 4(2) and 5(z)(zz)(zv) as (N, T) oo such that N/T —c
with 0 < ¢ < 00, 77 Ez 1 €F1T£F’LT T Zz 1 éFzTéFzT + o, (1), where EFZ.T and £FiT, are
defined by (A.63) and (A.64), respectively.

Lemma 17 Under Assumptions 1-5(i)(ii)(iii), as (N, T) 2y 00 such that N/T — cwith0 < ¢ <

o0, ﬁ S €~ = 0, (1), where @ = plimy 7, o, & S0, E (T~ Z{Mp, wu/Mp, Z;).
!

Also = Zz 1 (EFzT + \/—) (éFzT + \/—) —Q =0, (1) for any b such that ||b|] < A < 0.

Lemma 18 Under Assumptzons 1-8, 4(i), 5(i)(ii)(iv) and 6, as (N, T) 3y 00 such that N/T = ¢
with 0 < ¢ < 00, 3= ZZ L <£FlT—|— \/7) (£F1T+ \/7) —Q = 0,(1) for any b such that
HbH < A < o0, where Q is defined in Assumption 5(iv).

Proposition 3 Under Assumptions 1-3, 4(i)(ii) and 5(i)(ii)(iii), as (N, T) 9 oo such that
N/T — ¢ with 0 < ¢ < o0,

\/%ZﬁFzT_)N(O Q).
=1

Proof. Proposition 1 and Lemma 17, together with Lemma 2, yield the required result. =

Lemma 19 Under Assumptions 1-3,4(1)(ii),5(i)(ii)(iv), as (N,T) 2y oo such that N/T — ¢
with 0 < ¢ < oo, Ayy & A, Byr & B, where Ayr = £ 300, T1ZM; W;, Byr =
SN T ZM g Zi and A =iy 1700 % Yty E(Air), B = limy 1o & Sy B (Bir),
Ai,T = Tﬁlz;Mpwwi, Bi,T = Tﬁlz;MFmZi.
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Proof of Theorem 1. By using the expression in (15) and the result of Proposition 1, which
states that \/%blNT is O,(1) when N/T — ¢ with 0 < ¢ < oo, we have VNT (élv — 0) =
O,(1), which implies the required result. ®

X ~ ~ ~ ~ -1 ~ ~
Proof of Theorem 2. ()VNT (6, —8) = VNT (8;v — 6) — (A, BrhAnr) Ay Bribyr =
VNT (é,v — 0) — (A’B~1A) " A’B~'b+0, (1) by Lemmas 19 and 13, assuming plimy 7_cobyr =
b exists. Next, using Lemma 15 we have vV NT (élv - 0) — (A’B_lA)_1 A'B b= (A’B_lA)_1 A'B7!

(ﬁ Zfil 6ﬁ‘iT> + 0, (1). Thus, by the result of Proposition 3, we have vV NT (é;v — 0) —
N (0, %), as required. (ii) ¥ — ¥ = o, (1) follows immediately from Lemmas 15, 17 and 19. m

Proof of Theorem 3. Under Assumptions 1-3, 4(i)(ii) and 5(i)(ii)(iii), together with the v NT-

consistency result of 91V7 shown in Theorem 1, and the LLN, we have by Lemma 15 QNT -0%0
as N — oo and T' — oo jointly in such way that T/N tends to a finite positive constant. The

consistency of Qn7 leads to the VN T-consistency of 0 1v2, and therefore under the null hypoth-

esis a similar discussion for Theorem 2 yields \/IlvaQJ_VIT/Q Zil ZM . a5 N (0,1,,). Finally,
applying a standard proof for the asymptotic distribution of the overidentifying restrictions test

under the null hypothesis, such as in Arellano (2003), yields the desired result. m

Proof of Theorem 4. The proof is obtained making use of the expression in (15) as well
as Proposition 2, which states that \/%BlNT and \/%BgNT are Op(1) when N/T — ¢ with

0 < ¢ < oo, we have vV NT (élv — 0) = Op(1). This provides the required result. m

2 ~ ~ ~ ~ -1 . ~ 2
Proof of Theorem 5. (i)vNT <0W - 0) — /NT (e,v - 0) - (A’NTB;vlTANT) Al Bilbyr =
VNT (éIV - 9) - (A'B’lA)f1 A'B’lf)—i—op (1) by Lemmas 19 and 14, assuming plimNﬁTHOOBNT =
b exists. Next, using Lemma 16 we have v NT (é[v — 0) — (A’B_lA)_1 A'B b = (A’B_lA)_1 A'B!

