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We consider the problem of allocating an amount of a perfectly divisible good among
a group of n agents. We study how large a preference domain can be to allow for the
existence of strategy-proof, symmetric, and efficient allocation rules when the amount of
the good is a variable. This question is qualified by an additional requirement that a
domain should include a minimally rich domain. We first characterize the uniform rule
(Bennasy, 1982) as the unique strategy-proof, symmetric, and efficient rule on aminimally
rich domain when the amount of the good is fixed. Then, exploiting this characterization,
we establish the following: There is a unique maximal domain that includes a minimally
rich domain and allows for the existence of strategy-proof, symmetric, and efficient rules
when the amount of good is a variable. It is the single-plateaued domain.
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helpful and detailed suggestions. They also thank Asano, T. and Suzuki, M. for their useful comments.
The authors completed this article when Serizawa visited the Department of Economics at the University
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1. INTRODUCTION

We consider the problem of allocating an endowment of a perfectly divisible good
among a group of n agents. An allotment economy is a pair of a preference profile and an
amount of the good. A “rule” chooses a feasible allocation for each allotment economy; it
is formally defined as a function from the class of allotment economies to the set of allo-
cations. When the endowment is fixed, an allotment economy is described by a preference
profile alone. A class of preference profiles are called a “preference domain.” Since prefer-
ences are only privately known, the choices of rules must be based on preferences agents
announce. Thus, agents might strategically misrepresent their preferences to obtain out-
comes they prefer. As a result, the decision that the rule should make for agents’ true
preferences may not be realized. Thus, the condition called “strategy-proofness” is often
imposed on rules to guarantee that agents have the incentive to reveal their true prefer-
ences. It says that no agent is better off by misrepresenting his preferences, no matter
what his true preference is and no matter what preferences others announce. “Symmetry”
and Pareto efficiency are also often imposed on rules. “Symmetry” is the distributional
requirement that two agents with the same preference should be given indifferent amounts
of the good.
If a rule satisfies strategy-proofness on a preference domain, it also satisfies strategy-

proofness on any subdomain. Therefore, the larger the domain on which rules are required
to satisfy strategy-proofness, the stronger the requirement is. For instance, in the model
of public alternatives, it is well-known that strategy-proofness is so strong on the univer-
sal domain (the class of all preferences on the set of the public alternatives) that only
dictatorships can satisfy strategy-proofness.2 Similarly, the requirements of efficiency and
symmetry are stronger on larger domains. Thus, the smaller a domain is, the more rules
satisfying the three requirements potentially exist. On the other hand, if the domain is
too large, the three requirements may become so strong that there exist no rules satisfying
them. In this paper, we identify (i) minimal domains on which the three requirements
imply uniqueness of the rule, and (ii) maximal domains on which rules satisfying the three
requirements exist.
Many authors have analyzed strategy-proof rules on the class of “single-peaked” prefer-

ences. A preferences is “single-peaked” if more is preferred to less up to some level, called
the “peak”, and less is preferred to more beyond the peak. The single-peaked domain
is the set of all single-peaked preferences. By fixing the endowment, Sprumont (1991)
and Ching (1994) establish that there exists a unique rule satisfying strategy-proofness,
symmetry, and efficiency on the single-peaked domain, the “uniform rule”.3 The “uniform
rule” allocates the total endowment to agents as follows. When the sum of agents’ peaks
is greater than or equal to the total endowment, an agent gets his peak if that level is
less than the common upper bound; otherwise he receives the common bound; and the
common bound is chosen so as to satisfy the feasibility. When the sum of agents’ peaks
is less than the total endowment, the opposite principle is applied, that is, an agent gets
his peak if that level is more than the common lower bound; and so on. The results by
Sprumont (1991) and Ching (1994) motivate us to investigate the following two questions.

2This is the so-called Gibbard-Satterthwaite Theorem. (Gibbard, 1973, and Satterthwaite, 1975).
3First, Sprumont (1991) establishes that the uniform rule is the unique rule satisfying strategy-

proofness, “anonymity”, and (Pareto) efficiency on the single-peaked domain. “Anonymity” is the dis-
tributional requirement that the names of agents should not matter. Later, Ching (1994) strengthens
Sprumont’s (1991) characterization by replacing anonymity with the weaker requirement of symmetry.
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The first question is how much we can shrink the domain of single-peaked preferences
while preserving the uniform rule as the unique rule satisfying strategy-proofness, sym-
metry, and efficiency. A “minimally rich domain” is a small subset of the single-peaked
domain satisfying the following two conditions: (i) for each consumption level, there ex-
ists only one preference whose peak coincides with the consumption level; (ii) given two
distinct consumption levels, say x and y, there exists at least one preference whose peak
is between x and y such that x is preferred to y. The “symmetric”4 domain is an ex-
ample of the minimally rich domain. Since any minimally rich domain is much smaller
than the single-peaked domain, strategy-proofness on a minimally rich domain is weaker
than strategy-proofness on the single-peaked domain, and so are efficiency and symmetry.
Therefore, potentially there exist more rules satisfying the weaker requirements. However,
we show that the uniform rule is still the unique rule satisfying the three properties on
a minimally rich domain. We establish that a rule on a minimally rich domain satisfies
strategy-proofness, symmetry, and efficiency if and only if it is the uniform rule. Fol-
lowing Sprumont (1991) and Ching (1994), we first fix the endowment and establish this
characterization.
The second question is how much we can enlarge the preference domain while allowing

for the existence of strategy-proof, symmetric, and efficient rules. Ching and Serizawa
(1998) also study the same question. Ching and Serizawa (1998) show that the “single-
plateaued” domain is the unique maximal preference domain that includes the single-
peaked domain and allows for the existence of strategy-proof, symmetric, and efficient
rules. “Single-plateaued” preferences are variants of single-peaked preferences for which
the sets of most preferred consumption levels are intervals.5 The single-plateaued domain
is the set of all single-plateaued preferences. The setting of Ching and Serizawa (1998) is
different from Sprumont (1991) and Ching (1994). Ching and Serizawa (1998) consider
the situation in which rules have the amount of the good to be allocated as a variable
and each economy is represented by a pair of one preference profile and the endowment
of the good. We adapt the same setting as Ching and Serizawa (1998) in studying the
second question, and establish a similar result. However, our result is stronger than theirs
for the following reason. Ching and Serizawa (1998) require that the maximal domain
should include the single-peaked domain. Here, we only require the maximal domain to
include a minimally rich domain. Since any minimally rich domain is much smaller than
the single-peaked domain, our requirement is weaker than Ching and Serizawa’s (1998).
Therefore, potentially there may exist a domain which includes a minimally rich domain
and allows for the existence of strategy-proof, symmetric, and efficient rules, but is larger
than or different from the single-plateaued domain. However, we establish that the single-
plateaued domain is still the unique maximal domain including a minimally rich domain
for strategy-proofness, symmetry, and efficiency. Our result implies Ching and Serizawa’s
(1998) result as a corollary.
Recently, Massó and Neme (2001) succeed in obtaining a maximal domain result when

the amount of the good to be allocated is fixed. Since they adopt “strong symmetry”6 as
4A single-peaked preference is “symmetric” if its utility representation is symmetric around the peak.

