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1 Introduction

A group of agents have claims on a resource, but there is not enough of it
to honor all of the claims. How should it be divided? Although societies
have had to deal with situations of this type since time immemorial, their
formal study began in earnest with O’Neill (1982). O’Neill describes a num-
ber of fascinating historical examples dating to antiquity and medieval times,
together with the resolutions proposed for them then. He suggests a math-
ematical representation of the problem of adjudicating conflicting claims,
develops several methodologies to handle it, axiomatic and game-theoretic,
and applies these methodologies to derive a number of rules. A survey cov-
ering the literature that this seminal paper generated is Thomson (2003),
hereafter referred to as T2003.1

The model has other interpretations. It covers in particular the problem
faced by a group of agents undertaking a public project that they can jointly
afford, and having to decide how much each of them should contribute (hence
the reference to taxation in our title), but for simplicity, we will use language
that is appropriate for the adjudication of conflicting claims.

It is remarkable how quickly the literature developed. An important rea-
son is undoubtedly that researchers could take advantage of the conceptual
apparatus and of the techniques developed in other branches of the axiomat-
ics of resource allocation. The study of how to adjudicate conflicting claims
is quite rewarding, and it has a unique place in this program. Indeed, the
model is one for which many interesting rules can easily be defined. Also,
several central principles that are often too strong to be met in other contexts
are satisfied by many rules here.

The field has kept growing. Since the publication of T2003, a number
of gaps were closed. The implications of various axiom systems are much
better understood today and new axiomatic perspectives have been explored.
Particularly significant are advances in the study of consistency and of the
distributional implications of various rules. Also, O’Neill’s model has been
enriched in a variety of ways. Thus, an update appeared useful. We take up
in turn each of the topics covered then, and in each case, we describe what
we have learned in the last ten years. We also discuss new trends.

Section 2 introduces the model and the rules that have come up in its
analysis. Section 3 reports on the progress made on the axiomatic front. Sec-

1Pedagogical expositions are by Malkevitch (undated, 2008, 2009).
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tion 4 focuses on its game-theoretic modeling, both cooperative and strategic.
Section 5 discusses experimental work. Section 6 presents the various ways
in which O’Neill’s model has been adapted to accommodate broader classes
of environments. We have also updated the references of a number of papers
that we had discussed in T2003 but were not yet published.

2 The base model of adjudication of conflict-

ing claims and an inventory of rules

The notation and most of the language we use are as in T2003, except for
a few terms, which we have replaced by ones that we feel are more infor-
mative. We keep the overlap with T2003 to the minimum necessary for a
self-contained exposition. Readers familiar with the literature can skip this
section, devoted to definitions.

2.1 The model

In order to distinguish the model introduced by O’Neill (1982) from the
various enriched models that have been formulated more recently (Section 6),
we refer to it as the base model. It is as follows: Let N ≡ {1, . . . , n} be a set
of claimants. Each claimant i ∈ N has a claim ci ∈ R+ on an endowment
E ∈ R+. The endowment is insufficient to honor all of the claims. Altogether,
a claims problem, or simply a problem, is a pair (c, E) ∈ RN

+ ×R+ such that∑
ci ≥ E. Let CN be the class of all problems. An awards vector of (c, E)

is a vector x ∈ RN satisfying non-negativity (no claimant should be asked
to pay: x = 0), claims boundedness (no claimant should be awarded more
than his claim: x 5 c), and balance (the sum of the awards should be equal
to the endowment:

∑
xi = E). A rule is a function that associates with

each N ∈ N and each (c, E) ∈ CN a unique awards vector of (c, E). Our
generic notation for a rule is the letter S. The path of awards of a rule
for a claims vector c is the locus of the choice it makes as the endowment
ranges from 0 to

∑
ci.

We will also consider the generalization of the model obtained by letting
the population of claimants vary. Then, there is an infinite set of “potential”
claimants, indexed by the natural numbers N, but in each problem, only
finitely many of them are present. Let N be the family of all finite subsets
of N. Still using the notation CN for the class of problems with claimant
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Figure 1: Paths of awards of four central rules. Typical paths of awards
of four central rules for N ≡ {1, 2} and c ∈ RN

+ . (a) Proportional rule. (b) Con-
strained equal awards rule (c) Constrained equal losses rule. (b) Concede-and-
divide.

set N , a rule is now defined on the union
∪

N∈N CN : it associates with each
N ∈ N and each (c, E) ∈ CN , an awards vector of (c, E).

Given a, b ∈ RN , let seg[a, b] denote the segment connecting these two
points.

2.2 Rules

All of the following rules will come up at some point. We define them for a
fixed N . Let (c, E) ∈ CN . It will simplify some definitions to assume that no
two claims are equal. The adjustments necessary to cover possible equality
of claims are straightforward. The first four definitions are illustrated in
Figure 1.

For the proportional rule, P , (Aristotle, 1985), for each i ∈ N , agent i’s
award is λci, λ being chosen, as in the next two definitions, so that awards
add up to E.

For the constrained equal awards rule, CEA, (Maimonides, 12th
Century) agent i’s award is min{ci, λ}. An algorithmic definition will be
useful, keeping c ∈ RN

+ fixed and letting the endowment grow from 0 to
∑

ci.
At first, equal division takes place until each claimant receives an amount
equal to the smallest claim. The smallest claimant drops out, and the next
increments of the endowment are divided equally among the others until each
of them receives an amount equal to the second smallest claim. The second
smallest claimant drops out, and so on.

For the constrained equal losses rule, CEL, (Maimonides, 12th Cen-
tury) each claimant i ∈ N receives max{ci − λ, 0}. A symmetric algorithm
to that underlying the constrained equal awards rule can be defined, this
time letting the endowment decrease from

∑
ci—then each claimant is fully
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compensated—to 0. At first, equal losses are imposed on all claimants un-
til their common loss is equal to the smallest claim. The smallest claimant
receives 0 then and he drops out. As the endowment continues to decrease,
equality of losses is maintained for the others until their common loss is equal
to the second smallest claim. The second smallest claimant drops out, and
so on.

Concede-and-divide (Aumann and Maschler, 1985) is the two-claimant
rule that first assigns to each claimant the difference between the endowment
and the other agent’s claim (or 0 if this difference is negative), and divides
the remainder equally.

The Talmud rule, T , (Aumann and Maschler, 1985) can be seen as a
hybrid of the constrained equal awards and constrained equal losses rules:
it selects CEA( c

2
, E) if E ≤

∑
ci
2
, and c

2
+ CEL( c

2
, E −

∑
ci
2
) otherwise. An

algorithm producing it is obtained by applying in succession the algorithms
generating the constrained equal awards and constrained equal losses rules,
but using as switchpoints the half-claims instead of the claims themselves.
The reverse Talmud rule (Chun, Schummer, and Thomson, 2001) is de-
rived from this definition by exchanging the roles played by the constrained
equal awards and constrained equal losses rules.

Letting once again the endowment grow from 0 to
∑

ci, the constrained
egalitarian rule (Chun, Schummer, and Thomson, 2001) selects CEA( c

2
, E)

until the endowment reaches
∑

ci
2
. The next increments go to the smallest

claimant until he receives the maximum of his claim and half of the second
smallest claim. The next increments are divided equally between the two
smallest claimants until the smallest claimant receives his claim, in which case
the second smallest claimant receives each additional unit until he receives
the maximum of his claim and half of the third smallest claim, or they reach
half of the third smallest claim; and so on.

Piniles’ rule, Pin, (Piniles, 1861) results from a “double” application
of the constrained equal awards rule, using as in the Talmud rule the half-
claims instead of the claims themselves: it selects CEA( c

2
, E) if E ≤

∑
ci
2
,

and c
2
+ CEA( c

2
, E −

∑
ci
2
) otherwise.

The random arrival rule2, RA, (O’Neill, 1982) selects the average of
the awards vectors obtained by specifying an order on the claimant set and
fully compensating each claimant, in that order, until the endowment runs
out, all orders being given equal probabilities.

2Some authors refer to it as the “run-to-the-bank” rule.
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The minimal overlap rule, MO, (O’Neill, 1982) is defined by imagin-
ing the endowment to consist of individual “units”, and distributing the var-
ious claims over the endowment in such a way that the number of units that
are claimed exactly once is maximized; among the distributions solving this
maximization exercise, identifying those at which the number of units that
are claimed exactly twice is maximized, and so on; finally, dividing each unit
equally among all agents claiming it. This rule can be seen as an extension
to the entire domain of problems of an incompletely specified rule—it is only
defined for problems in which no claim exceeds the endowment—proposed
by Rabad. We will refer to it as “Rabad’s proposal”.

2.3 Families of rules

We introduce next several families of rules that will help organize our inven-
tory as well as offer additional choices. First, given an order on the agent
set, ≺, the sequential priority rule associated with ≺, SP≺, assigns
to each agent in turn, in that order, the minimum of his claim and what
remains of the endowment. (The random arrival rule is the simple average
of these rules.)

Second is an important family introduced by Young (1987). Let Φ be the
family of functions f : R+ × [λ, λ̄] → R+, where −∞ ≤ λ < λ̄ ≤ ∞, that
are continuous, nowhere decreasing with respect to their second argument,
and such that for each c0 ∈ R+, we have f(c0, λ) = 0 and f(c0, λ̄) = c0. The
parametric rule of representation f ∈ Φ, Sf , is defined as follows: for
each N ∈ N and each (c, E) ∈ CN , Sf (c, E) is the awards vector x such that
there is λ ∈ [λ, λ̄], for which, for each i ∈ N , xi = f(ci, λ).

In addition to the proportional rule, the family contains the constrained
equal awards, constrained equal losses, Talmud and Piniles’ rules.

Last is a family, the ICI family (Thomson, 2000, 2008b), that generalizes
the Talmud rule. The pattern of distribution is the same but the definition
allows the critical values of the endowment at which claimants come in and
out of the distribution to differ from the half-claims, and moreover, to depend
on the claims vector. To specify a rule in the family, we need lists F ≡
(Fk)

k=n−1
k=1 and G ≡ (Gk)

k=n−1
k=1 (where n ≡ |N |) of functions from RN

+ to R+

such that for each pair k, k′ ∈ {1, . . . , n−1} with k < k′, Fk ≤ Fk′ and Gk′ ≤
Gk. Let c ∈ RN

+ be given, and let E grow from 0 to
∑

ci. The distribution
is as follows. The first units are divided equally until E reaches F1(c), at
which point the smallest claimant drops out for a while. The next units are
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divided equally among the others until E reaches F2(c), at which point the
second smallest claimant also drops out for a while. This goes on until E
reaches Fn−1(c), at which point only the largest claimant is left; he receives
each additional unit until E reaches Gn−1(c). The other claimants return for
more, one at a time, in the reverse order of their departure. As E increases
from Gn−1(c) to Gn−2(c), each increment is divided equally between the two
largest claimants, and so on. The process continues until E reaches G1(c), at
which point each increment is divided equally among all claimants, and until
the end. To guarantee that then, each agent receives exactly his claim, the
lists F (c) ≡ (Fk(c))

k=n−1
k=1 and G(c) ≡ (Gk(c))

k=n−1
k=1 have to satisfy certain

linear relations, the ICI relations, which we omit.3

The family contains the constrained equal awards, constrained equal
losses, and Talmud rules. Surprisingly, given the completely different sce-
nario on which it is based, the minimal overlap rule is included. A par-
allel family, the CIC family, can also be defined by exchanging the roles
played by the ideas of equal awards and equal losses. The TAL family
(Moreno-Ternero and Villar, 2006a) is the subfamily of the ICI family de-

fined as follows. Let θ ∈ [0, 1] and T θ(c, E) = CEA(θ c
2
, E) if E ≤ θ

∑
ci
2
, and

T (c, E) = θc + CEL((1 − θ)c, E − θ
∑

ci) otherwise. This subfamily still
contains the constrained equal awards, constrained equal losses, and Talmud
rules, but the minimal overlap rule is not in it. Another family that con-
tains the TAL family, but is not a subfamily of the ICI family, is defined by
Moreno-Ternero (2011a).

3 Axiomatic studies

We will discuss properties of rules both in the context of a fixed population
of claimants, but also when the population of claimants is allowed to vary.

