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Abstract
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the source and direction of non-proportionality. This article identifies the nature of the
bias resulting from neglected heterogeneity. This bias is essentially a sample selection
bias, well-known in the literature. Gamma and discrete distributions are used to model
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1. INTRODUCTION

In duration analysis, we often face a situation with continuous models and discrete
data. It is natural to think of real time as continuous and that events can occur at any
moment in time. However, duration is often measured in intervals, not the exact time
elapsed, by the nature of the observation scheme. For example, many economic duration
variables constructed from longitudinal surveys are at most known only up to weekly

intervals.

The proportional hazard model (PHM) is one of the most widely used continuous-time
duration models (Cox 1972, 1975, Cox and Oakes 1984, Kalbfleisch and Prentice 1980).
Under the PHM with unobserved heterogeneity, the hazard rate is specified as a product
of three separate terms: a baseline hazard function describing the overall shape of the
hazard rate over time, a proportionality factor capturing the covariate (regression) effects
across different individuals, and a random variable representing unobserved heterogeneity

(hereafter, heterogeneity).

Maximum likelihood estimation (MLE) of the grouped duration models has been sug-
gested by Thompson (1977), Prentice and Gloeckler (1978), Kiefer (1988), and Sueyoshi
(1991). The first paper views a grouped duration as a sequence of binary survival indi-
cators that follow an independent Logit probability model. As discussed in Ryu (1994b),
Thompson’s parameterization is quite different from the conventional proportional hazard
model. The other three papers consider MLE of the PHM using grouped duration data.
Additionally, Kiefer and Sueyoshi develop likelihood ratio and Lagrange multiplier tests

for the proportionality assumption.

In this article, we develop a maximum likelihood estimation method of the PHM
for the case in which durations are grouped and unmeasured heterogeneity exists. The
motivation is that for much of the available survey data, duration variables are often
interval-censored, while many of the covariates are unobserved. This article also extends

Ryu’s (1994b) specification tests for proportionality. The suggested tests are easy to use,
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take alternative hypotheses into account to increase their power, and identify the source
and direction of non-proportionality without imposing a priori restrictions.

In addition, this article suggests a flexible, and tractable parameterization of the
baseline hazard function. In the grouped duration context, the suggested parameterization
can nest the non-parametric baseline hazard function as a special case. This article also
investigates the nature of the bias resulting from neglected heterogeneity. It is essentially
a sample selection bias, well-known in the literature. Gamma and discrete distributions
are used to capture heterogeneity.

Let us briefly sketch the estimation and specification test ideas. Grouped duration can
be viewed as a sequence of binary variables indicating whether the duration survives each
interval or not. By constructing a synthetic binary data set treating each combination
(individual, interval) as a new unit of indexation, we can reduce a grouped duration
analysis to a sequential binary choice analysis.

If there exists heterogeneity, one needs to integrate the random variable representing
heterogeneity out of each interval survival probability. Here, one has to take into account
selection over time of the underlying heterogeneity. It is because the sixth year graduate
students cannot be the same as the entering graduate students in terms of their underlying
type distribution. This selection should be accounted for to avoid sample selection bias, a
bias due to neglected heterogeneity.

To test the proportionality assumption, we can further aggregate the already grouped
data. If proportionality holds, the two estimators, one from the further grouped data and
the other from the original grouped data, will converge to the same quantity; however,
if proportionality is violated, they will diverge from each other. Therefore, a test of the
equality of these two sets of estimators will offer a test for the proportionality assumption.

Finally, to illustrate the detailed aspects of the new suggested estimation and test
procedures, this article explicitly considers the following five combinations regarding (i)
whether to use parametric or non-parametric baseline hazard specification and (ii) whether

and how to allow for unobserved heterogeneity: (parametric baseline, Gamma heterogene-
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ity), (parametric baseline, discrete heterogeneity), (non-parametric baseline, no hetero-
geneity), (non-parametric baseline, Gamma heterogeneity), and (non-parametric baseline,
discrete heterogeneity).

The rest of the article is organized as follows. In Section 2, after setting up a frame-
work for discussion, the relationship between group duration analysis and sequential binary
choice analysis is shown. Also, the basics of MLE are provided in the grouped duration
context. In Section 3, heterogeneity is introduced, and operationalized within the se-
quential binary choice representation of the grouped duration. Proportionality tests are
developed in Section 4. With flexible specification of the baseline hazard function, estima-
tion and test procedures are illustrated in detail in Section 5. In Section 6, left-censoring

will be addressed using the suggested framework. Concluding remarks follow in Section 7.

2. FRAMEWORK

Let T € R™ represent a duration variable of interest. Let

h(t|x,v) = ho(t) exp(z’'B)v, v ~ g(v), v >0, (1)

be the hazard rate of duration T', where ho(t) is a baseline hazard function, exp(z’() is
a proportionality factor, x and (§ are k x 1 vectors of observed covariates and regression
coefficients, and v captures unmeasured heterogeneity through density g(v). This model
can be termed as a PHM with unobserved heterogeneity.

To complete the model, one has to specify the baseline hazard function and the het-
erogeneity distribution. A simple way of treating the baseline hazard function is to make
a parametric assumption. In the literature, exponential and Weibull functional forms have
been most popular. In this article, we offer an alternative flexible parameterization to-
gether with the so called non-parametric treatment. Within the current grouped duration
setting, our suggested parameterization can nest the non-parametric baseline as a special

case.



The proportionality of the specification (1) refers to the constancy of 5. That is,
the covariate x increases or decreases the hazard rate by the same proportion throughout
duration. This assumption may be too strong in some situations. Ryu (1994b) examines
two empirical studies where the proportionality assumption is skeptical, and proposes
a new proportionality test within a minimum x? estimation context. The test in this
article extends Ryu’s (1994b) by generalizing the observation and aggregation schemes, by

introducing heterogeneity, and by considering general covariate types.

