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INDUSTRIAL CONCENTRATION, PRICE-COST

MARGINS, AND INNOVATION

1. Introduction

     This paper estimates the annual average rate of Hicks neutral technical change in 74 Japanese

manufacturing industries, 1961-1990, and relates these estimates to industrial concentration and

price-cost margins.  We do this by first estimating Cobb-Douglas production functions, under

the maintained assumption of constant returns to scale.  The residuals from these regressions

measure technical change, and the labor coefficients measure labor’s share in total cost for each

industry.  Price-cost margins are computed as the percentage by which value added minus total

cost exceeds value of shipments  (where total cost is the wage bill divided by the Cobb-Douglas

labor coefficient).  We find that the industries having great capital intensity, small employment

of  labor,  and with high price-cost margins tend to be more concentrated.  Cross-section

estimates reveal a U-shaped mapping from concentration to innovation.        

     The data are drawn on 4-digit s.i.c. industries,  from Japan’s Census of Manufacturers, for

which wholesale price indices could be closely matched.  These industries are defined as the sets

of establishments –not firms–  primarily producing like commodities.  The close matching of the

industries with corresponding wholesale price index categories  affords a real output measure that

is likely to be much more accurate than ones typically found in the empirical literature on

production functions.  That our data is observed at the industry level rather than the firm level

poses aggregation issues which we do address.  A strong point in the data set we examine is that,

unlike firm-based micro-data, it allows us to precisely observe cross-industry variation at a fairly

narrow (4-digit s.i.c.) level.  Individual firms tend to be much more diversified than their

constituent production establishments, and can often only be clearly assigned to industries at the

2-digit level.  Yet the theories relating industrial competitiveness or industrial concentration to

innovation seem much more applicable at the 4-digit level.  Our data also include annual time

series of Herfindahl index of industrial concentration, matched from yet another source, the Japan

Fair Trade Commission which is the antitrust enforcement agency of Japan.

     Because our panel data set matches establishment-based measures of factor inputs, wages,

revenues and value-added with product-market observations on prices and industrial

concentration, it affords a particularly clear look at the year-to-year co-movement in industrial
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concentration, pricing, and innovation for a wide set of manufactured goods, as well as

supporting cross-industry analysis of the same variables.  

2. Basic Framework

     We begin by addressing the aggregation issue.  We will only observe production data at the

industry level, so we need to make assumptions about how the aggregate variables we observe

are related to the firm-level variables we do not observe.  The maintained hypothesis underlying

our approach is constant returns to scale at the firm level.  

     Let us posit that each firm is constrained by a Cobb-Douglas production function with two

inputs: labor and capital.  Suppose further that the output elasticities of labor and capital are the

same for all firms in the same industry, though total factor productivity may vary from firm to

firm.  Suppose also that firms in the same industry face the same factor prices and thus employ

capital and labor in the same proportions to one another (We presume that all firms are equally

adjusted to the same factor prices).  Denote the production of firm f by

f f f f(1) y   =  a l k ,è (1-è)   

f f fwhere y =output, l  = labor, and k = capital.  Then, under our stated assumptions,  the industry-

level production function is

f f(2) Y =  Ó(z a ) L K   = AL K   ,è (1-è) è (1-è)

f f f f f fwhere Y=Óy , L=Ól , K=Ók , and z =k /K=l /L.  

f f     The industry-level technology parameter, Ó(z a )=A, reflects both the firm-level technologies

ia  and the allocation of factor inputs within the industry.  So, for example, a technological change

fat the industry level ÄA comprises not only technical change by firms Äa , but also any changes

in shares of the respective firms’employment of industry inputs that are induced through the

posited oligopolistic equilibrium.  The basic logic here is that of Zarembka (1968).

     A further serious issue in estimates of industry level production functions is identification.

Specifically, when shifts in the production function are anticipated by firms, then they can be
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expected to adjust their employment of labor and capital.  In this case the employment of labor

and capital is correlated with the statistical error term in econometric estimates of the production

function, and the estimated OLS coefficients are thus biased and inconsistent, as fully elucidated

by Griliches and Mairesse (1998). Valid instruments for labor and capital might be found,

particularly if one of these (capital) responds to productivity shocks with a lag.  Then lagged

values of capital become suitable instruments for contemporaneous employment of labor.  This

is the basic approach of the dynamic panel data literature (Olley and Pakes (1996), Blundell and

Bond (2000), and Ackerberg, Caves, and Fraser (2004)).    But that literature focuses on micro-

panel data, that is with many cross-sections but relatively few time periods.  Typically the unit

of analysis in such panel data is the firm, not, as here, the industry.  A different way forward is

needed.   Again the maintained assumption of constant returns to scale is helpful.  

     First note that for the Cobb-Douglas production function as in (2) above, we have that for

each  industry,

(3) Y  =   A L (K/L)   ,(1-è)

and the identification problem is simply that of estimating the coefficient on K/L. That is, if

businesses adjust their employment of both capital and labor equally in response to perceived

productivity shocks, then endogeneity bias is absent. Notice that the maintained assumption of

constant returns to scale is crucial to this.  But is it plausible that employment of capital and labor

would be equally flexible?  Labor is typically regarded as a variable input and capital as fixed in

the short run.  However in Japanese manufacturing industries, the well-documented practice of

lifetime employment should weaken this presumption.  It is reasonable to suppose that Japanese

manufacturers’employment of both labor and capital respond sluggishly to anticipated

productivity shocks, mitigating the problem of endogeneity bias.   

3. Econometric Model

     In the empirical literature on production functions, econometric specification is very much

dependent upon the nature of the available data.  Ours is a panel data set of calender year

observations 1961-1990, for 74 manufacturing industries, including observations of average

annual wholesale price index, Herfindahl index of production, and various establishment-based
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items including value added, value of shipments, employment, wages and book value of fixed

tangible assets.  All data were not available for all years so this represents an unbalanced panel

data set.  For a description of the data sources see Appendix 1.  One important aspect of these

data has already been noted: It is aggregated to the 4-digit s.i.c. level.   Another thing to note is

that we observe physical units of labor, number of employees, but only observe nominal units

of capital, namely, book value of tangible assets.  Accordingly, I will adopt a specification in

which the multiplicative factor for converting units of capital from nominal book value to

economically meaningful units of measurement is an estimable parameter. 