3.1 Duality and consistency

The space of rules is highly structured, and one of the most useful concepts
to bring out this structure is duality. Thus, we introduce the concept right
away. We apply it in succession to problems, rules, properties of rules, and

3The acronym ICI stands for increasing-constant-increasing, reflecting the evolution of
each claimant’s award as the endowment increases.
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mappings from the space of rules into itself, which we call operators (Sub-
section 3.11). We also define two properties that have played a key role in
relating rules across populations of claimants, as well as in extending rules
defined for two claimants to arbitrarily many claimants. Many other prop-
erties will be invoked below, but we will introduce them as needed. For
motivation, we refer the reader to the primary sources, listed in T2003.

Two problems (c, E) and (c′, E′) ∈ CN are dual if c = c′ and
E =

∑
ci−E ′. Two rules S and S′ are dual if for each problem, S divides

what is available in the same way as S ′ divides what is missing (the difference
between the sum of the claims and the endowment): for each (c, E) ∈ CN ,
S(c, E) = c−S ′(c,

∑
ci−E). Two properties are dual if whenever a rule

satisfies one of them, its dual satisfies the other. (For a number of relational
properties pertaining to a change in a single parameter, the dual property
pertains to changes in two parameters that are linked in a particular way.)
Two operators are dual if whenever two rules S and S ′ are dual, the rule
obtained by applying one operator to S and the rule obtained by applying the
other operator to S ′, are dual too. An object (a problem, a rule, a property,
an operator) is self-dual if it coincides with its dual.

The proportional, Talmud (thus, concede-and-divide as well), and random
arrival rules are self-dual. The constrained equal awards and constrained
equal losses rules are dual. The sequential priority, ICI, CIC, TAL, and
parametric families are closed under duality.

We can also speak of two theorems being dual: the dual of a char-
acterization, for example, is obtained from it by replacing each axiom by its
dual, and each rule (or each family of rules) by its dual. We will state a large
number of results and, in order to save space, we will let the reader deduce
the results that follow by duality. For example, each of the characterizations
of the constrained equal awards rule stated in Theorem 4 has a counterpart
yielding the constrained equal losses rule, these two rules being dual.

Much use is made of duality notions by Herrero and Villar (2001), who
organize their survey around them.

Consistency, a property of a rule defined over arbitrary populations,
says that the choice the rule makes for each problem should always be “in
agreement” with the choice it makes for each “reduced” problem obtained
by imagining some agents leaving with their awards, and reassessing the
opportunities open to the remaining agents at that point: for each N ∈ N ,
each (c, E) ∈ CN , and each N ′ ⊂ N , the restriction of S(c, E) to RN ′

should
be the choice S makes for the reduced problem associated with N ′

7



and S(c, E), namely the problem with agent set N ′ in which these agents’
claims are (ci)i∈N ′ and the endowment is what remains after the members
of N \N ′ have received their awards, (Si(c, E))i∈N\N ′ , and left; alternatively,
the endowment in this reduced problem is the sum

∑
N Si(c, E) of the awards

intended for the members of N ′.4

Bilateral consistency is the version of the property obtained by requir-
ing that all but two agents leave. Null claims consistency is the consid-
erably weaker form of consistency obtained by limiting its application to the
departure of agents whose claims are 0 (and whose awards, by definition of
a rule, are 0 as well).

Converse consistency of a rule says the following: suppose that an
awards vector for a problem is such that the rule chooses its restriction to each
two-claimant subset of the claimants it involves for the associated reduced
problem these claimants face. Then the rule should choose the awards vector
for the initial problem: for each N ∈ N , each (c, E) ∈ CN , and each awards
vector x of (c, E), if for each N ′ ⊂ N with |N ′| = 2, xN ′ = S(cN ′ , E −∑

N\N ′ xi), then x = S(c, E).

The Elevator Lemma (Thomson, 2006; 2011) states that if a rule S
is bilaterally consistent, a rule S ′ is conversely consistent, and S = S ′ for
two claimants, then in fact, S = S ′ for arbitrarily many claimants. We will
invoke this lemma on multiple occasions to extend characterizations from the
two-claimant case to arbitrary populations.

3.2 Order preservation properties

The next requirement can be seen as a generalization of equal treatment
of equals, which says that, for each problem, two agents with equal claims
should be awarded equal amounts. Order preservation of awards says
that, for each problem, awards should be ordered as claims are, and order
preservation of losses that so should losses. We refer to the conjunction of
these two properties as order preservation (Aumann and Maschler, 1985).

The next requirements are relational. They express the same sort of idea
in situations in which some parameter(s) of the problem changes (change).
Order preservation under endowment variation (Dagan, Serrano, and

4Consistency is often described as an “operational” principle. An interpretation as a
fairness property can be given (Thomson, 2012b).
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Volij, 1997)5 is the requirement that if the endowment increases from some
initial value to some final value, given two claimants i and j, if ci ≥ cj, the
difference between claimant i’s final and initial awards should be at least as
large as the corresponding difference for claimant j.

Order preservation under claim variation (Thomson, 2006) pertains
to an increase in some agent k’s claim from some initial to final values: given
two claimants i and j, if ci ≥ cj, the difference between claimant i’s initial
and final awards should be at least as large as the corresponding difference
for claimant j.

When we allow variations in populations, two further applications of the
order preservation idea are possible. Order preservation under popula-
tion variation (Thomson, 2006) pertains to the departure of some claimants:
given two remaining claimants i and j, if ci ≥ cj, the difference between
claimant i’s new and initial awards should be at least as large as the corre-
sponding difference for claimant j.

Finally, order preservation under the reduction operation (Thom-
son, 2006) pertains to the departure of some claimants with their awards (as
opposed to empty-handed, as imagined in the previous definition), when
we consider the problem of dividing what remains among the remaining
claimants: given two such claimants i and j, if ci ≥ cj, the difference be-
tween claimant i’s new and initial awards should be at least as large as the
corresponding difference for claimant j.6

All of these properties are met very generally.

3.3 Lower and upper bounds

Defining and imposing lower and upper bounds on assignments, utilities,
welfare, and so on, is an essential part of most approaches to the problem of
fair allocation. The theory concerning the adjudication of conflicting claims
is no exception and, in fact, a range of such requirements have been proposed.

3.3.1 Defining lower bounds

Various lower bounds can be placed on an agent’s award as a function of the
parameters of a problem, and T2003 lists several. The minimal right of

5These authors discuss it under the name of “super-modularity”.
6The reduction operation is the operation underlying the definition of consistency in

Subsection 3.1. Consistency says that all these differences should be equal to 0.
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claimant i in (c, E) is whatever is left after every one else has been fully
reimbursed, or 0 if that is not possible, altogether max{E −

∑
N\{i} cj, 0}.

A rule satisfies the minimal rights lower bound if in each problem, it
assigns to each claimant at least his minimal right. The reasonable lower
bound for claimant i ∈ N in (c, E) is min{ ci

|N | ,
E
|N |} (Moreno-Ternero

and Villar, 2004).7 The conditional equal division lower bound for
claimant i ∈ N in (c, E) is min{ci, E

|N |} (Moulin, 2000).
It follows directly from the definitions that any rule satisfies the minimal

rights lower bound. Many rules satisfy the reasonable lower bound but not
all; for instance, the proportional and constrained equal losses rules do not.
For |N | = 2, the constrained equal awards rule is the only rule satisfying the
conditional equal division lower bound.

For |N | = 2, the low-claim lower bound says that if an agent’s claim
is at most as large as the endowment, his award should be at least half of
his claim. Also, for |N | = 2, the high-claim lower bound says that if an
agent’s claim is at least as large as the endowment, his award should be at
least half of the endowment (Moreno-Ternero and Villar, 2006c). When |N |
is arbitrary, replace half by 1

|N | in these expressions.8

In each of these definitions, the focus is on what claimants receive. To
each of them can be associated a lower bound on losses by duality. For
instance, the reasonable lower bound on losses for claimant i in (c, E)
is 1

|N | min{ci,
∑

cj − E}.
A rule satisfies conditional full compensation if for each (c, E) ∈ CN

and each i ∈ N , if by substituting ci for the claim of each other agent whose
claim is greater, there is now enough to compensate everyone, then agent i
should be fully compensated (Herrero and Villar, 2002). The dual property,
conditional null compensation, says that if a claim is “small enough” (in
relation to the endowment), its owner should not be assigned anything.9

Parameterized versions of these last two properties are proposed by van
den Brink, Funaki, and van den Laan (2013). They come in dual pairs.
For |N | = 2, there is a strongest dual pair that is compatible with order
preservation under endowment variation, and only one rule satisfies all three

7Moreno-Ternero and Villar refer to this property as “securement”.
8Moreno-Ternero and Villar refer to these properties as “lower securement” and “upper

securement”.
9Herrero and Villar refer to these properties as “sustainability” and “independence of

residual claims”.
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properties, the reverse Talmud rule.

3.3.2 Recursive applications of lower bounds

When a lower bound for a problem is interpreted as an undisputable amount
that a claimant should get, it is natural to solve the problem by first assigning
to each agent this amount, and in a second step, to distribute what remains of
the endowment. In the second step, claims should of course be revised down
by the amounts awarded in the first step. It is natural to want to repeat the
process, namely to calculate the lower bounds in the revised problem and to
assign these amounts; to revise claims again, and so on.

Two possibilities emerge. One of them is that at some step, the lower
bounds are in fact zero: no further awards can be made. This is the case
already at the second step for the minimal rights of Subsection 3.3.1.

Another possibility is that the recursive assignment of the lower bounds
exhausts the total endowment at some step or in the limit. If this phe-
nomenon occurs for each problem, a rule has been defined. That is actually
what happens for the reasonable lower bound of Subsection 3.3.1, as shown
by Dominguez and Thomson (2006), who study the resulting rule (under the
name of “recursive rule”), and establish a number of properties it has. In
fact, a weak property of lower bounds guarantees this type of result:

Theorem 1 (Dominguez, 2013) Consider a lower bound function that is
continuous and, for each non-zero claims vector and positive endowment,
specifies a positive amount for at least one claimant. Then, its recursive
application exhausts the total endowment in the limit, thereby defining a rule.

A generalization of the concept of a lower bound is due to Hougaard,
Moreno-Ternero, and Østerdal (2012): a baseline is a function that asso-
ciates with each problem a vector satisfying all the properties of an awards
vector except possibly for the balance condition. If the sum of the coordinates
of this vector is smaller than the endowment, the vector can be interpreted
and used as a lower bound on awards as just discussed, and if the opposite
holds, as an upper bound. Truncation and duality operations (see below)
can also be applied to baselines. Now, consider a baseline that is contin-
uous and, for each non-zero claims vector, specifies a vector with at least
one positive coordinate and at least one coordinate that is smaller than the
corresponding coordinate of the claims vector. Then, recursively assigning
the baseline amounts when they are lower bounds and replacing claims by
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these amounts when they are upper bounds exhausts the total endowment
in the limit, thereby defining a rule.

3.3.3 Deriving lower bounds by applying rules in a family

The idea of dividing the endowment in a progressive manner can be exploited
in a different way. Suppose that the decision has been made to use a rule
in a certain family, but that no particular member of the family has been
identified as being most desirable. The family may be given explicitly, or
through a list of properties its members should have. Given a problem, for
each claimant, let us calculate the smallest amount awarded to him by any of
the rules in the family. The decision to use only these rules should certainly
imply that the claimant is entitled to at least this amount. So, let us award
it to him, revise his claim down accordingly, perform the same operation for
each agent, revise the endowment down by the sum of the amounts awarded,
and let us repeat, that is, calculate for each claimant the smallest amount
awarded to him by any of the rules when applied to the revised problem. If
the sequence of residual endowments converges to zero, this process yields an
awards vector for the problem under consideration; if this is the case for each
problem, we have defined a rule. (The process is similar to that underlying
a game proposed by Herrero, 2003).

This is the proposal made by Giménez-Gómez and Marco (2012) and we
will refer to the process just defined as the GGM process. These authors
work with families of rules defined by means of lists of properties they are
required to satisfy. They ask whether the residual endowment converges to
zero, and if that is the case, whether the rule defined in the limit can be
identified. To describe their results, we need two additional properties of
rules.

Endowment monotonicity says that if the endowment increases, each
claimant should be awarded at least as much as initially. The midpoint
property, an obvious implication of self-duality, says that if the endowment
is equal to the half-sum of the claims, each agent should be awarded half of
his claim.

