Vision and Flexibility in a Model of Cognitive Dissonance

Junichiro Ishida

ISER, Osaka University

March, 2010
There is a body of evidence that we do not process information as a Bayesian learner would do.
Motivation

- There is a body of evidence that we do not process information as a Bayesian learner would do.
- Our perceptions and behaviors are biased in a systematic manner. There are two sides to this issue.
There is a body of evidence that we do not process information as a Bayesian learner would do.

Our perceptions and behaviors are biased in a systematic manner. There are two sides to this issue.

- The conformity bias: we rely excessively on precedents, instead of our private information, and bias our perceptions and behaviors towards the majority.
Motivation

There is a body of evidence that we do not process information as a Bayesian learner would do.

Our perceptions and behaviors are biased in a systematic manner. There are two sides to this issue.

- The conformity bias: we rely excessively on precedents, instead of our private information, and bias our perceptions and behaviors towards the majority.
- The confirmatory bias: we also let our initial perceptions interfere too much with our decision making (the anchoring effect) and stick excessively and stubbornly with our initial choices of action.
Motivation

- There is a body of evidence that we do not process information as a Bayesian learner would do.
- Our perceptions and behaviors are biased in a systematic manner. There are two sides to this issue.
 - The conformity bias: we rely excessively on precedents, instead of our private information, and bias our perceptions and behaviors towards the majority.
 - The confirmatory bias: we also let our initial perceptions interfere too much with our decision making (the anchoring effect) and stick excessively and stubbornly with our initial choices of action.
- What are the fundamental forces behind these anomalies?
Motivation

There is a body of evidence that we do not process information as a Bayesian learner would do.

Our perceptions and behaviors are biased in a systematic manner. There are two sides to this issue.

- The conformity bias: we rely excessively on precedents, instead of our private information, and bias our perceptions and behaviors towards the majority.
- The confirmatory bias: we also let our initial perceptions interfere too much with our decision making (the anchoring effect) and stick excessively and stubbornly with our initial choices of action.

What are the fundamental forces behind these anomalies?
The conformity bias indicates the lack of vision, the ability to foresee the future correctly and take an appropriate action.
The conformity bias indicates the lack of vision, the ability to foresee the future correctly and take an appropriate action.

An early experiment of the conformity bias is provided by Asch (1951): people tend to conform to the judgement of the majority that are obviously incorrect.
The conformity bias indicates the lack of vision, the ability to foresee the future correctly and take an appropriate action.

An early experiment of the conformity bias is provided by Asch (1951): people tend to conform to the judgement of the majority that are obviously incorrect.

Excessive reliance on precedents, rather than own private information, is called “herding” or “information cascade” in the economic literature, e.g., Banerjee (1992) and Bikhchandani et al. (1992).
The conformity bias indicates the lack of vision, the ability to foresee the future correctly and take an appropriate action.

An early experiment of the conformity bias is provided by Asch (1951): people tend to conform to the judgement of the majority that are obviously incorrect.

Excessive reliance on precedents, rather than own private information, is called “herding” or “information cascade” in the economic literature, e.g., Banerjee (1992) and Bikhchandani et al. (1992).

Vision is clearly a valuable asset, in various contexts, especially for leaders: for instance, most business failures are attributed to the lack of vision.
The conformity bias indicates the lack of vision, the ability to foresee the future correctly and take an appropriate action.

An early experiment of the conformity bias is provided by Asch (1951): people tend to conform to the judgement of the majority that are obviously incorrect.

Excessive reliance on precedents, rather than own private information, is called “herding” or “information cascade” in the economic literature, e.g., Banerjee (1992) and Bikhchandani et al. (1992).

Vision is clearly a valuable asset, in various contexts, especially for leaders: for instance, most business failures are attributed to the lack of vision.

The first question: Why the conformity bias? Why is it so difficult to exhibit a vision?
The confirmatory bias indicates the lack of flexibility, the ability to amend the course of action whenever things go wrong.
The confirmatory bias

- The confirmatory bias indicates the lack of flexibility, the ability to amend the course of action whenever things go wrong.
- The lack of flexibility (excessive stubbornness) is a problem which has been discussed from the old days.
The confirmatory bias indicates the lack of flexibility, the ability to amend the course of action whenever things go wrong. The lack of flexibility (excessive stubbornness) is a problem which has been discussed from the old days.

“Wise men change their minds, fools never.”

– from Zhouyi (“The Book of Changes”)
The confirmatory bias indicates the lack of flexibility, the ability to amend the course of action whenever things go wrong.

