A Memory Based Model of Bounded Rationality

Sendhil Mullainathan

published in Quarterly Journal of Economics, 2002
January 16, 2012

Introduction

- Can memory imperfections help explain observed economic behavior?
- Casual observation suggests that recollections shape beliefs.
- An individual forecasting her income uses not only aggregate unemployment data (hard information) but also specific information drawn from more personal experiences.
- the anecdotes of a recently unemployed friend.
- the news about a foreign firm's plans to enter her industry.
- The physiological limitations of human memory about qualitative information shed light on biases in the inference process.

Introduction

- The sources of bounded rationality can be diverse, and there are potentially many different approaches to it.
- An advantage of focusing on memory is that scientific research on it is far more advanced than research on higher-order cognitive functions such as problem solving techniques.
- This permits a model more grounded in scientific evidence.
- Two stylized facts are employed to model the memory technology.
- Rehearsal: remembering an event once makes it easier to remember that again.
- Associativeness: similarity of the memory to current events facilitates recall.

Introduction

- A model of bounded rational agents faces the same problem as the one of hyperbolic discounting.
- An agent may or may not know that her perception is biased in a particular way - sophisticated or naive.
- Each of the decision rules has its appeal and a characterization of both is undoubtedly necessary.
- As a first step, this paper investigates the case of naive agents to draw the implications of limited memory.

Introduction

- Associativeness in recall generates a central property of beliefs: an event affects beliefs not only through the information it conveys but also through the memories it evokes.
- This property implies that even completely uninformative signals can influence beliefs by altering the set of recalled memories.
- Even if one disregards these signals as noise, they have an indirect effect by altering the perceptions of the past.
- The added weight of these triggered memories leads to an over-reaction to news.

Introduction

- Another key component of the model is rehearsal which generates the persistence of evoked memories.
- Even if the information in the original event has been discredited, the memories it triggered continue to be more memorable and hence continue to influence beliefs.
- Individuals under-react to news that invalidates or revises old information.

Setup

- Consider an individual who forms expectations about a state variable.
- For the sake of the analysis, the state variable is taken to be equivalent with permanent income which moves for a variety of reasons.
- Forming forecasts thus requires combining a diverse set of information.
- Some of this information is "hard" or readily available in records: income in prior months, unemployment rate or GDP.
- Other information is "soft" or harder to capture in records: a friend in a similar position being fired or a boss telling that you are one of the best employees.

Setup

- Let y_{t} be the income at time t which follows

$$
y_{t}=\sum_{k=1}^{t} \nu_{k}+\varepsilon_{t}
$$

where ε_{t} is a transitory shock distributed $N\left(0, \sigma_{x}^{2}\right)$ and ν_{k} is a permanent shock.

- y_{t} is observed by the individual and represents the hard information.
- Each period with probability p, an event e_{t} occurs, which will be the soft information.
- Each event has two components: an informative component x_{t} and an uninformative one n_{t}.

Setup

- When there is no event, $e_{t}=\varnothing$ and will generally take $x_{t}=0$ and $n_{t}=0$.
- Conditional on an event occurring, they are distributed

$$
e_{t}=\left(x_{t}, n_{t}\right) \sim F\left(x_{t}, n_{t}\right)
$$

where $E\left(x_{t}\right)=0$ and $E\left(n_{t}\right)=0$.

- The covariance $\sigma_{x n}$ measures whether the neutral component typically appears with positive or negative information.
- The permanent shock is defined as

$$
\nu_{t}=x_{t}+z_{t}
$$

where $z_{t} \sim N\left(0, \sigma_{z}^{2}\right)$.

Setup

- Memory will be modeled as a stochastic map that transforms true history into perceived history.
- Let history h_{t} be a vector that includes y_{k} and e_{k} for $k<t$.
- Memory maps h_{t} into a random variable h_{t}^{R}.
- Past values of income y_{t} are hard information and will be recalled perfectly.
- Events characterize soft information and are more prone to be forgotten.

Setup

- Let recalled history be $h_{t}^{R}=\left(e_{1}^{R}, e_{2}^{R}, \ldots, e_{t-1}^{R}, y_{1}, y_{2}, \ldots, y_{t-1}\right)$.
- Notice that e_{t} is transformed into a random variable e_{t}^{R} whose value is governed by

$$
e_{t}^{R}= \begin{cases}e_{k} & \text { with probability } r_{k t} \\ (0,0) & \text { with probability } 1-r_{k t}\end{cases}
$$

- The probability that event e_{k} is recalled at time t is denoted by $r_{k t}$ where these probabilities are applied independently across events.
- When an event is forgotten, it is exactly as if no event occurred that period.