     We estimate an equation on the pooled annual time-series, cross-section of 74 industries at

the 4-digit s.i.c. level,  1961-1990.  The  regression equation is the following: 

 

it i i t i it i it it(4) ln Q  = A  +(1-è ) A  + è ln L  + (1-è )ln K  + v  ,        i=1..., n; t= 1,...,T.

or equivalently, 

it i i it i it it(5) ln Q  = A  + è ln L  + (1-è )ln e K  + v  ,                       i=1..., n; t= 1,...,T.At

itHere Q  represents value of shipments by industry i in year t divided by average monthly

itwholesale price index for the corresponding product during the same year.  The labor input is L ,

itdefined as the number of workers employed in the industry i in year t.  And K  is the book value

of the fixed tangible assets of the industry i at the beginning of year t.  

it     The error term v  is likely to exhibit  autocorrelation. Technological advance manifests itself

as positive autocorrelation, and in principle at least, perfect autocorrelation.  But few things in

life are perfect, and in any case there are additional forces at work.  For instance, if our dependent

variable shipments varies with the business cycle it would induce some negative autocorrelation,

abnormally high shipments in a boom year followed by abnormally low shipments the following

year.  We estimate these equations with adjustment for first-order autocorrelation, that is in

which for each industry i, the error term in equation (5) is presumed to follow the stochastic

process

it i i,t-1 it it i(6) v   =  ñ  v  +  u , and  u  - (0, ó ).2
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i t i i     We estimate the parameters A , A ,  è  and ñ  . This was accomplished by an iterative

application of two-way fixed effects and AR1 regression estimates using the SAS software.  See

tAppendix 2 for details.  Now the parameters A  , t=1,...,T, comprise both the deflator of the

itnominal book-value measure of capital K  and also include Hicks-neutral technological change

itthat is common to all of the industries.  That is, e K  represents the capital stock of industry iAt

in year t measured in efficiency units calibrated to the pan-industry state of technology.   Klette

(1999) uses the same technique of statistically estimating the deflator of book-value of capital

stock rather than constructing it from price indices and questionable assumptions about tax rates

and depreciation.

     Our estimates of the implicit capital deflator e * seem to embody substantial technologicalAt

improvement.  If there were merely inflation of nominal book value of capital stock, and no pan-

industry technological advance, our adjustment factor e * , calibrated so that 1990=1, shouldAt

decline as prices rise.  But in fact it rises.  By how much would inflation alone cause e  to fall?At

The deflator for non-residential investment used in Japan’s System of National Accounts (SNA)

affords one measure of inflation.  This is represented in Table 1, along with our estimates of e *.At

The fact that  e * tends to rise even as prices rise indicates that technological advance embodiedAt

in our implicitly constructed  “efficiency units” measure of capital outstrips inflation.  An

estimate of the efficiency unit per actual physical unit of capital in each year can be constructed

by multiplying  e * by the SNA investment deflator.  The sense of this is that e * = capital inAt At

efficiency units/ capital in nominal units;  SNA investment deflator = capital in nominal units/

capital in physical units; and so e * × SNA investment deflator = capital in efficiency units/At

capital in physical units.  The last column of Table 1, which is also plotted in Figure 1, depicts

this measure of efficiency unit per actual physical unit of capital in each year.  

     Because our measure of labor is the number of workers employed each year, which is a

physical unit of measurement, virtually all (pan-industry)  technological advance is reflected in

our “efficiency units” measure of capital.  Not only  improvements in machines and tools

themselves, but also improvements in the quality of labor, including advances in education or

enhancement of skills, will show up in our estimates as improvements in the efficiency of capital.

Thus the increase in efficiency unit per actual unit of capital embodies the entirety of pan-

industry technological advance.  This measure grows from 0.305 in 1961 to 1.0 in 1990, an

average annual exponential growth rate of 3.96 percent.  Given our estimated  average elasticity

of output with respect to capital of 0.43, this implies an overall average rate of Hicks neutral
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technological advance of about 1.7 percent (= 0.43× 3.96 percent).  This is a very plausible

estimate of technological advance in our set of industries, most of which are old-line, mature

manufacturing industries.  Since 1935, Japan’s average rate of increase in real GDP per capita,

one rough measure of technological advance, is around 3 percent. Flath (2005, at p. 89). 

     Estimates of  industry-specific parameters and related statistics are represented in Table 2.

These estimates include, for each industry, an estimate of the elasticity of output with respect to

i itlabor è *.  The residuals v * from these regressions represent estimates of the industry-specific

ttechnical change, that is deviations from the pan-industry technical change embodied in A *, in

effect Solow residuals.  These residuals are the difference between actual observation of

dependent variable and that predicted based on the structural equation.  Later in the paper I will

further describe the residuals from these regressions.  

it     The estimated coefficients on  lnL   vary from industry to industry in a way that comports with

common sense notions as to which industries are likely to employ more capital intensive

methods. So for example the most capital intensive industries are estimated to be:

iSynthetic Fibers  (1- è * = 0.69)

iMedicines (1- è * = 0.67)

iGlass Bulbs For Use In Cathode Ray Tubes (1- è * = 0.63)

iWrist Watches (1- è * = 0.63)

iPlastic-working Machines (1- è * = 0.58)

iPumps (1- è * = 0.58)

...and the least capital intensive are

iBriquettes (1- è * = 0.05)

iWeaving Machines (1- è * = 0.22)

iJute Yarn  (1- è * = 0.23)

iWorsted Yarn  (1- è * = 0.26)

iMiso  (1- è * = 0.26)

     Our specification presumes constant returns to scale, both at the unobserved level of

individual firms and at the level of the industry.  We make no presumption regarding the state

of competition in each industry.  But we are able to construct estimates of price-cost margins for

each industry in each year.  The basic logic here follows that of Hall (1988).  For each industry

0it 0it iti we directly observe nominal value-added Y  and wage payments W L  .  (Let the subscript

0it 0it“0" in “Y ” and W ” remind us that these are expressed in nominal units).  We presume that
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labor’s share of total cost in each industry equals our estimate of the output elasticity with respect

0itto labor.  Thus nominal total cost C , including both labor cost and capital cost, is estimated as

the wage bill divided by our estimate of the output elasticity with respect to labor

0it 0it it i(7) C * = (W L )/è *   .

