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Abstract

The stability of cyclical growth within the context of a model in Matsuyama (1999) is ex-
amined. It is shown that but for an extreme situation, the two-cycles are unique and a
range of parameter values which imply the stability of such cyclical growth is derived. The
growth enhancing property of 2-cycles are shown to be retained by any cycle; the results
of simulation exercises carried out are reported to show that for very wide range of param-
eter values, such cyclical growth paths are stable and thus robustness of the conclusions
are established. Finally, the configuration of parameters for which the dynamics exhibits

complicated (chaotic) behavior is also identified.
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1 Introduction

Studies of growth processes usually consider two sources of growth: one is through process
of accumulation and the other is through processes of technical change and innovation. Mat-
suyama (1999)(and (2001)) provides a neat model which combines the two sources. This
strategy allows the feasibility of sustaining growth indefinitely through technical progress,
since without such an avenue, accumulation can only take an economy some distance be-
fore diminishing returns destroys growth possibilities. With accumulation and innovation
alternating, the studies referred to being in discrete time, growth possibilities are examined.

That neoclassical models of growth, in discrete time, may be capable of non-convergence
and generating complicated behavior has been known for some time, now. Consequently, it
is worthwhile to investigate whether the possibility of innovation affects long term behavior.
In the studies mentioned above, it is claimed that there is a trade-off between growth
and innovation; while innovation is necessary for sustaining growth, during the process of
innovation, growth rate is shown to be low; on the other hand, when no innovation occurs,
growth rate picks up. When the steady state is unstable, it is shown there are two-cycles,
which alternate between these two phases and offers the possibility of growing at rates which
are more than the one associated with the steady state.

While the existence of such cyclical possibilities are of interest, it is only when these
cycles are stable that the conclusion has some relevance. We examine this issue closely and
show that parameters of the process are such that with similar looking parameter values,
two-cycles may either be stable or unstable. Consequently it is necessary to investigate
the range of parameter values for which the results are valid. A range of parameter values
which imply stability of the 2-period cycles is obtained. The range which imply stability

for 2-cycles is shown to increase with an increase in a crucial parameter. However, if one
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is interested only in enhanced growth possibilities along cyclical paths, we show that any
cyclical path will have this property and so we have to examine only if the cycle is stable.
We report the results of some exercises to conclude that such cycles are stable for very wide
range of parameter values. Consequently the conclusions are robust.

The paper proceeds as follows: we introduce the model, to keep the treatment self-
contained!, and consider the existence of two-cycles and their stability. It is shown that but
for an extreme situation, the two-cycles are unique; we also derive a stability condition for
such cycles. This allows us to obtain a range over which the 2-cycles are stable. We also
investigate how this range changes when parameters change. Next, we focus attention on
what happens when two-cycles lose stability. The growth enhancing property of 2-cycles are
shown to be retained by any cycle and consequently it is of some interest to investigate the
stability of such cycles; the results of simulation exercises carried out are reported to show
that for very wide range of parameter values, we have stable cycles; finally, the configuration
of parameter values for which there may be complicated (chaotic) behavior is also identified.

The concluding section briefly discusses the significance of these results.

2 The Model

There is one final good which is produced under competitive conditions with the help of
labor (L) supplied inelastically and several intermediate goods; the single final good is both
consumed and invested; say that at the end of period ¢ — 1, K;_1 units of the final good is
available for production in period ¢ and is to play the role of capital.

Additionally in period t, there are several types of intermediate goods available denoted

!But we refrain from a discussion of related literature and refer the interested reader to Matsuyma (1999)

and (2001).
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by z, z € [0,Vy]; prior to period ¢, types of intermediate goods up to N;_; have been
introduced (Ny > 0); in period ¢, production of type z up to Ny_1 (the old intermediate
goods) require just a units of capital per each unit of any of the old intermediate goods. New
intermediates in the range [IV;—1, N¢] may also be introduced and sold exclusively by those
who choose to innovate; for each of the new intermediate good, in addition to the a units of
capital per unit, a fixed cost of F' units of capital has to be incurred before production can
be carried out. The old intermediate goods are sold competitively and hence, their price
reflect marginal costs i.e.,

pe(z) = ary, z € [0, Ny—1]

where r; is the price of a unit of capital in period ¢; the new intermediates are sold under
conditions of monopoly by the investor who innovates and to compute sales we need to find
out about the demand for the new intermediates.

