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In this supplement, we provide the proofs that we have omitted in “Strategy-proofness and
Efficiency with Nonquasi-linear Preferences: A Characterization of Minimum Price Walrasian
Rule”. In Part I, we prove Fact 4.4 presented in Section 4. In Part II, we show Fact 4.5
introduced in the proof of Theorem 4.1 (Appendix, Subsection A.1).

Part I Proof of Fact 4.4.

The following theorem is useful to prove Fact 4.4.

Hall’s Theorem. Let N ≡ {1, . . . , n} and M ≡ {1, . . . , m}. For each i ∈ N , let Di ⊆ M .
Then, (i) there is a one to one mapping x̂ from N to M such that for each i ∈ N , x̂(i) ∈ Di

if and only if (ii) for each N ′ ⊆ N , #
⋃

i∈N ′ Di ≥ #N ′.

Fact 4.4 (Mishra and Talman, 2010). Let R ⊆ RE and R ∈ Rn. A price vector p is a
Walrasian equilibrium price for R if and only if no set of objects is overdemanded and no set
of objects is underdemanded at p for R.

Proof of Fact 4.4. First, we prove only if part of Fact 4.4. Then, we show if part.
Proof of “ONLY IF” part. Let p be a Walrasian equilibrium price for R. Then, there is
an allocation z = (xi, ti)i∈N satisfying conditions (WE-i) and (WE-ii) in Definition 4.1. Let
M ′ ⊆ M .

We show that M ′ is not overdemanded at p for R. Let N ′ ≡ {i ∈ N : D(Ri, p) ⊆ M ′}.
Since for each i ∈ N ′, xi ∈ D(Ri, p) ⊆ M ′, and each indivisible object is consumed at most
one agent, #N ′ = #{xi : i ∈ N ′}. Since {xi : i ∈ N ′} ⊆ M ′, #{xi : i ∈ N ′} ≤ #M ′. Thus,
#N ′ ≤ #M ′.

We show that M ′ is not underdemanded at p for R. Let N ′ ≡ {i ∈ N : D(Ri, p)∩M ′ 6= ∅}.
Suppose that for each x ∈ M ′, px > 0 and #N ′ < #M ′. Note that #N ′ < #M ′ implies that
there is x ∈ M ′ such that for all i ∈ N, xi 6= x. Then, condition (WE-ii) implies that px = 0.
This is a contradiction. Thus, #N ′ ≥ #M ′.
Proof of “IF” part. Assume that no set of objects is overdemanded and no set of objects
is underdemanded at p for R.
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Let Z∗ ≡ {z = (xi, ti)i∈N : ∀ i ∈ N, xi ∈ D(Ri, p) and ti = pxi}. First, we show
Z∗ 6= ∅. Suppose that there is N ′ ⊆ N such that for each i ∈ N ′, 0 /∈ D(Ri, p) and
#{⋃i∈N ′ D(Ri, p)} < #N ′. Then {⋃i∈N ′ D(Ri, p)} is overdemanded at p for R. Thus, for
each N ′ ⊆ N , if for each i ∈ N ′, 0 /∈ D(Ri, p), then #{∪i∈N ′D(Ri, p)} ≥ #N ′. Then, by
Hall’s Theorem, there is z̄ ∈ Z such that for each i ∈ N , if 0 /∈ D(Ri, p), then x̄i ∈ D(Ri, p)
and t̄i = px̄i . Thus, Z∗ 6= ∅.

By definition, for each z ∈ Z∗, (z, p) satisfies (WE-i). We show that there is z ∈ Z∗ such
that (z, p) satisfies (WE-ii). Let M+(p) ≡ {x ∈ M : px > 0}. Let

z ∈ arg max
z′∈Z∗

#{y ∈ M+(p) : ∃ i ∈ N s.t. x′i = y}, (1)

that is, z maximizes over Z∗ the number of objects in M+(p) that are assigned to some
agents. Then, by the definition of Z∗, (z, p) satisfies (WE-i).

Let M0 ≡ {y ∈ M+(p) : ∀ i ∈ N, xi 6= y}. Note that, if M0 = ∅, (z, p) also satisfies
(WE-ii). Thus, we show that M0 = ∅. By contradiction, suppose that M0 6= ∅.

