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Abstract

We consider the problem of dividing the cost of a facility when
agents can be ordered in terms of the need they have for it, and ac-
commodating an agent with a certain need allows accommodating all
agents with lower needs at no extra cost. This problem is known
as the “airport problem”, the facility being the runway. We review
the literature devoted to its study, and formulate a number of open
questions.

Key words: airport problem; monotonicity; consistency; core; Shapley
value; nucleolus.
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1 Introduction

Our goal here is to present the state of the art concerning the resolution of
a very simple class of cost allocation problems, illustrated by the following
example. Several airlines are jointly using an airstrip, different airlines oper-
ating different types of planes and therefore having different needs for it. The
larger the planes an airline flies, the longer the airstrip it needs. An airstrip
that accommodates a given plane accommodates any smaller airplane at no
extra cost. The airstrip should be built that accommodates the largest plane
any airline flies. How should its cost be divided among the airlines? We
refer to this situation as an “airport problem”, and we use this expression to
designate any problem with that structure.

Here is another illustration. Several ranchers are distributed along an
irrigation ditch. The rancher closest to the headgate only needs that the sec-
tion from the headgate to his ranch be maintained, the second closest rancher
needs that the section from the headgate to his own ranch be maintained,
and so on. The cost of maintaining a section used by several ranchers is
incurred only once, independently of how many ranchers use it. How should
the total cost of maintaining the ditch be shared?

Alternatively, the intervals of use may refer to time. Think of agents who
start using a facility or a service—lighting or security in a building in which
they operate independent businesses—at the same time, but each agent stops
using it when his needs are satisfied.

In general, agents in a group are linearly ordered by their needs for a
facility, and accommodating an agent implies accommodating at no extra
cost all agents who come before him in the order. Thus, the facility has the
character of a public good.

Our search is for ways of associating with each problem of this type an
allocation of the cost among the agents involved. Such a mapping is called
a “rule”.

Three approaches can be followed to obtain rules. A rule can be defined
“directly”, by means of a formula, a system of equations, or an algorithm.
One makes a case for it on the basis of the intuitive appeal of the definition
or of the process on which it is based.

The “game-theoretic approach” consists in first associating with each
problem a “cooperative game”, either a bargaining game or a coalitional
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game.1 The game is then “solved”, that is, a payoff vector is identified that
best reflects the “power”, “opportunities”, or “rights” of each player. Fi-
nally, the allocation corresponding to this payoff vector is determined; it is
the choice made for the problem under consideration.

The “axiomatic approach” takes properties of rules as point of depar-
ture. The properties are mathematical expressions of intuitive ideas about
how certain situations might be handled by agents on their own, or by an
impartial arbitrator. They are formally stated as axioms. Existing rules are
evaluated and compared in terms of the properties they satisfy or violate.
Mainly, one inquires about the implications of the properties, when imposed
in various combinations. The goal of the axiomatic program is to trace out
the boundary between those combinations that are compatible and those that
are not, and when compatible, to give as explicit as possible a description of
the family of rules satisfying them.

This survey of the airport problem may also serve as an introduction to
these methodologies, all of which have proved useful in handling a variety of
other classes of allocation problems.

2 The model

There is a set N of agents for whom a facility that they will jointly use is to
be built. Agents have different needs for it. The facility should be built so
as to accommodate all agents. Each agent i ∈ N is simply described by the
cost ci of the facility he needs, which we call his “cost parameter”. Serving
agent i implies serving any other agent j whose cost parameter cj is at most
as large as ci. Thus, the cost of accommodating everyone is maxN cj. How
much should each agent contribute? In our primary application, agents are
airlines (or rather plane movements), and ci is the cost of the airstrip that
airline i needs.

In summary, an airport problem, or simply a problem (Littlechild and
Owen, 1973), is a vector c ∈ RN

+ .
2 Let CN denote the domain of all problems.

We impose the natural requirement that each agent should bear some of the
cost and should contribute at most what he would have to pay if alone.

1A game is a mathematical representation of a conflict situation.
2By this notation, we mean the cross-product of |N | copies of R indexed by the members

of N . The superscript N is also used to denote any object pertaining to the set N , but it
will always be clear which usage is intended.
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Thus, a cost allocation for c ∈ CN , or simply an allocation for c, is a vector
x ∈ RN such that 0 5 x 5 c and

∑
xi = max ci.

3 Let X(c) be the set of
allocations for c. The i-th component of x is the contribution requested
of agent i. The difference ci − xi between agent i’s cost parameter and his
contribution is the benefit he experiences at the allocation x.

Numbering agents in the order of increasing costs, and in the absence of
ties, we refer to them as the first, second, . . . , and last agents. We say of
an agent whose cost parameter is greater than some other agent’s that “he
comes after that agent”, or, referring to the irrigation application, that he
is “downstream” of that agent. We call the differences c1, c2 − c1, c3 − c2,
and so on, segmental costs. (A number of authors take these segmental
costs as primitives and we urge readers of the primary literature to keep that
distinction in mind.)

An allocation rule, or simply a rule, is a mapping defined on the domain
of all problems, which associates with each c ∈ CN a vector in X(c). Let S
be our generic notation for rules. Note that rules are single-valued. This
property is greatly desirable since it implies that the issue of who should pay
what has been completely resolved. As a preliminary step to defining rules,
however, it is natural to look for mappings that associate with each problem
a set of contributions vectors, from which selections are eventually made. We
refer to these mappings as correspondences.

The set of allocations of each problem being a convex set, a convex com-
bination of rules is a rule.4

What is common to all of the situations discussed in the introduction is
their linear structure and the public good character of the facility. It is not a
standard public good, as such a good is consumed by everyone at the level at
which it is produced, nor an excludable public good, since in that case, pos-
sible differences in the agents’ consumptions are determined endogenously.
Section 6 shows the relevance of the principles and techniques that we will
develop to the analysis of tree-like, as opposed to linear, networks. Handling
these requires some adjustments but poses no fundamental conceptual diffi-
culties. Not covered are networks containing cycles. Cycles cause significant

3Vector inequalities: x 5 y, x ≤ y, x < y.
4Given a family of rules and a list of non-negative weights for them adding up to one,

the “convex combination of these rules with these weights” is the rule that selects for
each problem, the weighted average of the contributions vectors chosen by the rules in the
family.
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complications.

One should not be misled by the apparent similarity between an airport
problem and a claims problem.5 Such a problem is defined by specifying for
each agent a non-negative number interpreted as his claim on some resource,
and how much of the resource is available, the amount available being smaller
than the sum of the claims. Thus, an airport problem can be seen as a
claims problem in which the amount to divide is equal to the largest claim.
In the development of the axiomatic theory concerning claims problems, a
variety of relational properties involving the amount to divide have played
an important role.6 This amount is not an independent variable here, so
there are no counterparts to these properties.7 Another critical difference
between airport problems and claim problems is that the set of allocations
from which it is natural to choose when solving an airport problem is a
subset of the corresponding set when the problem is interpreted as a claims
problem (see below). This is because, as noted above, airport problems have
a public good character that claims problems do not have. Altogether, when
solving airport problems, it would be dangerous to mechanically apply rules
or axioms introduced for claims problems.

3 Direct approach: an inventory of solution

correspondences and rules

Here we define a number of solution correspondences and rules. They all
have intuitive definitions and most of them will come up when we turn to
axioms. For simplicity, we set N ≡ {1, . . . , n} and assume that c1 ≤ · · · ≤ cn.

1. We start with a basic requirement that we will always impose: at
the allocation chosen by a rule for a problem, no group N ′ of agents should
contribute more than what it would have to pay on its own, maxN ′ ci. Other-
wise, the group could make all of its members better off by setting up its own
facility; it would unfairly “subsidize” the other agents. In practice, “seces-

5See O’Neill (1982). Thomson (2003) is a survey of the literature.
6A “relational” property connects the choices made by a rule for two problems that

are related in a certain way. This is in contrast with “punctual” properties, which apply
separately to each element in the domain.

7Examples of such properties are monotonicity with respect to this amount and “com-
position” properties.
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sion” is not always an option, but it is still a meaningful reference situation
in evaluating a proposed allocation.

As we will see, all of the rules that have been discussed in the literature
are selections from it.

No-subsidy correspondence, NoSub: For each c ∈ CN , NoSub(c) ≡
{x ∈ X(c): for each N ′ ⊆ N ,

∑
N ′ xj ≤ maxN ′ cj}.

Since allocations are non-negative vectors, it suffices to write the con-
straints for all groups of consecutive agents starting with the agent with
the lowest cost parameter, (NoSub(c) = {x ∈ X(c): for each i ∈ N ,∑

j∈N :cj≤ci
xj ≤ ci}). This significantly reduces the number of constraints.8

If there are ties, a further reduction is possible.

2. The no-subsidy correspondence places an upper bound on each agent’s
contribution. The next solution places a lower bound: each agent should
contribute at least 1

n
of his cost parameter. For each agent, imagine a situa-

tion in which all agents had his cost parameter. Then, equal division appears
a reasonable choice:9

Identical-cost lower bound solution, Iclb: For each c ∈ CN , Iclb(c) ≡
{x ∈ X(c): for each i ∈ N , xi ≥ 1

n
ci}.

This solution is well-defined, and it has a non-empty intersection with
the no-subsidy correspondence. The solution defined next belongs to both.

3. In much of the literature on fair allocation, equality stands as a focal
point, but what should be equated is not always clear. Sometimes, more than
one choice are available. This is the case here. Several of the rules defined
below can indeed be understood as attempts at giving meaning to the goal of
equality. Equality of contributions itself is of course not an option given the
no-subsidy constraints. Adjustments have to be made to respect them. Our
first proposal is to apply equal division to each segment separately, “locally”
so to speak: all agents using a given segment contribute equally to its cost.
Each agent’s contribution is calculated as a sum of terms, one for each of the
segments he uses. The rule so defined is very natural, and when first exposed

8From 2n − 1 to n.
9This correspondence is defined by Chun, Hu, and Yeh (2012).
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to the problem, people often spontaneously come up with it. It has also been
used in the real world for many years.10

Sequential equal contributions rule, SEC: For each c ∈ CN and each
i ∈ N , SECi(c) ≡ c1

n
+ c2−c1

n−1
+ · · ·+ ci−ci−1

n−i+1
.

For each i ∈ N , the group N ′ ≡ {1, . . . , i} pays the sum i c1
n
+ (i −

1) c2−c1
n−1

+ · · · + 1 ci−ci−1

n−i+1
. Since each of the coefficients of the segmental cost

terms appearing in this expression is at most one, the sum c1 + (c2 − c1) +
· · · + (ci − ci−1) = ci is an upper bound on what N ′ contributes in total.
Thus, the no-subsidy constraints are met at SEC(c).

