Financing Health Care in Japan: The Impact of an Aging Population*

Gary D. Hansen
University of California, Los Angeles (UCLA)
Minchung Hsu
National Graduate Institute for Policy Studies (GRIPS), Tokyo
Tomoaki Yamada
School of Commerce, Meiji University, Tokyo

March 3, 2011

Abstract

This is a description of some work in progress aimed at providing a quantitative analysis of the impact of population aging in Japan on financing its National Health Insurance program. We construct a general equilibrium life-cycle economy that is used to study the impact of an aging population (an increased dependency ratio and increased per capita medical expenditures) on household’s work and savings behavior, as well as on aggregate output and welfare. In particular, taking 2010 as an initial starting point, we calculate the transition path predicted by our model as the population structure changes and medical costs increase, using values for 2055 to construct a terminal steady state. We also evaluate various policy alternatives designed to lessen the negative impact of aging on the economy.

Keywords: Universal Health Insurance, Population Aging, Japan
JEL Classification: E21, H51, I10

*Preliminary and incomplete.
1 Introduction

This paper aims to provide a quantitative analysis of the impact of population aging on the cost of maintaining a universal health care system. We focus on Japan because its National Health Insurance (NHI) program provides universal coverage and the population has been aging dramatically over the past two decades. We study the tax burden associated with financing the NHI and the impact it has on the economy as the population ages. Potential reforms of the NHI program and how it is financed will also be evaluated.

The current cost of health care in Japan is relatively low (about 6.6% of GDP or 9.0% of National Income in 2005) compared with other OECD countries. In addition, the Japanese have among the highest life expectancy and lowest infant mortality in the world. The health care system in Japan seems to be in remarkably good shape. However, as the population ages, this low-cost is probably not sustainable with the current framework and financing methods. Japan already has the world’s oldest population, and it is projected that 40% will be 65 or older by 2050 (see figure 1).

The population aging affects the health care system through two channels. First, as the fraction of the population over 65 increases, the fraction that pays taxes and premiums that finance the system decreases. In particular, one quarter of the program’s costs are financed by general government revenues, and the rest is paid by a payroll tax levied on employers and workers and co-payments made those seeking medical care. It is obvious that the burden of financing health care is mainly on the working-age population (age 15-64), which is projected to shrink to 51% of total population by 2050 with an old-age dependency ratio above 75% (see figures 1 and 2).

Second, the elderly face higher health risks and need much more care than young people. The data show that the average per-person medical cost for those above age 65 is 241.8% as of the average of the total population, and it is about 4 times that of those under age 65. Table 1 presents medical costs per capita for different age groups. A larger elderly population implies higher per capita medical costs. Figure 3 shows the trend of medical costs in Japan. Due to population aging, if the current system is to be maintained, either the government subsidy or the insurance premium charged to workers and employers has to increase to finance the extra cost of the health care system. Either way, the financial burden on the working age population will increase.

Figure 1: Japan’s population structure 2005 – 2055

Table 1: Medical cost over age groups (2007)

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Per person medical cost (1,000 yen)</th>
<th>As of total average (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>267.2</td>
<td>–</td>
</tr>
<tr>
<td>Under 65</td>
<td>163.4</td>
<td>61.15</td>
</tr>
<tr>
<td>0-14</td>
<td>134.6</td>
<td>50.37</td>
</tr>
<tr>
<td>14-44</td>
<td>103.3</td>
<td>38.66</td>
</tr>
<tr>
<td>45-64</td>
<td>261.6</td>
<td>97.90</td>
</tr>
<tr>
<td>Over 65</td>
<td>646.1</td>
<td>241.80</td>
</tr>
<tr>
<td>Over 70</td>
<td>722.2</td>
<td>270.28</td>
</tr>
<tr>
<td>Over 75</td>
<td>794.2</td>
<td>297.23</td>
</tr>
</tbody>
</table>

Source: Estimates of National Medical Expenditure, Japan
In this paper, we construct an equilibrium life-cycle model and carry out quantitative exercises to help understand: 1) the impact of demographic change (in particular population aging) on the costs of financing the NHI; 2) the impact of the above changes on household working and saving behavior, as well as on aggregate economic performance and welfare; and 3) the effects of potential reforms of the NHI and the methods used to finance the program. Our goal is to identify and compare potential government policy responses to the ongoing changes in the age structure of Japan’s population and the impact this will have on the country’s health care system.

This paper proceeds as follows. In Section 2, we construct a general equilibrium life-cycle model. In Section 3, we calibrate parameters to match Japanese economy. In Section 4, we discuss quantitative results. We conclude in Section 5.
Figure 3: Trend of Japan’s medical care cost 1985 – 2007
2 Model

A general equilibrium life-cycle model with national health insurance, endogenous labor supply and incomplete markets is constructed in order to carry out our analysis. We focus on the steady state and transition dynamics.

2.1 Demographics

The economy is populated by overlapping generations of individuals of age \(j = 1, 2, ..., J \). The lifespan is uncertain. An individual of age \(j \) survives until next period with probability \(\rho_j \) which depends on her/his age \(j \). When individuals reach age \(J \), then \(\rho_J = 0 \) and will leave the economy next period. The size of new cohort grows at a rate \(g \). The population of age \(j \) is denoted by \(\mu_j \), which evolves \(\mu_{j+1} = \frac{\rho_j}{1+g} \mu_j \), and the total population is normalized to one, \(\sum_{j=1}^{J} \mu_j = 1 \).

2.2 Endowment, Income Uncertainty and Preferences

Individuals enter the economy with no assets and are endowed with one unit of time. They can spend the time on market work for earnings or on leisure. If they decide to spend \(n \) hours on the market work, their earnings are given as \((w\eta_j, zn)\), where \(w \) is the market wage, \(\eta_j \) is the age-specific productivity, and \(z \) is idiosyncratic labor productivity that evolves stochastically to characterize the income uncertainty. \(\eta_j \) is zero after retirement age.

Individuals value consumption and leisure over the life-cycle and determine the sequence of consumption and labor supply according to a utility function \(u(c, n) \), which is compatible with balance growth path:

\[
u(c, n) = \left[\frac{c^\sigma (1 - n)^{1-\sigma}}{1 - \gamma} \right]^{1-\gamma};\]

where \(\gamma \) governs the degree of risk aversion.\(^2\)

\(^2\)One can use a separable utility between consumption and leisure but it is not consistent with balanced growth path unless \(\gamma \) is one:

\[
u(c, n) = \frac{c^{1-\gamma} - \varphi n^{1+1/\sigma}}{1 - \gamma} \frac{n^{1+1/\sigma}}{1+1/\sigma} \]

where \(\varphi \) is a disutility parameter and \(\sigma \) is Frisch elasticity of labor substitution.
2.3 Health, Medical Expenditure and National Health Care

2.3.1 Health Status and Medical Expenditure Uncertainty

Agents face exogenous uncertainty about their health status h. The health status evolves according to the Markov chain among three states of good, fair, and bad, \{h_g, h_f, h_b\}, with a transition matrix $\pi_j(h', h)$ that depends on age.

Individuals face an idiosyncratic medical expenditure shock $x_j(h)$ in each period.

2.3.2 National Health Insurance

Agents can partially insure medical expenditure risks with access to health insurance that covers a fraction ω_j of realized medical expenditure x. In Japan, the National Health Insurance (NHI) is available to every resident, and financed by an income-related premium (a payroll tax) and government general revenue. The coverage rate depends on age j. As will be discussed later, the co-insurance rate (or co-payment rate), $1 - \omega_j$, is 30% under age 70, 20% between 70-74, and 10% over age 75.

