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Abstract

Traditionally, insurance risks are borne in reinsurance markets. In
1990s, however, after the sequence of huge natural disasters and huge in-
surance payments, the reinsurance markets reduced its capability to bear
risks, especially those related to catastrophic natural disasters. Catastrophe-
Linked Securities (CLS) were invented in order to fill the need for addi-
tional reinsurance capacity by transferring insurance risks to the capital
markets. The CAT (catastrophe) index futures is one of the several types
of CLS’s. This paper investigates conditions under which the index deriv-
atives, such as the CAT index futures, of the insurance risks can be traded
by the non-insurance investors and is beneficial from the insurers’ and
the exchange’s viewpoints.
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1. INTRODUCTION

Insurance risks are traditionally borne in reinsurance markets. That is, after
originating insurance contracts and bearing risks of customers, the insurers
spread and reallocate such insurance risks among themselves and reinsurers.
Lloyd’s is a notable example. Munich Re. and Swiss Re. are some of the
representative reinsurers.
In 1990’s, however, the capability of the reinsurance markets to bear risks

was at stake. A sequence of huge natural disasters, including Hurricane Andrew
(1992) and Northridge Earthquake (1994), produced huge amount, more than $
30 billion just for Hurricane Andrew and Northridge Earthquake, in industry-
wide insured losses. There was the need for additional reinsurance capacity.
Capital markets, or the non-insurance investors in them, became the natural
target. (See Ganapati et. al. (1997).)
Then, innovation occurred. Catastrophe-linked securities (CLS’s) were cre-

ated, which enabled the investors outside the insurance and reinsurance industry
to trade the catastrophe insurance risks, so that the capital markets could pro-
vide additional capacity for bearing the insurance risks. A CAT (catastrophe)
index futures contract is among the several types of CLS’s.1

The CAT index futures was introduced by Chicago Board of Trade (CBOT)
in 1992, based on an index provided by the Insurance Services Office (ISO). Since
1995, the index has been changed to that provided by Property Claims Services
(PCS), which is now regarded as the industry accepted standards. Other indexes
are used in other markets. In the Bermuda Commodity Exchange (BCOE),
CAT index derivative instruments are based on the Guy Carpenter Catastrophe
Index (GCCI). In over-the-counter (OTC) markets, Risk Management Solutions
(RMS) Index and Sigma Index by Swiss Re. are utilized. (See Kist and Meyers
(1999).)
Roughly speaking, these indexes are designed to reflect the industry-wide

insurance losses, not the individual insurer’s losses. From the purpose of risk-
reallocation, such design of the indexes limits the hedging effectiveness of the
CAT index derivatives for the individual insurers. The risk traded by the index
is inevitably different from the risks that the individual insurers wish to hedge.
There is basis risk. Thus, if the insurers and the investors outside the insurance
industry have the same information about the insurance risks, there is no benefit
for creating an index derivatives for both sides. Trading each insurer’s risk
s e pa r at e l y avoi d s t he bas i s ri sk i n tra di ng the i ndex and p rovi de s b et t e r r i s k-
s h ari ng o pp ort uni t i e s.

1Securitization of catastrophe insurance risks is another example.
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However, this is not the case for insurance risks, including catastrophe risk.
Usually, the outside non-insurance investors know little about the risks that the
insurance contracts deal with, while the insurers and the reinsurers know them
well. Asymmetric information is prevalent between the insiders and the outsider
of the insurance markets. Trading an index of insurance risks is expected to
mitigate such asymmetric information and to facilitate the participation of the
non-insurance investors in trading. (See Kist and Meyers (1999), and Major
(1999).)
Despite such device, the CAT index derivative markets have not been suc-

cessful. For all contracts, trading has been thin. The exchanges have shut down
most of these markets. Although this is partly because of the recovery of ca-
pacity of the reinsurance markets due to the lack (and luck) in occurrence of
huge natural disasters, from the theoretical viewpoint, the developments of the
CAT index derivatives should be meaningful steps in achieving incremental risk
transfer to the capital markets.
What was wrong? Under what condition, can the index derivatives, such as

the CAT index futures, of the insurance risks be traded and preferred to the
reinsurance contracts? These are the questions that we address in this paper.
In what follows, we focus on the situation where each insurance risk of each

insurer cannot be traded separately with the non-insurance outside investors
because of the adverse selection. As practical way to mitigate such adverse
selection problem, we consider an index futures where the index is defined to
be the average of the payoffs of the insurance risks that the individual insurers
bear. We first investigate the condition under which bundling these risks into
an index futures mitigates the adverse selection enough for the index futures to
be traded between the insurers and the outside investor.
We then compare the attractiveness of the index futures with the reinsurance