4. Our next rule offers a different, this time “global”, implementation of
the goal of equality. Contributions are chosen equal subject to the no-subsidy
constraints being met.11 Like for several of the other rules defined below, it is
convenient to give it an algorithmic definition, collecting progressively more
and more from agents until the cost of the project is entirely covered.

Constrained equal contributions rule, CEC: Let c ∈ CN . Start by
requiring equal contributions from all agents in N until there are γ1 ∈ R+

and k1 ∈ N such that k1γ1 = ck1 (if there are several such agents, select the
one with the largest index).12 Then, each i ∈ {1, . . . , k1} pays γ1. Continue
by requiring equal contributions from the members of {k1 + 1, . . . , n} until
there are γ2 ∈ R+ and k2 ∈ N such that k1γ1 + (k2 − k1)γ2 = ck2 (if there
are several such agents, select the one with the largest index). Then, each
i ∈ {k1 +1, . . . , k2} pays γ2. Continue until the total amount collected is cn.

The algorithm just defined is equivalent to finding k ∈ N for which the
ratio ck

k
is the lowest and, denoting by k1 the largest such k and by γ1

the corresponding ratio, having each i ∈ {1, . . . , k1} pay γ1; then finding

10The rule is discussed by Baker and Associates (1965) and Littlechild and Owen (1973).
It underlies the “serial” idea that has been the subject of a number of studies by Moulin
and various coauthors in several other contexts. See for instance, Moulin and Shenker
(1992). Aadland and Kolpin (1998) refer to it as the “serial rule”, and explain that it is
standard in allocating the cost of irrigation ditches.

11This rule is the counterpart of the “constrained equal awards rule” for the adjudication
of conflicting claims. Aadland and Kolpin (1998) refer to it as the “restricted average cost
share” rule. They also discuss an equal-contribution rule.

12This is actually not needed, but it reduces the number of steps of the algorithm. If
we do not, at the next step, we obtain the same γ term.
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k ∈ {k1 + 1, . . . , n} for which the ratio
ck−ck1
k−k1

is the lowest and, denoting
by k2 the largest such k and by γ2 the corresponding ratio, having each
i ∈ {k1 + 1, . . . , k2} pay γ2; proceeding in this way until the total amount
collected is cn.

Here is a numerical example: let c ≡ (2, 3, 6, 7) ∈ C{1,2,3,4}. Then γ1 = 1.5
(the minimum of 2

1
, 3
2
, 6
3
, and 7

4
), and k1 ≡ 2; γ2 = 2 (the minimum of 6−3

1
and

7−3
2
) and k2 = 4. Altogether, CEC(c) = (1.5, 1.5, 2, 2). For c′ ≡ (2, 4, 6, 9),

γ1 = 2, and three no-subsidy constraints are reached simultaneously, for
k = 1, k = 2, and k = 3, so k1 = 3. One agent is left, who pays what remains
of the total cost, so k2 = 4 and γ2 = 3. Altogether, CEC(c′) = (2, 2, 2, 3).

One can also calculate contributions one at a time, the following being
an alternative way of presenting the rule:

x1 = min{ c1
1

, c2
2

, c3
3

, . . . , cn−1

n−1
, cn

n
}

x2 = min{ c2−x1

1
, c3−x1

2
, . . . , cn−1−x1

n−2
, cn−x1

n−1
}

x3 = min{ c3−x1−x2

1
, . . . , cn−1−x1−x2

n−3
, cn−x1−x2

n−2
}

. . . = min{ , . . . , . . . , . . . }
It is a direct consequence of its definition that this rule is a selection from

the no-subsidy correspondence.13

5. Next, we apply an idea that is central to much of the literature on
fair allocation, namely proportionality. As for the constrained equal contri-
butions rule, an algorithmic definition is most convenient.14

Constrained proportional rule, CP : Let c ∈ CN . Start by requiring
the contributions of all agents in N to be proportional to their components
of c until there are ρ1 ∈ R+ and k1 ∈ N such that ρ1

∑
1,...,k1 ci = ck1 (if

there are several such agents, select the one with the largest index). Then,
each i ∈ {1, . . . , k1} pays ρ1ci. Continue by requiring the contributions of
the members of {k1 + 1, . . . , n} to be proportional to their components of c
until there are ρ2 ∈ R+ and k2 ∈ {k1 + 1, . . . , n} such that ρ1

∑
1,...,k1 ci +

ρ2
∑

k1+1,...,k2 ci = ck2 (if there are several such agents, select the one with

13The rule is equivalent to identifying agent k1 ∈ N for whom the average of the
first k1 segmental costs c1, c2 − c1, . . . , cℓ − cℓ−1, . . ., is the lowest; then, identifying k2 ∈
{k1+1, . . . , n} for whom the average of the k2−k1 next segmental costs ck1+1−ck1 , . . . , cℓ−
cℓ−1, . . . is the lowest, and so on. This description is given by Aadland and Kolpin (1998).

14Somewhat surprisingly, given the central role played by the idea of proportionality in
the theory of fair allocation and the prominent role it enjoys for the related class of claims
problems, we are not aware of any previous attempts at applying it to airport problems.
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the largest index). Then, each i ∈ {k1 + 1, . . . , k2} pays ρ2ci. Continue until
the total amount collected is cn.

This algorithm is equivalent to finding k ∈ N such that the ratio ck∑
1,...,k cℓ

is the lowest and, denoting by k1 the largest such k and by ρ1 the correspond-
ing ratio, having each i ∈ {1, . . . , k1} pay ρ1ci; then finding k ∈ {k1+1, . . . , n}
such that the ratio

ck−ck1∑
k1+1,...,k cℓ

is the lowest and, denoting by k2 the largest

such k and by ρ2 the corresponding ratio, having each i ∈ {k1 + 1, . . . , k2}
pay ρ2ci; proceeding in this way until the total amount collected is cn.

For our previous example c ≡ (2, 3, 6, 7) ∈ C{1,2,3,4}, if contributions are set
proportional to cost parameters with the constant of proportionality chosen
so that their sum is equal to c4, the no-subsidy constraints are all met and we
are done in one step. However, for c ≡ (2, 3, 3, 7), the proportional allocation
is 7

15
(2, 3, 3, 7). Since 7

15
(2 + 3 + 3) > 3 = c3, the no-subsidy constraint is

violated for the group {1, 2, 3}, so we proceed in steps. We need two of
them. At the first step, we obtain the contributions of the first three agents
(ρ1 = 3

8
and k1 = 3); since only one agent is left, he has to cover what

remains of the total cost, so ρ2 = 1 and k2 = 4. Altogether, the allocation is
(3
8
2, 3

8
3, 3

8
3, 4

4
(7− 3)).

6. Instead of focusing on the contribution required of an agent, we could
focus on the benefit he achieves for not having to take care of his needs on
his own, and equate these benefits subject to no one receiving a transfer.15

Constrained equal benefits rule, CEB: For each c ∈ CN and each
i ∈ N , let CEBi(c) ≡ max{ci − β, 0}, where β ∈ R+ is chosen so that∑

max{ci − β, 0} = cn.

For our earlier example c ≡ (2, 3, 6, 7) ∈ C{1,2,3,4}, we have β = 3 and
CEB(c) = (0, 0, 3, 4).

This rule is a selection from the no-subsidy correspondence, even though
the no-subsidy requirement does not appear in the definition (in contrast with
what is the case for the two previous rules). To see this, let x ≡ CEB(c) and
note that for each i ∈ N such that ci ≤ β, we have

∑
j∈N\{i}:cj≤ci

xj = 0, and

for each i ∈ N such that ci ≥ β, we have
∑

j∈N\{i}:cj≤ci
xj ≤

∑
j∈N\{n} xj =

cn − xn = β ≤ ci.

15This rule is a sort of counterpart of the “constrained equal losses rule” for the adju-
dication of conflicting claims. It is discussed by Potters and Sudhölter (1999).
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7. Imagine agents arriving in the order of increasing cost parameters and
hold each of them responsible for the segment he needs beyond the ones that
are already covered when he arrives. For this rule, an agent never “helps
out” agents with needs smaller than his to cover the cost of what they need,
even though he uses the segments they use, (and of course, he never gets any
help in covering his own segmental cost from agents with greater needs than
his, even though these agents use his segment). If several agents have equal
cost parameters, we require that they should share equally their common
segmental cost.

Sequential full contributions rule, SFC: For each c ∈ CN and each
i ∈ N , let N i(c) ⊆ N be defined by N i(c) ≡ {j ∈ N : cj = ci}. Then, if

ci = min cj, SFCi(c) ≡ ci
|N i(c)| , and otherwise SFCi(c) ≡

ci−maxj∈N :cj<ci
cj

|N i(c)| .

8. Next, we define a family of rules that are also based on a simple
first-come first-pay scenario, but this time the order of arrival is exogenously
given. Given an order on the set of agents, we imagine them arriving in this
order, and assign to each one the cost of the extension needed to serve him
when he arrives. Let ON be the set of orders on N , with generic element ≺.16

Priority rule relative to ≺∈ ON , D≺: For each c ∈ CN and each i ∈ N ,
D≺

i (c) ≡ max{ci −maxj∈N :j≺i cj, 0}.

For instance, if c ∈ C{1,2,3} and agents arrive in the order 2 ≺ 1 ≺ 3,
agent 2 pays c2. Agent 1 pays nothing because when he arrives, the segment
needed to serve him is already covered. Agent 3 pays the difference c3 − c2.
If they arrive in the order 3 ≺ 2 ≺ 1, agent 3 pays c3 and none of the others
pays anything. We also use the notation D3≺2≺1 for this rule, and similar
notation for the other rules in the family. By construction, each of them
satisfies the no-subsidy constraints.

9. Here, we still imagine, as in the previous definition, that agents arrive
one at a time, but we assume all orders of arrival to be equally likely and we
take the average of the allocations associated with all orders. This produces
a well-defined rule since the set of allocations is convex:17

16These rules are the counterparts of rules of the same name that have been discussed
in a variety of contexts, in particular in the context of the adjudication of conflicting
claims. An important difference is that here, the earlier an agent arrives, the more he
pays, whereas there, the more he receives.

17The idea underlying this rule has been applied in a wide variety of contexts.
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Random arrival rule, RA: For each c ∈ CN and each i ∈ N , RAi(c) ≡
1

|N |!
∑

≺∈ON max{ci −maxj∈N :j≺i cj, 0}.

This rule is an average of rules satisfying the no-subsidy constraints (the
priority rules), and since the set of allocations satisfying these constraints is
convex too, it also satisfies them. This property is also a consequence of the
fact, established earlier, that the sequential equal contributions rule satisfies
the constraints, and of the following equivalence (implicit in Littlechild and
Owen, 1973):

Lemma 1 The random arrival rule coincides with the sequential equal con-
tributions rule.