To consider the effect of future increases in medical costs, we also estimate the growth of medical expenditures q, which implies that individuals pay $(1 - \omega_j)qx$. In the benchmark case, q is set equal to one.

2.4 Public Pension

The public pension program provides the elderly with a benefit s when they reach the eligibility age of j and retire. The program is financed by the social security tax τ_s imposed on labor income of the working population.

2.5 Production Technology

On the production side, we assume that there is a continuum of competitive firms operating a technology with constant returns to scale. Aggregate output Y is given by

$$Y = F(K, L) = AK^\theta L^{1-\theta},$$

where K and L are the aggregate capital and effective labor employed by the firm’s sector and A is total factor productivity which we assume to be constant. Capital depreciates at rate of δ every period and θ denotes the capital income share.
2.6 Financial Market Structure

Individuals can hold assets that are non-state contingent claims to capital. The rate of return earned from these assets is denoted by r. Households can partially insure themselves against any combination of idiosyncratic labor productivity shocks and medical expenditure shocks by accumulating precautionary asset holdings. While they are allowed to insure themselves by accumulating positive asset holdings, they cannot carry debt, $a \geq 0$. This borrowing limit specially affects the asset holding decision of low-wealth households since they cannot smooth their consumption over time when their disposable incomes falls.

2.7 Government

In addition to the NHI and social security, the government also provides means-tested social insurance (public assistance) in this economy. The government guarantees a minimum level of consumption c by supplementing the income in case the household’s disposable income plus assets (net after medical expenditure) falls below c. We consider a simple transfer rule proposed by Hubbard et al. (1995). The transfer T will be made if the household’s disposable income plus assets (net after medical expenditure) is smaller than a minimum level of consumption. The transfer amount will be exactly equal to the difference.

Government’s revenue consists of revenues from different tax instruments, labor income tax τ_l, capital income tax τ_k, consumption tax τ_c, social security tax (pension payment) τ_{ss}, and the NHI premium p_{med}. The government uses its revenue to finance all public programs and its own consumption G.

2.8 Household’s Problem

The states for an agent is summarized by a vector $s = (j, h, a, z)$, where j is age, h is health status, a is asset holdings brought into the period, and z is the idiosyncratic shock to labor productivity. The household’s problem can be expressed as:

$$V(s) = \max_{c, n, a'} \left\{ u(c, n) + \rho \beta E[V(s')] \right\},$$
subject to

\[(1 + \tau_c)c + a' = W + T, \quad (1)\]

\[W \equiv y(n, j, z) + (1 + (1 - \tau_k)r)(a + b) - (1 - \omega_j)q_x, \quad (2)\]

\[y(n, j, z) = (1 - \tau_{ss} - \tau_{med})w\eta_jzn - \tau_j[(1 - \tau_{ss} - \tau_{med})w\eta_jzn] + ss(j) \text{ (tax on labor income)} \quad (3)\]

\[T = \max\{0, (1 + \tau_c)\xi - W\} \quad (4)\]

\[ss_j = \begin{cases} ss & \text{if } j \geq j^{ss}, \\ 0 & \text{otherwise}. \end{cases} \quad (5)\]

where \(T\) is the transfer made by the means-tested social insurance system, which ensures that agents will not fall into an undesired situation with negative wealth and consumption; \(ss\) is the social security benefit, and \(b\) is the lump sum transfer of accidental bequests. For simplicity, the public pension benefit is constant for all individuals.

Accidental bequests are redistributed by a lump-sum transfer:

\[b' = \int (1 - \rho_j)a'd\Phi(s). \quad (6)\]

In the budget constraint, \(\tau_j[\cdot]\) is a labor income tax function. The tax base is the labor earnings after subtracting payroll taxex and the health insurance premium. As will be discussed later, we consider both linear and progressive tax functions.

2.9 Government Budget Constraints

The government finances a fraction \(\psi\) of the NHI cost with general revenue. Individuals pay for the remaining fraction, \(1 - \psi\), through the mandatory NHI premium payment. Currently \(\psi\) is equal to 0.25 in Japan. The government budget constraint is as follows:

\[\int [\tau_j[\cdot] + \tau_k(a + b) + \tau_c c]d\Phi(s) = \psi \int (\omega_jq_x)d\Phi(s) + \int Td\Phi(s) + G \quad (7)\]

\[\int (\tau_{med}w\eta_jzn)d\Phi(s) = (1 - \psi) \int (\omega_jq_x)d\Phi(s) \quad (8)\]
where $\Phi(s)$ is a distribution function over state variables. In the benchmark, we set the tax rates (τ_k, and τ_c) equal to the current rates (in 2010) and set G equal to its current value as a percentage of GDP. In experiments with predicted population aging or medical care cost increases, we suppose the government will adjust the payroll tax to balance its budget and keep the values for G, τ_k, and τ_c fixed. This allows us to investigate how large is the extra burden on individuals (measured by changes in τ_l and p_{med}) caused by the cost changes for the NHI.

The social security public pension system is self-financed with a Pay-As-You-Go scheme:

$$\int (\tau_{ss} \eta_j z n) d\Phi(s) = \int ss_{j} d\Phi(s). \quad (9)$$

2.10 Stationary Recursive Competitive Equilibrium

A stationary recursive competitive equilibrium is defined as a set of household decision rules for asset holding a', labor supply n and consumption c; a set of firm decision rules for capital rented K and effective labor employed L; a price system w and r; a government policy of tax rates τ_{ss}, $\tau_{l}(\cdot)$, τ_k and τ_c, public pension benefits ss, an NHI premium p_{med} and a subsidy ratio ψ; and a distribution of households over the state variables $\Phi(s)$, such that:

a) given the price system, the decision rules of K and L solve the firm’s problem;

b) given the price system and the government policy, the decision rules (a', n, c) solve the household’s problem;

c) government policies $(\tau_{ss}, \tau_k, \tau_l, \tau_c, ss, p_{\text{med}}, \psi)$ satisfy the government’s budget constraints;

d) $\Phi(s)$ is stationary;

e) all markets clear: $L = \int (\eta_j z n) d\Phi(s)$ and $K' = \int a' d\Phi(s)$ (or $K = \int ad\Phi(s) + b$);

f) resource feasibility condition is satisfied

$$Y = C + K' - (1 - \delta)K + qX + G;$$

where C is the aggregate consumption, and X is the aggregate medical expenditure.
3 Calibration

In this section, we describe calibration and parameter selection. Table 4 summarizes some key parameters.

3.1 Preference

We set the subjective discount factor β equal to 0.98 so that the capital-output ratio K/Y in the model matches recent values for Japan. The elasticity of intertemporal substitution $1/\gamma$ is assumed to be 0.5, i.e., γ is set at 2, and the share of labor supply parameter σ is set at 0.33.

3.2 Production Function

Parameters of the production function, capital’s share θ and the depreciation rate δ, are taken from İmrohoroğlu and Sudo (2010). They estimate these parameters from the SNA by extending Hayashi and Prescott (2002)’s calibration to the current Japanese economy.