markets from the insurers’ viewpoints. Participants in the reinsurance markets
are presumably professionals in insurance. They know equally well about the
insurance risks that they trade. Adverse selection problem about the insurance
risks is small in the reinsurance markets. Thus, we model the reinsurance
markets as one representative reinsurer who has the same information as the
insurers, but is less risk tolerant than the representative non-insurance outside
investor. We consider the idealized reinsurance markets where the insurers and
the reinsurer have the symmetric information, trade their risks competitively,
and attain the optimal risk allocation. We then investigate the condition under
which each insurer, ex-ante, wish to trade the index futures rather than the
reinsurance contracts.
We also investigate the attractiveness of creating the index futures from the
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exchange’s viewpoint..
In section 2, we formulate the model. In section 3, we investigate the con-

dition under which the index futures can be traded between the insurers and
the outside non-insurance investors. In section 4, we investigate the idealized
reinsurance markets. In section 5, we compare the ex-ante attractiveness of the
index futures with the reinsurance contracts to the insurers. In section 6, we in-
vestigate the attractiveness of the index futures from the exchange’ss viewpoint.
In section 7, we conclude with some comments on further investigation.

2. THE MODEL

All random variables are defined on a probability space (Ω,F , P ) . Through-
out we denote by V ar [χ], the unconditional variance of random variable χ, and
by V ar [χ|η], the conditional variance of χ given η. Similarly Cov [χ, ξ] denotes
the unconditional covariance between χ and ξ, and Cov [χ, ξ|η] the conditional
covariance.
There are N + 2 agents, with von Neumann-Morgenstern utility functions

displaying constant absolute risk aversion. We refer to the firstN agents insurers
and assume that each insurer n (n = 1, ..., N) has an asset, as an insurance
contract, which yields a stochastic payoff zn at some terminal date. The N +
1st agent is an aggregated reinsurer who provides reinsurance for the insurers.
The N + 2nd agent is an aggregated outside investor who represents the (non-
insurance) capital market as a whole.
There are three dates in the economy. At the ex-ante stage, date 0, the

insurers decide which contract and with whom they trade at date 1, an index
futures with the outside investors or reinsurance contracts with the reinsurer.
At the interim stage, date 1, the insurers and the reinsurer receive some private
signals about the payoffs of the insurance risks, while the outside investors
receives no signal. Right after the signal is received, the insurers trade either an
index futures with the uninformed outside investor, or a reinsurance contract
with the reinsurer, as they planned at date 0. At the final stage, date 2, payoffs
are realized and all signals become public.
More precisely the insurer n (n = 1, ..., N) has the utility functionE[− exp(− 1

rI
W )]

over the consumptionW at date 2, is endowed with an asset that has a payoff z
at date 2, and receives a vector S of information signals at date 1. The reinsurer
has the utility function E[− exp(− 1

rR
W )] over the consumption W at date 2,

receives the same vector S of information signals that the insurers do at date 1,
but has no asset. The outside investor has the utility function E[− exp(− 1

ru
W )]
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over the consumption W at date 2, but has neither endowment of an asset nor
an information signal.
For tractability we assume that zn is given by a product of two random

variables xn and en, namely zn = enxn, where xn represents the per unit payoff
of the n’s insurance risk and en represents the size, in terms of units, of the n’s
insurance risk. We also assume that

xn = xc + εn.

For each n, denote by sn a signal on εn. Define e ≡ [e1, ..., eN ]
|, ε ≡

[ε1, ..., εN ]
|, x ≡ [x1, ..., xN ]

|, and s ≡ [s1, ..., sN ]
|.The vector of information

signals S that the insurers and the reinsurer receives at date 1 is given by
S ≡ (s|, e|)|.
All underlying random variables are normally distributed with 0 means, and

are independent except that for each n,

C[εn, sn] = ρ (ρ 6= 0).

We assume that V ar[en] is the same for all n, that V ar[εn] is the same for all
n, and that V ar[sn] is the same for all n.
There are two kinds of possible contracts that the insurers choose to trade.

One is an index futures contract with a payoff F = 1
N

PN
n=1 xn. The other

is reinsurance contracts with payoffs x = (x1, ..., xN)
|. The insurers decide

collectively whether they trade the index futures or the reinsurance contracts.
In the former case, the insurers share their endowment risks with the uninformed
non-insurance investor in the capital markets through trading the index futures.
In the latter case, the insurers share their endowment risks with the equally
informed reinsurer through the reinsurance market.
Note that although the investor in the capital markets is less informed than

the insurers and the reinsurer, typically the capital markets is much larger
than the reinsurance market in its size. Thus, with symmetric information, the
aggregate investor of the larger capital market would be more risk tolerant than
the reinsurer in the smaller reinsurance market.