10. Our next rule is based on an idea that is familiar to social choice and
game theory. When certain constraints have to be met in choosing a payoff
vector, a natural objective is to keep as far as possible from violating them.
An allocation that is equally far from violating all constraints usually does
not exist, and a next best choice is an allocation that is at a greater distance
in the lexicographic maximin order from violating the constraints than any
other allocation. Given x ∈ X(c) and i ∈ N , we measure how close x is to
violate the non-negativity and no-subsidy constraints. Let us call the i-th
slack at x the difference ci −

∑
{1,...,i} xj.

18

Slack maximizer rule, SM : For each c ∈ CN , SM(c) is the allocation
x ∈ NoSub(c) such that for each y ∈ NoSub(c), the 2n-dimensional vec-
tor consisting of x itself and the slacks at x is greater in the lexicographic
maximin order than the vector associated with y in a similar way.

An explicit recursive formula can be given for the rule. It is surprisingly
similar to the one for the constrained equal contributions rule. There are
two differences however. First, the denominator of each term is obtained
by incrementing by one the corresponding denominator of that earlier rule.
Second is the absence of a term associated with the last segment:

Lemma 2 (Sönmez, 1994) Let c ∈ CN . The slack maximizer allocation x of
c ∈ CN is given by the following formula:

18The term nucleolus is commonly used and the reason will be clear soon. At this point,
we prefer not invoking concepts of game theory however.
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x1 = min{ c1
2

, c2
3

, c3
4

, . . . , cn−1

n
}

x2 = min{ c2−x1

2
, c3−x1

3
, . . . , cn−1−x1

n−1
}

x3 = min{ c3−x1−x2

2
, . . . , cn−1−x1−x2

n−2
}

. . . = min{ , . . . , . . . }
xn−1 = min{ cn−1−x1−···−xn−2

2
}

Agent n pays what remains (namely, cn − x1 − · · · − xn−1).

For the two-agent case, we obtain ( c1
2
, c2 − c1

2
), which is also what the se-

quential equal contributions and constrained equal benefits rules recommend.
For the three- (or more-) agent case, this coincidence does not hold anymore.
Let c ≡ (1, 2, 3) ∈ C{1,2,3}. Then, CEB(c) = (0, 1, 2), but if x ≡ SM(c), then

x1 ≡ min{1
2
, 2
3
} = 1

2
, x2 ≡ min{2− 1

2

2
} = 3

4
, and x3 ≡ 3− (x1 + x2) = 1.75.

When agents are grouped into types having equal cost parameters, with
nj being the number of agents of type j, and Mi ≡

∑i
j=1 nj, we obtain the

following formula:

Lemma 3 (Littlechild, 1974) The slack maximizer allocation x of c ∈ CN is
given by the following recursive formula:19

xi = γk, ik−1 < i < ik, k = 1, . . . , k′,

where γk and ik are defined by:

γk = min

[
min

ik−1+1,...,n−1
{
ci − cik−1

+ γk−1

Mi −Mik−1
+ 1

},
cn − cik−1

+ γk−1

Mn −Mik−1

]
;

19Littlechild also notes that as the number of agents of each type increases without
bound, the term “+1” in the denominator of the expression below becomes negligible.
Moreover, γk−1/(Mi−Mik−1

) involves the multiplication of 1/ni and ci. Hence, under the
same assumption, this term can also be ignored. Thus, in this case, the following simpler
approximate formula for the slack maximizer rule is available:

x̃i = γ̃k, ik−1 < i ≤ ik, k = 1, . . . , k′,

γ̃ = min
ik−1+1,...,n

[
ci − cik−1

Mi −Mik−1

]
where ik is defined as above.
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and ik is maximal among all indices solving the above minimization problem
(that is, first g0 = i0 = c0 = 0, proceed until k = 1, · · · , k′, and finally,
ik′ = n).

The similarity between the formulas for the constrained equal contri-
butions rule and the slack maximizer rule suggests that they are mem-
bers of a single and simple family. Such a family can indeed be de-
fined (Gellekom and Potters, 1997): let α ∈ [0, 1] and set x1 ≡
min{ c1

1+α
, c2
2+α

, . . . , cn−1

n−1+α
, cn

n
}, x2 ≡ min{ c2−x1

1+α
, . . . , cn−1−x1

n−2+α
, cn−x1

n−1
}, . . . ,

xn−1 ≡ min{ cn−1−x1−···−xn−2

1+α
, cn−x1−···−xn−2

2
}, and xn ≡ cn − x1 − · · · − xn−1.

(the denominators should be compared to those in the formulae for the con-
strained equal contributions and slack maximizer rules.)

11. Finally, we introduce a new family of rules. It is inspired by a concept
that has been central in the theory concerning the adjudication of conflicting
claims (Young, 1987). The main issue in extending the concept is making
sure that the no-subsidy constraints are met. This is the reason for the
step-by-step definition that we propose. Let F be the family of continuous
functions f :R+ × [a, b] → R+, where [a, b] ⊆ R (the extended real line),
such that for each c0 ∈ R+, f(c0, ·) is nowhere decreasing, f(c0, a) = 0 and
f(c0, b) = c0.

Parametric rule associated with f ∈ F , Sf : Let c ∈ CN . Start by
requiring the contribution of each i ∈ N to be equal to f(ci, λ) until, for
some λ1 ∈ [a, b], there is k1 ∈ N such that

∑
1,...,k1 f(ci, λ

1) = ck1 . (If there

are several such k1, select the largest.) Then, each i ∈ {1, . . . , k1} pays
f(ci, λ

1). Continue by requiring the contribution of each i ∈ {k1 + 1, . . . , n}
to be equal to f(ci, λ) until, for some λ2 ∈ [a, b], there is k2 ∈ N such
that ck1 +

∑
k1+1,...,k2 f(ci, λ

2) = ck2 . (If there are several such k2, select the

largest.) Then, each i ∈ {k1 + 1, . . . , k2} pays f(ci, λ
2). Continue until the

total collected is cn.

The constrained equal contributions, constrained proportional, and con-
strained equal benefits rules are members of the family.

4 Game-theoretic approach to defining rules

A standard way of coming up with a recommendation for an allocation prob-
lem is to map it into a game; apply the tools of game theory to solve the game,
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thereby obtaining a payoff vector for the game; then, select the allocations
whose image is this payoff vector.

Several classes of games have been considered in the literature and allo-
cation problems can meaningfully be mapped into different kinds of games.
We will consider two main classes, bargaining games and coalitional games
with transferable utility.

4.1 Bargaining games

Let N be a set of “players”. A bargaining game (Nash, 1950) is a pair
(B, d), where B is a subset of RN and d is a point of B. The set B, the fea-
sible set, is interpreted as the set of utility vectors available to the group N
by unanimous agreement, and d, the disagreement point, is interpreted
as the utility vector that the group obtains if its members fail to reach an
agreement. The point chosen by a solution for a specific game is the solution
outcome of the game. The set B is commonly assumed to be a convex and
compact subset of RN , and to be such that there is x ∈ B with x > d. Let
GN be a domain of bargaining games. A bargaining solution on GN is a
function that associates with each game in GN a unique point in the feasible
set of the game.20

The following are central solutions in the theory of bargaining: The lex-
icographic egalitarian solution outcome of (B, d), EL(B, d), is the
payoff vector at which utility gains from d are maximized in a lexicographic
way, starting with the smallest one.21 Its Kalai-Smorodinsky solution
outcome (Kalai and Smorodinsky, 1975), KS(B, d), is the maximal pay-
off vector on the segment from the disagreement point to the “ideal point”,
a(B, d), where for each i ∈ N , ai(B, d) is the maximal utility gain achievable
by agent i among the feasible points dominating the disagreement point.
The lexicographic Kalai-Smorodinsky solution outcome of (B, d)
(Imai, 1983), KSL(B, d), is constructed so as to recover efficiency when
this property would not be met otherwise (there is no feasible outcome that
semi-strictly dominates the chosen vector). It is obtained by first normal-
izing the problem so that its ideal point has equal coordinates, then apply-

20For an exposition of the theory of bargaining, see Thomson (1999).
21Given x, y ∈ Rℓ, x is greater than y in the lexicographic (maximin) order if,

designating by x̃ and ỹ the vectors obtained from x and y by rewriting their coordinates
in increasing order, we have either x̃1 > ỹ1 or [x̃1 = ỹ1 and x̃2 > ỹ2], or [x̃1 = ỹ1, x̃2 = ỹ2,
and x̃3 > ỹ3], and so on.
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ing the lexicographic egalitarian solution, and finally returning to the initial
non-normalized problem. The extended equal loss solution outcome of
(B, d) (Bossert, 1993, in a XEL(B, d), is the maximal point at which the
utility losses from the ideal point of all agents whose utility gains are positive
are equal and the utilities of the others are equal to their disagreement utili-
ties. Finally, the lexicographic dictatorial solution outcome of (B, d)
associated with the order ≺∈ ON , Dic≺(B, d), is the payoff vector at
which the utility gain of the player who comes first in that order is maximal if
this vector is unique. If not, among all such vectors, it is the vector at which
the utility gain of the player who comes second is maximal if this vector is
unique; and so on.

Given an airport problem c ∈ CN , its associated bargaining game is
the game whose feasible set is B(c) ≡ {y ∈ RN

+ : for some x ∈ NoSub(c), y 5
x} and whose disagreement point is the origin.22 A rule matches a bar-
gaining solution if for each problem, the allocation it recommends coincides
with the payoff vector assigned by the solution to the bargaining game as-
sociated with the problem. Our first theorem describes a number of such
matches.

Theorem 1 The following matches between rules and bargaining solutions
exist:

(i) The constrained equal contributions rule and the lexicographic egali-
tarian solution.

(ii) The constrained equal benefits rule and the extended equal loss solu-
tion.

(iii) The constrained proportional rule and the lexicographic Kalai-
Smorodinsky solution.

(iv) The priority rule associated with order ≺ and the lexicographic dic-
tatorial solution associated with order ≺.