Let N0 ≡ {i ∈ N : D(Ri, p) ∩ M0 6= ∅}. For each k = 1, 2, . . . , let Mk ≡ {y ∈ M :
∃ i ∈ Nk−1 s.t. xi = y} and Nk ≡ {i ∈ N : D(Ri, p) ∩Mk 6= ∅} \ {⋃k−1

k′=0 Nk′}. We claim by
induction that for each k ≥ 0, Mk ⊆ M+(p) and Nk 6= ∅.
Induction argument:

Step 1. By the definition of M0, M0 ⊆ M+(p). Since M0 is not underdemanded at p for R,
#N0 ≥ #M0. Thus, M0 6= ∅ implies that N0 6= ∅.
Step 2. Let K ≥ 1. As induction hypothesis, assume that for each k ≤ K− 1, Mk ⊆ M+(p)
and Nk 6= ∅.

First, we show that MK ⊆ M+(p). Suppose that there is x ∈ MK \M+(p). Then, x = 0
or px = 0. By the induction hypothesis, there is a sequence {x(s), i(s)}K

s=1 such that

x(1) = x, xi(1) = x(1),
x(2) ∈ D(Ri(1), p) ∩MK−1, xi(2) = x(2),
x(3) ∈ D(Ri(2), p) ∩MK−2, xi(3) = x(3),

...
...

x(K) ∈ D(Ri(K−1)
, p) ∩M1, xi(K) = x(K).

Let x(K + 1) ∈ D(Ri(K), p) ∩M0. For each s ∈ {1, 2, . . . , K}, let ẑi(s) ≡ (xi(s+1), p
xi(s+1)),

and for each j ∈ N \ {i(s)}K
s=1, let ẑj ≡ zj. Then, ẑ ∈ Z∗, and

#{y ∈ M+(p) : ∃ i ∈ N s.t. x̂i = y} = #{y ∈ M+(p) : ∃ i ∈ N s.t. xi = y}+ 1.

This is a contradiction to (1). Thus, MK ⊆ M+(p).
Next, we show that NK 6= ∅. By MK ⊆ M+(p) and the induction hypothesis,

⋃K
k=1 Mk ⊆

M+(p). Thus, since
⋃K

k=1 Mk is not underdemanded at p for R,

#
K⋃

k=0

Nk ≥ #
K⋃

k=0

Mk. (2)
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By the definitions of Mk and Nk, for each k, k′ ∈ {0, 1, . . . , K} with k 6= k′, Nk ∩ Nk′ = ∅,
which also implies that Mk ∩Mk′ = ∅. Thus,

#
K⋃

k=0

Nk =
K∑

k=0

#Nk, and #
K⋃

k=0

Mk =
K∑

k=0

#Mk.

Then, by (2),

K−1∑

k=0

#Nk + #NK =
K∑

k=0

#Nk ≥
K∑

k=0

#Mk =
K∑

k=1

#Mk + #M0. (3)

For each k ≥ 1, by Mk ⊆ M+(p), #Mk = #Nk−1. Thus,
∑K−1

k=0 #Nk =
∑K

k=1 #Mk.
Then, by (3),

#NK ≥ #M0.

Thus, by M0 6= ∅, #NK ≥ 1, and so NK 6= ∅.
Since M+(p) is finite, by the above induction argument, for large K, #

⋃K
k=0 Mk =∑K

k=0 #Mk > #M+(p). Since
⋃K

k=0 Mk ⊆ M+(p), this is a contradiction. ¤

Part II Proof of Fact 4.5.

Let R ⊆ RE.

Lemma A.1. Let i ∈ N and Ri ∈ R. Let p, q ∈ Rm
+ and x, y ∈ L be such that x ∈ D(Ri, p)

and (y, qy) Pi (x, px). Then, y ∈ M and qy < py.

