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Abstract

When a continuum of technologies is introduced to the model of Grossman and Helpman

(1991), both continuous and discrete technological progress may occur as a result of

technology choices by private firms. A good is created through R&D based on one of a

continuum of technologies that differ in productivity, and the R&D cost is smaller when

there is greater public knowledge about that technology, which accumulates through

spillovers. When firms shift continuously to superior technologies, there is no incentive

to retain existing technologies and the economy grows smoothly. By contrast, when many

firms choose the same technology, accumulated knowledge makes this choice privately

optimal for a certain time period, and the economy grows cyclically through a sequence of

discrete progresses in technology. These two dynamics constitute multiple equilibria, and

it depends on the size of the parameters which equilibrium is desirable for consumers.

JEL Classification Numbers : E32, O33, O41.

Keywords : endogenous growth; growth cycles; technology choice; R&D spillovers;
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1 Introduction

Technology choice involves a trade-off between the initial cost of investment and the

productivity and/or the quality of the product. It is one of the most important problems

for firms and entrepreneurs. In addition, the pattern of technology choices by individual

firms is a matter of great significance at the level of the macroeconomy, since adoption

of superior technologies contributes not only to the total factor productivity of the econ-

omy, but also to the stock of public knowledge through various types of spillovers. Under

certain conditions, the augmented public knowledge promotes the adoption of even more

superior technologies at the level of individual firms, which in turn accumulates public

knowledge of these new technologies. This micro-macro interaction brings about endoge-

nous technological progress, which is one of the most important sources of sustained

economic growth.

In the last decade, a considerable number of endogenous growth models have been

presented that have investigated technological progress due to spillovers of knowledge.

Most of these studies have focused on the dynamics where technology advances contin-

uously.1 However, as economic historians have pointed out, there has been not only

continuous technological progress but also discrete advances in technology, such as the

introduction of steam engines, electricity, and computers.2 In these cases the pattern of

growth was not necessarily smooth. Partly in response to these historical facts, some

economic theorists have developed models which are capable of explaining this kind of

discrete technological change and the resulting cyclical patterns in economic growth.3

While most existing papers focus exclusively on either continuous or discrete techno-

logical progress, this paper shows that both patterns of technological progress may be

realized as multiple equilibria when we explicitly model the technology choices by private

firms from a continuum of technologies. We will clarify the way in which new technolo-

gies are chosen and when they are adopted, and derive a path of economic growth that is

substantially different depending on the patterns of technological progress. In addition,

our analysis makes it possible to compare the desirability of continuous and discrete

1Seminal works include Romer (1990) and Grossman and Helpman (1991).

2See Helpman (1998) for references.

3Representative works include Bental and Peled (1996), Helpman and Trajtenberg (1998) and Free-

man, Hong and Peled (1999). See also Horii (2000) for cyclical growth arising from discrete changes in

the industrial structure.
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technological progress in terms of welfare.

This paper develops an endogenous growth model that generalizes the basic variety-

expansion model of Grossman and Helpman (1991, hereafter GH) by allowing firms to

choose from technologies that differ in productivity. Specifically, we extend the GH

model in the following three respects.

1. There exists a continuum of technologies, and each firm can conduct R&D based on

one technology to create a good. The marginal cost of production differs depending

on the technology choice.

2. The labor cost of R&D on a certain technology is reduced by the accumulation of

public knowledge on that technology. However, this effect gets weaker when the

cost becomes sufficiently small.

3. R&D conducted by each firm contributes not only to the stock of public knowledge

on the technology adopted by this firm, but also to the stock of knowledge on

related technologies, according to the degree of association.

In this setting, firms confront a trade-off in choosing technologies. On the one hand,

they have an incentive to choose technologies that have higher productivity, since this will

enlarge the firm’s profit stream. On the other hand, it is advantageous to choose tech-

nologies that are similar to those adopted by existing firms, since such technologies can be

adopted with a small initial cost by virtue of the large stock of public knowledge. These

two forces represent centrifugal force and agglomeration force in the technology space,

respectively. Their relative magnitude determines the equilibrium pattern of technology

choice in R&Ds. Subsequently, the trade-off itself is dynamically affected, through the

process of knowledge accumulation. This creates an endogenous evolution in the pattern

of technology choice and hence economic growth.

We will demonstrate that after a short time period of take-off, the economy enters

a period of sustained growth. In this period, there are two patterns of equilibrium

dynamics, which we call the ‘continuous growth regime’ and the ‘cyclical growth regime,’

respectively. In the continuous growth regime, technology choices by new firms at each

date shift continuously in the direction of higher productivity. That is, the technology

adopted by new firms today is slightly more advanced than that adopted yesterday, which

is slightly more advanced than that adopted the day before yesterday, and so forth. Due

to the R&D spillovers across technologies, the costs of R&D using superior technologies
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are gradually falling, and thus it is privately optimal to adopt a technology slightly more

advanced than that adopted yesterday, given that all the other firms follow this pattern

of technology adoption. The speed of technological progress cannot be infinite since the

magnitude of R&D spillovers between quite different technologies is small. In fact, the

equilibrium speed of technological progress is determined so that the marginal benefit of

choosing a technology with higher productivity exactly equates to the marginal cost of

adopting a technology with less public knowledge.

The dynamics in this regime differ from the original GH model in at least three re-

spects. First, growth is sustained, not by exponential increases in the variety of products,

but by steady improvements in the production technology. The economy will converge

to a balanced growth path where both the cost of R&D and the number of new goods

introduced at each instant become constant. Second, in this paper the rate of economic

growth depends heavily on the magnitude of knowledge spillover across technologies.

This factor is not considered in the GH model but is believed to have some significance

in the real economy. Third, two economies that initially differ in their performances may

or may not converge to the same state, depending on their initial structures. It is even

possible that their relative performance will eventually be reversed.

While the above dynamics fully satisfy the equilibrium conditions, another quite

different pattern of dynamics exists which still satisfies all of the conditions for a perfect

foresight equilibrium. Suppose that the same technology is adopted by all entrepreneurs

during a certain time period.

The cost of R&D declines throughout this period through spillovers of knowledge, but

the rate of cost reduction is not uniform across technologies. In general, a non-negligible

portion of the knowledge gained from experiences with a certain technology is specific

to that technology, and cannot be applied to other technologies. This implies that the

cost of R&D based on this technology is reduced more rapidly than R&D based on other

technologies. Thus, provided that other entrepreneurs adopt the same technology, it is

privately optimal to choose this technology.4 Moreover, an additional adoption of this

technology makes the cost of R&D even lower, resulting in a chain of adoption of the

same technology by new entrepreneurs. As knowledge accumulates and the technology

becomes mature, however, the R&D cost becomes less sensitive to marginal increases

in knowledge, while it becomes possible to adopt increasingly advanced technologies at

a given labor cost owing to spillovers across technologies. In fact, when the number

4This economy of scale is the primary cause of multiple equilibria.
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of firms adopting the same technology reaches a certain threshold, it becomes more

profitable for entrepreneurs to switch to a significantly advanced technology. With the

adoption of the new technology, the rate of economic growth temporarily declines. It

then gradually accelerates as knowledge on the new technology is accumulated through

the R&D experiences, creating a cyclical pattern in the rate of economic growth.

This pattern of technology adoption and its resulting fluctuations in output is es-

sentially similar to those in the models of general purpose technologies (GPTs),5 among

which Helpman and Trajtenberg (1998, hereafter HT) is the closest. Between our model

and the HT model, however, there is a crucial difference in the process of the emergence

of GPTs. The HT model assumes that GPTs are developed somewhere outside the

model, and once a new GPT is introduced exogenously firms immediately switch to the

new technology. By contrast, our model shows that GPTs are endogenously formed as a

result of technology choices by private firms. Consequently, which technologies become

GPTs depends on the equilibrium path. In addition, our model shows that even though

a technology is available that has higher productivity than the current GPT, firms do

not switch to it until the cost of adoption becomes sufficiently small through spillovers

of knowledge between the current and superior technologies.

In terms of welfare, the formation of a GPT is beneficial in that it reduces the cost

of R&D and promotes the introduction of a large variety of products, especially by the

accumulation of technology-specific components of public knowledge, which are never

utilized in the continuous growth regime. However, the formation of a GPT also has

drawbacks. Once a GPT is formed, it creates a discrete difference between the R&D

cost based on it and those based on other technologies. This makes entrepreneurs stick

with the current GPT until a technology with sufficiently high productivity becomes

available at a certain cost of adoption. Moreover, when there is a significant difference

in productivity between the current GPT and the potential new technology, only a small

portion of the experience with the current GPT can be applied to the new technology.

This implies that the average speed of technological progress tends to be slower in the

cyclical growth regime compared to the continuous growth regime. We will show that

it depends on the size of the parameters whether or not the benefits flowing from the

5According to Lipsey, Bekar and Carlaw (1998), a technology is qualified as a GPT if it has scope

for improvement, a wide variety of uses, a wide range of use, and strong technological complementarities

with existing or potential new technologies. In fact, it will be shown that each technology adopted in

this regime satisfies all these conditions.
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formation of GPTs exceed the disadvantages.

The rest of the paper is organized as follows. Section 2 presents the model and derives

the instantaneous equilibrium. Section 3 investigates the evolution of R&D activities and

shows that the dynamics of economic growth can be divided into a transitory take-off

period and a stage of long-term growth. Having analyzed the dynamics in the take-off

period, sections 4 and 5, respectively, derive two regimes of dynamics in the long-term

growth period, which are described above intensively. Section 6 investigates which regime

is desirable by comparing welfare in the two regimes. Section 7 concludes the paper. The

proofs of all claims are collated in the appendix.

2 The Model

2.1 Firms and Technologies

In the model, there are many firms competing monopolistically, and each firm manu-

factures a single variety of differentiated goods.6 The number of firms is determined in

equilibrium through the process of free entry. To set up a new firm, an entrepreneur

needs to invest in R&D to develop a new differentiated product and its manufacturing

process. At the time of entry, each firm chooses its own production technology from a

continuum of available constant-returns-to-scale technologies.7 Depending on technology

choice, the quantity and/or quality of goods that can be produced from a given amount

of labor differ. For ease of notation, we normalize the quantity of each good so that every

good enters the utility function symmetrically, and thus all differences are expressed by

productivity. Each technology is indexed by a positive number z ∈ (0,∞) such that
when technology z is adopted this firm can produce amount z(1−α)/α of its product from

a unit of labor, where α ∈ (0, 1) is a constant which will be defined in equation (4).8
Although in principle any technology z ∈ (0,∞) can be adopted, the labor cost of

6Like most variety expansion models, we assume that the potential variety of products is sufficiently

large that it does not become exhausted on the path of economic growth. We also assume that imitating

an existing product costs no less than creating a new variety of differentiated good, for both technical

and legal reasons. Thus, entrepreneurs have no incentive to imitate existing products and thus each good

is produced by exactly one firm.

7We assume that once a technology is adopted firms will not change their production technology since

doing so is as costly as creating another new differentiated good.

8This method of indexing simplifies the mathematical expressions to come, but it is not essential.
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R&D differs depending on the technology choice. The labor input required to develop

a new product is small when a large stock of public knowledge already exists on the

technology adopted. Specifically, we assume that to create a blueprint of a new good

based on technology z, an entrepreneur must devote c(Kt(z)) units of labor to R&D.
9

Here Kt(z) is the stock of public knowledge with respect to technology z, and c(·) is a
cost function defined in (0,∞) which satisfies the following properties.