4.2 Coalitional games

We next turn to a class of games that is richer than the class of bargaining
games in that what each group of agents—in this context, they are called
coalitions—can achieve is specified. Let N be a (finite) set of “players”. A

22Other choices of disagreement point are plausible. An example is the vector whose
i-th coordinate, for each i ∈ N , is ci

|N | .
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(transferable utility) coalitional game is a list v ≡ (v(N ′))N ′⊆N ∈ R2|N|−1,
where for each ∅ ≠ N ′ ⊆ N , v(N ′) is the worth of coalition N ′. This
number is interpreted as what N ′ can achieve on its own, although this is by
no means the only possible interpretation. Let VN be a domain of coalitional
games. A solution on VN is a correspondence that associates with each
v ∈ VN a payoff vector in RN whose coordinates add up to v(N). One of
the most important solutions is the one that selects all the efficient payoff
vectors such that no coalition can simultaneously provide a higher payoff
to each of its members given its worth. Formally, the core of v ∈ VN ,
C(v), is the set of payoff vectors x ∈ RN such that

∑
xi = v(N) and

for each ∅ ̸= N ′ ⊆ N ,
∑

N ′ xi ≥ v(N ′). The core is multi-valued but the
next solutions are single-valued. First, we imagine agents arriving one at a
time and we calculate for each of them the contribution23 he makes to the
coalition of agents who arrived before him, that is, the difference between
the worth of the coalition after he joins it and before he does so. For each
agent, we calculate the average of these contributions assuming that all orders
of arrival are equally likely, thereby obtaining for each i ∈ N , the payoff
1

|N |!
∑

≺∈ON [v({j ∈ N |j ≺ i} ∪ i) − v({j ∈ N |j ≺ i})]. Collecting terms,
the following is an alternative and more familiar expression for the Shapley
value payoff of player i in v ∈ VN (Shapley, 1953):

Shi(v) ≡
∑

N ′⊆N,i∈N ′

(|N ′| − 1)!(|N | − |N ′|)!
|N |!

[v(N ′)− v(N ′\{i})].

The next solution is defined by a lexicographic operation analogous to
the one underlying the lexicographic egalitarian solution of bargaining the-
ory. Given N ′ ⊂ N and x ∈ RN , the difference v(N ′) −

∑
N ′ xi is the

dissatisfaction of N ′ at x. This number indicates how well or how badly
a given coalition is treated at x.24 Now, the nucleolus of v ∈ VN , Nu(v)
(Schmeidler , 1969) is the set of payoff vectors x ∈ RN at which the vector of
dissatisfactions (v(N ′) −

∑
N ′ xi)N ′⊆N is minimized in the lexicographic or-

der among all efficient payoff vectors, starting with the largest dissatisfaction.
The nucleolus is single-valued.

For the modified nucleolus (Sudhölter, 1997), we perform a parallel ex-
ercise using the vector of differences of dissatisfactions between two arbitrary

23Note that here this term has a different meaning from the one we have given it up to
this point, but which meaning is intended should be clear from the context.

24Note that a payoff vector belongs to the core if all of these differences are non-positive.
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coalitions. The modified nucleolus is single-valued too.
Our next definition is based on the Lorenz order.25 We state the spe-

cial form it takes for an important class of games, namely games exhibiting
strongly decreasing “returns to size”: a game is concave if for each i ∈ N
and each pair {N ′, N ′′} of subsets of N such that N ′′ ⊂ N ′ and i /∈ N ′,
v(N ′ ∪ {i}) − v(N ′) ≤ v(N ′′ ∪ {i}) − v(N ′′). The Dutta-Ray solution
outcome of a concave game v ∈ VN , DR(v) (Dutta and Ray, 1989)
is the payoff vector in the core of v that Lorenz-dominates every other core
payoff vector.

Given an airport problem c ∈ CN , its associated coalitional game is
the game v(c) ∈ VN defined by setting, for each ∅ ̸= N ′ ⊆ N , v(c)(N ′) ≡
maxN ′ ci. (Other proposals have been made. One is to set, for each N ′ ⊂ N ,
v′(c)(N ′) ≡ −maxN ′ ci. Another is to set v′′(c)(N ′) ≡

∑
N ′ ci −maxN ′ ci.)

The no-blocking idea underlying the definition of the core remains mean-
ingful but the inequalities have to be reversed. We still refer to the set of
allocations satisfying them as the core. The core is non-empty and it can
be easily described:

Lemma 4 Given any airport problem, the core of the coalitional game as-
sociated with it is its set of contribution vectors satisfying the no-subsidy
constraints.

Clearly, if x ∈ X(c) satisfies the core constraints, it satisfies the no-
subsidy constraints, which are a subset of them. Conversely, given N ′ ⊂ N ,
let N̄ ′ be the coalition consisting of all the agents in N whose cost parameter
is at most maxN ′ ci. Then, since x ∈ X(c) implies x = 0, if

∑
N̄ ′ xi ≤

maxN ′ ci, it follows that
∑

N ′ xi ≤ maxN ′ ci.

Our next observation is that the game v(c) belongs to a very special class.

Lemma 5 Given any airport problem, the coalitional game associated with
it is concave.

When a game is concave, its Shapley value payoff vector belongs to its
core. In fact, the vertices of the core (the core is a polyhedron, being defined

25Given x ∈ RN , we denote by x̃ the vector obtained from x by rewriting its coordinates
in increasing order. Given x and y ∈ RN with

∑
xi =

∑
yi, we say that x is greater

than y in the Lorenz order if x̃1 ≥ ỹ1, x̃1 + x̃2 ≥ ỹ1 + ỹ2, x̃1 + x̃2 + x̃3 ≥ ỹ1 + ỹ2 + ỹ3,
and so on, with at least one strict inequality.
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by a system of inequalities), are the payoff vectors whose average defines the
Shapley value payoff vector.26

A rule matches a solution to TU games if for each problem, the
allocation it recommends coincides with the payoff vector assigned by the
solution to the coalitional game associated with the problem.

Theorem 2 The following matches between rules and solutions to TU games
exist:

(i) The sequential equal contributions rule (equivalently, according to
Lemma 1, the random arrival rule) and the Shapley value.

(ii) The constrained equal contributions rule and the Dutta-Ray solution.
(iii) The constrained equal benefits rule and the modified nucleolus.
(iv) The slack maximizer rule and the nucleolus.

Assertion (i) is due to Littlechild and Owen (1973), assertion (ii) to Aad-
land and Kolpin (1998), and assertion (iii) to Potters and Sudhölter (1999).
Assertion (iv) is a direct consequence of the fact that for each x ∈ X(c) and
each N ′ ⊂ N , the slack of N ′ at x is always at least as large as the slack of
{1, . . . ,maxN ′ i} at x (this is the smallest set of consecutive agents starting
with agent 1 that contains N ′), and therefore can be ignored in the maxi-
mization defining the nucleolus (recall that each x ∈ X(c) is non-negative).
The nucleolus is in general difficult to calculate as it involves a sequence of
nested maximizations. However, in the present context, it can be given an
explicit recursive definition, as we have seen (appealing to (iv)). (If instead
of the game v(c), we consider the game v′(c) or the game v′′(c), then some
of these matches are affected.)

5 Axiomatic approach

We now turn to axioms. We distinguish between fixed-population axioms and
variable-population ones (for which we will need to generalize the model). For
each axiom, Table 1 shows whether each of the rules introduced in Section 3
satisfies it or not. We also offer characterizations.

26Also, its kernel and nucleolus coincide. See Shapley (1971).
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5.1 Fixed population

We have incorporated in the definition of a rule three requirements. Non-
negativity says that for each problem, the rule should only pick a non-
negative contribution vector; cost boundedness that this vector should be
bounded above by the cost vector; efficiency that its coordinates should add
up to the maximal cost.

• Agents with equal cost parameters should contribute equal amounts:

Equal treatment of equals: For each c ∈ CN and each pair {i, j} ⊆ N , if
ci = cj, then Si(c) = Sj(c).

A stronger requirement is that what agents contribute should be inde-
pendent of their names.

• If agent i’s cost parameter is at least as large as agent j’s cost parameter,
he should contribute at least as much as agent j does.27

Order preservation for contributions: For each c ∈ CN and each pair
{i, j} ⊆ N , if ci ≥ cj, then Si(c) ≥ Sj(c).

The next property is a counterpart for benefits of the previous one (Lit-
tlechild and Thompson, 1977)28.

Order preservation for benefits: For each c ∈ CN and each pair {i, j} ⊆
N , if ci ≥ cj, then ci − Si(c) ≥ cj − Sj(c).

Properties such as equal treatment of equals and the generalizations just
stated are very natural in many applications, but not always. Indeed, there
may be good reasons not described in the model justifying that agents with
equal cost parameters not be treated equally. In the irrigation example,
different ranchers may use the ditch to irrigate unequal land areas, or the
crops they grow may differ in other respects (Aadland and Kolpin, 1998).
In general, the profits agents derive from the project may differ. In such
circumstances, the question arises whether and how rules can be redefined so

27Some form of the property appears in many domains studied in economics and game
theory. For claims problems, it is discussed by Aumann and Maschler (1985).

28This property appears in Aadland and Kolpin (1998) under the name of “semi-
marginalism”.
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as to accommodate a perceived need to favor certain agents at the expense of
others. One answer is to add to the model this extra information. Another
is to specify a vector of weights indexed by agents reflecting the greater or
lesser relative importance they should receive. If all weights are positive, it
is easy to use them to extend the definitions of our basic rules. We consider
this case first.

Let ∆N be the unit simplex in RN . For the weighted sequential equal
contributions rule with weights w ∈ int∆N (the notation “int” denotes
the interior of a set), divide the cost of each segment among all agents who
use it proportionally to their weights.

For the weighted constrained equal contributions rule with
weights w ∈ int∆N , set contributions proportional to the weights and pro-
ceed in steps as before (the choice of weights may affect the order in which the
no-subsidy constraints are reached). For the weighted constrained pro-
portional rule with weights w ∈ int∆N , set contributions proportional
to the weights multiplied by the cost parameters, and here too, proceed in
steps. A similar definition of the weighted constrained equal benefits
rule with weights w ∈ int∆N is possible, but in contrast to the case
when all weights are equal, we now have to keep track of the no-subsidy
constraints. To see this, let c ≡ (1, 2, 3) ∈ C{1,2,3}. Also, let w ≡ (.1, .1, .8).
Then, the equations c1−x1

.1
= c2−x2

.1
= c3−x3

.8
and

∑
xi = 3 give x = ( 7

10
, 17
10
, 3
5
),

and since x1 + x2 > c2 = 2, the no-subsidy constraint for the group {1, 2} is
violated.

