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Abstract

We survey the literature devoted to the study of the problem of
allocating an infinitely divisible commodity among agents whose pref-
erences are single-peaked. We formulate a number of normative and
strategic requirements on rules, and study their implications when im-
posed in various combinations. A unique rule emerges as being the
best-behaved from a variety of viewpoints: the uniform rule.
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1 Introduction

An amount of an infinitely divisible and non-disposable commodity has to be
fully allocated among a group of agents. Each agent has “single-peaked” pref-
erences over what he consumes: up to some critical level, his “peak amount”,
an increase in his consumption raises his welfare; beyond that level, the op-
posite holds. Agents have equal rights (and equal responsibilities) over (for)
the consumption of the commodity. What should be done? A “solution”
recommends a set of allocations for each situation of this type, and a “rule”
is a single-valued solution. We survey the literature concerned with the iden-
tification of the most desirable solutions and rules.

In a study that is the starting point of this literature, Sprumont (1991)
characterized a rule known as the “uniform rule” as the only efficient and
anonymous rule for which it is never in anybody’s advantage to lie about
his preferences. Multiple additional axiomatic characterizations of this rule
followed, based on various requirements of fairness and robustness under
strategic behavior: indeed, attacking the problem from a great variety of
angles, normative or strategic, almost always leads to it, and our main con-
clusion will be that the uniform rule should probably be thought of as the
most important rule to handle the class of allocation problems under consid-
eration. In fact, and although it does not always satisfy the strongest forms of
the relational fairness properties that one would have liked, no other class of
problems seems to admit a rule that outperforms all others so systematically.

We first describe the model and give examples of situations it covers
(Section 2).

We investigate efficiency and punctual distributional concepts that are
central in the theory of fairness, no-envy and variants, as well as concepts
based on comparisons to equal division. We present logical relations between
these notions, and discuss the structure of the sets of allocations satisfying
them. Taking advantage of the special features of the model, we also propose
rules that do not always have counterparts in other contexts (Section 3).

Next, we study relational requirements of fairness. We consider in turn
changes in the social endowment (Section 4), in the population of agents
(Section 5), and in the preferences of some of the agents present (Section 6).
Since receiving more is not always desirable, the monotonicity properties of
rules that have been formulated to deal with such changes in the “classical”
model of fair division are not applicable, but natural weakenings can be

1



formulated that are still meaningful expressions of the idea of solidarity; we
describe their implications when imposed in conjunction with efficiency and
punctual fairness requirements. We then imagine simultaneous but related
changes in the population of agents and in the social endowment (Sections 7
and 8), and formulate robustness requirements with respect to such changes.

We then turn to strategic issues. We look for strategy-proof rules (Sec-
tion 9), discuss the manipulability of rules (Section 10), and investigate other
implementability requirements (Section 11).

We conclude by exploring extensions of the model (Section 12). We sketch
selected proofs in the appendix.

2 The base model

A social endowment M ∈ R++ of an infinitely divisible commodity has
to be allocated among a group N of agents. Each agent i ∈ N is equipped
with a continuous and single-peaked preference relation Ri defined over
the interval [0,M ]: this means that there is a number in [0,M ], denoted
p(Ri), and called his peak amount, such that for each pair xi, x

′
i ∈ [0,M ],

if x′i < xi ≤ p(Ri) or p(Ri) ≤ xi < x′i, then xi Pi x
′
i. For each i ∈ N , let ui be

a continuous numerical representation of Ri. Representations can be chosen
to be linear to the left of the peak amount, as shown in the figures.

Let R denote the class of all such preference relations. Single-peaked
preferences are convex (although they do not exhaust the class of convex
relations; preferences whose representations have a “plateau” or a “ledge”,
are convex too). The only standard assumption that they violate is mono-
tonicity. Whenever the social endowment is kept fixed (variations in this
parameter are mainly studied in Section 4), we simply refer to an economy
as a list R ≡ (Ri)i∈N ∈ RN . We use p(R) to denote the profile of peak
amounts of R, (p(Ri))i∈N .

When it simplifies the treatment of an issue, we assume that preferences
are defined over R+. Let R∞ be this class.

Agent i’s preferencesRi can be described in terms of the function ri: [0,M ] →
[0,M ] that gives, for each xi ∈ [0,M ], the amount on the other side of his
peak amount that he finds indifferent to xi if such an amount exists (Fig-
ure 1a); if not, it gives the endpoint of [0,M ] on the other side of his peak
amount (Figure 1b). Formally, given xi ≤ p(Ri), we have ri(xi) ≥ p(Ri)
and xi Ii ri(xi) if such an amount exists, and ri(xi) ≡ M otherwise; given
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Figure 1: Definition of the function ri in terms of which the preferences
of agent i, Ri, can be described. (a) Here, there is an amount equivalent to
xi on the other side of the agent’s peak amount: ri(xi) Ii xi. (b) Here, there is
none, so ri(xi) ≡ M .

xi ≥ p(Ri), we have ri(xi) ≤ p(Ri), and xi Ii ri(xi) if such an amount exists,
and ri(xi) ≡ 0 otherwise.

A (feasible) allocation is a list x ≡ (xi)i∈N ∈ RN
+ such that

∑
xi = M .

Note that we do not assume that the commodity can be disposed of.1 Let
X denote the set of allocations.

When preferences are defined over R+ instead of [0,M ], requiring solu-
tions to depend only on the profile of their restrictions to [0,M ] is equivalent
to assuming that they are defined over [0,M ] (at least when M is fixed).

A solution is a correspondence that associates with each economy in our
domain, or some subdomain of it, a non-empty subset of its allocations. A
rule is a single-valued solution. To designate the intersection of two solutions,
we juxtapose their names. For instance, we refer to the intersection of the
no-envy solution with the efficiency solution (defined below) as the “no-envy
and efficiency solution”.

Here are three applications for the model. First, consider a two-good
exchange economy in which resources are in principle allocated by operat-
ing the price mechanism, but suppose that prices have been thrown out of
equilibrium by some exogenous shock, or that they are artificially kept from
adjusting in order to achieve some social objective. Then, not all agents can
be assigned the bundles they would prefer in their budget sets; rationing
is needed. Now, note that if an agent’s preference relation over his whole
consumption space is strictly convex, then the restriction of his preference
relation to the boundary of his budget set is single-peaked.

A task requiring so many hours of work has to be divided among a team

1If disposal were an option, we could, for each i ∈ N , replace agent i’s preference
relation Ri by one that is strictly monotonic up to some point and satiated above it. The
possibility of disposal is discussed in Section 12, item (10).
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of workers. Each worker is paid an hourly wage. If his disutility of labor is
concave, then his induced preferences over the labor he supplies are single-
peaked.

A social endowment of a good has to be allocated among a group of agents
whose preferences exhibit the following form of altruism. Each agent cares
about what he consumes but also about what the others consume in total.
If he consumes little, he gives priority to himself however, and an increase
in his consumption makes him better off in spite of the negative impact this
has on what is left for the others. As his consumption increases, he turns
his attention to them. At some point, his concern for them dominates, and
increasing his consumption further makes him worse off.

3 An inventory of solutions and rules

We first address the issue of efficiency. We then adapt to the present model
standard notions of fairness, for individuals first, and then for groups. Finally,
we propose a number of rules that are based on the specific features of the
model.2

• As always, an allocation is (Pareto) efficient if there is no other allocation
that each agent finds at least as desirable and at least one agent prefers. Our
first solution selects all of these allocations. We designate it by the letter P
in reference to Pareto:

Efficiency solution, P : For each R ∈ RN , x ∈ P (R) if x ∈ X and there
is no x′ ∈ X such that for each i ∈ N , x′i Ri xi, and for at least one i ∈ N ,
x′i Pi xi.

The efficiency of an allocation is easy to verify: all consumptions should
be on the same side of the peak amounts.3 Given x ∈ X, x ∈ P (R) if and
only if (i) when

∑
p(Ri) ≥M—“there is too little” of the commodity then—

for each i ∈ N , xi ≤ p(Ri), and (ii) when
∑
p(Ri) ≤M—now, “there is too

much” of it—then for each i ∈ N , xi ≥ p(Ri). The efficiency solution is
convex-valued, a fact that will prove very useful.

2This section is mainly based on Thomson (1994b, 1994c).
3This is noted by Sprumont (1982).
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Figure 2: A typical envy-free and efficient allocation in a seven-agent
example. In order not to clutter the Figure, for each agent, we draw the graph
of a numerical representation of his preferences only in some subinterval of [0,M ]
containing his peak amount.

• Our first fairness requirement is that each agent should find his assignment
at least as desirable as anybody else’s assignment (Foley, 1967):4

No-envy solution, F : For each R ∈ RN , x ∈ F (R) if x ∈ X and for each
{i, j} ⊆ N , xi Ri xj.

Let us illustrate the geometry of the envy-free and efficient set with an
example R ∈ RN where N ≡ {1, . . . , 7}, such that p(R1) < p(R2) < · · · <
p(R7), and

∑
p(Ri) ≥M (Figure 2). (The case

∑
p(Ri) ≥M can be handled

in a symmetric manner.) By efficiency, as we just saw, each agent receives
at most his peak amount. Let us assign some amount x1 ≤ p(R1) to agent 1.
For him not to envy agent 2, we should not place x2 in the interval ]x1, r1(x1)[
(agent 1’s strict upper contour set at x1). Thus, either x2 ≤ x1 or x2 ≥ r1(x1).
If the former inequality holds, it cannot be strict; otherwise, agent 2 would
envy agent 1. Also, since by efficiency, x2 ≤ p(R2), to be able to choose
the latter, we need r1(x1) ≤ p(R2), as is the case in the figure; altogether,
x2 should belong to the interval [r1(x1), p(R2)]. Suppose that we choose
x2 = x1 and let us turn to agent 3. We have two intervals, ]x1, r1(x1)[ and

4The allocation x ∈ X is “egalitarian-equivalent for R ∈ RN” if there is a reference
amount x0 ∈ R+ such that for each i ∈ N , xi Ii x0. This concept (adapted from Pazner
and Schmeidler, 1978) has been important in other contexts, but it will play no role here.
The reason is that the set of egalitarian-equivalent and efficient allocations is typically
empty. Suppose for instance that there is x ∈ X such that for each i ∈ N , xi = p(Ri).
Then, P (R) = {x}. Thus, if there is {i, j} ⊆ N such that p(Ri) ̸= p(Rj), there is no
egalitarian-equivalent and efficient allocation. Chun (2000) proposes a weakening of the
definition guaranteeing non-emptiness.
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]x2, r2(x2)[, in which x3 should not fall, otherwise either agent 1 or agent 2 or
both, would envy him. So either x3 ≤ x1(= x2) or x3 ≥ max{r1(x1), r2(x2)}
(which happens to be r2(x2)). Since p(R3) < r2(x2), the second choice is
actually incompatible with efficiency. Thus, since as before, we cannot have
x3 < x1 (otherwise agent 3 would envy both agents 1 and 2), we need x3 = x1.
For agent 4, there is a third forbidden interval ]x3, r3(x3)[, and by the same
reasoning, either x4 = x1 or x4 ≥ max{r1(x1), r2(x2), r3(x3)} (which is still
r2(x2)). Once again, by efficiency, x4 ≤ p(R4). Since r3(x3) ≤ p(R4), it is
possible to choose x4 ∈ [r2(x2), p(R4)], so let us do that. We proceed in this
manner from agent to agent. When we reach agent n, what is left for him
should be no greater than his peak amount, and such that he does not envy
anyone and is not envied by anyone. This may or may not be the case. If
it is not the case, we have to adjust the choices made along the way. At
this point, it is not clear how to do so, but envy-free and efficient allocations
do exist. We will prove this later by invoking the uniform allocation, an
allocation that always exists and enjoys both properties. It is also easy to
calculate.