Assumption 1 c(·) satisfies

a. c(k) > 0 and c0(k) < 0 for all k ∈ (0,∞),

b. The elasticity of c(k), ²c(k) ≡ (k/c(k))c0(k), is strictly decreasing in k,

c. limk→+0 ²c(k) ≥ 1 and limk→∞ ²c(k) = 0.10

While our specification of the R&D cost is based on Romer (1990) and GH,11 we incor-

porate two additional realistic features. First, rather than focusing on aggregate “general

knowledge,” we explicitly deal with the heterogeneous distribution of public knowledge

across various technologies. Second, while GH assumed that the R&D cost is reduced

at a constant rate when knowledge (or experience) accumulates, we incorporate the ten-

dency that the R&D cost becomes less sensitive to marginal increases in knowledge as

the technology becomes mature.

The public knowledge accumulates as a by-product of R&D activities. When a firm

creates a blueprint based on technology z0, it augments the stock of knowledge Kt(z0)

by one unit due to the positive technological spillover ‘within’ the technology z0. This

condition is the same in the GH model. In our model, there are, in addition, positive

spillovers ‘across’ technologies depending on the degree of association between them: for

any technology z > 0, knowledge Kt(z) is augmented by s(z0, z), which is assumed to

satisfy the following properties.12

9A more formal statement is that an entrepreneur who devotes l units of labor to R&D for a time

interval of length dt can create blueprints of lc(Kt(z))
−1dt new goods that are based on technology z.

10In fact, it is sufficient to assume a much weaker condition, limk→+0 ²c(k) > 1/δ and limk→∞ ²c(k) <

1/δ, where δ > 1 is a constant that will be introduced in claim 1

11Note that when c(k) = a/k and Kt(z) = Kt for all z, our specification coincides with that of GH.

12For simplicity, we assume that the magnitude of spillover between the two technologies depends only

on their productivities.
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Assumption 2 For any z0 > 0 and z > 0, s(·, ·) satisfies

a. s(z0, z) ∈ (0, 1) and s(z0, z0) = 1,

b. s(z0, z) = s(z, z0),

c. s(z0, z) = s(αz0,αz) for all α > 0,

d. s(z0, z
0)s(z0, z) = s(z0, z00)s(z00, z) for all z0, z00 ∈ (z0, z),

e. limz0→∞(z0 − z0)s(z0, z0) = 0.

The first three items, a, b and c, specify respectively boundedness, symmetry and ho-

mogeneity of the spillover function s(·, ·). Property d assumes that the spillovers are
consistent in that, for any given z0 and z, ‘the portion of experience in technology z0

that can be applied to some intermediate technology’ multiplied by ‘the portion of ex-

perience in that technology that can be applied to z’ is not changed by the choice of the

intermediate technology. The final property e, means that spillover effects are not large

between significantly different technologies.

Under these restrictions, the functional form of s(·, ·) can be expressed in terms of
two parameters.

Claim 1 There exist µ ∈ (0, 1] and δ > 1 such that s(z0, z) = µmin{z/z0, z0/z}δ for all
z0 and z 6= z0.

In this expression, parameter δ measures the rate at which the magnitude of spillover gets

smaller as the difference between the productivities of two technologies increases, and

µ indicates the portion of the component of public knowledge that is not technology-

specific. From claim 1 and assumption s(z, z) = 1, the whole process of knowledge

accumulation is summarized by

K̇t(z) = µ

Z ∞
0
min

½
z0

z
,
z

z0

¾δ
dRt(z

0) + (1− µ)(Rt(z)−Rt(z−)), (1)

where Rt(·) is the cumulative distribution function of R&D at time t. That is, Rt(z)

represents the instantaneous flow of new products introduced at time t that are based on

technologies whose productivity is lower than or equal to z, and Rt(z)−Rt(z−) represents
the flow of new products based exactly on technology z.13 We assume that the public

13Rt(z−) represents the limiting value of Rt(z0) when z0 approaches z from below.
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knowledge does not depreciate, in which case there is a one-to-one relationship between

the distribution of knowledge and the distribution of firms.

Kt(z) = µ

Z ∞
0

min

½
z0

z
,
z

z0

¾δ
dFt(z

0) + (1− µ)(Ft(z)− Ft(z−)), (2)

where Ft(z) represents the cumulative distribution function of firms in the technology

space z ∈ (0,∞).

2.2 Consumers and the Market Demand

The demand side of our model is essentially the same as the GH model. There are L

identical consumers. Each consumer inelastically supplies one unit of labor service at

the prevailing wage wt at every date and maximizes utility over an infinite horizon,

Ut =

Z ∞
t

e−ρ(τ−t) lnDτ dτ. (3)

Here ρ is the subjective discount rate, and Dt represents an index of consumption at

time t. Consumers have tastes for variety, expressed by Dixit and Stiglitz (1977) type

preferences for bundles of differentiated goods,

Dt =

∙Z Jt

0
Xt(j)

α dj

¸1/α
, (4)

where parameter α ∈ (0, 1) represents substitutability between goods, Jt ≡ Ft(∞) de-
notes the number of goods produced at time t, and Xt(j) the consumption of good j.

For the same reason as in the GH model, growth may cease in economies that are

too small (small L), too impatient (large ρ) and/or too elastic in terms of substitution

between goods (large α), since R&Ds are not privately profitable in such economies.

Because of space constraints, we focus exclusively on economies where growth can be

sustained, though this is not essential to the results of the analysis.

Assumption 3 (1− α)L/αρ is greater than Γ, where Γ is a finite constant depending
only on functional forms of c(·) and s(·, ·). The definition of Γ is presented in the

appendix.

Now, we turn to the market demand for goods. Let Pt(j) denote the price of good j.

Preference (4) implies that given the spending Et at time t the maximized value of Dt

is Et/P̄t, where P̄t is a price index of differentiated goods,

P̄t =

∙Z Jt

0
P (j0)−

α
1−α dj0

¸− 1−α
α

.
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Here, the consumer’s problem reduces to maximizing

Ut =

Z ∞
t

e−ρ(τ−t) (lnEτ − lnPτ ) dτ.
Since the above expression is separable in Et and Pt, it is obvious that the optimal

expending rule satisfies Ėt/Et = rt − ρ. We follow the GH model by normalizing prices
so that aggregate consumption expenditure, LEt, becomes unity at every instant. In this

case, the nominal interest rate rt equals the subjective discount rate ρ for all t, and the

market demand for good j can be calculated as

LXt(j) = Pt(j)
− 1
1−α P̄

α
1−α
t . (5)

2.3 Instantaneous Equilibrium

In the settings presented above, we can characterize the instantaneous equilibrium of

this economy at a certain time t, given the current and future distribution of firms, Ft0(·)
for all t0 ≥ t. At this point, we impose a simple assumption on the distribution of firms
for all t.14

Assumption 4 For any t, suppFt(·) is bounded and
R∞
0 zdFt(z) is finite.

Consider a firm j which has already developed a blueprint based on a certain tech-

nology z. Since this firm can produce amount z(1−α)/α of its good from a unit of labor,

the marginal cost of production is wt/z
(1−α)/α. Given the demand function (5), the firm

maximizes operating profits³
Pt(j)− wt/z(1−α)/α

´
Pt(j)

− 1
1−α

∙Z Jt

0

Pt(j
0)−

α
1−α dj0

¸−1
by charging a price Pt(j) = wt/(αz

(1−α)/α).

When all firms follow the above rule, each firm’s quantity and operating profits are

determined by its technology z, the current wage wt and the current distribution of firm

Ft(·).

xt(z) =
αz1/α

wt
R∞
0 z0dFt(z0)

, (6)

πt(z) =
(1− α)zR∞
0 z0dFt(z0)

. (7)

14Here, suppFt(·) means the support of Ft(·), that is, the set of technologies that have been adopted
by some firms by t. In fact, it is sufficient to assume that the initial distribution satisfies the property

given in assumption 4, since the dynamic analysis to follow will show that when the economy starts with

such a distribution it will never become inconsistent with assumption 4.
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These equations characterize the equilibrium of the goods market.

Labor services supplied by consumers are applied to the production of differentiated

goods and R&D. From (6), the labor demand for production workers is calculated as

α/wt. The labor market equilibrium requires

α

wt
+ LRt = L, (8)

where the second term represents the total employment in R&D, defined as

LRt ≡
Z ∞
0
c(Kt(z))dRt(z). (9)

For simplicity, we rule out speculative bubbles so that the stock market value of a

firm equals the present discount value of its profit stream,15

vt(z) =

Z ∞
t

e−ρ(τ−t)πτ (z) dτ. (10)

Under the assumption of free entry, the value of a firm or equivalently, the value of its

blueprint, must not be higher than the cost of creating a new blueprint with the same

technology.16 On the other hand, firms invest in R&D based on technology z only when

the value of the blueprint based on that technology is not less than the cost of creating

it. The following free entry condition summarizes these requirements:

vt(z) ≤ wtc(Kt(z)) (11)

for all z ∈ (0,∞) and with equality on the support of Rt(·). Note that Kt(·) is a
predetermined function, and vt(·) is also given since we take the future distribution of
firms as given.

To find the equilibrium wage level satisfying this condition, we introduce an index of

the labor cost of R&D when a certain technology is chosen. Let Zt denote the frontier

technology, that is, the maximal element in the support of Ft(·), and let Vt denote the
value of a current frontier firm, vt(Zt). Then, the value of a new blueprint based on

an arbitrary technology z can be expressed by (z/Zt)Vt, since equation (7) and (10)

imply that the profit stream of a firm and thus its discounted sum are both linear in its

technology level z. Using this fact, we can construct the following index,

lt(z) ≡ Zt
z
c(Kt(z)), (12)

15Here we utilize the fact that rt = ρ holds for all t.

16Otherwise, an infinite number of firms would want to enter into R&D, leading to excess demand in

the labor market, which in turn would lift the wage rate until the above condition is met.
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which represents the amounts of R&D labor required to create a bundle of new blueprints

based on technology z that has in total the same value as a current frontier firm. There

is a bounded set of technologies with which the required labor input takes the minimum

value.

Claim 2 lmint ≡ minz∈(0,∞) lt(z) exists, and the set of minima, Lmint ≡ {z| lt(z) = lmint },
is bounded.

Using this index, condition (11) reduces to a simple form,

Vt ≤ wtlt(z). (13)

The above expression shows that the demand curve for R&D labor is horizontal at

the level of Vt/l
min
t . Recall also that the demand curve for production labor, α/wt, is

downward sloping and crosses the inelastic supply curve at wt = α/L. Since the total

labor demand is the sum of these two, the equilibrium wage is determined as

wt = max{Vt/lmint ,α/L}. (14)

Note that the demand for R&D labor is positive if and only if the equilibrium wage is

larger than α/L, and that only the technologies that give the smallest lt(z) are adopted

for R&D,

supp Rt(·) ⊂ Lmint . (15)

The arguments so far have demonstrated that once the current and future expecta-

tions of the distribution of firms is given, instantaneous equilibrium conditions specify

prices pt(·), quantities xt(·), profits πt(·), and the prevailing wage wt uniquely, and also
specify the support of the R&D distribution Rt(·). For this instantaneous equilibrium to
constitute a part of a dynamic equilibrium path, however, evolution of the distribution

of firms must be consistent with actual R&Ds invested in at each instant,

Ḟt(z) = Rt(z). (16)

That is, a path of Ft(·) constitutes a perfect foresight equilibrium if and only if the R&D
distribution Rt(·) implied by (16) satisfies the labor market clearing condition (8) and the
free entry condition (15) at all t. Once an equilibrium path of Ft(·) is found, economic
growth is measured by the rate of growth in consumption,

Dt =
α

wtL

µZ Zt

0
zdFt(z)

¶(1−α)/α
, (17)
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which is obtained by substituting (6) for (4). In the following sections, we investigate

evolutions in the amount of R&D investments and the technology choice in the R&D,

which determine the path of Ft(·) and hence economic growth.