Setup

- To specify $r_{k t}$, one needs to turn to the scientific evidence drawn from research by biologists and psychologists.
- Rehearsal states that recalling a memory increases future recall probabilities: repetition strengthens memories.
- Associativeness states that events more similar to current events are easer to recall: hearing a friend talk about his vacation will invoke memories of one's own vacations, as events serve as cues that help find lost memories.
- Both rehearsal and associativeness have a strong experimental basis as well as intuitive appeal.

Setup

- Three parameters are employed to formalize these ideas: the baseline recall probability \underline{m}, ρ which quantifies rehearsal, χ which quantifies associativeness.
- All are between zero and one and $\underline{m}+\rho+\chi<1$.
- Let $R_{k t}$ denote the random variable which equals one if event k is recalled at time t, with $R_{(t-1) t}=1$ and $r_{(t-1) t}=1$.
- With this notation, we can write

$$
r_{k t}=\underline{m}+\rho R_{k(t-1)}+\chi a_{k t} .
$$

Setup

- The second terms indicates that an event recalled in the last period gets a boost of ρ.
- The third term captures associativeness where $a_{k t}$ measures the similarity of event e_{k} to e_{t}.
- The events e_{k} and e_{t} are two points on a plane.
- Letting c be a closeness function (an inverse distance function), similarity is defined as

$$
a_{k t}=\frac{1}{2}\left[c\left(x_{t}-x_{k}\right)+c\left(n_{t}-n_{k}\right)\right]=\frac{1}{2}\left[e^{-\left(x_{t}-x_{k}\right)^{2}}+e^{-\left(n_{t}-n_{k}\right)^{2}}\right] .
$$

where $a_{k t}=0$ if either e_{k} or e_{t} is a nonevent.

- Define $f_{k t}=1-r_{k t}, F_{k t}=1-R_{k t}$, and $\underline{f}=1-\underline{m}-\rho$.

Setup

- In this setup, the dynamics of recall is given by

$$
E\left(f_{k t} \mid e_{k}\right)=\left(\underline{f}-\chi E\left(a_{k t} \mid e_{k}\right)\right) \frac{1-\rho^{t-k}}{1-\rho}
$$

- Recall probabilities decay exponentially over time: more distant memories have a higher chance of being forgotten.
- Also, $E\left(a_{k t} \mid e_{k}\right)$ increases memorability.
- $E\left(a_{k t} \mid e_{k}\right)$ is defined as vividness which measures how strongly associativeness affects a memory.
- $E\left(x_{k} a_{k t} \mid e_{t}\right)$ is defined as evocativeness of event e_{t} which captures the average information of the associated events.

Basic results: perfect memory forecasts

- The stochastic process generates a signal extraction problem: the individual must separate out the permanent shock to y_{t} from the transitory ones.
- The posterior at time t will be distributed normally with mean \hat{y}_{t} and variance $\hat{\sigma}_{t}^{2}$.
- In steady state, these beliefs will equal

$$
\begin{gathered}
\hat{y}\left(h_{t}, e_{t}\right)=x_{t}+\sum_{k=1}^{t-1}\left[\lambda^{t-k} x_{k}+\left(1-\lambda^{t-k}\right) \Delta y_{k}\right] \\
\hat{\sigma}_{t}^{2}\left(h_{t}, e_{t}\right)=\sigma_{*}^{2}:=\frac{1}{2}\left(\sigma_{\nu}^{2}+\sqrt{\sigma_{\nu}^{2}\left(\sigma_{\nu}^{2}+4 \sigma_{\varepsilon}^{2}\right)}\right)
\end{gathered}
$$

where $\Delta y_{k}=y_{k}-y_{k-1}$ is the change in income and $\lambda=\sigma_{\varepsilon}^{2} /\left(\sigma_{\varepsilon}^{2}+\sigma_{*}^{2}\right)$ is the associated long-run error-to-truth ratio.

Basic results: perfect memory forecasts

- x_{k} influences forecasts one-for-one: its impact is the sum of two terms, a direct effect $\lambda^{t-k} x_{k}$ and an indirect effect from $\Delta y_{t}=x_{k}+z_{k}+\varepsilon_{k}-\varepsilon_{k-1}$.
- Δy_{k} enters with weight $1-\lambda^{t-k}<1$.
- y_{k} influences forecasts at $\lambda^{t-k-1}(1-\lambda)<1$ because it enter in Δy_{k} and Δy_{k+1}.
- n_{t} has zero impact as expected: neutral components convey no information.