3. THE INDEX FUTURES

We first investigate the case where the insurers trade the index futures with
the outside investor in the capital market. Here, we assume that the reinsurer
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does not participate in trading the futures. We would like to know the condi-
tion under which bundling the insurers’ endowment risks into an index futures
facilitates risk sharing between the insurers and the outside investor.
Note that if the insurers and the outside investor have the same information

about the risks that they trade, there is no benefit for creating an index futures
for both sides. Trading each insurer’s endowment risk separately provides better
opportunities for risk sharing.
However, this is not the case for typical insurance markets, including CAT

insurance. Usually, the outside non-insurance investor knows little about the
risks that the insurance contracts deal with, while the insurers know them well.
Asymmetric information is prevalent between the insiders and the outsider of
the insurance markets.
Thus, we focus on the situation where each insurer’s endowment risk cannot

be traded separately with the outside investor because of adverse selection,
but bundling these risks into an index futures mitigates the adverse selection
problem so that the index futures can be traded between the insurers and the
outside investor.
For this purpose, let us start with the hypothetical case where each insurer

n creates an insurance futures contract with the payoff xn aiming to trade it
separately with the outside investor. We assume that each insurer does not
trade the other insurers’ contracts.
Denote by θn the position that the insurer n takes. Each insurer n tries to

trade the futures xn 2 with the outside investor strategically i.e., taking account
of the price impact of his position θn. Let θ = (θ1, ..., θN)

|. We assume that
the price is given by a linear function

Pn(θ) = hn + kθn + l
X
m6=n

θm.

The insurer n ’s date 2 wealth after trading this futures is given by

Wn = enxn + θn (xn − Pn(θ)) .
At date 1, the insurer n solves the following problem to obtain the optimal
position θn.

Maxθn[− exp(
−1
γI
Wn) | S].

2Equivalently, we can assume that the contract is not a futures, that its price is paid at
date 1, and that there exists a riskless asset between date 1 and date 2 whose rate of return
is normalized to one.
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Its first order condition is

E[xn|S]− hn − 2kθn − l
X
m6=n

θm − 1

γI
{V ar[xn|S]en + V ar[xn|S]θn} = 0

and its second order condition is

2k +
1

γI
V ar[xn|S] > 0.

Note that the optimal θn’s are simultaneously determined. Define qn = E[xn|S]−
1
γI
V ar[xn|S] , Q = (q1, ..., qN)|, and H = (h1, ..., hN)

|. Denote by IN the N×N
identity matrix and by JN the N ×N matrix whose elements are all 1. Then, if
the second order conditions are satisfied for all n, then the vector of the insurers’
optimal positions θ = (θ1, ..., θN)| is given by

θ =
1

2k + 1
γI
V ar[xn|S]− l{IN −

l

2k + 1
γI
V ar[xn|S] + (N − 1)lJN}(Q−H).

Denote by θun the position that the outside investor u takes in trading the
nth futures. Let θu = (θu1, ..., θuN)| and x = (x1, ..., xN)|. The outside investor
is assumed to represent a large number of identical investors and hence behaves
competitively. He has rational expectations and uses the observed prices to
update beliefs about the payoff of the traded securities. Then, the outside
investor ’s date 2 wealth after trading the futures is given by

Wu = θ|u (x− P (θ))

where p(θ) = (p1(θ), ..., pN(θ))
|. At date 1, the outside investor solves the

following problem to obtain the optimal position θu.

Maxθu[− exp(
−1
γu
Wu) | θ].

Its first order condition is

E[x|θ]− P (θ)− 1

γu
V ar[x|θ]θu = 0

and its second order condition is

1

γu
V ar[x|θ] > 0.
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This second order condition is satisfied by assumption. Hence, the vector of the
outside investor’s optimal position is given by

θu = γuV ar[x|θ]−1{E[x|θ]− P (θ)}.

A linear rational expectation equilibrium is a set (P (·), θ, θu) such that (a)
P (·) is given by (3), (b) agents maximize, and (c) markets clear, that is θ +
θu = 0. From the insurers’ second order condition (4), we obtain the following
condition for the individual insurance risks to be traded separately in the capital
market:

Lemma 1:

An equilibrium exists if and only if

J =
1

γ2I
V ar2[xn|sn]V ar[en]− Cov

2[εn, sn]

V ar[sn]
> 0.

Lemma 1 shows that if J 5 0, this economy fails to have an equilibrium. The
first term of J is related to the hedging demand of the informed insurers as
indicated by its dependence on the degree of risk aversion. The second term
is related to the informational motive for trading. An equilibrium exists if the
former dominates the latter. If this is not the case, the adverse selection problem
is so severe that no equilibrium exists.
In the following, we assume the following:

Assumption 1:
J 5 0.