Proof of Lemma A.1. Since (y, qy) Pi (x, px) and x ∈ D(Ri, p), we have (y, qy) Pi (x, px) Ri 0.
Thus, y ∈ M . Also, by x ∈ D(Ri, p), (y, qy) Pi (x, px) Ri (y, py). Thus, (y, qy) Pi (y, py) implies
that qy < py. ¤

Let R, R̂ ∈ Rn, and let (z, p) and (ẑ, p̂) be Walrasian equilibria associated with R and R̂,
respectively. Define

N1 ≡ {i ∈ N : ẑi Pi zi}, M2 ≡ {x ∈ M : px > p̂x},
X1 ≡ {x ∈ L : ∃ i ∈ N1 s.t. xi = x}, and X̂1 ≡ {x ∈ L : ∃ i ∈ N1 s.t. x̂i = x}.

Lemma A.2: Decomposition (Demange and Gale, 1985). Let R ∈ Rn and (z, p) be a
Walrasian equilibrium for R. Let R̂ ∈ Rn be the d-truncation of R such that for each i ∈ N ,
di ≤ −CVi(0; zi), and let (ẑ, p̂) be a Walrasian equilibrium for R̂. Then, X1 = X̂1 = M2,

Proof of Lemma A.2. First, we show that X̂1 ⊆ M2. Let x ∈ X̂1. Then, there is i ∈ N1

such that x̂i = x. By i ∈ N1, (x̂i, p̂
x̂i) Pi (xi, p

xi). Thus, by xi ∈ D(Ri, p), Lemma A.1 implies

that x̂i ∈ M and p̂x̂i < px̂i , and so x = x̂i ∈ M2. Thus, X̂1 ⊆ M2.
Next, we show that M2 ⊆ X1. Let x ∈ M2. Then, x ∈ M and 0 ≤ p̂x < px. Thus, by

(WE-ii), there is i ∈ N such that xi = x. Since di ≤ −CVi(0; zi), Lemma 4.2-(ii) implies that
(x̂i, p̂

x̂i) Pi (xi, p
xi). Thus, i ∈ N1, and so x = xi ∈ X1. Thus, M2 ⊆ X1.

Note that by the definition of X1 and X̂1, #X1 ≤ #N1 and #X̂1 ≤ #N1. Since
X̂1 ⊆ M2 ⊆ M , each agent in N1 receives a different object, and so #X̂1 = #N1 ≥ #X1.
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Since X̂1 ⊆ M2 ⊆ X1, #X̂1 ≤ #M2 ≤ #X1. Thus, #X̂1 = #M2 = #X1. By #X̂1 = #M2

and X̂1 ⊆ M2, X̂1 = M2. By #M2 = #X1 and M2 ⊆ X1, M2 = X1. ¤
Lemma A.3: Lattice Structure (Demange and Gale, 1985). Let R ∈ Rn and (z, p)
be a Walrasian equilibrium for R. Let R̂ be the d-truncation of R such that for each i ∈ N ,
di ≤ −CVi(0; zi), and let (ẑ, p̂) be a Walrasian equilibrium for R̂. Then,
(i) p(−) ≡ p ∧ p̂ is a Walrasian equilibrium price for R, and
(ii) p(+) ≡ p ∨ p̂ is a Walrasian equilibrium price for R̂.1

Proof of Lemma A.3. Let N1 ≡ {i ∈ N : ẑi Pi zi} and M2 ≡ {x ∈ M : px > p̂x}.
Proof of (i). Let z(−) be an allocation such that for each i ∈ N1, z

(−)
i ≡ ẑi, and for each

i ∈ N \N1, z
(−)
i ≡ zi. We show that (z(−), p(−)) is a Walrasian equilibrium for R.

Step 1. (z(−), p(−)) satisfies (WE-i).

Let i ∈ N and x ∈ L. In the following two cases, we show that (x
(−)
i , p(−)x

(−)
i ) Ri (x, p(−)x),

which implies x
(−)
i ∈ D(Ri, p

(−)).
Case 1. i ∈ N1.

Since x
(−)
i = x̂i, by Lemma A.2, x

(−)
i ∈ M2, and so x

(−)
i ∈ M and p̂x

(−)
i < px

(−)
i . Thus,

p(−)x
(−)
i = p̂x

(−)
i .

First, we assume that x ∈ M2. Then, by p(−)x = p̂x,

(x
(−)
i , p(−)x

(−)
i ) = ẑi R̂i (x, p̂x) = (x, p(−)x),

where the preference relation follows from x̂i ∈ D(R̂i, p̂). Since R̂i is the di-truncation of Ri,

x
(−)
i 6= 0, and x 6= 0, Remark 4.1 implies that (x

(−)
i , p(−)x

(−)
i ) Ri (x, p(−)x).