The lack of flexibility (excessive stubbornness) is a problem which has been discussed from the old days.

- “Wise men change their minds, fools never.”
 - from Zhouyi (“The Book of Changes”)
- “Not to amend a fault after you commit it, that is a true fault.”
 - from Analects of Confucius
The confirmatory bias indicates the lack of flexibility, the ability to amend the course of action whenever things go wrong.

The lack of flexibility (excessive stubbornness) is a problem which has been discussed from the old days.

- “Wise men change their minds, fools never.”
 – from Zhouyi (“The Book of Changes”)
- “Not to amend a fault after you commit it, that is a true fault.”
 – from Analects of Confucius

It is well known that one’s perceptions, preferences and valuations are initially malleable but, once imprinted, become fairly persistent over time (Ariely et al., 2003).
The confirmatory bias indicates the lack of flexibility, the ability to amend the course of action whenever things go wrong.

The lack of flexibility (excessive stubbornness) is a problem which has been discussed from the old days.

- "Wise men change their minds, fools never."
 - from Zhouyi ("The Book of Changes")
- "Not to amend a fault after you commit it, that is a true fault."
 - from Analects of Confucius

It is well known that one’s perceptions, preferences and valuations are initially malleable but, once imprinted, become fairly persistent over time (Ariely et al., 2003).

The second question: Why the anchoring effect and the confirmatory bias? Why is it so difficult to be flexible?
The stance of this paper

- Vision and flexibility are clearly indispensable for effective decision making.
The stance of this paper

- Vision and flexibility are clearly indispensable for effective decision making.
- Why are they so rare to be found?
Vision and flexibility are clearly indispensable for effective decision making.

Why are they so rare to be found?

We attempt to answer this question by building on the theory of cognitive dissonance.
The theory of cognitive dissonance was first proposed by Leon Festinger.
The theory of cognitive dissonance

- Theory of cognitive dissonance was first proposed by Leon Festinger.
- It suggests that people have uncomfortable feelings when they hold contradictory ideas (attitudes, beliefs, cognitions, facts) simultaneously.
Theory of cognitive dissonance was first proposed by Leon Festinger. It suggests that people have uncomfortable feelings when they hold contradictory ideas (attitudes, beliefs, cognitions, facts) simultaneously. To reduce dissonance, people change their beliefs and behaviors, often by interpreting events or facts in a self-serving manner.
Example 1: Sour Grapes

In the Aesop fable “The Fox and the Grapes,” a fox sees some high-hanging grapes and wishes to eat them.
Example 1: Sour Grapes

- In the Aesop fable “The Fox and the Grapes,” a fox sees some high-hanging grapes and wishes to eat them.
- The fox, however, cannot think of a way to reach them.
Example 1: Sour Grapes

- In the Aesop fable “The Fox and the Grapes,” a fox sees some high-hanging grapes and wishes to eat them.
- The fox, however, cannot think of a way to reach them.
- The fox thinks “The grapes are probably too sour and not worth eating anyway.”
Example 1: Sour Grapes

- In the Aesop fable “The Fox and the Grapes,” a fox sees some high-hanging grapes and wishes to eat them.
- The fox, however, cannot think of a way to reach them.
- The fox thinks “The grapes are probably too sour and not worth eating anyway.”
- The fox manipulates its belief system, to preserve internal consistency.
Example 2: A worker in a hazardous job

Consider a worker in a hazardous job.
Consider a worker in a hazardous job.

To reduce the danger of injury, it is advisable to wear some safety equipment.
Example 2: A worker in a hazardous job

- Consider a worker in a hazardous job.
- To reduce the danger of injury, it is advisable to wear some safety equipment.
- At the same time, he does not like to work under the intense pressure that he might get seriously injured at any time.
Consider a worker in a hazardous job.

To reduce the danger of injury, it is advisable to wear some safety equipment.

At the same time, he does not like to work under the intense pressure that he might get seriously injured at any time.

Wearing the safety equipment while believing that the job is actually safe is contradictory and places him in the state of dissonance.
Example 2: A worker in a hazardous job

Consider a worker in a hazardous job.

To reduce the danger of injury, it is advisable to wear some safety equipment.

At the same time, he does not like to work under the intense pressure that he might get seriously injured at any time.

Wearing the safety equipment while believing that the job is actually safe is contradictory and places him in the state of dissonance.