That is, we focus on the situation where each insurer n cannot trade his own en-
dowed insurance risk separately with the non-insurance outside investor because
of the strong adverse selection between them.

One practical way to mitigate this adverse selection problem is to create an
index of the average of the payoffs of the insurers’ endowment risks and to create
a futures contract whose payoff is determined by this index. (See Ganapati et.
al. (1997), Kist and Meyers (1999), and Major (1999).) In this average index, it
is expected that by the law of large number, each insurers’ specific risks would
be diversified enough, if the number of insurers is large enough. The index
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would depend largely on the market-wide common risk. Since informational
asymmetry is much less for the market-wide common risk than for the insurers’
specific risks, the adverse selection for the average index futures is much less
than that for the individual insurance contracts.
Let F = 1

N

PN
n=1 xn be the payoff of the average index futures. Denote by

θFn the position that the insurer n takes in trading the index futures. Let θF =
(θF1, ..., θFN)

|. Each insurer n tries to trade the index futures F strategically
with the outside investor i.e., taking account of the price impact of his position
θFn. We assume that the price of the index futures is given by a linear function

PF (θ) = hF + kF

NX
n=1

θn.

The insurer n ’s date 2 wealth after trading the index futures is given by

WFn = enxn + θFn (F − PF (θ)) .

At date 1, the insurer n solves the following problem to obtain the optimal
position θFn.

MaxθFn[− exp(
−1
γI
WFn) | S].

Its first order condition is

E[xn|S]− hF − kF{2θFn +
X
m6=n

θm}− 1

γI
{Cov[F, xn|S]en + V ar[F |S]θFn} = 0

and its second order condition is

2kF +
1

γI
V ar[F |S] > 0.

Define qFn = E[F |S] − 1
γI
Cov[F, xn|S]en, QF = (qF1, ..., qFN)

|, and HF =

(hF , ..., hF )
|. Note that IN is theN×N identity matrix and that JN is theN×N

matrix whose elements are all 1. If the second order conditions are satisfied for
all n, then the vector of the insurers’ optimal positions θF = (θF1, ..., θFN)| is
given by

θF =
1

kF +
1
γI
V ar[F |S]{IN −

kF
(N + 1)kF +

1
γI
V ar[F |S]JN}(QF −HF ).
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Define θFI ≡
PN

n=1 θFn. Then, θFI is the aggregate position in the index futures
by the insurers, and

θFI =
1

(N + 1)kF +
1
γI
V ar[F |S]{NE[F |S]−

1

γI
Cov[F, xn|S]

NX
n=1

en −NhF ).

Denote by θFu the position that the outside investor u takes in trading the
index futures. The outside investor behaves competitively. He has rational
expectations and uses the observed price to update beliefs about the payoff of
the index futures. Then, the outside investor ’s date 2 wealth after trading the
index futures is given by

WFu = θF (F − PF (θF ))

At date 1, the outside investor solves the following problem to obtain the optimal
position θFu.

MaxθFu[− exp(
−1
γu
WFu) | θF ].

Its first order condition is

E[F |θF ]− PF (θ)− 1

γu
V ar[F |θF ]θFu = 0

and its second order condition is

1

γu
V ar[F |θF ] > 0.

This second order condition is satisfied by assumption. Hence, the vector of the
outside investor’s optimal position is given by

θFu = γuV ar[F |θF ]−1{E[F |θF ]− PF (θ)}.

A linear rational expectation equilibrium is a set (PF (·), θF , θFu) such that
(a) PF (·) is given by (9), (b) agents maximize, and (c) markets clear, that is
θF + θFu = 0. From the insurers’ second order condition (10), we obtain the
following condition for the index futures to be traded:
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Lemma 2:

An equilibrium exists for the index futures market if and only if

JF ≡ 1

γ2I
{(N − 1)V ar[x] + V ar[xn|sn]}2V ar[en]− Cov

2[εn, sn]

V ar[sn]
> 0.