(\/% sz\; épiT) +0p (1). Then, by the Assumption 6, we have vV NT (0~1V — 0) — N <O, \il),

as required. (ii) & — ¥ = o, (1) are obtained by using Lemmas 16, 18 and 19. m

Proof of Theorem 6. The proof is analogous to that of Theorem 3 and it is therefore omitted.
]
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Supplemental Material to

“Instrumental Variable Estimation of Dynamic Linear Panel
Data Models with Defactored Regressors and a Multifactor
Error Structure”

by Milda Norkute, Vasilis Sarafidis and Takashi Yamagata

Appendix B: Proofs of Lemmas
Proof of Lemma 1. See Proof of Lemma 1 in Appendix, Hansen (2007). m
Proof of Lemma 2. See Proof of Lemma 2 in Appendix, Hansen (2007). =

Proof of Lemma 3. The proof of Lemma 3 can be obtained in a similar manner based on the
proof of Lemma A.2 provided in Bai (2009, p.1268). Arellano (2003). m

Proof of Lemma 4. The proof of (A.17) is given in Bai (2009; Proposition A.1). No modifica-
tion is required because of our assumption of cross-sectional independence and serial correlation
of vie, see Assumption 2. A similar point applies to the proofs of (A.19)-(A.28), which are given
by Bai (2009) as proofs of corresponding Lemmas A3(ii), A4(i), A4(ii), A3(iv), A4(iii) and A7(i).
The result (A.29) is given as part of Proposition 1 in Bai (2003) with its proof therein. m

Proof of Lemma 5. HPF — PFg

T [(PE —PES)T =tr [Pp, P Pro—PryPp + Py =
tr {P } —2tr [P PFo}—l-tr [Pro| = 2m—2tr |:T71F2PF£FI:| , where T’lli‘;PFg]?‘m =T 'F FOG
(G'FUFOG) ' GFUF, = T2 (F;FgG) (G’Fg’f‘z) By making use of (A.20), we have
T-1G'FUF, = T-'G'FYF'G + T~ G'F” (FI - FgG) =T, + O, (552). Hence, we have

2 ~ -
|Pi, ~Pro| = 2m. 200 [(TBLF0G) (T GFYR,) | = 2ma — 207 [T, + O, (573)] =

2
O, (6y%). Following similar arguments, it can be shown that HPFI L~ Ppo H =0, (637,
as required. m

Proof of Lemma 6. We begin with (A.30). By using Lemma 5, we have HMP} — Mpo

|Ps, = Pro|| = 0, 05%), MMy [ = M Mg, My My M My -
M oMo |\<HMF Py, —PFD HIPs —Pro HMFO H_ p(Sy) and [Mp My My~
FB MFOMFO H = HM Mp Mﬁf 1 MFU 1MF MF _ +MFO lMﬁwMﬁw MFO,lMFSMFg?,lH S
L ~Pr [IMg ‘HM H+HMF0 HHM M;. —MFOMF0 H_ L (6xk), since

H Fz .~ Mpo MF;L1 H = Op((SNT) as shown above. By using this result together with
‘ = 0,(1) and ”X‘i\ﬁ;l” = Op(1) which can be shown by using Assumptions 2-4(i), we have the

followmg. 7 SV HX; Zl 1 ”\XF” HPFI —Pro % = Op(dnr),
ﬁ Ziil HX'/IJMFIMFI’71X7;,71 - XiMESMFS,_lxi’*lH = ﬁ Zi:l “\)/(%H Hl\/‘[FI1\/,[1,595’71 — MF.SMF,S,_l
Xi,— - N

% = O,(6xr), and therefore =57, X5 Mg, Mg X = X 1Mpo MpoXf| =
Op(0x) and w7 S [0 My, My My, Xio1 = XiiMpo MpoMypy X | <