The worker may choose not to wear the safety equipment under the false belief that the job is actually safe.
Example 2: A worker in a hazardous job

- Consider a worker in a hazardous job.
- To reduce the danger of injury, it is advisable to wear some safety equipment.
- At the same time, he does not like to work under the intense pressure that he might get seriously injured at any time.
- Wearing the safety equipment while believing that the job is actually safe is contradictory and places him in the state of dissonance.
- The worker may choose not to wear the safety equipment under the false belief that the job is actually safe.
Example 3: Smoking behavior

- A smoker wants to enjoy cigarettes but also wants to live a long healthy life.
Example 3: Smoking behavior

- A smoker wants to enjoy cigarettes but also wants to live a long healthy life.
- He also knows that smoking may cause lung cancer.
Example 3: Smoking behavior

- A smoker wants to enjoy cigarettes but also wants to live a long healthy life.
- He also knows that smoking may cause lung cancer.
- Smoking while knowing that it might cause some health problem puts the smoker in the state of dissonance.
Example 3: Smoking behavior

- A smoker wants to enjoy cigarettes but also wants to live a long healthy life.
- He also knows that smoking may cause lung cancer.
- Smoking while knowing that it might cause some health problem puts the smoker in the state of dissonance.
- The smoker may continue to smoke under the false belief that smoking is actually not as harmful as publicized.
Example 3: Smoking behavior

- A smoker wants to enjoy cigarettes but also wants to live a long healthy life.
- He also knows that smoking may cause lung cancer.
- Smoking while knowing that it might cause some health problem puts the smoker in the state of dissonance.
- The smoker may continue to smoke under the false belief that smoking is actually not as harmful as publicized.
Example 4: Examination

- A student took a test and failed.
Example 4: Examination

- A student took a test and failed.
- The student has some self-esteem concerns and would like to think that he is more capable than others.
Example 4: Examination

- A student took a test and failed.
- The student has some self-esteem concerns and would like to think that he is more capable than others.
- The belief that he is capable and the fact that he failed the test are contradictory.
Example 4: Examination

- A student took a test and failed.
- The student has some self-esteem concerns and would like to think that he is more capable than others.
- The belief that he is capable and the fact that he failed the test are contradictory.
- The student may conclude that there was a flaw in the text and hence it was meaningless, to preserve his self-esteem concerns.
The above stories suggest that people change beliefs and attitudes to preserve internal consistency.
The above stories suggest that people change beliefs and attitudes to preserve internal consistency.

The basic premises of the model follow Akerlof and Dickens (1982):
The above stories suggest that people change beliefs and attitudes to preserve internal consistency.

The basic premises of the model follow Akerlof and Dickens (1982):

- People have preferences not only over states of the world, but also over their beliefs about the state of the world.
Towards an economic analysis of cognitive dissonance

- The above stories suggest that people change beliefs and attitudes to preserve internal consistency.
- The basic premises of the model follow Akerlof and Dickens (1982):
 - People have preferences not only over states of the world, but also over their beliefs about the state of the world.
 - They also have some control over the beliefs.
The above stories suggest that people change beliefs and attitudes to preserve internal consistency.

The basic premises of the model follow Akerlof and Dickens (1982):

- People have preferences not only over states of the world, but also over their beliefs about the state of the world.
- They also have some control over the beliefs.
- The beliefs once chosen persist over time.
The above stories suggest that people change beliefs and attitudes to preserve internal consistency.

The basic premises of the model follow Akerlof and Dickens (1982):

- People have preferences not only over states of the world, but also over their beliefs about the state of the world.
- They also have some control over the beliefs.
- The beliefs once chosen persist over time.

The last premise is particularly important, as it links distorted beliefs with distorted actions.
Towards an economic analysis of cognitive dissonance

- The above stories suggest that people change beliefs and attitudes to preserve internal consistency.
- The basic premises of the model follow Akerlof and Dickens (1982):
 - People have preferences not only over states of the world, but also over their beliefs about the state of the world.
 - They also have some control over the beliefs.
 - The beliefs once chosen persist over time.
- The last premise is particularly important, as it links distorted beliefs with distorted actions.
- People can believe what they want to believe, to some extent, but that is not costless.
Main results

- The model yields three types of behavioral bias.
Main results

- The model yields three types of behavioral bias.
 - Consistent information is exaggerated (obsessive).
Main results

- The model yields three types of behavioral bias.
 - Consistent information is exaggerated (obsessive).
 - Inconsistent information is discounted (stubborn).
Main results

The model yields three types of behavioral bias.