Similarly to lemma 1, the first term of JF is related to the hedging demand of
the informed insurers for the index futures. The second term is related to the
informational motive for trading. An equilibrium exists if the former dominates
the latter. Comparing this lemma with lemma 1, we now obtain the following
result:

Proposition 1:

Between the insurers and the outside investor, the average index
futures is traded, while the individual insurance risks cannot be
traded separately, if and only if

1

γ2I
{(N − 1)V ar[xc] + V ar[xn|sn]}2V ar[en]

>
Cov2[εn, sn]

V ar[sn]

>
1

γ2I
V ar2[xn|sn]V ar[en]

Hence, there is a case where creating an index futures whose payoff is the average
of the insurers endowment risks mitigates the adverse selection enough for the
index futures to be traded, although each insurer’s individual insurance risk
cannot be traded with the uninformed outside investor.
Observe that if N = 1, the condition JF > 0 is equivalent to J > 0. Observe

also that the larger N is, the weaker the restriction JF > 0 is. Thus, the futures
of each insurer’s individual risk is a special case of the average index futures,
and as the number of the insurers in the average index increases, the index
futures is more likely to be traded.
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Proposition 1 also shows that for the average-indexing to work, it is necessary
that V ar[xc] > 0. That is, if the insurers’ endowment payoffs are independent,
averaging is useless to mitigate the adverse selection problem. The larger the
portion of the (non-informational) common part xc of the payoffs xn’s is (in
terms of their variances), the more effective the averaging is for mitigating the
adverse selection.

4. THE REINSURANCE MARKETS

Traditionally, insurance risks are traded in reinsurance markets. That is,
after originating insurance contracts and bearing risks of customers, the insurers
reallocate such risks among themselves and reinsurers. Lloyd’s is a notable
example. Munich Re. and Swiss Re. are some of the representative reinsurers.
Participants in the reinsurance markets are presumably professionals in in-

surance. They know equally well about insurance risks that they trade. At
least, asymmetric information is much less among insurers and reinsurers than
between insurers and non-insurance outside investors in the capital markets.
Adverse selection problem about insurance risks is small in the reinsurance
markets.
However, the size of the reinsurance markets is much smaller than that of the

capital markets. This limits the capacity of the reinsurance markets to bear the
insurance risks, especially those associated with large natural disasters. In fact,
catastrophic losses by earthquakes and typhoons in 1990’s, in conjunction with
the slump in business by Lloyd’s, caused the shortage of capacity of reinsurance,
which resulted in the sharp rise of the reinsurance premiums. Naturally, the
insurers looked for the way that enabled them to trade their insurance risks
with the non-insurance outside investors in the capital markets. The CAT
index futures is one of the inventions.
Thus, we model the reinsurance markets as one representative reinsurer who

has the same information as the insurers, but is less risk tolerant than the repre-
sentative non-insurance outside investor. We consider the idealized reinsurance
markets where the insurers and the reinsurer have the symmetric information,
trade their risks competitively, and attain the optimal risk allocation.
In this idealized reinsurance markets, the insurance risks x = (x1, ..., xN)| of

the insurers are traded. Denote by θRn = (θRn1, ..., θRnN)| the position that the
insurer n takes in the reinsurance markets. Each insurer n trades the futures
xn competitively. Let PR = (PR1, ..., PRN)

| be the price of the reinsurance
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futures contracts. Then, the date 2 wealth of the insurer n after trading in the
reinsurance markets is given by

WRn = enxn + θ|Rn (x− PR) .
It is more convenient to use the gross position φRn that is defined by φRn ≡
(θR1, ..., θRn + zn, ..., θRN)

| for all n. In terms of the gross futures position, at
date 1, the insurer n solves the following problem to obtain the optimal position
φRn.

MaxφRn [− exp(
−1
γI
WRn) | S].

Its first order condition is

E[x|S]− PR − 1

γI
V ar[x|S]φn = 0

and its second order condition is

V ar[x|S] > 0.
Since the second order condition is satisfied by assumption, the insurer n’s
optimal gross position φRn = (φR1, ...,φRN)

| is given by

φRn = γIV ar[x|S]−1{E[x|S]− PR}.
Denote by θRE = (θRE1, ..., θREN)| the position that the reinsurer takes. The

reinsurer has the same information as the insurers, and trade the reinsurance
contracts competitively. Then, the reinsurer’s date 2 wealth after trading the
reinsurance contracts is given by

WRE = θ|RE (x− PR)
At date 1, the reinsurer solves the following problem to obtain the optimal
position θRE.

MaxθRE [− exp(
−1
γRE

WRE) | S].

Its first order condition is

E[x|S]− PR − 1

γRE
V ar[x|S]θRE = 0
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and its second order condition is

V ar[x|S] > 0.

Since the second order condition is satisfied by assumption, the reinsurer’s op-
timal position is given by

θRE = γREV ar[x|S]−1{E[x|S]− PR}.

Note that since the reinsurer has no endowment, this position θRE is equal to
the gross position φRE.

Let e =
PN

n=1 en. In an equilibrium,
PN

n=1 φRn+φRE = e. From this market-
clearing condition, we obtain the equilibrium price PR as follows:

PR = E[x|S]− 1

NγI + γRE
V ar[x|S]e

Hence, the investor n’s equilibrium gross position is given by

φRn =
γI

Nγi + γRE
e,

and the reinsurer’s equilibrium gross position is given by

φRn =
γRE

Nγi + γRE
e.

