Strategic Ignorance as a Self-Disciplining Device

Juan D. Carrillo and Thomas Mariotti
published in Review of Economic Studies, 2000

October 24, 2011

Hyperbolic discounting

- The traditional branch of economics assumes exponential discounting to evaluate the stream of payoffs realized over time $\left(u_{1}, u_{2}, \ldots\right): \sum_{t=1}^{\infty} \delta^{t-1} u_{t}$.
- Preferences with exponential discounting are time-consistent: an optimal choice in period s remains to be optimal at subsequent periods $t>s$.
- Consider the following: (a) the choice between receiving \$100 now ($t=1$) and $\$ 110$ tomorrow ($t=2$); (b) between receiving $\$ 100$ one year from now $(t=366)$ and $\$ 110$ one year and one day from now $(t=367)$.

Hyperbolic discounting

- These two questions are equivalent under exponential discounting.
-Why? In (a), you choose to receive $\$ 100$ today if $100 \geq 110 \delta \Leftrightarrow \frac{10}{11} \geq \delta$.
- In (b), you choose to receive $\$ 100$ one year from now if $100 \delta^{365} \geq 110 \delta^{366} \Leftrightarrow \frac{10}{11} \geq \delta$.
- Tractable but ... a priori no reason for why we would or should evaluate future events in that manner.

Hyperbolic discounting

- In hyperbolic discounting, valuations fall very rapidly for initial periods, but then fall slowly later.
- One tractable and elegant way to capture this is (β, δ) preferences: $u_{1}+\beta \sum_{t=2}^{\infty} \delta^{t-1} u_{t}$, where $\beta<1$ and $\delta \leq 1$.
- Under hyperbolic discounting, the preference exhibits time-inconsistency.

Hyperbolic discounting

- In (a), you choose to receive $\$ 100$ today if $100 \geq 110 \beta \delta$.
- In (b), you choose to receive $\$ 100$ one year from now if $100 \beta \delta^{365} \geq 110 \beta \delta^{366} \Leftrightarrow \frac{10}{11} \geq \delta$.
- This means that your answer depends on when you evaluate the alternatives - time-inconsistency for some range of β.
- If $\delta>\frac{10}{11} \geq \beta \delta$, you prefer to wait one more day in period $t=366$, evaluating today, but cannot when you face the same choice in period $t=366$.

Introduction

- This paper analyzes the decision of an agent with time-inconsistent preferences to consume a good that exerts an externality on future welfare.
- The extent of the externality is initially unknown but may be learned via a costless sampling procedure.
- Would it always be optimal to obtain this additional, more precise, information?
- If not, then why?

Introduction

- An examples: assessing the risk of smoking.
- It is shown that people overestimate the risk of smoking.
- Why don't we get ourselves updated with the most accurate information available?
- The cost of information acquisition? Studies on the effect of tobacco are widely publicized and freely available.

Model

- Actors: Time is discrete and indexed by $t=0,1,2, \ldots$
- The consumer is a countable collection of risk-neutral incarnations, with one incarnation per period.
- The consumer's incarnation at date t is called self- t.
- Actions: In every period, one unit of a free indivisible good is available for consumption. Let $x_{t} \in\{0,1\}$ denote the amount consumed in period t.

Model

- Externalities: Consumption increases the instantaneous utility but decreases the future payoffs (externalities).
- A positive consumption level at any t lowers the per-period payoffs of all subsequent selves $t+\tau, \tau \geq 1$, by $\lambda^{\tau-1} C>0$ with probability θ.
- λ is a depreciation factor.
- On the whole, the expected negative externality I_{t} imposed on self $-t$ is $I_{t}=\sum_{\tau=0}^{t-1} \lambda^{t-\tau-1} x_{\tau} \theta C$.

Model

- Information: The probability of exerting the externality θ is unknown to the players.
- It is distributed according to some distribution π_{0} with continuous density f_{0}.
- However, each self can costlessly acquire information about θ and update his beliefs accordingly.
- I_{t} is not observable at any t.

Model

- Instantaneous payoffs: $u_{t}=x_{t}-I_{t}$ (instantaneous gains, delayed losses).
- Intertemporal payoffs: $U_{t}=E_{t}\left(u_{t}+\beta \sum_{\tau=1}^{\infty} \delta^{\tau} u_{t+\tau}\right)$.
- β represents the salience of current payoffs (present-biased).
- δ is the discount factor that applies for all dates.
- An important assumption: the consumer perfectly anticipates his dynamically inconsistent behavior (sophisticated vs naive).

The main result

- The main result of the model can be illustrated with a three-period example with limited learning opportunities.
- Suppose that there are three periods $t \in\{0,1,2\}$.
- The individual may either consume or abstain in periods 0 and 1 , and learn the true value of θ before his consumption decision.
- For simplicity, (i) $\delta=1$; (ii) the externality is exerted only in the period after consumption; and (iii) $1 / \beta C<1$.