Symmetric preferences are also called “quadratic” preferences in Border and Jordan (1983) since they are
represented by quadratic utility functions.

5It is studied by Moulin (1984) and Berga (1998).
6Strong symmetry means that agents with the same preferences are given the same amount of the

good.
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a property of rules in place of symmetry in our result, and since they require the maximal
domain to include the single-peaked domain, our result (Theorem 2) is independent of
theirs.
Besides Ching and Serizawa (1998) and Massó and Neme (2001), there are several

articles that study the maximal domain for strategy-proofness. Massó and Neme (2004)
and Ching and Serizawa (2003) study the maximal domain for strategy-proof rules in
allotment economies by assuming the continuity of rules and establish different maximal
domain results.7 Barberà, Sonnenschein, and Zhou (1991) and Serizawa (1995) study
models of public alternatives and give the maximal domain where the class of rules called
“the generalized median voter schemes” satisfies strategy-proofness. While they exclude
rules other than the generalized median voter schemes, we do not restrict the rules a
priori, but obtain the maximal domain by just imposing properties on rules. Berga and
Serizawa (2000) also investigate the two questions that are parallel to ours in a model
of public alternatives. Recently, Ehlers (2002) studies maximal domains for coalitional
strategy-proofness in an indivisible goods model.
This paper is organized as follows. Section 2 explains the model and the main results.

Section 3 is devoted to the proof of the results of Section 2. Section 4 raises open questions.

2. THE MODEL AND THE RESULTS

We consider the problem of allocating one perfectly divisible private good among a
finite number of agents. Let N = {1, · · · , n} be the set of agents, where n ≥ 2. Let
M ∈ R++ be the amount of the good. Each agent i ∈ N is equipped with a preference
relation Ri on R+ ∪ {∞}. Let Pi be the strict preference relation associated with Ri,
and Ii the indifference preference relation. We assume that preferences are continuous,
that is, for all x ∈ R+ ∪ {∞}, the sets {y ∈ R+ ∪ {∞} : yRix} and {y ∈ R+ ∪ {∞} :
xRiy} are closed. Let RC be the class of all continuous preferences. Given Ri ∈ RC ,
let p(Ri) = {x ∈ R+ ∪ {∞}|∀y ∈ R+, xRiy} be the set of preferred consumptions for
Ri. Let p(Ri) = inf p(Ri) and p(Ri) = sup p(Ri). When p(Ri) is a singleton, we slightly
abuse notation and use p(Ri) to denote its single element. A preference profile is a
list R = (R1, · · · , Rn) ∈ Rn

C . When we emphasize the role of agent i ∈ N , we write
R = (Ri,R−i) where R−i = (Rj)j∈N\{i}. An economy is a pair of (R,M) ∈ Rn

C ×R++.
When the amount of the good is M , an allocation is a vector z = (z1, · · · , zn) ∈ Rn+

such that
P

i∈N zi =M . Let Z(M) be the set of all allocations for the economy (R,M).
A rule associates to each economy (R,M) an allocation z ∈ Z(M). It can be regarded as
a recommendation for each economy. A domain is a subset R of RC . A rule is a function
ϕ : Rn × R++ → Rn+ such that for all (R,M) ∈ Rn × R++,ϕ(R,M) ∈ Z(M). For all
i ∈ N, ϕi(R,M) represents the amount of the good allocated to agent i. When we want
to emphasize the domain of a rule, we call it a rule on Rn × R++
Agents are assumed to be equipped with the following preferences.

Definition 1. A preference R0 ∈ RC is single-peaked if p(R0) is a singleton, and
for all x, y ∈ R+ ∪ {∞}, we have xP0y whenever y < x ≤ p(R0) or p(R0) ≤ x < y.
Let RS ⊆ RC be the domain of all single-peaked preferences. We call it the single-

peaked domain.
7Massó and Neme (2004) are only concerned with tops-only rules and Ching and Serizawa (2003) use

unanimity instead of efficiency.
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Definition 2. A single peaked preference R0 ∈ RC is symmetric if for all x, y ∈ R+,
xP0y if and only if |x− p(R0)| < |y − p(R0)|.
Let RM ⊆ RC be the domain of all symmetric preferences. We call it the symmetric

domain.

Definition 3. A preference R0 ∈ RC is single-plateaued if p(R0) is an interval
[p(R0), p(R0)]; and for all x, y ∈ R+ ∪ {∞} with [x < y ≤ p(R0)] or [p(R0) ≤ x < y], we
have xP0y.

Let RP ⊆ RC be the domain of all single-plateaued preferences. We call it the single-
plateaued domain.

Rules are required to satisfy the following three properties. The first one is the
strongest incentive compatibility. No one can ever benefit by misrepresenting his prefer-
ences.

Definition 4. A rule ϕ on Rn×R++ is strategy-proof if for all (R,M) ∈ Rn×R++,
all i ∈ N, and all R0i ∈ R, ϕi(R,M)Riϕi(R0i, R−i,M).

The second property is a distributional requirement. If two agents have the same
preference, their allocations are indifferent to each other.

Definition 5. A rule ϕ on Rn × R++ is symmetric if for all (R,M) ∈ Rn × R++
and all i, j ∈ N such that Ri = Rj, ϕi(R,M)Iiϕj(R,M).

The third property is the standard efficiency requirement.

Definition 6. A rule ϕ on Rn×R++ is efficient if for all (R,M) ∈ Rn×R++, there
is no z ∈ Z(M) such that for all i ∈ N, ziRiϕi(R,M) and for some j ∈ N, zjPjϕj(R,M).
The fact below is derived directly from the definition of efficiency (Definition 6). It is

useful in the proofs of Lemmas 1, 4, and Theorem 1.