3.3 Demographics and Survival Probability

A household enters the economy at age 20, retires at 65, and lives at most until 100. The National Institute of Population and Social Security Research (IPSR) provides future projections on Japanese demographic changes. The most recent projection was estimated in 2006, and provides forecasts of demographic changes from 2005 to 2055. The projection consists of three variations on fertility rates, high, medium, and low, and also three variations on mortality rates. Thus, we have nine projections. We use medium variants on both fertility and mortality rates. The survival probabilities $\{\rho_j\}$ are taken from the life table for males in 2010 (initial stationary state) and 2055 (final stationary state). The population growth rate g is set at 0 in both initial and final stationary state. Although the assumption of zero population growth in 2010 is adopted for computational convenience, the fraction of retired households (the ratio of households aged over 65 to those between 20 and 64) in the model (26.43%) is quite close to the actual data (26.75%).
3.4 Medical expenditure

Micro-level panel data of medical expenditure are not publicly accessible in Japan. There is no database like the Medical Expenditure Panel Survey (MEPS) in the US, which is widely used to calibrate medical expenditure states and transition probabilities. To do a careful calibration for Japan, our main source is the report of Kan and Suzuki (2005). Kan and Suzuki studied the concentration and the persistence of health care expenditures in Japan. They had a special permit to access the health insurance claim data from 111 Japanese health insurance societies between 1996 and 1998. The data are panel and contain 35,970 individuals with age between 0 to 70.

3.4.1 Transition Probabilities

Kan and Suzuki (2005) analyzed the transition of medical expenditure in 5 age groups (0-17, 18-35, 35-45, 46-55, and above 55). Within each age group, they divided the samples into 10 medical expenditure quantiles and reported the corresponding transitions from 1996 to 1998.

Our purpose is to estimate the annual transition for medical expenditures for each age (from 20 to 100). To have a clear transition patterns over age, we re-classify the 10 quantiles to 3 states of medical expenditures: ‘low’, ‘middle’ and ‘high’. The category ‘low’ includes those in the bottom 50% of medical expenditures, the ‘middle’ contains the 6th quantile to the 9th quantile, and the ‘high’ category represents the top 10% expenders. The three states are unevenly classified such that they are able to capture the long-tail in the distribution of the medical expenditures and a small probability of incurring very large and catastrophic expenditures.

The original report in Kan and Suzuki (2005) present the transition of medical expenditure in a 2-year period. Because our model period is one year, we transform the 2-year transition matrices to a one-year transition matrices. Table 2 displays the one-year transition of the 3 states. We can observe that the probabilities of transiting to ‘low’ are monotonically decreasing in age. On the other hand, the probabilities of transiting to ‘high’ in general show an opposite pattern across age groups. In the computation, we linearly interpolate the transition probabilities so that transition matrices change smoothly over the life-cycle.

3See, for example, Jeske and Kitao (2009) and Attanasio et al. (2010).
Table 2: Transition of medical expenditure

<table>
<thead>
<tr>
<th></th>
<th>low</th>
<th>middle</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>age: 0–17</td>
<td>low 0.8280</td>
<td>middle 0.2309</td>
<td>high 0.0400</td>
</tr>
<tr>
<td></td>
<td>low 0.1615</td>
<td>middle 0.7262</td>
<td>high 0.3914</td>
</tr>
<tr>
<td></td>
<td>low 0.0105</td>
<td>middle 0.0429</td>
<td>high 0.5686</td>
</tr>
<tr>
<td>age: 18–35</td>
<td>low 0.7784</td>
<td>middle 0.3087</td>
<td>high 0.1137</td>
</tr>
<tr>
<td></td>
<td>low 0.2040</td>
<td>middle 0.6356</td>
<td>high 0.3284</td>
</tr>
<tr>
<td></td>
<td>low 0.0176</td>
<td>middle 0.0557</td>
<td>high 0.5579</td>
</tr>
<tr>
<td>age: 36–45</td>
<td>low 0.7566</td>
<td>middle 0.2817</td>
<td>high 0.0603</td>
</tr>
<tr>
<td></td>
<td>low 0.2232</td>
<td>middle 0.6523</td>
<td>high 0.3452</td>
</tr>
<tr>
<td></td>
<td>low 0.0202</td>
<td>middle 0.0660</td>
<td>high 0.5945</td>
</tr>
<tr>
<td>age: 46–55</td>
<td>low 0.7332</td>
<td>middle 0.2130</td>
<td>high 0.0399</td>
</tr>
<tr>
<td></td>
<td>low 0.2390</td>
<td>middle 0.6888</td>
<td>high 0.2443</td>
</tr>
<tr>
<td></td>
<td>low 0.0278</td>
<td>middle 0.0982</td>
<td>high 0.7158</td>
</tr>
<tr>
<td>age: 56–</td>
<td>low 0.6907</td>
<td>middle 0.1818</td>
<td>high 0.0131</td>
</tr>
<tr>
<td></td>
<td>low 0.2849</td>
<td>middle 0.6850</td>
<td>high 0.1531</td>
</tr>
<tr>
<td></td>
<td>low 0.0244</td>
<td>middle 0.1332</td>
<td>high 0.8338</td>
</tr>
</tbody>
</table>

Note: Calculation based on Kan and Suzuki (2005).
Figure 4: Transition probabilities of remaining in the same state

Figure 5: Invariant distribution of the medical expenditure states
The transition probabilities of remaining in the same states over the life cycle are shown in Figure 4. The probability of staying in “low” (the line ‘low-low’) is monotonically decreasing in age, while the probability of remaining in “high” (the line ‘high-high’) is monotonically increasing after age 26. In Figure 5, we display the unconditional probabilities of being in the three expenditure states over the life cycle, implied by the transition matrices.

3.4.2 Medical Expenditure States

The “Estimates of National Medical Care Expenditures,” which is published by the Ministry of Health, Labor, and Welfare of Japan, provides the data of average medical expenditures by age. For our calibration, we need the expenditure shares of the three states, low (bottom 50% individuals), middle (next 40%) and high (top 10%), in each age. According to Kan and Suzuki (2005), which provides the information of average expenditure shares of 10 quantiles (unconditional on age) from 1996 to 1998, we can calculate the average shares of the three expenditure states in total medical expenditure. We find that the
Table 3: Medical Care Expenditure Per Capita 2007 (Unit: 1,000 yen)

<table>
<thead>
<tr>
<th>Age</th>
<th>mean expenditure</th>
<th>low</th>
<th>middle</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4</td>
<td>219.0</td>
<td>31.1</td>
<td>208.4</td>
<td>1200.8</td>
</tr>
<tr>
<td>5 - 9</td>
<td>112.6</td>
<td>16.0</td>
<td>107.2</td>
<td>617.4</td>
</tr>
<tr>
<td>10 - 14</td>
<td>79.5</td>
<td>11.3</td>
<td>75.7</td>
<td>435.9</td>
</tr>
<tr>
<td>15 - 19</td>
<td>65.1</td>
<td>9.2</td>
<td>62.0</td>
<td>357.0</td>
</tr>
<tr>
<td>20 - 24</td>
<td>72.6</td>
<td>10.3</td>
<td>69.1</td>
<td>398.1</td>
</tr>
<tr>
<td>25 - 29</td>
<td>96.9</td>
<td>13.8</td>
<td>92.2</td>
<td>531.3</td>
</tr>
<tr>
<td>30 - 34</td>
<td>111.9</td>
<td>15.9</td>
<td>106.5</td>
<td>613.6</td>
</tr>
<tr>
<td>35 - 39</td>
<td>120.6</td>
<td>17.1</td>
<td>114.8</td>
<td>661.3</td>
</tr>
<tr>
<td>40 - 44</td>
<td>136.0</td>
<td>19.3</td>
<td>129.4</td>
<td>745.7</td>
</tr>
<tr>
<td>45 - 49</td>
<td>164.5</td>
<td>23.4</td>
<td>156.6</td>
<td>902.0</td>
</tr>
<tr>
<td>50 - 54</td>
<td>214.1</td>
<td>30.4</td>
<td>203.8</td>
<td>1174.0</td>
</tr>
<tr>
<td>55 - 59</td>
<td>293.4</td>
<td>41.7</td>
<td>279.2</td>
<td>1608.8</td>
</tr>
<tr>
<td>60 - 64</td>
<td>356.0</td>
<td>50.6</td>
<td>338.8</td>
<td>1952.1</td>
</tr>
<tr>
<td>65 - 69</td>
<td>455.4</td>
<td>64.7</td>
<td>433.4</td>
<td>2497.1</td>
</tr>
<tr>
<td>70 - 74</td>
<td>590.1</td>
<td>83.8</td>
<td>561.6</td>
<td>3235.7</td>
</tr>
<tr>
<td>75 - 79</td>
<td>696.1</td>
<td>98.8</td>
<td>662.5</td>
<td>3816.9</td>
</tr>
<tr>
<td>80 - 84</td>
<td>809.5</td>
<td>114.9</td>
<td>770.4</td>
<td>4438.7</td>
</tr>
<tr>
<td>Over 85</td>
<td>943.0</td>
<td>133.9</td>
<td>897.5</td>
<td>5170.8</td>
</tr>
<tr>
<td>average</td>
<td>267.2</td>
<td>37.9</td>
<td>254.3</td>
<td>1465.1</td>
</tr>
</tbody>
</table>