3 Evolution of R&D Activities

At each date, entrepreneurs face two problems: they must decide whether or not to invest

in R&D, and, if they invest, they must also choose the technology. Though this decision

cannot be completed until the future expectation on the R&D activities is specified, this

section shows that some essential properties of the evolution of R&D activities can be

inferred from just the current and the past state of the economy.

First, we focus on the decision on whether or not to invest. Entrepreneurs invest

in R&Ds only when the discounted sum of the future profits, Vt, is no smaller than

the investment cost, wtl
min
t . Note that the profits become small when the number of

competitors rises. This is expressed by πt(Zt) = (1−α)/Nt, where Nt is a weighted sum
of the number of firms, Nt ≡ Z−1t

R Zt
0 z dFt(z).

17

Since no firm exits the goods market, the amount of profits a firm can get never rises

after entry. Thus, Vt must be no larger than (1 − α)/ρNt, and this maximum value is

realized only if there is no subsequent entrance of competitors. On the other hand, the

cost of R&D is no smaller than αlmint /L since there is a lower bound on the wage rate

at wt = α/L. Note also that this minimum R&D cost is realized only when there is

no entry at time t. From these facts we can derive the exact condition under which a

positive number of entrepreneurs invest in R&D.

Claim 3 At each date in a perfect foresight equilibrium,

a. If there is a positive amount of R&D, then Vt ∈ (αlmint /L, (1−α)/ρNt). Otherwise,
Vt = (1− α)/ρNt.

b. There is a positive amount of R&D if and only if (1−α)/ρNt is larger than αlmint /L.

Next, we turn to the issue of technology choice. When an entrepreneur chooses from

a continuum of technologies, he or she will take into account two facts. On the one

17Note that when all firms use the same technology, such as in the GH economy, index Nt coincides

with Jt. However, when some firms use a technology whose productivity is lower than the current frontier

technology, the number of these firms is discounted according to the value of z relative to Zt.
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hand, as shown in (7), the profit stream to a firm is magnified proportionally to z when

it adopts a technology with higher productivity. This provides an incentive to choose a

technology significantly superior to past ones. On the other hand, it is advantageous to

choose a technology with a large stock of public knowledge since such a technology can be

adopted with a small initial cost. This creates an incentive to choose a technology that is

similar to those chosen by past entrepreneurs, a dynamic agglomeration force. Note that

as the stocks of knowledge on existing technologies become large, the agglomeration force

gets weaker, since the R&D cost becomes less sensitive to a marginal difference in the

amount of knowledge between technologies. The equilibrium pattern of technology choice

is determined by the relative magnitudes of the centrifugal force and the agglomeration

force.

Whenever a new technology is adopted, the centrifugal force and the agglomeration

force must exactly balance at that technology level, otherwise adopting either more ad-

vanced or more conservative (less advanced) technologies will provide higher profitability.

In fact, there is a certain level of knowledge under which these two forces cancel out.

Claim 4 If there is a technology z ∈ suppRt(·) such that Zt0 < z holds for all t0 < t,

then Kt(z) = K̄ ≡ ²−1c (1/δ).

Note that the above claim says only that the amount of knowledge must be K̄ when

the technology frontier advances. For example, suppose that the number of firms in the

economy is quite small and that no technology has amount K̄ of knowledge. Then, the

implication of claim 4 is not that there is no R&D, but that the frontier does not advance

unless knowledge accumulates up to K̄.

Here, another question is whether the frontier advances whenever the amount of

knowledge reaches K̄?18 The answer depends on both parameters and the current dis-

tribution of firms. Suppose that µ is less than unity and there is a positive mass of

firms which have adopted the same technology. Then, equation (2) implies that there is

a portion of accumulated knowledge that is specific to this technology. In this case, en-

trepreneurs may want to adopt this established technology even when knowledge exceeds

K̄, since adoption of even a slightly advanced technology will cause discrete increases

in the R&D cost. While this creates a ‘lock in effect’, the following claim shows that

the adoption of some advanced technologies eventually becomes more profitable when a

sufficiently large amount of knowledge is accumulated. It also shows that the amount of

18This is equivalent to the question whether the reverse of claim 4 holds or not.
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knowledge at the frontier never exceeds K̄ when the frontier technology is not a mass

point19 or µ = 1.

Claim 5

a. Let c̃(k) ≡ c(K̄)(K̄/µk)1/δ. Then, there exists a finite value Kmax such that c̃(k) <

c(k) for k > Kmax and c̃(k) > c(k) for k ∈ [K̄/µ,Kmax).

b. min suppRt(·) > z holds whenever Kt(z) ≥ Kmax.

c. The minimum element of suppRt(·) that is not a mass point in Ft(·) is greater
than z whenever Kt(z) > K̄.

d. If µ is unity, min suppRt(·) > z holds whenever Kt(z) > K̄.

Though the exact dynamics cannot be specified by claim 4 and 5, they suggest that

it is useful to break down the process of economic growth into two periods, a transitory

take-off period and a period of sustained growth. Let us define the take-off period as

the time period before the technology frontier, Zt, starts to advance. During this period,

economic growth is primarily led by reductions in R&D costs caused by accumulation of

knowledge on existing technologies, since only a limited set of technologies are adopted.20

This period lasts until the amount of knowledge on the initial frontier technology reaches

some threshold value, which exists between K̄ and Kmax and depends on the initial dis-

tribution of firms. After the take-off, entrepreneurs start to adopt superior technologies.

Throughout this period of sustained growth, the amount of knowledge on any technol-

ogy on which new products are created is bounded between K̄ and Kmax. Since this

boundary is finite, there is no long-run trend in the amount of knowledge and hence in

the cost of R&D. Thus, in the period of sustained growth, only technological progress

explains long-term growth.

3.1 Dynamics in the Take-off Period

The rest of this section investigates the dynamics of the economy in the take-off period.

We first derive the motion of macroeconomic variables in this period, assuming that the

19In what follows, we call a technology which is adopted by a positive mass of firms, mass point in

distribution Ft(·). In mathematical terms, z is a mass point in Ft(·) if and only if Ft(z) − Ft(z−) > 0

holds.

20Note that, however, this process cannot sustain economic growth permanently because, as the number

of firms grows, the returns to R&D will decline more rapidly than the cost of R&D declines.
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economy starts from a quite simple distribution of firms.21 Subsequently, the condition

for the end of this period is derived.

Suppose that initially only one technology is adopted by all existing firms to produce

their goods. Let us denote the number of initial firms by n0 and, without losing generality,

let the initial technology be unity.

F0(z) =

 0 for z < 1,

n0 for z ≥ 1.
(18)

Given the initial distribution, subsequent evolution of Ft(·) is determined by R&D ac-

tivities of entrepreneurs. In the following, we characterize these dynamics by focusing

on two macroeconomic variables, Nt ≡ Z−1t
R
zdFt(z) and Vt ≡ vt(Zt).

From equation (2), the amount of knowledge available on the initial technology,Kt(1),

coincides with the number of firms, Nt, throughout the take-off period. Since all R&D

investments are based on technology z = 1 within this period, lmint = lt(1) = c(Nt)

holds whenever LRt > 0. Applying this equation to (14), the equilibrium wage becomes

wt = max {Vt/c(Nt),α/L} . The flow of new goods developed at each instant is Ṅt, and
each R&D activity requires c(Nt) units of labor. Thus, the total amount of R&D labor

is LRt = c(Nt)Ṅt. Substituting these expressions for wt and L
R
t into the labor market

equilibrium condition (8) yields a law of motion for Nt,

Ṅt = max

½
L

c(Nt)
− α

Vt
, 0

¾
. (19)

On the other hand, derivative of equation (10) provides a standard arbitrage condition

for the value of each firm, v̇t(z) = ρvt(z) − πt(z) for all z. When z is set to unity, this

condition and equation (7) specify the dynamics of Vt in terms of Nt and Vt itself,

V̇t = ρVt − 1− α
Nt

. (20)

The above two equations characterize the dynamics of the economy in the take-off

period, and enable us to draw a phase diagram in (Nt, Vt) space. Setting Ṅt = 0 and

V̇t = 0 in equations (19) and (20), respectively, we have two curves on which either Nt

or Vt stays constant,

NN : Vt =
αc(Nt)

L
, (21)

V V : Vt =
1− α
ρNt

. (22)

21As will become clear in the following sections, the long-term dynamics are not affected by the

specification of the initial distribution.
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Figure 1: Phase diagram in the take-off period.

The take-off period ends when entrepreneurs adopt some technology z whose produc-

tivity is higher than that of the initial technology. Recall that claim 4 says Kt(z) must

be exactly K̄ when the frontier advances. For this condition to be satisfied, Nt must be

larger than K̄/µ and the new technology must be z = (µNt/K̄)
1/δ. Thus, the exact con-

dition of take-off can be found by comparing lt
¡
(µNt/K̄)

1/δ
¢
= c(K̄)(K̄/µNt)

1/δ = c̃(Nt)

with lt(1) = c(Nt). In fact, claim 5 shows that c̃(Nt) becomes smaller than c(Nt) when

Nt exceeds K
max.

Figure 1 shows the locations of NN curve and V V curve, along with

SS : Vt =
αc(K̄)

L

µ
K̄

µNt

¶1/δ
for Nt > K̄/µ, (23)

which represents the minimum cost of R&D by using technology z = (µNt/K̄)
1/δ. In

the region of 0 < Nt < K
max, all entrepreneurs adopt the initial technology. The state

variables follow (19) and (20), which we call the take-off period dynamics, until Nt, or

Kt(1), reaches the critical value K
max. When Nt reaches K

max, choosing either z = 1

or z = (µNt/K̄)
1/δ yields the same rate of return, and then the economy immediately

enters the period of sustained growth.22 The dynamics in the period of sustained growth,

which will be analyzed in the following sections, determine the value Vt at the end of

22Note that Kt(1) is strictly increasing in time as long as growth does not cease, which is guaranteed
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the take-off period.23 Subsequently, the transitional dynamics in the take-off period are

specified by solving (19) and (20) backwards from this point.

If N0 is larger than K
max, the return from investing in technology (µNt/K̄)

1/δ is

better than the returns from choosing the initial technology. Note also that, from claim

3, R&Ds are carried out if and only if V V curve locates above SS, which is equivalent

to

N0 < N
+ ≡

µ
(1− α)L
αρc(K̄)

¶δ/(δ−1) ³ µ
K̄

´1/(δ−1)
. (24)

Thus, if the number of initial firms is in an intermediate range of (Kmax, N+) the economy

enters the period of sustained growth immediately, with V0 settling somewhere between

SS and V V . In an economy with too many existing competitors, however, profits are so

small that no entrepreneur wants to invest in any R&D and thus no growth occurs. In

the rest of this paper we assume (24).