—1

1 N M . . . _ M — —1
N D im1 7 (Mg, Mp Mg —Mpo MpoMpo || =02 = Op(6y7). Hence, we have
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Hﬁ Zfil Z;Mpm Z; — Z;MFSZiH < 0,(0n7) which leads to the result in (A.30). The second
equation in (A.31) can be derived in a similar manner. ®
Proof of Lemma 7. We start with (A.33). First note that by using My = = Ir —
T‘lf‘w,_lf‘;_l the left-hand-side of (A.33) can be written as
1 & C(ELE )
7;21“32 (Yon) <_1H> Fl,_ (Zinr-1— Spnr—1) Mp - Mg
VNT3/2 = T P O
N 0/ -1
1 L (F RO _
=— ngli (Yin) (I F/z _1 (Zenr—1 — Bpnr—1) Mg w;
VNT?/2 = T ’
N ’ 0 -1
1 F. 1Fa - < Fo_1F,
~ =ra ngli (hn) < — F, 1 (Zenvr -1 — Benr, 1) ————M; w;
VNT3/2 = T ! T
= e + es.
- L (F_F0 N\ _
o1 = g T () (T )G (B - B Mg
i=1
N / 0 -1
1 ()/ F?c,—lFac,—l i 0 * !
i () e o)
X (Ek-NT,—1 - Z_31cNT,—1) Mg u;
= aj; + as.

By using now Mz

=1y - T 'F, F’ and u; = FO~? + FO)\O + g;, we have

N o/ 0 -1 07 S
11 o 1 (Fo Fo 4 wFe VN (Zent,—1 — TN, —1) Mg u;
oS () Tl
N £ 0 -1 o 0.0
11 or 1 (Fo o F, wFa 1V N (Zent,-1 — Zinr,—1) FOAY
= =% ;rz (Y0N) ( - > G 0
N £ 0 -1 or 040
11 0 1 (Fo 1 Fo JFY VN (Zint-1 — Zent,—1) Fy
+ —\/TN;I‘ L (X) ( - > G -
N i 0 -1 0/ S
11 or 1 Fo 1 Fo JFY VN (Zint—1 — Zent—1) &
ik () i,
o 1 F; 4 FY - LFY VN (EkNT,—1 - z_31cNT,—1) F, F;ui
_ 721‘ T ; = , G , . =

:b1+b2+b3+b4,
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FY VN (Sint-1 — Zinr—1)

VT

[ba] < Z (el

kN

. -1
FQ771F2,71
T

FY VN (Sent,—1 — Sinr,—1)
VT

el Ll

H(TZN)”H [eyl

FO
|

.
(w2 imen)
o)

as || (X0) ™| = 0y (1) by Assumption 4(3), — 0, (1) by (A.29), [|G*|| =

N —1
F;,—1F.(T),,—1
T

07 _$
0, (1), Fa- 1\/N(EKNT 1=Bewroa) || 0, (1) by (A.10), 5% = O, (1) by Assumption 3,
and &S0 %] 2] < VA S 1H UPV A S R007 = 0,(1) by Assumption 4(3).
Similarly, by = O, ( 1/2) and bz = T_l/2
~ 1 _ “ .
_ T (1)~ F, 1Fx 1 G*'ngﬂ\/ﬁ (Zrvr—1 — Tienr,—1) Fo FLFO
bi=—F N Z o) T T i
-1 _
S gy (BB ) GV (B B B FUEG
\/7N — xr T T 1
-1 — ~ A
ZF TO 4 Fo G*/Fgl,q\/ﬁ (Zint,—1 — Tt —1) Fao B g,
\fN bv) T T

—C1—|—C2—|—C3.

~ —1 —
—1 F, F) | FY VN (Sgnt-1 — Zinr—1)
ol < ZHF (1207 |<T | =
HT‘ JrreEe) i
1 0 -1 F;c FO o . Fg’,_l\/ﬁ(szT,A*ikNT,—l)
= —= et I (Fm= ) e
VT T VT

~ 112
e

)

~0, (T—W),

(T_lﬁ;ﬁ‘w) =tr (Im$> =
mg. By similar reasoning, we have co = O, (T‘l/Q), cs = O, (T‘l/Q) and therefore by =
O, (T~'/?). Thus, we conclude a; = O, (T~%/2).

By using similar arguments as above together with (A.15), (A.14) and (A.17), we have
a; =0, (5;,%) Thus, e; = O, (T‘l/Q) +0, (6;,}) Next, consider e; which is

by making the same arguments as above and because HT‘1/2]§‘I
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el 5 (x20m

F._, FO -
-1 z,—1%* z,—1
’I‘ H —_—

Fo 1 (Zknr,—1— Zpnt,—1) | ]?‘;c,_lMFz
T VT
N Fo o (Sent o1 — Sint 1) By
— \/7010 (1) || Bz (ZenT,—1 WNT,—1) Fa 1 ,
T T

because HT*UZF;’_lMEH < HT*1/2]§‘;7_1H+HT*3/2]§‘;7_1]§‘3:]§‘;