Summarizing our discussion, at an envy-free allocation, agents are gath-
ered in groups—let us denote these groups N1, N2, . . . , NL—and for each
ℓ ∈ {1, . . . , L}, all members of N ℓ consume the same amount aℓ, with aℓ < aℓ

′

if ℓ < ℓ′. Let us number the groups so that 0 ≤ a1 < a2 < · · · < aL. Then, for
each ℓ = 2, . . . , L and each member of N ℓ−1, the consumption on the other
side of his peak amount that he finds indifferent to aℓ−1, his assignment,
should be at most as large as aℓ. In the example represented in Figure 2,
L = 4, N1 ≡ {1, 2, 3}, N2 ≡ {4}, N3 ≡ {5}, and N4 ≡ {6, 7}.
• Several fairness requirements can be defined by reference to equal division.
The central one is that each agent should find his consumption at least as
desirable as equal division:

Equal-division lower bound solution, Bed: For each R ∈ RN , x ∈
Bed(R) if x ∈ X and for each i ∈ N , xi Ri

M
|N | .

For an allocation to pass this test, each agent’s consumption should fall
in his weak upper contour set at equal division, the interval [ M|N | , ri(

M
|N |)] if

M
|N | ≤ p(Ri) and the interval [ri(

M
|N |),

M
|N | ] otherwise. As in classical economies,

if |N | = 2, an allocation meeting the equal-division lower bound is envy-free,
but for |N | > 2, this implication fails. The implication in the other direction
fails even for |N | = 2.
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• Next, we formulate criteria to evaluate how fairly groups, as opposed to
individuals, are treated. First, we require that no group of agents should be
able to make each of its members at least as well off and at least one of them
better off, by redistributing among themselves the resources assigned to each
other group of the same size (Schmeidler and Vind, 1972):

Group no-envy solution, FG: For each R ∈ RN , x ∈ FG(R) if x ∈ X
and for each pair {G,G′} of subsets of N with |G| = |G′|, there is no (yi)i∈G
such that (i)

∑
G yi =

∑
G′ xi and (ii) for each i ∈ G, yi Ri xi, and for at

least one i ∈ G, yi Pi xi.

If x ∈ FG(R), then x ∈ P (R) (simply, take G = G′ = N). Other
definitions can be formulated according to which only distinct groups or
only non-overlapping groups, are compared. Then, efficiency would not be
implied any more.

The group envy-free allocations can be characterized as follows. Assume
for the sake of illustration that

∑
p(Ri) > M . Given x ∈ FG(R), and since

x ∈ P (R), then x passes the test if and only if for each pair {G,G′} of subsets
of N with |G| = |G′|, either

∑
G′ xi ≤

∑
G xi or

∑
G ri(xi) ≤

∑
G′ xi.

We could also evaluate the relative treatment of groups of different sizes
by calculating resources per capita. Also, we could require of an objection
by a group that it should make each of its members better off.

• Next, assuming that each agent is endowed with an equal share of the social
endowment, we require that no group of agents should be able to make each
of its members at least as well off, and at least one of them better off, by
redistributing among themselves the resources it controls in total:

Equal-division core, Ced: For each R ∈ RN , x ∈ Ced(R) if x ∈ X and
there is no G ⊆ N and (yi)i∈G ∈ RG

+ such that (i)
∑

G yi = |S| M|N | and (ii) for
each i ∈ G, yi Ri xi, and for at least one i ∈ G, yi Pi xi.

We saw that if |N | = 2, an allocation meeting the equal-division lower
bound is envy-free. If |N | > 2, this is not the case. In fact, an allocation
in the equal-division core may not be envy-free. Non-emptiness of the equal-
division core is actually not guaranteed then. However, a weaker definition—
let us refer to it as the weak equal-division core—according to which an
allocation is disqualified only if a group can make each of its members better
off, is satisfied by the uniform allocation defined below.
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• Our next rules can all be understood as attempts at equating some notion
of “sacrifice” among agents.

The first one is the expression of the principle of proportionality. This
principle is applicable in situations where each agent’s characteristics can be
meaningfully summarized into a single number. Here, it is of course most
tempting to have the agent’s peak amounts play this role. In fact, since
obtaining efficiency already requires that the peak amounts be taken into
account, this choice seems to be the most natural way to make the principle
operational. We can interpret how far from unity the ratio of what an agent
receives to his peak amount is, as a measure of the sacrifice he makes at an
allocation. The idea then is to equate these sacrifices across agents.

Proportional rule, Pro: For each R ∈ RN , x = Pro(R) if x ∈ X and
there is λ ∈ R+ such that x = λ(p(Ri))i∈N . If not, Pro(R) = ( M

|N | , . . . ,
M
|N |).

The first case in the definition occurs if at least one peak amount is
positive. When all peak amounts are zero, all preferences are the same, and
it is certainly appealing to choose equal division.

The following variant of the proportional rule has the advantage over the
previous definition to treat the case

∑
p(Ri) > M and the case

∑
p(Ri) < M

symmetrically. Another advantage it has is continuity with respect to prefer-
ences (we omit a formal statement of this property), which the proportional
rule fails (a discontinuity occurs when all peak amounts are zero).

Symmetrized proportional rule, Pros: For each R ∈ RN , x = Pros(R)
if x ∈ X and (i) when

∑
p(Ri) ≥ M , there is λ ∈ R+ such that x =

λ(p(Ri))i∈N , and (ii) when
∑
p(Ri) ≤M , there is λ ∈ R+ such that (M, . . . ,M)−

x = λ[(M, . . . ,M)− p(R)].

• Next, as a measure of the sacrifice made by an agent at an allocation,
we use the distance between his assignment and his peak amount. Because
assignments are non-negative numbers, equating these distances may not be
feasible, so we make them as equal as possible subject to non-negativity.

Constrained equal-distance rule, Dis: For each R ∈ RN , x = Dis(R)
if x ∈ X and (i) when

∑
p(Ri) ≥ M , there is d ≥ 0 such that x =

(max{0, p(Ri) − d})i∈N , and (ii) when
∑
p(Ri) ≤ M , there is d ≥ 0 such

that x = p(R) + (d, . . . , d).
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• Our third measure of the sacrifice made by an agent at an allocation is the
absolute value of the difference between what he receives and the amount on
the other side of his peak amount that he finds indifferent to it if there is
such an amount, and the endpoint of the interval [0,M ] that is on the other
side of his peak amount otherwise. Here too, equating sacrifices may not be
possible, so we make them as equal as possible subject to non-negativity.

Constrained equal-preferred-sets rule, Eps: For each R ∈ RN , x =
Eps(R) if x ∈ X and (i) when

∑
p(Ri) ≥ M , there is σ ≥ 0 such that

for each i ∈ N , ri(xi) − xi ≤ σ , strict inequality holding only if xi = 0,
and (ii) when

∑
p(Ri) ≤ M , there is σ ≥ 0 such that for each i ∈ N ,

xi − ri(xi) ≤ σ, strict inequality holding only if xi =M .

The proportional, symmetrized proportional, constrained equal-distance,
and constrained equal-preferred-sets allocations are efficient but they need
not be envy-free and they need not meet the equal-division lower bound.
However, their definitions can be adapted so as to recover these properties,
if desired. For instance, to obtain no-envy, we could choose the envy-free
allocation(s) whose associated vector of sacrifices, evaluated according to
one or the other of these measures, is lexicographically minimal.5 Similar
selections from the equal-division lower bound and efficiency solution can be
defined. In the process, we may lose single-valuedness however.

• Given an order on the set of agents, let them enter the scene in that or-
der and assign to each of them his preferred amount subject to availability
when his turn comes. We thereby obtain the sequential priority rule as-
sociated with the order. Such extreme asymmetric treatment of agents
does not appear very desirable. Yet, each of the rules defined in this man-
ner satisfies efficiency and many of the relational requirements formulated
below. Besides, by choosing the orders with equal probabilities, and taking
the average of the resulting allocations, we recover some measure of punctual
fairness without losing efficiency—this property is preserved under convex
operations, as we noted—nor the relational properties satisfied by the sequen-
tial priority rules, many of which are also preserved under convex operations.
Let us refer to this average as the random arrival rule.

5Formally, let t̃ be obtained by rewriting the coordinates of t ∈ Rn in decreasing order.
Given t and t′ ∈ Rn, we say that t is “lexicographically smaller than t′,” written t <L t′,
if [t̃1 < t̃′1], or [t̃1 = t̃′1 and t̃2 < t̃′2], or [t̃1 = t̃′1, . . . , t̃k = t̃′k for each k ≤ ℓ and t̃ℓ < t̃′ℓ].
An alternative order is obtained by focusing first on the agents whose sacrifices are the
smallest and in successively making them as large as possible.
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Figure 3: Two rules based on equating some notion of sacrifice made by
agents. (a) Constrained equal-distance rule: if the consumptions of two agents
are positive, they differ from the agents’ peak amounts by the same amount.
(Here, agent 1’s consumption is closer to his peak amount than agents 2 and 3’s
consumptions are to theirs, but it is because he consumes 0.) (b) Constrained
equal-preferred-sets rule: if the consumptions of two agents are positive, the upper
contour sets of the two agents at these two points are of the same size.

• The following rule, introduced in the fixed-price literature6, will play a
central role throughout this essay. It is obtained by specifying a bound,
the same for all agents—it is an upper bound if there is too little of the
commodity and a lower bound if there is too much—and maximizing each
agent’s preferences subject to that bound; finally, adjusting the bound so
that the list of maximizers yields a feasible allocation.

Uniform rule, U : For each R ∈ RN , x = U(R) if x ∈ X and there is
λ ∈ R+ such that (i) when

∑
p(Ri) ≥M , then x = (min{p(Ri), λ})i∈N , and

(ii) when
∑
p(Ri) ≤M , then x = (max{p(Ri), λ})i∈N .

Let us describe the allocation chosen by the uniform rule for a fixed pref-
erence profile as the social endowment grows from 0 to ∞. This description
is not quite in agreement with the model as specified above, where the social
endowment was given a fixed valueM and preferences were defined on [0,M ],
but it will be useful very soon when we turn to properties of rules involving
variations in M . To simplify notation, we assume p(R1) < · · · < p(Rn). As
M starts increasing from 0, equal division prevails and it does so until each
agent receives p(R1). At that point, agent 1 stops receiving anything for a
while. Further increments in M are shared equally among the other agents
until each of them receives p(R2). Then, agent 2 also stops receiving any-
thing for a while . . . This process continues until each agent receives his peak
amount. The first increments beyond

∑
p(Ri) go entirely to agent 1 until

he receives p(R2). Further increments are shared equally between agents 1

6It appears in Bénassy (1982).
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and 2 until they receive p(R3) . . . This goes on until agents 1 through n− 1
receive p(Rn). All further increments are shared equally.7

The uniform rule can be criticized on the grounds that it fully satisfies
some agents (it gives them their peak amounts)—agents with the lowest
peak amounts if

∑
p(Ri) ≥M and agents with the highest peak amounts if∑

p(Ri) ≤ M—“at the expense” of the others, who receive equal amounts,
any differences in the preferences of the members of the latter group being
ignored. Nevertheless, the uniform allocation does satisfy no-envy and it
meets the equal-division lower bound. We also have the following character-
izations based on evaluating how differently a rule treats agents in terms of
amounts received.

Theorem 1 (Schummer and Thomson, 1997) (a) For each economy, the
uniform allocation is the unique efficient allocation at which the difference
between the greatest and smallest amounts any two agents receive is the small-
est.

(b) For each economy, the uniform allocation is the unique efficient allo-
cation at which the variance of the amounts received by all the agents is the
smallest.

The uniform allocation of an economy may not be group envy-free but it
is always such that no group of agents, when given access to the resources
assigned to a group of the same size, can make each of its members better
off. Similarly, the uniform allocation may not be in the equal-division core
(when this set is non-empty), but it satisfies the weaker property obtained,
in defining blocking, by requiring that all members of a deviating coalition
should be made better off by the deviation (the weak equal-division core).

A noteworthy feature of the uniform rule, as well as of the other rules
that we have defined, is that they depend only on peak amounts. Let us
write this property for a generic solution φ:

Peak-only: For each pair {R,R′} ⊂ RN , if p(R) = p(R′), then φ(R) =
φ(R′).