Theorem 2 (Giménez-Gómez and Marco, 2012) Under the GGM process,
(a) for the list of properties consisting of order preservation, and for each

problem, the residual endowment converges to zero. The rule defined in the
limit is the constrained equal losses rule.
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(b) for |N | = 2, and for the list of properties consisting of order preser-
vation, endowment monotonicity, and the midpoint property, and for each
problem, the residual endowment converges to zero. The rule defined in the
limit is the dual of the constrained egalitarian rule.

For |N | > 2, and for the list of properties of Theorem 2b, the rule defined
in the limit is not endowment monotonic. Thus, interestingly but of course
it is a disappointment, a rule obtained by the GGM process for a particular
list of properties does not necessarily satisfy all of these properties.

A further study along the same lines is due to Giménez-Gómez and Peris
(2013c). These authors used both lower and upper bounds in restricting the
set of awards vectors at each step.

We conclude our discussion by noting that awards and changes in awards
can be related to lower bounds and to the changes in lower bounds caused
by changes in the endowment. The constrained equal awards rule has been
derived in this manner (Giménez-Gómez and Peris, 2013b).

3.4 Monotonicity properties

For this model, and as opposed to what is the case for many other models
of resource allocation, monotonicity properties are easily met. A central re-
quirement in various literatures is that as opportunities expand, each agent
should end up at least as well off as he was initially. Here, opportunities
are defined through the endowment and we obtain endowment monotonicity
(Subsubsection 3.3.3). Monotonicity with respect to claims is also a mean-
ingful requirement: claims monotonicity says that if an agent’s claim in-
creases, his award should not decrease.

One can say more about what should happen when some agent i’s claim
increases. First, we may consider the impact that the increase has on the
others: others-oriented claims monotonicity (Thomson, 2003) is the
requirement that none of these claimants’ awards should increase. We may
also impose an upper bound on the increase in claimant i’s award. A most
natural one is the amount by which his claim increases—let us call it δ. An
appealing upper bound on the decrease in each of the other claimants’ awards
is also δ. Finally, we may formulate versions of these properties pertaining
to simultaneous increases in the claims of several agents.

Kasajima and Thomson (2011) propose these and other properties of this
type. They identify their duals (the hypotheses of the dual properties often
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involve simultaneous but linked changes in several components of the prob-
lem). They study whether the properties are preserved by operators (Sub-
section 3.11), and whether they are lifted by consistency (Subsection 3.10).

3.5 Invariance properties

The following properties will appear repeatedly in what follows.
Claims truncation invariance (Dagan and Volij, 1993) says that trun-

cating claims at the endowment should not affect which awards vector is
chosen. Minimal rights first (Curiel, Maschler, and Tijs, 1987), its dual,
says that one should be able to calculate the awards vector chosen in either
one of the following ways: (i) directly, or (ii) by first assigning minimal rights,
and in a second step, after revising claims down by these amounts, applying
the rule to allocate what remains of the endowment. (The minimal rights of
the revised problem are zero.)

A change in a parameter of a problem can often be looked at from several
perspectives, all equally legitimate, and a robustness requirement on a rule
is that these perspectives should lead to the same awards vector. The idea
has been applied to changes in the endowment, as follows. Composition
down (Moulin, 2000) says that if it decreases, one should be able to calcu-
late the awards vector chosen for the smaller endowment in either one of the
following two ways, (i) directly, that is, ignoring the awards vector chosen
for the initial endowment, or (ii) by using as claims vector this awards vec-
tor. Composition up (Young, 1988), its dual, pertains to increases in the
endowment. It says that one should be able to calculate the awards vector
for the larger endowment in either one of the following two ways: (i) directly,
or (ii) by first assigning the awards obtained by applying the rule to the
initial endowment, and in a second step, after revising claims down by these
amounts, applying the rule to allocate the increment in the endowment.10

A rule is homogeneous if multiplying claims and endowment by any λ >

10Mart́ınez (2008) proposes “strong composition down”: starting from some initial prob-
lem, suppose that the endowment decreases. Then the requirement is that one should be
able to calculate the awards vector chosen for the resulting problem in either one of the
following two ways: (i) directly, or (ii) by using as claims vector any vector obtained from
the initial one by replacing any of its coordinates by the corresponding coordinate of the
awards vector chosen for the initial endowment. This is undoubtedly a very strong re-
quirement, but it is met by the constrained equal awards rule as well as by versions of this
rule that do not necessarily satisfy equal treatment of equals.
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0 results in a new problem for which it chooses the awards vector obtained by
multiplying by λ the awards vector it chooses for the initial problem. Thus,
a problem with low stakes is perceived as essentially the same thing as a
problem with high stakes. The axiom has been erroneously interpreted as
meaning that the units of measurement do not matter (whether the problem
is expressed in dollars say, as opposed to euros), but it is a substantial re-
quirement. (The fallacy is exposed in Thomson, 2006, and Marchant, 2008).

Given a point x ∈ RN
+ , axioms can also be formulated on the shape of

the set of claims vectors c ∈ RN for which x = S(c,
∑

xi): this set is the
inverse set of S for x. The concept has been found useful in the theory
of bargaining, and a variety of axioms have been proposed pertaining to the
shape of inverse sets (they are reviewed in Thomson, 2001). One requirement
is that they should be convex (if two claims vectors lead to the same awards
vector, so should any average of them). A second is that they should be
star-shaped with x as a center of the star. A third is that they should be
cone-shaped with x as the vertex of the cone. A fourth is that they should
be “broom-shaped with respect to x” (if c is in the set, then so is any c′ such
that c is a convex combination of x and c′).

3.6 Some characterizations

The following characterizations involve axioms introduced in several previous
sections.

Theorem 3 For |N | = 2. Concede-and-divide is the only rule satisfying
(a) the reasonable lower bound and self-duality, or the reasonable lower

bound and its dual (Moreno-Ternero and Villar, 2004).
(b) the low-claim lower bound, claims monotonicity, and self-duality,

or the low-claim lower bound, its dual, claims monotonicity, and its dual,
(Moreno-Ternero and Villar, 2006c).

(c) the high-claim lower bound, its dual, and endowment monotonicity,
or the high-claim lower bound, endowment monotonicity, and self-duality
(Moreno-Ternero and Villar, 2006c).

(e) the high-claim lower bound and minimal rights first (Moreno-Ternero
and Villar, 2006c).

(f) the reasonable lower bound and minimal rights first (Yeh, 2008).
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Theorem 4 For |N | = 2. The constrained equal awards rule is the only rule
satisfying

(a) conditional equal division full compensation and composition down
(Herrero and Villar, 2002; see also Yeh, 2004).

(b) conditional full compensation and claims monotonicity (Yeh, 2006).
(c) conditional equal division full compensation and order preservation

under endowment variation (Yeh, 2006).
(d) the reasonable lower bound and composition up (Yeh, 2008).
(e) equal treatment of equals and strong composition up (Mart́ınez, 2008).

Conditional equal division full compensation is a weaker requirement than
conditional full compensation, but in the two-claimant case, they are equiv-
alent. Thus, Theorem 4(a) follows from the fact that—the result holds for
arbitrary populations—the constrained equal awards rule is the only rule
satisfying conditional full compensation and composition down (Herrero and
Villar, 2002). Part (d) also exploits this logical relation.

The next two theorems are derived from the previous two by means of
the Elevator Lemma.

Theorem 5 [Moreno-Ternero and Villar, 2006c] Each of the statements of
Theorem 3 yields a characterization of the Talmud rule for any number of
claimants if consistency is added to the list of required axioms.

Theorem 6 [Herrero and Villar, 2002; Yeh, 2004, 2006, 2008; Mart́ınez,
2008]. Each of the statements of Theorem 4 yields a characterization of the
constrained equal awards rule for any number of claimants if consistency is
added to the list of required axioms.11

The uniqueness part of the extension of Theorem 4(d) still holds if null
claims consistency is imposed instead of consistency (Yeh, 2008).

A characterization of the reverse Talmud rule follows from an earlier
characterization of the rule for two claimants (end of Subsection 3.3.1) if
consistency is additionally imposed. It too results from an application of the
Elevator Lemma.

11We stated the low-claim lower bound for two claimants, and this extension holds if
this two-claimant axiom is imposed. However the bound can be formulated for arbitrary
populations: an agent whose claim is at least as large as the endowment should be assigned
at least 1

|N |E. The Talmud rule satisfies it.
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The entire class of rules satisfying composition down can also be given
a transparent characterization (Thomson, 2006). Consider a network of
(a) weakly monotone and continuous curves in RN

+ emanating from the ori-
gin such that (b) given any point in RN

+ , there is at least one curve passing
through it, and (c) following any curve up from the origin, if one encoun-
ters a point at which the curve splits into branches, these branches never
meet again. A network satisfying (a)-(c) constitutes a weakly monotone
space-filling tree in RN

+ .

Theorem 7 (Thomson, 2006) A rule on CN satisfies composition down if
and only if there is a weakly monotone space-filling tree in RN

+ such that, for
each c ∈ RN

+ , the path of awards of the rule for c is obtained, from any branch
emanating from the origin and passing through c, as the part of it that lies
in the box {x ∈ RN

+ : 0 5 x 5 c}. If in addition the rule is claims continuous,
each branch of the tree is unbounded above.

A characterization of the class of two-claimant rules satisfying homo-
geneity, composition down, and composition up is given by Moulin (2000)
and described in T2003 (see also Thomson, 2013b). What if homogeneity is
dropped? Answers are the following (Chambers, 2006).

For |N | = 2, consider a continuous and monotone curve C in RN that is
unbounded in both directions and is concave either to the northwest or to the
southeast. Such a curve has exactly two asymptotic directions, one in RN

+—
let us call it b1 –and the other in RN

−—let us call it b2. For each claims vector c
in the convex cone whose boundary rays are b1 and−b2, we identify two points
x1 and x2 on C such that x2 − x1 = c (such a pair exists). We translate the
part of C that lies between x1 and x2 by the vector −x1. This brings x1 to
the origin. Now, we select that part of C as the path of awards for c. (The
pair {x1, x2} may not be unique, but the path is uniquely defined.) Given a
second curve C ′ with the same properties, we use it to similarly define paths
of awards for all claims vectors in the cone associated with it in the same
way. The two cones should not intersect, but they may have a boundary ray
in common. More generally, the characterization involves a family of curves
satisfying the properties listed above for C, such that the cones associated
with them in the manner just described, together with their boundary rays if
needed, “cover” awards space. To obtain the path of awards of a particular
claims vector, we identify the cone in the partition to which it belongs, and
proceed as explained above. Thereby, we associate a rule with this family of
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curves. Let us refer to it as a relative-claims difference rule. We omit
the definition of the extension of this family to arbitrarily many claimants
proposed by Chambers (2006), the difference family.

Theorem 8 (Chambers, 2006) (a) For |N | = 2. The relative-claims differ-
ence rules are the only rules satisfying composition down and composition
up.

(b) For arbitrary |N |. The difference rules are the only rules satisfying
these two axioms.

Our next theorem is a characterization of a large family of rules based
mainly on claims truncation invariance:

Theorem 9 (Thomson, 2006) For |N | = 2, say N ≡ {1, 2}. A rule S
satisfies equal treatment of equals and claims truncation invariance if and
only if, for each c2 ∈ R+, there is a path GS(c2) ⊂ RN

+ with the following
three properties: (i) it contains seg[(0, 0), ( c2

2
, c2

2
)]; (ii) for each E ≥ c2, it

meets the line of equation
∑

xi = E exactly once; (iii) it is bounded above by
the line of equation x2 = c2; and, for each c1 ∈ [c2,∞[, the path of awards of
S for (c1, c2) contains GS(c2) up to its intersection with the line of equation∑

xi = c1.
For each c1 ∈ R+, there is a path GS(c1) ⊂ RN

+ with similar properties
whose statements we omit, and, for each c2 ∈ [c1,∞[, the path of awards of
S for (c1, c2) contains GS(c1) up to its intersection with the line of equation∑

xi = c2.

The calculation of the inverse sets of the rules that have been central in
the literature can be found in Hokari (2000), but the implications of axioms
pertaining to the shapes of these sets have been studied in greatest detail by
Juarez (2005) to whom the results listed next are due. The most natural of
the requirements is probably that inverse sets be convex. However, for
two claimants, it turns out that all four requirements formulated at the end
of Section 3.5 pertaining to the shapes of inverse sets are equivalent. Let
us then focus on the requirement that inverse sets be cones. We omit the
details as the classes of rules identified in the next theorems are somewhat
complex. First is the class of two-claimant homogeneous rules whose inverse
sets are cones ; second is the class of rules that satisfy composition up and
whose inverse sets are cones; third is the subclass of n-claimant rules that are
homogeneous. Finally, recall the characterization of the two-claimant rules
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satisfying homogeneity and the two composition properties and homogeneity
listed above (Moulin, 2000). In this characterization, the requirement that
inverse sets be convex can (essentially) be substituted for either one of the
composition properties.