If v degenerates to a constant, there is no unobserved heterogeneity. It is well known
in the literature that neglected or mis-specified heterogeneity leads to biased estimation.
To capture heterogeneity, Gamma and discrete distributions have been most widely used
(see Heckman and Singer 1984 and Nickel 1979). These distributions are easy to use
within the proportional hazard specification in (1). In particular, the discrete distribution
can approximate any unknown distribution as the number of mass points increases with

sample size.

For the identification of level in the hazard specification in (1), we need to fix level
for two of three terms in the specification, ho(t), exp(z’(3), and v. We will leave hg(t) free,
and fix a level for the other two terms by (i) excluding a constant term from 2’3, and by

(ii) imposing one restriction on g(v) (For details, see Section 4.)

A discrete observation scheme can often be represented as an equi-spaced partition
Q of the support RT: Q ={0,1,2l,---,rl,00}. Under @, the researcher keeps a record of
individuals’ status at every [ time units, until time rl elapses. Without loss of generality,
let us assume [ = 1. This assumption corresponds to taking [ as the measurement unit
for duration. Let I; = [j —1,j), j =1,---,r, and I,1; = [r,00). For each observation
falling within one of r non-right-censored intervals Iy, - - -, I,., we know its duration up to a
unit interval; for each observation falling within the right-censored interval I, ;, we only

knows its lower bound.
Let a;(x,v) be the probability that 7" survives I; conditional on that it has already
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survived all previous intervals. Then we have

a;(x,v) = exp[— /]_1 h(t|z,v) dt] = exp|— exp(z’'B + v;)v], (2)

where

'yj:log[/] ho(t)dt], j=1,---,r. (3)

—1

These formulas were originally provided by Prentice and Gloeckler (1978) for the case
v = 1 with probability one.

Under a parametric baseline hazard specification, the 7;’s will be functionally related.
On the other hand, under a non-parametric baseline, the v;’s will be treated as r free pa-
rameters. Sometimes, grouped duration data involve intervals of unequal length, typically
with wider intervals at longer durations. Our method are easily extended to this case by
redefining the 7,’s in equation (3).

Let us assume that there are n independent observations. Let ¢ index each different
observation: ¢ = 1,---,n. Define T; as the ¢th duration variable, x; as the covariate of
individual ¢, and dj; = 1 if T} survives I; conditional on T; > j — 1, dj; = 0 otherwise,
j=1,---,r. Then, a grouped duration can be considered as a sequence of binary indicator
variables, that is, T; <= (dy4,-,d;;). The effective number of terms in the sequence
varies depending on at which interval the individual dies. Note that do;’s are meaningfully
defined only for those who have survived I;. By constructing a synthetic binary data set
treating each combination (individual, interval) as a new unit of indexation, we can reduce
a grouped duration analysis to a sequential binary choice analysis (Kiefer 1988; Prentice
and Gloeckler 1978; Ryu 1994b; Sueyoshi 1991; Thompson 1977). For each combination

(individual, interval), a survivor of the jth interval receives the probability
aj(z) = P(T'> j|IT > j —1,z) = Eja;(z,v) (4)

if he or she has covariate x, where E; denotes taking expectation over v using the jth
stage heterogeneity density, say, g;(v). Since «;(z) is only defined for those who satisfy

T > j —1, the jth stage density g;(v) should take this selection into account.
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The log-likelihood contribution of the ¢th individual is:

'
L= sjildjilog i + (1 — dji) log(1 — )], (5)
j=1
where s;; is defined by s;; = di; X --- X dj_1; with the convention s1; = 1, and «y; is a

short-hand notation for a;(x;). This representation shows a similarity between grouped
duration analyses and sequential binary choice analyses. Passing I7, one of two outcomes
occurs: to survive or not; Conditional on that the individual has survived I; (conditional
on dy; = s3; = 1), again one of the same binary outcomes happens, and so forth. Here,
the cumulative survival indicator sj; controls whether or not the jth interval is effective
for the ith individual: effective if s;; = 1 and not effective otherwise.
By adding [; over 7, we derive the log-likelihood function for the whole sample:
n n o
LO) =Y 1i=> Y sjldjilogaj + (1 —dji)log(l — aji)], (6)

i=1 i=1 j=1
where 6 denotes the collection of all model parameters such as (3, and parameters in
ho(t) and g(v). The maximum likelihood estimator of 6, say 0, is defined as the argu-
ment maximizing (6), or alternatively as the argument solving the first-order condition:
dL(0)/060 = 0. By expanding the first-order condition through Taylor series and rearrang-

ing terms, we derive
- D 0?L ._,0L(0)
0=0= 50 a0 ()

means that both hand sides of =P have the same asymptotic distribution as

where ‘=D’

n — oo up to y/n order (for details, see Amemiya 1985).
By taking the derivative of (5) and adding up, we obtain the score function as
oL " ol U di; — oy Oayg
=) = Yt _ . Ji 7t jZ. 8
00 ( ) - 00 Z Z % Oéji(l — Oéji) 00 ( )

i=1 i=1 j=1

By exploiting (i) information matrix equality, (ii) law of large numbers, (iii) E(d;; —aj;)* =

a;i(1 — a;;), and (iv) independence of d;; across both j and i, we can derive

(92[/ P - all 611 P - " 1 aOéjiaOéji
0000' <= 96 06’ _;J lsﬁaﬁ(l—aﬂ) 90 00"’ ©)
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where ‘=P’means that both sides of ‘=P’ have the same probability limit as n — oo after
being divided by n.