7This similarity between the uniform rule and the rule advocated by Maimonides for
the adjudication of conflicting claims (O’Neill, 1982; see Thomson, 2003, for a discussion)
should be noted. Indeed, after replacing the vector of peak amounts by the vector of
claims, the algorithm describing that rule is identical up to the point where each agent
receives his peak amount.
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Peak-only is not motivated by normative considerations. It should mainly
be understood as a requirement of informational simplicity of solutions. It
is also crucial in helping understand incentive issues. Interestingly, when
imposed on subsolutions (non-necessarily single-valued) of the no-envy and
efficiency solution, it leads to another characterization of the uniform rule:8

Theorem 2 (Thomson, 1994b) The uniform rule is the only subsolution of
the no-envy and efficiency solution to satisfy peak-only.

• Solutions can be defined on the basis of the number of agents receiving their
peak amounts. A plurality rule is defined by choosing the allocations x at
which the number pk(x,R) ≡ |{i ∈ N :xi = p(Ri)}| is maximal, either when
this maximization is performed within the efficient set, or when in addition
punctual fairness requirements, such as no-envy or the equal-division lower
bound, are imposed. None of the resulting solutions is single-valued however.

• We conclude with a family of rules whose definition is inspired by a concept
(Young, 1987) that has played a central role in the literature on the adjudi-
cation of conflicting claims (O’Neill, 1982; see Thomson, 2003, for a survey
of the literature).

Each member of the family is indexed by a function f :R+ × [λ, λ̄[→
R+, where [λ, λ̄[⊂ R, that is continuous, nowhere decreasing in its second
argument, and such that for each R0 ∈ R, f(R0, λ) = 0 and f(R0, λ) → ∞
as λ→ λ̄. Let Φ be the family of these functions.

Parametric rule of representation f ∈ Φ, φf : For each R ∈ RN , φf (R)
is the allocation x ∈ X such that there is λ ∈ [λ, λ̄[ for which, for each i ∈ N ,
xi = f(Ri, λ).

8Single-valuedness comes out of the axioms. Uniqueness is not maintained if the equal-
division lower bound is imposed instead of no-envy. If efficiency is dropped and single-
valuedness imposed, the class of selections from the no-envy solution that are peak-only
constitute a lattice under the order on rules induced by Pareto domination, with the uni-
form rule dominating all of these selections and the equal-division rule being dominated
by all of them (Sakai and Wakayma, 2012). Another notion of fairness is that each agent
should find his consumption at least as desirable as any point in the convex hull of every-
one’s consumption (Kolm, 1973). It is studied by Chun (2000), Kesten (2006), and Sakai
and Wakayma (2012). Kesten proves counterparts of Theorem 1 in which efficiency is
replaced by this fairness notion.
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The proportional, constrained equal-distance, constrained equal-preferred-
sets, and uniform rules belong to the family. For the rule associated with a
particular f to satisfy each given property, appropriate restrictions have to
be imposed on f . To illustrate, for efficiency, there should be λ∗ ∈ [λ, λ̄[
such that for each R0 ∈ R, f(R0, λ

∗) = p(R0).

4 Resource-monotonicity and a variant

In this section, we consider changes in the social endowment. Up to now,
we have assumed preferences to be defined over the interval [0,M ], where M
was fixed. This implied that even in situations where the natural domain of
definition of preferences would be larger, only their restriction to the set of
feasible consumptions of each agent was deemed relevant for the evaluation of
an allocation. Since the property we now study pertains to variations in the
social endowment, for its formulation to be in line with the above interpre-
tation, the domain over which preferences are defined should be allowed to
change. It will be a little simpler to assume instead that preferences are de-
fined over R+. Thus, an economy is now a pair e ≡ (R,M) ∈ RN

∞×R+, with
feasible set denoted X(e). Let EN

∞ be the class of these pairs. Also, as we
would like to be able to make unambiguous welfare comparisons between two
economies that differ in their endowments, we consider single-valued map-
pings (rules) defined on EN

∞, and not solutions, which may be multi-valued.
The same comment applies to our study of two other solidarity properties in
Sections 5 and 6, and to a property of robustness under strategic behavior
in Section 9.

Starting from some economy and having applied to it a rule, suppose
that the social endowment increases. If agents had monotone preferences, a
natural solidarity requirement would be that they should all end up at least
as well off as they were initially (Roemer, 1986; Chun and Thomson, 1988;
Moulin and Thomson, 1988). Of course, when preferences are not monotone,
this requirement does not make sense. What does instead is that when the
social endowment increases—or more generally, changes, whether the change
is an increase or a decrease—the welfares of all agents should be affected in
the same direction: all agents should end up at least as well off as they were
initially, or all should end up at most as well off:

Resource-monotonicity: For each e ≡ (R,M) ∈ EN
∞, each M ′ ∈ R+, if

13



x ≡ φ(e) and x′ ≡ φ(R,M ′), then either (i) for each i ∈ N , xi Ri x
′
i, or

(ii) for each i ∈ N , x′i Ri xi.

We formulate the requirement in welfare terms and not in physical terms
because welfare is what people care about. The same comment applies to the
other requirements introduced below. However, for this model, requirements
in physical terms are meaningful too and of some interest, and in the presence
of efficiency, equivalence holds.

Resource monotonicity is quite strong. None of the uniform, proportional,
constrained equal-distance, or constrained equal-preferred-sets rules satisfy
it (although under a mild domain restriction, this last rule does). As for
selections from the no-envy solution, or from the equal-division lower bound
solution, general incompatibility results emerge (efficiency plays no role in
precipitating them). One of them involves the basic requirement that agents
with the same preferences should receive amounts that they find indifferent.
Here too, for an efficient rule, a formulation in physical terms (Section 9) is
equivalent. We state it for correspondences:

Equal treatment of equals in welfare: For each e ≡ (R,M) ∈ EN
∞, each

x ∈ φ(e), and each pair {i, j} ⊆ N , if Ri = Rj, then xi Ii xj.

Proposition 1 (Thomson, 1994b) (a) No selection from the no-envy solu-
tion is resource-monotonic. (b) No selection from the equal-division lower
bound solution is resource-monotonic. (c) No rule satisfies equal treatment
of equals in welfare, peak-only, and resource-monotonicity.

Resource-monotonic selections from the efficiency solution do exist. More-
over, the class of all such solutions can easily be characterized, even though
it is large:

Theorem 3 Any selection from the efficiency solution that is resource-monotonic
is defined as follows. For each R ∈ RN ,

(i) There are |N | non-decreasing functions φi(R, ·): [0,
∑
p(Ri)] → R+

such that for each M ∈ [0,
∑
p(Ri)], we have

∑
φi(R,M) = M , and for

each i ∈ N , φi(R,
∑
p(Ri)) = p(Ri).
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(ii) For each M ′ ∈ [
∑
p(Ri),

∑
ri(0)[, let M ∈ [0,

∑
p(Ri)] and x′ ∈

P (R,M ′) be such that for each i ∈ N , x′i Ii φi(R,M). Then, let φ(R,M ′) ≡
x′.9 This completes the construction if

∑
ri(0) = ∞.

(iii) If
∑
ri(0) <∞, there are |N | non-decreasing functions φi(R, ·): [

∑
ri(0),∞[→

R+ such that for each M ∈ [
∑
ri(0),∞[, we have

∑
φi(R,M) =M , and for

each i ∈ N , φi(R,
∑
ri(0)) = ri(0).

10

An examination of the proof of the impossibilities of Proposition 1 shows
that they arise when the change in the social endowment is such that it turns
an economy from one in which there is too much to divide into one in which
there is too little, or conversely. It is not surprising that this switch should
play a role, and it suggests weakening resource monotonicity by limiting its
applications to changes that are not so disruptive, in the sense that if initially,
there is too little of the commodity initially, then there is still too little after-
wards; and if initially, there is too much, there is still too much afterwards:
if the social endowment changes but stays on the same side of the sum of
the peak amounts, the welfare of all agents should be affected in the same
direction. Let us call this variant one-sided resource-monotonicity.11

The uniform rule is one-sided resource-monotonic (to see this, it is most
convenient to use the algorithmic description we gave of it in Subsection 3).
The proportional and constrained equal-distance rules are too. Neither is
a selection from the no-envy solution, but in fact, under the domain re-
striction that for each agent, there is a finite consumption indifferent to 0,
no selection from the no-envy and efficiency solution other than the uni-
form rule is one-sided resource-monotonic. Let R∞,fin be the subdomain of

9The number M ′ and the vector x′ are defined uniquely. The equality follows from
resource-monotonicity.

10The functions do not have to satisfy any other requirements. The reason for this
freedom of choice in that interval is that, by giving to each agent more than ri(0), we
ensure that each is worse off than he would be at any social endowment that would require
that each receives less than his peak amount.

11Wementioned earlier that other monotonicity requirements have been considered. One
says that as the social endowment increases, each agent should receive at least as much
as he did initially (Otten, Peters, and Volij, 1996). Another requirement is that if the
social endowment increases, but no reversal of the inequality between the sum of the peak
amounts and the endowment occurs, then when the change is beneficial to society, each
agent should be made at least as well off as he was initially (Sönmez, 1994). In conjunction
with efficiency, it is clear that the three properties are equivalent. If consumption spaces
are finite intervals, by itself, the latter implies efficiency (Ehlers 2002c). Then, a version
of Theorem 4 can be obtained that does not involve efficiency.
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R∞ of preferences such that for each i ∈ N , ri(0) is finite, and let EN
∞,fin

≡ RN
∞,fin × R+.

Theorem 4 (Thomson, 1994b) On the domain EN
∞,fin, the uniform rule is

the only selection from the no-envy and efficiency solution to be one-sided
resource-monotonic.

Without the domain restriction, rules other than the uniform rule become
available. However, they all coincide with the uniform rule when there is too
little of the commodity. A complement to Theorem 4 is Kesten (2006)’s obser-
vation that the uniform rule Pareto-dominates any selection from the no-envy
solution to satisfy one-sided resource-monotonicity and the self-explanatory
resource continuity. Also, in this theorem, efficiency can be replaced by
resource continuity (Ehlers, 2011b).

If in Theorem 4, no-envy cannot be replaced by the equal-division lower
bound, many selections from the equal-division lower bound and efficiency
solution are one-sided resource-monotonic.12

The following variable-resource test on a rule is inspired by the literature
on the adjudication of conflicting claims. Suppose that the social endowment
is given in two installments, and consider the following two procedures to
divide it: (ii) allocate the entire social endowment directly; (ii) divide the first
installment first, x designating the division; for each i ∈ N , replace agent i’s
relationRi by the relationR

′
i defined by a R′

i b if and only if (a+xi) Ri (b+xi);
then, divide the second installment in the economy that results. Thus, each
agent receives his assignment in two parts. A solution satisfies composition
up if the two procedures are equivalent. The constrained equal-distance
rule satisfies composition up and a characterization of the rule is available in
which the main axioms are composition up and a weak linearity requirement
(Herrero and Villar, 2000).

No selection from the equal division lower bound solution (nor from the
no-envy solution) satisfies the very weak version of efficiency according to
which, if there is not enough of the commodity, each agent whose peak is
zero is assigned zero, and composition up. The same impossibilities hold for
a “dual” of composition down, pertaining to possible decreases in the social
endowment. However, a hybrid of these composition properties, which re-
duces to composition up if there is not enough before and after the change in

12These solutions constitute a convex class.
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the endowment, and to composition down if there is too much before and af-
ter, can be met. The uniform rule s the only selection from the equal division
lower bound solution to be such that removing agents whose peak amount
is zero should not affect the amounts assigned to the others and hybrid
composition. A similar characterization holds if the no-envy requirement
is imposed instead of the equal-division lower bound and peak-only is added.
These results are due to Abizada and Chen.