3.7 Additivity properties

Ever since Shapley (1953) made it the keystone of his characterization of
the Shapley value, additivity properties have played an important role in
various branches of game theory and resource allocation theory. Several
expressions of the idea have been proposed in the context of claims prob-
lems. The most natural one, let us call it full additivity, says that if two
problems are added (the class of claims problems is closed under this op-
eration), the awards vector chosen for the sum problem should be the sum
of the awards vectors chosen for the component problems. Bergantiños and
Méndez-Naya (2001) had noted that no rule is fully additive. This is because
of the non-negativity requirement imposed on awards vectors. Indeed, if this
requirement is dropped, it can be met, and a characterization is available.

Several restricted versions of the property have been formulated, as well as
variants. The first restriction is obtained by limiting attention to problems
in which no claim is greater than the endowment. Let us call it claims-
bounded-by-endowment additivity. Then for |N | = 2, concede-and-
divide is the only rule satisfying equal treatment of equals, claims truncation
invariance, and claims-bounded-by-endowment additivity (Salonen, 2004).

A conditional version of additivity—it applies to pairs of problems that
are not “too different” from each other—has been proposed, and a charac-
terization of the minimal overlap rule has been based on this requirement,
together with anonymity and continuity (Alcalde, Marco and Silva, 2013).

The next properties are obtained from full additivity not by limiting its
scope but by generalizing the required relationship between claims and en-
dowment. Endowment additivity (Chun, 1988) says that if, keeping the
claims vector fixed, the endowment comes in two installments E and E ′, the
awards vector selected for the sum of these installments should be the sum
of the awards vectors selected for each of them. Addition invariance 1
(Marchant, 2008) says that if each claim increases by δ and so does the en-
dowment, then each claimant’s award should increase by 1

|N |δ. Addition

invariance 2 (Marchant, 2008) says that if each claim increased by δ, the
awards vector should not change. The dual says that if each claim increases

19



by δ and the endowment increases by nδ, each award should increase by δ.12

Theorem 10 (a) The proportional rule is the only rule satisfying endow-
ment additivity (Chun, 1988; Bergantiños and Vidal-Puga, 2004).

(b) For |N | = 2. Concede-and-divide is the only rule satisfying additive
invariance 1. On

∪
N∈N CN , the minimal overlap rule is the only rule that

also satisfies null claims consistency (Marchant, 2008).
(c) For |N | = 2. The constrained equal losses rule is the only rule

satisfying additive invariance 2. On
∪

N∈N CN , it is the only rule that also
satisfies null claims consistency (Marchant, 2008).

3.8 Rationalizability of rules by binary relations

Here, we ask a question analogous to ones that have been the object of
extensive literature in demand theory: Given a rule, is there a binary relation
defined on RN

+ such that, for each problem, the awards vector chosen by the
rule for that problem is the unique maximizer of the relation over its set of
awards vectors (Kıbrıs, 2012)? If so, we say that the rule is rationalizable.13

The relation can be interpreted as representing society’s ranking of income
distributions.

Let us associate with a rule S a binary relation RS on RN
+ as follows:

x RS y if there is a problem admitting both x and y as awards vectors and
for which S chooses x. Let P S denote the strict relation associated with RS.
Rationalizability is equivalent to the Weak Axiom of Revealed Prefer-
ence, abbreviated as WARP, which says that if x P S y, then it should not be
the case that y P S x: the relation P S is asymmetric. Rationalizability by a
transitive relation is equivalent to the Strong Axiom of Revealed Pref-
erence, abbreviated as SARP, which says that the relation P S is acyclic.
Also, a rule is representable by a numerical function if there is a func-
tion RN

+ → R such that, for each problem, the awards vector it selects is the
maximizer of the function over its set of awards vectors. Finally, the counter-
part for this model of Nash’s (1950) contraction independence (usually
referred to as “independence of irrelevant alternatives”) says that if a rule
chooses some awards vector x for some problem and the problem changes in

12Marchant (2008) proposes two other invariance properties.
13In demand theory, the question pertains to a demand function or correspondence

instead of rules and to bundles of commodities instead of awards vectors.
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such a way that the feasible set contracts but x remains feasible, then the
rule should still choose x.

A relevant property in describing the results pertaining to these properties
is others-oriented claims monotonicity.

Theorem 11 (Kıbrıs, 2012) (a) A rule is rationalizable (equivalently satis-
fies WARP) if and only if it is contraction independent.

(b) If a rule is contraction independent and others-oriented claims mono-
tonic, then it satisfies SARP.

(c) If a rule is contraction independent, others-oriented claims mono-
tonic, and continuous, then it is representable by a numerical function.

Further results are available. The main one is a characterization of a
family of rules—let us name them K-rules14—as follows. We first need
to specify two objects, a function that associates with each problem a non-
negative vector whose coordinates add up to the endowment (thus, the claims
boundedness requirement on awards vectors is relaxed) and an “adjustment
function”, which associates with each such vector a new one. This adjustment
function, which can be understood as mimicking the decision process of a
decision maker, is required to satisfy certain monotonicity requirements and
to produce a sequence of vectors that converges in |N | steps to an awards
vector.

Theorem 12 (Kıbrıs, 2012) The K-rules are the only rules that are claims
continuous, others-oriented claims monotonic, and rationalizable.

3.9 Claims problems with a large population of claimants.

We now turn to variable-population issues. As announced in Section 2, we
imagine an infinite set of potential agents, indexed by the natural numbers,
N designating the family of all finite subsets of N. For each N ∈ N , CN

designates the class of problems that N may face. A rule is a function
defined over

∪
N∈N CN and taking its values in

∪
N∈N RN

+ in the natural way.

14Kıbrıs (2012) refers to them as “recursive rules”. We avoid this term here because a
number of other rules have been defined through a recursion.
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3.9.1 Replicating problems

An interesting question concerns situations in which the number of claimants
is large and each claimant’s importance is negligible. In general equilibrium
theory, various ways of modeling large economies, economies in which each
trader is “small”, have been formulated, the goal being to study the behavior
of solutions, in particular the core and the Walrasian solution, when there is
perfect competition. The simplest way to do so is through replication of a
“model” economy.

This is the approach followed by Chun and Thomson (2005). Given k ∈ N,
the notion of a k-replica of a problem is straightforward: each claimant has
k−1 clones—their claims are equal to his—and the endowment is multiplied
by k. A rule is replication invariant if for each problem and each k ∈ N,
each claimant’s award in the problem is equal to the award to each of his
clones in the k-replica of the problem.

It is obvious that all parametric rules are replication invariant. For some
rules that violate the property, interesting statements can be made about
the manner in which they do so. Indeed, a rule that satisfies equal treatment
of equals assigns equal amounts to all the clones of each claimant in the
problem that is replicated. Thus, one can study the behavior of the vector of
awards to each initial claimant. It is an awards vector of the initial problem.
It turns out that for the random arrival rule, this awards vector approaches
the proportional awards vector, and that for the minimal overlap rule, it
approaches the constrained equal losses awards vector (Chun and Thomson,
2005).

Here is another convergence result, this time to the proportional rule.

Theorem 13 (Dominguez and Thomson, 2006). Consider the rule defined
by recursive assignments of the reasonable lower bounds (Subsubsection 3.3.1).
The awards vector the rule selects for a replicated problem is the replica of an
awards vector it selects for the problem subjected to the replication that, as
the order of replication increases without bound, converges to its proportional
awards vector.

3.9.2 More general sequences of problems.

The same sort of questions can be asked about other types of sequences of
problems. Chun and Lee (2007) consider sequences for which (i) the endow-
ment is “not too small” as compared to the aggregate claim, and (ii) each
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claim is “not too large” as compared to any other. However, an agent’s claim
is not required to be constant, and in fact, an agent’s claim along a sequence
need not be bounded. Theorem 14 generalizes Chun and Thomson (2005).

Formally, consider a sequence (Nk)k∈N of populations facing problems
(ck, Ek)k∈N ∈ CNk

such that, for each k ∈ N, |Nk| = k, there is r > 0 such

that limk→∞
Ek∑

i∈Nk cki
> r, and limk→∞

mk

k
= 0, where mk ≡ max{ℓ′ − ℓ+ 1:

for each i ∈ Nk, cki > 0 and
∑ℓ′

i=ℓ c
k
i ≤ ckk}. Let S be the class of all such

sequences.
We say that two rules S and S′ converge if the following holds: for each

k ∈ N, each (ck, Ek) ∈ CNk
, and each i ∈ Nk, if either limk→∞ Si(c

k, Ek) or
limk→∞ S ′

i(c
k, Ek) are bounded, then limk→∞(Si(c

k, Ek)−S ′
i(c

k, Ek)) = 0, or

limk→∞
Si(c

k,Ek)−S′
i(c

k,Ek)

cki
= 0.

Theorem 14 (Chun and Lee, 2007) For each sequence in S, the correspond-
ing sequences of random arrival awards vectors and proportional awards vec-
tors converge.

3.9.3 Computational issues.

With the recent increased interest in resource allocation problems among
computer scientists, issues are being addressed that economists had tradi-
tionally ignored. A first paper along these lines in the context of claims
problem is Aziz (2013), who establishes that the random arrival rule is in
general at least as hard to compute as the hardest counting problems.

3.10 Consistency

The study of consistency and its converse (Subsection 3.1) has proceeded
along several fronts.

3.10.1 Consistent extensions: existence and construction

In the search for well-behaved rules, it is natural to start from the two-
claimant case, which is conceptually and mathematically simpler, and in a
second step to invoke consistency to deal with arbitrary populations. Indeed,
given a two-claimant rule S, there might be a rule defined for populations
of any size that is consistent and in the two-claimant case, coincides with S.
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Such a rule is a consistent extension of S. (It follows from Aumann
and Maschler, 1985, that if S is endowment monotonic and has a consistent
extension, the extension is unique.) We have already seen that Theorems 5
and 6 exploit the Elevator Lemma to provide answers to the question of
existence of consistent extensions of several important two-claimant rules.

Other questions can be asked about consistent extensions. First, we may
have decided to apply one of several anonymous rules in the two-claimant
case, without having narrowed our choice down to a single rule. Some of
these rules may have consistent extensions and others not. The issue then is
to identify which ones do admit such extensions.

Second, when anonymity is not imposed, we may have decided, for each
two-claimant population, to apply one of several rules, the family these rules
constitute possibly depending on the two-claimant population. Then, we can
ask whether, for each population, there is a rule in the family specified for
that population such that the constellation of these selections (now, we have
a way of solving all two-claimant problems), admits a consistent extension.

Third is the question of constructing consistent extensions when they
exist.

The following observation has been key to answering these questions. Let
S be a consistent rule defined on

∪
N∈N CN . Let N ∈ N with |N | = 3 (it

will suffice to focus on that case), c ∈ RN
+ , and N ′ ⊂ N . It follows directly

from the definition of consistency that the projection onto RN ′
of the path

of awards of S for c is a subpath of its path of awards for cN ′ . If S is
endowment continuous, a very mild property (it has never been found to be
in conflict with other properties of interest), consistency is in fact equivalent
to the coincidence of this projected path with the path of S for cN ′ . Thus,
for a two-claimant rule to have a consistent extension, the converse of the
previous statement should hold: given c ∈ RN

+ , there should be a path for c
whose projection on each two-dimensional subspace corresponding to a two-
claimant subpopulation N ′ of N coincides with the path specified for cN ′ . A
general constructive technique to solve the question of existence of consistent
extensions that exploits this observation is developed in Thomson (2007).

The construction is straightforward if the two-claimant rule is in fact
strictly endowment monotonic, which says that if the endowment in-
creases, each claimant whose claim is positive is assigned more. Then, a
unique candidate path for c can be recovered from only two—any two—of
its projections onto two-dimensional subspaces. Then, it suffices to check
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whether the projection of this candidate path on the third two-dimensional
subspace is the path specified for the projection of c on that subspace.