Production of the final good in period t takes place according to the production function:

Vo= AL [Pz 1)

where x4(z), z € [0, N¢] is the intermediate good of type z in period ¢; o € [1,00] is the
constant direct partial elasticity of substitution between any two pairs of intermediates; the
following features should be noted:

egiven Vy, production in period ¢ satisfies constant returns to scale.

ethe price elasticity of demand for each intermediate is o.

ethe share of labor is 1/0.

Given the above demand condition, the price of the new intermediates must satisfy

gar
p(e) = T € Ny, N
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Since all intermediate goods enter the production function symmetrically, we may take
z(2) = xVz € [0, Ny—1]; 24(2) = a'Vz € (Ny—1, Ny

and given the demand conditions specified above,

C C
1
L Pye o) 2)
Ty b g

Note that the above has been obtained on the assumption that both the new and the
old intermediate goods are produced. The new intermediates are produced by monopolists
whose one period profit 7} is the sole incentive for production. Note that 7" (t) = p{".x}" —

1

ri(ax + F) = ri(azi" -=7 — F). Free entry guarantees that profits are non-positive so that

we have az}” < (0 — 1)F with the proviso that: Ny > N;_; and

(Nt = Ni—y)[a.al* — (0 —1)F] =0 (3)

Thus, when Ny > N;_1, innovation occurs and new products are introduced; the innova-
tor earns no extra profits and operates at its break even point; while if this is not possible,
potential sales do not break even, then N; = N;_; and no innovation takes place. In this
situation, of course there is a constraint which needs to be looked into. Recall that available
capital is K;_1 and the production of both types of intermediates requires the use of this

resource; hence we must have
Ki_1 = Ny—ra.2f + (Ny — Ne—q)(a.zi* + F)

Recall that if production takes place for both the sets of intermediate products (the new
and the old), we have, Ny > N;_; and from (2), a.zf = a.xgn{UT_l}*" and from (3),
axy* = (0 — 1)F, so that az§{ = Fo where 0 = {UT_l}l_". It should be pointed out that

as 0 € [1,00], 0 € [1,¢e]. If on the other hand, N; = N;_1, az{ = %ﬁ’i Thus, we have:
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K
axf = min] Nz 1,9017] (4)

And further,

K
Nt = Ny_1 + maX[O, oF - GNt,l] (5)

Substituting the above into (1), we have:

v ALiNt,l(jJ(\'}t*ll)l_i for oFON,_1 > Ky_1
t) = -
1 _1 K —1)F -1 .
ALo[Nt,l(HUTF)l o+ ( atFl - HNt,l)(¥)l -] otherwise

(6)
And finally to close the model, we have that a constant fraction of the output is left unused

so that it may be used as capital in the next period,? i.e.,

K = uY; (7)
To simplify matters, we introduce the following notation:

_ Alal)r K
CL(@O‘F)%’ ' NwoFo

The dynamics of the entire system is captured through the equations (5), (6) and (7). And

we may combine them into a single equation, using the variable k; introduced above:

_1
Haktl_f’ if kt—l <1
ke = (8)
% otherwise
1 —

In short, we shall write

2Tt is this which provides the point of departure for the contribution of Matsuyama (2001), where capital
accumulation is derived from intertemporal optimization of the infinitely lived agent. This does lead to a

complication in the dynamics.
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ke = ¢(ki-1) 9)

and given any initial £°, we shall study the iterates ¢!(k°), for t = 1,2, ...

1
It should be noted ¢(1) = G = pa; further that ¢/'(k) = (1 — %)Gk‘_ﬁ >0ifk <1
(;(1—_0)2 < 01if £ > 1. Thus the map ¢(.) is of the standard uni-modal
(1+6(k—1))

variety with a maximum value at 1.

and ¢/ (k) =

FIGURES 1a and 1b HERE

It may be easily seen by referring to (8) that a crucial parameter for the system is
G = ¢(1). Note also that as k — oo, ¢(k) — %, which is finite, so that for all k large
enough, ¢(k) < k; also since ¢(k) > k for all k£ small enough (since ¢(0) = 0 and ¢'(k) > 1
for all k£ small enough), it follows that there exists k& > 0 such that k = ¢(k). Further such
a positive k is unique too.