0itAnd our estimate of the nominal profit ð   in each industry i in each year t is value-added minus

cost:

0it 0it 0it(8) ð   = Y   - C *.

itFrom these data we further construct industry-level price-cost margins m  as the ratio of profit

to value of shipments:

it 0it 0it(9) m   =  ð /Q  .

     These price-cost margins average 11.5 percent over all industries and years as shown in the

last column of Table 4.   A companion paper to this one (Flath , 2009), explores the temporal

relation between these price-cost margins and the annual time series of Herfindahl index of

concentration in each industry.  Under the simple homogenous product Cournot model, industry

price-cost margin is proportionate to Herfindahl, and the constant of proportionality is the

reciprocal of elasticity of demand facing the industry.  If, on the other hand, each industry

comprises a collection of price-setting and product differentiated firms –i.e is in a Bertrand

pricing equilibrium– then the industry price-cost margin is a weighted average of the reciprocal

demand elasticities facing each firm.  A non-nested test (Vuong test based on Vuong (1989))

comparing these two specifications for each of the 74 industries shows that product differentiated

Bertrand is a better characterization than homogeneous product Cournot for most of the

industries.  

     Our main focus here is on determinates of industrial concentration and of innovation, and

upon the relation between the two.  We first examine the extent to which our estimates of Cobb-

Douglas labor coefficients and industry price-cost margins adequately explain the observed

pattern of concentration. Then we consider whether  there is any association between industrial
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concentration and rate of innovation.  And finally, we ask, is there an inverted-U mapping from

price-cost margin to the rate of innovation as argued by Aghion et al. (2005).

4. Empirical Results

4.1 Determinates of industrial concentration 

     The data we have constructed enable a simple empirical analysis of inter-industry variation

in concentration.  It is quite reasonable to suppose that industries that employ more capital

intensive methods of production should be more concentrated ceteris paribus.  This is because

capital inputs are inherently lumpy and thus likely to be employed only by large firms.  But an

industry that employs capital intensely can nevertheless accommodate many firms if the scale of

demand facing the industry is large.  Further, a larger number of firms can profitably coexist in

industries that face less elastic demand, ceteris paribus, as argued by Sutton (1998).  On the other

hand, inelastic demand may well be associated with customer loyalty to incumbent firms, which

would tend to discourage entry and thus promote concentration.  I break no new ground here and

simply restate textbook propositions of industrial organization, common  to many specific

oligopoly theories, but the empirical content of these propositions remains an open question.  To

the extent incumbent firms have superior technology to that of potential entrants, there is no

necessary relation between any of these variables –capital intensity, scale of demand, elasticity

of demand– and industrial concentration.   A modest step toward addressing this issue is possible

here by estimating the following simple regression:

it 0 1 it 2 i 3 it it (12) H     =   â   +  â  m   +  â  è *   +  â  lnL   +  å  , 

it it iwhere H  is the Herfindahl index for industry i, in year t;  m   is the price-cost margin; è * is our

itestimate of the elasticity of output with respect to labor of industry i ;and lnL  is the natural log

of  employment of labor by industry i.  In other words,  the  Herfindahl index is a linear function

of price-cost margin, capital intensity, and industry scale.  We estimate the equation using a

pooled two-way random effects procedure.  That is we presume that the error term has a cross-

section component, time-series component, and pooled component :

it i t itå  = å  + å  + õ  ,
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and weight observations according to sample estimates of their corresponding conditional

variances.  This is an unbalanced panel data set.  Observations are weighted according to the

Wansbeek and Kapteyn (1989) modification of the Fuller and Battese (1974) procedure.   

     Table 3 has the random-effects estimates of equation (12).  Effectively, the time-series

component of variance is estimated to be zero.  The variables explain only about seven percent

of the variation in Herfindahl index.  Price-cost margin is statistically significant and has a

positive sign, which comports with the idea that high price-cost margin is associated with

customer loyalty to incumbent firms, which impedes entry and promotes concentration.  The

capital coefficient and industry scale are highly significant and have the expected signs.

Industries that use capital intensely tend to be more concentrated.  Industries that employ more

workers tend to be less concentrated.

4.2 Technical advance, concentration and price-cost margins

     We now turn attention to the interrelation between technical change and concentration.  There

are many theories with conflicting predictions as to whether industrial concentration promotes

innovation, or retards it, or indeed whether it has any significant effect at all.  For a recent

discussion of this literature consult Okada (2005). 

it     Our measures of technical advance are residuals v *  from Cobb-Douglas regressions of real

value of shipments on measures of labor and capital.  We now consider how is this measure of

technical advance related to industrial concentration and to price-cost margins.  This is primarily

a question about the variation in technical change across industry, so we need to construct

industry-level measures of technical advance. To do this, we calculate trend regressions:

it 0i 1i it(13) v *   =   ã  +  ã  t   +   å  , i=1,...,n.

1The slope coefficients ãj * from these regressions represent relative measures of average rate of

1itechnical advance for each industry.  That is, ã * represents the average annual exponential

growth rate in the Solow residual constructed from AR1 estimates of Cobb-Douglas production

functions.  These statistics are reported in Table 4, along with industry-by-industry averages for

itHerfindahl index and for the price-cost-margins m  we constructed from earlier estimates.
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Actually these represent deviations from the pan-industry rate of technical advance embodied in

our capital stock deflator. 

1i     We  regress this measure ã *  of average rate of technical advance on the mean and squared

mean of the Herfindahl index for each industry i:

i 0 1 i 2 i i (14) ã * =  â   +  â  &H   +  â  &H  + å ,   2

Further we regress the same measures of technical change on the mean and squared mean of the

price-cost margin for each industry:

1i 0 1 i 2 i i(15) ã * =  â   +  â  &m   +  â  &m    +  å  .2

The estimates of equations (14) and (15) are in Table 5.  The regression curve and plots of

observations for estimates of equation (14) are in the Figure 1.   These results amount to a nearly

flat, but U-shaped, pattern in which industries with either high concentration (H > 0.4)  or low

concentration (H <  0.2) exhibit substantially more innovation (around 0.5 percent per year faster

rate of change in Hicks neutral innovation) than those with moderate levels of concentration. 