Let us now turn to the possibility that weights may have zero components.
To see the difficulty that zero weights cause, we return to the sequential equal
contributions rule and note that the proposal described above cannot be used
because some segments may not be covered. For instance, let N ≡ {1, 2, 3, 4}
and w ≡ (1

4
, 3
8
, 3
8
, 0). Let c ≡ (1, 2, 3, 4) ∈ C{1,2,3,4}. Then c1 is divided

proportionally to the components of w among all four agents, c2−c1 is divided
among agents 2, 3, and 4 proportionally to the weights (3

8
, 3
8
, 0) (this means

that agents 2 and 3 together pay the entire cost of the second segment), and
c3− c2 is divided between agents 3 and 4 proportionally to the weights (3

8
, 0)

(this means that agent 3 pays the entire cost of the third segment). When
we get to the last segmental cost c4 − c3, we are left with only one agent and
his weight is zero. This difficulty can be remedied by introducing a second
weight vector to be used on such occasions. This second vector can have
zero components too, so we add a third weight vector and so on. Formally,
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a hierarchy of weights is an ordered list {w1, w2, . . . , wL} ∈ ∆N , for some
positive integer L, such that for each ℓ ∈ {1, . . . , L}, and each i ∈ N , if wℓ

i >
0, then wℓ+1

i = 0. To illustrate, let N ≡ {1, 2, 3, 4, 5, 6}, w1 ≡ (1
4
, 3
8
, 3
8
, 0, 0, 0),

and w2 ≡ (0, 0, 0, 1
3
, 1
3
, 1
3
). Let c ∈ CN be such that c1 ≤ · · · ≤ c6. Then, c1 is

divided among the first three agents proportionally to their components of w1,
c2− c1 is divided between agents 2 and 3 proportionally to their components
of w1, and c3 − c2 is entirely covered by agent 3. Then, we switch to the
second weight vector. The fourth segmental cost, c4 − c3 is divided among
agents 4, 5, and 6 proportionally to their components of w2, c5−c4 is divided
between agents 5 and 6 proportionally to their components of w2, and c6−c5
is covered entirely by agent 6. If c is such that c5 < c1 < c2 < c3 < c6 < c4,
say, c5 is divided among agents 1, 2, and 3 according to their components of
w1 (they are the only agents using this segment who have positive weights in
w1), and so is c1−c5; c2−c1 is divided between agents 2 and 3 proportionally
to their components of w1 (they are the only agents using this segment who
have positive weights in w1); c3−c2 is paid entirely by agent 3 (he is the only
agent using this segment who has a positive weight in w1). The penultimate
segmental cost, c6 − c3, is divided between agents 4 and 6 proportionally to
their weights in w2; the last segmental cost, c4 − c6, is covered entirely by
agent 4, as he is only one left.29

Any such rule can alternatively be described in terms of an ordered par-
tition of the set of agents, and a list of positive weights, one for each agent.
For each problem, we handle each segment in turn. We divide the cost of
the first component of the induced partition proportionally to their weights
of the agents who use it. If the first component of the induced partition is
empty, we divide the cost of the segment among the members of the sec-
ond component of the induced partition who use it proportionally to their
weights, and so on.

We now turn to relational requirements on rules.
• If the cost vector is multiplied by a positive scalar, so should the chosen

allocation:30

Homogeneity: For each c ∈ CN and each α ∈ R++, S(αc) = αS(c).

29Note that we switch to the second weight vector when we reach a segment that is used
by agents who are all assigned zero weights by the first weight vector.

30This is the first part of the property Potters and Sudhölter (1999) call “covariance”.
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• The chosen allocation should vary continuously with the data of the
problem.

Continuity: For each sequence {cν} of elements of CN and each c ∈ CN , if
cν → c, then S(cν) → S(c).

• Next is an independence property: an agent’s contribution should not
depend on the costs of the segments he does not use.

Independence of at-least-as-large costs: For each pair {c, c′} of elements
of CN and each i ∈ N , if (i) c′i = ci, (ii) for each j ∈ N such that cj < ci, we
have c′j = cj and (iii) for each j ∈ N\{i} such that cj ≥ ci, we have c′j ≥ cj,
then Si(c

′) = Si(c).

The sequential full contributions rule fails this property but it satisfies the
slightly weaker version of it obtained by only allowing those cost parameters
that are initially greater than agent i’s cost parameter to vary, provided they
remain greater than agent i’s cost parameter (a property that could be called
“independence of greater costs”). There are several other properties that this
rule satisfies if this proviso is met.

Here is our first characterization:31

Theorem 3 (Moulin and Shenker, 1992) The sequential equal contributions
rule is the only rule satisfying equal treatment of equals and independence
of at-least-as-large costs.

• Next is a limited version of the above independence property: if the cost
parameter of the last agent increases (or if the cost parameter of any one of
the agents whose parameter is the largest increases, if there are several of
them), the contributions required of the other agents should not be affected
and his contribution should increase by an equal amount.32 In the following,
given x ∈ RN and i ∈ N , the notation xN\{i} denotes the vector obtained
from x by deleting its i-th component.

31Efficiency does not appear in any of our characterizations as it is incorporated in
the definition of a rule. Remark 5.6 of Potters and Sudhölter (1999) essentially amounts
to Theorem 3. They impose an axiom of monotonicity, which implies our independence
axiom, and only exploit its independence content.

32This is the second part of the property Potters and Sudhölter (1999) call “covariance”.
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Last-agent cost additivity: For each pair {c, c′} of elements of CN , each
γ ∈ R+, and each i ∈ N with ci = maxN cj, if (i) c′N\{i} = cN\{i} and

(ii) c′i = ci + γ, then SN\{i}(c
′) = SN\{i}(c) and Si(c

′) = Si(c) + γ.

A weaker property is that, under the same hypotheses, the contribution
required of the last agent should increase by an amount equal to the increase
in his cost parameter, nothing being said about the contributions required of
the others. Let us refer to it as weak last-agent cost additivity.

• Here is our last property in the series: If two problems for which agents
are ordered in the same way are added—of course in the sum problem, they
are still ordered in the same way—the allocation chosen for the sum problem
should be the sum of the allocations chosen for each of them. One of the
two vectors may represent estimated costs before construction and the other
may be interpreted as a vector of cost overruns. Alternatively, one may keep
track of the fact that the cost of each segment may have several parts, for
land, material, and maintenance for example, the restriction appearing in the
hypotheses being that these component costs are all ordered in the same way,
as would be the case in many applications. In the case of airports, we may
think of two facilities being built at the same time, at two different locations,
but all airplanes will use both.

Conditional cost additivity: For each pair {c, c′} of elements of CN for
which agents are ordered in the same way, S(c+ c′) = S(c) + S(c′).

This property implies last-agent cost additivity, since the problems c and c′

appearing in the statement of this earlier property are such that c′ is obtained
from c by adding the trivial problem (0, . . . , 0, γ)—note that indeed the order
requirement is met—for which, by definition of a rule, we have to select the
allocation (0, . . . , 0, γ).

Our next result is another characterization of the sequential equal contri-
butions rule:

Theorem 4 (Dubey, 1982) The sequential equal contributions rule is the
only rule satisfying equal treatment of equals and conditional cost additivity.

An “unconditional” additivity requirement would not make sense, since
the amount to be collected is not an additive function of the problem. Indeed,
let c ≡ (1, 2) ∈ C{1,2} and c′ ≡ (2, 1) ∈ C{1,2}. Then, if x ≡ S(c), we have

22



∑
Si(c) = 2. Similarly, if x′ ≡ S(c′), we have

∑
Si(c

′) = 2. Note that∑
(Si(c) + Si(c

′)) = 4. However, c+ c′ = (3, 3). Thus,
∑

Si(c+ c′) = 3.

• Our next requirements are monotonicity requirements. First, if the i-
th cost parameter increases, agent i should pay at least as much as he did
initially. For the application to the airport problem, this increase could be
due to the i-th airline switching to larger planes.33

Individual cost monotonicity: For each pair {c, c′} of elements of CN and
each i ∈ N , if c′i ≥ ci and for each j ∈ N\{i}, c′j = cj, then Si(c

′) ≥ Si(c).

• Recalling the public good character of the facility, note that if agent i is
not the last agent, any increase in his contribution is beneficial to the other
agents as a group. Let us then require that if an agent’s cost parameter
increases, each of the others should pay at most as much as he did initially.

Others-oriented cost monotonicity: Under the hypotheses of individual
cost monotonicity, for each j ∈ N\{i}, Si(c

′) ≤ Si(c).

• Suppose the cost vector changes and consider some agent i. In the
irrigation application, where ci−ci−1 is interpreted as the cost of maintaining
the section of the ditch passing through rancher i’s property, an increase in
this cost will bring about an equal increase in the cost parameter of each
rancher who comes after him. Then, one could ask that he and each of these
ranchers should pay at least as much as they did initially.

Downstream cost monotonicity: For each pair {c, c′} of elements of CN ,
and each i ∈ N , if (i) for each j ∈ N such that cj < ci, c

′
j = cj and (ii) for

each j ∈ N such that cj ≥ ci, c
′
j − cj = c′i − ci ≥ 0, then for each j ∈ N such

that cj ≥ ci, Sj(c
′) ≥ Sj(c).

Under the same hypotheses, we require that each agent who comes before
him should pay the same amount as he did initially, a property that should
be related to independence of at-least-as-large costs.

Marginalism: Under the hypotheses of downstream cost monotonicity, for
each j ∈ N such that cj < ci, Sj(c

′) = Sj(c).

• If the cost vector changes in such a way that each segmental cost ends
up at least as large as it was initially, each agent should pay at least as much
as he did initially.34 Such an increase in costs can be thought of as coming

33This property is called “monotonicity in costs” by Potters and Sudhölter (1999).
34This property appears in Aadland and Kolpin (1998).
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from the addition of another problem for which agents are ordered in the
same way. Thus, the requirement can also be written in the following way:

Monotonicity under addition of problems: For each pair {c, c′} of ele-
ments of CN such that c′ = c+ c′′ for some c′′ ∈ CN , S(c′) ≥ S(c).

The stronger solidarity requirement that if all cost parameters increase,
each agent should pay at least as much as he did initially is incompatible
with the no-subsidy constraints and equal treatment of equals. Indeed, let
c ∈ CN and x ≡ S(c). Let c′ ∈ CN be such that for each i ∈ N , c′i = max cj,
and x′ ≡ S(c′). Since the amount to be collected remains the same, the
monotonicity requirement implies x′ = x. By equal treatment of equals, all
components of x′ are equal. Thus, the same statement holds for x. However,
the agent with the smallest cost parameter in c may be required to pay more
than his cost parameter then.

The next result focuses on the difference between the largest and smallest
contributions required of the agents.35

Theorem 5 (Combining Definition 3.2 and Theorem 3.1 of Aadland and
Kolpin, 1998) Among all selections from the no-subsidy correspondence sat-
isfying order preservation for contributions and monotonicity under addition
of problems, the constrained equal contributions rule is the only rule achiev-
ing, for each problem, the smallest difference between largest contribution and
smallest contribution.

• Still under the assumption that all cost parameters change in such a
way that each segmental cost ends up at least as large as it was initially, the
next property places an upper bound on increases in contributions: for each
agent, the sum of the increases in the contributions required of him and of
all agents who precede him should be no greater than the increase in his cost
parameter:36

Incremental no subsidy: For each pair {c, c′} of elements of CN such that
c′ = c+c′′ for some c′′ ∈ CN , and for each i ∈ N ,

∑
j∈N :cj≤ci

(Sj(c
′)−Sj(c)) ≤

c′i − ci.