There are two possibilities depending on the magnitude of G; first of all notice that if
G < 1, k* is an equilibrium = k* < 1; consequently k* <1 = k* = G; and if G > 1 then
E*>1=k*= % + 1. Consider then these two cases one by one.

Consider first, G < 1; as indicated above, in this case, k* = G?. In this equilibrium,
notice that N remains fixed and hence no innovation occurs; since IV is constant and given
the definition of the variable k, K too remains fixed and hence Y, so that no growth takes
place. Beginning from any arbitrary k, the iterates settle to the regime k < 1 (Matsuyama
calls this the Solow regime) and converges to k* since, |¢'(k*)| = |(1 — %)| < 1; thus £* is
locally asymptotically stable.

Consider next G > 1; k* = G141 and |¢'(K*)| = |9;Gl|, thus it is seen that

0

local asymptotic stability requires that § — 1 < G. If on the other hand, § — 1 > G, the
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equilibrium is unstable. At this equilibrium notice that N is increasing continuously and
keeping pace with it is K and as we may see Y too is increasing all at the same rate: the
case of balanced growth. Along the balanced growth path, where k; = k* > 1, it follows

from (5) that N, = G and consequently, Yiﬁtl = % = (G as well; thus G — 1 is the

growth rate per period along the balanced growth path.

3 2-cycles and Their Stability

When G > 1 and 6 — 1 > G, the equilibrium is unstable as we have shown above; but there
is a 2-cycle, i.e., 3k1 > 1 > ko such that k; = ¢(k2) and ko = ¢(kq).

Thus it is asserted that there exist k; > 1 > ko satisfying the following:

Gk

o = 0 = 1)

and

1

ky = Ghy 7

Using the second relation to eliminate k1, we have the following claim: there is 0 < ko < 1

such that

_1 1
ky “[(1—0)k§ + GOky — G2 =0

Note that writing f(ks) = [(1 — 0)k} + GOk — GZ], f(0) = —G2 < 0 while f(1) =
(G—1)(0 —1—G) > 0 and hence the claim follows. Also note that f'(0) < 0 and f/(k) =
0=k==Fk= {009;6}}& and f(.) is decreasing for k < k and increasing for k > k;
consequently, there is a unique ks satisfying the above claim.

It is easy to see that there cannot be any two period cycle (k1,k2), 0 < k1 < ko < 1. For

_1 _1
then k& = Gk;  and kg = Gki : this implies that k&1 = G° > 1 which is a contradiction.
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Nor can there be a cycle (k1,k2), 1 < ka2 < k1; for other wise kay + k2f(k1 — 1) = Gk
and k1 + k10(ke — 1) = Gkg so that (ks — k1)(1 — 6 + G) = 0 which too is a contradiction.

Thus:

1 There is a unique 2-period cycle (ki,ka) with 0 < ko <1 < k; when § —1> G > 1.

The stability of this cycle depends on whether the following is greater or less than unity:

/ o GPA-)0-1) GHO-1) (1-7)
|¢ (k1)¢ (k2)|_|k§{1+9(k1_1)}2|_[ ]{;é ].{1—{—9(/{1—1)}2

(0—1)(1-21).G%k?
- 1
{14 6(ky — 1)}2.k3 ks

1
0-1ks(1-3)
G G

= A.B say

Note that A > 1, while B < 1 so that the product could go either way. If the above
happens to be less than unity then, the 2-period cycle is attracting while if the quantity is
greater than unity the cycle is unstable. It should be clear that the smaller is the ratio A,
the greater is the chance of the cycle being stable. As we shall see, this point is of crucial
importance for locating a robust range of parameter values for which the cycles will be
stable. There can be nothing more definite about the aspect of stability since as is clear
from the above expression, both possibilities exist.

For instance, consider the following situations for ¢ = 5 and hence, 8 = 2.44; but for

alternative similar looking values of GG, we have:

Example 1 Let G = 1.075 < 6§ — 1 = 1.44. Then the two period cycle is given by k1 =

1.06487 > 1 > ko = 0.988226; |¢'(k1).¢'(k2)| = 0.995503 hence the cycle is stable.