The main result

- The intertemporal utility from the perspective of each self is
- $U_{0}\left(x_{0}, x_{1}\right)=x_{0}(1-\beta \theta C)+x_{1} \beta(1-\theta C)$,
- $U_{1}\left(x_{0}, x_{1}\right)=-x_{0} \theta C+x_{1}(1-\beta \theta C)$.
- $U_{2}\left(x_{0}, x_{1}\right)=-x_{1} \theta C$.

The main result

- Self-0 would like to:
- consume in both periods if $\theta \in[0,1 / C]$,
- consume only in period 0 if $\theta \in(1 / C, 1 / \beta C)$,
- abstain in both periods if $\theta \in[1 / \beta C, 1]$.
- However, he cannot commit to future decisions: to discipline the future selves, self-0 may need to manipulate information.

The main result

- If self-0 learns the true value of θ, the individual will end up:
- consuming in both periods if $\theta<1 / \beta C$;
- abstaining in both periods if $\theta \geq 1 / \beta C$.
- If self-0 does not, the individual will end up:
- consuming in both periods if $E_{\pi_{0}}(\theta)<1 / \beta C$;
- abstaining in both periods if $E_{\pi_{o}}(\theta) \geq 1 / \beta C$.

The main result

- The expected payoff if self-0 learns θ is
- $V_{L}=\pi_{0}(\theta<1 / \beta C)\left[1+\beta-2 \beta E_{\pi_{0}}(\theta \mid \theta<1 / \beta C) C\right]$.
- The expected payoff if self-0 does not learn is
- $V_{N L}=1+\beta-2 \beta E_{\pi_{0}}(\theta) C$ if $E_{\pi_{0}}(\theta)<1 / \beta C$;
- $V_{N L}=0$ if $E_{\pi_{0}}(\theta) \geq 1 / \beta C$.
- It is then immediate from these that
- If $E_{\pi_{0}}(\theta)<1 / \beta C$, then $V_{L}>V_{N L}$.
- If $E_{\pi_{0}}(\theta) \geq 1 / \beta C$, then $V_{N L}>V_{L}$ if and only if $E_{\pi_{0}}(\theta \mid \theta<1 / \beta C)>(1+\beta) / 2 \beta C$.

The intuition

- The source of the problem lies in the range $\theta \in(1 / C, 1 / \beta C)$ where self-0 would like to consume only in period 0 but ends up consuming in both periods.
- A necessary condition for ignorance is that it induces abstention in period 1, which is the case when
$E_{\pi_{0}}(\theta) \geq 1 / \beta C$.
- This is not enough for ignorance being valuable because it also entails several costs.
- Ignorance and abstention is not optimal for self-0 in period 0 if $\theta \in[0,1 / \beta C)$ and in period 1 if $\theta \in[0,1 / C]$.
- When $\theta \in[1 / \beta C, 1]$, ignorance has neither costs or benefits: the individual abstains in both periods.
- The benefits outweigh the costs if, conditional on $\theta<1 / \beta C$, θ is more likely to be close to $1 / \beta C$ than to 0 .

More intuition

- In equilibrium, whether self-0 learns or not, either $\left(x_{0}=0, x_{1}=0\right)$ or $\left(x_{0}=1, x_{1}=1\right)$. The critical threshold is always $1 / \beta C$
- If $E_{\pi_{0}}(\theta)<1 / \beta C$, the expected cost is too small and ($x_{0}=1, x_{1}=1$) without leaning.
- Ignorance cannot help in this case because:
- If $\theta<1 / \beta C$, the individual consumes in both periods anyway (no change);
- If $\theta \geq 1 / \beta C$, the individual changes the choice and abstains in both periods, but this is optimal for self-0.

More intuition

- If $E_{\pi_{0}}(\theta) \geq 1 / \beta C$, the expected cost is too large and $\left(x_{0}=0, x_{1}=0\right)$ without leaning.
- Staying ignorant about θ could help here:
- If $\theta<1 / \beta C$, the individual changes the choice and consumes in both periods, whereas he would like self- 1 to abstain when $\theta \in(1 / C, 1 / \beta C)$.
- If $\theta \geq 1 / \beta C$, the individual abstains in both periods anyway (no change).
- Ignorance has some value when the true value of θ lies in $(1 / C, 1 / \beta C)$.

More intuition

Conclusion

- The time-inconsistent nature of the preferences amount to a conflict within a self - an intrapersonal game.
- The structure of the game is thus analogous to a multi-person game as we are normally accustomed to.
- This setup is analogous to a situation where the information obtained by one player becomes automatically public.
- The assumption is hard to motivate in general, but is very natural in this intrapersonal setup - intrapersonal games could yield new perspectives.