Source: “Estimates of National Medical Expenditure” and authors’ calculation.
bottom 50% in the distribution (“low”) only contributes 7.1% of total medical expenditure, the next 40% of the distribution (“middle”) contributes 38.1% of total medical expenditure, and the top 10% people’s share of total medical expenditure is as high as 54.8%. We assume that the expenditure shares of the three states are stable across age, and then can compute the medical expenditures of the three states for each age group with the latest (2007) data from the “Estimates of National Medical Care Expenditures.” The estimated results are presented in Table 3.

We also linearly interpolate the medical expenditures so that the medical expenditures change smoothly over the life-cycle. Figure 6 shows the estimated medical expenditures of the three states from age 20 to 100.

3.5 Wage shock process

We approximate the labor productivity shock z by AR(1) process:

$$\ln z_{j+1} = \lambda \ln z_j + \epsilon_j.$$

It is difficult to estimate stochastic hourly wage process without micro data on earnings and hours worked. It is very restricted to use such micro data of Japanese labor market. We use estimates by Abe and Yamada (2009) as a target of calibration for income risks. From the National Survey of Family Income and Expenditure, they estimate the income process of Japanese households. As labor supply in our model is endogenous, the corresponding income inequality is also endogenously determined. We set the skill shock parameters $\{\lambda, \sigma^2_\epsilon\}$ to replicate Japanese income inequality from our model. We approximate the AR(1) process by finite Markov chain from Tauchen (1986)’s method.

We calibrate average labor productivity by age $\{\eta_j\}$ from the Basic Survey on Wage Structure (Chingin Kozo Kihon Tokei Tyosa), which is compiled by the Ministry of Health, Labour, and Welfare. Following Hansen (1993), we compute hourly wage of each age group.\(^4\)

3.6 Health Care, Tax, and Social Security System

3.6.1 Price of Medical Expenditure

We focus on two issues that increase tax burden: aging population and increasing per capita costs of medical care. The medical care cost, which is cap-

\(^4\)For details, see also Braun et al. (2007).
tured by q, should change from the initial state corresponding to 2010 and is held constant after 2055. Following Attanasio, Kitao, and Violante (2008), we assume that the health care inflation rate is 0.63% per year. Then, the price of medical care increases about 32% in 45 years. Therefore, we set initial price of medical care to be one, $q_{2010} = 1$, and set final price at $q_{2055} = 1.3$. We also consider several alternative scenarios for medical expenditure inflation.

3.6.2 Health Care System

All citizens must contract with a health insurance society, which is based on occupation, e.g., employee, fisherman, public sector, employer, retiree, unemployed. Financial sources of medical expenditure consists of three components: (i) premium, (ii) tax, and (iii) out-of-pocket expenses. The premium covers only a half of total medical expenditure. The average out-of-pocket expense rate is about 15%. As mentioned in Section 2.3.2, the co-insurance rate, $1 - \omega_j$, is 30% under age 70, 20% between 70 and 74, and 10% over 75. As the fraction of individuals who have bad health status increases by age, the average out-of-pocket rate is less than 30%. The remaining burden is covered by the government’s general revenue.

3.6.3 Tax System

We consider two version of labor income tax function: linear tax and progressive tax code.

- Basically, we use linear tax rate because our focus in this paper is to quantify the burden of future health care system. It is difficult to interpret the result if the tax code is nonlinear. When the labor tax rate is linear, the disposable earning in equation (3) is simply rewritten as follows:

$$y(n, j, z) = (1 - \tau_{ss} - \rho_{med} - \tau_l) \eta_j z n + ss(j).$$

Notice that the labor tax rate τ_l balances the government’s budget constraint in equation (7).

- Currently, the consumption tax rate τ_c in Japan is set at 5%; 4% for central government and 1% for local governments.

We calibrate exogenously determined public expenditure G in the following manner. Government expenditure in 2010 is 83 trillion yen, which includes
expenditures for public pension and medical care that amount 8.5 trillion yen. Thus, the government expenditure without social security related expenditure is 74.5 trillion yen. As nomical GDP in Japan is about 500 trillion yen, the target G/Y is about 15%.

3.6.4 Social Security System

The replacement rate of social security benefit ss_j, which is estimated by Oshio and Yashiro (1997), is set at 40%. The payroll tax rate on social security system is endogenously determined. Current actual payroll tax rate for public pension is about 14%.

3.6.5 Social Insurance

Social assistance (lower bound of consumption) c_l is set at 10% of average consumption.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount factor</td>
<td>β</td>
</tr>
<tr>
<td>Intertemporal elasticity of substitution</td>
<td>γ</td>
</tr>
<tr>
<td>Share of labor supply</td>
<td>σ</td>
</tr>
<tr>
<td>Capital share</td>
<td>σ</td>
</tr>
<tr>
<td>Depreciation rate</td>
<td>δ</td>
</tr>
<tr>
<td>Persistence of labor productivity shock</td>
<td>λ</td>
</tr>
<tr>
<td>Std. dev. of labor productivity shock</td>
<td>σ_ϵ</td>
</tr>
<tr>
<td>Government share of NHI</td>
<td>ψ</td>
</tr>
<tr>
<td>Price of medical expenditure</td>
<td>q</td>
</tr>
</tbody>
</table>

Table 4: Parameters of the Model

4 Analysis

4.1 Impacts of population aging and increased medical cost

We use data from 2010 to set the initial values for the state variables. We investigate the impact of population aging and medical cost increases keeping all other things unchanged.
We first compare tax burdens in a steady state economy with the 2010 demographic structure and in economies with a population structure as projected in 2055. We assume that 2010 is the initial steady state. The benchmark model economy is calibrated to match the tax burden, the medical care cost, the capital-output ratio, population structure and some aggregate variables of Japanese economy in 2010. The government expenditure to GDP ratio is fixed at 15% as in 2010 by assumption. We also assume that the policy of government’s subsidy to NHI is fixed: 25% of the total NHI cost ($\psi = 0.25$); the policy of NHI co-insurance rate ω is assumed to be fixed, too. The remaining cost of the NHI is fully financed by the premium (a labor tax) in new steady states. The following scenarios are investigated:

Fixed cost of medical care
In this case we assume that medical cost q stays constant from 2010 to 2055. Obviously there will be an increase in the NHI cost due to the demographic change – there are more old people, who demand more medical care, but fewer tax/premium payers. Although we assume that government share of NHI cost is fixed, the government still needs additional revenue to finance the share of the increased NHI cost. We assume the government would adjust payroll tax to ensure that it is able to finance the 25% of the total NHI cost. Our simulation result is presented in the second column of table 5. The higher NHI cost requires increases in payroll tax rate and premium tax. The additional NHI cost in 2055 accounts for 2.4% labor tax burden (including both payroll tax and premium tax) for young people. This figure is likely to be the lower bound since we assume constant medical cost through 2055.