5 Population-monotonicity and a variant

In this section and Section 7, we imagine changes in the population of agents
and we study properties of solutions and rules pertaining to such changes.
For that purpose, we generalize the model as follows. There is an infinite
population of “potential agents”, indexed by the natural numbers, N. Let N
denote the class of non-empty finite subsets of N. An economy is defined
by first specifying a set of agents N ∈ N and then a pair (R,M) ∈ EN . A
solution is a correspondence defined on

∪
N∈N EN that associates with each

N ∈ N and each e ≡ (R,M) ∈ EN a non-empty subset of its feasible set,
X(e) ⊂ RN

+ . As before, a rule is a single-valued solution.
When preferences are monotone, the following is a natural expression of

the solidarity idea, this time in response to population variations: starting
from some economy and having applied a rule to it, imagine that some agents
relinquish their rights on the resource, or that their claims are revealed to
be invalid; we require of a rule that none of the agents who stay should be
made worse off. (This requirement is formulated and studied by Thomson,
1983a,b, in the context of bargaining. For a survey of its applications, see
Thomson, 1995b.) Here, if initially there is too little of the commodity,
the departure of some of them is good news for the remaining agents, as it
permits a Pareto improvement. Conversely, if initially there is too much of it,
the departure of some of them is bad news for the remaining agents, and the
natural requirement is that each of these agents should end up at most as well
off as he was initially. To cover all cases, we require that upon the departure
of some agents, the welfare of all remaining agents should be affected in the
same direction.13 Given N,N ′ ∈ N with N ′ ⊂ N , and R ∈ RN , the notation
RN ′ designates the restriction of R to N ′, namely (Ri)i∈N ′ .

13Chun (1986) studies it in the context of quasi-linear social choice.
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Population-monotonicity: For each N ∈ N , each e ≡ (R,M) ∈ EN , each
N ′ ⊂ N , if x ≡ φ(e) and x′ ≡ φ(RN ′ ,M), then either (i) for each i ∈ N ′,
xi Ri x

′
i, or (ii) for each i ∈ N ′, x′i Ri xi.

None of the uniform, proportional, constrained equal-distance, and con-
strained equal-preferred-sets rules is population-monotonic. In fact, our next
results are exact counterparts of the general incompatibilities of Proposi-
tion 1.

Proposition 2 (Thomson, 1995a) (a) No selection from the no-envy so-
lution is population-monotonic. (b) No selection from the equal-division
lower bound solution is population-monotonic. (c) No solution satisfies equal
treatment of equals in welfare, peak-only, and population-monotonicity.

These results are disappointing, all the more so that they do not in-
volve efficiency. On the other hand, if neither no-envy nor the equal-division
lower bound is imposed, and only efficiency is insisted upon, population-
monotonicity can be achieved by many rules, at least on a large subdomain
of our base domain.

Note that as was the case when we considered variations in the social
endowment, population-monotonicity allows for changes in the population
that are quite disruptive, in the following sense: starting from an economy
in which there is too much to divide, the arrival of additional agents may
turn it into one in which there is too little. This is the underlying reason
for the results of Proposition 2. It suggests weakening the requirement by
applying it only when the change in the population is not so disruptive,
that is, when the social endowment stays on the same side of the sum of
the peak amounts. By analogy with the property that we proposed earlier
concerning variations in the social endowment, we name this variant one-
sided population-monotonicity.

It is easy to verify that the uniform, proportional, constrained equal-
distance, and constrained equal-preferred-sets rules all satisfy this property.
However, in conjunction with no-envy, efficiency, and a requirement that
is quite mild since it is satisfied by most rules and solutions (we formulate
it for solutions), only one rule remains acceptable, the uniform rule. The
additional requirement is replication invariance: if an allocation is chosen
for some economy, then for each k ∈ N, its k-replica should be chosen for each
k-replica of the economy (in a k-replica, each of the agents initially present
has k − 1 clones, and the social endowment is multiplied by k.)
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Theorem 5 (Thomson, 1995a) On the domain
∪

N∈N EN
fin, the uniform rule

is the only selection from the no-envy and efficiency solution to be replication-
invariant and one-sided population-monotonic.14

6 Welfare-dominance under preference-replacement

and a variant

Next, we consider changes in the preferences of some agents and study the
impact such changes may have on the others. Our conclusions exhibit some
of the pattern of positive and negative results of the previous sections, but
there are also significant differences.

Our first requirement is that when the preferences of some agents change,
the welfare of all other agents should be affected in the same direction
(Moulin, 1987, considers this property in the context of binary social choice;
for a survey of the applications of the general idea, see Thomson, 1999). It is
a fixed-population solidarity property, but since one of the auxiliary axioms
in the main result pertaining to it is replication-invariance, we formulate it
for the variable-population version of the model, using the notation of the
previous section.

Welfare-dominance under preference-replacement: For each N ∈ N ,
each e ≡ (R,M) ∈ EN , each N ′ ⊂ N , and each R′

N ′ ∈ RN ′
, if x ≡ φ(e)

and x′ ≡ φ(R′
N ′ , RN\N ′ ,M), then either (i) for each j ∈ N \N ′, xj Rj x

′
j, or

(ii) for each j ∈ N \N ′, x′j Rj xj.

For |N | ≤ 2, the requirement has of course no force, and therefore, from
here on, we assume |N | ≥ 3. What are its implications? First, it is easy to
see that the uniform rule, proportional, constrained equal-distance, and con-
strained equal-preferred-sets rules all violate it. However, violations extend
much beyond these rules (compare to Propositions 1 and 2):

Proposition 3 (Thomson, 1997) (a) No selection from the no-envy and ef-
ficiency solution satisfies welfare-dominance under preference-replacement.
(b) No selection from the efficiency solution satisfies equal treatment of equals
in welfare, peak-only, and welfare-dominance under preference-replacement.

14The independence of replication-invariance from the other axioms in Theorem 5 is
established by Klaus (2010).
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Some selections from the efficiency solution do satisfy welfare-dominance
under preference-replacement though, provided the domain is appropriately
restricted. For instance, consider the domain of economies (R,M) ∈ EN

such that for each i ∈ N , 0 Ii M . On this domain, the constrained equal-
preferred-sets rule passes the test.

The equal-division rule, which is neither resource-monotonic nor population-
monotonic (it does not even satisfy the one-sided versions of these prop-
erties), obviously satisfies welfare-dominance under preference-replacement.
This rule reveals that efficiency cannot be dispensed with in the incompati-
bilities of Proposition 3. This is in contrast with the incompatibilities of ei-
ther resource-monotonicity or population-monotonicity with no-envy (Propo-
sitions 1a and 2a), both of which hold even if efficiency is not imposed.

The equal-division lower bound is less restrictive than no-envy in the
present context. Selections from the equal-division lower bound and efficiency
solution satisfying welfare-dominance under preference-replacement can be
defined on large subdomains of our basic domain.

In the examples used to establish Proposition 3, the change in preferences
has, once again, the effect of turning an economy from one in which there is
too much to one in which there is too little. Thus, here too, we propose to
limit the range of application of our central axiom, welfare-dominance under
preference-replacement, to situations where the social endowment stays on
the same side of the sum of the peak amounts, thereby obtaining one-sided
welfare-dominance under preference-replacement.

The uniform rule satisfies this property. In fact, many other rules do, in-
cluding the proportional, constrained equal-distance, and constrained equal-
preferred-sets rules. However, in the presence of no-envy, we have the fol-
lowing uniqueness result:

Theorem 6 (Thomson, 1997) The uniform rule is the only selection from
the no-envy and efficiency solution to satisfy replication-invariance and one-
sided welfare-dominance under preference-replacement.15

Are there selections from the equal-division lower bound (instead of no-
envy) and efficiency solution other than the uniform rule satisfying one-sided
welfare-dominance under preference-replacement? The answer is yes. Indeed,
a large class of such rules exist.

15The independence of replication invariance from the other axioms in Theorem 6 is
established by Klaus (2010).
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7 Consistency and its converse

In this section, we pursue our study of the variable-population model.16 We
formulate two invariance properties that are meaningful for solutions, so we
do not restrict attention to single-valued solutions. Let (R,Ω) be an economy
with agent set N ∈ N and an allocation x that a solution chooses for it. We
require that for each subgroup N ′ ⊂ N , and for the problem of dividing
among them what they have collectively received at x, namely,

∑
N ′ xi, the

solution should choose the restriction of x to that subgroup. (For a survey of
the applications of the general principle underlying the axiom, see Thomson,
2011.)

Consistency: For each N ∈ N , each e ≡ (R,M) ∈ EN , each x ∈ φ(e), and
each N ′ ⊂ N , we have xN ′ ∈ φ(RN ′ ,

∑
N ′ xi).

Bilateral consistency is the weakening of consistency obtained by ap-
plying it only to subgroups N ′ of two agents.

Many solutions are consistent. Examples are the efficiency solution and
the no-envy solution (they have this property on arbitrary domains). So is
their intersection (which is non-empty, as we know), consistency being pre-
served under arbitrary intersections. The uniform, proportional, constrained
equal-distance, and constrained equal-preferred-sets rules are consistent too,
and in fact, so are all parametric rules. However, neither the equal-division
lower bound and efficiency solution nor the equal-division core (on its natural
domain of definition) are.

The next requirement on a solution is the following. Consider an economy
with agent set N ∈ N and a feasible allocation x. Suppose that for each two-
agent subgroupN ′ ofN , and for the problem of dividing between its members
the sum of their components of x, the solution chooses the restriction of x to
the subgroup. Then, the solution should choose x for the initial economy.17

16We could alternatively define an economy as a pair (R,M) in which preferences are
defined on [0,M ]. Now, given N ∈ N and such an economy (R,M), if we consider the
problem of allocating some amount M ′ < M among the members of N ′ ⊂ N , then for
each i ∈ N ′, we would replace Ri by Ri|[0,M ′] and RN ′ by (Ri|[0,M ′])i∈N ′ . We find it
notationally easier to assume instead that preferences are defined over R+, and to permit
solutions to depend on the whole preference relations. However, the results presented
below hold for either specification.

17The weaker version of the property obtained by writing the hypotheses for each N ′ ⊂
N is fact equivalent to our formulation.
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Converse consistency: For each N ∈ N , each e ≡ (R,M) ∈ EN , and each
x ∈ X(e), if for each N ′ ⊂ N with |N ′| = 2, we have xN ′ ∈ φ(RN ′ ,

∑
N ′ xi),

then x ∈ φ(e).

The efficiency solution, the no-envy solution, their intersection (this prop-
erty is also preserved under arbitrary intersections), and the uniform rule are
conversely consistent. Here too, so are all parametric rules. On the other
hand, the equal-division core is not. Neither is the group no-envy solution,
which should not be a surprise since the hypotheses of converse consistency
pertain only to two-agent groups whereas group no-envy is meaningful only
when there are at least four agents. However, if converse consistency is weak-
ened so as to make its hypotheses non-vacuous for four agents, the group
no-envy solution is still disqualified.

Proposition 4 is key to our characterization, stated as Theorem 7, of the
class of consistent subsolutions of the no-envy and efficiency solution satisfy-
ing in addition the mild following continuity requirement. Fix the population
and their preferences. Consider a sequence of endowments, and for each el-
ement of the resulting sequence of economies, an allocation chosen by the
solution. If the sequence of endowments and the sequence of allocations have
limits, social-endowment upper-semi-continuity says that the limit al-
location should be chosen by the solution for the limit economy.

Proposition 4 (Thomson, 1994c) If a subsolution of the no-envy and effi-
ciency solution satisfies social-endowment upper-semi-continuity and consis-
tency, then it contains the uniform rule.

Proposition 4 does not hold with bilateral consistency substituted for con-
sistency. Indeed, any solution that coincides with the no-envy and efficiency
solution on the subdomain of two-agent economies and is an arbitrary social-
endowment upper-semi-continuous subsolution of the no-envy and efficiency
solution for each greater cardinality, satisfies all the hypotheses of Proposi-
tion 4. Yet, the set of allocations it chooses for an economy with more than
two agents need not contain its uniform allocation.

From Proposition 4 we derive complete characterizations of the classes of
subsolutions of the no-envy and efficiency solution, or of the equal-division
lower bound and efficiency solution, that satisfy both social-endowment upper-
semi-continuity and consistency. For instance, we have:

22



Theorem 7 (Thomson, 1994c) If a subsolution of the no-envy and efficiency
solution, φ, satisfies social-endowment upper-semi-continuity and consis-
tency, then it is given by the following recursive construction:

1. On the domain of two-agent economies, φ is a social-endowment upper-
semi-continuous correspondence that contains the uniform rule.

2. Given k ∈ N, assume that φ has been specified on the domain of k-agent
economies, and let ψ be the correspondence defined on the domain of
(k + 1)-agent economies e ≡ (R,M) by ψ(e) ≡ {x ∈ X(e): for each
N ′ ⊂ N with |N ′| = k, xN ′ ∈ φ(RN ′ ,

∑
N ′ xi)}. Then, on this domain,

φ is any social-endowment upper-semi-continuous correspondence that
contains the uniform rule and is contained in ψ.