35Theorem 5 bears some similarity to characterizations of the uniform rule (a rule defined
for the allocation of a private good among agents with single-peaked preferences) offered
by Schummer and Thomson (1997).

36This property is introduced by Aadland and Kolpin (1998).
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Theorem 6 (Theorem 3.4 of Aadland and Kolpin, 1998) The sequential
equal contributions rule is the only rule satisfying order preservation for con-
tributions, monotonicity under addition of problems, and incremental no-
subsidy.37

Next, we examine another way of assessing how evenly the total cost is
collected from agents with different cost parameters. We focus on the smallest
contribution required from anyone, and then on the largest contribution.38

It is intuitive from their definitions that the constrained equal contributions
and sequential equal contributions rules favor agents at opposite ends of the
cost distribution. This intuition is confirmed by the following theorems:

Theorem 7 (Theorem 3.3 of Aadland and Kolpin, 1998) Among all selec-
tions from the no-subsidy correspondence satisfying order preservation for
contributions and monotonicity under addition of problems, the constrained
equal contributions rule is the only rule minimizing the largest contribution
for each problem.

Theorem 8 (Theorems 3.5 and 3.6 of Aadland and Kolpin, 1998)
(a) Among all rules satisfying order preservation for contributions, mono-

tonicity under addition of problems, and incremental no-subsidy, the sequen-
tial equal contributions rule is the only rule minimizing the largest contribu-
tion for each problem.

(b) Among all rules satisfying order preservation for contributions, order
preservation for benefits, and monotonicity under addition of problems, the
sequential equal contributions rule is the only rule maximizing the largest
contribution for each problem.

5.2 Variable population

In this section, we allow the population of agents to vary and we formulate
axioms designed to ensure the good behavior of rules in such circumstances.
For this purpose, we need to generalize the model. We imagine that there
is an infinite set of “potential” agents, indexed by the natural numbers N.

37Aadland and Kolpin (1998) also impose order preservation for benefits, as in their
formulation, this axiom is not implied by the others.

38Aadland and Kolpin (1998) refer to this criterion as Rawlsian.
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In each given problem, however, only a finite number of them are present.
Let N be the class of finite subsets of N. An airport problem is defined
by first specifying the population of agents involved, some N ∈ N , then a
cost vector c ∈ RN

+ . We still denote by CN the class of problems with agent
set N . A rule is a function defined over

∪
N∈N CN , which associates with

each N ∈ N and each c ∈ CN a cost allocation for c. Given N ∈ N , we
denote the restriction of a rule S to the subdomain of problems with agent
set by S|CN .

•We will discuss two types of ideas in the context of a variable population,
monotonicity ideas and invariance ideas. First is the expression of the general
objective of solidarity, applied to changes in population. Solidarity says
that when a change occurs, whether it is socially desirable or not, and if no
one in particular bears any responsibility for it, the welfares of all agents
who are present before and after the change should be affected in the same
direction. In the present context, the arrival of a new agent whose cost
parameter is no greater than the cost parameter of any agent already present
can only be beneficial to them: there being one more potential contributor
to a project whose cost has not changed is good news. If the new agent’s cost
parameter is greater than the initial greatest cost parameter, the amount to
be collected increases, and solidarity implies that either each agent initially
present should pay at least as much as he did initially, or that each of them
should pay at most as much as he did initially. In the presence of the no-
subsidy constraints, which imply that the agents initially present should bear
none of the additional cost that has to be incurred to fully serve the new
agent, it makes sense to require, once again, that each of these agents should
pay at most as much as he did initially.39

Population monotonicity: For each N ∈ N , each c ∈ CN , and each N ′ ⊂
N , we have SN ′(c) 5 S(cN ′).

It follows directly from their definitions that most of the rules of Section 3
are population monotonic. The slack maximizer rule is population monotonic
too but this conclusion cannot be obtained by exploiting the known properties
of the nucleolus as a solution to TU games. Indeed, this solution is not
population monotonic, even on the domain of concave games (Sönmez, 1994).

39The first axiomatizations based on this property, in the context of bargaining, are due
to Thomson (1983a,b). For a survey of the literature devoted to its study, see Thomson
(1995).
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Nevertheless, the domain of airport problems is a subdomain of the domain
of concave games, and on it, this property holds (Sönmez, 1994).

For the priority rules, we cannot check the property unless they are prop-
erly redefined to accommodate variations in populations. What is needed
here is an order for each finite set of agents. It is of course natural to require
that these orders be related: preferential treatment of an agent over some
other agent in some group should carry over to any group to which they both
belong. To achieve this, we specify a “reference” order on the set of potential
agents; then, for each problem, we work with the order that the reference
order induces on the set of agents who are actually present. If orders are so
related, then population monotonicity does hold.

Adding to population monotonicity, we could quantify the impact that
the arrival of a new agent has on the contributions of all agents whose cost
parameter is at least as large as that of the new agent, and require that they
should be affected by equal amounts.40

Downstream equal impact of population changes: For each N ∈ N ,
each c ∈ CN , and each j ∈ N \ N , there is δ ∈ R such that for each i ∈ N
with ci ≥ cj, Si(c, cj)− Si(c) = δ.

• Next is a counterpart of a property that has been considered in the
context of coalitional games. The impact on an agent of the departure of
some other agent should be equal to the impact on the second agent of the
departure of the first agent.41

Reciprocal impact of population changes: For each N ∈ N , each c ∈
CN , and each pair {i, j} ⊂ N , Si(c)− Si(cN\{j}) = Sj(c)− Sj(cN\{i}).

• Next, we turn to invariance properties. First, we imagine replications
of populations. In the k-replica of a problem c ∈ CN , each i ∈ N is replaced
by k agents with cost parameter equal to ci. We require that what the agents
of a given type pay should be independent of k. Abusing notation slightly,
let us denote such a problem by k ∗ c and by N i the set of k agents in the
replicated problem who are clones of agent i.42

40The property is proposed by Chun, Hu, and Yeh (2012) under the name of “population
fairness”.

41The property, inspired by Myerson (1977), is proposed by Chun, Hu, and Yeh (2012)
under the name of “balanced population impact”.

42The property is studied by Chun, Hu, and Yeh (2011).
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Replication invariance: For each N ∈ N , each c ∈ CN , each i ∈ N , and
each k ∈ N, Si(c) =

∑
j∈N i Sj(k ∗ c).

• Next, we require that the recommendation made for any problem should
always be “in agreement” with the recommendation made for any problem
obtained by imagining some agents leaving with their payoffs. Reassessing
the situation from the viewpoint of the remaining agents, we obtain what
is usually called a “reduced problem”.43 In this problem, which involves
the remaining agents, their cost parameters are adjusted so as to take into
account the fact that some contributions have already been made. In contrast
to many other models of fair allocation, for which a unique definition of
the reduction operation usually stands out as most natural, several ways of
defining this operation come to mind here. Informally, this is because what
has to be divided is not a homogeneous whole (such as a social endowment),
but it is composed of segments used differently by different agents. When
an agent leaves, instead of thinking of his contribution as being an abstract
part of the total cost, it is natural instead to want to impute it to these
various segments. But how should these imputations be calculated? We
propose several answers. In each of them, the imputation is to the segments
the agent uses, which makes the most sense. For the first proposal, we only
consider the departure of an agent with the lowest cost parameter, which
every one uses, so there is nothing else to specify.

For each N ∈ N , each c ∈ CN , and each i ∈ N with ci = min cj, let x ≡
S(c) and frx

N\{i}(c) be the problem with agent set N\{i} defined by setting,

for each j ∈ N\{i}, agent j’s cost parameter equal to max{cj−xi, 0}, which is
equal to cj−xi since by definition of a rule, xi ≤ ci. Thus, fr

x
N\{i}(c) ∈ CN\{i}.

First-agent consistency: For each N ∈ N , each c ∈ CN , and each i ∈ N
with ci = min cj, if x ≡ S(c), then xN\{i} = S(frxN\{i}(c)).

First-agent consistency seems to be a very weak requirement, perhaps too
weak to be of much interest. However, if a rule satisfies it, then by repeated
application, we find that the allocation the rule chooses for any problem is
invariant under the departure of an arbitrary group of consecutive agents

43The idea has been the object of a large number of studies, reviewed in Thomson
(2005). All three expressions of the idea for the current model are proposed by Potters
and Sudhölter (1999).
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that includes the first agent. Recall that one of the applications of the model
is when the cost parameters correspond to different temporal needs that
agents have for a service. In a temporal model, the departure of agents has a
particularly appealing interpretation. It means that the agents who are done
first leave first.44

• Next, we consider the departure of an arbitrary agent. First, we think
of his contribution as being intended to help cover the part of the project
that he (and his successor(s) if any) use but his predecessors do not; unless
of course his contribution is larger than that cost, in which case, part of his
contribution (the difference between these two numbers) would have to be
thought of as intended to help cover the part of the project that he, (his
successor(s) if any), and his immediate predecessor use; unless his contribu-
tion is larger than these two preceding segmental costs, in which case part of
his contribution (the difference between his contribution and the sum of the
two preceding segmental costs) would have to be thought of as intended to
help cover the part of the project that he, (his successor(s) if any), and his
two immediate predecessors use; and so on. In defining the reduced problem,
this amounts to decreasing the cost parameters of all agents coming after
him by his contribution, and to possibly decrease in succession the cost pa-
rameters of the agents coming just before him, starting with the closest ones.
Given N ∈ N and c ∈ CN , let x ≡ S(c). Let i ∈ N . The downstream-
subtraction reduced problem of c with respect to N ′ ≡ N\{i}
and x, denoted drx

N ′(c), is the problem with agent set N ′ and cost vector
c′ ∈ RN ′

+ defined by

1. For each j ∈ N ′ such that cj < ci, c
′
j ≡ min{cj, ci − xi},

2. For each j ∈ N ′ such that cj ≥ ci c
′
j ≡ cj − xi.

We require that in the reduced problem, each agent should pay what he
was initially asked to pay:45

Downstream-subtraction consistency: For each N ∈ N , each c ∈ CN ,
and each N ′ ⊂ N , if x ≡ S(c), then xN ′ = S(drxN ′(c)).