Fact. Let R ⊆ RS⊆ RC . If a rule ϕ on Rn×R++ is efficient, then for all (R,M) ∈
Rn ×R++, the following properties hold.
(i) If

P
i∈N p(Ri) ≤M , then for all j ∈ N, p(Rj) ≤ ϕj(R).

If M ≤Pi∈N p(Ri), then for all j ∈ N, ϕj(R) ≤ p(Rj).
(ii) If there exists an agent i ∈ I such that p(Ri) < ϕi(R), then

P
j∈N p(Rj) < M.

If there exists an agent i ∈ I such that ϕi(R) < p(Ri), then M <
P

j∈N p(Rj).
(iii) If there exists an agent i ∈ I such that ϕi(R) < p(Ri), then for all agent j ∈ I,
ϕj(R) ≤ p(Rj).

If there exists an agent i ∈ I such that p(Ri) < ϕi(R), then for all agent j ∈ I,
p(Rj) ≤ ϕj(R).

2. 1. Characterization

Sprumont (1991) and Ching (1994) show that the following rule, the uniform rule, is
the only one satisfying all three properties of strategy-proofness, symmetry, and efficiency
on the single-peaked domain, Rn

S.

Definition 7. The uniform rule U = (U1, · · · , Un) is defined as follows. For all
(R,M) ∈ Rn

S ×R++ and all i ∈ N,
Ui(R)=

½
max{p(Ri),λ(R,M)} if

P
p(Rj) ≤M

min{p(Ri),λ(R,M)} otherwise,
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where λ(R,M) solves
P

j∈N Uj(R,M) =M .
8

How much can we weaken the assumption of strategy-proofness, symmetry, and effi-
ciency on the single-peaked domain, while preserving the uniform rule as the unique rule
satisfying strategy-proofness, symmetry, and efficiency? By the definition of strategy-
proofness, if a rule satisfies strategy-proofness on a domain, it also satisfies strategy-
proofness on any subdomain. Therefore the smaller domain (in the sense of inclusion) on
which we assume a rule satisfies strategy-proofness, the less demanding we are. Similarly,
the conditions of efficiency and symmetry are weaker on the smaller domains. We charac-
terize the uniform rule on the following minimally rich domains.9 Since any minimally rich
domain is much smaller than the single-peaked domain, our characterization is stronger
than Sprumont (1991) and Ching (1994).
Definition 8. A domain R ⊆ RC is minimally rich if

(1) R ⊆ RS

(2) for all x ∈ R+, there exists a unique preference R0 ∈ R such that p(R0) = x, and
(3) for all x, y ∈ R+ such that x 6= y, there exists R0 ∈ R such that xP0y and p(R0) ∈
(min{x, y},max{x, y}).
We denote a generic minimally rich domain by RR. The symmetric domain is an

example of minimally rich domain. The domain R0 defined below is one of many other
minimally rich domains.
R0 = {R0 ∈ RS : for all x, y ∈ [0,M ] such that x < p(R0) < y, xI0y if and only if
|x− p(R0)| = 2|y − p(R0)|}.
Now we establish a characterization of the uniform rule on minimally rich domains.

Sprumont (1991) and Ching (1994) characterize the uniform rule when M is fixed. Their
results also imply the characterization when M is not fixed. Therefore, we first show our
characterization when M is fixed. The characterization when M is not fixed follows.
Given M ∈ R++, we define RS(M), RM(M), and RR(M) as the set of preferences

obtained by restricting on [0,M ] all preferences in RS, RM , and RR respectively. We
denote a generic element of RS(M) by Ri(M). When M is fixed, we consider that agent
i’s preference is defined only on [0,M ], an economy is represented by a list R(M) =
(R1(M), · · · , Rn(M)) ∈ R(M)n, and that when a domain is a subset R(M) of RS(M),
a rule is a function ϕ(·,M) : R(M)n → Z(M). When we want to emphasize the domain
of a rule, we call it a rule on R(M)n. Strategy-proofness, symmetry, and efficiency are
similarly defined in this setting. Thus, we omit their definitions.
Theorem 1. Let M ∈ R++. A rule ϕ(·,M) on a minimally rich domain RR(M)

n

is strategy-proof, symmetric, and efficient if and only if ϕ(R(M),M) = U(R(M),M) for
all R(M) ∈ RR(M)

n.

Theorem 1 says that when M is fixed, the uniform rule is the unique rule satisfying
strategy-proofness, symmetry, and efficiency on a minimally rich domain. The character-
ization when M is not fixed is a corollary of Theorem 1.
Corollary 1. A rule ϕ on a minimally rich domain Rn

R ×R++ is strategy-proof,
symmetric, and efficient if and only if ϕ(R,M) = U(R,M) for all (R,M) ∈ Rn

R ×R++.
8The uniform rule can be regarded as a system of equations. Therefore, λ(R,M) is endogenously

determined and depends on a profile of agents’ preferences and the total amount of the good to be
allocated. Sönmez (1994) establishes the algorithm to find λ(R,M).

9Minimally rich domains are firstly studied by Berga and Serizawa (2000).
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Since the symmetric domain is a minimally rich domain, the next corollary is also
obtained.

Corollary 2. A rule ϕ on the symmetric domain Rn
M × R++ is strategy-proof,

symmetric, and efficient if and only if ϕ(R,M) = U(R,M) for all (R,M) ∈ Rn
M ×R++.

2.2. Maximal Domain

We proceed to the next question; how much larger can a preference domain be while
allowing for the existence of strategy-proof, symmetric, and efficient rules? To answer
this question precisely, we need the following notion.

Definition 9. A domain Rm is a maximal domain for a list of properties if (i)
Rm ⊆ RC , (ii) there is a rule on Rn

m × R++ satisfying the properties; and (iii) there is
no rule satisfying the same properties on any Rn

A ×R++ such that Rn
m ( Rn

A ⊆ Rn
C .

Note that a maximal domain for a list of properties may not be unique. However, Ching
and Serizawa (1998) show that the single-plateaued domain is the unique maximal domain
including the single-peaked domain for strategy-proofness, symmetry, and efficiency. Any
domain that includes the single-peaked domain also includes a minimally rich domain.
Thus the set of domains that includes the single-peaked domain is contained by the set of
domains including a minimally rich domain. Theorem 2 below says that even among the
more candidate, the single-plateaued domain still remains the unique maximal domain.
Theorem 2 strengthens Ching and Serizawa’s result (1998).

Theorem 2. The single-plateaued domain is the unique maximal domain that includes
a minimally rich domain for strategy-proofness, symmetry, and efficiency.