Here is another corollary of Proposition 4.

Theorem 8 (Thomson, 1994c) The uniform rule is the only single-valued
selection from the no-envy and efficiency solution, (or from the equal-division
lower bound and efficiency solution), to be social-endowment upper-semi-
continuous and bilaterally consistent.

This characterization involves social-endowment upper-semi-continuity be-
cause we obtained it as a corollary of Proposition 4. However, in the presence
of single-valuedness, a characterization of the uniform rule can be derived in
which this continuity requirement does not appear (Dagan, 1996). It is based
on Theorem 2 and the following lemma:

Lemma 1 (Dagan, 1996) If a single-valued selection from the no-envy and
efficiency solution is bilaterally consistent, then on the domain of two-agent
economies, it is peak-only.

Moreover, the uniform rule is the only single-valued selection from the
equal-division lower bound and efficiency solution to be replication-invariant
and consistent. Finally, it is the only single-valued selection from the equal-
division lower bound solution to be one-sided resource monotonic and bilater-
ally consistent. This characterization, due to Ehlers (2002c)—Kesten (2006)
imposes no-envy instead—generalizes one established by Sönmez (1994).

Because consistency is preserved under arbitrary intersections and the so-
lution that associates with each economy its entire feasible set is consistent,
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it follows that for each solution, there is a smallest (in the sense of inclu-
sion) consistent solution that contains it, (simply, the intersection of all the
consistent solutions that contain it). It is its minimal consistent enlarge-
ment (Thomson, 1994a). Here is an application of the concept: the minimal
consistent enlargement of the equal-division lower bound and efficiency so-
lution is essentially (certain boundary allocations have to be excluded) the
efficiency solution. Thus, in that case, the price of consistency is quite high:
insisting on it forces us to give up our objective of fairness in distribution
altogether.

The implications of converse consistency are striking if imposed on selec-
tions from the equal-division lower bound and efficiency solution and anonymity
is imposed too. This says that the recommendation made by a rule should
be covariant with renamings of agents:

Theorem 9 The uniform rule is the only selection from the equal-division
lower bound and efficiency solution to be single-valued, anonymous, and con-
versely consistent.

Herrero and Villar (1998) characterize the constrained equal-distance rule
as the only selection from the efficiency solution satisfying equal treatment
of equals in welfare, composition up (Section 4), consistency, and a certain
independence requirement.

8 Separability

Next, we formulate an invariance property of single-valued solutions pertain-
ing to simultaneous changes in the preferences of the agents in some group
and the social endowment. It says that if the total amount assigned to the
complementary subgroup—the agents whose preferences have not changed—
remains the same, then each of these agents’ assignment should remain the
same.

Separability: For each N ∈ N , each pair (R,M), (R̄, M̄) ∈ EN , and each
N ′ ⊂ N , if RN ′ = R̄N ′ and

∑
N ′ φi(R,M) =

∑
N ′ φi(R̄, M̄), then for each

i ∈ N ′, φi(R̄, M̄) = φi(R,M).

The following characterizations of the uniform rule are available:
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Theorem 10 (Chun, 2006) (a) The uniform rule is the only selection from
the no-envy and efficiency solution to be social-endowment upper semi-continuous
and separable.

(b) The uniform rule is the only selection from the equal-division lower
bound and efficiency solution to be social-endowment upper semi-continuous,
and separable.

In (a), social-endowment continuity can be replaced by duplication in-
variance (Klaus, 2006). Chun had stated (b) with the additional axiom of
replication invariance, but this axiom is redundant (Klaus, 2006). Social
endowment continuity can be dropped too if duplication invariance is added
(Klaus, 2006).

Further characterizations of the uniform that do not involve efficiency
but rely instead on several relational requirements are developed by Chun
(2003).

9 Strategy-proofness

We turn to strategic issues. We are concerned about the fact that preferences
are private information and that, in an attempt to get an assignment that
he prefers, an agent may misrepresent his own. The set of agents is fixed
here, so we return to our initial description of an economy as a list R ∈ RN

of preference relations. However, some of the results presented below rely on
the possibility that the social endowment varies.

Given a rule φ, in the direct revelation game form associated with φ,
Γφ ≡ (RN , φ), strategies are preferences in R, and the outcome function is φ
itself. Once preferences are specified, we have a game. We require that in this
game, it should be a dominant strategy for each agent to announce his true
preferences. Given R ∈ RN and i ∈ N , we simplify the notation (Rj)j∈N\{i}
to R−i.

Strategy-proofness: For each R ∈ RN , each i ∈ N , and each R′
i ∈ R,

φi(R) Ri φi(R
′
i, R−i).

Our main result here is the starting point of the literature under review:

Theorem 11 (Sprumont, 1991) The uniform rule is the only selection from
the efficiency solution to be anonymous and strategy-proof.
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This characterization has been much scrutinized. It has been shown that
uniqueness still holds if equal treatment of equals in welfare, which in the
presence of efficiency is weaker than anonymity, is substituted for anonymity.
We also know that the following richness property of a subdomain of R
guarantees that these axioms precipitate uniqueness. A domain of preferences
defined on R+ satisfies minimal richness if each non-negative real is the
peak amount of some admissible relation, and for each pair {x, y} ⊂ R+ with
x ̸= y, there is an admissible relation for which x is preferred to y and whose
peak amount is between x and y. The following theorem collects the findings
just described.

Theorem 12 (Ching, 1994a) (a) The uniform rule is the only selection from
the efficiency solution to satisfy equal treatment of equals in welfare and
strategy-proofness.

(b) (Mizobuchi and Serizawa, 2006) On each minimally rich domain of
preferences defined on R+, the uniform rule is the only rule satisfying these
properties.

Theorem 12a implies that on our base domain, the uniform rule is the
only selection from the no-envy and efficiency solution to be strategy-proof
(Sprumont, 1991; Ching, 1992). The uniform rule is still the only acceptable
one if strategy-proofness is weakened by requiring that the peak amount of
the announced relation be the peak amount of the true relation (Sakai and
Wakayama, 2010b).

Suppose now that efficiency is dropped. Non-bossiness of a rule (Sat-
terthwaite and Sonnenschein, 1981) says that if a change in an agent’s pref-
erences does not cause a change in his assignment, then it should not cause a
change in any other agent’s assignment. If strategy-proofness is weakened in
the manner just mentioned and if non-bossiness is weakened in liked manner,
the admissible rules form a lattice. Each rule in this lattice Pareto-dominates
the equal division rule and is dominated by the uniform rule (Sakai and
Wakayama, 2010a; these authors establish another structural result of this
type when, in this list of axioms, the unrestricted version of strategy-proofness
is imposed instead).

Consider now preferences that differ from single-peaked preferences only
in that there is a non-degenerate interval of preferred consumptions: for each
i ∈ N , there is an interval [ai, bi] ⊆ R+ such that for each {xi, x′i} ⊂ [ai, bi],
xi Ii x

′
i, and for each {xi, x′i} ⊂ R+, if x

′
i < xi ≤ ai or bi ≥ xi > x′i, then
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xi Pi x
′
i. A numerical representation of such a relation has a plateau (a peak

is a degenerate plateau), so these preferences are called single-plateaued.
The most natural way to adapt our rules to accommodate such preferences
is to allow for multi-valuedness and to require that if two allocations are
Pareto-indifferent and one of them is selected, then so should the other.
This is the property of Pareto-indifference. (For efficiency to hold, this
can only occur when all agents are simultaneously satiated.)

Let us call the generalized uniform rule the extension of the uni-
form rule obtained by the following minimal modification: if the sum of the
left endpoints of the plateaus is smaller than the social endowment, apply
the standard formula substituting in it the left endpoints instead of the peak
amounts; similarly, if the sum of the right endpoints is greater than the social
endowment, use the right endpoints in the formulas for that case; otherwise,
select all the allocations at which all agents are satiated. Our earlier char-
acterization of the uniform rule as the only selection from the no-envy and
efficiency solution to be strategy-proof (the property needs to be restated to
cover correspondences) extends to the single-plateaued domain with no diffi-
culty, and it yields a characterization of the generalized uniform rule (Ching,
1992). In fact, uniqueness persists if efficiency is dropped (Ehlers, 2000).
A family of rules emerges if no symmetry requirement is imposed either
(Ehlers, 2002a). Returning to rules, when the distributional requirement is
weakened to equal treatment of equals in welfare, and if the self-explanatory
agent-wise preference continuity and the mild requirement that if there
is not enough, any agent whose peak amount is zero is assigned nothing, are
imposed, the uniform rule emerges once again (Ching, 2010).

When preferences are single-peaked but not necessarily continuous, a crit-
ical lemma in Sprumont’s proof of Theorem 11a still holds, and his argument
goes through (Weymark, 1999. Ching 1992, 1994a’s proofs apply to these
more general preferences with no modification.)

A sort of converse to the question answered by Theorem 11b is how large
a domain can be, within some reference domain, for strategy-proofness to
remain compatible with other prespecified properties. Say that a domain
of preferences is maximal within a reference domain for a particular
list of properties if it is contained in this reference domain, admits a rule
satisfying these properties, but admits no such rule if a single preference
relation from the reference domain is added.

The maximality question is most easily answered when preferences are
defined on R+ and the social endowment is allowed to vary, so we consider
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the generalization of the model that allows such variations.

Theorem 13 For the extension of the model obtained by allowing the social
endowment to vary, the following hold:

(a) (Ching and Serizawa, 1998) There is a unique maximal domain con-
taining the single-peaked domain and contained in the domain of continuous
preferences, on which a selection from the efficiency solution exists that sat-
isfies equal treatment of equals in welfare and strategy-proofness. It is the
single-plateuaed domain.

(b) (Mizobuchi and Serizawa, 2006) In fact, for each minimally rich do-
main, there is a unique maximal domain containing it and contained in the
domain of continuous preferences on which these properties are compatible.
It is the single-plateaued domain.

Any rule satisfying the properties of Theorem 13b is defined like the
uniform rule when there is too little or when there is too much; if the social
endowment lies between the sum of the left endpoints of the plateaus and the
sum of the right endpoints, an example of a selection is obtained by giving to
each agent the minimum of (i) his left endpoint augmented by some amount,
this amount being the same for all agents, and (ii) his right endpoint.

A maximality result complementing Theorem 13 that does not involve ef-
ficiency is due to Ching and Serizawa (2009), and another pertaining to selec-
tions from the no-envy and efficiency solution satisfying know-peak strategy-
proofness is due to Sakai and Wakayama (2012).

The next theorem also gives an answer to the maximality-of-domain ques-
tion if the social endowment is kept fixed. Equal treatment of equals in
physical terms is the requirement that if two agents have the same pref-
erences, they should receive equal amounts. We do not state the formal
definition of the generalized single-plateaued domain that appears in
the next theorem, but only note that it is significantly broader than the
single-plateaued domain: within a certain interval that depends on the so-
cial endowment, preferences are convex (thus intervals of local satiation—
ledges—are allowed), and outside of this interval, there are no monotonicity
requirement, only upper bounds on welfare. Part (b) involves a weak conti-
nuity requirement which we will not state explicitly, simply noting that it is
only meaningful for rules required to satisfy peak-only, one of the axioms in
the theorem. Let us refer to it as continuity*.
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Theorem 14 For the version of the model in which the social endowment is
kept fixed, the following hold:

(a) (Massó and Neme, 2001) There is a unique maximal domain con-
taining the single-peaked domain and contained in the domain of continuous
preferences on which efficiency, equal treatment of equals in physical terms,
and strategy-proofness are compatible. It is the domain of generalized single-
plateaued preferences.

(b) (Massó and Neme, 2004) There is a maximal domain (the authors
identify such a domain) on which efficiency, continuity*, peak-only, and
strategy-proofness are compatible.

Strategy-proofness is a requirement of robustness to individual misrep-
resentation. However, a rule may be strategy-proof but such that a group
of agents can coordinate their misrepresentation, each member of the group
ending up at least as well off as he would have been otherwise, and at least one
of them ending up better off. If a rule is not subject to this type of manipula-
tion, it is group strategy-proof . A rule is weakly group strategy-proof
if no group of agents can jointly misrepresent their preferences so that each
of its members ends up better off. The uniform rule is group strategy-proof.