44The natural form taken by consistency in this context is discussed by Thomson (1992).
45The amount to be collected is the largest cost parameter, so one should pay special

attention to the last agent leaving. By the no-subsidy constraints, the last agent pays at
least the last segmental cost, so if he is the one to leave, the sum of the contributions
required of the remaining agents is equal to the new largest cost parameter. Thus, there
is no restriction as to who can leave, by contrast to the next definition.
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For our second definition of consistency, we take the opposite viewpoint,
and impute an agent’s contribution to the initial segments. Then, each agent
benefits from it. However, we do not consider the possibility that the agent
who leaves is the one whose cost parameter is the largest (unless he is not the
only one with the largest cost parameter), as this parameter determines the
cost that has to be covered, and the new cost to be covered would have no
reason to be related to the sum of the contributions required of the remaining
agents. Let i ∈ N\{n}. The uniform-subtraction reduced problem of c
with respect to N ′ ≡ N\{i} and x, denoted urx

N ′(c), is the problem
with agent set N ′ and cost vector c′ ∈ RN ′

+ defined by

1. For each j ∈ N ′ such that cj < ci, c
′
j ≡ max{cj − xi, 0},

2. For each j ∈ N ′ such that cj ≥ ci, c
′
j ≡ cj − xi.

As before, we require that each agent involved in the reduced problem
(which is indeed well-defined) should pay what he was asked to pay in the
original problem.

Uniform-subtraction consistency: For each N ∈ N , each c ∈ CN , and
each i ∈ N , if agent i is not the unique agent such that max cj = ci, if
x ≡ S(c), then xN\{i} = S(urxN ′(c)).

Here too, in defining our consistency properties, we imagine the departure
of only one agent, but a recursive application allows us to make statements
about the departure of several agents at once. Also, in the literature devoted
to the study of the consistency principle, the weaker variants obtained by
letting all but two agents leave have often been considered. We add the
prefix “bilateral” to designate such variants.

A notion that has often been considered in conjunction with consistency
ideas involves the opposite operation, namely deducing the solution outcome
of a problem from the solution outcomes of reduced problems associated with
it and two-agent subpopulations. Specifically, consider a problem and a can-
didate contribution vector for it. Suppose that for each two-agent subgroup
of the agents involved, the restriction of the vector to that subgroup would
be chosen by the rule for the reduced problem associated with it and the
subgroup. The rule is conversely consistent if in these circumstances, the
vector is the choice made by the rule for the initial problem. To each notion
of a reduced game is associated a notion of converse consistency.
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Our next two results are characterizations of three of our central rules.
Remarkably, some of these characterizations differ mainly in which version
of consistency is imposed. Throughout our exposition, we have included
efficiency in the definition of a rule. In several of the results to be presented
next however, we drop this assumption, calling a prerule a mapping only
required to satisfy non-negativity and cost boundedness.46

Theorem 9 (a) (Potters and Sudhölter, 1999) The constrained equal benefits
rule is the only prerule satisfying equal treatment of equals, homogeneity,
last-agent cost additivity, and uniform-subtraction consistency.

(b) (Hu, Tsay, and Yeh, 2012) It is the only rule satisfying order preser-
vation for benefits, others-oriented cost monotonicity, and either bilateral
uniform-subtraction consistency, or uniform-subtraction converse consis-
tency.

(c) (Hu, Tsay, and Yeh, 2012) It is the only rule satisfying equal treat-
ment of equals, weak last agent cost additivity, and either bilateral uniform-
subtraction consistency, or uniform-subtraction converse consistency.

Recall that weak last-agent cost additivity is obtained from last-agent cost
additivity by dropping from the conclusion the requirement that the contribu-
tions made by the agents whose cost parameters remain the same should not
change. Also, call last-agent downstream-subtraction consistency the
requirement obtained from downstream-subtraction consistency by applying
it only to the departure of the last agent.47

Theorem 10 (a) (Potters and Sudhölter, 1999, Hwang and Yeh, 2012) The
slack maximizer rule is the only prerule satisfying equal treatment of equals,
last-agent cost additivity, and downstream-subtraction consistency.

(b) (Hu, Tsay, and Yeh, 2010b) It is the only rule satisfying equal treat-
ment of equals, weak last-agent cost additivity, and either bilateral down-
stream subtraction consistency, or downstream-subtraction converse consis-
tency.

The following remarks are in order.

46Potters and Sudhölter impose “covariance”, the conjunction of homogeneity and last-
agent cost additivity.

47The list of axioms imposed by Potters and Sudhölter (1999) includes homogeneity.
Hwang and Yeh (2012) show that the axiom is redundant.
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1. In parts (b) and (c) of Theorem 9, the imposition of either consistency
or its converse is made possible by the Elevator Lemma (Thomson, 2005),
which states that if a rule is consistent, another rule conversely consistent,
and they coincide in the two-agent case, then they coincide in general.

2. Potters and Sudhölter’s proof strategy in part (a) of Theorem 9 as well
as in their version of part (a) of Theorem 10 is to exploit correspondences
between airport problems and solutions to TU games. By contrast, the
proofs of the other results listed in these two theorems involve no concept or
technique of the theory of TU games.

3. Part (a) of neither theorems include efficiency as a requirement,
whereas the other parts do. On the other hand, part (b) of Theorem 10
involves weaker versions of the other two axioms than part (a) does.

Part (b) of our next result involves one additional property, the weakening
of independence of at least-as-large costs obtained by applying it only to the
first agent. We refer to it by adding the prefix first-agent.48

Theorem 11 (a) (Chun, Hu, and Yeh, 2012) The sequential equal contri-
butions rule is the only prerule satisfying the identical-cost lower bound,
others-oriented cost monotonicity, and first-agent consistency.

(b) (Kayı and Yeh, 2008) It is the only rule satisfying equal treatment
of equals, first-agent independence of at-least-as-large costs, and first-agent
consistency.

(c) (Chun, Hu, and Yeh, 2012) It is the only mapping satisfying efficiency,
the identical-cost lower bound, others-oriented cost monotonicity, and down-
stream equal impact of population changes.

(d) (Chun, Hu, and Yeh, 2012) It is the only mapping satisfying efficiency
and reciprocal impact.

• Based on notions of consistency for TU coalitional games, Albizuri and
Zarzuelo (2006) propose two alternative definitions of a reduced problem,
and state characterizations of the sequential equal contributions and slack
maximizer rules. The requirements on a rule are simply coincidence in the
two-agent case with the two-agent version of these rules (recall that they
agree in that case) and either form of consistency.

•Another way of applying the idea of consistency involves generalizing the
class of problems under investigation. This generalization is an adaptation to

48In part (c), the requirement on a rule that it should select a contribution vector that
is non-negative and bounded above by the cost vector is not imposed.
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the present model of an idea developed in the context of the classical model
of exchange when agents have individual endowments (Thomson, 1992). An
airport problem with transfer is a pair (c, E) ∈ RN

+ × R such that E ≤
max ci, interpreted as follows: as before, N is the set of agents, and for each
i ∈ N , ci is the cost of the facility needed to satisfy agent i. In addition, E is
a (positive or negative) transfer from an outside source to the group intended
to help them cover the cost of the project if positive, and interpreted as a tax
if negative. Let T N be the domain of all such problems.49 An allocation for
(c, E) ∈ T N is a vector x ∈ RN such that 0 5 x 5 c and

∑
xi+E = max ci.

When some agents leave with their payoffs, consistency now takes a very
simple form. In defining the reduced problem, the contribution made by
each agent who leaves is simply subtracted from the transfer parameter. Let
r̃x
N ′(c, E) ≡ (cN ′ , E −

∑
N\N ′ xi) be our notion of a reduced problem.

Consistency for airport problems with transfers: For each N ∈ N ,
each (c, E) ∈ T N , and each N ′ ⊂ N , if x ≡ S(c, E), then xN ′ = S(r̃xN ′(c, E)).

We see several natural ways of redefining the rules introduced in Section 3
depending upon whether one thinks of the transfer as intended for the entire
set of agents, or for any group of agents, or whether it is intended to be
distributed equally among all agents (subject to no agent’s subsidy exceed-
ing his cost parameter), or by means of some other formula (an alternative
that comes to mind is proportional division to the individual costs). Suppose
that the first approach is adopted. Then, consider the sequential equal con-
tributions rule. For each order in which agents may arrive, the contribution
required of each agent when he arrives is set equal to what it was according to
the original definition if the agent is not the last one; otherwise it is equal to
the total cost minus the sum of the contributions already made by all other
agents and the transfer. If the second approach is adopted, the transfer term
is subtracted whether or not the agent is the last one to arrive. For the
constrained equal benefits rule, two parallel choices are available depending
upon how the no-subsidy constraints are revised.

To each choice of a revision of the no-subsidy constraints comes a natural
formulation of the reduction operation. For the first choice, we only change

49This concept is the counterpart for airport problems of the concept of a generalized
economy (Thomson, 1992). A model of cost allocation in which a production function
is explicitly specified includes this model as a special case, by allowing the production
function not to take the value 0 at 0 (Kolpin, 1998).
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the worth of the grand coalition in the reduced problem (subtracting from
the cost that has to be covered by a coalition the contributions made by the
agents who leave). For the second one, we perform the subtraction for all
coalitions.

6 Cost allocation on trees.

In this section we generalize the model to trees, namely graphs that are
connected and have no cycle. Think of a road network linking all agents to
a central place where they get supplies. Then, instead of being linear, the
network whose cost has to be shared has a “tree structure”. There is also a
distinguished node called the root of the tree, the other extremal notes being
called leaves. Nodes are labeled by agents in the set N . The root is given a
separate label. The cost of the direct path from a node to the root is the cost
of serving the agent at the node. If an agent is on the path from some other
agent to the root, its cost parameter is at most as large as the cost parameter
of that second agent. A pair (T, c) as just described is a tree problem. The
notion of a segment is as before. The cost of a tree T , denoted c(T ), is the
sum of the costs of the segments that T comprises. A subtree of a tree T
is a subset of T that is also a tree. A rooted subtree of T is a subtree of
T that includes the root. The cost of serving a group of agents is the cost of
the smallest rooted subtree that contains all the agents in the group, namely
the costs of the segments that subtree comprises. An allocation for a tree
problem (T, c) is a vector x ∈ RN whose coordinates, indexed by agents,
satisfy 0 5 x 5 c and

∑
N xi = c(T ).

Van Gellekom and Potters (1997) and Koster, Molina, Sprumont, and Tijs
(2001) consider such a formulation and calculate for it the counterparts of
the sequential equal contributions and constrained equal contributions rules.
The logic is transparent once the counterparts of the no-subsidy constraints
themselves are defined. An allocation satisfies the no-subsidy constraints
for (T, c) ∈ T N if no group of agents pays in total more than what is required
to satisfy its needs. We consider in turn each of the rules defined for airport
problems and discuss how to generalize its definition to trees.

• Sequential equal contributions rule (Koster et al., 2001). We still
divide equally the cost of each segment among all the agents who use it. The
contribution required of each agent is the sum of the partial contributions
for the segments he uses. The priority rules and the random arrival rule
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are defined as for airport problems. The sequential equal contributions rule
is still an average of the priority rules and it still coincides with the random
arrival rule.