That is, in an equilibrium in the idealized reinsurance markets, the aggregated
insurance risks e is allocated to the market participants according to their risk
tolerance..

5. CREATION OF THE INDEX FUTURES BY THE INSURERS

Traditionally, the insurance risks that the individual insurers bear for their
customers are reallocated among the insurers and the reinsurers through the
reinsurance markets. In 1990’s, however, several huge natural disasters hit the
insurance industry with huge amount of insurance payments for them, which
shrank the capacity of the reinsurance markets to bear suck risks. The rein-
surance premiums soared, and the insurers were forced to invent the means to
share their insurance risks outside the reinsurance markets. The CAT index
futures is among them.
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In this section, we consider such situation where the insurers create the index
futures to share their insurance risks with the outside investors i.e., the capital
markets, instead of the reinsurance markets. We would like to know under what
condition the insurers wish to have such index futures rather than reinsurance
contracts.
For this purpose, we assume that the insurers trade either the index futures

or the reinsurance contracts, and then compare the insurer’s ex-ante utility
levels between when the index futures is traded and when reinsurance contracts
are traded.
We first obtain the ex-ante utility level for the index futures.

Lemma 3:

When the index futures is traded, the ex-ante utility of the insurer
n is given by

E[uI(WFn)]

= −[(1− 2

γ2I
V ar[xn]V ar[en]) +

2

γI
V ar[θFn]α3(1− 2

γ2I
V ar[xn]V ar[en])

+
2

γI
V ar[en]α3{2Cov[xn, sn]α0α2 + 1

γI
Cov2[xn, sn]α

2
0 +

1

γI
V ar[en]V ar[xn]α

2
2}]

−1
2

where

α0 ≡ 1

(N + 1)kF +
1
γI
V ar[F |S]

Cov[xn, sn]

V ar[sn]

1

N

α1 ≡ 1

kF +
1
γI
V ar[F |S]

kF
(N + 1)kF +

1
γI
V ar[F |S]

1

γI
Cov[F, xn|S]

α2 ≡ 1

kF +
1
γI
V ar[F |S]

NkF +
1
γI
V ar[F |S]

(N + 1)kF +
1
γI
V ar[F |S]

1

γI
Cov[F, xn|S]

α3 ≡ kF +
1

2γI
V ar[F |S]

V ar[θFn] = Nα20V ar[sn] + (N − 1)α21V ar[en] + α22V ar[en]

We next obtain the ex-ante utility level for the reinsurance contracts.
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Lemma 4:

When the reinsurance contracts are traded, the ex-ante utility of the
insurer n is given by

E[uI(WRn)]

= −[1− 1

γ2I
V ar[xn]V ar[en] + { 1

γ2I
− (2N − 1)γI + 2γR

γI(NγI + γR)
2
}V ar[εn|sn]var[en]

+{ 1
γ2I
− (2N − 1)γI + 2γR

γI(NγI + γR)
2
−

V ar[en]
(NγI+γR)

2 (N − 1)V ar[en]
1 + V ar[en]

(NγI+γR)
2{V ar[εn|sn] + (N − 1)V ar[en]}

}

×{(N − 1)γI + γR}2
γ2I(NγI + γR)

2
V ar[xc]V ar[en] ]

−1
2

×[{1 + V ar[en]

(NγI + γR)
2
(V ar[εn|sn] + (N − 1)V ar[en])}{1 + V ar[en]

(NγI + γR)
2
V ar[εn|sn] }N−2]−2

By comparing both utility levels, we can find when the insurers want the index
futures.

Proposition 2:

The insurers wish to create an index futures, if and only if

E[uI(WFn)] > E[uI(WRn)]

The following numerical example describes the situation shown in this propo-
sition. We take V ar[xc] = V ar[εn] = V ar[en] = 1, Cov[εn, sn] = 0.6, γI = γu =
5. The number of insurersN varies from 1 to 12. The coefficient of risk tolerance
γR of the reinsurer varies from 0.5 to 1.
In this situation, by Proposition 1, we know that the individual insurer’s own

risk cannot be traded with the uninformed outside investor due to the strong
adverse selection. Indeed, N , the number of the insurers, or the number of the
insurers’ risks included in the index futures, should be larger than or equal to
3 for the index futures to be traded. This is why the graph of figure 1 starts
from N = 3.
In general, the larger N is, the less is the adverse selection in trading the

index futures due to the diversification of the private risks. This makes it easier
for the insurers to trade the index futures with the uninformed outside investors.
However, this also increases the basis risks that the insurers face in trading the
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futures. The benefit of trading the index futures is determined by the trade-off
between the decrease of the adverse selection and the increase of the basis risks.
In this example, the former is more effective than the latter so that the utility
of the insurer increases as N increases.3