- Consistent information is exaggerated (obsessive).
- Inconsistent information is discounted (stubborn).
- Early information is discounted (indecisive).
Main results

- The model yields three types of behavioral bias.
 - Consistent information is exaggerated (obsessive).
 - Inconsistent information is discounted (stubborn).
 - Early information is discounted (indecisive).
- The first two results are related to the lack of flexibility while the last is to the lack of vision.
A two-period model where a decision maker (DM) with divided selves must engage in some long-term project.
The model

- A two-period model where a decision maker (DM) with divided selves must engage in some long-term project.
- DM is divided between the subjective self (affect) and the objective self (cognition).
A two-period model where a decision maker (DM) with divided selves must engage in some long-term project.

DM is divided between the subjective self (affect) and the objective self (cognition).

In each period, DM observes a signal, evaluates it, and takes an action $a_t \in [0, 1]$ based on the evaluation of the observed signal.
A two-period model where a decision maker (DM) with divided selves must engage in some long-term project.

DM is divided between the subjective self (affect) and the objective self (cognition).

In each period, DM observes a signal, evaluates it, and takes an action $a_t \in [0, 1]$ based on the evaluation of the observed signal.

DM differs in innate ability $\eta \in [0, 1]$.

The model

- A two-period model where a decision maker (DM) with divided selves must engage in some long-term project.
- DM is divided between the subjective self (affect) and the objective self (cognition).
- In each period, DM observes a signal, evaluates it, and takes an action \(a_t \in [0, 1] \) based on the evaluation of the observed signal.
- DM differs in innate ability \(\eta \in [0, 1] \).
- For the subjective self, its distribution is \(F \), with mean \(\mu := \int \eta dF \) and variance \(\sigma^2 := \int \eta^2 dF - \mu^2 \).
The action

- The value of the project is dependent on the action taken and the state of nature $\theta \in \{0, 1\}$.
The action

- The value of the project is dependent on the action taken and the state of nature $\theta \in \{0, 1\}$.
- Given some state θ, the value of the project is $v_\theta(a)$ where $v_0(a) = -a^2$ and $v_1(a) = -(1 - a)^2$.

The action

- The value of the project is dependent on the action taken and the state of nature $\theta \in \{0, 1\}$.
- Given some state θ, the value of the project is $v_\theta(a)$ where $v_0(a) = -a^2$ and $v_1(a) = -(1 - a)^2$.
- Given some belief about the state $\rho := \text{prob}\{\theta = 1\}$, the expected payoff is

 \[R(a, \rho) = -\rho(1 - a)^2 - (1 - \rho)a^2. \]
The value of the project is dependent on the action taken and the state of nature $\theta \in \{0, 1\}$.

Given some state θ, the value of the project is $v_\theta(a)$ where $v_0(a) = -a^2$ and $v_1(a) = -(1 - a)^2$.

Given some belief about the state $\rho := \text{prob}\{\theta = 1\}$, the expected payoff is

$$R(a, \rho) = -\rho(1 - a)^2 - (1 - \rho)a^2.$$

The first-order condition implies that the optimal action is $a = \rho$.

The states

- The prior probability of $\theta = 1$ is one half, i.e., each state is equally likely \textit{ex ante}.
The states

- The prior probability of $\theta = 1$ is one half, i.e., each state is equally likely \textit{ex ante}.
- While the state of nature is not observable, DM can observe a signal $s_t \in \{0, 1\}$ in each period.
The states

- The prior probability of $\theta = 1$ is one half, i.e., each state is equally likely \textit{ex ante}.
- While the state of nature is not observable, DM can observe a signal $s_t \in \{0, 1\}$ in each period.
- The signal is either informative or noisy, and the (objective) probability that it is informative is $\tilde{\gamma}$.
The prior probability of $\theta = 1$ is one half, i.e., each state is equally likely \textit{ex ante}.

While the state of nature is not observable, DM can observe a signal $s_t \in \{0, 1\}$ in each period.

The signal is either informative or noisy, and the (objective) probability that it is informative is $\tilde{\gamma}$.