By plugging in (8) and (9) into (7), we can represent the maximum likelihood estima-
tor 0 in an asymptotically equivalent form. As is clear from the above calculation, all we
have to know is the interval survival probability «;; and its derivative day;/06. For this
purpose, we need to complete the model by specifying the heterogeneity density g(v) and

the baseline hazard function h(t).

The next section introduces heterogeneity within the sequential binary choice frame-
work. This offers an operationally convenient way of dealing with heterogeneity. Also, this
treatment will make clear the nature of the bias resulting from neglected heterogeneity.

The bias is a sample selection bias, well-known in the literature.
3. UNOBSERVED HETEROGENEITY

We keep the sequential binary choice representation of the grouped duration. Accord-
ingly, we are interested in updating the heterogeneity density g;(v) as time passes, and in
computing each interval survival probability «;(x) using the jth stage (interval I;) density
gi(v),j=1,---,r.

Given a density specification for the heterogeneity v ~ g(v), we can use this density
to integrate out the heterogeneity v from those unconditional quantities such as survival
function, distribution function, and density function. However, we cannot use the same
density g(v) to integrate out the heterogeneity term v from those conditional quantities
such as hazard rate, and interval survival probability. It is because the information con-
tained in the conditioning statement has an implication on the heterogeneity. For example,
those who are staying in the graduate program longer will be different from the entering
class in terms of their latent type distribution, that is heterogeneity. Over time, “diligent”
students will finish the program, whereas “lazy” students will still hang around, so called

weeding out effect. This effect reflects selection over time.
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Defining ¢; = exp(a’3 + ;), we have from (2)
aj(x,v) =P(T > j|T > j—1,z,v) = exp|—exp(zf + 7;)v] = exp(—c;v).  (10)

Due to the selection over time, the jth stage heterogeneity density g;(v) will be different
from the initial density, g(v). The conditional density g;(v) is given by

P(T >j—1a,v)gv) et tea-Dvg(v)
P(T > j—1|z,v)g(v)dv  My(ci+ - +cj_1)’

9i(v) = gO|T > j - 1,2) = = (11)

where M, (t) = E,(e"'’) is the moment generating function of g(v). Note that g;(v) =
g(v). Since, each c; is positive, we can easily see that g;(v) is first-order stochastically
decreasing in j. Let v; be a random variable having density function g;(v;). Then, v,
captures the heterogeneity in the jth interval, and v; first-order stochastically dominates
vy for all j < j'.

Alternative way of deriving g;(v) is to rely on a pure mathematical identity. Let
S(j|z,v) and S(j|z) be the survival probability that 7" exceeds j, conditional on (z,v) and
x, respectively. One has (i) S(j|z,v) = a1 (z,v) X - xj(z,v), (ii) S(jlx) = E,S(j|x,v) =
I~ Sz, v)g(v) dv, and (iii) S(j|z) = Eyaq(z,v) x - - - x Eja;(z,v), where E; denotes the

expectation taken with respect to g;(v). Using (i) and (ii) and arranging terms, we derive

S(j|x) = / Tloa(e,0) x - x gz, 0)]g(v) do

— ooa x,v)gv)av X --- oooz'xv al(a;,v)x---xaj_l(x,v)g(v) v
_/0 1(,0)g(v) dv x x/o o) x o X ag 1 (2 0)go) do

(12)

Now, by matching (iii) and (12) term by term, we can easily see that

gi(v) = aq(z,v) x -+ X aj_l(w,v)g(v)//ooo ai(z,v) X - X aj_1(x,v)g(v) dv

—expl-(er 4 oo+ e ilg) [ Cepl—(er o lgydy 3

=exp|—(c1 + -+ cj_1)v|g(v)/My(er + -+ -+ ¢cj—1).
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Using the updated heterogeneity density in (13), we can compute the marginal (with

respect to v) interval survival probability a;(x):

aj(x) = Ejaj(z,v) = /OOO a;(x,v)g;(v) dv

- /ooo expl—(c1 + -+ &1+ ¢)lg() dv/My(er + -+ ej_y) D

= M,(c1+ -+ cj1+¢j)/My(ci + - +¢j-1)

with ay(z) = M,(c1). The interval survival probability in (14) is represented as a ratio of
the moment generating functions of g(v), evaluated at two different points. Therefore, we
readily notice that any heterogeneity density g(v) will yield an analytical solution for the
interval survival probability «;(x) insofar as g(v) admits an analytical moment generating
function.

Now, we would like to specialize the above formulas (13) and (14) for the Gamma
and discrete distributions. Let us consider the Gamma heterogeneity first. Assume

that v follows a Gamma distribution with parameters a and b, denoted Gamma(a, b):

v~ g(v) = b e /T (a), where T'(a) = [;~ t* te~'dt. It is easy to show that the

b
b+t

Ev = a/b and Var(v) = a/b? To fix the level of v, let us assume that Ev = 1. This

moment generating function is M, (t) = (==)*. In particular, the mean and variance are
identification condition imposes a = b. That is, the heterogeneity is modeled through a

Gamma distribution with mean one and variance 1/b.
From (13),
e—(erttes)vg(y)  phem(brertte; )bl bgvb—le—ij
90 = N Aea) TOMe T Fo) | T
where bj = b+c1+---+cj_1 with by = b. Note that g;(v) is the density corresponding to a

(15)

Gamma distribution with parameters b and b;, denoted Gamma(b, b;). Since E;(v) = b/b,
and Var;(v) = b/b%, we observe that g;(v) exhibits decreasing mean and variance as j
increases. That is, adverse but homogenizing selection is going on over time in terms of

heterogeneity distribution. Now, from (14),

(16)

M, (1 + - +c¢jo1 +¢;) b+ tea
aj(x) = - == : :