[Insert Fig. 1]

On the other hand, the benefit of using the reinsurance market is determined
by the reinsurer’s risk tolerance γR. The larger γR is, the more risk hedge the
insurers have from the reinsurance market. The following graph in figure 2
shows this situation.4

[Insert Fig. 2]

For the insurers, whether to use the CAT index futures or the reinsurance
markets depends on which gives them the better hedging opportunities. Figure
3 shows the difference between the utility levels obtained through trading the
index futures and that through the reinsurance market.
Take, for example, the case where the reinsurer’s coefficient γR of risk tol-

erance is equal to 0.5. In this case, since the risk tolerance of the uninformed
outside investor is much larger, despite the adverse selection, the index futures
provides better hedging opportunity to the insurers when the number N of
the insurers is small. As N increases, since the insurers share the insurance
risks through reinsurance, the reinsurance market provides the better hedging
opportunity than the index futures.
Take also the case where the numberN of the insurers is 3. As the reinsurer’s

coefficient γR of risk tolerance increases, though γR is much smaller than γu,
the risk tolerances of the uninformed outside investor, the reinsurance market
becomes more attractive than the index futures to the insurers. This is because
the index futures suffers from the adverse selection, while the reinsurance market
does not.

3Note that in this example, as N increases, the number of the insureres increases, and so
the number of the traders in the futures market also increases. Since the calculated utility
levels are affected by the change of the number of market participants, we need to be careful
to interpret the effect of increasing N . Also, note that the reinsurer’s risk tolerance does not
affect the utility het because the reinsurer is assumed not to trade thr index futures.

4Note that in this model. we assume that the insurers bear the risks of the other insurers
through the reinsurance market. This assumption tends to make the risk allocation through
the reinsurance market more efficient than that throught the index futures, and hence the
utility levels from the reinsurance tend to be larger than those from trading the index futures
in this example.
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Recall that in this example, the index futures cannot be traded when N = 1
and 2. Thus, the insurers use the reinsurance market when N = 1 and 2, the
CAT index futures when N = 3 to 5 if γR is sufficiently small, and again the
reinsurance market when N is large enough.

[Insert Fig. 3]

6. CREATION OF THE INDEX FUTURES BY THE EXCHANGE

Although the CAT index futures is created mainly for the benefit of the
insurers, it is the exchange who indeed creates the futures and who may have a
different objective from the insurers. In this section, we look into this possibility.
We assume that the exchange decides, ex-ante, whether to create the index
futures depending on its expected trading volume.

Lemma 5:

The expected volume of the index futures is given by

EVF =

r
2

π
[α20NV ar[sn] + α21(N − 1)V ar[en] + α22V ar[en]]

1
2 .

Also, the normalized expected volume of the index futures is given by

NEVF = EVF ×
r
V ar[xc] +

1

N
V ar[εn].

We consider the normalized expected volume in order to keep the variance of
the payoff of the normalized index futures equal to unity, which enables us to
compare more accurately the expected volumes among the index futures with
different N ’s.

The following numerical example shows that for some parameter values,
increase in the number N of the insurers in the index leads to decrease of both
the expected and the normalized expected trading volume. We take V ar[xc] =
V ar[εn] = V ar[en] = 1, Cov[εn, sn] = 0.6, γI = γu = 5. The number of insurers
N varies from 1 to 5. The green line shows how the expected trading volume
changes as N increases. The blue line shows the normalized expected trading
volume, and the red line shows the insurer’s utility level + 1.
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[Insert Fig. 4]

Combined with the discussion in section 3, this observation has an important
implication, which we states as the following proposition:

Proposition 3:

In some situation, while it is necessary to have the number N of the
insurers in the index large enough to mitigate the adverse selection
and encourage the outside investor to trade the index futures, it at
the same time may reduce the (normalized) expected trading volume
and discourage the exchange to create such index futures.

Thus, creating an index futures, though it is a useful device for mitigating
adverse selection, may not be a useful device for the exchange to obtain prof-
itable opportunities from creating the futures. It is possible that this is a part
of the reason why the CAT index futures have had such thin markets and have
never been successful, though their creation is a meaningful step to open a path
of additional risk transfer from the reinsurance markets to the capital markets.