Robust Cyclical Growth 9

Example 2 Let G = 1.070 < 6§ — 1 = 1.44. Then the two period cycle is given by k1 =

1.06041 > 1 > ko = 0.988805; |¢'(k1).¢'(k2)| = 1.00491 hence the cycle is unstable.

Since both kinds of cycles are possible, consider then the merit of the following propo-
sition (Proposition 2, Matsuyama (1999)):

Let g, be the gross growth rate of the variable z. Along the period-2 cycles
(a) gn =1 <G < G(kg)*i = gx = gy in the Solow Regime.

(b) gn =14+ 60(k1 — 1) > G = g, = gy in the Romer Regime.
(c) gn =g = gy = {1+ 0(k1 — 1}% = ij" > G over the cycles.

The claims made above were meant to show that output (V) and investment (K) grow
faster in the Solow Regime: i.e., (when k& < 1 and no innovation takes place); in other words,
even though innovation is essential to sustain growth, during the process of innovation (the
Romer regime when k > 1) the economy registers lower growth.

As should be obvious, this conclusion is of some interest only if the cycle is stable, since
otherwise the fact, that along the cycle a higher growth rate is possible, is of little interest.
It is because of this that the calculations about the stability of the cycles provided above

assume significance.

3.1 Are Robust Stable 2-Cycles Plausible?

What kind of parameter values are sure to provide us with stable cycles 7 The Examples
(1) and (2) show that with roughly similar looking values of G one may get different results.
But there is some thing more that one may say in addition to the above.

Consider the situation when G = 6 — 1; it is immediate, by referring back to (8), that in
this case, ¢(1) = G and ¢(G) = 1; further |¢/(1).¢/(G)| = (1 — 1)/G < 1 so that this cycle

is stable (here ¢'(1) is to be interpreted as the derivative on the left); this assertion follows
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by considering the expression A.B derived earlier; now A = 1 and hence the assertion
follows. But in this particular situation there is an embarrassment of cycles; since for any
k1 > 1,k1 < G there is ko > 1 such that ¢(k1) = ko and ¢(ke) = ki. But these cycles
disappear as soon as G < # — 1, as we have seen above; but, it should be clear, that for G
close to but less than 6 — 1, the cycle close to (1, G) remains and that cycle retains stability.

Thus if G is close but less than §—1 then the resultant 2-cycle is stable. Note that for the
situation described in Examples 1 and 2, § — 1 is about 1.44; thus some where between the
values for G given by 1.07 and 1.075, the two-period cycles change their stability property
and we have a point of bifurcation; for lower values of G there may be other points of
bifurcation.

In other words, very complicated dynamics may be possible in this framework and
consequently, the relevance of the Proposition such as the one mentioned above may be
ascertained only if we are assured that parameters have certain values which guarantee the
robust stability of the two-period cycles i.e., GG is close to # — 1. This is robust because there
would be an open set O = (G,0—1) and any G € O would ensure stability of the two period
cycles. The lower bound on this interval amounts to where the product A.B becomes unity

3. To obtain an estimate for G, we may note that the expression in A.B may be written as

0—-1)(1- 1

4) 1
o 2 kg = C.D say

where we know that D < 1 so now if C' < 1 then we are sure that A.B < 1 and the cycle is

stable. Thus a sufficient condition for the stability of the two-cycle is:

3See, Matsuyama (1999), p. 344.; it is clear from this, that the author is aware that there may be ranges
over which the 2-cycles may be unstable; also over this range, the attracting cycles may have periods which
are powers of 2. It appears that the author is only concerned about the empirical plausibility of the existence
of 2-cycles, as his discussion on plausibility considers only the condition for the existence of 2-cycles, viz.,

0 —1> G > 1, with G being ‘close‘ to  — 1. The entire plausibility exercise considers G = 6 — 1.
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2 IfG>G=/(6-1)1- %)) then the 2-cycle is stable.

The claim follows by noticing that whenever the condition is satisfied, the term C < 1. In
fact for o = 5, for example, we have, G =1.07384 so that, whenever G > 1.07384 the two-
cycle is stable?. This allows us to obtain an estimate of the open interval O, viz., (G, 0—1)
and for any G-value in this interval, the two-cycle is stable. Since we do not know what
the magnitude of the parameter o will be, let us take the range suggested in Matsuyama
(1999), [5,22]; we examine next, how the range of G-values which imply stability for the

2-cycle, [G, 6 — 1) behaves with a variation in the parameter o.