S b

[t = 0, ), | (x2) | =0 1>H<)H:omd

1 N
~ 2 el
=1

1 N
< N; (I eH

NZHF 120

NZ!

by the same arguments as above and Assumptions 1, 3, 4(i). We also have

||\/§;]§‘;_1 (ZenT,—1 — ZknT,—1) |
H\/> G"FY | (Zknr—1 — Zpnr—1) Fo | G*
+ ﬁl G*'Fw _1 (EkNT,—l — i3kNT7—1) (Flv—l - F27_1G*> ‘

+ ﬁ; (Fm’,l - Fg’,lG*)/ (Bent, 1 — Bt 1) (ﬁ‘x,—l - Fg,qG*)

= [[Lafl + [Tl + ([T + [Tl -

ILall <4/ 7 6|

by (A.10), and Assumption 3

Lol = L]l < 4/ 7 HG*’H
/1 _
= TOP (5N1T) )

by (A.10) and (A.17).

‘ ¥ VN (Bpnt—1 — Zint -1

Vi 1671 =0, (7777),

‘ H a

| ¥ _ VN (Sknt—1 — Zint—1)

F,_1—-F)_G*
VT

VT

Nl =

T T kN
1 A . r 1
[La = H T ;; ( wt—1— /f£7t_1> (fl-,s_1—G /f£73—1> N > [eit-1veis—1 — B (veir—10is-1)]

=1 =1
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so that, by the Cauchy-Schwarz inequality we have
)

L LT kN
<\ 72 SN [N S [vrit-1veis-1 — E (veit—10is-1)]

(=1 i=1

2y 1/2

Thus, e; = O, (T~2%) + VTO, (657). Collecting all the results, the required expression is
obtained. The result in (A.32) is proved in a similar way. m

Proof of Lemma 8. We begin with (A.35). From (A.8) we have

N
1 0/ 207
\/ﬁ ZI‘MFL*lM 1Mﬁwui
i=1
L
S 3 L1 O SR At
i=1
L N kN
0
:7WZWZZF QL F, —1Ve5, —17€JFO/ Mg, Mg, u;

k
1 1
T UNT Z NT Z Z QL F, leg,fl“/(Z)jV?j,—lMﬁm,,lMFI“Z'

=1

.
Il
-
~
Il
_
<

1 N 1 k N
N N 2 QLR e vl M, M

Start with d;, which is given by

N

d 1 A e
\/ﬁZWZF%Q'—lAkw [G VEL Fa:/,—l} Mp Mg u;
=1

which is a k x 1 vector, where

k N £
A Far 1V€] -1 0/
ENT = N g E Yij-

We have
!
~ I 0 * .
liF;,,lv@j,,l o iiG*,Fg(,lvgj,,l . +l§: (FH ~-F)_,G ) Vi1
N =~ T ’YZJ - N = T 7@] Nj:1 T ’YEJ

=0, (T*1/2N*1/2) +0, (N"Y) + N7120, (037) ,

as the first term is O, (T_1/2N_1/2) by independence of v¢; 1 and ’ygj and the second term is
Op (N’l) + N*1/2Op (5&%) by (A.27) in Lemma 4. This gives the following

|Aknrll = 0, (T7/2N712) + 0, (N71) + N7/20, (33%)
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Next,

N
1 N . Y
NT ZI‘g/inﬂAkNT (mel - Fg’,lG ) u;

di|
VNT —

T2

A A / A A
+ NT2 nginflAkNT (Fx,fl - ngflG*) FI,*lle,flMﬁ‘zui
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Nan 0 HmH) &
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L& o (fa (mel Fg,—lG*> FO
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Ly (Ferr P0G Bl s |
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N im1 T T Q, ‘ lALNT]|
. ,
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" /N
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. S TLIT N -
Pl ) T VT VT !
N (F FO G)/F ;
1 -1 —¥g 4 * z,—1 F; —1MF‘ FO R
e ||A°H> |t 2% e e
2 T | | 19

T

N /N
) (Fw,*l _Fg,flG*) sz1

‘ |QL | 1awnzl

(3
E
[
+ ( LS e ||A°||) (B R0 (G By
(
(x
(x
[

b (03) [0p (T712N12) 4 0, (N1) + N20, (6:33)]

by (A.19), (A. 20) (A 21), (A.22), Assumptions 1, 3, 4(i) and using HT‘lﬁ‘;Fg = 0,(1),
HT 52 FOH - TR, M, ’ = 0, (1) and |Agnr|| = O, (T-Y2N-1/2)+0, (N~1)+