4 Continuous Growth Regime

After the take-off period, the pattern of technology adoption and thus that of economic

growth may not be unique. However, there is a special case in which the dynamics can

be fully specified. Suppose that parameter µ is unity. Then, claim 4 and part d of claim

5 show that the amount of its knowledge Kt(Zt) is always kept at K̄ and only the frontier

technology is adopted by new entrepreneurs at each instant. This property implies that

whenever there is a positive amount of R&D, the technology frontier, Zt, must advance

continuously without creating any mass point in Ft(·).24
In an economy where µ is smaller than unity, it may be possible that a mass of firms

adopt the same technology, enabling them to utilize technology-specific components of

knowledge. However, for the moment we suppose that no mass point is created in a

certain time period. In such a situation, the second term in equation (1) vanishes and the

pattern of knowledge accumulation becomes substantially equivalent to the case of µ = 1.

This implies that it is optimal for private entrepreneurs, who take knowledge distribution

under assumption 3. Then, the part b of claim 5 implies that no entrepreneur adopts technology z = 1

after Kt(1) reaches K
max.

23It follows from claim 3 that this value must settle somewhere between NN and V V . Under assump-

tion 3, NN necessarily locates above V V when Nt = K
max.

24Note that if a positive mass of firms adopted the same technology, then Kt(Zt) exceeds K̄.
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as given, to act similarly as in the economy with µ = 1. That is, the entrepreneurs choose

continuously advanced technologies without creating any mass point, consistent with the

initial assumption. This consideration shows that, regardless of the value of µ, there is

an equilibrium path which follows the continuous pattern of technology adoption. Below

we derive the equilibrium dynamics in this ‘continuous growth regime.’

Let us assume that any mass point does not emerge during the time interval in which

the frontier locates in a certain interval [ZS , ZE).25 Combining claim 4 with part c

of claim 5, we can confirm that the frontier continuously advances and only frontier

technology is adopted in this regime, which corresponds to the µ = 1 case. When there

is no mass point, we can express Ft(·) in terms of a density function f(·),

Ft(z) = Ft(Z
S) +

Z min{z,Zt}

ZS
f (z0) dz0. for z ∈ [ZS , ZE). (25)

Note that the value of f (z) at each z does not depend on t, since it is only when Zt = z

that new firms enter the market with technology z and thereafter the density at z does

not change. For the amount of knowledge at the frontier to coincide with K̄ at each

date, density function f(·) must satisfy the following equation.µ
Zt
ZS

¶−δ
K̄ + µ

Z Zt

ZS

µ
Zt
z0

¶−δ
f(z0) dz0 = K̄ for Zt ∈ [ZS , ZE). (26)

Differentiating both sides with respect to Zt and conducting some transformation, equa-

tion (26) turns out to be equivalent to

f(z) =
δK̄

µz
for z ∈ [ZS , ZE). (27)

Once the density of firms becomes clear, we can derive the speed at which the new

technologies are adopted, using the labor market equilibrium conditions. Note that

lmint = c(K̄) holds since only the frontier technology is adopted. Substituting it for (14),

the equilibrium wage turns out to be wt = max
©
Vt/c(K̄),α/L

ª
. The flow of the total

labor input into R&D is calculated by substituting the above wage rate into the labor

market clearing condition (8). On the other hand, from equation (27) we can calculate

the cumulative input of R&D labor that is required for the technology frontier to move

from ZS to Zt, as
R Zt
ZS c(K̄)f (z

0) dz0 = (δK̄c(K̄)/µ)
¡
lnZt − lnZS

¢
. Differentiating this

expression with respect to t and equating it to the derived flow of labor input, we have

25Here, ZE may be infinite.
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the growth rate of the technology frontier.

gt ≡ Żt
Zt
= max

½
µ

δK̄c(K̄)

µ
L− αc(K̄)

Vt

¶
, 0

¾
. (28)

This shows that the technology frontier advances if and only if Vt is greater than a certain

value V̂ ≡ αc(K̄)/L.

With equation (28) in hand, we can express the dynamics as an autonomous system

of Nt and Vt in a similar fashion to our expression for the take-off period dynamics.

When Ft(·) is expressed in the form of (25), where f(·) is given by (27), Nt becomes
Zt
−1
³R ZS
0 z dFt(z) + (δK̄/µ)(Zt − ZS)

´
. Differentiating this equation with respect to t,

yields a simple expression Ṅt = (N
∗ −N)gt, where N∗ ≡ δK̄/µ is a stationary point of

Nt. This equation can be expressed in terms of Nt and Vt by applying equation (28).

Ṅt =


µ

δK̄c(K̄)

µ
L − αc(K̄)

Vt

¶
(N∗ −Nt) if Vt > V̂ ,

0 if Vt ≤ V̂ .
(29)

As we have seen in the above, when Vt is less than or equal to V̂ , no firms enter the

market and thus Nt does not change. When Vt is greater than V , new firms enter the

market and the technology frontier advances. While the entry of new firms increases the

total number of firms, the advance of the frontier decreases the relative profitability of

existing firms to new frontier firms, which makes Nt small. Equation (29) shows that

the overall effect on Nt is positive when Nt is less than N
∗, while it is negative when

Nt > N
∗.

On the other hand, a fundamental rule of differentiation allows the time derivative

of Vt ≡ vt(Zt) to be deconstructed into two parts,

V̇t = v̇t(Zt) + v
0
t(Zt)Żt, (30)

where the first term represents the effect from variation in the value function vt(·), while
the second term is derived from the advance of the frontier.

The standard arbitrage condition gives the first term, v̇t(Zt) = ρVt−(1−α)/Nt. Since
vt(z) is equivalent to (z/Zt)Vt, its derivative is simply Vt/Zt. Further, from the definition

of gt, Żt = Ztgt. Substituting these into formula (28), we have V̇t = (ρ+ gt)Vt − (1 −
α)/Nt. Then using equation (28), the dynamics can again be expressed in terms of Nt
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Figure 2: Phase diagram in the continuous growth regime.

and Vt ,

V̇t =


µ
ρ+

µL

δK̄c(K̄)

¶
Vt − 1− α

Nt
− αµ

δK̄
if Vt > V̂ ,

ρVt − 1− α
Nt

if Vt ≤ V̂ .
(31)

By equating the above expression to zero, we also have a locus on which Vt does not

change.

V V : Vt =


µ
ρ+

µL

δK̄c(K̄)

¶−1µ1− α
Nt

+
αµ

δK̄

¶
if Vt > V̂ ,

1− α
ρNt

if Vt ≤ V̂ .
(32)

If actual Vt is below this locus, Vt must fall to keep the arbitrage condition, while Vt rises

when Vt is above the locus.

Equation (29) and (31) characterize the dynamics of (Nt, Vt) and enable us to draw a

phase diagram. Figure 2 depicts the phase diagram, where the dotted curve represents the

maximum possible value of a frontier firm, (1−α)/ρNt, and the horizontal line at Vt = V̂
expresses simultaneously the minimum possible cost of R&D, αlmaxt /L, and the ṅ = 0

locus. The configuration of these two curves shows that there is a positive amount of R&D
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so long as Nt is smaller than the intersection of these two curves, N̂ ≡ (1−α)L/αρc(K̄).26
With the starting value of Nt and the final value of Vt specified, the dynamics of Nt and

Vt within this regime is uniquely determined, and they also specify the dynamics of Zt

since (28) provides a one-to-one non-decreasing correspondence between Vt and the speed

of technological progress. Specifically, when the economy stays in this regime forever, the

initial value of Vt must be on the stable arm that converges to a saddle point (V ∗, N∗),

where

V ∗ ≡ µc(K̄)

δρK̄c(K̄) + µL
(33)

represents the value of a frontier firm on the balanced growth path.27 On the balanced

growth path, the technology frontier advances at a constant rate of

g∗ =
(1− α)µL
δK̄c(K̄)

− αρ > 0. (34)

Once the movements of Nt, Vt and Zt are derived, it follows from equations (14) and

(17) that consumption evolves according to

Dt =
αc(K̄)

LVt
(ZtNt)

(1−α)/α. (35)

4.1 Comparison with the GH model

In this subsection, we compare the dynamics of our model in the continuous growth

regime with that of the original GH model, where only one technology is adopted. This

will make clear the difference caused by the introduction of multiple technologies, the

modified R&D cost function, and spillovers across technologies.

First, let us focus on the workings of each model that make economic growth sustain-

able. In the GH economy, long-term economic growth is achieved through exponential

increases in the flow of new goods. Such an explosion in variety is due to the assumption

26 As we have seen in the previous section, the first technology adopted in the period of sustained

growth is (µNE/K̄)1/δ, where NE ∈ [Kmax, N+) denotes the final value of Nt in the take-off period.

Then, the starting value of the normalized number of firms is determined as Nt = NE/(µNE/K̄)1/δ =

(K̄/µ)1/δNE(δ−1)/δ. Applying the fact that Kmax ≥ K̄/µ and the value of N+ given by equation (24),

the result is that Nt resides within a finite interval [K̄/µ, N̂). In addition, it will become apparent that

once this period starts with Nt ∈ [K̄/µ, N̂), it will not get out of this interval whenever Kt(Zt) = K̄.

Note also that N∗ also resides in [K̄/µ, N̂) under assumption 3.
27Otherwise the economy will enter the region below V̂ or the one above the dotted curve, contradicting

claim 3 either way.
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that the labor cost of R&D is reduced at a constant rate as knowledge accumulates.

By contrast, the economy in our model cannot grow through this mechanism because

the cost becomes insensitive to a marginal increase in knowledge when it has become

sufficiently small. Actually, the number of new goods introduced at each instant is con-

stant on the balanced growth path, but the quantity (which can also be interpreted as

quality) of each new product is steadily increasing because continuously more advanced

technologies are adopted to produce the goods. Due to spillover effects, the cost of R&D

based on every technology is declining, but at the same time entrepreneurs are willing to

adopt increasingly advanced technologies which require large R&D labor inputs. In equi-

librium, these two effects exactly cancel out and the cost becomes constant. Empirical

observations show no exponential trend in the number of R&D projects or exponential

decreases in the labor cost of R&D. Consequently, the latter story, expressed by our

model, seems more plausible.

The second concern is the rate of economic growth, especially on the balanced growth

path. The GH model specified the cost function by c(k) = a/k,28 and derived the growth

rate of consumption index Dt as

g∗D,GH =
(1− α)2L

aα
− (1− α)ρ.

To make the growth rate in our model comparable with the above equation, suppose the

cost function of R&D takes a specific form c(k) = a/k + b, which is one of the simplest

functional forms satisfying assumption 1.29 The rate of economic growth on the balanced

growth path is then calculated by applying (34) for equation (35),

g∗D =
1− α
α

g∗ =
µ

δ2
(1− α)2L

aα
− (1− α)ρ. (36)

It is observed that the only difference between the two expressions is the inclusion of µ/δ2

in the first term of (36). That is, all the elements that enhance the growth rate in the GH

model will also enhance the growth rate in our model. In addition, our model shows that

the growth rate is also influenced by δ and µ, both of which concern the magnitude of

28Interestingly, if we weaken assumption 1 and let c(k) = a/k in our model, the dynamics completely

coincide with that of the GH model. Thus assumption 1 is crucial in the realization of technological

progress.