7. CONCLUSIONS

We investigated the conditions under which an average index futures of
several insurance risks can be traded in the presence of asymmetric information.
We found that even when each risks cannot be traded because of strong adverse
selection, averaging these risks may mitigate the adverse selection enough so
that the index futures can be traded, if the number of the risks included in
averaging is large enough. However, we also found that averaging may reduce
the attractiveness of the futures for both the insurers and the exchange. This
may be a part of the reason why the CAT index futures are so unsuccessful,
despite its clear theoretical importance as a new tool to transfer insurance risks
to the capital markets.
For the ease of the analysis, we have investigated only the cases where the

insurers trade either the index futures with the outside non-insurance investor or
the reinsurance contracts with the reinsurer and where the reinsurance markets
are idealized in that the insurers and the reinsurer can trade all reinsurance
contracts with no frictions. Examining the case where the insurers can trade
only the limited kinds of reinsurance contracts is a possible extension of the
analysis.
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Finally, though we have just compared the use of the capital markets and
that of the reinsurance markets from the insurers’ viewpoint, they indeed in-
teract with each other. Allowing the reinsurer to trade both the reinsurance
contracts and the index futures at the same time may clarify the role of the
reinsurer as an intermediary of the insurance risks among several markets. This
is an immediate task in further research.
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APPENDIX : Key mathematical results.

Math. Lemma 1:

Let IN be the N ×N identity matrix, JN be the N ×N matrix with
all elements equal to unity, and a and b be scalars where a 6= 0.
Then,

(aIN + bJN)
−1 =

1

a
(IN − b

a+ bN
JN).

Proof of Math. Lemma 1:

Direct computation.||

Math. Lemma 2:

Let A be a symmetric N ×N matrix, B be an N × 1 vector, and C
be a scalar. Suppose that e ∼ N(0,Σ). Then,

E[exp(e|Ae+B|e+C)] = |IN − 2ΣA|
−1
2 exp(

1

2
B|(IN−2ΣA)−1ΣB+C)

if and only if IN − 2ΣA is positive definite.
Proof of Math.Lemma 2:

E[exp(e|Ae+B|e+ C)]

=

Z
RN
exp(e|Ae+B|e+ C)(2π)

−N
2 |Σ|−12 exp(−1

2
e|Σ−1e)de

=

Z
RN
(2π)

−N
2 |Σ|−12 exp[−1

2
(e−H)|(Σ−1 − 2A)(e−H) + 1

2
B|(Σ−1 − 2A)−1B + C]de

= |Σ|−12 ¯̄(Σ−1 − 2A)−1¯̄−12 exp[1
2
B|(Σ−1 − 2A)−1B + C]

= |IN − 2ΣA|
−1
2 exp(

1

2
B|(IN − 2ΣA)−1ΣB + C)

where H = (Σ−1 − 2A)−1B. ||
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Proof of Lemma 1:

Since θu + θ = 0 in equilibrium, we have H = 0,

k =
1

1− 2Cov[xn,qn]
V ar[qn]

{Cov[xn, qn]
V ar[qn]

1

γI
V ar[xn|sn] + 1

γu
V ar[xn|qn]}, and

l =
1

1− Cov[xn,qn]
V ar[qn]

1

γu
V ar[xn].

Substituting them, the second order condition of the insurers will
be

1

1− 2Cov[xn,qn]
V ar[qn]

{ 1
γI
V ar[xn|sn] + 2

γu
V ar[xn|qn] > 0,

which is satisfied if and only if

1− 2Cov[xn, qn]
V ar[qn]

> 0.

Calculation shows that this is equivalent to

1

γ2I
V ar2[xn|sn]V ar[en]− Cov

2[xn, qn]

V ar[qn]
> 0. ||

Proof of Lemma 2:

Similar to the proof of Lemma 1. ||

Proof of Proposition 1:

Clear from Lemma 1 and 2. ||

Proof of Lemma 3:

Direct calculation shows that the insurer’s utility E[uI(WFn)] is
given by

E[uI(WFn)] = E[− exp(−1
γI

ξ>AF ξ)]
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where

ξ =

 snen
θn

 ,
AF =

 0 1
2
Cov[xn,sn]
V ar[sn]

0
1
2
Cov[xn,sn]
V ar[sn]

−1
2γI
V ar[xn|sn] 0

0 0 α3

 , and

θn = α0

NX
m=1

sn + α1

NX
m6=n

en − α2en.

Applying Math. Lemma 2, we obtain the desired result. ||

Proof of Lemma 4:

Similar to the proof of Lemma 3. ||

Proof of Lemma 5:

Note that

θn = α0

NX
m=1

sn + α1

NX
m6=n

en − α2en.

thus, θn is normally distributed with mean equal to zero. The ex-
pected value of the absolute value of a normally distributed random
variable with mean zero is well known. Apply this formula to θn we
obtain the desired result. ||

Proof of Proposition 3:

Clear from the numerical example. ||
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Figure 1:
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Figure 2:
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Figure 3:
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Figure 4:
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