My(c1 + -+ +cj1) b+ci+--+cj1+¢



Next, let us consider a discrete heterogeneity distribution following Heckman and
Singer (1984). Assume that v takes M finite values vy,---,vp with probabilities
p1,---,pyp. This distribution describes that there are M unobserved types. For level

identification, let us fix vy; = 1. For v,,, the following parameterization is convenient:
vy = 1 (level normalization), v, =e“", m=1,---, M — 1, (17)

where w,,’s are unrestricted, —oco < w,, < oco. For p,,, the following parameterization is

again useful:

1 erm
PMm = — y Pm = — 7m:17"'7M_17 (18)
L+ Yoy €™ L+ Yy €™

where 7,,’s are unrestricted too, —oo < 7, < co. The moment generating function of this
discrete distribution is M, (t) = E,e™ " = Zi‘f:l e~ tvmp,

Again, from (13), we derive

e—(cl-l-'“-l—cj—l)vmpm M
) _ =1.-.. . 19
g.] (Um) Z%_l e_(cl+“'+cj—1)vmpm’ m ) ) ( )

Also, from (14), we obtain

M —(c1+-+cj_14cj)vm
ai(py = Molet e te) | Py e T S TR (20)
J MU(C1 44 Cj—l) 2%21 e_(cl+"‘+cj—1)vmpm ) ’ ,

We can carry out the maximum likelihood estimation of the grouped PHM with het-
erogeneity by maximizing the log-likelihood function (6) after plugging in aj; = «a;(x;).
Under a set of quite general regularity conditions (see Amemiya 1985, ch. 4), the maximum
likelihood estimator will converge to a normal distribution with mean equal to true param-
eters and variance matrix equal to the inverse of the information matrix. The information
matrix can be consistently estimated using (9) by replacing the unknown parameters with

their estimates.

4. TEST FOR PROPORTIONALITY
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The popularity of the PHM has made the issue of model checking extremely important.
This section extends Ryu’s (1994b) test for proportionality to the general grouped duration
framework with discrete/continuous covariates and observed/unobserved heterogeneity.
Ryu’s (1994b) framework is rather limited in the sense that it only considers observed
categorical covariates, neglecting unmeasured heterogeneity and continuous covariates.

By further aggregating the already grouped duration data, we can artificially generate
another coarser set of grouped duration data. The aggregation can be represented as
a contiguous grouping of integers, {1,---,r}. Let Q@* = {G1,---,G,+}, where G} =
{pn+-+gr—1+1,---,91+ -+ gr—1 + gx} with gx being the number of elements in
the subset G, gr > 1, k=1,---,r*. Then, Q* corresponds to the following aggregation
scheme: aggregate the first g; intervals into a big interval, say I7; aggregate the next go
intervals into a big interval, say I5; continue in the same way until we obtain the last big
interval .. At least one of the gi’s must be greater than one. Otherwise, no aggregation
occurs. Under Q*, the duration data will take the form dj;, = Iljcq,dj;. Here, dj,
takes value one if individual ¢ survives the big interval I} = Ujeq,I; and zero otherwise.
Moreover, o, = Iljcq, ;i = exp[—exp(zf + ;)] is the survival probability of the big
interval I}, where v} = log fteI; ho(t) dt =1log(3_,cq, €7)s k =1,---,r*. Obviously, the
new coarser data set Q* contains less information than the original finer data set ). Let (3
be the estimate of 3 obtained by using the original data (), and B* the estimate obtained
by using the further aggregated data Q*. By comparing these two estimates, we can design
a new proportionality test statistic.

If the PHM holds, both B and B* will converge to the same 3. However, if the PHM
fails to hold, B and B* will converge to different quantities. To see this, let us consider a
simple case where r = 2,7* = 1,Q = {0,1,2,00},Q* = {G1}, and G; = {1,2}. Assume
that all covariates have decreasing impacts on the hazard rates:

[ ho(t)exp(zBt), forte Iy;
Mt ) = { hg(t) exp(z3?), forte I;,

with 3! > 3?2 > 0. Here, heterogeneity is assumed away by taking v = 1 with probability
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one. The aggregate estimator B*, obtained from the coarser data I7 = I; U I3, is symmet-
rically affected by 8' and 32 since I is the symmetric aggregation of I; and I. On the
other hand, the disaggregate estimator B, obtained from the finer data set I; and I, is
asymmetrically affected by 3' and (32 since there are more observations in I; than in I
(note that some individuals have died in I;). Therefore, the influence of 8* relative to 3°
is stronger on § than on 3*. Since ! is larger than (2, 3 should be stochastically larger
than B* As a result, the difference between B and B* converges to a zero vector under
the PHM, but to a non-zero vector under non-proportionality. The proposed test statistic
uses this disparate convergence pattern: if the difference 3* — 3 is significantly different
from zero, reject the PHM; otherwise, do not.

The test statistic

R= (-3 Var(6- 598 -5 (21)
follows a chi-square distribution with degrees of freedom equal to the number of parameters

in 3, say k. The variance inside the bracket can be expanded as

Var(3 — 5) = Var(3) + Var(3*) — Cov(B,3) ~ Cou(B,5°)’ (22)
In calculating the above test statistic, the difficulty usually lies in computing the covariance
matrix between the two estimators. It is so because variances can be easily estimated
through the inverse of the observed information matrices.