-1/ 20, ( ) as shown above. We therefore have

di = VNTO, (333) x [0, (T7V/2N"112) + 0, (N"1) + N~1/20, (633 |
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Now consider dy which can be written as

N N

k
1 _
szzrg’z (TQN) 1’)’2jV2j,—1MﬁT'_1Mpxui

0=1i=1 j=1
0/ - 2 :
F T < 7(]"@] 1) By, 71MquZ’
or 0 \—1y0
F:m' (TkN) I‘ijjaflMﬁ‘z,,lMﬁ'xui’
. . -1 k N
Consider now dsz. Defining Xpn7 1 = N>, ijl ngy_lvéjﬁl, we have

N k N
3 1 S rva

d3 = 7NT 7NT Fm/iQLlF;,f1vfj7*1V2j,71MF'x7_lMﬁmui
=1 (=1 j=1

k N
11 oA e 1
:7\/WTZFIQQI—1F;,—1 szvej,—lvfzj,-l Mg Mgy
i=1 =1 j=1

> TUQLF, Sinr Mg Mg ou
1

= 7\/NT3/2 < x,—1

N
1 .
nglz’(rg )AL F;,flszT,flMﬁ

B \/NT3/2 i=1 0F,,_ I’—lMﬁ‘Iui

1 oF N\
07 0 r,— 1"z, — I
:WE % (N~ <T> F, 1 Zevr, Mg Mp .
i=1

where the definitions of Q_1 and A,z are given above. Hence, the expressions for dj,

dy and d3 gives the required result in (A.35). The result in (A.34) is obtained in an analogous
manner. m

Proof of Lemma 9. First consider (A.37). The left-hand-side of (A.37) can be written as

1 1R
T DT () T TV M, M,
i=1 j=1
1 1 N N
o7
= NTNZZF (Z’YZ]VZJ 1) Ey 71M13,$ui
i=1 j=1
1 1 k N N .
- NTN ZZF% (‘r(lgN) 72jv2j7_1M}?‘m,—1Mﬁ’mui
(=1 i=1 j=1
1 1 k N N o
, _
- NTNZZZFM (TgN) ’74] Mg Mg Vi
(=1 i=1 j=1
1 1 k N N .
N NT N erglj (TgN) ’Ygiu;‘MﬁmMpmﬁlvm,_l
(=1 i=1 j=1
Lyy
NT (== =1

N
1 .
(NZFO' (Y0) " o) | Mgy Mg vy
H



where Hy; = Zj 1 ufyh (T%N) ! I‘gj. By adding and subtracting terms we get
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= ZZHZzMFOMFO Vi —1
NT (=1 i=1
1 N
+ 7 ST HL (Mg — Mpo)Mpo  vei
/=1 1i=1
1 k N
+ DD HpMp (Mg —Mpo Ve (A1)
NT (=1 i=1

Now, consider the second term in (A.1). Since F’ Q/T = I, we have Mz — Mpo =

Pro—Pp =— (F F, -P Fo) Using this result and by adding and subtracting terms7 we get
LA
DSOS H, (M — Mpo)Mpo Vi
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11 0/ (~~0 1 ouﬂ( r x ) VRO Vi —1
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1N . o o)W (Fm FQG)
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1 P O/ F i
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by (A.20), (A.21) and (A.22).
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=VNTO, (657),
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H’T < & LIl o)™ Ik | 7 1% -0,

by Assumptions 1, 2, 3, 4(i). Next, consider a; and ay in the expression of e3. Start with
as which is as follows
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where A\pax (ikNT7,1) is the largest eigenvalue of i;@NT,,l, which is O, (1) by Assumption
2. Moreover,
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by (A.10). Also, we have

B.12



. !
a—TLs sy Ml (RN T g5 (FoG" —F2) vy viMpy_ viis
2 NN y e T T Pyt T T
k N N N -1
T 1 —1_o w,F) (FYFO\ ™ 4
- \fNNaZZZZZF?Z’n (Xy) " A= ( T ) v
(=1 h=1i=1 j=1n=1
N !
(FIG*1 - Fg) Vs Vi, Mpo Vi1
X T T
k k N N N / Vi (F,G™1 —F
T L S gy VM v v (PG R
N N2 ¢=1h=1i=1 j=1n=1 et ! T g
. FO/FO -1 FO/ n
X GQ e z 1 )
T T