The relation between price-cost margin and rate of innovation is similar but much weaker.  In

short, we do not find in these data the inverted U-shaped mapping from industry price-cost

margins to innovation touted by Aghion, et al (2005). 

5.Conclusion

     This paper has explored a panel data set matching establishment-based production statistics

from Japan’s Census of Manufacturers with wholesale price indices from the Bank of Japan, and

Herfindahl indices from the Japan Fair Trade Commission.  The data include annual observations

over the period 1961-1990 for 74 industries at the 4-digit s.i.c. level.  We estimated Cobb-

Douglas production functions and Solow residuals for each industry and then used these

estimates to further analyse the determinates of industrial concentration and innovation. 
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     We found that the industries in our sample tended to be more concentrated the more intensely

they employed capital and the smaller their overall scale.  There is also some indication that

industries that face less elastic demand tend to be more concentrated.  

     The industries that exhibited the highest rates of technical advance included both highly

concentrated ones (Glass Bulbs for CRTs, Wrist Watches, Jute Yarn) and more atomistic ones

(Cotton Yarn, Medicines, Valve Cocks).   We could discern no monotonic relation between

concentration and innovation nor between price-cost margins and innovation.  But there does

appear to be a U-shaped mapping from concentration to innovation in these data. 
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Appendix 1.  Data Sources

     I have constructed a panel data set by merging 1961-1990 calender year observations from

three different sources for the intersecting subset of 4-digit s.i.c. industries, of which there were

74.   

     From Japan’s Census of Manufacturers – Report by Industries, listed in the references under

the author MITI, we draw value-added, value of shipments, employment, wages, and book value

of fixed tangible assets.  The book value of tangible assets is observed for establishments

employing 10 or more. All other items are for establishments employing 4 or more.  The book

value of tangible assets is observed at the beginning of the calender year.  These data and

continuation of like data through 2002,  are available for downloading from the website of the

Ministry of Economy, Trade and Industry (METI) here: 

http://www.meti.go.jp/statistics/kougyou/arc/index.html

     From two published sources and a website we compile observations of Herfindahl index of

industrial concentration of production.  The two published sources are JFTC (1975) and Senou

(1983).  These data are collected by the Japan  Fair Trade Commission in fulfillment of its charge

under the antimonopoly law .  The two sources comprise overlapping time-series, respectively:

(1960-1972) and (1971-1980). The series are continued (1975-2002) in data posted on the

website of the Japan Fair Trade Commission from which I was able to extend my data through

1990:

http://www.jftc.go.jp/ruiseki/ruisekidate.htm,

The FTC observations on Herfindahl indices, both from the published sources and the web site,

represent the summation of squared shares of industry production for nearly 500 industries.

These data are,  in principle,  shares of physical units produced, not shares of revenues.   But

apparently for many of the industries a production index is used in lieu of physical units. 

     Finally we collect the monthly observations of wholesale price index series for each

commodity,  from the Bank of Japan for 1962-1990.  Monthly data from 1985 on are available

in electronic format from the website of the BOJ here:

http://www.boj.or.jp/en/type/stat/dlong/index.htm

Earlier data were drawn from the BOJ serial Price Indices Annual.  From these sources I

converted linked series to common 1980 base year units and calculated calender year averages

for each. 

http://www.meti.go.jp/statistics/kougyou/arc/index.html
http://www.meti.go.jp/statistics/kougyou/arc/index.html
http://www.jftc.go.jp/ruiseki/ruisekidate.htm
http://www.boj.or.jp/en/type/stat/dlong/index.htm
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     The three sets of data correspond to imperfectly matched industries.  I was able to identify an

overlapping subset of 74 industries with observations from all three sources (corresponding to

the 4-digit s.i.c.  level in the Census of Manufacturers).  This is a relatively small subset of any

of the three sources.  For example there are about 450 industries for which the JFTC reports

Herfindahl indices and more than a thousand commodities for which the BOJ tracks wholesale

price indices.  And Japan’s  Census of Manufacturers identifies around 700 of 4-digit s.i.c.

industries.  Other scholars have merged these same three sources in approximately the same way

as I have, and so I cross checked my list of matched industries with theirs.  The three are

Nishikawa (1973), Shinjou (1977), and Kusuda and Ike (1979).
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Appendix 2.  Iterative procedure for estimating implicit capital deflator.

t     We here detail the procedure used to estimate the implicit capital deflator A  of equation (5)

from the text: 

it i i it i it it(A1) ln Q  = A  + è ln L  + (1-è )ln e K  + v  ,                       i=1..., n; t= 1,...,T.At

  

This is accomplished by iterative application of SAS procedures “proc tscs” and “proc  autoreg”.

i t L KWe first estimate the parameters (A , A , è ,  è ) in a two-way fixed effects regression(1) (1) (1) (1)

equation on the pooled sample:

 

it i t L it K it it(A2) ln Q  = A  + B  + è  ln L  + è  ln K  + î  ,        i=1..., n; t= 1,...,T.(1) (1) (1) (1)

or equivalently, 

it i L it K it t K it(A3) ln Q  = A  + è  ln L  + è  ln[K  exp(B /è )] + î  ,     i=1..., n; t= 1,...,T.(1) (1) (1) (1) (1)

i i i    We next estimate, for each industry i, parameters (a , è , ñ ) in AR1 regression equations(1) (1) (1)

of the following sort,

    

it i i it i it t K it(A4) ln Q  =  a  + è  ln L  + (1-è )ln[K  exp(B /è )] + v  ,                   t =(1) (1) (1) (1)* (1)*

1,...,T.

it i i,t-1 it it i       v   =  ñ  v  +  u , and  u  - (0, ó ).(1) 2

where asterisks * denote estimates from a previous regression.  

it it     We continue the iteration, replacing lnL  and lnK  in equations (A2) and (A3) with 

i it(A5) è lnL  (1)*

and 

i it t K(A6) (1-è )ln[K  exp(B /è *)].  (1)* (1)* (1)
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i t L KThat is, we again estimate parameters (A , B , ë ,  ë )  of a two-way fixed effects(2) (2) (1) (1)

regression for the pooled sample:

 

it i t L i it K i it t K it(A7) ln Q  = A  + B  + ë  è *lnL  + ë (1-è )ln[K  exp(B /è )] + î  ,   (2) (2) (1) (1) (1) (1)* (1)* (1)*

i=1..., n;

t= 1,...,T.

or equivalently, 

it i L  i it K i it t K t K it(A8)    ln Q  = A  + ë è lnL  + ë (1-è *)ln[K  exp(B /è ) exp(B /ë )] + î  ,(2) (1) (1)* (1) (1) (1)* (1)* (2) (1)

i=1..., n;

t= 1,...,T.

i i i    And again we estimate, for each industry i, parameters (a , è , ñ ) of AR1 regression(2) (2) (2)

equations of the following sort:

    

it i i it i it t K t K it(A9) ln Q  =  a   + è ln L  + (1-è )ln[K  exp(B /è ) exp(B /ë )] + v  ,  (2) (2) (2) (1)* (1)* (2)* (1)*

t= 1,...,T.

it i i,t-1 it it iv   =  ñ  v  +  u , and  u  - (0, ó ).(2) 2

i it i it t K     We continue the iteration, replacing è lnL  and (1-è )ln[K  exp(B /è *)] in equation(1)* (1)* (1)* (1)

(A8) with 

i it(A10) è lnL  (2)*

and 

i it t K t K(A11) (1-è )ln[K  exp(B /è ) exp(B /ë )] ,(2)* (1)* (1)* (2)* (1)*

t tand so on.  We continue iterations until B 60.  The resulting final estimate of A  is(n)*

t t K t K t K(A12) A *  =    B /è   + B / ë  +... +  B / ë(1)* (1)* (2)* (1)* (n)* (n-1)*

Satisfactory convergence required three iterations.
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Table 1. Implicit deflator of capital stock and SNA deflator.

e *
At SNA 

Deflator

Implied

Efficiency Units

of Capital per

Actual Unit

1961 0.667 0.458 0.305

1962 0.225 0.464 0.104

1963 0.246 0.464 0.114

1964 0.3 0.468 0.140

1965 0.301 0.473 0.142

1966 0.333 0.484 0.161

1967 0.443 0.495 0.219

1968 0.504 0.501 0.252

1969 0.56 0.506 0.283

1970 0.625 0.519 0.324

1971 0.634 0.531 0.336

1972 0.657 0.548 0.360

1973 0.736 0.616 0.453

1974 0.595 0.762 0.453

1975 0.535 0.798 0.427

1976 0.62 0.830 0.514

1977 0.739 0.868 0.641

1978 0.789 0.888 0.701

1979 0.88 0.923 0.812

1980 0.948 0.977 0.926

1981 0.845 0.995 0.841

1982 0.796 1.003 0.798

1983 0.817 1.000 0.817

1984 0.835 1.002 0.837

1985 0.859 1.005 0.863

1986 0.811 0.994 0.806

1987 0.795 0.980 0.779

1988 0.890 0.973 0.866

1989 0.956 0.979 0.936

1990 1 1.000 1.000

Sources: 

t     A * = estimate of parameter in Equation (5) from the text: 

it i i it i it it(5) ln Q  = A  + è ln L  + (1-è )ln e K  + v  ,                       i=1..., n; t= 1,...,T.At

See appendix for details of estimation method. 

     SNA Deflator = non-residential fixed investment deflator from system of national accounts
Japan (1990 basis).  Cabinet Office, Government of Japan: 
http://www.esri.cao.go.jp/en/sna/qe011-68/gdemenue68.html

http://www.esri.cao.go.jp/en/sna/qe011-68/gdemenue68.html
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Table 2.  Cobb-Douglas Production Functions, AR1 Regression Estimates

it i i it i t it it it i, t-1 it itln Q  =  a  + è ln L  + (1-è )ln A *K  + v  ,  where v  = ñv + u  and u  -(0, ó )2

OLS Yule-

Walker 

Estimates

Estimates of

Autoregressive  

Parameters

Yule-Walker Estimates Test of Restriction

(Constant returns to scale)

INDUSTRY Durbin-

Watson

Durbin-

Watson
ñ S.E.