29The small positive constant b can be interpreted as a fixed cost of R&D investment that cannot be

eliminated by the accumulation of public knowledge. Note, however, that the assumption 1 does not

necessarily require the existence of such a fixed cost.
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R&D spillover effects across technologies. Specifically, when the larger portion of R&D

experience can be applied to superior technologies, the term µ/δ becomes larger and

hence the growth rate increases. This effect seems to have some relevance in the real

process of economic growth.30

Third, we turn to the issue of convergence. In contrast to the neoclassical growth

models that predict the convergence of economies, the GH model predicts that the pro-

portional gap between economies will remain unchanged forever. Specifically, in the GH

model, economies instantly jump to the balanced growth path and grow at the same

constant speed. This absence of transitional dynamics is a by-product of the assumption

of a one-to-one correspondence between the number of competitors (which determines

the amount of profits) and the labor cost of R&D. Though such a correspondence is

useful for many endogenous growth models to make growth sustainable, the dynamics

in this section show it is not a necessary condition for the sustained growth: given the

constant cost of R&D, c(K̄), the number of competitors, Nt, can vary between K̄/µ and

Ñ .

The phase diagram in figure 2 shows that Nt will converge to N
∗ in the long run,

which seems somewhat like the dynamics in the neoclassical growth models. This does

not mean, however, that convergence in the levels of GDP will occur, since GDP depends

not only on the number of firms but also on their technologies. For example, suppose that

there are two economies, both of which are in the continuous growth regime and differ

only in the normalized number of firms, Nt. In transition, the amount of investments

should be larger in the economy with small Nt since there are few competitors and thus

expected profits are large.31 Note that the difference in the amount of investments implies

not only convergence in Nt, but also divergence in Zt since the speed of technological

progress, gt, is proportional to investments in this regime. Thus, in the first half of the

transition period, the difference in GDP between the two economies rapidly shrinks for

both of the above reasons. However, before they settle into the balanced growth path,

the initial gap in GDP is eventually reversed and, moreover, it is theoretically possible

that the absolute value of the proportional gap becomes even larger than its initial value.

30Note that the growth rate does not depend on parameter b as long as it is positive. This implies that

it is inappropriate to accept the GH model as an approximation when there is a positive lower bound in

the labor cost of R&D, however small it is.

31This can be confirmed in the phase diagram where the stable arm is downward sloping.
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Of course, such a reversal does not happen if the initial difference is not in Nt but in Zt.
32

These examples suggest that the micro structure of the economy should be considered

when the issue of convergence is analyzed.

Finally, there is yet another difference between the GH model and our model in the

possibility of multiple equilibria. When µ is smaller than unity, there are significantly

different equilibrium dynamics in which technology advances discretely rather than con-

tinuously. These will be investigated in the next section.

5 Cyclical Growth Regime

In the previous section, we concentrated on the situation where no mass point emerged

in the distribution of firms, and demonstrated that there are equilibrium dynamics in

which entrepreneurs choose continuously advanced technologies. When the economy

follows such equilibrium dynamics, the technology-specific portion of knowledge is never

accumulated. Without the opportunity to utilize technology-specific knowledge, there

is no incentive for entrepreneurs to choose an existing technology at each instant. This

explains exactly why no mass point emerges. In this sense, the behavior of each agent

and macroeconomic movements are mutually consistent along this path. However, this

consideration also suggests that there may be another equilibrium path in which these

are mutually consistent but in a different way: when a positive mass of firms choose

the same technology, this choice may become privately optimal for each firm, since they

can utilize the technology-specific portion of accumulated knowledge to reduce R&D

costs. Throughout this section, we focus on the economy where µ is less than unity and

investigate these sorts of equilibrium dynamics by assuming that entrepreneurs create

a sequence of discrete mass points in Ft(·) rather than choosing continuously advanced
technologies.

Suppose that there is a small mass of firms that use the same technology z0, which is

the frontier technology at the time. When the number of firms adopting technology z0 is

n, this technology has amount (1− µ)n of its specific knowledge. This portion of knowl-
edge makes technology z0 relatively attractive for subsequent entrepreneurs because of

low initial R&D costs. An additional adoption of this technology makes the cost of R&D

even lower, resulting in a chain of adoption of the technology z0 by new entrepreneurs.

32When the distribution of the two economies are given (18), where n0 differs between them, reversal

of the initial gap may or may not happen depending on the parameter values.
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Figure 3: Determination of the size and time of technological improvement

However, this chain does not last forever, as shown in claim 5. Entrepreneurs eventually

switch to a certain advanced technology, λz0, when the number of firms adopting tech-

nology z0 reaches a certain threshold, n̄. Below, we show the ways in which the size of

improvement and the threthould are determined.

As the number of firms with technology z0 increases, the amount of knowledge on ad-

vanced technologies increases due to the R&D spillovers across technologies. Specifically,

if an entrepreneur devotes c(K̄) units of labor,33 he or she can create a good by adopting

a new technology z =
¡
µn/K̄ + 1

¢1/δ
z0.

34 Since the amount of profit is proportional

to the technology choice, the relative profit that can be gained by adopting the new

technology, rather than z0, is
¡
µn/K̄ + 1

¢1/δ
, which implies that the incentive to adopt a

superior technology increases as n gets larger. On the other hand, the labor cost of R&D

based on technology z0 gradually falls due to the spillover effects within this technology.

Specifically, the relative cost of adopting the new technology is c(K̄)/c(K̄ + n), which

means that the incentive to stick with technology z0 is also increasing in n.

Figure 3 depicts the variations of relative profit and relative cost as the number of

33Recall that whenever an entrepreneur adopts a technology superior to the current frontier, the amount

of knowledge on this technology must be K̄ and thus the labor cost must be c(K̄).

34This equation follows from Kt(z) = K̄.
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firms at the frontier increases. It shows that the relative cost dominates the relative

profit for small values of n.35 For these values of n, it is profitable for entrepreneurs to

choose technology z0 and thus the frontier does not advance. However, as the knowledge

on technology z0 grows, the cost of R&D becomes insensitive to a marginal increase

in knowledge, which causes a slowdown in the increase of the relative cost. Eventually

the magnitude of relative cost coincides with that of relative profit when n reaches a

certain threshold value n̄.36 At this point, entrepreneurs are indifferent as to the choice

between the current or new technology, but after that point the adoption of the new

technology becomes more profitable.37 Thus, immediately after the number of firms

reaches the maximum value n̄, the technology frontier jumps to the new technology, where

the relative improvement of technology is the same as the relative profit at this time,

λ ≡ (µn̄/K̄ + 1)1/δ = c(K̄)/c(K̄ + n̄). Entrepreneurs then continue to adopt technology

λz0 until an even more advanced technology λ
2z0 is adopted, when the number of firms

with technology λz0 reaches n̄. This pattern of technological adoption creates cyclical

growth dynamics, which we call the ‘cyclical growth regime.’

To investigate the movements of macroeconomic variables, we first derive the dynam-

ics within ‘one cycle’, that is, within the time interval throughout which all entrepreneurs

adopt the same technology. Let NS ∈ [K̄/µ, N̂) denote the value of Nt at the beginning
of the cycle.38 Initially the amount of knowledge at the frontier is K̄ and it increases

with the number of firms at the frontier, which yields Kt(Zt) = Nt − NS + K̄.39 The

motion of Nt within a cycle is then obtained in essentially the same way as we have

derived (19).

Ṅt = max

½
L

c(Nt −NS + K̄)
− α

Vt
, 0

¾
. (37)

Note that the above expression includes c(Nt − NS + K̄) not c(Nt), which is the only

35The derivative of the relative profit with respect to n at the point n = 0 is K̄/δ, while that of the

relative cost is K̄/δµ. Note that the latter is larger as long as µ < 1.

36It is straightforward to show that a unique solution exists to
¡
µn/K̄ + 1

¢1/δ
= c(K̄)/c(K̄+n) in the

region of n > 0.

37Figure 3 shows that the adoption of the new technology becomes more profitable after n reaches

n̄ assuming that only the old technology is adopted. Actually, entrepreneurs start to adopt the new

technology after that, which makes the profitability of adopting the new technology even higher relative

to the old technology.

38See footnote 26.

39Note that the number of firms at the frontier is Nt −NS.
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Figure 4: Dynamics within a cycle

difference between (19) and (37). Accordingly, the Ṅ = 0 locus becomes

NN : Vt =
αc(Nt −NS + K̄)

L
. (38)

From the arbitrage conditions we can also obtain the time derivative of Vt and the V̇ = 0

locus, which are exactly the same as (20) and (22), respectively.

Figure 4 depicts the phase diagram of one cycle dynamics, defined by (37) and (20),

along with a typical path. As shown in claim 3, the whole path must locate between

the NN and V V curves. This condition is satisfied if and only if the initial value

of Vt in this cycle, denoted by V
S , locates between V Sinf(N

S) and V Ssup(N
S), given in

the figure.40 When a cycle starts from a state (NS , V S) where V S satisfies the latter

condition, Nt reaches the critical point N
S+ n̄ in a finite time.41 The technology frontier

then jumps to a new technology which is λ times as productive as what it was. With

the jump of Zt, Nt ≡ Z−1t
R
z dFt(z) is divided by λ, while Vt ≡ vt(Zt) is multiplied by

λ. This whole process constitutes a one-to-one mapping from the state of the economy

40Here, V S
inf(N

S) and V S
sup(N

S) are obtained by following the dynamics backward from the points

(NS + n̄, V̂ /λ) and (NS + n̄, (1 − α)/ρ(NS + n̄)), respectively. From this procedure, it is obvious that

V̂ < V S
inf(N

S) < V S
sup(N

S) < (1− α)/ρNS holds.

41This is guaranteed under assumption 3.
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Figure 5: Phase diagram of Φ(·, ·)

at the beginning of a cycle, (NS, V S), to that immediately after the cycle, which we

represent by a vector function Φ(NS , V S) ≡ ((NS + n̄)/λ,φ(NS , V S)) defined in a space

{(N,V )|K̄ < N < N̂, V Sinf(N) < V < V
S
sup(N)}.

The discrete dynamics of Φ(·, ·) characterize the movements of cycles within the
cyclical growth regime. The first element of the mapping, (NS + n̄)/λ, shows that after

many cycles NS will converge to a stationary point N∗∗ = n̄/(λ− 1).42 By contrast, the
following shows that the movement of V S is unstable.

Claim 6 The slope of φ(NS , V S) with respect to V S is larger than λ for all NS ∈ (K̄, N̂)
and V S ∈ (V Sinf(Nt), V Ssup(Nt)).

Note also that, for any given NS , φ(NS, V S) is a continuous function of V S and the

domain of this function, (V Sinf(N
S), V Ssup(N

S)), is contained in its region (V̂ , (1−α)/ρNS).

These facts guarantee that there is a unique stationary point of Φ(·, ·) and that this point
has a saddle property.