T (1
) < VN (N >
n=1

E N
up, —1 1
ﬁ ) H(TgN) H ||\/ﬁ;;721V21,—1MF£11

TES (M SRR | PN SONE
Nz =T T T VT
= VNO, (957)
by (A.23). By putting the results together, we therefore get
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Consider now the third term in (A.1). By following the same steps as in the discussion above
and by replacing Hy ; with Mz Hy;, (MF, —Mpo) with (MFGC _, —Mpo 71), and Mpo vy 1
with vy —1, we get
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<o) 7 |l-= 32 PIPBE
N= ‘/Ne=1 i=1 VT Ni=ia vT
ERTR I 31 o N 1 u,
XH(TQN) H < T ) ‘ﬁ HP&—PF;? JT
=0p (5;/%“) )
by Lemma 5. By putting the results together we have
| kN
> H)Mp Mg v
NT = io '
LA
= ZZHZZMFOMFO Vi —1
NT = o
k N N / 0 —1
T 1 H, ., F, (FVYFY 1.0 Vive—1
o () ey
(=1 1=1 j=1
k N N g 0 R T !
T1 HZ,lMFfF:E -1 Fx,—lFx,—l 0 -1 0 V] _1Vei,—1
+\/NNH;; T ( T (Yin) o=
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i=1 j=1
k N N N -1
T 1 0 1 o u,FY (FYFO 10 Vivii—
REr IR DRRACHREE (BF) (et oy,
k N N N / 0 o 0 -1 /
T 1 -1 u,MpF;  (F7 F; -1 Vi—1Vei—1
NW;;;;F%’ (Yon) o T ( T > (Ton) I‘gg‘%
+VNO, (657) + Oy (657)
1 1R 1
= Wﬁ ;ZZF% (TZN) "/21“’2@,—1MFQ~71MF3111‘
=1 i=1 j=1
k N N N / —1
Tl 1 o Vo1V _1 (FUFON\ TN ROy,
T D (Th) b (rhy) ! (B) T
¢=1i=1 j=1n=1
E N N N / o 10 —1 Lo
T 1 _ vy _1Vj—1 1 (F)_F, _ F, _Mpou,
a2 D YT () T AT () )
0=1i=1 j=1n=1
+VNO, (657) + Op (557)
1 1L -1
= WN Z Z I‘g/i (T2N> anV;,AMFgAMFgui
i=1n=1
N N N —1
T 1 10 ViV -1 (FYFL\ T Fw
e o T () e, e (ry) ()
i=1 j=1n=1

T 1 s 10 Vn-1Vi-1 1 (FY_F) B F)_\Mpou;
RS S 3 At DR RSN =

+VNO, (657) + Op (657) (A.2)

which provides the required result in (A.37). The result in (A.36) is proved in an analogous way.
[

Proof of Lemma 10. We first prove (A.39). By noting that AB = AB+ (A - A) B+A (B - B),
the left-hand-side of (A.39) can be written as
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/ xT,— T, — / -
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(ot ] Jeet ) (222

e B [P, P | [
= Op (6;75") )

]’;‘1/

z,—1

VT

IN

by Lemma 5 and T—1/2 HikNTﬁlFm,le < Amax (ikNT,,l) T-1/2 HFL,IH = 0, (1) by As-

sumption 2 and 3. Next, we have

N ~ —1 —1
1 _ F _ F9_ . FO’_ FO _ _
< 7 2 7% () ( 7o) B (T ) B BeaMg Mpw

& Fo—lFac,—l - 0 ng—ng,—l B 0o \—1
F,_1 -7 -F, - T (TkN)
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by Assumptions 1, 2, 3, 4(i), and because

. -1 -1
L, (B} g ((FEAFRL) | g g
Vol T
1 [ FO/ f\ -1 FU/ FO -1 FOI f\ FO/ f\ -1
_ g (femfemt) o e zoiieol (el (Y00) "
= \/T :(;,_1 T ac,—l T T T kN

I N A ~ () A 0 \-1
:ﬁ Fy 1 # _PngilFx,—l # (TkN)

o, ~Mg,

since T—1/2 HMF;),—lﬁz’_lu =T-1/2 H(Mngl — Ml;ﬂxy_l)f‘z’_l

<[

FY_F,.