Basic results: limited memory expectations

- It is assumed that the forgetful individual applies the forecasting rule to the recalled history: that is, she takes the recalled history as the true history.
- Let $\hat{y}_{t}^{R}\left(h_{t}^{R}, e_{t}\right)$ denote the mean and $\hat{\sigma}_{t}^{2 R}\left(h_{t}^{R}, e_{t}\right)$ denote the variance of a (nave) forgetful posteriors.
- The assumption of naive forecasts means that $\hat{y}_{t}^{R}\left(h_{t}^{R}, e_{t}\right)=\hat{y}_{t}\left(h_{t}^{R}, e_{t}\right)$ and $\hat{\sigma}_{t}^{2 R}\left(h_{t}^{R}, e_{t}\right)=\hat{\sigma}_{t}^{2}\left(h_{t}^{R}, e_{t}\right)$.
- Forgetful forecasts look just like perfect recall forecasts except that forgotten events $\left(R_{k t}=0\right)$ are excluded.

Basic result: limited memory forecasts

- Let err $r_{t}=y_{t}-\hat{y}_{t}$ and err ${ }_{t}^{R}=y_{t}-\hat{y}_{t}^{R}$ be the forecast errors.
- Also, define errt ${ }_{t}^{m}=\hat{y}_{t}-\hat{y}_{t}^{R}$ as the memory error.
- Note that $e r r_{t}^{R}=e r r_{t}+e r r_{t}^{m}$.

Proposition

The impact of event e_{t} on time t beliefs does not depend on its vividness but does depend on its evocativeness. On the other hand, its impact on time $t+j$ beliefs depends on both vividness and evocativeness.

Basic results: limited memory forecasts

- Vividness plays no role in how an event influences beliefs at the time it occurs.
- It only matters as time passes by increasing memorability.
- Evocativeness influences beliefs contemporaneously.
- An event with positive evocativeness disproportionately draws forth positive memories leading to a more positive forecast.
- Moreover, since these triggered memories persists by rehearsal, evocativeness also influences future beliefs.

Basic results: limited memory forecasts

Proposition

Let $e_{t}=\left(0, n_{t}\right)$ be an uninformative event but with nonzero neutral component. This event influences beliefs if and only if $\sigma_{x n} \neq 0$. The sign of this influence equals $\operatorname{sign}\left(\sigma_{x n} n_{t}\right)$.

- Even though the individual disregards a signal with $x_{t}=0$ as completely uninformative, her belief is still shaped by the memories this event triggers.
- A positive neutral cue $\left(n_{t}>0\right)$ selectively evokes other positive neutral cue memories.
- If $\sigma_{x n}>0$, these memories will on average have $x_{k}>0$ and hence the event will selectively evoke positive information memories.

Overreaction and underreaction

Proposition

Forecast errors are negatively correlated with the information in the latest event:

$$
\operatorname{cov}\left(y_{t}-\hat{y}_{t}^{R}, x_{t}\right)=\operatorname{cov}\left(e r r_{t}^{R}, x_{t}\right)<0
$$

The extent of this overreaction increases with χ and λ :

$$
\frac{\partial \operatorname{cov}\left(e r r_{t}^{R}, x_{t}\right)}{\partial \chi}<0, \frac{\partial \operatorname{cov}\left(e r r_{t}^{R}, x_{t}\right)}{\partial \lambda}<0
$$

- Good information may lead to a rosy view of the past, which leads to forecasts that are too large.
- The effect of λ arises because it measures the importance of history and hence the importance of selective recall.

Overreaction and underreaction

Proposition

Let $T>t$. When events are very memorable (\underline{f} low, χ and ρ large), then

$$
\operatorname{cov}\left(e r r_{t}^{R}, e r r_{t+1}^{R}\right)>0
$$

Overreaction and underreaction

Proposition

Suppose that forgetting probabilities are small, so that \underline{f} is low and ρ and χ are high. Then,

$$
\operatorname{cov}\left(\Delta \hat{y}_{t+1}^{R}, \Delta y_{t-1}\right)<0
$$

When these probabilities are large, however,

$$
\operatorname{cov}\left(\Delta \hat{y}_{t+1}^{R}, \Delta y_{t-1}\right)>0
$$

Overreaction and underreaction

- There are two effects that govern belief dynamics: forgetting and overreaction.
- Forgetting induces a positive correlation (underreaction) between beliefs and lagged information; overreaction induces a negative correlation.
- When events are memorable, the overreaction effect dominates.

Conclusion

- There are several questions left open by this model.
- This paper focuses on the naive case, but the sophisticated case also seems to be of interest.
- Associativeness as formulated in this paper has a failing: while current events can trigger related memories, the memories that one recalls cannot themselves trigger other memories, an extension referred to as association chain.
- To sum up, the paper provides a model of memory limitations which builds on two basic facts from scientific research.