The definition allows any group to enter into such agreements. Obviously,
the larger a group, the less likely will its members be able to coordinate
their strategies, so let us consider the minimal form of this property (beyond
strategy-proofness), one that pertains to manipulation by either one agent
or two agents. In addition, let us require joint misrepresentations to be
robust to double-crossing. The resulting property, double-crossing–proof
pairwise strategy-proofness, together with unanimity (the requirement
that if there is an allocation at which each agent receives his peak amount,
then it should be chosen,) imply group strategy-proofness (Serizawa, 2006).

Misrepresenting their preferences does not exhaust the strategic oppor-
tunities that a group of agents have, however, because after doing so and
receiving their assignments, they may be able to carry out transfers among
themselves (“ex-post” transfers) so that each of them ends up at least as well
off as he would have been otherwise, and at least one of them ends up better
off. The uniform rule is not robust to such manipulations (the property is
discussed in Thomson, 2014b).

A weaker form of it is the following: consider a group of agents and
suppose that a subgroup misrepresent their preferences. There may be ex-
post transfers among the members of the group that make all the members
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of the subgroup better off and the others at least as well off. If that is never
the case, the rule is bribe-proof (Schummer, 2000). The next proposition
reveals the strength of the stronger version obtained by letting groups of
any size to engage in such manipulation. It involves a property of weak
replacement monotonicity: if after the preferences of an agent change,
he is assigned at least as much as initially, and either he did not receive his
peak amount initially or does not receive it after the change, then each of
the other agents should be assigned at most as much as initially.

Proposition 5 (Massó and Neme, 2007) A rule is strongly bribe-proof if
and only if it is a selection from the efficiency solution that satisfies weak
replacement monotonicity and strategy-proofness.

A maximal domain result for the existence of rules that satisfy equal
treatment of equals in welfare and bribe-proofness is established byWakayama
(2013).

A large class of selections from the efficiency solution satisfy one-sided
welfare-dominance under preference-replacement and strategy-proofness (Bar-
berà, Jackson, and Neme, 1997) but a characterization is available. Each of
these rules—let us refer to them as BJN rules—is defined by a sequential
process. The process is parameterized by an initial allocation and a list of
adjustment formulas for allocations. These formulas should satisfy certain
monotonicity and independence conditions, which we omit.

Theorem 15 (Barberà, Jackson, and Neme, 1997) A selection from the
efficiency solution satisfies one-sided welfare-dominance under preference-
replacement and strategy-proofness if and only if it is a BJN rule.

The joint implications of several relational requirements have been inves-
tigated by several authors. First, characterizations of the uniform rule have
been based on the equal-division lower bound together with any one of the
following combinations: (i) one-sided resource-monotonicity and consistency ;
(ii) one-sided resource-monotonicity and converse consistency ; (iii) consis-
tency, one-sided population-monotonicity, and replication invariance (note
that in none of these results is efficiency invoked) (Sönmez, 1994).

The next result concerns a minor variant of the model: consumption
spaces are bounded above, as we have previously discussed, but the bounds
may vary across agents. A two-path–based rule for populationN is defined
as follows: in RN

+ , there are two continuous and monotone paths from the
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origin to the vector of the upper bounds for the members of N . Given any
preference profile, as the social endowment increases from 0 to the sum of the
peak amounts, the vector of assignments first follows one of these paths—let
us call it the “path for excess demand”—until one agent receives his peak
amount; this agent’s assignment remains there for a while; the assignments
to the others follow the projection of the path onto their own assignment
space until a second agent reaches his peak amount; his assignment remains
there for a while; the assignments to the others follow the projection of the
path onto their own assignment space. The process continues in this manner
until each agent has reached his peak amount. Symmetrically, as the social
endowment decreases from the sum of the upper bounds (the maximal value
it can take) to the sum of the peak amounts, the vector of assignments follows
the other path—let us call it the “path for excess supply”—and its successive
projections onto subspaces, each agent dropping out when he receives his
peak amount. In the variable-population model, a pair of paths should be
given for each N ∈ N (one for excess demand and one for excess supply),
but the paths should be related: given two populations N and N ′ such that
N ′ ⊂ N , the path for excess demand for N , when projected onto RN ′

, should
be the path for excess demand for N ′, a similar projection requirement being
imposed on the collection of paths for excess supply. We have the following
characterization:

Theorem 16 (Moulin, 1999) The two-path–based rules are the only selec-
tions from the efficiency solution to be one-sided resource monotonic, strategy-
proof, and consistent

A simplified proof is due to Ehlers (2002b). Ehlers (2002c) also pursues
the analysis of the implications of these axioms when alternative forms of the
monotonicity axiom are imposed but efficiency is dropped. (For selections
from the efficiency solution, they are all equivalent.)

10 Manipulation

When a rule is found to be manipulable, a natural follow-up task is to investi-
gate how manipulable it is. Given a rule φ, let E(Γφ, R0) be the set of (pure
strategy Nash) equilibria of the direct revelation game that results when the
true preference profile is R0 ∈ RN , and EX(Γφ, R0) be the corresponding
set of equilibrium allocations.
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The next proposition states that for several of the rules that we have
discussed, the game has a unique equilibrium allocation. This allocation is
none other than the uniform allocation for the true preferences.

Theorem 17 (Thomson, 1990) Let Γφ be the direct revelation game form
associated with a rule φ that may be one of the following: the symmetrized
proportional rule,18 the constrained equal-distance rule, or the constrained
equal-preferred-sets rule. Let R0 ∈ RN . Then, EX(Γ

φ, R0) = {U(R0)}.

A result analogous to Theorem 17 holds for any rule satisfying a cer-
tain responsiveness property. The large class of “equal-sacrifice rules” are
responsive: such a rule is defined by first specifying, for each preference rela-
tion R0 and each amount, a measure of the sacrifice imposed on an agent with
preferences R0 if he is assigned that amount. This sacrifice function should
take the value 0 at the peak amount and it should be strictly monotonic as
consumption moves away from the peak amount. Then, for each preference
profile, the allocation at which sacrifices are as equal as possible is selected.

Next, we consider rules that satisfy efficiency, peak only, and the following
axioms (which are meaningful because of the peak-only requirement). First
are the self-explanatory peak continuity, own-peak monotonicity and
its stronger version, strong own-peak monotonicity. Next is others-
oriented peak monotonicity, which says that if an agent’s peak increases,
each of the other agents should be assigned at most as much as initially. A
conclusion can also be reached about the set of strong Nash equilibria. Let
E∗

X(Γφ, R0) be the set defined as EX(Γ
φ, R0) except that the requirement

that no joint deviation be profitable to a group of agents is added.

Theorem 18 (Bochet and Sakai, 2007) Let Γφ be the direct revelation game
form associated with a selection φ from the efficiency solution that satisfies
equal treatment of equals in welfare, peak only, peak continuity, and others-
oriented peak monotonicity. Let R0 ∈ RN . Then, EX(Γ

φ, R0) ∩ P (R0) =
E∗

X(Γ
φ, R0) = {U(R0)}. Further, if φ is strictly own-peak monotonic, then

EX(Γ
φ, R0) = {U(R0)}.

18However, the manipulation game associated with the proportional rule itself does not
have that property.
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11 Implementation

Next, we check the properties of solutions that are relevant for (Nash) im-
plementability of a solution, starting with the following necessary property.
Consider some profile of preferences and an allocation chosen for it by the
solution. Now consider a second preference profile with the property that
for each agent, the set of allocations that he now finds at most as desirable
as that allocation (using his preferences over allocations induced from his
preferences over consumptions in the natural way) contains the correspond-
ing set for his initial preferences (the sets these allocations constitute for the
relations Ri and R

′
i in the formal definition below are denoted L(Ri, xi) and

L(R′
i, xi)). Then, the allocation should still be chosen by the solution for the

new profile (Maskin, 1999).19

Invariance under monotonic transformations: For each {R,R′} ⊂ RN

and each x ∈ φ(R), if for each i ∈ N , L(R′
i, x) ⊇ L(Ri, x), then x ∈ φ(R′).

On any domain on which these solutions are well-defined, the no-envy
solution is invariant under monotonic transformations, and so are the equal-
division lower bound solution and the group no-envy solution. The following
proposition tells us that essentially, any invariant under monotonic trans-
formations subsolution of the no-envy solution contains the uniform rule.
It involves the somewhat technical but very weak requirement of closed-
valuedness: for each profile R ∈ RN , φ(R) should be a closed set.

Proposition 6 (Thomson, 1990, 2010) If a subsolution of the no-envy and
efficiency solution is closed-valued and invariant under monotonic transfor-
mations, then it contains the uniform rule.

The following characterization of the uniform rule is a direct consequence
of Proposition 6. It does not involve closed-valuedness, since this property is
implied by single-valuedness.

Theorem 19 (Thomson, 1990, 2010) The uniform rule is the only single-
valued selection from the no-envy and efficiency solution to be invariant under
monotonic transformations.

19The property is usually referred to as “Maskin monotonicity”. A few paragraphs down,
we also refer to as “invariance” properties two other properties that have been important
to the understanding of implementability.
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A solution satisfies no veto power if whenever an allocation is most
preferred by all agents but possibly one, it is chosen. When there are at least
three agents, a solution is implementable if and only if it is invariant under
monotonic transformations and satisfies no veto power (Maskin, 1999). Un-
fortunately, on the domain under consideration, the no-envy solution violates
no veto power : let N ≡ {1, · · · , n} and R ∈ RN be such that p(R1) = · · · =
p(Rn−2) = 0 and p(Rn−1) = p(Rn) = M . Let x ≡ (0, 0, . . . ,M, 0). Then,
agents 1 through n− 1 prefer x to each other allocation. If the no-envy solu-
tion satisfied no veto power, x would be envy-free. But at x, agent n envies
agent n − 1. (The same example shows that the uniform rule also violates
no veto power.)

Thus, implementability of the no-envy solution cannot be derived from in-
voking Maskin’s theorem. However, the no-envy solution satisfies strong in-
variance under monotonic transformations (Danilov, 1992), a strength-
ening of invariance under monotonic transformations (we skip the statement)
that is sufficient for implementability, as shown by Danilov (1992) for solu-
tions defined on domains with a finite number of alternatives, and by Yamato
(1992) on more general domains. The same is true of the equal-division lower
bound solution.

The intersections of these solutions with the efficiency solution, which is
also strongly invariant under monotonic transformations, are not strongly in-
variant under monotonic transformations—this property is not preserved un-
der intersections—so their implementability cannot be decided by the above-
mentioned results. However, another property of this type (we omit the
definition as well) is shown by Sjöström (1991) to be necessary and sufficient
for implementability. The property is satisfied by the no-envy and efficiency
solution, the equal-division lower bound and efficiency solution, as well as
by the equal-division core and the group no-envy solution on their natural
domains of definition. Summarizing, we have:

Theorem 20 (Thomson, 1990, 2010) The no-envy and efficiency solution,
the equal-division lower bound and efficiency solution, and on their natural
domains of definition, the equal-division core and the group no-envy solution,
are Nash-implementable.

Further results on Nash implementation are due to Doghmi and Ziad
(2008a,b), whose approach is to reformulate no veto power.
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A rule is securely implementable, if there is a game form such that
(i) for each preference profile, there is a profile of dominant strategies in the
resulting game whose corresponding outcome if the allocation chosen by the
rule for the profile, and (ii) this allocation is in fact obtained at each Nash
equilibrium of this game (Saijo, Sjöström and Yamato, 2007). The following
theorem reveals that this requirement is very strong. It involves the self-
explanatory requirement on a rule that it should make the same choice
for the two profiles of extremists, namely (i) the profile of preferences
at which each agent’s peak amount is 0 and (ii) the profile at which each
agent’s peak amount is the social endowment. This minimal requirement is
met by most of the rules we have discussed.

Theorem 21 (Bochet and Sakai, 2010) If a rule is securely implementable,
and makes the same choice for the two profiles of extremists, then it is con-
stant. Moreover, if a selection from the efficiency solution is one-sided re-
source monotonic, consistent, and securely implementable, then it is a se-
quential priority rule.