3 Let H be defined as the range of G-values which imply stability of the period 2-cycles,

iie., H=0—1—G. Then H is an increasing concave function of o in the range [5,22].
The proof of this claim is contained in the Figure 2 below®

FIGURE 2 HERE

Thus so far as two-cycles are concerned, the range of G-values which ensure stability
increase with the value of o. Be that as it may, we shall show below, that we do not need to
confine attention to 2-cycles alone to establish the fact that cycles are growth enhancing. In
fact, the range of values for the parameter GG for which stable cycles are growth enhancing,

as we indicate, cover a much wider range.

It should be clear that G > G. Thus for ¢ = 5, G € [1.07384,1.44) implies stability of the two period
cycle. In Matsuyama (1999), as we indicated above, G is taken to be §—1 = 1.44 while discussing plausibility.

Our analysis thus reveals that the 2-cycles are a lot more “plausible”.

Given the nature of the functions involved, we have used Mathematica to generate the diagram which

seems to be enough for the purpose at hand.
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4 When 2-cycles fail to attract

When the 2-cycle is not attracting, we need to analyze further. In this section, we shall
confine ourselves to the case when 1 < G < 6 — 1. Given this restriction, we note that

#(G) < 1. To proceed formally, note first of all,
4 ¢:10,G] —[0,G].
Next, we note that®:

5 [0(G),G] is an absorbing state (i.e., p(G) <k <G = ¢(G) < o(k) < G).

In addition,

6 For any initial point k° € [0,G], k° # 0,k*, 3t such that ¢'(k°) € [¢(G),G] unless

¢t (k°) = 0 for some t.

For, suppose to the contrary, there is some k° € [0,G] such that for no t is ¢!(k°) €
[6(G), G]; then ¢t(k°) € (0, p(G))VE ie., ksr = ¢V (k) = ¢(ky) = Gk 7 > ky. Thus
{k:} is a monotonically increasing sequence bounded above and hence must converge to
some k, say, k € [0,(G)]. Note that since kiy1 and k; both converge to k € [0, #(G)], we
have ¢(k) = k = k = 0 which is a contradiction, since a monotonically increasing sequence
of positive numbers cannot converge to zero.

Thus the structure of an arbitrary trajectory is that apart from hitting the unstable
equilibrium 0 accidentally, it will enter the interval [¢(G),G] in finite time and remain
inside, thereafter. Limit points for the trajectory will thus exist and will be located in the
interval [¢(G), G]. Our next task is to locate these limit points, if possible.

We note, however, that cyclical orbits, if these exist, have a special structure:

5See, for instance, Matsuyama (1999), p. 342.
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7 Consider any cycle of period n, ki, ka, ...k, € [0,G], say, where ¢p(ky) = k1 with k1 =

mini<j<p kj must have k1 <1 and k, > 1, with k, = max; k;.

First of all note that k, > k* since otherwise k1 = ¢(ky,) > ky,: a contradiction. Thus
1 < k* < k, < G. Next suppose that to the contrary, k, = max;k;, 7 # n; then since
d(kr) = kr41 < ky given the maximal nature of k,, it follows that k. > k, > k* > 1 and
thus, ky41 < k1: a contradiction to the definition of k;.

We have thus, ¢(1) = G > k* > ki > ¢(G). Suppose that k1 > 1 that is, we have:
1 <k < k* k. Then, ¢(k1) = ko > ¢(k*) = k* = k3 = ¢(k2) < k* but k3 > k; since
recall that k; was the minimum. Thus &* > ks > k; > 1 and G > ko > k*; proceeding in

this manner, it may be concluded that n must be even i.e., n = 2s say and we must have
ki < k3 < ks...k™ < kos=pn < ky(s—1) < ...k2 < G

But now k1 # ¢(ky): a contradiction. Hence k; < 1 as claimed. o

Thus any n-cycle must spend at least one period in the Solow-Regime. This fact allows
us to note the following property of growth rates along any n-period cycle. Consider any
such cycle ki, ko, ..., kp; we shall write k, 1 = k1 and we note the following: If k; < 1 then