Note that we obtain Ching and Serizawa’s result (1998) as a corollary of Theorem 2.

Corollary 3 (Ching and Serizawa 1998). The single-plateaued domain is the unique
maximal domain including the single-peaked domain for strategy-proofness, symmetry, and
efficiency.

Since the symmetric domain is a minimally rich domain, we also have the following
corollary.

Corollary 4. The single-plateaued domain is the unique maximal domain including
the symmetric domain for strategy-proofness, symmetry, and efficiency.

3. PROOFS

3. 1. Proofs for Theorem 1

For the proofs, we introduce the notion of “the option set.” In the model of public
alternatives, Berga and Serizawa (2000) employed the notion in their proof of character-
ization. Similarly to them, we prove that option sets are convex in allotment economies.
Our proof of Theorem 1 is similar to Ching’s proof (1994) in structure. However, because
a minimally rich domain is smaller than the single-peaked domain, his procedure cannot
be applied throughout our proof. The convexity of option sets plays an important role in
overcoming that difficulty, relevant in Lemma 5. Although our proofs of Lemmas 1, 2, 3,
and Theorem 1 are similar to the proofs of Sprumont (1991) and Ching (1994), we state
all proofs for completeness.
Before stating all the previous results, let us simplify notation. In this subsection,M is

fixed. Thus each economy is represented by a profile of preferences. To simplify notation,
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we denote RS(M), RR(M), and RM(M) by RS, RR, and RM respectively throughout
this subsection. We denote a generic element of R(M) by R instead of R(M). For the
same reason, ϕ(R,M) and U(R,M) are replaced by ϕ(R) and U(R) respectively.
Ching (1994) shows that strategy-proof rules on the single-peaked domain satisfy the

property of “own peak monotonicity.” It says that if the peak of an agent decreases, his
share does not increase. Similarly to him, we can show that the uniform rule is own peak
monotonic on any minimally rich domain.

Lemma 1 (“Own Peak Monotonicity”). If a rule ϕ on Rn
R is efficient and strategy-

proof, then for all R ∈ Rn
R, all i ∈ N, and all R0i ∈ RR such that p(R0i) ≤ p(Ri),

ϕi(R
0
i, R−i) ≤ ϕi(R).

Proof. Let R ∈ Rn
R, i ∈ N and R0i ∈ RR be such that p(R0i) ≤ p(Ri). By contradiction,

suppose that ϕi(R) < ϕi(R
0
i, R−i).

First suppose that
P

j∈N p(Rj) ≤M. By Fact (i), for all j ∈ N, p(Rj) ≤ ϕj(R). Since
p(R0i) ≤ p(Ri), p(R0i) ≤ p(Ri) ≤ ϕi(R) < ϕi(R

0
i, R−i). Thus ϕi(R)P

0
iϕi(R

0
i, R−i). So agent

i manipulates ϕ at (R0i, R−i) via Ri, contradicting strategy-proofness.
Next, suppose that

P
j∈N p(Rj) > M. There are two subcases.

Subcase 1. M ≤ p(R0i) +
P

j 6=i p(Rj).
By Fact (i), ϕi(R

0
i, R−i) ≤ p(R0i). Since ϕi(R) < ϕi(R

0
i, R−i) and p(R

0
i) ≤ p(Ri),

ϕi(R) < ϕi(R
0
i, R−i) ≤ p(R0i) ≤ p(Ri). Thus ϕi(R0i, R−i)Piϕi(R). Therefore agent i manip-

ulates ϕ at R via R0i, contradicting strategy-proofness.

Subcase 2. M > p(R0i) +
P

j 6=i p(Rj).
By Fact (i), for all j ∈ N\{i}, ϕj(R) ≤ p(Rj). Thus

P
j 6=i ϕj(R) ≤

P
j 6=i p(Rj).

Since p(R0i) +
P

j 6=i p(Rj) < M, p(R0i) < M − Pj 6=i ϕj(R) = ϕi(R). Since ϕi(R) <
ϕi(R

0
i, R−i), p(R

0
i) < ϕi(R) < ϕi(R

0
i, R−i). Thus ϕi(R)P

0
iϕi(R

0
i, R−i). Therefore agent i

manipulates ϕ at (R0i, R−i) via Ri, contradicting strategy-proofness.

We obtain contradictions in all cases. Therefore, ϕi(R
0
i, R−i) ≤ ϕi(R).

Q. E. D.

We introduce the notion of the option set.

Definition 11. Given i ∈ N , R−i ∈ Rn−1
R , and a rule ϕ on Rn

R, agent i’s option set
at R−i is the set σi(R−i) = {x ∈ [0, M ] : ∃Ri ∈ RR such that ϕi(Ri, R−i) = x}.

The following lemma is well-known and used for the proof of Lemma 3.

Lemma 2. Let a rule ϕ on Rn
R be strategy-proof. Let R ∈ Rn

R and x ∈ σi(R−i) be
such that for all x0 ∈ σi(R−i)\{x}, xPix0. Then ϕi(R) = x.

Proof. By contradiction, suppose that ϕi(R) 6= x. By definition, there exists R0i ∈
RR such that ϕi(R

0
i, R−i) = x. By assumption, ϕi(R

0
i, R−i)Piϕi(R). Therefore agent i

manipulates ϕi at R via R
0
i, contradicting strategy-proofness. Therefore, ϕi(R) = x.

Q. E. D.
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In allotment economies, Sprumont (1991) shows that option sets are closed on the
single-peaked domain. We can prove the same property on a minimally rich domain as
he does.

Lemma 3 (“Closedness of Option Set”). Let a rule ϕ on Rn
R be strategy-proof. Let

i ∈ N , and R−i ∈ Rn−1
R . Then σi(R−i) is closed.

Proof. By contradiction, suppose that σi(R−i) is not closed. Then, there exists a
sequence {xk}k∈N in σi(R−i) such that xk converges to x ∈ R as k goes to infinity and
x /∈ σi(R−i). Since [0,M ] is closed, x ∈ [0,M ]. By the definition of minimally rich domain,
there is R0i ∈ RR such that p(R0i) = x. Let ϕi(R

0
i, R−i) = x

0. Since x /∈ σi(R−i) and x 6= x0,
xP 0ix

0. Moreover, since x = limk→∞ xk, and R0i is continuous, there exists k ∈ N such that
xkP

0
ix
0. Since xk ∈ σi(R−i), there exists R00i ∈ RR such that ϕi(R

00
i , R−i) = xk. Thus agent

i manipulates ϕ at (R0i, R−i) via R
00
i , contradicting strategy-proofness. Therefore, σi(R−i)

is closed.
Q. E. D.