These authors also consider other notions of implementability, such as
implementability in coalition-proof Nash equilibrium (Bernheim, Whinston,
and Peleg, 1987), and variants. Interestingly, for this model, strategy-proofness
does not imply invariance under monotonic transformations (Klaus and Bo-
chet, 2013).

12 Extensions of the model

(1) Indivisibilities. Here, the commodity is not infinitely divisible; instead,
it comes in integer amounts, and consumptions also have to be integers.
Discreteness creates conceptual and technical complications. For instance,
properties such as equal treatment of equals, in physical terms or in welfare,
cannot be met any more: in an economy with two agents whose preferences
are the same and the dividend is an odd integer, it has to be violated. Al-
lowing solution mappings to be correspondences is a way out, but as we have
already pointed out, dealing with correspondences renders more delicate the
formulation of relational solidarity requirements pertaining to changes in re-
sources, populations, or preferences.

This model is studied by Moulin (1999), who extends to it his charac-
terization of the family of two-path–based rules he had established for the
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continuous case (Theorem 16). Herrero and Mart́ınez (2011) derive a char-
acterization of a family of rules on the basis of strategy-proofness and con-
sistency. Discreteness is also discussed in the context of probabilistic rules
in (4) below.

(2) Individual endowments. Instead of having to divide a social en-
dowment, each agent has his “personal” endowment, the issue being to re-
distribute these endowments. An economy with individual endowments
is a pair (R,m) ∈ RN × RN

+ where R ∈ RN is, as before, a profile of single-
peaked preferences, and m ∈ RN

+ is a profile of individual endowments. An
allocation for (R,m) is a list x ∈ RN

+ such that
∑
xi =

∑
mi.

This model is more complex. The solutions and rules that we have en-
countered earlier can be extended, but often in more that one way. However,
properties pertaining to the individual endowments can be formulated, and
they help in distinguishing between them. Characterizations of certain ex-
tensions of the uniform rule are available (Thomson, 1995c; Klaus, 1997a,b;
2001; Klaus, Peters and Storcken, 1997, 1998, Barberà, Jackson, and Neme,
1997; Moreno, 2002.).

(3) Mixed ownership. Now, not only does each agent have his own endow-
ment, but in addition, there is a social endowment. A mixed ownership
economy is a triple (R,m, T ) ∈ RN×RN

+×R such that
∑
mi+T ≥ 0, where

(R,m) is as in (2), and T (unrestricted in sign) is interpreted as an amount of
the commodity that has to be delivered to the outside world, if negative, or
recovered from it, if positive. An allocation for (R,m, T ) is a list x ∈ RN

+

such that
∑
xi =

∑
mi + T . (The inequality

∑
mi + T ≥ 0 is imposed

to guarantee the existence of feasible allocations.) For this extension of the
model (Thomson, 1995c), a simple expression of the consistency principle, by
contrast to what is the case in the model with only individual endowments.20

Other properties of allocation rules in this context are studied by Thomson
(1995c) and Herrero (2002).

(4) Probabilistic rules. So far, we have limited our attention to deter-
ministic rules. Here, as in (1), the commodity is only available in integer
amounts and assignments also have to take integer values, and allow a rule
to choose a probability distribution over allocations. We will treat as one
two rules that choose distributions with the same marginals; indeed, from
the viewpoint of the agent’s welfare, marginals are what matters.

20Thomson (1995c) uses the phrase “generalized economy”.
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There remains to specify how agents evaluate lotteries over assignments.
One possible formulation is to assume that they are equipped with von-
Neumann Morgenstern utility functions and compare assignments in terms
of their expected values. This formulation is studied by Sasaki (1997). His
main result is a characterization of the natural extension to the probabilistic
framework of the uniform rule—let us call it the probabilistic uniform
rule—as the only selection from the ex ante efficiency solution satisfying
(a form of) anonymity and strategy-proofness. See also Kureishi (2001) who
proves uniqueness with equal treatment of equals in utilities, which
says that two agents with the same utility functions, up to a positive linear
rescaling, should be assigned the same utilities; and Ehlers and Klaus (2003)
who relate the different notions of efficiency for this model.

A probabilistic rule is probabilistically same-sided if, when the sum
of the peak amounts is at least as large as the social endowment, then for
each agent, the rule assigns weight 1 to the interval from 0 to his peak
amount, and otherwise, for each agent, it assigns weight 1 to the interval
from his peak amount to the social endowment. Equal treatment of equals
in marginals says that if two agents have the same utility functions, the
rule should assign to them the same marginals. The only probabilistic rule
satisfying probabilistic same-sidedness, equal treatment of equals in marginals,
and weak group strategy-proofness is the uniform probabilistic rule (Hatsumi
and Serizawa, 2009).

To each preference relation over deterministic assignments can be associ-
ated an (incomplete) preference relation over lotteries by means of stochastic
dominance comparisons: a lottery is preferred to another if for each amount,
it places at least as much weight on the weak upper contour set at that
amount as the second one does, and for at least one amount, it places a
greater weight. When a property is rewritten in terms of these relations, let
us add the prefix “sd” (for “stochastic dominance”) to its name.21 The only
selection from the sd-efficiency (equivalently ex-post efficiency) and sd-no-
envy correspondence satisfying sd-strategy-proofness, is the uniform proba-
bilistic rule (Ehlers and Klaus, 2003). However, uniqueness is not preserved
if anonymity is imposed instead of sd-no-envy (compare to Theorem 11).

21For instance, an allocation is “sd-envy-free” if for each pair {i, j}, and each xi ∈ [0,M ]
agent i’s probabilistic assignment places on the set of amounts that he finds at least as
desirable as xi a weight that is at least as large as the weight that agent j’s probabilistic
assignment would place.
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(5) Game of migration. The commodity is available at several locations
and cannot be transferred between locations; agents are free to move however.
At each location, the commodity is divided by applying a particular rule. In
deciding whether to move, an agent takes into account the fact that the
distribution at his new location will be adjusted to accommodate him, but
ignores the inducement to move that others might then have. This is the
model formulated by Gensemer, Hong, and Kelly (1996, 1998). Related
stability questions are studied by Bergantiños, Massó, Moreno de Barreda,
and Neme (2013) under somewhat different conditions.

A distribution of the population is in equilibrium if no agent would
benefit from moving under the assumptions just listed. Allowing first the so-
cial endowment to differ between locations, these authors establish general
theorems stating the non-existence of an equilibrium for each list of rules (one
rule for each location) that are (i) selections from the efficiency solution satis-
fying strategy-proofness or (ii) selections from the no-envy solution satisfying
strategy-proofness, or (iii) selections from the no-envy and efficiency solution
(Gensemer, Hong, and Kelly, 1996). Suppose next that the social endowment
is the same at all locations, and that the same rule is applied at all locations.
Then, equilibria also fail to exist if the rule is any one of the equal division,
proportional, sequential priority, and uniform rules (Gensemer, Hong, and
Kelly, 1998).

Related questions are addressed by Kar and Kıbrıs (2008). Given a divi-
sion rule to be operated at each location, they inquire about the possibility
of assigning agents to locations in such a way that efficiency is obtained
overall. If preferences are symmetric (when two consumptions are symmetric
with respect to the peak amount, they are indifferent), such a matching rule
exists as long as the division rule is a selection from the efficiency solution.
Otherwise, and if the division rule is a selection from the efficiency solution
that is one-sided resource monotonic, strategy-proof, and consistent, then no
matching rule exists such that the pair delivers efficiency overall.

(6) When the agent set is partitioned into demanders and suppli-
ers. Here, we add to the model an a priori partition of the agent set into
demanders and suppliers, or buyers and sellers, of a good. Each of them has
a single-peaked preference relation over R+. An economy is simply a list of
preference relations for buyers and sellers. How much each agent receives can
be decided in two steps: the volume of trade between the two sides; then,
for each side, how much each agent on that side receives. The second part,
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if treated separately, is formally identical to the problem formulated in the
initial sections of this essay.

This problem is formalized and studied by Kıbrıs and Küçükçenel (2009),
who propose and characterize a family of rules that can be seen as two-step
extensions of the uniform rule. For each economy, the volume of trade is
calculated using two functions, β and σ, whose domain of definition is the
class of subsets of the agent set and whose range is R̄+; each is such that if
the subset contains only agents of one type, it takes the value 0. Then, if
demand exceeds supply, the volume of trade is the median of β(N), aggregate
demand (the sum of the peaks of the buyers), and aggregate supply (the sum
of the peaks of the buyers); if supply exceeds demand, the volume of trade
is the median of σ(N), aggregate demand, and aggregate supply. Then, for
each side, the uniform rule is used among the agents on that side. The rules
defined in this manner are the only selections from the side-wise no-envy
(no-envy is applied to each side separately) and efficiency solution to be
strategy-proof and such that the volume of trade only depends on aggregate
demand and aggregate supply.

Richer network constraints are incorporated in the model formulated by
Bochet, Ilkilic, and Moulin (2013). These authors characterize a rule that can
be seen as an generalization of the uniform rule, and characterize it on the
basis of efficiency, a form of equal treatment of equals, and strategy-proofness.
Chandramouli and Sethuraman (2012) address the issue of its group strategy-
proofness. Bochet, Ilkilic, Moulin, and Sethuraman is a study of a related
model (2012). Szwagrzak (2011, 2012a,b,c) further generalizes and unifies
them. He characterizes families of rules based on various relational principles
of fairness and robustness under strategic behavior.

(7) Relating the uniform rule to certain solutions to bargaining
games. Given N ∈ N and (R,M) ∈ EN , think of the comprehensive hull
in RN

+ of the set of efficient allocations as a bargaining game. (Note that
this mapping only takes into account the peak amounts of the preference
relations.) We ask whether there are solutions to bargaining games that,
when applied to this bargaining game, always yields the uniform allocation
of (R,M). The answer is positive: the Nash and lexicographic egalitarian
solutions are such solutions, as proved by de Frutos and Massó (1995) and
Otten, Peters and Volij (1996). The authors exploit these connections to
bargaining theory to develop characterizations of the uniform rule. Their
strategy is to transcribe axiom systems on which characterizations of these
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two bargaining solutions had been based to be applicable to the model under
study here.

(8) Several commodities. The following is an ℓ-commodity extension of
our base model. Say that agent i’s preferences Ri over Rℓ

+ are commodity-
wise single-peaked if he has a most preferred bundle p(Ri) ∈ Rℓ

+ and for
each xi ∈ Rℓ

+, he prefers to xi each bundle in the “box” in Rℓ
+ whose

sides are parallel to the axes and that has p(Ri) and xi as vertices. This
is equivalent to saying that, for each commodity k, fixing his consumptions
of all commodities but commodity k, his preferences over his consumption
of commodity k are single-peaked in the sense we gave to this term in the
one-commodity case; moreover, his peak amount for that commodity is in-
dependent of his consumptions of the others: it is pk(Ri). (Such preferences
need not be convex.) His preferences may in addition be separable: two
bundles that differ in how much they contain of a particular commodity,
when complemented with the same bundle of the other ℓ − 1 commodities,
are ranked in the same way irrespective of this complementary bundle.22

Mainly strategic questions have been asked for this model. Having more
than one commodity makes a considerable difference. In fact, the classical do-
main of general equilibrium theory is now included. It is well-known that on
this subdomain, and even if convexity of preferences is imposed, no selection
from the efficiency solution that satisfies standard distributional require-
ments is strategy-proofness. Let us then weaken efficiency to commodity-
wise efficiency: for each commodity separately, either each agent receives
at most his peak amount, or each agent receives at least his peak amount.
As we have seen, if ℓ = 1, this “same-sidedness” property is equivalent to
efficiency. If ℓ > 1, commodity-wise efficiency is not sufficient for efficiency
but it remains necessary. The rule obtained by applying the uniform rule
commodity by commodity—let us call it the commodity-wise uniform
rule—satisfies a number of properties satisfied by the uniform rule in the one-
commodity case. However, it is the only selection from the no-envy solution
to be commodity-wise efficiency and strategy-proof (Amoros, 2002, proves
this fact for two agents, and Adachi, 2010, for arbitrarily many agents).
Also, for two agents, if no-envy is replaced by equal treatment of equals in
physical terms, it is the only admissible rule. For |N | > 2, and if preferences
are strictly convex and commodity-wise single-peaked and peak-separable, it

22Cho and Thomson (2013) review the various ways in which the single-peakedness
property can be generalized to more than one commodity.
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is the only rule to satisfy unanimity (here, this says that if the sum of the
satiation bundles is equal to the endowment, each agent should get his satia-
tion bundle), equal treatment of equals in physical terms, strategy-proofness,
and non-bossiness (Morimoto, Serizawa, and Ching, 2013). This character-
ization remains true on the subdomain of continuous, strictly convex, and
separable preferences. A maximality-of-domain result is also available (Cho
and Thomson, 2013). A recent study, which allows for both divisible as
well as indivisible resources, is by Erlanson and Szwagrzak (2013). They
derive a family of rules defined by maximizing a separable concave function
a polyhedral extension of the efficient set.