Let us denote the saddle point by (N∗∗, V ∗∗). Solving the discrete dynamics of Φ(·, ·)
backwards from (N∗∗, V ∗∗), we can find the unique stable arm V S = SAcycle(NS) that

42N∗∗ is greater than the stationary point in the continuous growth regime, N∗.
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satisfies

lim
m→∞Φ

m(NS, SAcycle(NS)) = (N∗∗, V ∗∗)

for all NS ∈ [K̄/µ, N̂). Figure 5 depicts the stable arm and the movements of NS and

V S . If a cycle starts from a state off the stable arm, the deviation of V S from the stable

arm is multiplied by more than λ > 1 in each cycle and the economy will enter the

infeasible region in finite cycles. Thus, provided that the economy stays in the cyclical

growth regime permanently, the initial value of V S is determined by SAcycle(NS) and

the economy eventually converges to the stationary cycle, that is, the cycle starting from

(N∗∗, V ∗∗). Combining the paths of NS and V S derived above with the dynamics of Nt

and Vt within a cycle, and from the fact that the frontier technology is multiplied by λ at

the beginning of each cycle, the movements of Nt, Vt and Zt in the cyclical growth regime

are uniquely determined. Then, from (14) and (17), the consumption of a representative

consumer follows

Dt =
αc(Nt −NS + K̄)

LVt
(ZtNt)

(1−α)/α. (39)

5.1 Movements of Real Aggregate Variables

Let ωt denote the real wage at time t, which also represents the real labor income of

the representative consumer since each consumer inelastically supplies one unit of labor

service. From the fact that the reciprocal of the price index coincides with the aggregate

consumption, which is given by (17), the real wage rate can be calculated as

ωt ≡ wt/P̄t = α(ZtNt)
(1−α)/α. (40)

Since ZtNt represents
R
zdFt(z), which increases smoothly,

43 real income always grows

monotonically and smoothly.

Dividing both sides of equation (14) by the price index, the real value of a frontier

firm is calculated as Vt/P̄t = ωtl
min
t . This expression enables us to derive the movement

of the real interest rate, denoted by Rt, within a cycle from the arbitrage condition in

real terms.

Rt =
ω̇t
ωt
+
l̇mint

lmint

+
1− α
NtVt

. (41)

43 Using equations (8), (9) and (14), the time derivative of
R
zdFt(z) is calculated as (Zt/l

min
t )L −

α/vt(1). Here, Zt/l
min
t = maxz z/c(Kt(z)) varies continuously due to the envelope theorem. It is also

clear from equation (10) that vt(1) is continuous in t. Thus, the time derivative of
R
zdFt(z) is continuous

in t, which means that
R
zdFt(z) changes smoothly.
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The above equation shows that the real interest rate is the sum of the growth rate of

the real wage, that of R&D cost, and the reciprocal of the price-earning ratio, all of

which vary continuously within each cycle.44 However, as shown below, the real wage

drops discontinuously when a new cycle starts. Note that the sensitivity of R&D cost to

knowledge becomes discretely larger when the new technology is adopted, since there is

a relatively small amount of knowledge about the new technology. This causes a sudden

spur in the reduction of the labor cost of R&D, which means a discrete reduction in the

second term of (41).45 Thus, the real interest rate jumps downward when a new cycle

starts.

Given the streams of real income and the real interest rate, consumption by a repre-

sentative consumer with a log utility function is determined according to Ḋt/Dt = Rt−ρ.
The time path of consumption is smooth within each cycle, but not on the points be-

tween cycles since Rt drops discontinuously when new technologies are adopted. This

implies that each cycle starts with a small, possibly negative, growth rate of consumption

relative to the average growth rate within the whole cycle. As a result, the time path of

consumption has a cyclical component.

Recall that consumption Dt also represents per capita production at each date. Using

real wage ωt, the total amount of production is expressed as LDt = α−1ωt(L−LRt ), where
L−LRt = αlmint /Vt represents the number of production workers. This expression clarifies

that the initial decline in the growth rate of Dt is associated with a sudden increase in

the labor flow from production towards R&D. By adding the real value of new firms

created through R&D,
R
(vt(z)/P̄t) dRt(z) = LRt ωt, to the amount of production, real

GDP is obtained,

GDPt =

∙
1− α
α

(L− LRt ) + L
¸
ωt. (42)

Although the addition of R&D value reduces fluctuations in GDP relative to that in Dt,

GDP is still affected by the distribution of the labor force between production and R&D.

Note that while R&D activities are competitive, the goods market is monopolistic and

44Since the time path of the real wage is smooth, its growth rate is continuous. The denominator of the

third term can be broken down intoNtVt = (NtZt)vt(1). As shown in footnote 43, bothNtZt and vt(1) are

continuous in t, and thus the third term is continuous. Finally, the growth rate of lmint = c(Nt−NS+ K̄)

is also continuous in t within a cycle since Ṅt changes continuously according to (37) within a cycle.

45Let denote Kt(Zt) by k. Then, l̇mint /lmint = (c0(k)/c(k))(dNt/dt) = (c0(k)/c(k)2)LRt =

−²c(k)(c(k)k)−1LRt . Since both ²c(k) and (c(k)k)
−1 are decreasing in k as long as k ≥ K̄ and LRt

does not jump, the absolute value of l̇mint /lmint jumps upward when k drops.
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Figure 6: Movements of aggregate variables within three consecutive stationary cycles.

δ = 2, µ = 0.5.

there is a positive markup. Thus, an increase in the labor flow from production toward

R&D brings about a discontinuous fall in GDP growth, since it diverts resources away

from the monopolistic sector to the competitive sector.

Figure 6 shows a representative time path of the real wage (ωt), consumption (Dt),

and per capita real GDP (GDPt/L), within a few consecutive stationary cycles, cal-

culated numerically.46 All three variables have the same average growth rate ((1 −
α)/α) log λ/T ∗∗, where T ∗∗ represents the duration of each stationary cycle. In contrast

to the steady increase in the real wage, consumption has a large fluctuation including

negative growth at the beginning of each cycle and sustained growth only a few years

after the adoption of the new technology, though exact dynamics depend on parameter

values. The fluctuation in GDP is relatively small because of the inclusion of R&D value,

but its pattern is essentially the same as that of consumption.47

46 In all simulation results presented in this paper, we set parameter values to α = 0.5, ρ = 0.025, and

L = 1, which are the same as those adopted in the numerical simulation in the HT model. We use a

simple R&D cost function c(k) = 1/k + 1 that satisfies assumption 1. Here, the two parameters of the

spillover function are set to δ = 2 and µ = 0.5, though various values are examined later.

47This kind of downturn in economic performance immediately after the adoption of new technology

has been referred to by some economists as productivity slowdown puzzle. See Greenwood and Yorukoglu
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5.2 Relationships with the literature of GPTs

The dynamics investigated in this section are characterized by dramatic innovations

in production technology and resulting discontinuities in the evolution of output and

the pattern of resource allocation. These outcomes are consistent with a number of

observations made by economic historians in which major improvements in technology

had far-reaching and prolonged implications, such as the steam engine, electricity, and

the computer. To stylize these dramatic historical innovations, the notion of general

purpose technologies (GPTs) was recently introduced by Bresnahan and Trajtenberg

(1995), and subsequently a number of theoretical research studies were carried out to

investigate the relationship between GPTs and economic growth.

Although our model did not assume the existence of GPTs in its setup, it turns out

that each technology, chosen endogenously in the cyclical growth regime, has four char-

acteristics which are necessary and sufficient for any technology to qualify as a GPT.48

First, a new technology has scope for improvement. Initially at the time of adoption the

labor cost of R&D is a high value of c(K̄), but it is continually reduced until c(K̄)/λ

at the end of cycle.49 Second, each technology is used to produce a wide variety of

products. Throughout each cycle, all entrepreneurs adopt the same technology to pro-

duce distinct products for different purposes. Third, the range of the new technology,

defined as the proportion of productive activities in the economy using that technology,

becomes considerably wider within the cycle. Specifically, the share of production based

on the current frontier technology is calculated as (Nt − NS)/Nt, which initially starts

at zero and continuously increases until it reaches the maximum value n̄/(NS + n̄) at

the end of the cycle.50 After that, the share of technology z gradually declines according

to zn̄/ZtNt.
51 Fourth, there are strong technological complementarities between R&D

activities through spillovers of knowledge. Due to the spillover effect within the current

(1994) and Hornstein and Krusell (1996). Note also that our model predicts low real interest rates during

the periods of slowdown.

48These criteria were presented by Lipsey, Bekar and Carlaw (1998).

49Our specification limits the improvement to the R&D cost because the number of firms is normalized

so that their products enter the utility function symmetrically. Nonetheless, it is possible to reinterpret

this cost reduction as an improvement in the quality of products by adopting another measure of firms.

50In a stationary cycle, this maximum value is (λ− 1)/λ, which is reasonably large.
51On this point, the workings of our model are more realistic than the dynamics of the HT model,

where only one GPT is used in production at each date.
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frontier technology, adoption of that technology by some firm makes it more attractive for

subsequent entrepreneurs to adopt the same technology. Moreover, there exist spillovers

across technologies, which enable the economy to shift to more advanced technology

when the scope of cost reduction in the current technology has largely been exploited.

One major contribution of this paper is that it endogenizes the process by which GPTs

emerge from a continuum of potentially available technologies. While existing models

take the time of arrival of new GPTs and/or the productivity of GPTs as exogenous, our

model explains the way in which both are determined. In addition, it shows that growth

with GPTs is not the only possibility: as investigated in the previous section, there is

another regime of economic growth where new technologies are continuously adopted

and any single technology does not have a positive share (hence it is not a GPT). Thus,

in our framework, it is possible to examine whether or not the formation of GPTs is

beneficial for the economy. The next section deals with this issue.

6 Welfare

In the previous sections we have derived two patterns of equilibrium dynamics in the pe-

riod of sustained growth, respectively called the continuous and cyclical growth regimes.52

In a given economy, both patterns of dynamics may be realized and, moreover, it is pos-

sible that the economy switches from one regime to another at certain points in the

equilibrium path.53 This implies that there are many perfect foresight equilibria, each of

which differs in the pattern of technological adoption. The pattern of technological adop-

tion affects the evolution of consumption of a representative consumer, and consequently

52The dynamics in these two regimes are the only equilibrium dynamics that satisfy the condition

that no entrepreneur adopts technologies that are behind the current frontier. Any equilibrium path not

satisfying this condition is unstable because such an equilibrium path must contain a finite time period

in which multiple technologies are adopted. Consequently, it has a ’knife-edge’ property in that, once

the distribution of R&D over these technologies is disturbed, these multiple technologies cannot have

the same profitability over that time period and thus only one technology will be adopted. Unless all

entrepreneurs are able to coordinate their pattern of technology adoption, such a path is unlikely to be

realized.

53An economy can switch to the cyclical growth regime from any point in the continuous growth regime.

By contrast, when an economy is in the cyclical growth regime, it can switch to the continuous growth

regime only after the current cycle is finished (that is, only after the frontier jumps to a new technology).

It is possible to show that once the pattern of switching between the two regimes is specified, a unique

perfect foresight equilibrium exists that follows that pattern.
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consumer welfare is also affected.

This section investigates whether discrete technological progress with GPTs is more

desirable than continuous technological progress, in terms of the welfare of the represen-

tative consumer. First, we calculate the utility of the consumer in each regime, partly

with the aid of a computer, and show that the desirable pattern of technology adoption

differs depending on parameters. This result will then be interpreted by showing that

there are both advantages and disadvantages in forming GPTs.

On the balanced growth path (BGP) of the continuous growth regime, Nt and Vt stay

at their stationary values, N∗ and V ∗, respectively, and the technology, Zt, progresses

at a constant rate of g∗. Applying these facts for (35) and then substituting this into

(3), we obtain the utility of the representative consumer on the BGP of the continuous

growth regime.

U∗(Zt) =
1

ρ

∙
ln
αc(K̄)

LV ∗
+
1− α
α

µ
lnN∗ +

g∗

ρ

¶¸
+
1− α
αρ

Zt.