The focus on the geometric properties of entire paths of awards is impor-
tant. For rules whose paths are piecewise linear, the argument is particularly
fruitful, because kinks in the paths of awards for two agents typically gen-
erate kinks in the paths for more agents, and under strict monotonicity, the
kinks in the three-dimensional paths can only come from kinks in the paths
of these two-agent problems. These facts are used by Thomson (2013b) in
developing an alternate proof of the characterization mentioned earlier of the
class of rules satisfying homogeneity, composition down, composition up, and
consistency (Moulin, 2000). It has also been used to answer the following
type of questions.

First is whether “compromising” between different rules so as to accom-
modate conflicting views about the best way of solving problems is compati-
ble with consistency. Depending upon the manner in which the compromise
is defined, the answer is negative or positive.

(a) Compromising between two rules may be through averaging. (Av-
eraging is meaningful because the set of awards vectors of each problem is
convex). We will consider weighted averages of the constrained equal awards
and constrained equal losses rules.

(b) It can be done by “combining” paths of awards in other ways, as
we illustrate next, in two different ways, for the constrained equal awards
and proportional rules. First, for each N ∈ N with |N | = 2, and each
c ∈ RN

+ , let aN(c) ∈ [0,min ci]. Then, designating by eN the vector in
RN whose coordinates are all 1’s, consider the rule on CN whose path of
awards is seg[0, aN(c)eN ] ∪ seg[aN(c)eN , c]. Let H be the family of rules on∪

N∈N ,|N |=2 CN associated in this way with a list (aN)N∈N ,|N |=2 of functions

as just defined.15

(c) Alternatively, for each N ∈ N with |N | = 2, and each c ∈ RN
+ ,

let gN(c) ∈ [min ck,max ck]. Then, consider the rule on CN whose path
of awards, assuming ci ≤ cj, is seg[0, (ci, g

N(c))] ∪ seg[(ci, g
N(c)), c].16 Let

F be the family of rules on
∪

N∈N ,|N |=2 CN associated in this way with a

list (gN)N∈N ,|N |=2 of functions as just defined.

15The properties of the member of the family obtained by setting aN (c) ≡ min ci are
studied by Giménez-Gómez and Peris (2013a).

16Thomson (2013c) identifies the various subfamilies of this family consisting of all rules
satisfying one or the other of the most central properties.
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Theorem 15 (a) Consider a two-claimant weighted average of the constrained
equal awards and constrained equal losses rules. The rule has a consistent
extension if and only if either (i) all the weight is always placed on the for-
mer, or (ii) all the weight is always placed on the latter (Thomson, 2007).
[So, in fact, no consistent compromise can be reached here.]

(b) Consider a rule in H, and let (aN)N∈N ,|N |=2 be the list of functions
with which it is associated. The rule has a consistent extension if and only
if there is α ∈ R+ such that, for each N ∈ N with |N | = 2 and each c ∈ RN

+ ,
aN(c) = min{α,min ci}. Then, for each N ∈ N and each c ∈ RN

+ , the path
of awards of the rule follows that of the constrained equal awards rule until
all claimants whose claims are at least α have received α, and it concludes
with a segment to c (Thomson, 2007).

(c) Consider a rule in F , and let (gN)N∈N ,|N |=2 be the list of functions
with which it is associated. The rule has a consistent extension if and only if
there is a function G : R+ → R++ that is nowhere decreasing and such that
the function c0 ∈ R++ → G(c0)

c0
is also nowhere increasing (these properties

imply that G is continuous) such that, for each N ∈ N with |N | = 2, and

each c ∈ RN
+ , g

N(c) = (max ck)
G(min ck)
G(max ck)

(Thomson, 2013c).

A second type of questions is whether the two-claimant version of a rule
that is not consistent nevertheless has a consistent extension. We reported
in T2003 that the two-claimant versions of the random arrival and minimal
overlap rules (recall that in that case, both rules coincide with concede-
and-divide), neither one of which is consistent, has such an extension. The
extension is the Talmud rule. The next theorem identifies two situations
where no consistent extension exists.

Theorem 16 (a) The version of the proportional rule obtained by truncating
claims at the endowment is not consistent. Moreover, its two-claimant ver-
sion has no consistent extension (Thomson, 2008a; this result is first proved
by Dagan and Volij, 1997, by means of a different technique).

(b) The rule defined by recursively assigning the reasonable lower bounds
(Subsubsection 3.3.2) is not consistent. Moreover, its two-claimant version
has no consistent extension (Dominguez and Thomson, 2006).

A third type of questions is whether selections from a family of two-
claimant rules can be made so as to obtain consistency. The next theorem
provides an answer for the ICI family (Subsection 2.3). A parallel answer
can be given for the CIC family. (We omit the details for this second family.)
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Theorem 17 (Thomson, 2008b) Consider a two-claimant ICI rule and let
(F,G) be the pair of “breakpoint” functions with with which it is associated.
The rule has a consistent extension if and only if there is a nowhere decreasing
function γ : R+ → R+ such that γ(0) = 0 and the function t ∈ R+ →
t − γ(t) is also non-negative and nowhere decreasing, such that, for each
N ∈ N and each c ∈ RN

+ , the breakpoints F1(c), F2(c), . . . , Fn−1(c) are,
denoting by c̃1, . . . , c̃n the coordinates of c written in increasing order, nγ(c̃1),
γ(c̃1) + (n− 1)γ(c̃2), . . . , γ(c̃1) + γ(c̃2) + · · ·+ 2γ(c̃n−1). (The function G is
then defined by invoking the ICI relations.) Among the resulting rules, the
only homogeneous ones are the TAL rules (Section 2).

Finally, we can report that a complete characterization of the class of
rules satisfying equal treatment of equals, claims truncation invariance, and
consistency is available (Hokari and Thomson, 2007). We know that the
Talmud rule satisfies all three properties, but there are many others. The
class is somewhat complex and we omit its description. We simply note
that the proof builds on Theorem 9, a characterization of the class of rules
satisfying the first two properties.

3.10.2 Generalizing Young’s characterization of the parametric
rules

The central result concerning consistency is Young’s (1987) theorem: the
parametric rules are the only rules satisfying equal treatment of equals, con-
tinuity, and consistency.

An interesting question is what additional rules become available if equal
treatment of equals is dropped. Generalizations of the parametric rules can
easily be defined that allow treating agents differently even if they have equal
claims: instead of specifying a single function f , as explained in Subsec-
tion 2.3 where we defined the parametric family, simply select, for each po-
tential agent i ∈ N, a function fi as defined there. These functions should
of course all have the same domain, but otherwise, they can be chosen inde-
pendently.

Sequential priority rules can be obtained as a special case. We introduced
these rules in the fixed-population model (Subsection 2.3). To accommodate
variable populations, select, for each N ∈ N an order on N to be invoked
for that population; let it be denoted by ≺N . In order to achieve consis-
tency, the orders (≺N)N∈N should be related across populations, however:
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specifically, there should be a “reference order” ≺ on the entire set of poten-
tial claimants such that, for each N ∈ N , the order ≺N is the order on N
induced from ≺. To show that the sequential priority rule that results is
a generalized parametric rule, it suffices for instance to take the real line as
common domain of definition of the functions (fi)i∈N , partition it into count-
ably many non-degenerate intervals, label these intervals according to ≺—let
Ii = [ai, bi] be the interval assigned to each potential claimant i ∈ N—and
for each i ∈ N and each ci ∈ R+, define fi to be the function whose graph
consists of (a) the horizontal half-line {x ∈ R2

+ : there is t ≤ ai such that
x = (t, 0)}, (b) seg[(ai, 0), (bi, ci)], and (c) the horizontal half-line {x ∈ R2

+ :
there is t ∈ R+ such that x = (bi, ci) + t(1, 0)}.

A generalization of Young’s theorem is offered by Kaminski (2006). In his
formulation, claimants are organized in types, and type space is a separable
topological space. Types can be claims, as in the base model, or preference
relations defined over R+, or utility functions defined over R+. The result
is a characterization of the parametric rules on the basis of the same list of
axioms as Young’s. Here, the functions f of Young’s definition are indexed
not by claims but by types. Subsection 6.8 describes additional results along
these lines.

A study with the same objective is by Stovall (2014a), who follows two
approaches. One is similar to Kaminski’s. The other approach involves an
axiom of “internal consistency”. If added to consistency, a characterization
of generalized parametric rules is obtained.

3.11 Two notions of operators

Several notions of operators can be distinguished. An operator may be a
mapping from the space of rules into itself. An operator may associate
with an incompletely specified rule one that is defined everywhere. In a
fixed-population framework, the rule may be defined only for some claims-
endowment configuration (as is the case for Rabad’s proposal). In a variable-
population framework, it may be a mapping from the space of two-claimant
rules to the space of rules defined on

∪
N∈N CN . In each case, a question of

interest is whether the properties of the rule that is the starting point are
inherited by the rule that results by applying the operator.
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3.11.1 Operators as mappings from the space of rules into itself

A study of operators as mappings from the space of rules into itself is
by Thomson and Yeh (2008). These authors derive several general prop-
erties of operators, but most of their results concern the following ones.
Let S be a rule and (c, E) ∈ CN be a problem. The claims truncation
operator associates with S the rule defined by truncating claims at the
endowment, obtaining t(c, E) ≡ (min{ci, E})i∈N , and applying S to the
problem (t(c, E), E). The attribution of minimal rights operator as-
sociates with S the rule defined by adding to the vector of minimal rights,
m(c, E) ≡ (max{E −

∑
N\{i} ci, 0})i∈N , the awards vector obtained by ap-

plying S to the problem (c − m(c, E), E −
∑

mi(c, E)). The duality op-
erator associates with S the rule defined by subtracting from the claims
vector the vector obtained by applying S to the problem with the same
claims vector but in which the endowment is

∑
ci − E. Given K ∈ N

and w ≡ (wk)k∈K ∈ ∆|N |−1, the convexifying operator with weights w
(studied in the original version of Thomson and Yeh, 2008) associates with
an ordered list of |K| rules (Sk)k∈K , the w-weighted average awards vec-
tors

∑
k∈K wkSk.

A number of algebraic relations between operators are uncovered by
Thomson and Yeh who also identify which properties of rules they preserve
and which they do not preserve.

Recall the manner in which Hougaard, Moreno-Ternero, and Østerdal
(2012) generalize the claims truncation operator by using a baseline func-
tion instead of truncated claims, and similarly generalize the attribution of
minimal rights operator by using a baseline function other than the minimal
rights (Subsubsection 3.3.2). Virtually all of the results of Thomson and Yeh
extend to this richer setting, as they show.

3.11.2 Operators as mappings from the space of two-claimant
rules to the space of rules

In a variable-population framework, a different notion of an operator can be
defined to provide extensions of two-claimant rules to the domain

∪
N∈N CN of

problems with arbitrary populations. Let us refer to this kind of operators as
extension operators. In Subsubsection 3.10.1 we used consistency for that
purpose. Our goal is the same here, except that we do not use a property of
rules as the basis for the extension but an “aggregation-averaging” operation.
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Aumann and Maschler (1985) had suggested the following way of deriving
the awards vector of an n-claimant problem from the choice of concede-
and-divide in the two-claimant case. Let N ≡ {1, . . . , n} and suppose that
claimants are ordered by increasing claims: c1 ≤ · · · ≤ cn. First, concede-
and-divide is applied to the two-claimant problem in which claimant 1 faces a
“composite” claimant whose claim is c2+ · · ·+cn. Claimant 1 leaves with his
award unless a violation of order preservation (either of awards or of losses)
occurs, in which case equal division among all members of N is carried out.
Then, claimant 2 faces a composite claimant whose claim is c3+ · · ·+ cn and
the endowment is what the first composite claimant received. Concede-and-
divide is applied again and claimant 2 leaves with his award unless a violation
of order preservation within the group N \ {1} occurs, in which case equal
division among this group is carried out, and so on. We refer to this process
as the AM process. Aumann and Maschler show that, for each problem, it
ends in the Talmud awards vector.

The AM process can be generalized in two ways. First, a rule other
than concede-and-divide can be used to solve the successive two-claimant
problems. Moreno-Ternero (2011a) considers instead rules in the TAL family.
Recall that these rules are indexed by a point in the unit interval. For each
θ ∈ [0, 1], redefining the AM process by using the two-claimant TAL rule T θ

produces the TAL rule T θ for any number of claimants (Subsection 2.3).
Other two-claimant rules could be used as input. Second, it is not clear why
at each step the smallest claimant should face everyone else. Let us instead
think of one claimant being chosen randomly among all claimants, have him
face everyone else, and take an average of the resulting awards vectors.