In the model of public alternatives, Berga and Serizawa (2000) show that option sets
are convex on any minimally rich domain. We prove the convexity of the option set in
allotment economies.

Lemma 4 (“Convexity of Option Set”). Let ϕ be a strategy-proof and efficient rule
ϕ on Rn

R. Let i ∈ N , and R−i ∈ Rn−1
R . Then the set σi(R−i) is convex.

Proof. Suppose, by contradiction, that σi(R−i) is not convex. Then there exist x <
z < y such that x, y ∈ σi(R−i) and z /∈ σi(R−i). But the convexity of [0,M ] guarantees
[x, y] ⊆ [0,M ]. Let x0 = sup{x00 : x00 ∈ σi(R−i) and x00 < z} and y0 = inf{y00 : y00 ∈
σi(R−i) and y00 > z}. By the closedness of σi(R−i) (Lemma 3), x0, y0 ∈ σi(R−i). By
the definition of a minimally rich domain, there exist R∗i , R

∗∗
i ∈ RR such that x0P ∗i y

0,
p(R∗i ) ∈ (x0, y0), y0P ∗∗i x0 and p(R∗∗i ) ∈ (x0, y0). Since x0P ∗i x00 for all x00 ∈ σi(R−i)\{x0} and
y0P ∗∗i y

00 for all y00 ∈ σi(R−i)\{y0}, it follows from Lemma 2 that ϕi(R
∗
i , R−i) = x0 and

ϕi(R
∗∗
i , R−i) = y

0.
Since ϕi(R

∗
i , R−i) < p(R∗i ), Fact (ii) guarantees M < p(R∗i ) +

P
j 6=i p(Rj). Since

p(R∗∗i ) < ϕi(R
∗∗
i , R−i), Fact (ii) also guarantees p(R

∗∗
i ) +

P
j 6=i p(Rj) < M. From these

two inequalities, we obtain p(R∗∗i ) < p(R∗i ). Then, by own peak monotonicity (Lemma
1), ϕi(R

∗∗
i , R−i) ≤ ϕi(R

∗
i , R−i). However, since x

0 < y0, this is a contradiction. Therefore,
σi(R−i) is convex.

Q. E. D.

Ching (1994) establishes a property called “uncompromisingness” on the single-peaked
domain. It says that if an agent’s original share is too much (less) to him, he cannot change
it by revealing any other preferences for which it is too much (less). Lemma 5 below
says that the same conclusion holds on a minimally rich domain. The structure of our
proof of Lemma 5 is also similar to Ching (1994). However, Ching’s proof does not work
here since preferences employed in his proof may not be in a minimally rich domain. We
exploit the convexity of option sets (Lemma 4) to overcome this difficulty. Note that the
uniform rule is uncompromising on any minimally rich domain.

Lemma 5 (“Uncompromisingness”). If a rule ϕ on Rn
R is efficient and strategy-proof,

the following property holds. For all R ∈ Rn
R, all i ∈ N, and all R0i ∈ RR,
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if p(Ri) < ϕi(R) and p(R
0
i) ≤ ϕi(R), then ϕi(R

0
i, R−i) = ϕi(R);

if p(Ri) > ϕi(R) and p(R
0
i) ≥ ϕi(R), then ϕi(R

0
i, R−i) = ϕi(R).

Proof. We consider only the case when there exist R ∈ Rn
R, i ∈ N, and R0i ∈ RR such

that p(Ri) < ϕi(R) and p(R
0
i) ≤ ϕi(R). The other case can be treated symmetrically.

By contradiction, suppose that ϕi(R
0
i, R−i) 6= ϕi(R). There are two cases.

Case 1. ϕi(R) < ϕi(R
0
i, R−i).

Since p(R0i) ≤ ϕi(R), pi(R
0
i) ≤ ϕi(R) < ϕi(R

0
i, R−i). Therefore, ϕi(R)P

0
iϕi(R

0
i, R−i).

Agent i can manipulate ϕ at (R0i, R−i) via Ri, contradicting strategy-proofness.
Case 2. ϕi(R

0
i, R−i) < ϕi(R).

If p(Ri) ≤ ϕi(R
0
i, R−i) < ϕi(R), then ϕi(R

0
i, R−i)Piϕi(R), contradicting strategy-

proofness. Thus, let p(Ri) > ϕi(R
0
i, R−i). By the convexity of the option set σi(R−i)

(Lemma 4), there existsR00i ∈ RR such that ϕi(R
00
i , R−i) = p(Ri). Then, ϕi(R

00
i , R−i)Piϕi(R),

contradicting strategy-proofness.

We obtain contradictions in both cases. Therefore, ϕi(R
0
i, R−i) = ϕi(R).

Q. E. D.

Ching (1994) proves his characterization by using the properties of own peakmonotonic-
ity and uncompromisingness on the single-peaked domain. We have established the same
properties on a minimally rich domain. Using these properties, we can prove Theorem 1
as Ching (1994) does.

Proof of Theorem 1.
It is trivial that the uniform rule satisfies strategy-proofness, symmetry, and efficiency

on a minimally rich domain. To prove the uniqueness, let ϕ be a strategy-proof, symmetry,
and efficient rule on a minimally rich domain Rn

R. We show that for all R ∈ Rn
R, ϕ(R) =

U(R).
Let R ∈ Rn

R. There are three cases.

Case 1.
P

i∈N p(Ri) =M.
By Fact (i), for all i ∈ N, ϕi(R) = p(Ri). By the definition of the uniform rule, for

all i ∈ N , Ui(R) = p(Ri). Thus, since for all i ∈ N, ϕi(R) = Ui(R), it follows that
ϕ(R) = U(R).

Case 2.
P

i∈N p(Ri) < M.
Without loss of generality, we rename the agents so that p(R1) ≤ · · · ≤ p(Rn). There

are two cases.