We refer to this probability as the informativeness of the signal.
When noisy, the signal contains no information whatsoever:

\[
\text{prob}\{s_t = \theta \mid \text{the signal is noisy}\} = 0.5.
\]
Signals

- When noisy, the signal contains no information whatsoever:

\[
\text{prob}\{s_t = \theta \mid \text{the signal is noisy}\} = 0.5.
\]

- When informative, the signal provides some information. DM’s evaluation ability is tested more early on. In period 1,

\[
\text{prob}\{s_1 = \theta \mid \text{the signal is informative}\} = \frac{1 + \eta}{2}.
\]
When noisy, the signal contains no information whatsoever:
\[\text{prob}\{s_t = \theta \mid \text{the signal is noisy}\} = 0.5. \]

When informative, the signal provides some information. DM’s evaluation ability is tested more early on. In period 1,
\[\text{prob}\{s_1 = \theta \mid \text{the signal is informative}\} = \frac{1 + \eta}{2}. \]

In period 2, things unfold themselves and
\[\text{prob}\{s_2 = \theta \mid \text{the signal is informative}\} = 1. \]
The intrapersonal conflict

- There is no way to distinguish whether a given signal is informative or not, beyond its objective probability $\tilde{\gamma}$.
The intrapersonal conflict

There is no way to distinguish whether a given signal is informative or not, beyond its objective probability $\tilde{\gamma}$. However, DM has the ability to manipulate and deceive herself by assigning the subjective informativeness γ_t to each observed signal.
The intrapersonal conflict

- There is no way to distinguish whether a given signal is informative or not, beyond its objective probability $\tilde{\gamma}$.

- However, DM has the ability to manipulate and deceive herself by assigning the subjective informativeness γ_t to each observed signal.

- The subjective informativeness is chosen as a consequence of the intrapersonal conflict between the objective self and the subjective self.
The intrapersonal conflict

- There is no way to distinguish whether a given signal is informative or not, beyond its objective probability γ.
- However, DM has the ability to manipulate and deceive herself by assigning the subjective informativeness γ_t to each observed signal.
- The subjective informativeness is chosen as a consequence of the intrapersonal conflict between the objective self and the subjective self.
 - The objective self represents a rational side of DM who is far-sighted and objectively updates the belief.
There is no way to distinguish whether a given signal is informative or not, beyond its objective probability $\tilde{\gamma}$.

However, DM has the ability to manipulate and deceive herself by assigning the subjective informativeness γ_t to each observed signal.

The subjective informativeness is chosen as a consequence of the intrapersonal conflict between the objective self and the subjective self.

- The objective self represents a rational side of DM who is far-sighted and objectively updates the belief.
- The subjective self represents a primitive and instinctive side who is myopic and cares about her self-images (ego preferences).
The beliefs

Let g_t denote the perceived informativeness of the signal in period t, where $g_t = \tilde{\gamma}$ for the objective self and $g_t = \gamma_t$ for the subjective self.
The beliefs

- Let g_t denote the perceived informativeness of the signal in period t, where $g_t = \tilde{\gamma}$ for the objective self and $g_t = \gamma_t$ for the subjective self.
- The belief about the current state is defined as

$$
\rho_1(s_1; g_1) := \text{prob}\{\theta = 1 \mid s_1, g_1\},
\rho_2(s_1, s_2; g_1, g_2) := \text{prob}\{\theta = 1 \mid s_1, s_2, g_1, g_2\}.
$$
Let g_t denote the perceived informativeness of the signal in period t, where $g_t = \tilde{\gamma}$ for the objective self and $g_t = \gamma_t$ for the subjective self.

The belief about the current state is defined as

$$
\rho_1(s_1; g_1) := \text{prob}\{\theta = 1 \mid s_1, g_1\},
$$

$$
\rho_2(s_1, s_2; g_1, g_2) := \text{prob}\{\theta = 1 \mid s_1, s_2, g_1, g_2\}.
$$

The belief about her own ability type is defined as:

$$
\mu_1(s_1; g_1) := E[\eta \mid s_1, g_1],
$$

$$
\mu_2(s_1, s_2; g_1, g_2) := E[\eta \mid s_1, s_2, g_1, g_2].
$$
The range of the belief about the current state

\[0.5 \quad \frac{1+\tilde{\gamma}\mu}{2} \quad \frac{1+\mu}{2} \]

Figure 1: The manipulable range of the belief when \(s_1 = 1 \)

\((\mu = 0.5, \tilde{\gamma} = 0.5) \).
The range of the belief about the current state

\[\frac{1+\tilde{\gamma}\mu}{2} \quad \frac{1+\mu}{2} \]

Figure 1: The manipulable range of the belief when \(s_1 = 1 \)
\((\mu = 0.5, \tilde{\gamma} = 0.5) \).

\[s_2 = 0 \quad s_2 = 1 \]

\[\frac{1+\gamma_1\mu}{2} \]

Figure 2: The manipulable range of the belief when \(s_1 = 1 \)
\((\mu = 0.5, \tilde{\gamma} = 0.5, \gamma_1 = 0.8) \).
As result of the conflict, DM ends up with some view of the world, which is represented by the information set Ω_t:

$$\Omega_1 := (s_1, \gamma_1), \quad \Omega_2 := (s_1, s_2, \gamma_1, \gamma_2).$$
The choice of action