A proposal to generalize the AM process in these two directions, made
by Quant, Borm, and Maaten (2005), is investigated by Quant and Borm
(2011), on which the next paragraphs are based.

We start from an arbitrary two-claimant rule S and associate with S a
rule for all population sizes by the revised aggregation-averaging operation
described above. Whereas, as we saw, not all two-claimant rules can be
extended through consistency, here no such difficulty arises. Indeed, at each
step, when a claimant is served, he receives a non-negative amount that is
bounded above by his claim. These properties are preserved by averaging.

Let us call the operator just defined the QB extension operator.17 Are
the properties of S inherited by the rule that results when S is subjected to

17Quant and Borm refer to SQB as the “random conjugate” of S.
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this operator? The following theorem provides positive answers for three
important ones.

Theorem 18 (Quant and Borm, 2011) Claims truncation invariance, self-
duality, and minimal rights first are preserved by the QB extension operator.

3.11.3 Further generalizations of the Aumann-Maschler process

One may find it undesirable to always have a single claimant face every-
one else and the following alternative formulation might be worth exploring.
Again, let S be a two-claimant rule. Given a problem, we partition its
claimant set into two subsets, add up the claims of all the members of each
subset, and apply S to the resulting two-claimant problem. This determines
an award for each of the subsets; we then partition each subset that has at
least two claimants into two parts, and repeat the operation. We proceed
until each claimant has been involved in a two-claimant problem as a sin-
gleton, and has been assigned an award. The successive partitioning of the
claimant set can be described as a tree—the leaves are individual claimants—
and to remove the arbitrariness that would be associated with the choice of
a particular tree, we choose as awards vector the average of the awards vec-
tors obtained for all possible trees. Again, an interesting question is what
properties of S are inherited by this type of extension.

3.12 Ranking rules

An important characteristic of a rule is how evenly it distributes the en-
dowment and we may be interested in comparing rules on the basis of the
skewedness of the distributions of awards that they select. We can imagine
several ways of doing so, but let us follow Hougaard and Tholund-Petersen
(2001) and proceed by invoking the concept of Lorenz order, which is the cen-
tral tool in comparing income distributions. It is defined as follows. Given
two vectors x and y ∈ RN

+ with
∑

xi =
∑

yi, we say that x Lorenz dom-
inates y, which we write as x ≻L y, if, when the coordinates of these
two vectors are rewritten in increasing order and denoting the results x̃
and ỹ, the following inequalities hold: x̃1 ≥ ỹ1, x̃1 + x̃2 ≥ ỹ1 + ỹ2, . . . ,
x̃1 + · · · + x̃n−1 ≥ ỹ1 + · · · + x̃n−1, with at least one strict inequality. If
none of these inequalities holds strictly, we write x ≽L y. Given two rules S
and S ′, we say that S Lorenz dominates S′, which we write as S ≻L S′,
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if for each (c, E) ∈ CN , S(c, E) ≽L S ′(c, E) and for at least one problem
(c, E) ∈ CN , S(c, E) ≻L S ′(c, E).

The Lorenz order of vectors is incomplete and, a fortiori, so is the Lorenz
order of rules. Thus, one should not expect to be able to order rules with
great generality. Yet, a lesson to be drawn from this section is that the space
of rules can be structured quite usefully by means of the Lorenz order.

3.12.1 Criteria for Lorenz ordering of rules

In the two-claimant case, Lorenz domination is easily checked. Let S and S ′

be two rules that satisfy order preservation of awards. Then, S ≽L S ′ if and
only if, for each claims vector, the path of S is everywhere at least as close
to the 45◦ line as the path of S ′ is. Determining that two rules are Lorenz
ordered for more than two claimants often requires complicated calculations.
Nevertheless, most of the central rules can be Lorenz ordered. Part (d)
involves null-claims consistency, the weak form of consistency obtained
by imagining the departure of some agents whose claims are 0 (by definition
of a rule, each such agent should be assigned nothing).

Theorem 19 (Hougaard and Thorlund-Petersen, 2001 for (a); Chun, Schum-
mer, and Thomson, 2001, for (b); Bosmans and Lauwers, 2011, otherwise)

(a) The constrained equal awards rule Lorenz dominates each other rule.
(b) Among all rules satisfying endowment monotonicity and the midpoint

property, the constrained egalitarian rule is, uniquely, Lorenz-maximal.
(c) Among all rules satisfying order preservation, the midpoint property,

endowment monotonicity, and composition up from midpoint, (the weaker
version of composition up in which the smaller endowment is equal to the
half-sum of the claims), Piniles’ rule is, uniquely, Lorenz-maximal.

(d) Among all rules satisfying order preservation, the reasonable lower
bound on awards, order preservation under claims variations, and null-claims
consistency, the minimal overlap rule is, uniquely, Lorenz-minimal.

(e) Among all rules satisfying order preservation of awards, the midpoint
property, order preservation under endowment variations, and endowment
monotonicity, the minimal overlap rule is, uniquely, Lorenz-maximal.

Bosmans and Lauwers also offer results on the domain of problems in
which the endowment is at least as large as the half-sum of the claims, and
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on the domain of problems for which the opposite holds. On these domains,
additional interesting comparisons can indeed be made.

The following result pertains to two parametric families introduced in
Section 2.

Theorem 20 (a) Given two TAL rules (Section 2) with parameters θ and θ′,
if θ > θ′, then T θ Lorenz dominates T θ′ (Moreno-Ternero and Villar,
2006b).

(b) Given two ICI rules S and S ′, associated with parameter pairs (F,G)
and (F ′, G′), if F ≥ F ′ (equivalently, because of the ICI relations, G ≥ G′)
then S Lorenz dominates S ′ (Thomson, 2012a).18

3.12.2 Preservation by operators of Lorenz ordering of rules

A natural question about an operator is whether it preserves an order on the
space of rules: formally, operator p preserves order ≽ if, for each pair
of rules S and S ′, if S ≽ S ′, then Sp ≽ S ′p (denoting by Sp the image of S
under operator p). One can add that if S ≻ S ′, then Sp ≻ S ′p. The following
theorem provides useful information about preservation, or reversal, of the
Lorenz order by means of our four central operators:

Theorem 21 (Thomson, 2012a) (a) The claims truncation operator pre-
serves the Lorenz order on the space of rules.

(b) The attribution of minimal rights operator preserves it for any two
rules satisfying order preservation of awards.

(c) The duality operator reverses it for any two rules satisfying order
preservation.

(d) The averaging operators preserve it for any two rules satisfying order
preservation of awards.

3.12.3 Lifting by bilateral consistency of Lorenz ordering of rules

A property of rules is lifted by bilateral consistency if whenever a
rule satisfies the property in the two-claimant case, and the rule is bilaterally
consistent, it satisfies the property for any number of claimants (Hokari and
Thomson, 2008). It is lifted with the assistance of some other property

18TAL rules are ICI rules, and two TAL rules necessarily satisfy the condition stated
in (b). Thus, (a) can be obtained as a special case of (b).
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if this implication holds for rules satisfying this other property (more than
one property could provide the assistance) (Hokari and Thomson, 2008). The
concepts can be applied to orders on the space of rules: an order ≻ is lifted
by bilateral consistency (Thomson, 2012a) if whenever two rules S and
S ′ are bilateral consistent and S ≻ S ′ in the two-claimant case, then S ≻ S ′

for any number of claimants; the assisted lifting of an order is defined in
the obvious way. Our next theorem identifies two mild properties of rules
providing enough assistance for the Lorenz order to be lifted. Theorem 20
can be derived as a corollary.

Theorem 22 (Thomson, 2012a) Let S and S ′ be two rules satisfying order
preservation of awards in the two-claimant case, endowment monotonicity
in the two-claimant case, and bilateral consistency. If S ≽L S ′ in the two-
claimant case, then S ≽L S ′ in general.

3.12.4 Lorenz-inequality reducing rules

We inquire next about a possible relation between the distribution of claims
in a problem and the distribution of awards that results when applying a
rule. Consider an order ≽ on RN

+ (here, we do not require the coordinates
of the vectors that are compared to add up to the same number), and let us
require of a rule that, for each problem, the difference between the claims
vector and the awards vector it selects should dominate the claims vector.
When applied to the Lorenz order, we add the prefix “Lorenz” to the name
of the property. Rule S reduces ≽-inequality if, for each (c, E) ∈ CN ,
c− S(c, E) ≽ c.

First are interesting logical relations. One of them involves progressiv-
ity, the requirement that, for each (c, E) ∈ CN and each pair i and j ∈ N

with ci ≤ cj,
Sj(c,E)

Si(c,E)
≤ cj

ci
.

Proposition 1 (Ju and Moreno-Ternero, 2008)
(a) Order preservation of losses and progressivity imply Lorenz-inequality

reduction.
(b) Lorenz-inequality reduction and consistency imply progressivity.
(c) Lorenz-inequality reduction, endowment continuity, and consistency

imply order preservation of losses.

Next is a characterization of a subfamily of the parametric family.
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Theorem 23 (Ju and Moreno-Ternero, 2006) A rule satisfies Lorenz in-
equality reduction, continuity, and consistency if and only if it is a para-
metric rule and, designating by f : Λ × R+ a representation of it, (a) S
is superhomogeneous in claims: for each λ ∈ Λ, each c0 ∈ R+, and each
α > 1, f(λ, αc0, ) ≥ αf(λ, αc0), and (b) for each λ ∈ Λ, the function
c0 ∈ R+ → c0 − f(λ, c0) is nowhere decreasing.

Next, we address the question of whether Lorenz inequality reduction is
preserved by operators (Subsubsection 3.11.1).

Proposition 2 (Ju and Moreno-Ternero, 2006) The averaging operators pre-
serve Lorenz inequality reduction. So does the attribution of minimal rights
operator.

3.12.5 Lorenz rankings of claims vectors reflected in awards vec-
tors

Another question can be asked about rankings of vectors in RN
+ . Consider

two claims vectors. We ask whether a ranking of these vectors is “reflected”
in the awards and losses vectors chosen by a rule. We require that it should
be so. Since claimants will not receive what they are entitled to, an impact is
unavoidable; the requirement expresses the idea that this impact should be
limited. Formally, a rule preserves Lorenz rankings in awards if, for each
pair (c, E), (c′, E ′) ∈ CN , if c ≽L c′ and E = E ′, then S(c, E) ≽L S(c′, E ′); it
preserves Lorenz-ranking in losses if under the same hypotheses, (c −
S(c, E)) ≽L (c′−S(c′, E ′)). If it does both, it preserves Lorenz rankings.
(These definitions are proposed by Hougaard and Thorlund-Petersen, 2001.)

Proposition 3 The constrained equal awards rule preserves Lorenz rankings
in awards. The constrained equal losses rule preserves Lorenz rankings in
losses. The proportional rule preserves Lorenz rankings.

The following is an additional characterization of the proportional rule.19

19Hougaard and Østerdal (2005) assert that if there are at least three claimants, only
the proportional rule qualifies. This is true only if there are at least four claimants, as
established by Kasajima and Velez (2011).
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Theorem 24 (Hougaard and Østerdal, 2005; Kasajima and Velez, 2011)
For |N | ≥ 4. The proportional rule is the only rule that preserves order and
preserves Lorenz rankings.

For |N | = 2, the axioms of Theorem 24 place almost no restriction on
rules. For |N | = 3, they are satisfied by a large family of rules, but a
characterization is possible (Kasajima and Velez, 2010). Interestingly, under
the Lorenz order, the family has minimal and maximal elements (Kasajima
and Velez, 2010).

4 Solving claims problems as games

One of the approaches developed by O’Neill (1982) to solve a claims problem
is (i) to convert it into a game, either a cooperative game or a strategic game;
(ii) to solve the game by applying some solution defined on the corresponding
class of games; (iii) to choose the resulting payoff vector as the awards vector
for the problem. We only give a short account of these developments in this
area. Details, and a critical assessment, can be found in Thomson (2013a).

4.1 Mapping claims problems into bargaining games
or coalitional games with transferable utility

• A claims problem can be mapped into a bargaining game (Dagan and
Volij, 1993). For the two-claimant case, Ortells and Santos (2011) propose
to apply the “equal area bargaining solution” to this game, thereby obtaining
a new rule. Giménez-Gómez (2013a) proposes an alternative representation
of claims problems as bargaining problems.