~1
HPFS,_ - PFI,AHTA/Q H]?"x,lH = O, (65y7) by Lemma 5, H (‘}) H = O, (1) and

1
-1
| (x| = 0.
Hence, by putting the results together we get the required result in (A.39)

1 N 1 F/ 1F0 1 -
} : 0r 0 - r,— 1"z, — " 3
7NT3/2 Fm (TkN) <T ) F;,*lszTMFz,flMﬁ‘zui
v i=1

N 1 N -1 Fg/,71F2,71

—1
Fg/’,likNTMng_lMﬁzui + Op(l)

Fg’,—likNTMFg,l(Mﬁm — Mpo)u; + 0,(1)

N 0r 0
N 1 -1 Fw,—lFac,—l S
=\ 757 ZF% (rin) (T ngflszTMFgﬁlMFgui
) F?c,,—likNTMFf,flMFfui —|—Op(1),

B.17



where the second term in the second equality is

i=1

1 N 1 FO/,lFO 1 -1 _
wr o o) () R S an - M

<
i=1
1 & or 0 0o \~—! FY | F) - FY_,
< N;Hrmuumn [ i) | (= 2

0
F?/

X Amax (ZenNT,~1) HMF;;AH HPFCL — Pro Noa

1 a 07 € 0o \—1 Fg/,—ng,—l - Fg/,—l
(w2 |5

X )\max (ikNT,fl) HMF’?—1H HPFI - PF;)
=0p (5&1T) J

1 N . o 1FO L -1 _
NTZ Y (Yin) <ITI> Fy 1 ZivtMpo  (Mp — Mpo)u;

by Lemma 5 and 7-1/2 HikNT’_lﬁx’_lH = O, (1). The result in (A.38) is proved by following

the same steps. m

Proof of Lemma 11. We start with (A.41), which is given by

| X
!
NT Zlvl —17 R, 1 TTF, u;
| X
— \/Ni ZV;,—IMFO MF()ul
i=1
N
= Vi My (M, ~ Mg ) w,
i=1
;XN
+ WZ;V;“ (M, ~Mpy )My,
Now consider the second term in (A.3). By using My — Mp, = — (F’TF; —Pro
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) , and adding



and subtracting terms, we get
1 !
7 2 ViaMr, (M, ~ M, ) u
i=1

= \/tz; 1_1 ( —PF£> u;

) iv Mg (Fo-F0G)
/ T x
| X V;yflMFfﬁl (F. - FoG)
T UNT & T

;; MFO Fg ~ !
Syt (F - FgG) u;

(F _ FOG) w

FZ:

N V’f Mpo FO 0/0 N ~
e lGG’—(FITFI) Fu,

1
T UNT £ T

——(e1+e2+e3—|—e4),

~ ~ !
Vi My (B - FOG) ||| (B, - FG) u
T T

A (Fm - FgG) (FI - FgG)/u
T T

IA
2
~

2|~

WE

N o "Ry (F, - FOG F, - FG ‘u
Jr\/ﬁifg 1—1 F2 4 F—le—1> 71(T ) ( . )
=VNTO, (657)

by ’ (F"FEG)'“ — 0, (652, (A.20) and (A.23).
Vi Mg, _, (f‘x—FgG)/u
T T
=VNO, (WT) ,
by using again | FzE2C) || _ o (5:2).

Vi Mg, F;
VT

FO/
T

i

VT

FOUF0 ~
|e4|<f Z HGG’—( . )
=f0p(5N%)7

by (A.28). Consider now e; which can be written as
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B \/W; T ( T ) a Wi
N V! _ Mo (]?‘wG—l—Fg> FOR0N —1
+ ’ z,—1 GG/_ T FO/ i
\/W; ( T ) ] ot
= a; + as.
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y (A.20), (A.23) and (A.28). As for a; we have
a = iVl - Mre (FmGil_Fg) FYF) _IFO/
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1 1 Vi-iMpo Fo o (FYFO o
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1 1 Vi aMpo  vi; ~ (FYFO
_ _ ’ @, — _FO/F T T (W
TN LT e () e
N k N —1
1 1 Vi-iMpo Ve . (FYFO
JE— N ) z, = F T o7 .
=d; +ds +ds,