- As result of the conflict, DM ends up with some view of the world, which is represented by the information set Ω_t:

$$\Omega_1 := (s_1, \gamma_1), \; \Omega_2 := (s_1, s_2, \gamma_1, \gamma_2).$$

- Being the only one to care about the outcome of the project, the objective self chooses the action in each period.
The choice of action

- As result of the conflict, DM ends up with some view of the world, which is represented by the information set Ω_t:

 \[\Omega_1 := (s_1, \gamma_1), \quad \Omega_2 := (s_1, s_2, \gamma_1, \gamma_2). \]

- Being the only one to care about the outcome of the project, the objective self chooses the action in each period.

- The optimal action is chosen based on the compromised reality Ω_t, so that $a_t = \text{prob}\{\theta = 1 \mid \Omega_t\}$, because deviating from this would yield cognitive dissonance.
The objective self’s payoff is the value of the project and given by

$$\pi^O_1(a_1; \gamma_1) = R(a_1, \tilde{\rho}_1) + \Pi^O_2(\gamma_1),$$

$$\pi^O_2(a_1, a_2; \gamma_1, \gamma_2) = R(a_2, \tilde{\rho}_2),$$

where $\Pi^O_2(\gamma_1)$ is the expected payoff in period 2.
The objective self’s payoff is the value of the project and given by

$$\pi^O_1(a_1; \gamma_1) = R(a_1, \tilde{\rho}_1) + \Pi^O_2(\gamma_1),$$

$$\pi^O_2(a_1, a_2; \gamma_1, \gamma_2) = R(a_2, \tilde{\rho}_2),$$

where $\Pi^O_2(\gamma_1)$ is the expected payoff in period 2.

The subjective payoff is the current belief about her own ability type and given by

$$\pi^S_1(\gamma_1) = \mu_1(s_1; \gamma_1),$$

$$\pi^S_2(\gamma_1, \gamma_2) = \mu_2(s_1, s_2; \gamma_1, \gamma_2).$$
Payoffs

The objective self’s payoff is the value of the project and given by

\[\pi^O_1(a_1; \gamma_1) = R(a_1, \tilde{\rho}_1) + \Pi^O_2(\gamma_1), \]

\[\pi^O_2(a_1, a_2; \gamma_1, \gamma_2) = R(a_2, \tilde{\rho}_2), \]

where \(\Pi^O_2(\gamma_1) \) is the expected payoff in period 2.

The subjective payoff is the current belief about her own ability type and given by

\[\pi^S_1(\gamma_1) = \mu_1(s_1; \gamma_1), \]

\[\pi^S_2(\gamma_1, \gamma_2) = \mu_2(s_1, s_2; \gamma_1, \gamma_2). \]

The overall payoff is \(\pi_t = \alpha \pi^S_t + (1 - \alpha) \pi^O_t \), where \(\alpha \in (0, 1) \) is the subjective self’s share.
By period 2, DM has observed two signals, which may or may not be consistent with each other.
The second-period problem

- By period 2, DM has observed two signals, which may or may not be consistent with each other.
- DM’s problem is defined as

\[
\max_{\gamma_2} \alpha \mu_2(s_1, s_2; \gamma_1, \gamma_2) + (1 - \alpha) R(\rho_2(s_1, s_2; \gamma_1, \gamma_2), \rho_2(s_1, s_2; \tilde{\gamma}, \tilde{\gamma})),
\]

taking \(\gamma_1\) as given.
The second-period problem

- By period 2, DM has observed two signals, which may or may not be consistent with each other.
- DM’s problem is defined as

\[
\max_{\gamma_2} \alpha \mu_2(s_1, s_2; \gamma_1, \gamma_2) + (1 - \alpha) R(\rho_2(s_1, s_2; \gamma_1, \gamma_2), \rho_2(s_1, s_2; \tilde{\gamma}, \tilde{\gamma})),
\]

taking \(\gamma_1\) as given.
- If DM can subjectively assign the informativeness of the signal, what should she do?
Consistent signals are observed

- Consistent signals are a good news for DM, because that indicates that the first signal is more likely to be correct and that boosts her self-confidence.
Consistent signals are observed

- Consistent signals are a good news for DM, because that indicates that the first signal is more likely to be correct and that boosts her self-confidence.
- The first-order condition is

\[
\frac{\alpha \gamma_1 \sigma^2}{(1 + \gamma_1 \gamma_2 \mu)^2} - (1 - \alpha)(\rho_2 - \tilde{\rho}_C) \frac{1 - (\gamma_1 \mu)^2}{(1 + \gamma_1 \gamma_2 \mu)^2} = 0.
\]
Consistent signals are observed

- Consistent signals are a good news for DM, because that indicates that the first signal is more likely to be correct and that boosts her self-confidence.