1-1/c
kjv1 = Gk; ; thus we have
@ —GrTYe
k; J

which means that

Kj1

J

=Gk > @

IdK =
since no innovation occurs and Nj;1 = N;. On the other hand, if k; > 1, we have

kj-‘rl _ G
k; 1+0(kj—1)
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and further since innovation takes place , we have from equation (5)

Nj1
gN = ]<, =1+0(k;—1)

J

consequently, we have:

Kjyn Nj gk G

Kj 'Nj+1 B gN B 1+9(k}j — 1)
which means that gx = G, given the expression for gy obtained above. With these pre-
liminaries, let us return to the n-cycle kq, ko, ..., k,, with k,4+1 = ¢(k,) = k1 which means

that

Kn+1 _ ﬁ — Kn+1 _ Nn+1
Nn+1 N1 Kl Nl

in other words, we have:

KnJrl & _ NnJrl &
Kn ...Kl Nn ...Nl

on the left hand side, each term is either G if the corresponding k; > 1 or is G.k;l/ 7 if
the corresponding k; < 1. Thus the product on the left hand side is greater than G™, since
we have shown that at least one of the k;’s namely k; is less than 1. Consequently, the

average gross growth rate gx = gy = gy along the cycle must be greater than G.

We note this in the form of the following claim:

8 Along any n-period cycle, the average gross growth rate g = gy = gn > G.

Let us return to the Example 2 , where the 2-cycle had been shown to be unstable. It
may be shown that in that context viz., G = 1.07,0 = 5: there is a stable 4-period cycle
k1 < 1, kg > 1,ks < 1,kg > 1, ¢(ksi) = kiy1,i = 1,2,3,4 with ks = k1. k1 = 0.9888, ke =
1.060402, ks = 0.988814, k4 = 1.0604139; further it may be checked that |¢'(k1)....¢" (k4)]
= 0.000583969 < 1 which signifies that the 4 period cycle is stable. Figure 3 contains a

demonstration of the existence and convergence to this cycle.
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FIGURE 3 HERE

For the case 0 = 5, it has not been possible to locate any more points of bifurcation;
that is on the basis of simulation exercises, and the bifurcation diagram (Figure 4) it seems

reasonable to conclude that there may be at the most a stable 4-period cycle.

FIGURE 4 HERE

The bifurcation diagram” plots for values of G between # — 1 = 1.4 and 1, the last 100
points in an iteration of 1000 points from an arbitrary initial point. For G between 1 and
1.4, beginning with the high G values, we note the first approach to a two period cycle; for
lower values of G, the two period cycle disappears and a stable four period cycle appears.
This happens for values of G close to 1 and it has not been possible to uncover other points

8. Outside the range, we note convergence to a steady state, as the results

of bifurcation
indicate.

We consider next bifurcation diagrams for narrower ranges of the parameters but still

for o = b: first consider the range of G values between 1.4 and 1.48.

FIGURE 5 HERE

Notice the shift from convergence to the fixed point to convergence to the two-period cycle
as the value of G decreases. And consider next the range of G values between 1 and 1.08,
still for o = 5.

FIGURE 6 HERE

"All diagrams were prepared on Mathematica Version 4.1 .

8The exercises we have conducted seem to indicate that bifurcations leading to cycles with period 8 and
period 16 and more are non-existent, at least when o is small; see Matsuyama (1999), p.344. For such

possibilities, o has to exceed 22. See below.
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Notice here the shift from convergence to a two period cycle to convergence to a four period
cycle as G attains the value unity. Thus Figures 5 and 6 focus attention on the two extreme
ranges of the parameter G contained in Figure 4.

We present next, an example of topological chaos when G is small and ¢ is large. For

this purpose it would be helpful to note the following;:

9 ®’(1)=9¢(p(1)) <1l &1<G<-1.

Thus a necessary condition for topological chaos? is always satisfied, for every value of
G whenever, the steady state is unstable. But to clinch matters and to show the presence

of complicated dynamics, we need to show that ¢3(1) < k* 10

Example 3 Consider 0 = 22 and G = 1.001; one may then check that ¢>(1) < k*. We

thus have topological chaos for this map. For values of o > 22, low values of G imply the

existence of topological chaos'.

The bifurcation diagram for ¢ = 22 is provided below.