<l§: w iii o Vi Ea a FUFO\ ~ Flry,
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by (A.25)
N k N /
1 1 ViiMpo  ve;  FVR, . (FYFO
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1 1 Vz —11\/IFO LY 0 0\ FOFO o
S LS YN Y g (B
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N E N / .
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N k N .
1 1 Vz _1Mpo Vij . /[FYR0
+ 72722 == v, FIGQ (H) FO'u,
\/ﬁizl NT == T T
=C1 + Co,

k N N / =
1 1 V¢,71MF£171V@‘ . = o . (FUF0 N
Cl:wﬁZZZﬁV@ (FI—FmG)Q( T ) qui

(=1 i=1 j=1
- N 1 Z V§,71Mng,12kNT (ﬁ‘z — FgG) Q F(;/F(; -1 Fglui
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by (A.17).
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by (A.12), (A.13) and (A.17).
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by (A.10). By adding everything together we therefore have
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N NV, _ Mp V; 010 or
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+VNO, (557) + 0, (537) -

Next consider the third term in (A.3). By following the same steps as in the discussion above

and by replacing Mpo V3 with V; _y, (MFL — Mpo) with (MFL »

Mp u;, we get
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where the last equality is by Lemma 5. Collecting the results together, we obtain

E :Vz,—l Fo o Mp, 0

1
= V/ MFO Mpoul
AV
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*J T
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SRS VN v _1 (FUFO\ 7 ROy,
WYL LT () (&) =

+ Wop (On7) + Op (637 5

which is the required result in (A.41). The result in (A.40) can be shown by following the similar
steps as discussed above. m

Proof of Lemma 12. We first show (A.44), (A.45) and (A.46). Under Assumptions 1-3,
4(1)(ii), 5(1)(ii) (iv), as (N, T) % oo such that N/T — ¢ with 0 < ¢ < oo, we have
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for every i = 1,2, ..., N. So, we have:

N
1 1 —1
INTN > T () I‘ng;‘,flMFgﬁlMFgui = op(1),
i=1j=1

N N N7 0r 1 wor
1 Vi 1Vi FY _ Fo F, _1Mpou;
NZZ : T rgj (TgN) T T =— = op(1),

i1 j=1

1 N 0 1 FOI 1]:;\0 1 -1
ii - T,— T, — <
NT Zrm (Tin) —T F2,,71EkNT,71MF£,_1MF£ui = 0p(1),
as required. The remaining results in (A.42) and (A.43) are shown in a similar way. ®

Proof of Lemma 13. This is derived in a similar manner based on the proofs of Lemmas A.11
and A.12, provided in Bai (2009, p.16-19 of the supplement). m
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Proof of Lemma 14. The proof is obtained in the same manner as that of Lemma 13. m

Proof of Lemma 15. Using the identity G; = u; — W; (é—@) we have

N
1 ~ Y
Ni Z £F1T€F2T NT Z £FzT5F1T

_ % ; ZMy, Wi (6-6) €,

T M W (6-0) (6-0) wne,
=1
N

We have
1
i oo 35 o (%)
H 1” T \/T P \/N
since < HZ/;N F/T;N = O, (1). Similarly, [|[Ez|| = O, (LN) Also
1
< — |.
|Es| THG BH T =0 (N)
Thus,

N N
1 ~ A 1
NT E sﬁ'iTgﬁiT = NT § £FiT£/ﬁ‘iT +0p(1)'
i=1 i=1

as required. m

Proof of Lemma 16. The proof is obtained by replacing éﬁ‘iT’ Erirs L, Z; by éﬁ,iT, éFiT’ Z
and Z;, respectively, and following the same steps as in the proof of Lemma 15. =

Proof of Lemma 17. By Lemma 15 and Proposition 1 we have
1 1 XN
NT Zgﬁ'iTslﬁ‘iT = NT Z Z;Mp,u;u;Mp,Z; + 0, (1).
i=1 i=1

Noting that E (Z;Mp, u;ujMp,Z;) = 0 for all i # j and using Lemma 1, 5 vazl ZMp uu,Mp, Z; 5
W N 700 sop Soren B (ZiMp, u;ulMp, Z;), which yields 1 S| € 2.0 — € = 0, (1) when
(N, T) — o0 jointly7 as required. Also it is easily seen that the same result hold for the uncentered

version, namely, = ZZ 1 (£F1T + \/7) (£F1T + \/7)/ —Q=0,(1). =

Proof of Lemma 18. Suppose that Assumption 6 holds true. It makes it clear that for the

/
uncentered version the following result holds NT ZZ 1 (5 pir + \/7) (5 i \/7) —
op(1). m

fo)l

Proof of Lemma 19. First of all, by Lemma 6, Ay — %Zf\il A;r = 0,(1) and Byr —
% Zfil B, r =0, (1), then applying Lemma 1 yields the required results. m
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