- The first-order condition is

\[
\frac{\alpha \gamma_1 \sigma^2}{(1 + \gamma_1 \gamma_2 \mu)^2} - (1 - \alpha)(\rho_2 - \tilde{\rho}_c)\frac{1 - (\gamma_1 \mu)^2}{(1 + \gamma_1 \gamma_2 \mu)^2} = 0.
\]

- DM tends to overreact to consistent information.
Inconsistent signals are observed

- Inconsistent signals are a bad news for DM, because that indicates that the first signal is more likely to be wrong, exposing the lack of ability on her part.
Inconsistent signals are observed

- Inconsistent signals are a bad news for DM, because that indicates that the first signal is more likely to be wrong, exposing the lack of ability on her part.

- The first-order condition is

\[-\frac{\alpha \gamma_1 \sigma^2}{(1 - \gamma_1 \gamma_2 \mu)^2} - (1 - \alpha)(\rho_2 - \tilde{\rho}_I) \frac{1 - (\gamma_1 \mu)^2}{(1 + \gamma_1 \gamma_2 \mu)^2} = 0.\]
Inconsistent signals are observed

- Inconsistent signals are a bad news for DM, because that indicates that the first signal is more likely to be wrong, exposing the lack of ability on her part.
- The first-order condition is
 \[-\frac{\alpha \gamma_1 \sigma^2}{(1 - \gamma_1 \gamma_2 \mu)^2} - (1 - \alpha)(\rho_2 - \tilde{\rho}_1) \frac{1 - (\gamma_1 \mu)^2}{(1 + \gamma_1 \gamma_2 \mu)^2} = 0.\]
- DM tends to underreact to inconsistent information.
Suppose that \(s_1 = 1 \). The optimal bias in period 2 is always positive and given by

\[
\rho_2^* - \tilde{\rho}_2 = \frac{\beta \sigma^2 \gamma_1}{1 - (\gamma_1 \mu)^2}.
\]

The absolute size of the bias is increasing in \(\beta, \sigma^2, \mu \) and \(\gamma_1 \).
Proposition

Suppose that \(s_1 = 1 \). The optimal bias in period 2 is always positive and given by

\[
\rho_2^* - \tilde{\rho}_2 = \frac{\beta \sigma^2 \gamma_1}{1 - (\gamma_1 \mu)^2}.
\]

The absolute size of the bias is increasing in \(\beta, \sigma^2, \mu \) and \(\gamma_1 \).

Here, \(\beta := \alpha/(1 - \alpha) \) is a measure of DM’s willpower, where DM lacks willpower to regulate the subjective self when \(\beta \) is small.
The first-period problem

- By discounting the informativeness of the first signal, DM can better regulate the subjective self in period 2.
The first-period problem

By discounting the informativeness of the first signal, DM can better regulate the subjective self in period 2.

Let $b_1^* := \rho_1 - \tilde{\rho}$ denote the optimal bias. The first-order condition is

$$b_1^* = R b_2^*, \text{ where } R := -\frac{2\beta \sigma^2 (1 + (\gamma_1 \mu)^2)}{\mu (1 - (\gamma_1 \mu)^2)^2}.$$
By discounting the informativeness of the first signal, DM can better regulate the subjective self in period 2.

Let $b_1^* := \rho_1 - \tilde{\rho}$ denote the optimal bias. The first-order condition is

$$b_1^* = Rb_2^*, \text{ where } R := -\frac{2\beta\sigma^2(1 + (\gamma_1\mu)^2)}{\mu(1 - (\gamma_1\mu)^2)^2}.$$

The tradeoff is between the first-period loss and the second-period gain. Vision and flexibility are substitutes.
Proposition