Next, we assume that x /∈ M2. Then, by p(−)x = px,

(x
(−)
i , p(−)x

(−)
i ) = ẑi Pi zi Ri (x, px) = (x, p(−)x).

where the strict preference relation follows from i ∈ N1, and the second preference relation
from xi ∈ D(Ri, p).
Case 2. i /∈ N1.

Since x
(−)
i = xi, by Lemma A.2, x

(−)
i /∈ M2. Thus, px

(−)
i ≤ p̂x

(−)
i or x

(−)
i = 0. First, we

assume that x ∈ M2. Then, p(−)x = p̂x. Note that i /∈ N1 implies (x
(−)
i , p(−)x

(−)
i ) = zi Ri ẑi.

Case 2-1. x̂i 6= 0.
By x̂i ∈ D(R̂i, p̂), ẑi R̂i (x, p̂x) = (x, p(−)x). Since R̂i is the di-truncation of Ri, x̂i 6= 0,

and x 6= 0, Remark 4.1 implies that ẑi Ri (x, p̂x). Thus,

(x
(−)
i , p(−)x

(−)
i ) = zi Ri ẑi Ri (x, p̂x) = (x, p(−)x).

Case 2-2. x̂i = 0.
Then, ẑi = 0. Since x̂i ∈ D(R̂i, p̂), ĈV i(x;0) ≤ p̂x. Thus, if CVi(x;0) ≤ ĈV i(x;0), then,

ẑi Ri (x, p̂x), which implies that,

(x
(−)
i , p(−)x

(−)
i ) = zi Ri ẑi Ri (x, p̂x) = (x, p(−)x).

Next, assume that CVi(x;0) > ĈV i(x;0). Then, since R̂i is the di-truncation of Ri,

di > 0, which implies that xi 6= 0.2 Then, by di ≤ −CVi(0; zi), CVi(x; zi) ≤ ĈV i(x;0) ≤ p̂x,
1Denote p ∧ p̂ ≡ (min{px, p̂x})x∈M and p ∨ p̂ ≡ (max{px, p̂x})x∈M .
2To see this, suppose that xi = 0. Then, di ≤ −CVi(0; zi) = 0, which contradicts di > 0.
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which implies that zi Ri (x, p̂x). Thus,

(x
(−)
i , p(−)x

(−)
i ) = zi Ri (x, p̂x) = (x, p(−)x).

Next, we assume that x /∈ M2. Then, p(−)x = px. Since x
(−)
i = xi ∈ D(Ri, p),

(x
(−)
i , p(−)x

(−)
i ) = zi Ri (x, px) = (x, p(−)x).

Step 2. (z(−), p(−)) satisfies (WE-ii).

Let x ∈ M be such that p(−)x > 0. We show that there is i ∈ N such that x
(−)
i = x. Since

p(−) = p ∧ p̂, p(−)x > 0 implies that px > 0 and p̂x > 0.
Case 1. x ∈ M2.

By Lemma A.2, there is i ∈ N1 such that x̂i = x. Since i ∈ N1, x
(−)
i = x̂i. Thus, x

(−)
i = x.

Case 2. x /∈ M2.
Since px > 0, there is i ∈ N such that xi = x. By Lemma A.2, i /∈ N1. This implies that

x
(−)
i = xi. Thus, x

(−)
i = x. ¤

Proof of (ii). Let z(+) be an allocation such that for each i ∈ N1, z
(+)
i ≡ zi, and for each

i ∈ N \N1, z
(+)
i ≡ ẑi. We show that (z(+), p(+)) is a Walrasian equilibrium for R̂.

Step 1. (z(+), p(+)) satisfies (WE-i).

Let i ∈ N and x ∈ L. In the following two cases, we show that (x
(+)
i , p(+)x

(+)
i ) R̂i (x, p(+)x),

which implies x
(+)
i ∈ D(R̂i, p

(+)).
Case 1. i ∈ N1.