The following results (Anno and Sasaki, 2013) provide additional infor-
mation on the structure of the set of strategy-proof rules. Given any such
rule, there is a strategy-proof rule that is undominated (in welfare terms)
in the space of all strategy-proof rules that dominates it. Thus, there is a
strategy-proof rule that is undominated in the space of all strategy-proof rules
that meet the equal-division lower bound. For |N | = 2, the commodity-wise
uniform rule is strategy-proof and it is undominated among all strategy-proof
rules satisfying the equal-division lower bound and the requirement that if an
agent switches to a different preference relation but his peak amount remains
the same, his assignment should not be affected.

Taking another step away from our base model, let us allow all convex
but possibly satiated preferences. A “Walrasian allocation with equal slacks”
is defined like a Walrasian allocation except that (i) prices are unrestricted
in sign, and (ii) budgets are augmented by the same amount, an equilibrium
requirement being imposed on this amount as well as on prices (Mas-Colell,
1992). Some agents may maximize their preferences in the interior of their
augmented budget sets. The “slack” that interior maximization generates
for these agents is distributed to the others. The “Walrasian solution with
slacks” coincides with the standard Walrasian solution when preferences are
monotone, and its equal-income version coincides with the uniform rule when
specialized to the one-commodity case. Amoros (1999) applies it to economies
with multi-dimensional single-peaked preferences and characterizes it along
the lines of Theorem 1.

A production model with a linear technology is studied by Kıbrıs and
Tapkı (2011), who establish a characterization of a multi-dimensional version
of the uniform rule along the lines of Theorem 12a.

(9) Introducing participation constraints. In the variant of the model
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we consider next, each agent has an outside option and is not forced to
participate in the distribution, if when he participates, he is assigned an
amount that he finds less desirable than his outside option. For each i ∈ N ,
let xi be the amount of the resource to the left of his peak amount that
agent i finds indifferent to his outside option (if there is such an amount)
and x̄i the amount to the right of his peak amount that is indifferent to
it (if there is such an amount; neither amount needs exist of course). To
model outside options, it suffices to replace agent i’s preference relation by
one in which he is indifferent between any two amounts to the left of xi,
and any such amount is indifferent to any amount to the right of x̄i. The
analysis of a variant of the model, a counterpart of one formulated for a
related public good problem (Cantala, 2004), is carried out by Bergantiños,
Massó, and Neme (2012b). Adding participation constraints complicates
matters significantly. Nevertheless, these authors obtain characterizations
of a version of the uniform rule analogous to results obtained for our base
model. Bergantiños, Massó, and Neme (2012a) perform a similar analysis of a
model in which each agent’s consumption is bounded above, with the bounds
possibly differing from agent to agent. This line of research is developed
further in Bergantiños, Massó, and Neme (2012c).

(10) When disposal is possible. As in (9), let us assume that for each
agent, there is an upper bound on how much he can consume, but this time
let us allow free disposal. Such allocation problems are analogous to claims
problems (O’Neill, 1982). They are formulated and studied by Kıbrıs (2003).

Another formulation is when for each agent, (i) there is a minimal amount
below which the commodity is not useful to him, (ii) there is an upper bound
beyond which it is not useful either, and (iii) preferences are monotone in-
creasing between these bounds. It is proposed and studied by Manjunath
(2012). Due to the lower bound, this model can be thought of as a hy-
brid between one in which resources are infinitely divisible and one in which
indivisibilities are present.

Appendix: sketches of selected proofs.

Several proofs are based on understanding what it means for an alloca-
tion to be envy-free and efficient without being the uniform allocation. In
sketching them below, we only discuss the case

∑
p(Ri) ≥ M although the

case
∑
p(Ri) ≤M is not always exactly symmetric (it is not symmetric when

preferences are defined over R+ instead of over a finite interval).
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Observation: Let N ∈ N and e ≡ (R,M) ∈ EN be such that
∑
p(Ri) ≥M .

Let x ∈ FP (e) be such that x ̸= U(e). At U(e), an agent consumes less than
his peak amount only if he consumes at least as much as anybody else.
Thus, since x ∈ P (R) and x ̸= U(e), there are i, j ∈ N such that
(i) xi < p(Ri) and xj > xi, and since x ∈ F (e), agent i does not envy
agent j, so that in fact (ii) xj ≥ ri(xi) > xi.

In the proof of each of the theorems below, φ is a rule assumed to satisfy
the hypotheses.

Proof of Theorem 2: Here, N is fixed. Suppose that there are N ∈ N
and e ≡ (R,M) ∈ EN with

∑
p(Ri) > M such that x ≡ φ(e) ̸= U(e). Let i

and j be as in the Observation. Let R′
i ∈ R be such that p(R′

i) = p(Ri) and
xj P

′
i xi. By peak only, x ∈ φ(R′

i, R−i,M). Yet, agent i now envies agent j.

Proof of Theorem 4: Here, N is fixed. A first step, whose proof we
skip, is that φ is resource-continuous. Suppose that there are N ∈ N and
e ≡ (R,M) ∈ EN with

∑
p(Ri) ≥M such that x ≡ φ(e) ̸= U(e). Let i and j

be as in the Observation. Let the social endowment decrease to 0. As this
occurs, since φ ∈ P , and by one-sided resource-monotonicity, which applies,
what each agent receives never increases, and it goes to 0. By resource
continuity, it does so continuously. Thus, there is M ′ < M such that x′j ∈
]xi, ri(xi)[, where x

′ ≡ φ(R,M ′). Since x′i ≤ xi < p(Ri), [x
′
i, ri(x

′
i)] contains

[xi, ri(xi)] so that x′j ∈ ]x′i, ri(x
′
i)[. Thus, at x′, agent i envies agent j, in

violation of φ ∈ F .

Proof of Theorem 5: Suppose that there are N ∈ N and e ≡ (R,M) ∈ EN

with
∑
p(Ri) > M such that x ≡ φ(e) ̸= U(e). Let i and j be as in the

Observation and g ≡ ri(xi) − xi. Let k ∈ N be such that
xj

k
< g. First, we

consider the k-replica of e. By replication invariance, φ chooses this k-replica
of x for the k-replica of e. We now introduce additional “clones” of agent j,
one at a time. Let us consider the first step. Since k

∑
N p(Rℓ) + p(Rj) >

kM , one-sided population monotonicity applies, and each of the k|N | agents
initially present should end up at most as well off as he was initially. Since
φ ⊆ P , this means that each of these agents ends up with at most as much
as at the k-replica of x. Thus, calling x′ the allocation chosen for the new
economy, x′i ≤ xi, so that [x′i, ri(x

′
i)] contains [xi, ri(xi)]. Since the new agent

is a clone of agent j, by no-envy and efficiency, he and each of the other
agents of type j receive the same amount, x′j. Thus, if what the newcomer
received came entirely from the k agents of type j initially present, each of

these agents would contribute at most
x′
j

k
. Since x′j ≤ xj and

xj

k
< g, this
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contribution would not be sufficient to bring x′j below x′i (to “jump over” the
gap [x′i, ri(x

′
i)]). Since x

′
i ≤ xi, x

′
j ≥ r(x′i). This inequality holds a fortiori if

agents other than the agents of type j also contributed to the amount received
by the newcomer. We introduce a second additional clone of agent j, and
repeat this reasoning to conclude that the common consumption of the agents
of type j (there are k+2 of them now) remains to the right of the gap of the
previous step. Since the common consumption of the agents of type i cannot
increase, the gaps can only enlarge, and the total amount that goes to the
agents of type j is unbounded above as k → ∞. This contradicts the fact
that, after the initial replication, the amount to divide is fixed.

Proof of Theorem 6: Suppose that there are N ∈ N and e ≡ (R,M) ∈ EN

with
∑
p(Ri) > M such that x ≡ φ(e) ̸= U(e). Let i and j be as in

the Observation. Let e′ be obtained by replicating e once. By replication
invariance, φ(e′) is obtained by replicating x once. Let i′ be the clone of
agent i and let R̃i′ be a new relation for him such that p(R̃i′) = p(Ri) and
xj P̃i′ xi. Since the sum of the peak amounts remain the same, one-sided
welfare-dominance under preference-replacement applies, and the welfares of
all 2|N | − 1 other agents should be affected in the same direction by the
change. Since φ ∈ P , this means that either (i) each receives at least as
much as he did in e′, or (ii) each receives at most as much. Because agents i
and i′ have equal peak amounts, and φ ⊆ FP , they receive equal amounts.
Thus, if (i) holds, each of the 2|N | agents receives at least as much as he did
in e′, and if (ii) holds, each of them receives at most as much. By feasibility,
in either case, each receives the same amount as in e′. But then, in e′, agent i′

envies agent j.

Proof of Lemma 1: Let N ∈ N with |N | = 2—say N ≡ {1, 2}—and
(R,M), (R′,M ′) ∈ EN be such that p(R) = p(R′) and M = M ′. We in-
troduce agents 3 and 4 with preferences R3, R4 ∈ R such that p(R3) =
p(R1) and p(R4) = p(R2), and we double the social endowment. Let x ≡
φ(R1, R2, R3, R4, 2M). Since φ ∈ FP , x1 = x3 and x2 = x4. Thus,
x1 + x2 = x3 + x4 = M . By consistency, (x1, x2) = φ(R1, R2, x1 + x2) =
φ(R,M) and (x3, x4) = φ(R3, R4, x3 + x4). Thus, φ(R,M) = φ(R3, R4,M).
The same argument applies to (R′,M): φ(R′,M) = φ(R3, R4,M). Thus,
φ(R,M) = φ(R′,M).

Theorem 2 and Lemma 1 together imply that any selection from FP sat-
isfying consistency coincides with the uniform rule for two-agent economies.
Now, let N ∈ N with |N | > 2, e ≡ (R,M) ∈ EN , and x ≡ φ(e). Since φ is bi-
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laterally consistent, for each N ′ ⊂ N with |N ′| = 2, xN ′ = φ(RN ′ ,
∑

N ′ xi) =
U(RN ′ ,

∑
N ′ xi). Thus, x satisfies the hypotheses of converse consistency

for U . Since U is conversely consistent, x = U(e) (This is what is called the
Elevator Lemma in Thomson, 2011).

Proof of Theorem 11: Here, N is fixed. Ching’s proof is based on two
lemmas describing how an agent’s consumption is affected if his preferences
change, the preferences of all other agents being held fixed. First is own-
peak monotonicity: if an agent’s preferences change, what he receives
should not move in the opposite direction of his peak amount. Second is
uncompromisingness: suppose that for some profile, an agent receives
more than his peak amount. Then, if his preferences change but his new peak
amount is at most as large as his initial assignment, he should still receive
the same amount (a symmetric statement holding if initially, he receives less
than his peak amount).

Suppose φ ̸= U . Let k ∈ N be an agent whose peak amount is the largest
and N ′ ⊆ N be the set of agents who have his preferences. At least one
i ∈ N \ N ′ receives an amount different from the amount the uniform rule
would assign to him. We change agent i’s preferences to Rk. Applying the
two properties in turn, we deduce that for the new profile, φ and U still
make different choices. We then identify one agent who receives an amount
different from the amount the uniform rule would assign to him. We change
his preferences to Rk too. We proceed in this manner until all agents have
preferences Rk, and reach the conclusion that for that profile, the two rules
still differ. However, they both satisfy equal treatment of equals in welfare
and efficiency, and for this profile of identical preferences, they should both
pick equal division.
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