Suppose that $s_1 = 1$. The optimal bias in period 1 is always negative. The absolute size of the bias is increasing in β and σ^2, whereas it is decreasing in μ if

$$1 - 4(\tilde{\gamma}_\mu)^2 - 3(\tilde{\gamma}_\mu)^4 > 0.$$
Proposition

Suppose that $s_1 = 1$. The optimal bias in period 1 is always negative. The absolute size of the bias is increasing in β and σ^2, whereas it is decreasing in μ if

$$1 - 4(\tilde{\gamma}\mu)^2 - 3(\tilde{\gamma}\mu)^4 > 0.$$

- DM tends to underreact to early information, giving rise to the emergence of indecisiveness.
Both obsession and stubbornness are a manifestation of confirmatory bias, where a decision maker adheres excessively to prior information.
Both obsession and stubbornness are a manifestation of confirmatory bias, where a decision maker adheres excessively to prior information. A decision maker with high self-confidence is more prone to this problem because the first signal is more reliable and the cost of biasing the interpretation of the second signal is relatively small.
Both obsession and stubbornness are a manifestation of confirmatory bias, where a decision maker adheres excessively to prior information.

A decision maker with high self-confidence is more prone to this problem because the first signal is more reliable and the cost of biasing the interpretation of the second signal is relatively small.

Both obsession and stubbornness are a manifestation of confirmatory bias, where a decision maker adheres excessively to prior information. A decision maker with high self-confidence is more prone to this problem because the first signal is more reliable and the cost of biasing the interpretation of the second signal is relatively small. Rabin and Schrag (1999) and Compte and Postlewaite (2004) explore consequences of confirmatory bias. Here, we take a different approach, as we derive confirmatory bias rather than assuming it and exploring its consequences.
The lack of vision or decisiveness is a consequence of the self-control problem.
The lack of vision or decisiveness is a consequence of the self-control problem.

A decision maker with low self-confidence is more prone to this problem because the first signal is less reliable and the cost of biasing the interpretation of the first signal is relatively small.
The lack of vision or decisiveness is a consequence of the self-control problem.

A decision maker with low self-confidence is more prone to this problem because the first signal is less reliable and the cost of biasing the interpretation of the first signal is relatively small.

It is now well known that time-inconsistent preferences lead to self-control problems, e.g., Carrillo and Mariotti (2000) and Benabou and Tirole (2002).
The lack of vision or decisiveness is a consequence of the self-control problem.

A decision maker with low self-confidence is more prone to this problem because the first signal is less reliable and the cost of biasing the interpretation of the first signal is relatively small.

It is now well known that time-inconsistent preferences lead to self-control problems, e.g., Carrillo and Mariotti (2000) and Benabou and Tirole (2002).

Here, the self-control problem arises due to the difference in time horizon between the two selves.
Relation to other strands of literature

There are some papers which explore reputation concerns when the agent gains information over time in signaling models, e.g., Prendergast and Stole (1996) and Li (2007).
There are some papers which explore reputation concerns when the agent gains information over time in signaling models, e.g., Prendergast and Stole (1996) and Li (2007).

The paper is particularly related to PS where the fear of inconsistent information is the driving force.
Relation to other strands of literature

- There are some papers which explore reputation concerns when the agent gains information over time in signaling models, e.g., Prendergast and Stole (1996) and Li (2007).
- The paper is particularly related to PS where the fear of inconsistent information is the driving force.
- In PS, the agent exaggerates information when young and becomes conservative when old.
Relation to other strands of literature

- There are some papers which explore reputation concerns when the agent gains information over time in signaling models, e.g., Prendergast and Stole (1996) and Li (2007).
- The paper is particularly related to PS where the fear of inconsistent information is the driving force.
- In PS, the agent exaggerates information when young and becomes conservative when old.
- Among several differences, the main difference is that we explicitly consider dynamic incentives.
We construct a model of intrapersonal conflicts between the divided selves to explore how information is processed over time.
Conclusion

- We construct a model of intrapersonal conflicts between the divided selves to explore how information is processed over time.
- Inflexibility, both ways, arises when the objective self compromises the subjective self in the process of information evaluation. This amounts to confirmatory bias as emphasized in the psychology literature.
Conclusion

- We construct a model of intrapersonal conflicts between the divided selves to explore how information is processed over time.
- Inflexibility, both ways, arises when the objective self compromises the subjective self in the process of information evaluation. This amounts to confirmatory bias as emphasized in the psychology literature.
- Indecisiveness arises as a consequence of an attempt to regulate the future self. The lack of willpower is the driving force.
We construct a model of intrapersonal conflicts between the divided selves to explore how information is processed over time.

Inflexibility, both ways, arises when the objective self compromises the subjective self in the process of information evaluation. This amounts to confirmatory bias as emphasized in the psychology literature.

Indecisiveness arises as a consequence of an attempt to regulate the future self. The lack of willpower is the driving force.

In general, a decision maker with high confidence exhibits less flexibility but more vision.