On the other hand, state variables are cyclically evolving in the cyclical growth regime,

even after both NS and V S settle to their stationary values. Let Nτ and Vτ (0 ≤ τ ≤
T ∗∗) denote the evolution of the state variables within the stationary cycle,54 which

is uniquely determined by (37) and (20) along with initial conditions N∗∗ and V ∗∗.

Then, substituting these paths into (39) yields the movements of consumption within

the stationary cycle, which can be denoted by Z
(1−α)/α
t D∗∗τ . While the technology, Zt, is

unchanged during one cycle, it is multiplied by λ when the economy enters the new cycle,

implying that the whole path of consumption in the new cycle is λ(1−α)/α times larger

than the last one. From these considerations, we can derive the utility level measured at

the starting point of a cycle:

U∗∗(Zt) =
1

1− e−ρT ∗∗
"Z T ∗∗

0

lnD∗∗τ dτ + e
−ρT ∗∗ 1− α

αρ
lnλ

#
+
1− α
αρ

Zt.

The above two expressions give the utility of the representative consumer in the

steady state of each regime, but they are not sufficient to judge which regime is better

in a welfare sense since it is not possible to switch from the steady state of one regime

to that of the other immediately. Suppose that the economy is currently on the BGP

of the continuous growth regime and then switches permanently to the cyclical growth

54Here index τ is used instead of t to express the time passed after the current cycle started. Recall

that T ∗∗ represents the time length of the stationary cycle.
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Figure 7: Comparison of welfare between the two regimes.

regime. In this case, the first cycle in the cyclical growth regime starts from NS = N∗

and then, following the stable arm of Φ(·, ·) shown in figure 5, the economy gradually
converges to the stationary cycle, where NS = N∗∗. Likewise, if the economy switches

from the stationary cycle to the continuous growth regime permanently, the transitional

dynamics start from Nt = N∗∗ and gradually converge to the BGP, where Nt = N∗,

following the stable arm depicted in figure 2.

For various values for parameters,55 we have numerically calculated the utility of

the representative consumer when the economy switches from the steady state of one

regime to the other regime, and compared them with U∗(Zt) and U∗∗(Zt). The results

are summarized in figure 7, which shows that there are three regions in the relevant

parameter space. When the parameters belong to the lower region labeled ‘Cyclical’

the cyclical growth regime is desirable regardless of the initial state of the economy.56

Alternatively, when the parameters are in the upper region labeled ‘Continuous’ the

55In this simulation, we have focused on δ and µ, the parameters of the spillover function, since the

most important difference between the two regimes is in the pattern of knowledge accumulation which

depends on these parameters. For other parameters, see footnote 46.

56That is, the utility of remaining in the stationary cycle is larger than the utility gained from switching

from it to the continuous growth regime, and the utility of staying at the BGP is smaller than the utility

gained from switching from it to the cyclical growth regime.
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continuous growth regime is desirable. In the intermediate region labeled ‘Stay’, it is

better to stay in the current regime than to incur welfare losses during the transition.

This mixed result implies that there are both advantages and disadvantages in the

formation of GPTs compared to shifting continuously to the advanced technologies. The

magnitudes of these effects are influenced by the parameters of the spillover function,

δ and µ. As we have seen in the previous section, when a GPT is formed the cost of

R&D is efficiently reduced through the utilization of the technology-specific portion of

knowledge. In fact, when µ is smaller than unity (i.e., there is a positive portion of

knowledge that cannot be applied to other technologies), the growth rate of ZtNt is

larger in the cyclical growth regime, at least at the beginning of a cycle, than in the

continuous growth regime for a given schedule of R&D labor input.57 Thus, for some

time after a cycle starts, the formation of a GPT promotes growth measured in terms

of NtVt, which is beneficial for consumers since the per capita consumption is given by

(ZtNt)
(1−α)/α times the portion of production labor. This effect is stronger when µ is

smaller, which is consistent with the configuration in figure 7.

However, in the long term, GPTs may harm growth. Once a GPT is formed, it

creates a discrete difference between the cost of R&D based on the GPT and those based

on other technologies. Consequently, entrepreneurs are not willing to switch to advanced

technologies until a technology with a sufficiently high productivity becomes available

at a certain cost of adoption. Thus, the productivity of the next technology must be

significantly higher than that of the current GPT. However, this means the spillover

of knowledge from the experiences in the current GPT to the next technology is small

in magnitude, especially when δ is large.58 In such a case, the adoption cost of new

technology declines only slowly. This makes the economy stick to the current GPT even

after the cost of R&D based on this technology becomes insensitive to the additional

amount of knowledge. By contrast, in the continuous growth regime, spillovers between

adjacent technologies promote adoption of advanced technologies and firms do not stick

to any technology. In fact, unless δ is close to unity, the cumulative amount of R&D

57Let At ≡
R t
0
LRt dt denote the cumulative input of R&D labor. Then, at the beginning of a new

cycle, d(ZtNt)/dA = Zt/c(K̄) and d
2(ZtNt)/dA

2 = Zt/δK̄c(K̄)
2. In the continuous growth regime,

d(ZtNt)/dA = Zt/c(K̄) and d
2(ZtNt)/dA

2 = µZt/δK̄c(K̄)
2. While the first derivatives are the same,

the second derivative for the case of cyclical growth is larger than that for continuous growth, as long as

µ < 1.

58Note that a large δ means that the magnitude of spillover is highly sensitive to the difference in the

productivity of technologies.
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labor input that is required for the economy to switch to the next technology in the

cyclical growth regime is larger than the amount required to reach the same technology

in the continuous growth regime. This implies that, in the long run, the average rate of

growth tends to be larger in the continuous growth regime than in the cyclical growth

regime.

The relative gap in the average rate of growth between the regimes increases with

δ, but this does not mean that the welfare disadvantages of the formation of a GPT

monotonically increase with δ. As δ gets larger, the growth rate itself declines in both

regimes. In addition, in the cyclical growth regime the length of one cycle becomes

longer. When δ is very large, the delay in the adoption of the next technology caused by

the formation of a GPT has only a minor effect on overall welfare, since consumption in

such a distant future is heavily discounted. In fact, figure 7 shows that not only when δ is

small but also when it is very large, the cyclical growth regime is more desirable than the

continuous growth regime, while the disadvantages of a GPT outweighs its advantages

when δ is an intermediate value (provided that µ is not small).

7 Conclusion

We have demonstrated that when there is a continuum of technologies differing in pro-

ductivity, the pattern of growth is not unique. When the portion of technology-specific

knowledge is large, it is desirable to form a sequence of GPTs. These GPTs produce

cyclical evolutions in the macroeconomic variables, including a slowdown in GDP growth

immediately after the economy switches to a new technology. On the other hand, in an

economy where the portion of knowledge that can be applied to adjacent technologies is

not quite so small, but it is reasonably difficult to apply knowledge to other technologies

that differ substantially in productivity, shifting continuously to advanced technologies

results in higher welfare than forming GPTs. In this case, all the macroeconomic vari-

ables are evolving smoothly, converging to the balanced growth path where GDP grows

at a constant rate.

It is not guaranteed, however, that technologies are adopted in the desirable pat-

tern since both patterns (and their possible hybrids) always constitute perfect foresight

equilibria and it depends on the expectations of entrepreneurs which pattern is real-

ized.59 This suggest the possibility that some policies may improve the welfare of the

59In reality, it may even possible that agents have different expectations, though this viorate the
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representative consumer by affecting the pattern of technological adoption. Specifically,

with various measures to promote the adoption of specific technologies, such as direct

subsidies or public research to aid the accumulation of knowledge, the government can

manipulate the relative profitability of adopting various technologies, lt(·), and lead the
economy to the desirable regime.60 In general, even when the economy is currently in the

desirable regime, there remains room for government intervention since R&D has positive

externalities. While this property is common to many endogenous growth models, our

model suggests that policies must be implemented in a careful way: if the possibility of

a regime change is not considered, some policies that are intended to improve welfare,

assuming that the economy stays in the current regime, may worsen the situation by

leading it to the Pareto inferior regime.

Appendix A: Proof of Claims

A.1 Proof of Claim 1

Let us define a function g(x) ≡ ln s(1, ex). Note that s(z0, z) = s(1, z/z0) holds since

s(·, ·) is homogeneous of degree 0. Then, for any given ζ ≡ ln(z/z0), property d of

assumption 2 implies that g(ξ) + g(ζ − ξ) does not depend on ξ ≡ ln(z0/z0) ∈ (0, ζ).
From this, it is clear that the derivative of g(ξ) + g(ζ − ξ) with respect to ζ, g0(ζ − ξ),

does not depend on ξ ∈ (0, ζ). Since ζ can be any positive number, the result is that
g0(x) is constant for all x > 0. Thus, for some constants c0 and c1, g(x) can be expressed

as c0 + c1x. Then, we obtain s(z0, z) = e
g(ln(z/z0)) = ec0+c1 ln(z/z0) = ec0(z/z0)

c1 for any

conventional assumption of rational expectations. For example, suppose that there are two groups of

entrepreneurs. One group expects that the economy will follow the continuous growth regime, while

the other expects the cyclical growth regime to occur. Each group carries out R&Ds according to their

belief. Depending on which belief is held, the discounted sum of profits that can be gained from investing

in R&D, Vt, differs. In the labor market, the group of entrepreneurs who believe Vt is larger than the

other group believes, hires labor for R&D until the wage level rises to satisfy the free entry condition

under their belief. Since the other entrepreneurs believe that their investments will not pay at this wage

level, only those entrepreneurs who expect large Vt invest in R&D and, as a result, their expectations

are actually realized. The outcome is essentially the same as the perfect foresight equilibrium where all

entrepreneurs expect the regime that realizes large Vt. However, since the high value of Vt means that

the goods market in the future is less competitive, it tends not to be the desirable equilibrium in terms

of welfare.

60To this end, the scale of intervention (such as the amounts of subsidies) can be arbitrarily small,

which implies that a marginal intervention can improve welfare discretely.
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z > z0 and s(z0, z) = e
c0(z0/z)

c1 for z < z0 from the assumption of symmetry. For the

function s(·, ·) to be bounded in (0, 1], ec0 must be bounded in (0, 1]. From the property

e, c1 must be smaller than −1. This completes the proof.

A.2 Proof of Claim 2

We first show that Lmint is bounded. Let us introduce a function l̃t(ζ) ≡ ln c(Kt(Zt)e−δζ/µ)−
ζ, which is no larger than ln lt(Zte

ζ) = ln c(Kt(Zte
ζ))− ζ since Kt(Zt)(z/Zt)δ/µ ≥ Kt(z)

holds for all z. Its derivative is l̃0t(ζ) = δ²c(Kt(Zt)e
−δζ/µ) − 1. From assumption 1,

we have limζ→∞ l̃0t(ζ) > 0 and limζ→−∞ l̃0t(ζ) < 0. Then, it follows that limz→∞ lt(z) ≥
limζ→∞ exp(l̃t(ζ)) =∞ and limz→+0 lt(z) ≥ limζ→−∞ exp(l̃t(ζ)) =∞. Thus, there exists
a closed interval [z, z̄] such that lt(z) > lt(Zt) for all z /∈ [z, z̄].