it Value è S.E. t Value R-Square Value S.E. t Value Pr > |t|

SYNTHETIC FIBERS 1.36 1.78 0.28 0.3 0.9 0.31 0.04 7.8 0.99 -0.95 0.64 -1.5 0.14

MEDICINES 0.3 1.49 0.8 0.12 6.9 0.33 0.03 9.7 1 0.07 0.04 1.9 0.06

GLASS BULBS FOR USE IN

CATHODE RAY TUBES

0.82 1.53 0.58 0.25 2.4 0.37 0.08 4.7 0.96 0.06 0.04 1.8 0.08

WRIST WATCHES 0.63 1.69 0.64 0.16 3.9 0.37 0.05 7.9 0.98 -0.04 0.02 -1.9 0.05

PLASTIC-WORKING

MACHINES

0.47 1.92 0.71 0.15 4.7 0.42 0.04 9.6 0.99 -0.01 0.04 -0.3 0.78

PUMPS 1.43 1.84 0.28 0.18 1.5 0.42 0.03 15.2 0.93 -2.02 0.63 -3.2 0.00

ALUMINUM INGOTS 0.9 1.68 0.39 0.18 2.1 0.44 0.04 11.9 0.97 0.11 0.07 1.5 0.13

SPEED CHANGERS 0.35 1.41 0.73 0.13 5.6 0.44 0.02 18.3 1 -0.14 0.09 -1.6 0.12

BEARINGS 0.62 1.36 0.42 0.17 2.4 0.45 0.03 17.1 0.98 0.02 0.04 0.5 0.62

CELLOPHANE 1.47 1.84 0.26 0.23 1.1 0.45 0.02 18.6 0.93 0.02 0.04 0.4 0.68

PIANOS 0.9 1.7 0.39 0.18 2.2 0.45 0.05 9.5 0.79 -0.21 0.08 -2.6 0.01

BOILERS 2.12 2.01 -0.07 0.19 -0.4 0.46 0.03 13.5 0.76 0.03 0.06 0.5 0.64

FISHMEAT SAUSAGE 1.57 1.91 0.21 0.3 0.7 0.47 0.06 7.8 0.9 -0.06 0.03 -2.0 0.05

SANITARY WARE 1.5 1.74 0.14 0.19 0.8 0.48 0.02 23.1 0.98 0.13 0.10 1.2 0.23

CHEMICAL SEASONING 1.63 1.63 0 0.24 0 0.49 0.02 21.5 0.96 0.09 0.12 0.8 0.47

SHEET GLASS 1.27 1.77 0.22 0.19 1.2 0.49 0.02 28.3 0.96 0.21 0.14 1.5 0.15

STORAGE BATTERIES 0.61 1.67 0.63 0.15 4.2 0.49 0.04 11.7 0.98 0.00 0.02 0.2 0.84

ORDINARY STEEL PIPES

AND TUBES

0.57 1.75 0.69 0.14 5 0.5 0.04 13.1 0.98 -0.16 0.05 -3.1 0.00

SYNTHETIC RUBBER 1.27 1.64 0.3 0.29 1 0.5 0.06 9.1 0.97 -0.19 0.05 -4.0 <.0001

RECTIFIERS 0.53 1.59 0.69 0.17 4 0.51 0.04 11.7 0.99 -0.21 0.06 -3.2 0.00



OLS Yule-

Walker 

Estimates

Estimates of

Autoregressive  

Parameters

Yule-Walker Estimates Test of Restriction

(Constant returns to scale)

INDUSTRY Durbin-

Watson

Durbin-

Watson
ñ S.E.

it Value è S.E. t Value R-Square Value S.E. t Value Pr > |t|
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THERMOS BOTTLES 1.5 1.77 0.15 0.21 0.7 0.51 0.05 10.3 0.85 0.10 0.10 1.0 0.34

TRACTORS 1.31 1.57 0.29 0.23 1.2 0.51 0.03 15.3 0.98 -0.05 0.02 -2.2 0.02

ELECTRICAL WIRES AND

CABLES

0.74 1.26 0.61 0.19 3.2 0.52 0.05 10.5 0.96 -0.17 0.09 -2.0 0.04

SPINNING MACHINES 1.59 1.92 0.19 0.24 0.8 0.52 0.03 17.4 0.93 -0.01 0.02 -0.3 0.75

ZINC 0.79 1.66 0.57 0.16 3.6 0.52 0.04 13.9 0.86 -0.10 0.07 -1.5 0.13

BICYCLES 1.15 1.73 0.33 0.18 1.8 0.53 0.01 38 0.99 0.02 0.02 1.6 0.12

COLD-ROLLED STEEL

PLATE

1 1.49 0.4 0.2 2.1 0.53 0.03 21 0.96 -0.06 0.08 -0.8 0.47

ELECTRICAL COPPER 0.39 1.56 0.77 0.12 6.3 0.53 0.04 12.2 0.91 -0.37 0.12 -3.2 0.00

HAM SAUSAGE 1.34 1.52 0.14 0.24 0.6 0.53 0.02 33.9 0.99 -0.04 0.04 -1.0 0.32

MIXED FEED 1.27 1.42 0.09 0.24 0.4 0.53 0.02 31.3 0.97 -0.09 0.04 -2.5 0.01

PAPER PULP 0.77 1.94 0.57 0.16 3.6 0.53 0.04 14.6 0.86 0.20 0.06 3.6 <.0001

RECORDS 1.6 1.99 0.18 0.24 0.8 0.53 0.05 11.4 0.96 0.05 0.02 2.3 0.02

TIRES AND TUBES FOR

MOTOR VEHICLES

0.69 1.63 0.65 0.15 4.5 0.53 0.03 17.4 0.98 -0.09 0.12 -0.8 0.48

VEGETABLE OIL 1.95 1.95 0 0.29 0 0.53 0.05 10.8 0.74 -0.12 0.10 -1.3 0.21

POWER TILLERS 1.35 1.76 0.22 0.24 1 0.54 0.02 28.8 0.98 0.00 0.01 0.2 0.83

EIGHTEEN LITER CANS 1.3 1.65 0.28 0.18 1.5 0.55 0.01 48.2 0.99 0.04 0.02 1.9 0.05

ROLLED AND WIRE-DRAWN

COPPER PRODUCTS

1.03 1.82 0.41 0.22 1.8 0.55 0.03 19.5 0.96 0.00 0.01 -0.1 0.96

ALUMINUM WINDOW

SASHES

1.34 1.78 0.25 0.19 1.3 0.56 0.01 38.4 0.99 0.04 0.03 1.3 0.19

COMBED FABRICS 0.59 1.47 0.61 0.19 3.1 0.56 0.04 14.5 0.8 -0.09 0.04 -2.5 0.01

COTTON FABRICS 0.91 1.77 0.47 0.17 2.8 0.56 0.02 24.8 0.38 0.01 0.01 0.9 0.38

CHARGING GENERATORS 0.88 2 0.55 0.16 3.4 0.57 0.04 14.5 0.99 -0.09 0.10 -0.8 0.42

COKE 0.31 1.74 0.75 0.13 5.9 0.58 0.05 10.8 0.98 0.06 0.03 2.1 0.04

CAST IRON PIPES AND

TUBES

1.12 1.7 0.38 0.22 1.7 0.59 0.04 16.6 0.95 -0.51 0.30 -1.7 0.08



OLS Yule-

Walker 

Estimates

Estimates of

Autoregressive  

Parameters

Yule-Walker Estimates Test of Restriction

(Constant returns to scale)

INDUSTRY Durbin-

Watson

Durbin-

Watson
ñ S.E.

it Value è S.E. t Value R-Square Value S.E. t Value Pr > |t|
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GRINDING STONES 0.93 1.98 0.53 0.16 3.2 0.59 0.03 17 0.93 0.09 0.05 1.6 0.11