Then, how to compute the covariance matrix? It depends on whether we adopt a
parametric baseline specification or not. Obviously, the original finer data set contains
bigger amount of information than the aggregated coarser data set. However, this ranking
in data information contents does not necessarily yield an efficiency ranking between B
and (*. If we make parametric baseline hazard assumption and thus estimate the same
fixed number of baseline hazard parameters in both data set-ups, we obtain a result that
3 is more efficient than §* (Ryu 1993a) and that their covariance reduces to Var(f)

(Hausman 1978). Obviously, the number of free parameters in the parametric specification
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should not exceed the number of non-right-censored intervals r* in the coarser data set
(see sub-section 5.5.). On the other hand, if we do not make a parametric functional
form assumption on the baseline hazard, the number of baseline hazard parameters being
estimated under the two data set-ups are different: when we are estimating the PHM using
the finer data set, we are estimating more steps regarding the baseline hazard function
(r > 7*). In this non-parametric case, the ranking in data information contents does not
imply an efficiency ranking between B and B* This lack of efficiency ordering prohibits
one from using Hausman’s (1978) result to simplify the covariance between B* and B in
the non-parametric baseline case. In the next section, we will explain how to compute the
covariance matrix in the non-parametric baseline case.

Besides the overall chi-square test, we can also conduct individual t-tests. Under the

proportionality assumption,

will have an asymptotic standard normal distribution, where Bj and BJ* are the jth elements
of B and B*, and O (G—fj is the square root of the jth diagonal element of Var(ﬁA — B*)
The advantage of individual t-tests is to separately identify those covariates which exhibit
non-proportional effects, and to inform the direction of those non-proportional effects.
For instance, if ¢; is significantly positive (negative), then we can conclude that the jth
component of x has a non-proportional effect on the hazard rate and that its coefficient is
larger (smaller) in the early intervals than in the later intervals. If the individual t-tests
detect non-proportionality, then it would be a better idea to estimate a non-proportional
hazard model by allowing different 3’s for those non-proportional covariates across different
intervals.

If we have more than two non-right-censored intervals in the original data set (r > 2),
we have a lot more flexibility in choosing a further aggregation. For testing purposes, the
selection of an optimal aggregation may be guided by whatever alternative hypothesis one

has in mind. For example, if there are three non-right-censored intervals in the original
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data set (r = 3) and if one suspects that the covariate impact is weaker in the third interval
(if there is any difference), one may put the first two intervals together, leaving the third
interval alone. That is, take r* = 2,Q* = {G1,G2},G1 = {1,2},Gy = {3}, I7 = I, U I,
and I3 = I3. This aggregation will yield a higher power against the suspected alternative
than any other aggregation. Of course, without a clear alternative in mind, we cannot

design an optimal aggregation.

The suggested test is very easy to implement, and allows one to take into account the
form of suspected alternative hypothesis to increase power of the test. Most of all, the test
is much more convenient to use compared with other existing tests. To apply the likelihood
ratio test, one has to estimate the model under a non-proportional alternative. If there
are ten covariates (kK = 10) and ten non-right-censored intervals (r = 10) in the original
data, the most general form of non-proportional hazard model will include 100(= 10 x 10)
0B’s, too many parameters! To reduce the number of parameters, one has to introduce
a priori restrictions by assuming either that some covariates have proportional effects or
that the non-proportional effects satisfy certain parametric restrictions. The situation
is practically no better for the Lagrange multiplier test. Even though we only need to
estimate the model under proportionality, we have to consider a very long vector of score
functions corresponding to 100 (’s. Again, we are forced to adopt the same a priori
assumptions as in the likelihood ratio test to solve the dimensionality problem. However,
our test identifies the source and nature of non-proportionality without imposing any a

priori restrictions, a useful property not shared by the existing tests.

5. BASELINE HAZARD FUNCTION

This section specifies the baseline hazard function, and details the estimation and
test procedures. Both parametric and non-parametric specifications are introduced and
compared with each other. We first introduces the general framework in sub-section 5.1.

In sub-sections 5.2 through 5.4, we specialize the general framework to the cases of (non-
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parametric baseline, no unmeasured heterogeneity), (non-parametric baseline, Gamma
heterogeneity), and (non-parametric baseline, discrete heterogeneity). Finally, parametric

specifications are studied in sub-section 5.5.

5.1. A general framework

In the nonparametric baseline case, v;’s (7;’s) can be treated as r (r*) free parameters
in the finer (coarser, respectively) data set. It is because hg(t) is left unspecified. On
the other hand, in the parametric case, v;’s (v;’s) are functionally related due to the
parametric restriction imposed on ho(t). To be able to use the same parametric baseline
hazard specification across the finer and the coarser data sets, we should restrict the
number of free parameters in the parametric specification not to exceed r*, the number of
non-right-censored intervals in the coarser data set.

Let 0 denote the vector of all model parameters in the finer data set, which include
0, parameters in unmeasured heterogeneity if any, and parameters in the baseline hazard
function. Let 6* denote the vector of all parameters in the model applicable to the coarser
data set. In the non-parametric baseline case, the number of parameters are reduced
due to aggregation in the coarser data set, resulting in dim(6*) < dim(#). But, in the
parametric baseline case, we have 6 = 6*.

Under general regularity conditions (see Amemiya 1985, ch. 4), we have from (7)-(9)
in Section 2.