Increased cost of medical care
If we assume the price growth of medical care is similar to the US, with a 0.6% annual growth rate, the medical care in 2055 will be about 30% more expensive than in 2010. Taking into account this medical price inflation, the NHI in the 2055 will cause additional 6.4% tax burden on labor. The result is shown in the 4th column of table 5.

Alternative growth rates are also investigated – in particular, a low growth rate, 0.4% per year (i.e. 20% price increase in 2055), and high growth rate, 0.75% per year (i.e. 40% price increase in 2055). The additional tax burdens caused by higher NHI costs are equivalent to 5.2% and 7.5% labor income tax, respectively. Table 5 presents the results.
Table 5: The impact of population aging on NHI cost

<table>
<thead>
<tr>
<th>Benchmark Initial SS (2010)</th>
<th>New SS w/ population aging (2055) Medical cost growth rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>(K/Y)</td>
<td>2.660</td>
</tr>
<tr>
<td>(M/Y)</td>
<td>9.6%</td>
</tr>
<tr>
<td>(G/Y)</td>
<td>15%</td>
</tr>
</tbody>
</table>

Tax burden

	9.6%	12.1%	12.1%	12.1%	12.1%
Social security tax	5.0%	5.0%	5.0%	5.0%	5.0%
Consumption tax	39.8%	39.8%	39.8%	39.8%	39.8%
Capital tax	11.2%	12.3%	13.0%	13.3%	13.5%
Payroll tax	6.8%	8.1%	10.3%	11.1%	12.0%
Total labor tax burden	18.0%	20.4%	23.3%	24.4%	25.5%

Increased NHI burden

| (as of labor income) | 2.4% | 5.2% | 6.4% | 7.5% |

Note: \(K/Y \) – capital output ratio; \(M/Y \) – medical care cost - output ratio; \(G/Y \) – government expenditure-output ratio.

\(^1\) low – growth rate 0.4% per year; high – 0.75% per year.
4.2 Reform of NHI policy

To reduce the tax burden on the young with the aged population in 2055, we consider the following NHI policy reforms:

a) Having old people’s (those above 70) co-payment (out-of-pocket) rate adjusted to 30% as young people’s;
b) Increasing the co-payment rate to 35%, 40%, 45%, and 50% instead of the current 30%, and having old people’s co-payment rate the same as young people’s.

We still assume government share of the NHI cost and the co-payment policy of NHI are fixed as in the benchmark. The remaining cost of the NHI needs to be fully financed by the premium tax. Government consumption to GDP ratio is fixed at 15%. The government would adjust payroll tax rate to balance its budget.

Welfare is measured by expected lifetime value with equilibrium distribution of all population or of the new-born. Welfare deviation is calculated by using the certainty equivalent consumption (CEQ) measure: Given the utility function,

\[CEQ = \left(\frac{V_{\text{new}}}{V_{\text{original}}} \right)^{1/(\sigma(1-\gamma))}, \quad (10) \]

where \(V_{\text{new}} \) is the welfare in the economy with a new policy and \(V_{\text{original}} \) is the welfare in the original economy.

The results of the policy experiments are presented in Table 6. We can see that the K/Y ratio increases as the NHI co-payment rate is raised because agents have to accumulate more precautionary savings to guard against the medical expenditure risk by themselves, especially for their old periods.

In addition, the policy reform of increasing co-payment forces old people to share more the medical care cost and lowers down the tax burden on young people. Therefore, we observe significant welfare improvement of the policy reform for the new-born (see CEV for the new-born in Table 6). Moreover, the reduction of labor tax burden will less distort labor supply and improve the welfare. However, the higher co-payment hurts old people who face higher medical expenditure uncertainties. The average welfare of all population would be ambiguous. We find that the CEV of all population is much smaller and even becomes negative (see CEV(all population) in Table 6).
Table 6: Alternative NHI policies in 2055– steady state comparison

<table>
<thead>
<tr>
<th></th>
<th>Current system</th>
<th>NHI policy reform Co-payment rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30%</td>
</tr>
<tr>
<td>K/Y</td>
<td>2.715</td>
<td>2.861</td>
</tr>
<tr>
<td>M/Y</td>
<td>11.2%</td>
<td>10.7%</td>
</tr>
<tr>
<td>G/Y</td>
<td>15.0%</td>
<td>15.0%</td>
</tr>
<tr>
<td>Tax burden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social security tax</td>
<td>12.1%</td>
<td>12.1%</td>
</tr>
<tr>
<td>Consumption tax</td>
<td>5.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Capital tax</td>
<td>39.8%</td>
<td>39.8%</td>
</tr>
<tr>
<td>Payroll tax</td>
<td>13.3%</td>
<td>13.4%</td>
</tr>
<tr>
<td>Premium</td>
<td>11.1%</td>
<td>9.0%</td>
</tr>
<tr>
<td>Total labor tax burden</td>
<td>24.4%</td>
<td>22.4%</td>
</tr>
<tr>
<td>Welfare comparison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEV(new-born, $h = \text{good}$)</td>
<td>0.00%</td>
<td>4.89%</td>
</tr>
<tr>
<td>CEV(new-born, $h = \text{fair}$)</td>
<td>0.00%</td>
<td>4.90%</td>
</tr>
<tr>
<td>CEV(new-born, $h = \text{bad}$)</td>
<td>0.00%</td>
<td>4.93%</td>
</tr>
<tr>
<td>CEV(all population)</td>
<td>0.00%</td>
<td>-0.07%</td>
</tr>
</tbody>
</table>

Note: CEV=CEQ-1
Table 7: Financing policies in 2055– steady state comparison

<table>
<thead>
<tr>
<th></th>
<th>Current system $\tau_c = 5%$</th>
<th>Financing policy reform Consumption tax rate τ_c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.715</td>
<td>2.775</td>
</tr>
<tr>
<td>K/Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M/Y</td>
<td>11.2%</td>
<td>11.0%</td>
</tr>
<tr>
<td>G/Y</td>
<td>15.0%</td>
<td>15.0%</td>
</tr>
<tr>
<td>Tax burden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social security tax</td>
<td>12.1%</td>
<td>12.1%</td>
</tr>
<tr>
<td>Consumption tax</td>
<td>5.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td>Capital tax</td>
<td>39.8%</td>
<td>39.8%</td>
</tr>
<tr>
<td>Payroll tax</td>
<td>13.3%</td>
<td>9.3%</td>
</tr>
<tr>
<td>Premium</td>
<td>11.1%</td>
<td>10.9%</td>
</tr>
<tr>
<td>Total labor tax burden</td>
<td>24.4%</td>
<td>20.2%</td>
</tr>
<tr>
<td>Welfare comparison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEV(new-born, $h =$good)</td>
<td>0.00%</td>
<td>1.99%</td>
</tr>
<tr>
<td>CEV(new-born, $h =$fair)</td>
<td>0.00%</td>
<td>2.00%</td>
</tr>
<tr>
<td>CEV(new-born, $h =$bad)</td>
<td>0.00%</td>
<td>2.03%</td>
</tr>
<tr>
<td>CEV(all population)</td>
<td>0.00%</td>
<td>0.26%</td>
</tr>
</tbody>
</table>

Note: CEV=CEQ-1
4.3 Reform of financing policy

Here we investigate various financing policies for the NHI with the aged population. We particularly focus on consumption tax (τ_c), which can be a substitute of labor tax. We investigate two scenarios: τ_c increased to 1) 10% and to 2) 15% in 2055. The results of the policy experiments are presented in Table 7.