• A claims problem can be mapped into a transferable utility (TU) coali-
tional game, by setting the worth of each group of claimants to be what is
left of the endowment after the complementary group has been given full
satisfaction (or 0 is that is not possible) (O’Neill, 1982).20 Alternatively,
Alcalde, Marco, and Silva (2005, 2008) consider the TU game associated
with a pair of problems that differ in their endowments. They specify how
rules should (implicitly) deal with this game. They characterize the minimal

20Aumann and Maschler (1985) had proved that the nucleolus of this game is the Talmud
awards vector. Fleiner and Sziklai (2012) give another proof.
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overlap rule (Alcalde, Marco, and Silva, 2008) and the recursive exten-
sion (due to Bergantiños and Mendez-Naya, 2001) of Rabad’s proposal
(Alcalde, Marco, and Silva, 2005) .

• An invariance inspired by the notion of “self-consistency” proposed
by Hart and Mas-Colell (1989) for TU games, plays the central role in a
characterization of the random arrival rule (Albizuri, Leroux and Zarzuelo,
2010). The reduction involves a revision of claims.

• The proposal has also been made to define the worth of a group of
claimants in a problem as the largest claim any of these claimants holds,
truncated at the endowment (Aumann, 2010). The Shapley value, when
applied to the examples presented in O’Neill, delivers most of the historical
recommendations (Aumann, 2010), although it fails claims boundedness. An-
other pair of formulas of this type has been offered. By using one or the other,
most of these historical recommendations can also be obtained, once again,
if the Shapley value is applied (Guiasu, 2011). Finally is a proposal based
on the constrained equal awards and constrained equal losses rules (Gadea-
Blanco, Giménez-Gómez, and Marco-Gil, 2009). The rule it produces is the
average of these two rules (an average studied by Thomson, 2007).

4.2 Strategic games

Another approach to solve claims problems is to turn them into strategic
games.

• O’Neill (1982) proposed such a formulation, under the assumption that
no claim is greater than the endowment. Imagine the endowment to consist
of parts with distinct physical identities, which we call “units” (although
we do not want to suggest integer amounts). Each claimant is given the
opportunity to stake a subset of E of size equal to his claim; what he stakes
is his strategy. Each unit is then divided equally among all claimants staking
it. A claimant’s payoff is defined to be the sum of the partial payments he
receives from the various units that he staked. Dropping the assumption
that claims are bounded by the endowment raises conceptual difficulties for
the definition of the game and creates serious technical complications in its
analysis. They are addressed by Atlamaz, Berden, Peters, and Vermeulen
(2011), who give a complete description of all the equilibria. They also
provide an asymptotic result, letting the number of claimants increase to
infinity.
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• Given a problem and an awards vector for it, is there a game form such
that, at equilibrium, the awards vector is reached and nothing else? This
question is addressed by Garćıa-Jurado, González-Dı́az, and Villar (2006),
who consider normal-form games—their equilibrium notions are Nash or
strong Nash—and by Chang and Hu (2008) who define extensive-form games
and examine their sub-game perfect equilibria. These game forms are allowed
to depend on the data of the problem. The authors give positive answers to
the above question under general conditions. In the game studied by Ash-
lagi, Karagözoğlu, and Klaus (2012), strategy spaces are unrelated to claims.
They establish conditions under which equal division is the only equilibrium
outcome.

• A game in which claimants propose rules and the outcome is obtained
by recursively applying them and finding some compromise among the rec-
ommendations they make had been studied by Chun (1989). A version of
such a game is formulated and studied by Giménez-Gómez (2013b).

• Another strategic opportunity that claimants may have is to merge their
claims or to consolidate them, as already recognized by O’Neill (1982). More
work has been done on this issue. Merging-proofness says that no group
of claimants should benefit by merging their claims and appearing as a single
claimant. Multilateral merging-proofness pertains to the following op-
eration. Starting from some problem, we imagine a group of claimants redis-
tributing their claims among the members of some second group and leaving:
the requirement is that, in the problem that results, the second group should
not be assigned in total more than the two groups were initially assigned
in total. This is a significant strengthening of merging-proofness. Indeed,
together with consistency, it implies splitting-proofness, the requirement
that no claim should benefit by splitting his claim among several agents
who then “represent him” (Ju and Moreno-Ternero, 2011). (It is of course
not true that merging-proofness and consistency together imply splitting-
proofness ; the constrained equal awards rule satisfies the first two properties
but not the last one).

Next is the requirement, uniformity-preserving multilateral merging-
proofness, obtained from the previous one by adding the hypotheses that
the claims of the members of the two groups involved in the merging are
equal and that after this operation, so are the claims of the members of the
group of claimants who stay. A parametric rule is progressive if and only if
it is merging-proof and uniformity-preserving multilaterally merging-proof.
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5 Experiments and surveys

In the last twenty years, a considerable literature has emerged devoted to
the experimental testing of economic theories, but the theory concerning
the adjudication of conflicting claims has only begun to be examined in the
laboratory. Several types of questions can be asked.

1. A subject is confronted with numerical examples of claims problems
and specific numerical resolutions for them, and is asked an opinion about
which one he finds most appropriate.

2. A subject is asked to negotiate payoffs with a partner so as to resolve
a particular problem. His payoff is what he extracts from these negotiations.
This payoff is paid out to him (thus, a subject is not paid imaginary money).

3. A subject is presented with numerical examples of claims problems
and with several rules and asked to indicate which rule provides the best
resolution of the problems.

4. A subject is presented with properties of rules and asked to indicate
which properties he or she endorses, the tradeoffs he or she perceives between
properties.

One should expect answers to these questions to depend on a variety of
factors:

(i) Context: the manner in which the problem is described, referred to
as the “framing”. For instance, whether the issue is distributing a good in
short supply among households, or the liquidation value of a bankrupt firm
among investors, or tax assessment (when the problem is phrased as one in
public finance) probably matters.

(ii) Stakes: whether subjects are asked their opinion as disinterested third
party, or invited to imagine being one of the parties and, if so, as holders of
the larger claim or holders of the smaller claim.

(iii) Parameters of the problem: for instance, how unequal the coordinates
of the claims vector are, and how far apart the endowment and the sum of
the claims vector are.

(iv) Cultural differences: the type of society in which the testing is per-
formed is probably relevant too, when negotiating payoffs, as described in (2),
whether the test is performed in a society with a tradition of free enterprize,
or a tradition of State intervention.

Considering (1), a study by Gächter and Riedl (2006) seems to provide
more support for the proportional rule when claims are not too different from
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each other and relatively more support for the constrained equal awards rule
when claims become more different. The study by Bosmans and Schokkaert
(2009) throws light on the issue of context. They present subjects with two
scenarios. One involves a firm going bankrupt, the issue being to divide its
liquidation value among people having invested different amounts in it. The
other involves retirees having been promised certain pensions, these pensions
not being feasible anymore. They find that subjects are more likely to favor
an outcome that is closer to the proportional outcome in the firm version
and an outcome that is closer to the egalitarian outcome in the pensions
version. Bosmans and Schokkaert (2009) are particularly concerned with
understanding the relevance of (iii). Their finding is that the proportional
outcome better approximates the respondents’ choice.

As for (2), the constrained equal awards rule seems to provide a better
fit for the experimental data reported by Gächter and Riedl (2006).

As for (3), the proportional rule emerges as a central rule in Gächter and
Riedl (2006).

Herrero, Moreno-Ternero, and Ponti (2010), whose study—it was the first
in this area—also addresses (1), confront subjects with the choice of one of
the following three rules, the proportional, constrained equal awards, and
constrained equal losses rules. Their conclusions are that the proportional
rule acts as a coordination device in a game that is the choice of a large
majority, although the extent to which it is perceived as superior to the
others is shown to depend on the framing.

(4) We are not aware of any study addressing this question.

6 Variants and enrichments of the base model

One of the most interesting aspects of the literature under review have been
various enrichments of the base model. In spite of its remarkable simplicity,
this model is a rather faithful description of a number of situations encoun-
tered in the real world, but it is also true that additional data is needed for
a more accurate modeling of others. We describe next the various ways in
which authors have contributed to this enrichment.
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6.1 Allowing for indivisibilities

In the base model, claims and endowment are infinitely divisible. They are
non-negative real numbers and awards are also supposed to be non-negative
real numbers. However, in a number of settings, the endowment comes in
discrete amounts, say the natural numbers, and so do claims.

Discreteness creates significant difficulties. For example, a condition as
fundamental as equal treatment of equals has no chance of being met by
any rule: in a two-claimant problem in which the two claimants have equal
claims but the endowment is an odd integer, nothing can be done to treat
them symmetrically. However, in such situations it is natural to require then
that the difference between their awards should be at most 1, a property we
call approximate equal treatment of equals.

A (local) deservingness relation21 is a strict binary relation≺ on N×N.
This concept can be used in the following two ways. First, the up rule
associated with ≺ is defined by imagining that the endowment becomes
available one unit at a time, and the relation specifies, for each newly available
unit, who is more deserving of it: (i, x) ≺ (j, y) means that agent i with
claim x is more deserving of it than agent j with claim y. More precisely,
rank the agent-claim pairs; assign one unit to the agent in the pair that is
ranked first; decrease his claim by one; place the pair consisting of that agent
and his revised claim where it belongs in the order; assign one unit to the
agent in the pair that is now first (it could be the same agent), and so on. The
down rule associated with ≺ is defined symmetrically but the starting
point is the hypothetical situation in which all claimants have been fully
compensated, and it involves subtracting from their assignments. This time,
the relation specifies, for each unit, who is less deserving of it: (i, x) ≺ (j, y)
means that agent i with claim x is less deserving than agent j with claim y.
Rank the agent-claim pairs; delete one unit from the assignment of the agent
in the pair that is ranked first; decrease his claim by one; place the pair
consisting of that agent and his revised claim where it belongs in the order;
delete one unit from the assignment of the agent in the pair that is now first,
and so on.

Theorem 25 (Moulin and Stong, 2002) The down rules are the only rules
satisfying the dual of claims monotonicity, composition down, and consis-

21The concept is introduced by Young (1994) who uses the expression “standard of
comparison”.
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tency.

A deservingness relation is monotonic if for each pair (i, x), we have
(i, x + 1) ≺ (i, x). Down rules associated with monotonic deservingness
relations satisfy approximate equal treatment of equals. In fact, the first two
axioms of the next theorem imply approximate equal treatment of equals.

Theorem 26 (Herrero and Mart́ınez, 2008) The down rules associated with
monotonic deservingness relations are the only rules satisfying conditional
full compensation, composition down, and consistency.

A deservingness relation is claim-focused if for each pair i, j ∈ N and
each pair x, y ∈ N with x > y, then (i, x) ≺ (j, y). It is agent-focused if for
each pair i, j ∈ N and each pair x, y ∈ N, if (i, x) ≺ (j, x), then (i, y) ≺ (j, y).

Systematic favorability in awards says the following. Consider a
problem in which some claimant i is assigned more than some claimant j.
Then, if his claim increases, he should still receive more than claimant j.
Suppose now that, in some problem, claimant i is fully compensated whereas
agent j is not. Then, systematic favorability with respect to full com-
pensation says that there should be no problem in which claimant j is fully
compensated whereas claimant i is not. Strong systematic favorabil-
ity with respect to full compensation involves comparing two problems
with possibly different claimant sets. Given two claimants i and j belonging
to both, suppose that, in the first problem, claimant i is fully compensated
whereas claimant j is not. Then, in the second problem, claimant j should be
fully compensated only if claimant i is too. The proofs of several statements
in the following theorem involve the Elevator Lemma.

Theorem 27 (Chen, 2011)
(a) The agent-focused up rules associated with monotonic deservingness

relations are the only rules satisfying systematic favorability in awards, com-
position up, and bilateral consistency.

(b) The claims-focused up rules associated with monotonic deservingness
relations are the only rules satisfying order preservation of awards, composi-
tion up, and bilateral consistency.

(c) The sequential priority rules associated with monotonic deservingness
relations are the only rules satisfying systematic favorability with respect to
full compensation, composition down, and bilateral consistency.
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(d) The sequential priority rules are the only rules satisfying strong sys-
tematic favorability with respect to full compensation and composition down.

When indivisibilities are present, it is quite natural to turn to rules that
select probability distributions over awards vectors (Moulin, 2002; Moulin
and Stong, 2002, 2003). The following theorem should be compared to its
counterpart for the base model (Moulin, 2000; see also Chambers, 2006). The
class of two-claimant rules satisfying these axioms is considerably larger.