Case 2-1. R1 = · · · = Rn.
Then by Fact (i) and symmetry, for all i ∈ N, ϕi(R) =M/n. By the definition of the

uniform rule, for all i ∈ N , Ui(R) =M/n. Therefore, ϕ(R) = U(R).
Case 2-2. R 6= (R1, · · · , R1).
This means that at least one agent has a different preference from other agents. By

contradiction, suppose that ϕ(R) 6= U(R).
Step 1. By Fact (i) and feasibility, there exists k ∈ N such that p(Rk) ≤ ϕk(R) <

Uk(R). Let R0k ∈ RR be such that p(R0k) = p(R1). Suppose that agent k changes
his preference from Rk to R0k. Since p(R

0
k) ≤ p(Rk), by the own peak monotonicity

of ϕ (Lemma 1), ϕk(R
0
k, R−k) ≤ ϕk(R). Since p(Rk) < Uk(R) and p(R0k) ≤ Uk(R),

the uncompromisingness of the uniform rule implies that Uk(R0k, R−k) = Uk(R). Thus
ϕk(R

0
k, R−k) < Uk(R

0
k, R−k). Then if (R

0
k, R−k) = (R1, · · · , R1), by Case 2-1, for all

9



i ∈ N, ϕi(R0k, R−k) = Ui(R0k, R−k) = M/n. Therefore, ϕk(R0k, R−k) = Uk(R0k, R−k). This
is a contradiction. If (R0k, R−k) 6= (R1, · · · , R1), we proceed to Step 2.
Step 2. Since ϕk(R

0
k, R−k) < Uk(R

0
k, R−k), and since

P
j∈N p(Rj) < M and p(R0k) ≤

p(Rk) together imply p(R0k) +
P

j 6=k p(Rj) < M , it follows from Fact (i) and feasibility
that there exists l ∈ N\{k} such that p(Rl) ≤ Ul(R0k, R−k) < ϕl(R

0
k, R−k). Let R

0
l ∈ RR

be such that p(R0l) = p(R1), R
0
kl = (R

0
k, R

0
l), and R−kl = (Ri)i∈N\{k,l}. Suppose that agent

l changes his preference from Rl to R0l. Since p(R
0
l) ≤ p(Rl), the own peak monotonicity

of the uniform rule implies that Ul(R0kl, R−kl) ≤ Ul(R0k, R−k). Since p(Rl) < ϕl(R
0
k, R−k)

and p(R0l) ≤ ϕl(R
0
k, R−k), by the uncompromisingness of ϕ (Lemma 5), ϕl(R

0
kl, R−kl) =

ϕl(R
0
k, R−k). Thus Ul(R

0
kl, R−kl) < ϕl(R

0
kl, R−kl). Then if (R

0
kl, R−kl) = (R1, · · · , R1), by

Case 2-1, for all i ∈ N, ϕi(R0kl, R−kl) = Ui(R0kl, R−kl) = M/n. Therefore Ul(R0kl, R−kl) =
ϕl(R

0
kl, R−kl). This is a contradiction. If (R

0
kl, R−kl) 6= (R1, · · · , R1), we go back to Step 1.

Rk or Rl might be R1. But both of them are not R1. Therefore, repeating Step 1 and
Step 2, we replace the preference of at least one new agent by R1. Since there is only
a finite number of agents, we can reach the contradiction at Step 1 or Step 2. Hence,
ϕ(R) = U(R).

Case 3. M <
P

i∈N p(Ri).
The same reasoning as in Case 2 can be applied to this case to show ϕ(R) = U(R).

Hence, for all R ∈ Rn
R, ϕ(R) = U(R).

Q. E. D.

3. 2. Proof of Theorem 2

The basic structure of the proof of Theorem 2 is similar to that of Ching and Ser-
izawa’s (1998) proof. However since Ching and Serizawa (1998) require the domain to
include the single-peaked domain while Theorem 2 only requires the domain to include a
minimally rich domain, there are crucial differences between the two proofs. First, Ching
and Serizawa’s (1998) proof depends on Ching’s (1994) characterization on the single-
peaked domain. On the other hand, the proof of Theorem 2 uses Theorem 1 instead.
Secondly, since a minimally rich domain is smaller than the single-peaked domain, the
domain assumed in Theorem 2 may not include some of the single-peaked preferences that
Ching and Serizawa (1998) use in their proof. We overcome this problem by distinguishing
between more cases than Ching and Serizawa (1998) does.

Before starting the proof of Theorem 2, we present two useful lemmas. Lemma 6 below
says that if a rule on a domain including a minimally rich domain satisfies efficiency, then
symmetry implies strong symmetry on the minimally rich domain. This result is equivalent
to Lemma 1 in Ching and Serizawa (1998) which was stated for the single-peaked domain.
Lemma 6. Let RR ⊆ RA ⊆ RC . If a rule ϕ on Rn

A × R++ satisfies symmetry and
efficiency, then for all (R,M) ∈ Rn

A × R++ and for all i, j ∈ N such that Ri = Rj ∈
RR, ϕi(R,M) = ϕj(R,M).

Proof. Let (R,M) ∈ Rn
A×R++ and i, j ∈ N be such thatRi = Rj ∈ RR. By efficiency,

ϕi(R,M) ≤ p(Ri) and ϕj(R,M) ≤ p(Rj) or ϕi(R,M) ≥ p(Ri) and ϕj(R,M) ≥ p(Rj).
Then symmetry and Ri = Rj ∈ RR imply that ϕi(R,M) = ϕj(R,M).

Q. E. D.

We introduce the notion of “convex” preferences.
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Definition 17. A preference R0 ∈ R is convex if p(R0) is an interval [p(R0), p(R0)]
and for all x, y ∈ R+ such that [y < x < p(R0)] and [p(R0) < x < y], xR0y.

Let RCONV ⊆ RC be the domain of all convex preferences. We call it the convex
domain.

Lemma 7 below is an extension of Fact (i) in the characterization of efficiency. While
Fact (i) pertains to a statement on the single-peaked domain, Lemma 7 pertains to the
convex domain.

Lemma 7.10 Let RCONV ⊆ RA ⊆ RC . If a rule ϕ on Rn
A×R++ is efficient, then for

all (R,M) ∈ RCONV
n ×R++, the following properties hold.

(i) If M ≤Pi∈N p(Ri), for all j ∈ N , ϕj(R,M) ≤ p(Rj).
(ii) If

P
i∈N p(Ri) ≤M ≤

P
i∈N p(Ri), for all j ∈ N , p(Rj) ≤ ϕj(R,M) ≤ p(Rj).

(iii) If
P

i∈N p(Ri) ≤M , for all j ∈ N , p(Rj) ≤ ϕj(R,M).