Imposing a higher consumption tax to substitute the labor tax has a redistribution effect across generations: it forces old people to share more tax burden through the consumption tax since they do not pay any kind of labor taxes, and reduces young people’s tax burden. The decrease in labor tax burden reduces labor distortion and improves welfare. The policy also affects asset accumulation – people need to save more for their old ages to finance the pricier consumption. So we find higher K/Y ratios in the simulation results with the policy experiments.

In general, the welfare effect of this financing policy reform is similar to it with the NHI co-payment increase. The new-born enjoy the reform but the old do not although the overall CEV is positive.

4.4 Transition

In the above we compare welfare in different steady states. The cost along with the transition is not considered.

Now we take into account the transitional cost for better understanding the welfare implications of alternative policies. We assume that from the first steady state in 2010, a new policy is implemented in 2011 unexpectedly, and the economy transits to reach the second steady state in 2200. Between 2010 and 2055, the survival probabilities and population growth rates evolve according to the population forecast; after 2055, they stop changing and the economy converges to the new steady state in 2200. We compute the equilibrium transitional path between the two steady states. The approach that we use here is similar to Nishiyama and Smetters (2005). Please see the computational details in the appendix.

We perform the transition analysis for two potential policy reforms: 1) having old people’s NHI co-payment rate to 30% as young people’s from current 20% for age 70-74 and 10% for age above 74; 2) increasing consumption tax to 10% from current 5%. The welfare changes by age and health status of individuals living in 2010 are presented in figures 7-9.
Figure 7: Policy reform – CEV by age (transition), good health

Figure 8: Policy reform – CEV by age (transition), fair health
In general, the result suggests that older people would encounter losses under the reforms, while younger people, particularly those younger than 35, have welfare gains. As found in the above steady state comparison, those reforms both force old people to share more medical care cost than under the current policy and relieve young people’s tax burden.

We also observe that for those above 64, the welfare losses are large under the first policy reform – more than 10% of their life time consumptions except those very old and close to the terminal age. First, the elder face higher medical shocks and so the increased co-payment hurts them more. Second, most importantly, because the new policy is assumed to be implemented unexpectedly right after 2010, those already retired had no chance to prepare (i.e. accumulate more assets) for the sudden medical cost increase when they were working. The welfare loss is severe particularly for those with bad health whose medical care cost can be even higher than the average income (see Figure 9). In this case, the unexpected 10-20% additional co-payment would largely reduce the consumption of those unprepared, retired and high-medical-risk people. The new policy on NHI co-payment in fact forces unhealthy people to share more medical cost than healthy people.
The second policy reform, a consumption tax increase, has a much milder impact on the old people. This is because the redistribution between the high-medical-risk and the low-medical-risk are much smaller than the NHI co-payment reform. In fact, individual with lower medical expenditure (good health) consume more, and therefore pay more consumption tax than those with higher medical expenditure. So we can see that under the second policy, young people with bad health gain more than those with good health, and old people with bad health lose less than those with good health that is opposite to the first policy reform.

The result suggests that a consumption tax reform might be more politically implementable than a policy change in NHI co-payment although both reduce tax burden for young people.

5 Robustness Analysis

To be written.

6 Concluding Remarks

To be written.

References

A Health Insurance System in Japan

To be written.

B Estimation of Wage Risks

To be written.

C Computational Procedures [Not For Publication]

In this section, we explain details of numerical procedures for computing steady states and transition paths.

The household’s problem can be expressed as follows:

\[V_t(s) = \max_{c,n,d} \left\{ u(c_{j,t}, n_{j,t}) + \rho_j \beta E \left[V_{t+1}(s') \right] \right\}, \]

subject to

\[(1 + \tau_{c,t})c_{j,t} + a'_{j,t+1} = W + T, \]

\[W \equiv y_{j,t}(n, z) + (1 + (1 - \tau_{k,t}) r_t) (a_{j,t} + b_t) - (1 - \omega_{j,t}) q_t x,\]

\[y_{j,t}(n, z) = (1 - \tau_{ss,t} - \tau_{t,t} - p_{t,med}^m) w_t n_{j,t} z_{n,t} + ss_j \]

\[T = \max\{0, (1 + \tau_{c,t})c_{j,t} - W\} \]

\[ss_j = \begin{cases} \text{ss} & \text{if } j \geq j^{ss}, \\ 0 & \text{otherwise}. \end{cases} \]

Note that aggregate variables \(\{K_t, L_t, Y_t, C_t, b_t\}\), factor prices \(\{r_t, w_t\}\) and survival probabilities \(\{\rho_{j,t}^{100}_{j,=20,1,=2010}^{100}\}\) depend on calendar time. As a result, government expenditure \(G_t\) and minimum consumption level for social assistance \(c\) are also time-dependent since these variables are determined as a fixed fraction of aggregate output and consumption: \(G_t/Y_t \approx 15\%\) and \(c_t/C_t = 10\%\). Labor income tax rate \(\tau_{c,t}\), payroll tax rate for social security \(\tau_{ss,t}\), and premium \(p_{t,med}^m\) are determined from government budget constraints which are also time-dependent. We use co-payment rate \(\omega_{j,t}\), consumption tax rate \(\tau_{c,t}\) and capital income tax rate \(\tau_{k,t}\) as policy variables. We assume that households have perfect foresight about future prices.
C.1 First-Order Conditions

From the first-order conditions of the Bellman equation and the envelope theorem, we have

\[
\begin{align*}
 u'_c(c_{j,t}, 1 - n_{j,t}) - \xi (1 + \tau_{c,t}) &= 0, \\
 \rho_{j,t} \beta E_j \frac{\partial V_{t+1}(a_{j+1,t+1}, z_{j+1}, h_{j+1}, j + 1)}{\partial a_{j+1,t+1}} - \xi &\leq 0, \\
 \frac{\partial V_t(a_{j,t}, z_j, h_j, j)}{\partial a_{j,t}} &= \frac{(1 + (1 - \tau_{k,t})r_t)}{(1 + \tau_{c,t})} u'_c(c_{j,t}, 1 - n_{j,t}),
\end{align*}
\]

\[-u'_n(c_{j,t}, 1 - n_{j,t}) + \xi (1 - \tau_{ss,t} - \tau_{l,t} - p_t^{med}) \omega_l \eta_j z = 0,
\]

where \(\xi\) is a Lagrange multiplier associated with the budget constraint.