FIGURE 7 HERE

The above set of exercises allows us to draw the following conclusions:

e When the steady state is unstable, two-cycles exist; further, any G value in the set
[G’, 6 — 1) implies that the two-cycle is stable. This range increases with o over the

range [5, 22] of plausible o-values.

9See, for instance, Mitra (2001), p. 140, (2.5).
10Mitra (2001), Proposition 2.3, p. 142.
1Gee Mitra (2001), p.142 where he looks at the case when o = 50, G = 1.01 to apply his result.
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e When o is small (around 5), the steady state and the two period-cycle is unstable,
there would be a stable cyclical orbit with period 4; cycles with higher periods do not

appear possible.

e When o is large (> 22), possibilities for chaos exist particularly if the value of G is

small enough.

e Whenever the steady state is unstable and a stable cycle exists, the rate of growth

along the cycle will be greater than that along the unstable steady state.

5 Concluding Remarks

We examined whether a growth cycle could be obtained as limiting behavior; it turned
out this led us to a consideration of what could be the parameter values which would
imply such behavior. We also noted the existence of bifurcation points around which the
stability properties of these cycles change sharply and hence it is important to examine the
robustness of the claims. For meaningful cyclical behavior of period 2, the parameters had
to be in the right range so the cycles could be attractive. We computed a range of values
which imply the stability of period 2 cycles. We also investigated how this range changes
when the parameter o varies. It turns out that large o values enhances the chances of the
stability of the 2-cycles.

With low G-values, outside the range, 2-cycles may lose stability but stable cycles with
larger periods may exist. It was of some interest to note that the possibilities of higher rates
of growth along period 2-cycles are retained by the cycles with larger periods. Thus the
conclusion that growth paths, which are cyclical in nature, are capable of providing higher

rates of growth turns out to be a quite robust conclusion.
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Our analysis also indicates that the chances of encountering chaotic trajectories arise
only when G is “small” and o is “large”. Recall that if ¢ is large, there would be a larger
range of possible G-values which imply stability of the 2-cycles. So outside this range,
we shall have higher period cycles and only for G values close to 1 there maybe chaotic
trajectories. The simulation exercises seem to indicate that unless o was greater or equal
to 22 and G was “small”(close to 1), we would not encounter this phenomenon; how small
G must be depends on the value of o, of course. But so long as cycles were stable, the
conclusion that cyclical paths lead to enhanced growth, remains valid.

It may be recalled that the parameter o has two roles in the analysis: first of all in the
determining the share of labor (1/0) and secondly, in fixing the demand elasticity of the the
intermediate goods (o) and thereby the monopoly margin. The other parameter of interest
is G, the gross rate of growth along the steady state in the Romer regime. Thus increasing
o amounts to lowering the share of labor and at the same time, increasing the monopoly
margin. This has been shown to lead to two effects: first, this makes the chances of a stable
2-cycle larger that is for a wider set of G values, the two cycles will be stable; secondly,
if the 2-cycles were unstable that is, if G were to be low enough, we may also encounter
chaotic trajectories. But so long as there are stable cycles, growing along them would lead

to larger rates of growth!2.

12Even in the presence of topological chaos, there may be a stable cycle with period which is not a power
of 2; this is the case when chaos may not be observable as in the case of the logistic map f(z) = Kz(1 — z);
for K ~ 3.83, one may show that f3(1/2) = 1/2 and so satisfies the conditions of topological chaos; but
almost all trajectories converge to this 3-period cycle, see, for example Day and Pianigiani (1991) in this
connection; our results show that even along such a cycle, the rate of growth would be larger than the one
along the unstable steady state. The fundamental point, thus, is that there should be a stable cycle. The

periodicity is of little concern in this connection.
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Finally in any dynamic economic model, there are several aspects in the specification of
the laws of change: one is the functional form; for example, whether processes are linear or
non-linear; and if non-linear, what terms are present. Quite apart from these issues, there
are, in addition parameters of various kinds. In economic theory, the problem has been that
these parameters can never be specified with any degree of exactitude. It is because of this

reason that the exercises carried out above assume significance.
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Figure 1A: The Map with G>1
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Figure 1B: The Map with G <1
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Figure 2: Range of G-values implying stability of 2-cycles
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Figure 4: The Bifurcation Map
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Figure 6: The Bifurcation Map
0c=5,1.0=<G =<1.08
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Figure 7: The Bifurcation Map o = 22
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