Proof. First, we prove (i). SupposeM ≤Pi∈N p(Ri). By contradiction, suppose that
there exists agent j ∈ N such that p(Rj) < ϕj(R,M). By feasibility, there is another agent
l ∈ N such that ϕl(R,M) < p(Rl). Let εj = ϕj(R,M)−p(Rj), εl = p(Rl)−ϕl(R,M), and
ε = min{εj, εl}. Let z0 = (z01, · · · , z0n) be such that z0j = ϕj(R,M)− ε, z0l = ϕl(R,M) + ε,
and z0i = ϕi(R,M) for all i ∈ N\{j, l}. Then, z0 Pareto dominates ϕ(R,M). This is a
contradiction.
A symmetric reasoning applies to prove (iii).
Lastly, we prove (ii). Suppose

P
i∈N p(Ri) ≤ M ≤ P

i∈N p(Ri). By contradiction,
suppose that there exists an agent j ∈ N such that ϕj(R,M) /∈ [p(Rj), p(Rj)]. SinceP

i∈N p(Ri) ≤ M ≤
P

i∈N p(Ri), there is an allocation z = (z1, · · · , zn) such that for all
i ∈ N , p(Ri) ≤ zi ≤ p(Ri) and

P
i∈N zi = M. Since zjPjϕj(R,M) and ziRiϕi(R,M) for

all i ∈ N\{j}, z Pareto dominates ϕ(R,M), contradicting efficiency.
Q. E. D.

Proof of Theorem 2. Let RR ⊆ RA ⊆ RC . Suppose that a rule ϕ on Rn
A × R++ is

strategy-proof, symmetric, and efficient. There are two steps.
10Ching and Serizawa (1998) state a very similar remark on efficient rules on the convex domain,

namely:
If a rule ϕ on Rn

CONV is efficient, then for all (R,M) ∈ Rn
CONV ×R++, the following properties hold;

(i) If M ≤Pi∈N p(Ri), then for all j ∈ N , ϕj(R,M) ≤ p(Rj).
(ii) If

P
i∈N p(Ri) ≤M ≤

P
i∈N p(Ri), then for all j ∈ N , p(Rj) ≤ ϕj(R,M) ≤ p(Rj).

(iii) If
P
i∈N p(Ri) ≤M , then for all j ∈ N , p(Rj) ≤ ϕj(R,M).

However, (i) and (iii) of their remark are false.
To see that (i) is false, we have only to construct an example that there are (R,M) ∈ Rn

CONV ×R++,
an efficient allocation z ∈ Z(M) and j ∈ N such that M ≤ Pi∈N p(Ri) and ϕj(R,M) > p(Rj). Let
R0 ∈ RCONV be such that x0 < y0 < p(R0) < p(R0); x

0I0y0 for all x0, y0 ∈ [x0, y0]; y0P0x0 for all
x0 < y0 such that x0, y0 ∈ (y0, p(R0)]; and p(R0)− y0 ≤ y0 − x0. Let ε > 0 be such that x0 < y0 − ε and
p(R0) < y0+ε ≤ p(R0). Let n = 2, M = 2y0, and R1 = R2 = R0. Then, the allocation z = (y0−ε, y0+ε)
is efficient, M ≤Pi∈N p(Ri), but ϕ2(R,M) > p(R2).
Similarly, (iii) of Ching and Serizawa’s (1998) remark is false. Although Ching and Serizawa’s (1998)

remark is used in their proof, their proof still works. For our Lemma 7 is enough for their proof. See
Step 2 of the proof of Theorem 2.
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Step 1. First, we show that RA ⊆ RCONV . By contradiction, suppose that there
exists a preference R0 ∈ RA\RCONV . Then there are three points x0 < y0 < z0 such that
x0P0y0 and z0P0y0. Let

x∗0 =
½
max{x00 ∈ [x0, y0]|x00I0x0}
max{x00 ∈ [x0, y0]|x00I0z0}

if z0R0x0
otherwise,

and

z∗0 =
½
min{z00 ∈ [y0, z0]|z00I0x0}
min{z00 ∈ [y0, z0]|z00I0z0}

if z0R0x0
otherwise.

Since R0 is continuous, x∗0 and z
∗
0 are well-defined. By definition, x0 ≤ x∗0 < y0 < z∗0 ≤

z0, x
∗
0I0z

∗
0 , and z

∗
0P0x

0
0 for all x

0
0 ∈ (x∗0, z∗0). Let M = nz∗0 . Let R

0
0 ∈ RR be such that

p(R00) ∈ (z∗0 , (M −x∗0)/(n− 1)) and (M −x∗0)/(n− 1)P 00z∗0 . Let R0 = (R01, · · · , R0n) be such
that for all i ∈ N, R0i = R00. By Lemma 6, ϕ(R0,M) = (z∗0 , · · · , z∗0).
Let R1 = R0. We consider the allocation when agent 1 ∈ N changes his preference

from R01 to R1. There are two cases.

Case 1. ϕ1(R1, R
0
−1,M) = ϕ1(R

0,M).
In this case, since ϕ1(R1, R

0
−1,M) = z

∗
0 ,
P

i6=1 ϕi(R1, R
0
−1,M) = (n− 1)z∗0 . By Lemma

6, for all i ∈ N\{1}, ϕj(R1, R
0
−1,M) = z

∗
0 . Consider the allocation (x

∗
0, (M − x∗0)/(n −

1), · · · , (M − x∗0)/(n− 1)). Since x∗0I1z∗0 and (M − x∗0)/(n− 1)P 0jz∗0 for all j ∈ N\{1}, the
allocation (x∗0, (M−x∗0)/(n−1), · · · , (M−x∗0)/(n−1)) Pareto dominates ϕ(R1, R0−1,M) =
(z∗0, · · · , z∗0), contradicting efficiency.
Case 2. ϕ1(R1, R

0
−1,M) 6= ϕ1(R

0,M)(= z∗0).
There are also four subcases. Let r ∈ R+ be such that rI 00z∗0 and r 6= z∗0 . If there does

not exist such r, we omit Case 2-1 below.

Case 2-1. r ≤ ϕ1(R1, R
0
−1,M).

Let R001 ∈ RR be such that p(R001) ≥ ϕ1(R1, R
0
−1,M). Corollary 1 tells us that for all

i ∈ N , ϕi(R001, R0−1,M) = Ui(R001, R0−1,M). Since M = nz∗0 , z
∗
0 < p(R

00
1), and z

∗
0 < p(R

0
i) for

all i ∈ N, it follows that M < p(R001) +
P

i6=1 p(R
0
i). Thus by the definition of the uniform

rule, ϕi(R
00
1, R

0
−1,M) = z

∗
0 for all i ∈ N. Since ϕ1(R1, R0−1,M)P 001 ϕ1(R001, R0−1,M), agent 1

manipulates ϕ at (R001, R
0
−1,M) via R1, contradicting strategy-proofness.