• Constrained equal contributions rule (Koster et al., 2001). For each
rooted subtree, calculate the per capita cost of the subtree. Find the largest
rooted subtree with minimal per capita cost. Remove it and assign to each
agent in the subtree this per capita cost. What remains of the original tree is
a union of disjoint subtrees. The root of each of them is a leaf of the subtree
that has been removed. Also, the per capita cost of any rooted subtree of
the second stage is greater than the minimal per capita cost identified in the
first stage. (If a second-stage rooted subtree had a lower per capita cost, by
concatenating it to the rooted path from which it emerges, we would obtain
a rooted subtree of the original tree whose per capita cost is smaller than the
per capita cost of the first stage, which therefore would not be the smallest).
Repeat the operation for each of these subtrees.

Koster et al (2001) also define extensions of the sequential equal contri-
butions and constrained equal contributions rules designed to accommodate
asymmetric treatments of agents, by introducing weights indexed by agents.
They show that as the weights vary, the set of allocations that result is equal
to the core. The characterizations of these rules presented above extend.

• Constrained proportional rule. For each rooted subtree, the process
is similar to the definition of the previous rule except that at each stage, we
calculate the proportional contributions for the subtree. That is, if there is
one branch that splits up into two and the three costs are 5, 7, and 10, the
proportions required of individual costs to cover the three subtrees are 5

5
,

5
5+7

5, and 5
5+7

7. The smallest of these numbers is the second one.

• Constrained equal benefits rule. Let λ ∈ R+ be such that
∑

max{ci−
λ, 0} = c(T ). For each i ∈ N , let x ≡ max{ci − λ, 0}. The no-subsidy
constraints are met at x. This can be shown by induction on the number of
branches of the tree.

• Slack maximizer rule (Maschler, Potters, and Reijnierse, 2010). The
authors extend the definition of the slack maximizer rule and establish that
for each problem, as is the case for linear networks, the solution matches the
nucleolus of a coalitional game associated with the problem in the natural
way. They also exhibit an algorithm by means of which the rule can be calcu-
lated (we omit its description for lack of space), and establish monotonicity
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properties with respect to cost and population that the rule enjoys.

Van Gellekom and Potters (1997) introduce axioms pertaining to possible
changes in the structure of the tree, such as deleting links between nodes
whose cost is zero, or deleting agents. They also study consistency issues and
base on these various axioms a characterization of a one-parameter family
of rules. This family, previously discussed in the context of linear facilities,
connects the constrained equal contributions and slack maximizer rules (see
the paragraph following the introduction of this rule).

7 Empirical studies

Situations close to the ideal theoretical model studied in the foregoing pages
exist in the real world and it is useful to understand the sort of arrangements
that people have made to deal with them. An interesting example is irriga-
tion. Aadland and Kolpin (2004) survey ranchers distributed along irrigation
ditches in Montana—their study covers a large number of such ditches—in
an attempt to determine whether environmental factors help anticipate the
rules they use. They argue that a central property that distinguishes between
rules is whether what a given agent pays is affected by the cost parameters of
downstream agents, and identify criteria that can be used to predict which
rules tend to prevail.

8 Extensions of the model

We conclude this survey by indicating a number of directions for future re-
search. Several have been partially explored but in most cases, many in-
teresting questions are open. They concern extending the rules defined for
the basic model, reformulating the axioms for these extensions, introduc-
ing new axioms so as to reflect additional considerations emerging from the
generalization, and understanding their implications.

1. Several airports. Suppose that several airports have to be built, each
airline possibly using several of them. When defining additivity, we have
essentially enlarged the problem in this way, but an assumption there was
that all agents use all facilities. A more general formulation would allow
each agent to use only some of the facilities. Dubey (1982) considers such an
extension of the model and characterizes the sequential equal contributions
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rule along the line of Shapley’s (1953) original characterization of the Shapley
value. This result constitutes a slight generalization of Theorem 4.

2. Accommodating profits. In addition to the cost parameters, we may also
have information about the profit that each agent derives from the facility.
How should this information be taken into account? This enrichment of the
model is proposed by Littlechild and Owen (1976) and further studied by
Brânzei, Iñarra, Tijs, and Zarzuelo (2006) (for a discussion of the relation,
see Arin, 2004). The latter develop an algorithm to calculate the nucleolus of
the associated game. The case of trees with revenues is discussed by Meertens
and Potters (2006). These authors focus on the nucleolus as a rule to solve
such problems.

3. Accommodating unions. Another way to enrich the model is to imagine
that planes belong to airlines, and to look for a division of the cost between
airlines first, then planes. In this context, the question whether airlines
benefit or are hurt from merging arises. It is asked by Vásquez-Brage, van
den Nouweland, and Garćıa-Jurado (1997). They show that if the value
for “coalitional games with coalition structures” defined by Owen (1977) is
used to allocate cost, then airlines gain by merging. They also provide a
characterization of the Owen value for the model they formulate.

4. Accommodating transfers from outside sources. This concept was already
discussed in Section 5.2 in connection with consistency, but additional prop-
erties with respect to changes in this parameter can also be formulated, such
as monotonicity with respect to this transfer, or composition properties (for
instance, invariance with respect to whether the transfer is made in one or
several installments, as in the theory concerning the adjudication of conflict-
ing claims).

5. Accommodating crowding effects. Suppose that the cost of each segment
depends on the number of agents who use it. For each n ∈ N, we specify a
function giving the cost of a runway of length ℓ when n agents use it. This
cost may also be written as a function of the number of planes of each type
using it, as opposed to their sum. How should such effects be taken into
account?

6. Accommodating incentives. Given a rule, a question is whether a game
can be designed such that, for each problem, equilibrium exists and at each
equilibrium, the resulting payoff vector coincides with the contribution vector
recommended by the rule for that problem. This question has been answered
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in the positive for several rules in the form of sequential games when the
notion of equilibrium is subgame perfection. Covered are the sequential equal
contributions rule (Chun, Hu, and Yeh, 2010), the slack maximizer rule (Arin,
Iñarra, and Luquin, 2009; Hu, Tsay, and Yeh, 2010), and the constrained
equal benefits rule (Hu, Tsay, and Yeh, 2012).

7. Elastic demand. In all of the literature that we have surveyed, the cost
parameters are fixed: each agent’s demand is inelastic. In general, one would
expect the service demanded by an agent to depend on how much he will be
charged. Then, the choice of which rule is used has an impact on the cost
parameters defining the problem to be solved. Taking this possibility into
account brings us into the vast literature on cost sharing.

8. Accommodating general networks. Instead of assuming that the facility
whose cost has to be covered is a line or a tree, a realistic and more general
case is when it is a general graph, and the formal model includes the cost of
the link between any two agents. Although efficiency dictates that the links
that are used to connect all agents to the source will have a tree structure,
the possibility now exists of assessing agents as a function of the costs of links
that are not used, and relational axioms can be formulated involving all links.
The literature on the subject is too extensive to be described here. Recent
contributions are by Dutta and Kar (2004) and Bergantiños and Vidal-Puga
(2004).

9. Min problems. Consider a group of agents (municipalities) considering
building a facility that they will jointly use. For each agent, there is a cost
of building it. Efficiency dictates that the facility be built where it is the
cheapest. Now, the problem is to divide the minimal coordinate of the cost
vector. (Thomson, 2006). It is a special case of the class of NIMBY (Not In
My Backyard) problems (for an axiomatic analysis of this class, see Sakai,
2011).

10. Sequential rules. Let us generalize the concept of a rule, as a mapping
that specifies, for each agent, an itemized list of contributions, one for each
of the segments he uses. His total contribution is the sum of these numbers.
The sequential equal contributions rule is defined in this way, but the general
concept seem to be worth studying. The concept is proposed by Thomson
(2006).

11. Another rule. Most rules can be interpreted as attempts at selecting
some “middle” of the set of contributions vector meeting the no-subsidy con-
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straints. A relatively new entry into the field is the “core center” (González-
Dı́az and Sánchez-Rodŕıguez, 2007). A complete list of properties it enjoys
when applied to airport problems is given in González-Dı́az, Mirás Calvo,
Quintero Sandomingo, and Sánchez-Rodŕıguez, 2013).
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Prop \rules Seq Seq Constr Constr Constr Slack Priority
eq cont full cont eq cont eq benef prop max’zer rules

SEC SFC CEC CEB CP SM D≺

No-subsidy + + + + + + +

Id-cost lower bound + 11a, d − + − − − −
Equal treat equal + 3 , 4, 11b + + + 9a, c + + 10a , b, c −

Order pres for contrib + 6 − + + + + −
Order pres for benefits + 6 + + + 9b + + −

Homogeneity + + + + 9a + + +

Continuity + − (t) + + + + +

First-agent + 11b − (t) − − − − +
ind of at-least-as-large costs

Ind of at-least-as-large costs + 3 − (t) − − − − +

Last-agent cost add + − (t) − + 9a − + 10a +

Weak last-agent cost add + − (t) − + 9c − + 10b, c +

Cond cost additivity + 4 − (t) − − − − +

Individual cost mon + − (t) + + + + +

Others-oriented cost mon + 11a,d − (t) + + 9b + +

Downstream cost mon + + + + + + +

Mon + 6 + + − − + +
under add of problems

Incremental no-subsidy + 6 − (t) + + + + +

Population mon + + + + + + +*

Reciprocal impact + 11c − − − − − −
of pop changes

Downstream equal impact + 11d − − − − − −
of pop changes

Replic inv + + + + + − −
First-agent cons +11a,b + + + − + + *

Uniform-sub cons − − − + 9a, b!, c! − − −
Unif-sub conv cons − − − + 9b!!, c!! − −

Downstream-sub cons − + + − − + 10a, c!

Last-agent downstr-sub cons − + + − − + 10b + *

Downstream-sub conv cons − − + − − +10c!!

Barg game version Lexi E XEL Lexi KS D≺

TU game version Shapley Dutta−Ray Mod Nuc Nucleolus Dic≺

Table 1: Showing which properties the main rules satisfy. A “+” in
a cell means that the property in the row is satisfied by the rule indexing the
colum. A “−” means the opposite. The numbers refer to characterizations. The
number 3, for instance, appearing in the first column marks the axioms appearing
in Theorem 3, a characterization of the sequential equal contributions rule. The
notation t next to a − sign in the column for the sequential full contributions
rule indicates that the property is only violated when there are ties between cost
parameters. The notation +∗ in the column for the priority rules indicates that the
property in the corresponding row is satisfied if the priorities associated with the
different populations are induced from a single “reference” priority order on the
entire set of potential agents. Notation such as 9b! and 9b!! at the intersections
of the rows labeled uniform-sub cons and uniform-sub conv cons and the column
labeled constrained equal benefits means that either of these properties can be
imposed in Theorem 9b in conjunction with the other properties listed for that
theorem.
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