. Oaj (904]1 —aj; 0oy
0 0_ ZZS]ZOZJZ 1—Oéjz) 00 00’ ZZS]Z@JZ 1—0631) eld ]

=1 j=1 15=1

ZZS aOéji aOéji]_l)
Jzozﬂ 1 —ozjz) 00 00’ ’

1=1 j=1

(24)

where the variance-covariance matrix can be evaluated at the estimated parameter values
for practical use.
Next, let us consider the coarser data set Q* = {G1,- -, G~} introduced in Section

4. Note that dj, = Il;cq,d;; denotes the outcome whether the ith individual survives
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I} or not. Accordingly, o}, = Iljcq, oj; denotes the probability of surviving the interval
I7. Now 0" is of a smaller dimension than 6 due to aggregation, with the difference being

r —r*. By a similar procedure, we obtain

A P 1 oaj. 0o n dy. —aj. oaj.
9 — 0 = * ki k:z * ki ki ki
[ZZS’%;U “al,) 00 90 Z ki (1— o) 00 ]
=1 k=1 ? =1 k=1 ? ? (25)
G 1 daj, 00},
~ N0, [Z Z Ski o (1—ar,) 06 06~ =)
i=1 k=1 ki ki

Finally, let us compute the covariance between 0 and 6*. For this purpose, let us

rewrite the original estimator 0 as follows:

n 7‘

D Daj; 80432 . ji — i O
- ZZS]’% 1—a 36 o0 2 ]EZG Sﬂaﬂ M=ay) a6 (%)

=1 j=1 =1 k=1

Now note that d;; and dj, are independent either i # ¢ or j ¢ Gj. This is due to
the independence of survival indicators either for different individuals or across non-
overlapping intervals. So, let us compute the covariance between d;; and dj, for the
case i = ¢’ and j € Gj. Observing that d;;d;; = dj,; for all j € G}, we can easily obtain

cov(dyi, dy;) = ag; (1 — aj;).

Therefore,
Ao "< 1 Oaj; O,y
cov(0,0%) = [ZZS]’Z ol —ay) 90 o0 ]
i=1 j=1
. ’ (27)
X[ZZ(Z g 00 )1—a*.69*' ZZ ki 1—a ) 00% 0 0*']
i=1 k=1 jEGy J ki i=1 k=1 ki

Using (24), (25), and (27), we can obtain the variance matrices of 3, 3*, and their
covariance matrix, by figuring out the relevant blocks corresponding to (’s out of 6’s.
Then, these results can be used to compute the specification test statistics R and ¢;’s in

Section 4.

5.2. Non-parametric baseline, no unmeasured heterogeneity
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This sub-section analyzes the case of non-parametric baseline hazard function without
unmeasured heterogeneity. Without imposing a parametric assumption on the baseline
hazard function ho(t), we can still estimate the integrated baseline hazard over each of r
non-right-censored intervals I, ---, I,.. In the current setting, we are able to consistently
estimate 7p,---,7, or, equivalently, exp(vy;) = fo ho(t)dt,--- exp(y,.) = :_1 ho(t) dt.
This means that we can approximate the unknown function hg(t) up to a step function
with r different steps, insofar as r is either finite or increasing at a rate slower than
the sample size n. The model parameters can be represented as a (k + r) x 1 vector,
0= (3,

Note that

O0aj; /00 = —ae vt Y 25 (28)

where zj; = (z},¢;) is a (k +r) x 1 column vector and e; = (0,---,0,1,0,---,0)" is an

r X 1 unit column vector with one occupying the jth location. Thus,

8L - - d i Qjq o ) - -1
a0 =~ Zzsﬂi——aj SOz ==y 258595y, (29)
i=1 j=1 ¢ j=
where Z; = (21,--+,%jn)" is an n X (k + r) matrix, Q; is an n x n diagonal matrix of

(1 — aj;)/(i(e®iP+75)2), S, is an n x n diagonal matrix of s;;, and u; is an n x 1 vector
of (d;; — aﬂ)/(ajie‘r;ﬁJrW). Using Var(u;) = §;, j =1,---,r, the information matrix can

be approximated as

Z’SQ uJ]ZZ’SQ 1 ZZ’SQ 1Z;. (30)

Jl Jj=1 Jj=1

Using these results, we have

>
||U

ZZSQ 171~ 12259 u;j

N(0, [Z 758,05 7).

j=1
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Similarly for the coarser data set @* = {Gy,--, G~ }, we obtain

A~

r* r* r*
0 =02 (Y Si0 2 Y 2 S0y e~ N 2 St ), (32)
k=1 k=1 k=1
where Z7 = (25,---,25,) is an n x (k47*) matrix with 2}, = (2, el )’ being a (k+7*) x 1
vector (e} is an r* x 1 unit vector with one in the kth location), Q7 is an n x n diagonal
matrix of (1 — af,;)/(af,(e%P#7%)?), S5 is an n x n diagonal matrix of s%;, and u} is an
n x 1 vector of (df; —af,;)/(afe*iP+7%). Again, note that S is an identity matrix of order
n, and that Var(uy) =Q5, k=1,---,r*
Finally, the covariance between 6 and 6* is

cov (0, 6%)

ZZ/SQ lz] IZ ij Q* IZk ZZk Sk,Q* IZk] ,
j=1

k=1 jEGk k=1

(33)

where SjQZ_lS,;“ = SJQZ_I (for all j € Gi) has been used, a property resulting from

sjisy; = s;; for all j € Gy.
5.3. Non-parametric baseline, Gamma heterogeneity

This sub-section analyzes the case of non-parametric baseline with unmeasured het-
erogeneity modeled according to a Gamma distribution. Assume that v; follows a
Gamma distribution with parameters a and b, denoted Gamma(a, b): v; ~ ii.d. g(v) =
b*v* e " /T'(a), where T'(a) = [y t*"'e~" dt. It is easy to show that the moment generat-
ing function is M, (t) = (b%_t)“. The mean and variance are Ev = a/b and Var(v) = a/b>.
To fix the level of v, let us assume that Fv = 1, rendering a = b. That is, the unmeasured
heterogeneity is modeled through a Gamma distribution with mean one and variance 1/b.