From the Envelope theorem, the intertemporal and intratemporal first-order conditions are as follows:

\[
\begin{align*}
 \frac{u'_c(c_{j,t}, 1 - n_{j,t})}{1 + \tau_{c,t}} &\geq \frac{(1 + (1 - \tau_{k,t})r_t) \rho_{j,t} \beta E_j u'_c(c_{j+1,t+1}, 1 - n_{j+1,t+1})}{1 + \tau_{c,t+1}}, \\
 \frac{u'_c(c_{j,t}, 1 - n_{j,t})}{1 + \tau_{c,t}} &= \frac{-u'_n(c_{j,t}, 1 - n_{j,t})}{(1 - \tau_{ss,t} - \tau_{l,t} - p_t^{med}) \omega_l \eta_j z}.
\end{align*}
\]

Cobb-Douglas: If the utility function is of Cobb-Douglas type, the first-order conditions are rewritten as

\[
\frac{[\sigma_{j,t}(1 - n_{j,t})]^{1-\sigma}}{c_{j,t}} \geq \frac{1 + \tau_{c,t}}{1 + \tau_{c,t+1}} (1 + (1 - \tau_{k,t+1})r_{t+1}) \rho_{j,t} \beta E_j \frac{[\sigma_{j+1,t+1}(1 - n_{j+1,t+1})]^{1-\sigma}}{c_{j+1,t+1}},
\]

\[n_{j,t} = 1 - \left(\frac{1 - \sigma}{\sigma}\right) \frac{(1 + \tau_{c,t}) c_{j,t}}{(1 - \tau_{ss,t} - \tau_{l,t} - p_t^{med}) \omega_l \eta_j z}.
\]

C.2 Endogenous Gridpoint Method

Our model is a standard life cycle model with medical expenditure shocks. Although there are potentially many kinks, we can solve the model by backward induction. We use the endogenous gridpoint method to compute policy functions. Basic idea here is from Carroll (2006), Appendix in Krueger and Ludwig (2006) and Barillas and Fernández-Villaverde (2006). The trick of their approach is changing the timing of state variables.

Suppose that we already know the next period’s policy functions of age \(j + 1\) and time \(t + 1\) as \(c_{j+1,t+1} = g^{c}_{j+1,t+1}(a_{j+1,t+1}, z_{j+1}, h_{j+1})\), and \(n_{j+1,t+1} = \)
Define the right-hand side of the Euler equation as
\[
\Gamma'(a_{j+1,t+1}, z_j, h_j, j, t) = \frac{1 + \tau_{c,t}}{1 + \tau_{c,t+1}} (1 + (1 - \tau_{k,t+1})r_{t+1})\rho_{j,t}BE_j \left\{ \left[\frac{c^{\sigma}_{j+1,t+1}(1 - n_{j+1,t+1})^{1-\sigma}]^{1-\gamma}}{c^{\gamma}_{j+1,t+1}} \right] \right\},
\]
and take discretized grids on \(a_{j+1,t+1} \in [a_{\text{min}}, a_{\text{max}}] \). From equation (11), the intertemporal first-order condition is rewritten as follows:
\[
u_t'(c_{j,t}, 1 - n_{j,t}) = \Gamma'(a_{j+1,t+1}, z_j, h_j, j, t)
\]
Thus, if we can compute \(\Gamma' \) for each discretized state \((a_{j+1}, z_j, h_j, j, t) \) and the utility function is invertible, we obtain consumption \(c_{j,t} \) for each state.\(^7\)

Next, we show that the utility function is invertible if the utility function is of Cobb-Douglas type. Note that the marginal utility function is defined as follows:
\[
u_t'(c_{j,t}, 1 - n_{j,t}) = \sigma \frac{[c^{\sigma}_{j,t}(1 - n_{j,t})^{1-\sigma}]^{1-\gamma}}{c^{\gamma}_{j,t}}.
\]
(12)
Plugging the labor supply function, \(n_{j,t} = 1 - \left(\frac{1-\sigma}{\sigma} \right) \left(\frac{(1+\tau_{c,t})c_{j,t}}{(1-\tau_{ss,t}-\tau_{l,t}-p_{t}^{med})w_{t}^{i} z_{j}} \right) \), into equation (12) to remove \(n_{j,t} \), we have
\[
u_t'(c_{j,t}, 1 - n_{j,t}) = c_{j,t}^{\gamma} \left(\frac{1-\sigma}{\sigma} \right) \left(\frac{(1+\tau_{c,t})}{(1-\tau_{ss,t}-\tau_{l,t}-p_{t}^{med})w_{t}^{i} z_{j}} \right) \left((1-\sigma)(1-\gamma) \right) : n_j > 0
\]
\[
u_t'(c_{j,t}, 1 - n_{j,t}) = \sigma c_{j,t}^{\sigma(1-\gamma)-1} : n_j = 0
\]
These equations are apparently invertible. Thus, we have
\[
c_{j,t} = u^{-1} \cdot \Gamma'(a_{j+1,t+1}, z_j, h_j, j, t),
\]
for each discretized grid \(a_{j+1,t+1} \). From consumption \(c_{j,t} \), we can compute \(n_{j,t} \). From the set of \(\{ c_{j,t}, n_{j,t}, a_{j+1,t+1} \} \), we define new cash on hand \(x_{j,t}^{i} \equiv a_{j+1,t+1} + c_{j,t} \), where \(a_{j,t}^{i} \equiv (1 + \tau_{c,t})c_{j,t} + (1 - \tau_{ss,t} - \tau_{l,t} - p_{t}^{med})w_{t}^{i} z_{j}(1 - n_{j,t}) \).

\(^5\)Because we consider life cycle model, the last period’s policy function is already known, i.e., households consume all wealth they have. From backward induction, the assumption that we know next period’s policy function is always satisfied.

\(^6\)We use exponentially spaced grid and set the number of the grid to be 50.

\(^7\)Note that as the labor supply is endogenous, the cash on hand in the next period is still not determined. Following Krueger and Ludwig (2006), we temporarily determine the cash on hand as asset holdings plus earning with maximum supply of labor.
C.3 Law of Motion: Steady State

Define the probability space as \((\mathcal{A} \times \mathcal{Z} \times \mathcal{H}), \mathcal{B}((\mathcal{A} \times \mathcal{Z} \times \mathcal{H})), \Phi_{j,t}\) where \(\mathcal{B}((\mathcal{A} \times \mathcal{Z} \times \mathcal{H}))\) is a Borel \(\sigma\)-field and \(\Phi_{j,t}(X)\) is a probability measure over \(X \in \mathcal{B}((\mathcal{A} \times \mathcal{Z} \times \mathcal{H}))\). From the policy function and the transition probability of labor productivity and health status, the transition function \(Q_{j,t}(\cdot, \cdot)\) over household’s states \((a, z, h, j)\) and the distribution function \(\Phi_{j,t}(a, z, h)\) is computable. The probability measure is defined over household’s state and also represents the fraction of households with state \(X \in \mathcal{B}((\mathcal{A} \times \mathcal{Z} \times \mathcal{H}))\). Because we assume that households of age \(j = 20\) have zero assets, \(\Phi_{20,t}(a, z, h)\) is equal to one on \(a_{20} = 0\). The transition function \(Q_{j,t} : (\mathcal{A} \times \mathcal{Z} \times \mathcal{H}) \times \mathcal{B}((\mathcal{A} \times \mathcal{Z} \times \mathcal{H})) \to [0, 1]\) is defined as

\[
Q_{j,t}((\mathcal{A} \times \mathcal{Z} \times \mathcal{H}), X) = \sum_{z', h'} \left\{
\begin{array}{ll}
\pi(z', z) \times \pi_{j}(h', h) & \text{if } g_{j,t}^q(a, z, h) \in X \\
0 & \text{else}
\end{array}
\right., \text{ for all } j = 20, \ldots, 100.
\]

Given the initial distribution \(\Phi_{20,t}\), the distribution function \(\{\Phi_{j,t}\}^{100}_{j=21}\) for each \(j\) mapped by the following equation.

\[
\Phi_{j+1,t+1}(X) = \int Q_{j,t}((\mathcal{A} \times \mathcal{Z} \times \mathcal{H}), X) d\Phi_{j,t}, \quad (\forall X \in \mathcal{B}(\mathcal{A} \times \mathcal{Z} \times \mathcal{H})), j = 20, \ldots, 100.
\]

Note that population change is adjusted by \(\mu_{j,t}\), which is uncorrelated with other random variables.