Case 2-2. ϕ1(R1, R
0
−1,M) ∈ (z∗0, r).

By the definition of r, ϕ1(R1, R
0
−1,M)P

0
1ϕ1(R

0,M). Thus agent 1 manipulates ϕ at
(R0,M) via R1, contradicting strategy-proofness.

Case 2-3. x∗0 < ϕ1(R1, R
0
−1,M) < z

∗
0 .

Since ϕ1(R
0,M) = z∗0 , ϕ1(R

0,M)P1ϕ1(R1, R
0
−1,M). Thus agent 1 manipulates ϕ at

(R1, R
0
−1,M) via R

0
1, contradicting strategy-proofness.

Case 2-4. ϕ1(R1, R
0
−1,M) ≤ x∗0.

Let R001 ∈ RR be such that p(R001) ≤ ϕ1(R1, R
0
−1,M). Corollary 1 tells us that

ϕ(R001, R
0
−1,M) = U(R001, R

0
−1,M). Since p(R

00
1) ≤ x∗0 and for all i ∈ N , z∗0 < p(R0i) <

(M − x∗0)/(n − 1), p(R001) +
P

i6=1 p(R
0
i) < M . By the definition of the uniform rule,

λ(R001, R
0
−1,M) ≤ z∗0 .Otherwise, since for all i ∈ N\{1}, z∗0 < λ(R001, R

0
−1,M) ≤ Ui(R001, R0−1,M),

it follows thatM <
P

i∈N Ui(R
00
1, R

0
−1,M) =M. It is a contradiction. Therefore, ϕ1(R

00
1, R

0
−1,M) =

M − (n − 1)p(R00) and for all i ∈ N\{1}, ϕi(R001, R0−1,M) = p(R0i). Thus, since p(R00) ∈
(z∗0, (M − x∗0)/(n − 1)), ϕ1(R001, R0−1,M) ∈ (x∗0, z

∗
0). Since p(R

00
1) ≤ ϕ1(R1, R

0
−1,M) <

ϕ1(R
00
1, R

0
−1,M), ϕ1(R1, R

0
−1,M)P

00
1 ϕ1(R

00
1, R

0
−1,M).Agent 1manipulates ϕ at (R

00
1, R

0
−1,M)

via R1, contradicting strategy-proofness.

Since we obtain contradictions in all cases, we know that RA ⊆ RCONV .
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Step 2. We further show that RA ⊆ RP . By contradiction, suppose that there
exists a preference R0 ∈ RA\RP . By Step 1, we know that R0 ∈ RCONV \RP . Suppose,
without loss of generality, that there exist two points x0, y0 ∈ R++ such that p(R0) <
x0 < y0, for all x00 ∈ [p(R0), x0), x00P0x0, and for all x00 ∈ [x0, y0], x00I0x0. Let M = nx0
and R = (R0, · · · , R0). If ϕ(R,M) 6= (x0, · · · , x0), there exist two agents j and k, such
that ϕj(R,M) < x0 < ϕk(R,M). Without loss of generality, let j = 1 and k = 2.
Since

P
i∈N p(Ri) < M, Lemma 7 guarantees that for all i ∈ N, p(R0) ≤ ϕi(R,M).

Since ϕ1(R,M) ∈ [p(R0), x0) and x0 < ϕ2(R,M), it follows that ϕ1(R,M)P1x0 and
x0R1ϕ2(R,M). By transitivity, ϕ1(R,M)P1ϕ2(R,M), contradicting symmetry. Therefore
ϕ(R,M) = (x0, · · · , x0).
Let ε > 0 be such that x0 − ε ∈ (p(R0), x0) and x0 + ε ∈ (x0, y0). Then we consider

the allocation (x0 − ε, x0 + ε, x0, · · · , x0). Since (x0 − ε)P1x0 and (x0 + ε)R2x0, (x0 −
ε, x0 + ε, x0, · · · , x0) Pareto dominates ϕ(R,M) = (x0, · · · , x0), contradicting efficiency.
Therefore, RA ⊆ RP .

To complete the proof of Theorem 2, we need to identify a rule satisfying strategy-
proofness, symmetry, and efficiency on the single-plateaued domain. Ching and Serizawa
(1998) extended the uniform rule to the single-plateaued domain, which satisfies the three
requirements. The extended uniform rule, represented by U = (U1, · · · , Un), is defined
as follows:

For all (R,M) ∈ Rn
P ×R++ and all i ∈ N ,

U i(R,M) =


min{p(Ri),λ(R,M)}

min{p(Ri) + λ(R,M), p(Ri)}
max{p(Ri),λ(R,M)}

if M ≤Pj∈N p(Rj)P
j∈N p(Rj) < M <

P
j∈N p(Rj)P

j∈N p(Rj) ≤M

where λ(R,M) solves
P

j∈N U j(R,M) =M.

4. CONCLUDING REMARKS

We established that the uniform rule is the unique strategy-proof, symmetric, and
efficient rule on a minimally rich domain. Weymark (1999) characterizes the uniform
rule when discontinuous single-peaked preference are admitted. He shows that even if
agents have discontinuous single-peaked preferences, the uniform rule is still the unique
rule satisfying strategy-proofness, anonymity, and efficiency. Minimally rich domains can
be generalized so as to contain discontinuous single-peaked preference. Therefore, there
is an open question: Does our characterization of the uniform rule still hold on such
generalized minimally rich domains?
We established that there is a unique maximal domain including a minimally rich

domain for strategy-proofness, symmetry, and efficiency, and it is the single-plateaued
domain. To identify the maximal domain, we defined a rule as a function of a preference
profile and the amount of the good,M . Thus, our result of the maximal domain does not
apply when M is fixed and a rule is a function of the preference profile only. Therefore,
our maximal domain result does not exclude the possibility that when M is fixed, there
exist rules satisfying strategy-proofness, symmetry, and efficiency on larger domain than
the single-plateaued domain. Massó and Neme (2001) obtain maximal domain for rules
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for which the amount M is fixed. However, they adopt the stronger version of symmetry,
and assume that domains include the single-peaked domain. Therefore, another open
question is: When the amount of the good is fixed, what domain is a maximal domain
including a minimally rich domain for strategy-proofness, symmetry, and efficiency?
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