The model parameters can be represented as a (k+ 1+ 7r) x 1 vector, 8 = (5’ : b
Y1, %) . Using the moment generating function, M, (t) = (bLH)b, we obtain

b+61¢+"'+6j_1¢

b -
R :1,---77”7 34:
b—f—Cu—i—'“-i—Cj—u—i—Cji) / (34

aji = (

18



where c¢j; = exp(x;f + v;). Now, it is straightforward to compute da; /00 = (Oaj; /OB -
O0aj;/Ob : Oaji /01, - -+, Ocji/Ov,)'. We have

Oaj 2 - G
= —b Qi b : xi,
5 S I P RPN
8043-2- Qg bt G
= —=log aj; + blaj;] ® y ’
oo — b B T (35)
80zji bt 1
— 2 = b Qi b
8’}% [ J ] (b+cli+---+6j_1i+cji)2

x [cji(cridie + -+ ¢j—1i6j—1k) — ¢ji0ju(b+c1i + - + cj—14)],
where ¢, takes value one if j = £, and zero otherwise.
Under the coarser grouping, the model parameters becomes a (k+ 1+ r*) x 1 vector,
0* = (0 :b:~7,---,~~) . Similarly, we have

btey+- -+ y
T R N AP ¥

O'/Z’L:( )a,k/’:]_,"',T*, (36)

where ¢}, = exp(x} + 7). From this, we obtain

ooy, b1 Chi
L= —p?a},] 7T - Tiy
93 [agi] (b+cl,+-+ci_j;+ci)?
ooy, af, b Chi
L= —logay,; + blag,;] ® ) ’
b 2 gy, (] b+ci+---+ cr_q; + c;;i)2 (37)
oo _ 1
; (b4l + -+ chy; + i)

X [egi(€1301 + -+ Co1i0k—15) — ChiOj (b + T + -+ + cpqy)]s
where d;; takes value one if k = j and zero otherwise.

By combining the above results with the general framework introduced in sub-section

5.1, we can make inferences on 6 and 6*, and carry out the proportionality test.

5.4. Non-parametric baseline, discrete heterogeneity

This sub-section analyzes the case of non-parametric baseline hazard functionwith
unmeasured heterogeneity modeled according to a discrete distribution. Assume that v;

takes M finite values vy, - -, v); with probabilities pq, - - -, pas. This distribution describes
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that there are M unobserved types. For level identification, let us fix vy = 1. For v,,,

the following parameterization is convenient:
vy = 1 (level normalization), v, =e“™, m=1,---, M — 1, (38)

where w,,’s are unrestricted, —oo < w,, < co. For p,,, the following parameterization is

useful:
1 erm

PMm = y Pm = 7m:17"'7M_17 (39)
]‘+Zm leﬂ-m ]‘+Zm leﬂ-m

where 7,,’s are unrestricted too, —oo < m,, < o0.

The model parameters can be represented as a (k + 2M — 2 4+ r) x 1 vector, 6 =

(6" :wy, - wpp—1 Ty, TA—1 V1,00, Yr) . Using the moment generating function,
M,(t) = Eye ™ = 2%:1 e "mp,,, we obtain

M (eyitdci 1itcss
s — My(c1i + -+ ¢j_15 + ¢ji) _ D A A 2 G=1,-o,r (40)
! My(cri + -+ cj—15) ZM 1 e~ (critteji—10)vmp ’ T

m=

From this, we can compute Oaj;/00 = (0a;;/0F : OcyifOws,---, 00, /0wn—1
Oaj; /01, -+, 00 /Ompr—1 : O /Ov1,--+,0a;;/0v,) . For notational convenience, let

M g
us define aj; =c1;+---+¢j; and 65, =), _; e %" p,,, we have

M
O 1
Jv E —aj_1;Vm —QjiVm
8ﬁ 6 pmvm(ajza] 1€ 77 ! — @ i€ ’ )7
ji m=1
Oai;
o . . p—i—1iVk _ .., —QjiVk
8wk - 6”pkvk(aj2a]—lze 7 a]ze J )7
Jt
M (41)
aaji 1 —a iV —Q_1;Vk 1 E : —Q_1;V —a;;v
a— = 6—pk(e Je — ajie J— 1t )+ 6_pl€ pm(ajze Jg—1:Ym __ e Jji m)
Tk 3 3
m=1
aajz Ck’L

Vi 6]2 me”m ajie” T gy —eT W Lgg ],

where ag; = 0.

Under the coarser grouping, the model parameters becomes a (k+2M — 2+ r*) x 1

vector, 0* = (' :wy, -, wp—1 T, TA—1 2 YT, Y ). Similarly, we have
M= (ef i et )vm
* Zm:le ¢ - ¢ pm o * o *
ag; = M (e e om k=1, 7 k=1,---,r", (42)
Zm:le pm
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where ci; = exp(z;8 + 7%). From this, we can compute da},/00* = (0aj,;/08" :
daj; /0wy, - -+, 0a];/Own 1 : Oaj; /O, -+, 0a; /Omy—1 + O, /Oy, - -+, 0af,;/Ovy)". For

. . M —a*
* % * * a.v
notational convenience, let us define a}; = cj; + -+ +cj; and 65, =, _ e " p,,. We

have
M
aa;i_ 1 * % —a’_1;Um * _—al;Um
o3 5 pmvm(ajiaj—lie ! — Qe ),
Ji m=1
aa;i _i ( * % —a;_livk % —a;ivk)
—8wk —_ 6*pkvkz ijiaj_lie a/jie 3
ji
dar 1 LM (43)
J? —a’ vy * _—a¥_,.vp * _—at_,.v —a’v
D 6—*2%(6 i —ag;em i ")‘1‘6—*2% E pm(age %=1t — em%itm)
K Ji jt m=1
M
*
aa/ji _ % v [Oéﬂf'e_a;—livml ) o e—a;ivml ) ]
a,}/* 6* PmUm J1 (E<j—1) (E<g) b
[ |

where af; = 0.
Again, by combining the above results with the general framework introduced in
sub-section 5.1, we can make inferences on 6 and 6*, and carry out the proportionality

test.
5.5. Parametric baseline, Gamma and discrete heterogeneity

Once we parameterize hg(t) using m free parameters, we have a fully parametric

duration model. This article proposes one to use the following flexible specification.
J
Vi = 10%/ ho(t)dt = 60 4 61j + -+ 6m—1™ 1. (44)
j—1