Next, we examine the existence of lmint . If µ = 1, the existence is obvious since lt(z)

is a continuous function. In the following, we focus on the case µ < 1. Let Mt ≡ {z ∈
[z, z̄]|Ft(z) − Ft(z−) > 0} denote the set of all mass points in [z, z̄], and denote by M̄t

the complementary set [z, z̄]\Mt. Since lt(z) is not continuous onMt, let us introduce

a continuous variant of lt(z), l
−
t (z) ≡ (Zt/z)c(K−t (z)), where

K−t (z) = µ
Z ∞
0

min

½
z0

z
,
z

z0

¾δ
dFt(z

0). (A.2)

Note that l−t (z) is larger than lt(z) on Mt and coincides with lt(z) on M̄t. Since

l−t (z) is continuous and [z, z̄] is compact, there exists l
−min
t ≡ minz∈[z,z̄] l−t (z). If

minz∈Mt lt(z) exists, l
min
t is the smaller of this and l−mint . If minz∈Mt lt(z) does not

exists but infz∈Mt lt(z) is no less than l
−min
t , then lmint = l−mint . Finally, suppose that

minz∈Mt lt(z) is non-existent and that infz∈Mt lt(z) is smaller than l
−min
t . Then, we can

choose some ξ > 1 so that there are infinite elements in Mξ
t ≡ {z ∈ Mt|ξlt(z) <

l−mint }. For each z ∈ M ξ
t , Ft(z) − Ft(z−) ≥ k ln ξ/(1 − µ)²c(k) > 0, where k ≡

µKt(Zt)min{z/Zt, Zt/z̄}. Thus
R∞
0 zdFt(z) ≥ z

P
z∈Mξ

t
(Ft(z) − Ft(z−)) = ∞, which

contradicts assumption 4.

A.3 Proof of Claim 3

From equation (7) and (10) and the fact that ZtNt ≡
R∞
0 z dFt(z) is nondecreasing in

time, it follows that Vt = (1 − α)Zt
R∞
t e−ρ(τ−t)(ZτNτ )

−1dτ ≤ (1 − α)/ρNt. Note that

the equality in the latter applies if and only if Lτ = 0 holds for all τ ≥ t, since otherwise
ZτNτ increases at some date in the future. On the other hand, we have shown in the
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text that as long as there is a positive amount of R&D, Vt = wtl
min
t and wt > α/L hold,

which implies that Vt > αlmint /L. This completes the proof of the part a.

It is clear from the above argument that when αlmint /L is larger than or equal to

(1− α)/ρNt there will be no R&D carried out in the economy. Conversely, consider the
case where (1 − α)/ρNt is larger than αl

min
t /L. Suppose that there is no R&D at time

t. In this case, the free entry condition requires Vt ≤ αlmint /L since no R&D implies

wt = α/L. If there is no R&D for all dates in the future, Vt = (1 − α)/ρNt > αlmint /L

holds, which contradicts the free entry condition. Thus, some entrepreneurs must carry

out R&D in the future. Let t0 be the first date after t with LRt0 > 0. Then, the part a

of the claim requires Vt0 > αlmint0 /L. Since there are no movements in the distribution

of firms within the time interval between t and t0, lmint0 = lmint and Zt0 = Zt hold.

These facts and the non-decreasing nature of ZtNt imply αl
min
t /L = αlmint0 /L < Vt0 =

(1−α)Zt0
R∞
t0 e

−(τ−t0)ZτNτdτ ≤ (1−α)Zt
R∞
t0 e

−(τ−t0)Zτ−t0+tNτ−t0+tdτ = Vt, which again

contradicts the free entry condition at date t. Therefore, whenever (1 − α)/ρNt >

αlmint /L, there must be a positive amount of R&D in the economy.

A.4 Proof of Claim 4

Let K−t (z) be defined by equation (A.2). We first derive the slope of K
−
t (z). Its left-hand

derivative is calculated as

lim
²→+0

K−t (z)−K−t (z − ²)
²

=µ lim
²→+0

1

²

Z
(0,z−²]

(µ
z0

z

¶δ
−
µ

z0

z − ²
¶δ)

dFt(z
0)

+ µ lim
²→+0

1

²

Z
(z−²,z)

(µ
z0

z

¶δ
−
µ
z − ²
z0

¶δ)
dFt(z

0)

+ µ lim
²→+0

1

²

Z
[z,∞)

(³ z
z0
´δ − µz − ²

z0

¶δ)
dFt(z

0)

The absolute value of the second term is bounded by

µ lim
²→+0

Z
(z−²,z)

1

²

¯̄̄̄
¯
µ
z0

z

¶δ
−
µ
z − ²
z0

¶δ ¯̄̄̄¯ dFt(z0) = 2µδ

z
lim
²→+0

Z
(z−²,z)

dFt(z
0),

which is zero. Thus, the left-hand derivative of K−t (z) is calculated as

µδ

z

"
−
Z
(0,z)

µ
z0

z

¶δ
dFt(z

0) +
Z
[z,∞)

³ z
z0
´δ
dFt(z

0)

#
. (A.3)
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In a similar way, we can derive the right-hand derivative of K−t (z) as

µδ

z

"
−
Z
(0,z]

µ
z0

z

¶δ
dFt(z

0) +
Z
(z,∞)

³ z
z0
´δ
dFt(z

0)

#
. (A.4)

Note that the two expressions, (A.3) and (A.4), coincide when Ft(z) − Ft(z−) = 0,
that is when z is not a mass point of Ft(·). In this case, K−t (·) is differentiable at z and
its derivative is unambiguously expressed as

K−t
0
(z) =

δµ

z

"
−
Z z

0

µ
z0

z

¶δ
dFt(z

0) +
Z ∞
z

³ z
z0
´δ
dFt(z

0)

#
. (A.5)

The assumption Z 0t < z for all t0 < t means that z is not a mass point and that

the second term in the square bracket in (A.5) is zero. In this case, K−t
0
(z) reduces

to −(δ/z)Kt(z). From this result, we can also calculate the derivative of l−t (z) ≡
(Zt/z)c(K

−
t (z)) as l

−
t
0
(z) = (l−t (z)/z) (δ²c(Kt(z))− 1) , which becomes zero if and only

if Kt(z) = ²
−1
c (1/δ) ≡ K̄. If l−t 0(z) were not zero, there would exist some technology z0

such that l−t (z0) is smaller than l
−
t (z). In this case, lt(z) = l

−
t (z) > l

−
t (z

0) ≥ lt(z0) holds
and thus z is not contained in Lmint , contradicting (15).

A.5 Proof of Claim 5

a. Note that d ln c(k)/d ln k = −²c(k) > −1/δ = d ln c̃(k)/d ln k holds for all k > K̄. Since
c(·) is a decreasing function, ln c(K̄/µ) is smaller than ln c(K̄) = ln c̃(K̄/µ). Let K̃ ≡
(K̄/µ) (c(K̄)/c(K̄/µ))1/(1/δ−²c(K̄/µ)) > K̄/µ. Then, ln c(K̃) = ln c((K̄/µ) exp((ln c(K̄)−
ln(K̄/µ))/(1/δ− ²c(K̄/µ)))) is larger than ln c(K̄/µ)− (1/δ)(ln c(K̄)− ln(K̄/µ))/ (1/δ−
²c(K̄/µ)) = ln c̃(K̃). It follows these facts that ln c(k) intersects with ln c̃(k) from below

only once in the region k > K̄ and the point of intersection Kmax is located between

K̄/µ and K̃.

b. Suppose that a technology z0 ≤ z exists such that z0 ∈ Lmint . Then lt(z
0) must

be no greater than lt(z), which requires Kt(z
0) ≥ Kt(z) ≥ Kmax. Let us take an-

other technology z00 = (µKt(z0)/K̄)1/δz0. Then, Kt(z00) ≥ µKt(z0)(z00/z0)−δ = K̄. From
these properties, it follows that lt(z

00) ≤ (Zt/z00)c(K̄) = (Zt/z
0)(K̄/µKt(z0))1/δc(K̄) =

(Zt/z
0)c̃(Kt(z0)) < (Zt/z

0)c(Kt(z0)) = lt(z
0), which implies z0 /∈ Lmint , a contradiction.

Thus, Rt(·) ⊆ Lmint ⊂ (z,∞) follows.
c. Suppose that a technology z0 ≤ z exists such that z0 ∈ Lmint and Ft(z

0)−Ft(z0−) =
0. Then lt(z

0) must be no greater than lt(z), which requires Kt(z0) ≥ Kt(z) > K̄. Since
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z0 is not a mass point, Kt(z0) coincides with K−t (z0), which is defined by (A.2). The

right-hand derivative of K−t (·) at z0 is derived in a similar way to the way we have
derived (A.4), which turns out to be no smaller than −(δ/z0)K−t (z0). From this, it

follows that the right-hand derivative of l−t (·) at z0 is well defined and no greater than
(l−t (z0)/z0)

¡
δ²c(K

−
t (z

0))− 1¢, which is strictly negative because of K−t (z0) > K̄. This

means that there exists some technology z00 > z0 such that l−t (z00) < l−t (z0). Since

lt(z
0) = l−t (z

0) > l−t (z
00) ≥ lt(z00), z0 is not contained in Lmint , contradicting the initial

assumption of z0 ∈ Lmint .

d. When µ = 1, the definition of K−t (·) coincides with that of Kt(·). Thus, the proof
presented in part c applies regardless of whether z0 is a mass point or not.

A.6 Proof of Claim 6

Consider a possible equilibrium path in one cycle that starts from (NS, V S), where

NS ∈ (K̄, N̂) and V S ∈ (V Sinf(Nt), V Ssup(Nt)). Then, at each point, the slope of the path
in (Nt, Vt) space is V̇t/Ṅt, where Ṅt and V̇t are given by (37) and (20), respectively. Note

that this slope is strictly negative because Ṅt > 0 and V̇t < 0. Let V
E denote the value

of Vt when Nt reaches N
S + n̄.

Suppose that there is another possible path that starts from (NS , V S
0
), where V S

0 ∈
(V S , V Ssup(Nt)). Consequently, this path must be located above the previous one at each

Nt ∈ [NS , NS + n̄]. Moreover, the slope of this path at each Nt is larger than than that

of the previous path since

d

dVt

Ã
V̇t

Ṅt

!
=
1

Ṅt

Ã
ρ+

α

V 2t

V̇t

Ṅt

!
> 0 (A.6)

holds for all Nt ∈ [NS , NS + n̄]. This means that the gap between the two paths gets

wider as Nt increases, which implies V
E 0 − V E > V S 0 − V S . After the frontier jumps,

the gap widens: φ(NS , V S
0
)− φ(NS , V S) = λV E

0 − λV E > λ(V S
0 − V S).

Note that the opposite inequality holds when V S
0
< V S . Either way, we finally obtain

φ(NS , V S
0
)− φ(NS , V S)

V S 0 − V S > λ (A.7)

for all V S
0 6= V S , which completes the proof.
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Appendix B: Definition of Γ

Let K̄ denote ²−1c (1/δ), Kmax the solution to c(Kmax) = c(K̄)(K̄/µKmax)1/δ in domain

(K̄/µ,∞), and λ the solution to c(K̄(λδ − 1 + µ)/µ) = c(K̄)/λ in domain (1,∞), the
meanings of which are explained in claim 4, claim 5 and section 5, respectively. Then,

Γ = max

½
Kmaxc(Kmax),

K̄c(K̄)(λδ − 1)
µ(λ− 1)

¾
.
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