Theorem 28 (Moulin, 2002) The proportional probabilistic rule is the only
probabilistic rule satisfying the probabilistic versions of equal treatment of
equals, composition down, and composition up.

It is the only rule satisfying the probabilistic versions of composition down
and self-duality.

If equal treatment of equals is dropped and consistency added, a charac-
terization of a large family of rules is obtained. It involves defining an ordered
partition of the set of potential claimants and, for each problem, identifying
the induced ordered partition: then, proceeding from class of class, fully sat-
isfying the claims of the members of any class before awarding anything to
any member of a lower-priority class. If a class is induced from a reference
priority class with more than two claimants, the proportional rule has to be
applied however.

Further results are obtained by Moulin and Stong (2002, 2003).
An adaptation of the recursive process studied by Giménez-Gómez and

Marco (2012) (Subsubsection 3.3.3) to problems with indivisibilities is stud-
ied by Giménez-Gómez and Vilella (2013).

6.2 Relaxing requirements imposed on rules

An early study of situations when non-negativity and claims boundedness are
not imposed is due to Chun (1998). His results were described in detail in
T2003.

A study of full additivity and endowment additivity on four domains is
due to Bergantiños and Vidal-Puga (2004). In addition to claims problems,
they allow problems in which the sum of the claims is smaller than the
endowment (surplus-sharing); they also consider rules that are not required
to satisfy claims boundedness, and rules that are not required to satisfy non-
negativity. Their main results are characterizations of generalizations of the
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proportional, constrained equal awards, and constrained equal losses rules.
They also describe the implications of these properties on the counterparts of
these domains when the data are integers, as in Subsection 6.1 (Bergantiños
and Vidal-Puga, 2006).

Non-manipulability issues (transfer-proofness (which say that no group
of agents should benefit by transferring claims among themselves), merging-
proofness, and splitting-proofness) are the focus of Ju, Miyagawa, and Sakai
(2007) in a model in which agents’ characteristics are multi-dimensional, a
possibility studied in Subsection 6.4.

In the game form formulated by Corchón and Herrero (2004), who con-
sider a domain that includes surplus-sharing, a claimant is required not to
claim more than his true claim. The main result is that a rule is imple-
mentable in dominant strategies and satisfies this requirement if and only
if it is strictly claims monotonic (if an agent’s claim increases, and the
endowmentis positive, that claimant should get more).

6.3 Introducing uncertainty

In the base model, claims and endowment are known and fixed. However,
in practice a claim is the result of a decision that an economic agent has
made, on how much to lend to a business say, and it is natural to expect
that this decision has been affected by the knowledge of what he will receive
if the business fails. A first study of the possibility is by Hougaard and
Tholund-Petersen (2001).

Understanding the incentives that rules give agents to invest requires
that the model be enriched, and the literature is developing in that direction
thanks to Karagözoğlu (2008, 2010) and A. Kıbrıs and Ö. Kıbrıs (2013). It is
easy to imagine that there might not be a unique way of modeling this type
of issue, a particularly important part of which is formalizing how uncer-
tainty affects the endowment. For the former author, two firms compete for
investors and each chooses a bankruptcy rule. Investors maximize expected
payoffs, taking into account the possibility of bankruptcy. His main result is
that, when firms have to choose among the proportional, constrained equal
awards, and constrained equal losses rules, the proportional rule is a sub-
game perfect equilibrium, and under certain conditions, it is the only such
equilibrium.

The study by A. Kıbrıs and Ö. Kıbrıs (2013) offers comparative stat-
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ics results on equilibria of investment games concerning the total amount
invested. It considers averages of the proportional and equal awards rules
as well as averages of the proportional and equal losses rules. The results
are that for the former, the greater the weight placed on the proportional
rule, the greater the aggregate equilibrium investment. For the latter, the
greater the weight placed on the proportional rule, the smaller the aggregate
equilibrium investment. In the two-claimant case, this study also delivers
welfare comparisons at equilibrium when the social welfare function is ei-
ther egalitarian or utilitarian. Under interiority conditions, the proportional
rule dominates both of the others according to the egalitarian criterion but
these two cannot be ranked unambiguously. It dominates the constrained
equal losses rule according to the utilitarian criterion, but the ranking of
the proportional rule with the constrained equal awards rule, as well as the
ranking of the constrained equal awards and constrained equal losses rules,
are ambiguous.

The possibility that the endowment is not known is also addressed by
Habis and Herings (2013). They associate with such a situation a transfer-
able utility stochastic game and propose to solve this game by applying the
notion of “sequential core” (Habis and Herings, 2011). None of the propor-
tional, constrained equal losses, or Talmud rules select a point in it, but the
constrained equal awards rule does.

A way of modeling situations in which there is uncertainty about claims
is to represent them as intervals (Branzei, Dimitrov, Pickl, and Tijs, 2004).
Rules can be defined for this variant of the model, inspired by standard rules.
These situations can also be mapped into TU games (Branzei, Dimitrov, and
Tijs, 2003). A counterpart of the Shapley value has been defined for them.
The possibilities that the endowment be uncertain, or that both claims and
endowment be uncertain, can be modeled in a similar way (Branzei and
Dall’Aglio, 2009; Branzei and Alparslan Gök, 2008; Alparslan Gök, Branzei,
and Tijs, 2010).

An experimental study of an enriched model in which agents strategi-
cally choose how much of a resource to invest in order to protect themselves
against uncertainty in aggregate supply and possible shortages, and of the
dependence of these decisions on the rule that is used to allocate shortages
(the proportional, constrained equal awards, constrained equal losses rules
are considered) is due to Lefebvre (2013).
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6.4 Allowing claims to be multi-dimensional

In the base model, claims and endowment are one-dimensional. Some au-
thors have considered the possibility that a claim may have several compo-
nents, corresponding to different “issues”. The endowment remains a single
quantity, however. Two definitions of a solution have been proposed: each
claimant may be assigned an award for each of the issues on which he has a
claim; or each claimant may be assigned a single award.

Formally, a multi-issue claims problem is a list (c, E) ∈ RNK+1
+ such

that
∑

N

∑
K cik ≥ E. Let DN be the class of all such problems. A multi-

issue rule is a function from DN to RNK
+ , which associates with each multi-

issue problem (c, E) ∈ DN a vector x ∈ RNK
+ such that

∑
N

∑
K xik = E. A

simple multi-issue rule is a function from DN to RN
+ , which associates with

each multi-issue problem (c, E) ∈ DN a vector x ∈ RN
+ such that

∑
N xi = E.

Characterizations of versions of the proportional, constrained equal awards,
and constrained equal losses rules have been developed for this model. A
composite rule based on the proportional and constrained equal awards rules
has also come out of axiomatic work. Papers on the subject are by González-
Alcón, Borm, and Hendrickx (2007), Calleja, Borm, and Hendrickx (2005),
Borm, Carpente, Casas-Méndez, Hendrickx (2005), Moreno-Ternero (2009),
and Bergantiños, Lorenzo, and Lorenzo-Freire (2010a, 2010b, 2011). Ju,
Miyagawa and Sakai (2007) and Hinojosa, Mármol, and Sánchez (2012), also
offer results that pertain to this model. In none of these contributions are
preferences explicitly introduced, but in Ju and Moreno-Ternero (2012), they
are added to the model, and they appear in some of the axioms.

6.5 Adding a network structure

A flow problem is given by a list of nodes and directed arcs between
them. One node is the source and another is a sink. A resource has to flow
from the source to the sink. To each arc is associated (i) a pair of numbers,
a minimal amount of the resource that has to flow along the arc as well as a
maximal amount, and possibly (ii) a cost of having the resource flow along
the arc. The objective is to find the minimal total cost of transporting the
resource from the source to the sink respecting all the constraints. This is
the problem formulated by Branzei, Ferrari, Fragnelli, and Tijs (2008). They
show how to map rules into profiles of cost functions so as to achieve it. They
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also apply this mapping to a number of rules that have been central in the
literature.

Bjørndal and Jörnsten (2010) also propose to model a claims problem
as a flow problem, but their formalism allows them to consider situations
in which there are multiple estates, and estates can hold claims against one
another. They define consistency directly in terms of the flow network and
ask whether a two-claimant rule has a consistent extension. Similarly to
what is the case for standard claims problems, concede-and-divide and the
constrained equal awards rules have unique consistent extensions.

In the base model, the endowment takes only one form (it is homoge-
neous). Let us now imagine that it takes different forms and that, for each
claimant, only some of these forms are acceptable. A network structure is
added to the model describing who can get what. This model is proposed by
Moulin and Sethuraman (2013), who characterize several families of rules in
its context. Here too, consistency plays a key role.

6.6 Adding unions

Borm, Carpente, Casas-Méndez, and Hendrickx (2005) enrich the base model
by imagining that players are grouped in unions. They adapt the constrained
equal awards rule to this context and give two characterizations of this ex-
tension. One can be seen as an extension of the characterization of the
constrained equal awards rule for the base model, on the basis of equal treat-
ment of equals, composition up, and claims truncation invariance (Dagan,
1996). The other is a counterpart of the characterization of this rule on the
basis of conditional full compensation and composition down (Herrero and
Villar, 2002).

6.7 Allowing the endowment to be non-homogeneous

In the base model, the endowment is a homogeneous whole. A more gen-
eral situation is when the dividend is a heterogeneous continuum. Land is
an obvious example here. This situation is modeled by Pálvödgyi, Peters,
and Vermeulen (2011), who mainly study it from the strategic viewpoint,
extending the results of Atlamaz, Berden, Peters, and Vermeulen (2011)
(Subsection 4.2). They establish the existence of limits of ϵ-equilibria. In
the base model, every division is Pareto efficient, but at equilibrium, this is
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not necessarily the case here. However, no equilibrium Pareto dominates any
other.

6.8 Introducing utility functions

In the base model, preferences are not explicitly indicated, but it is implicit
that each claimant prefers more of the dividend to less. Also, no cardinal
index of the satisfaction that a claimant derives from his award is specified.
Representing the efficient boundary of the feasible set of a claims problem as a
hyperplane normal to a vector of ones amounts to working in payment space,
or to assuming that the utilities that claimants derive from their assignments
are linear, or to ignoring utilities. If utilities are not linear and are not
ignored, the feasible set takes a more general shape. NTU generalizations of
a claims problem can be formulated to accommodate the possibility (Mariotti
and Villar, 2005). Under a certain smoothness property of feasible sets, the
core and a version of the prekernel based on a consistency property have
a non-empty intersection (Orshan, Valenciano, and Zarzuelo, 2003). The
model considered by Herrero and Villar (2010) also allows for a non-linear
boundary of the feasible set and it includes surplus sharing.

Another enrichment of the model along these lines is due to Moreno-
Ternero and Roemer (2006, 2012). In their 2006 paper, their main axioms
are that no claimant should be assigned more of the endowment as well as a
greater utility than some other claimant, and that as a result of a change in
endowment and population, each of the claimants present before and after
should receive the same amount, or that each of them should receive less, or
that each of them should receive more. They characterize a family of rules
that generalize the parametric family. In their 2012 paper, which also involves
an axiom pertaining to joint changes in resources and population, they char-
acterize a family of rules that generalize the constrained equal awards rule.
They obtain further characterizations by adding composition up.

6.9 Adding a reference point

Parallel to a similar enrichment of Nash’s (1950) classical model of bargain-
ing (Chun and Thomson, 1992), a “reference point” in awards space can be
added to the base model, a point to which claimants find it natural to com-
pare proposed compromises in evaluating them (Pulido, Sánchez-Soriano,
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and Llorca, 2002; Pulido, Borm, Hendrickx, Llorca, and Sánchez Soriano
2008). The latter authors propose a rule for this class of problems and show
that it can be obtained by invoking the concept of the theory of TU games
known as the τ -value (Tijs, 1981).

In a study that extends Thomson and Yeh (2008), Hougaard, Moreno-
Ternero, and Østerdal (2012b) study operators in a model enriched by the
addition of “baselines” (Section 3.3). They derive a number of results per-
taining to the composition of these operators with the duality operator.

6.10 Going further

As mentioned earlier, the theory concerning the adjudication of conflicting
claims is remarkably well-developed. Progress in this area has been greatly
facilitated by previous studies of other classes of allocation problems. Adapt-
ing the ideas and methodology that have been fruitful in its study to other
classes of problems may also prove useful. An illustration is the model of
contest incorporating claims developed by Ansink (2011).
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