This parameterization is polynomial in time, and it guarantees positivity of the integrated
baseline hazard over each interval, I;. The exponential distribution (constant baseline
hazard) is a special case when m = 1. The monotonic hazard feature of the Weibull
distribution is well captured by choosing m = 2. As m increases, the resulting parametric

specification becomes more flexible.
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As a practical guide, if the baseline hazard function is expected to be monotone, use
m = 2. If U or inverted U-shaped, use m = 3. Without any clear idea on the shape, apply
model selection criteria to the choice of m. If data are rich enough, use the non-parametric

baseline specification.

If the number m of free parameters is equal to the number r of non-right-censored
intervals, then both the parametric and non-parametric baseline specifications would yield
the same results. This is because of the invariance property of the maximum likelihood
estimation. If m is greater than r, then we are not able to identify all these m parameters
from grouped duration data with just r non-right-censored intervals. We can only identify
r restrictions on m parameters, because the baseline hazard parameters enter only the
likelihood function through ~1,---,7,. On the other hand, if m is smaller than r, then we
are virtually imposing r —m parametric restrictions on those r integrated baseline hazard
rates. For identification of the parametric baseline hazard function (44), we readily note
that the number of free parameters in hg(t) should not exceed the number of non-right-

censored intervals in the data set, m <.

In the parametric baseline cases, the maximum likelihood estimation and specification
tests are straightforward: (1) obtain two sets of parametric maximum likelihood estima-
tors, one from the original data set and the other from the new coarser data set, (2)
estimate each variance as the inverse of the observed information matrix, and (3) estimate
their covariance as the variance of the estimator from the original data set, a result due

to Hausman (1978).

From the results in the non-parametric baseline case, we can derive the partial deriva-
tives of aj; and aj,; with respect to each model parameters. The partial derivatives with
respect to B and parameters in unmeasured heterogeneity are the same as before. Only
changes occur in the partial derivatives of a;; and «aj, with respect to the parameters in
the baseline hazard function. But, this can be handled easily using the chain rule of dif-
ferentiation. For example, Oa;; /06, = (071/00k, - -, 07, /0k)(Octji/OV1, - -+, 0tji /Oy )
Similarly for da,; /06y

22



To allow maximum flexibility within the parametric baseline specification (44), one

can use m = r*, resulting in
j *
o =log/ ho(t)dt = 8o+ 815+ +6p1j” "L =1,---,m. (45)
j—1

Under this parameterization, the coarser estimator B* is in fact equivalent to the
semi-parametric estimator, whereas the original estimator B is an estimator obtained after

imposing r — r* restrictions on the baseline hazard function.
6. APPLICATION TO LEFT-CENSORING

The suggested framework can be used to deal with left-censoring issue in duration
analysis. If every individual is observed from the start of his or her episode (called, flow
sampling), there is no problem of left-censoring. Often, however, individuals are observed
to be already in the middle of an episode (called, stock sampling). The resulting duration
variable is said to be left-censored, and is known to complicate the estimation (see, for
example, Amemiya 1985, ch. 11).

Considering that a longer duration is more likely to be in progress at a random start
time of observation, the fact that an episode is left-censored implies that the corresponding
duration is more likely to be longer than a typical duration (described as length biased
sampling). We would like to address this problem by assuming that there is a latent
unobserved variable affecting duration, say v. The essential feature of left-censoring can
be described by the changing distribution of v over the duration process. Therefore, by
updating the distribution of v at each stage of the process as suggested in this article, we
can account for the selectivity, thus for the left-censoring.

To be concrete, for left-censored observations, we replace a;(x) in eq. (14) with the

following modified interval survival probability:

; (2]5) = Eupjaj(z,0) = / " (2, 0)gars (v) do, (46)
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where g1 ;(v) is the s + jth stage heterogeneity density, gs4+;(v) = g(v|T > s+ j — 1,z)
(see eq. (11)). Note that to be able to compute a;(x|s), we need information on how long
the process has already been in progress, that is, elapsed duration s, by the time of first

observation.
7. CONCLUDING REMARKS

Often, duration data are available in a grouped form due to a certain discrete observa-
tion mechanism, while many covariates are unobservable. This article develops a general
sequential binary choice framework of grouped duration model with unobserved hetero-
geneity. Considering that many economic duration data are grouped and many variables
are missing, the proposed methods will prove useful in many situations.

This article introduces a new flexible parameterization of the baseline hazard func-
tion. Non-parametric baseline hazard function is covered as a special case of this flexible
parameterization. This article proposes a new, and operationally convenient, way of tack-
ling unobserved heterogeneity from a sample selection perspective. Gamma and discrete
distributions have been used to capture heterogeneity. By updating the heterogeneity
distribution, we can account for selection of type over duration, and thus can avoid the
neglected heterogeneity bias. In fact, the bias resulting from neglected heterogeneity is
essentially a sample selection bias. This interpretation allows us to keep the sequential
binary choice representation of the grouped duration model, and still enables us to es-
timate the model easily. Also, this article extends Ryu’s (1994b) proportionality test
to a general grouped duration setting. The test can detect the source and direction of
non-proportionality without adopting a priori restrictions, not shared by existing test pro-
cedures.

The general framework suggested in this article proves useful in addressing left-

censoring problem.
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