BEER 1.34 1.92 0.33 0.18 1.8 0.6 0.01 45.8 0.98 0.05 0.02 2.1 0.03

GALVANIZED 1.48 1.99 0.25 0.19 1.3 0.6 0.02 25.7 0.89 -0.03 0.01 -1.9 0.06

COTTON YARN 0.56 1.99 0.64 0.15 4.3 0.61 0.04 13.9 . 0.00 0.03 0.0 0.97

GLASS CONTAINERS FOR

BEVERAGES

0.68 1.46 0.61 0.15 4 0.61 0.02 28.7 0.96 -0.47 0.12 -3.8 <.0001

PAINTS 0.64 1.62 0.63 0.15 4.2 0.61 0.02 38.1 0.99 -0.09 0.03 -2.7 0.00

VINYL CHLORIDE RESIN 1.68 1.73 0.03 0.3 0.1 0.61 0.04 14.3 0.91 0.22 0.19 1.1 0.27

CEMENT 0.55 1.32 0.61 0.15 4 0.62 0.02 32 0.95 0.08 0.04 2.3 0.02

CAUSTIC SODA 0.57 1.6 0.7 0.14 5.1 0.63 0.03 19.3 0.91 0.02 0.02 1.2 0.22

PETROLEUM PRODUCTS 0.3 1.61 0.72 0.13 5.4 0.63 0.04 16.2 0.98 0.07 0.05 1.4 0.15

PRINTING MACHINES 0.85 1.97 0.57 0.2 2.9 0.63 0.02 27 0.98 -0.10 0.06 -1.6 0.12

PRINTING INK 0.53 1.7 0.69 0.14 5 0.65 0.02 30.1 0.99 -0.17 0.08 -2.3 0.02

TILE 0.45 1.63 0.74 0.13 5.7 0.65 0.03 23.5 0.97 -0.03 0.01 -2.0 0.04

CANNED SEAFOOD 1.05 1.72 0.37 0.18 2.1 0.66 0.02 39.5 0.86 -0.01 0.02 -0.5 0.63

FISHING NETS 0.3 1.33 0.78 0.12 6.6 0.66 0.03 25 0.95 0.18 0.11 1.7 0.08

SUGAR 1.12 1.71 0.41 0.22 1.9 0.66 0.03 21.7 0.91 0.01 0.04 0.3 0.77

DISSOLVING PULP 0.77 1.36 0.52 0.21 2.5 0.67 0.03 20.7 0.93 -0.03 0.02 -1.8 0.07

FIREPROOF BROOKS 1.56 1.61 0.04 0.24 0.2 0.68 0.02 27.4 0.89 -0.07 0.04 -1.9 0.05

CALCIUM CARBIDE 0.68 1.13 0.56 0.2 2.8 0.69 0.04 17.6 0.91 -0.06 0.08 -0.8 0.48

MANMADE-GRAPHITE

ELECTRODES

1.97 1.96 -0.01 0.22 0 0.69 0.02 45.1 0.92 0.12 0.18 0.6 0.54

SAKE 1.2 1.88 0.33 0.18 1.8 0.69 0.02 29.6 0.78 -0.02 0.03 -0.6 0.56

VALVE COCKS 0.84 1.83 0.53 0.21 2.6 0.69 0.03 20.1 0.97 -0.06 0.03 -2.3 0.02

MEN'S SHOES 1.31 1.52 0.11 0.24 0.4 0.71 0.01 52.8 0.98 0.09 0.05 1.7 0.09

RAW SILK 0.87 1.58 0.42 0.22 1.9 0.71 0.02 34.1 0.52 0.01 0.03 0.5 0.61

SOY 0.48 1.61 0.68 0.14 4.9 0.71 0.02 47.3 0.89 0.03 0.03 1.3 0.22

WHEAT FLOUR 0.81 2.35 0.55 0.16 3.4 0.73 0.02 41.7 0.86 0.11 0.06 1.8 0.08



OLS Yule-

Walker 

Estimates

Estimates of

Autoregressive  

Parameters

Yule-Walker Estimates Test of Restriction

(Constant returns to scale)

INDUSTRY Durbin-

Watson

Durbin-

Watson
ñ S.E.

it Value è S.E. t Value R-Square Value S.E. t Value Pr > |t|
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MISO 0.81 2.01 0.56 0.16 3.5 0.74 0.01 63.1 0.97 -0.16 0.24 -0.7 0.52

WORSTED YARN 0.89 1.92 0.53 0.16 3.2 0.74 0.05 13.9 0.78 -0.05 0.02 -2.3 0.02

JUTE YARN 1.95 1.96 -0.21 0.28 -0.7 0.77 0.03 24.1 0.88 -0.27 0.14 -1.9 0.05

WEAVING MACHINES 2.01 1.91 -0.06 0.24 -0.2 0.78 0.06 12.9 0.14 -0.02 0.04 -0.5 0.67

BRIQUETTES 0.76 2.11 0.55 0.2 2.8 0.95 0.04 24.3 0.99 -0.33 0.17 -2.0 0.04

mean 1.02 1.72 0.42 0.19 2.6 0.57 0.03 22.1 0.91 -0.07 -0.4 0.26

s.d. 0.47 0.22 0.25 0.05 1.9 0.11 0.01 12.2 0.14 0.29 1.8 0.28
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Table 3. Regression analysis of  Herfindahl index ; two-way random effects.

it 0 1 it 2 i 3 it i t itH     =   â   +  â  m   +  â  è *   +  â  lnL   +  å  + å  + õ

Variable Estimate Standard

Error

t value Pr > |t|

Intercept 0.66 0.08 8.3 <.0001

iè * -0.41 0.12 -3.3 0.001

itlnL  -0.03 0.00 -8.7 <.0001

itm 0.11 0.02 5.9 <.0001

R-Square 0.068

Number of Cross Sections 74
Time Series Length 30

Variance Component for Cross Sections 0.014
Variance Component for Time Series 0.000
Variance Component for Error 0.002
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Table 4. Estimates of average rate of technical advance in each industry, 1961-1990.

Estimated OLS trend 

it 0i 1i itv *   =   ã  +  ã  t   +   å  , i=1,...,n

itwhere v *  is the estimated error term in the regression equations reported in Table 2 above.

i iThe table also reports average Herfindahl Index  &H  and average price-cost margin  &m  .