Since x
(+)
i = xi, by Lemma A.2, x

(+)
i ∈ M2, and so x

(+)
i ∈ M and p̂x

(+)
i < px

(+)
i . Thus,

p(+)x
(+)
i = px

(+)
i . First, we assume that x ∈ M2. Since x

(+)
i = xi ∈ D(Ri, p) and p(+)x = px,

(x
(+)
i , p(+)x

(+)
i ) = zi Ri (x, px) = (x, p(+)x).

Since R̂i is the di-truncation of Ri, x
(+)
i 6= 0, and x 6= 0, Remark 4.1 implies that

(x
(+)
i , p(+)x

(+)
i ) R̂i (x, p(+)x).

Next, we assume that x /∈ M2. Then, px ≤ p̂x or x = 0.
Case 1-1. x 6= 0.

Since x
(+)
i = xi ∈ D(Ri, p) and p(+)x = p̂x ≥ px,

(x
(+)
i , p(+)x

(+)
i ) = zi Ri (x, px) Ri (x, p(+)x).

Since R̂i is the di-truncation of Ri and x
(+)
i 6= 0, (x

(+)
i , p(+)x

(+)
i ) R̂i (x, p(+)x).

Case 1-2. x = 0.
Since R̂i is the di-truncation of Ri and di ≤ −CVi(0; zi),

(x
(+)
i , p(+)x

(+)
i ) = zi R̂i 0 = (x, p(+)x).

Case 2. i /∈ N1.
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Since x
(+)
i = x̂i, by Lemma A.2, x

(+)
i /∈ M2. Thus, px

(+)
i ≤ p̂x

(+)
i or x

(+)
i = 0. If x

(+)
i = 0,

(x
(+)
i , p(+)x

(+)
i ) = 0 = ẑi R̂i (x, p̂x) R̂i (x, p(+)x),

where the first preference relation follows from x̂i ∈ D(R̂i, p̂), and the second from px(+)
=

max{px, p̂x}.
Thus, we assume that x

(+)
i 6= 0. Then,

(x
(+)
i , p(+)x

(+)
i ) = ẑi R̂i (x, p̂x) R̂i (x, p(+)x),

where the first equality follows from px
(+)
i ≤ p̂x

(+)
i = p(+)x

(+)
i , the first preference relation from

x̂i ∈ D(R̂i, p̂), and the second preference relation from p(+)x = max{px, p̂x}.
Step 2. (x

(+)
i , p(+)) satisfies (WE-ii).

Let x ∈ M be such that p(+)x > 0. We show that there is i ∈ N such that x
(+)
i = x. Since

p(+) = p ∨ p̂, p(+)x > 0 implies that px > 0 or p̂x > 0.
Case 1. x ∈ M2.

By Lemma A.2, there is i ∈ N1 such that xi = x. Since i ∈ N1, x
(+)
i = xi. Thus, x

(+)
i = x.

Case 2. x /∈ M2.
If p̂x = 0, then p̂x = 0 < px. Thus, x ∈ M2, which is a contradiction. Thus, p̂x > 0.

Then, there is i ∈ N such that x̂i = x. By Lemma A.2, i /∈ N1, which implies that x
(+)
i = x̂i.

Thus, x
(+)
i = x. ¤

The following is obtained as a corollary of Lemma A.3.

Corollary A.1. Let R ∈ Rn. Let p and p̂ be Walrasian equilibrium prices for R. Then,
p ∧ p̂ and p ∨ p̂ are also Walrasian equilibrium prices for R.

We now proceed to prove Fact 4.5.

Fact 4.5 (Roth and Sotomayor, 1990). Let R ∈ Rn and let R̂ be the d-truncation of R
such that for each i ∈ N, di ≥ 0. Then, pmin(R̂) ≤ pmin(R).

Proof of Fact 4.5. Let (ẑ, p̂) be a Walrasian equilibrium for R̂. Then, for each i ∈ N , since

ĈV i(0; ẑi) ≤ 0 and di ≥ 0, −di ≤ 0 ≤ −ĈV i(0; ẑi). Since R is the (−d)-truncation of R̂,
Lemma A.3 implies that p(−) ≡ p̂ ∧ pmin(R) is a Walrasian equilibrium price for R̂. Thus,
since pmin(R̂) ≤ p(−), pmin(R̂) ≤ pmin(R). ¤
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