C.4 Approximated Distribution Function: Steady State

We use Young(2010)’s method to find an invariant distribution.\(^8\) First, discretize asset grid, which should be finer than that used in the policy function iteration; e.g., \(\{a^j_{i,\ell}\}^{5000}_{i=1}\). Then, \(\Phi_{j,t}(a^j_{i,\ell}, z_j, h_j)\) is the fraction of agents with state \((a^j_{i,\ell}, z_j, h_j)\) for each age \(j\) and time \(t\). Because it is probability measure, the sum must be equal to one, i.e., \(\sum^{5000}_{i=1} \sum_{z_j, h_j} \Phi_{j,t}(a^i_{j,t}, z_j, h_j) = 1\). From the policy function obtained above, next period’s asset of an agent with \((a^j_{i,\ell}, z_j, h_j)\) is \(a_{j+1,t+1} = g_{j,t}^q(a^j_{i,\ell}, z_j, h_j)\). However, \(a_{j+1,t+1}\) is not usually on the grid \(\{a^j_{i,\ell}\}\). We compute the fraction of agents who have \(a_{j+1,t+1}\) in the next period by the following rule. First, we find interval of grid \(\lfloor a_{\ell-1}, a_{\ell+1}\rfloor\) which bisect \(a_{\ell+1}\). After that, we compute the distance \((\epsilon, 1 - \epsilon)\) between the bisected grid.

\[
\epsilon = \frac{a' - a_{\ell}}{a_{\ell+1} - a_{\ell}}, \quad a' \in [a_{\ell}, a_{\ell+1}]
\]

\(^8\)See also Heer and Maussner (2009).
Then, current $\Phi_{j,t} \left(a_j, z_j, h_j \right)$, in which they will have next period’s asset $a_{j+1,t+1}$, is divided into corners of the interval $[a_\ell, a_{\ell+1}]$ by the following equation:

$$
\Phi_{j+1,t+1}(a_{\ell+1}, z', h') = \pi(z', z) \cdot \pi_j(h', h) \cdot (1 - \epsilon) \Phi_{j,t}(a_j, z_j, h_j),
$$

$$
\Phi_{j+1,t+1}(a_\ell, z', h') = \pi(z', z) \cdot \pi_j(h', h) \cdot \epsilon \Phi_{j,t}(a_j, z_j, h_j).
$$

Iterating this procedure, we find density functions $\Phi_{j+1,t+1}(a_{j+1}, z_{j+1}, h_{j+1})$ for each age.

C.5 Find a Steady State: Algorithm

Computation of the steady state is the same as in Huggett (1996). We omit time subscript t. There are three markets in the model, goods, labor, and capital. However the factor prices (r, w) are determined from the capital–labor ratio K/L. By the Walras law, we concentrate on K/L.

1. Load survival probabilities $\{\rho_{j,t}\}$, age-efficiency profile $\{\eta_j\}$, and medical expenditure shocks x which is calculated by Matlab, from external file. Approximate a labor productivity process (AR1) by a finite Markov chain using Tauchen’s (1986) method. Discretize next period’s asset by $a_{j+1,t+1} \in [a_{\min}, a_{\max}]$.

2. Guess an initial government expenditure G^0, aggregate medical expenditure X^0, and minimum consumption c^0, which are endogenously determined as a fixed fraction of aggregate output Y and aggregate consumption C. Find an equilibrium payroll tax rate τ_{ss} for social security system, which is independent of equilibrium factor prices and aggregate variables.

3. Guess an initial labor income tax rate τ^0_l and premium p^med_0, which are endogenously determined in equilibrium.

4. Given an initial guess of (K^0, L^0), compute a pair of (r^0, w^0).

5. Given prices and tax rates $(r^0, w^0, \tau^0_l, p^\text{med}_0, G^0, X^0, c^0)$, compute policy function $a' = g_{j,t}^a(a, z, h; r^0, w^0, \tau^0_l, p^\text{med}_0, G^0, X^0, c^0)$ using the EGM.

6. Compute distribution functions $\Phi_{j,t}^0(a, z, h; r^0, w^0, \tau^0_l, p^\text{med}_0, G^0, X^0, c^0)$ from the policy function.
7. Integrating the distribution function \(\Phi_{j,t}(a, z, h; r^0, w^0, \tau^0, p_{0}^{\text{med}}, G^0, X^0, \varpi^0) \) over financial asset, we obtain the aggregate capital \(K^1 \) and labor \(L^1 \).

8. **Inner loop** If \(K^0 \) and \(K^1 \) are not close to each other, refine the factor prices and repeat step 4 – 7. If \(K^0 \) and \(K^1 \) are sufficiently close to each other, then exit the inner loop. We have an equilibrium prices given a set of tax rate.

9. **Middle loop** Check whether the government budget constraints clear. If the government budget clear, then exit the middle loop. Compute an aggregate output. If not, then update the labor income tax rate and the premium \(\{ \tau_l^1, p_{1}^{\text{med}} \} \) and compute step 3 – 8.

10. **Outer loop** Check whether \(G/Y, X/Y \) and \(\xi/C \) are close to the target value. If the errors are within tolerance value, then we find a steady state equilibrium. If not, update new \(\{ G^1, X^1, \xi^1 \} \) and compute steps 2 – 9.

11. Then, compute age-mean and variance profiles and welfare.

C.6 **Transition Path**

After the computation of the steady states in 2010 and 2200, we compute the transitional path between the steady states. The basic idea here is the same as Nishiyama and Smetters (2005).

1. Load survival probabilities \(\{ \rho_{j,t} \} \), age-efficiency profile \(\{ \eta_j \} \), and medical expenditure shocks \(x \) from external file. Approximate a labor productivity process (AR1) by a finite Markov chain using Tauchen’s (1986) method. Discretize next period’s asset by \(a_{j+1,t+1} \in [a_{\min}, a_{\max}] \). Find an equilibrium payroll tax rate path for social security system \(\{ \tau_{ss,t} \} \). Set the price of medical expenditure path \(\{ q_t \} \) as \(q_{2010} = 1 \) and it increases 0.7% per year.

2. Compute an initial and final steady state. The algorithms are stated above.

3. Given an exogenous path of \(\{ \{ \rho_{j,t}, \omega_j \} \}_{j=20}^{100}, \tau_{c,t}, \tau_{k,t}, q_t \}_{t=2000}^{2200} \), guess an equilibrium sequence of \(\{ r_t, w_t, \tau_{l,t}, p_{t}^{\text{med}}, L_t, b_{t}, \xi_t \}_{t=2010}^{2200} \) which are required to solve a household’s problem.\(^9\)

\(^9\)For simplicity, we start a linear case.
4. Because we have the policy function of the final steady state in 2200, we compute a sequence of policy functions using the EGM backwardly from 2200 to 2010.

5. Given the policy functions, compute the distribution function \(\{ \Phi_{j,t} \} \) from 2010 onwards and compute aggregate variables, \(\{ K_t, L_t, Y_t, C_t, r_t, w_t \}^{2000}_{t=2010} \). Set the government expenditure \(\{ G_t \} \) as \(G_t / Y_t \) is close to a target value, and adjust minimum consumption to satisfy \(c_t / C_t = 10\% \).

6. Check whether each market clearing conditions and government budget constraints are satisfied. If these are not in equilibrium, update the price sequences and repeat steps 3 – 5.\(^ {10}\)

7. If all markets clear and government budget constrains satisfied in all periods, then stop computation. Compute value for each age and time by value function iteration.

C.7 Transition Path with Calibration during Periods in 1980–2010

To be written.

\(^ {10}\) There are many efficient methods for update the price sequence. For example, Krueger and Ludwig (2006) and Ludwig (2006) uses a modified version of Gauss-Zeidel method for computing the transition path.