1iINDUSTRY n ã  *
i &H  i m&   

GLASS BULBS FOR USE IN CATHODE RAY TUBES 14 1.35% 0.460 1.2%

COTTON YARN 30 0.99% 0.034 3.2%

ELECTRICAL COPPER 30 0.91% 0.181 8.8%

CALCIUM CARBIDE 20 0.89% 0.252 10.0%

MEDICINES 28 0.87% 0.025 30.1%

WRIST WATCHES 30 0.75% 0.382 -13.9%

RECORDS 10 0.72% 0.101 25.6%

VALVE COCKS 10 0.72% 0.037 16.1%

RAW SILK 20 0.58% 0.030 5.2%

CAUSTIC SODA 30 0.57% 0.047 17.6%

JUTE YARN 10 0.53% 0.396 12.7%

PAPER PULP 30 0.52% 0.068 10.8%

COTTON FABRICS 30 0.40% 0.007 8.1%

GLASS CONTAINERS FOR BEVERAGES 24 0.40% 0.174 19.3%

FISHMEAT SAUSAGE 14 0.39% 0.144 6.3%

WEAVING MACHINES 20 0.38% 0.133 19.6%

ORDINARY STEEL PIPES AND TUBES 30 0.33% 0.128 10.7%

SOY 30 0.32% 0.074 23.2%

WORSTED YARN 30 0.29% 0.037 8.4%

ALUMINUM INGOTS 30 0.29% 0.353 -11.9%

PIANOS 28 0.28% 0.464 7.2%

TILE 24 0.25% 0.090 17.0%

GALVANIZED 30 0.24% 0.146 5.6%

CHEMICAL SEASONING 14 0.23% 0.352 9.3%

TRACTORS 20 0.21% 0.292 14.1%

CEMENT 30 0.19% 0.086 27.6%



1iINDUSTRY n ã  *
i &H  i m&   
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SHEET GLASS 30 0.17% 0.388 45.4%

PLASTIC-WORKING MACHINES 28 0.16% 0.110 -0.1%

SANITARY WARE 24 0.15% 0.442 7.9%

MANMADE-GRAPHITE ELECTRODES 28 0.13% 0.183 21.9%

CAST IRON PIPES AND TUBES 14 0.12% 0.383 26.8%

COMBED FABRICS 20 0.12% 0.012 12.7%

TIRES AND TUBES FOR MOTOR VEHICLES 30 0.12% 0.288 14.7%

BICYCLES 24 0.11% 0.062 10.9%

SUGAR 30 0.10% 0.065 7.9%

ALUMINUM WINDOW SASHES 24 0.09% 0.157 7.0%

BEER 30 0.08% 0.394 6.1%

MIXED FEED 20 0.08% 0.107 8.1%

SYNTHETIC FIBERS 20 0.08% 0.127 26.3%

EIGHTEEN LITER CANS 24 0.08% 0.041 16.0%

HAM SAUSAGE 20 0.07% 0.070 8.6%

MEN'S SHOES 10 0.04% 0.037 13.5%

POWER TILLERS 20 0.04% 0.148 15.2%

ROLLED AND WIRE-DRAWN COPPER PRODUCTS 20 0.03% 0.039 3.5%

STORAGE BATTERIES 30 0.03% 0.221 16.2%

FIREPROOF BROOKS 20 0.02% 0.050 9.2%

MISO 24 0.00% 0.017 26.9%

CANNED SEAFOOD 24 0.00% 0.060 9.0%

COLD-ROLLED STEEL PLATE 30 -0.04% 0.176 5.7%

CELLOPHANE 14 -0.05% 0.208 6.1%

SPINNING MACHINES 14 -0.07% 0.244 1.5%

VEGETABLE OIL 14 -0.08% 0.096 15.2%

BEARINGS 30 -0.09% 0.209 2.5%

PAINTS 24 -0.14% 0.057 20.5%

SAKE 30 -0.14% 0.005 20.0%

GRINDING STONES 28 -0.15% 0.069 14.2%

WHEAT FLOUR 30 -0.16% 0.147 14.5%

BRIQUETTES 14 -0.20% 0.080 15.0%

PRINTING INK 30 -0.21% 0.137 7.6%

CHARGING GENERATORS 20 -0.22% 0.322 2.8%
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THERMOS BOTTLES 20 -0.22% 0.250 15.0%

ZINC 24 -0.23% 0.180 5.3%

SYNTHETIC RUBBER 20 -0.23% 0.322 34.0%

VINYL CHLORIDE RESIN 14 -0.27% 0.059 8.0%

RECTIFIERS 14 -0.27% 0.111 3.7%

PUMPS 24 -0.31% 0.077 1.5%

PRINTING MACHINES 14 -0.32% 0.114 12.8%

SPEED CHANGERS 24 -0.33% 0.073 -3.1%

DISSOLVING PULP 20 -0.35% 0.299 8.6%

ELECTRICAL WIRES AND CABLES 20 -0.45% 0.077 6.3%

BOILERS 24 -0.47% 0.274 4.4%

FISHING NETS 24 -0.49% 0.050 10.0%

PETROLEUM PRODUCTS 30 -0.65% 0.065 8.6%

COKE 24 -0.87% 0.148 3.8%

mean 0.11% 0.159 11.5%

s.d. 0.40% 0.126 9.5%
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Table 5.  Regression analysis of average rate of technical advance

i1Dependent variable = ã *, trend rate of growth in technical advance from regression in Table 3.

Model
1

Model
2

Model 3 Model 4

Coeff. S.E. t
value

Prob>|t| Coeff. S.E. t
value

Prob>|t| Coeff. S.E. t
value

Prob>|t| Coeff. S.E. t
value

Prob>|t|

Intercept 0.001 0.001 1.3 0.186 0 0.001 1.6 0.108 0.001 0.001 0.7 0.471 0.003 0.001 2.5 0.015

i  m&  0.002 0.005 0.4 0.675 -0.006 0.009 -0.7 0.519

i  m&  0.028 0.027 1.0 0.3122

i &H 0.004 0.004 1.1 0.260 -0.029 0.013 -2.2 0.030

i &H  0.078 0.030 2.6 0.0112

error DF 72 71 72 71

R=Square 0.0024 0.016 0.017 0.102
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Figure 1. Implicit Deflator of Capital, Adjusted for Inflation and Not, 1990=1

Note: 
   e   = efficiency units of capital per nominal unit based on estimatesAt

e  × SNA investment deflator  = efficiency units of capital per physical unit At
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Figure 2.  Plot of regression estimate in Table 6, Model 4.


