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In this supplement, we provide the proofs that we have omitted in “Strategy-proofness and
Efficiency with Nonquasi-linear Preferences: A Characterization of Minimum Price Walrasian
Rule”. In Part I, we prove Fact 4.4 presented in Section 4. In Part II, we show Fact 4.5
introduced in the proof of Theorem 4.1 (Appendix, Subsection A.1).

Part I Proof of Fact 4.4.
The following theorem is useful to prove Fact 4.4.

Hall’s Theorem. Let N ={1,...,n} and M = {1,...,m}. For eachi € N, let D; C M.
Then, (i) there is a one to one mapping & from N to M such that for each i € N, (i) € D;
if and only if (i) for each N' C N, # ;e Di > #N'.

Fact 4.4 (Mishra and Talman, 2010). Let R C R and R € R"™. A price vector p is a
Walrasian equilibrium price for R if and only if no set of objects is overdemanded and no set
of objects is underdemanded at p for R.

Proof of Fact 4.4. First, we prove only if part of Fact 4.4. Then, we show if part.
Proof of “ONLY IF” part. Let p be a Walrasian equilibrium price for R. Then, there is
an allocation z = (z;,t;);en satisfying conditions (WE-i) and (WE-ii) in Definition 4.1. Let
M’ C M.

We show that M’ is not overdemanded at p for R. Let N’ = {i € N : D(R;,p) C M'}.
Since for each i € N', z; € D(R;,p) C M’, and each indivisible object is consumed at most
one agent, #N' = #{z; : i € N'}. Since {x; :i € N'} C M, #{z; : i € N'} < #M'. Thus,
AN < #M.

We show that M’ is not underdemanded at p for R. Let N' = {i € N : D(R;,p)N M’ # (}.
Suppose that for each x € M’, p* > 0 and #N' < #M’. Note that #N’ < #M' implies that
there is x € M’ such that for all i € N, x; # z. Then, condition (WE-ii) implies that p* = 0.
This is a contradiction. Thus, #N’' > #M’.

Proof of “IF” part. Assume that no set of objects is overdemanded and no set of objects
is underdemanded at p for R.



Let Z* = {2z = (x;,t;)ien : Vi € N,z; € D(R;,p) and t; = p™}. First, we show
Z* # (. Suppose that there is N’ C N such that for each i € N, 0 ¢ D(R;,p) and
#{Uien D(Ri,p)} < #N'. Then {{J,cn» D(Ri,p)} is overdemanded at p for R. Thus, for
each N’ C N, if for each i € N, 0 ¢ D(R;,p), then #{U;en'D(R;,p)} > #N’. Then, by
Hall’s Theorem, there is Z € Z such that for each i € N, if 0 ¢ D(R;,p), then z; € D(R;,p)
and ¢; = p¥. Thus, Z* # ().

By definition, for each z € Z*, (z,p) satisfies (WE-i). We show that there is z € Z* such
that (z,p) satisfies (WE-ii). Let M*(p) = {x € M : p® > 0}. Let

zEargmaZx#{yEMﬂp) :3di € N st 2 =y}, (1)
2'ez*

that is, z maximizes over Z* the number of objects in M*(p) that are assigned to some
agents. Then, by the definition of Z*, (z,p) satisfies (WE-i).

Let M° = {y € M™(p) : Vi € N, x; # y}. Note that, if M? = (), (z,p) also satisfies
(WE-ii). Thus, we show that M° = ). By contradiction, suppose that M?° # (.

Let N = {i € N : D(R;,p) N M° # (}. For each k = 1,2,..., let M* = {y € M :
3ie N*1st. a; =y} and N* = {i € N: D(R;,p) 0 M* # 03\ {UL_, N¥'}. We claim by
induction that for each k > 0, M* C M*(p) and N* #£ 0.

Induction argument:

Step 1. By the definition of M° M° C M*(p). Since M° is not underdemanded at p for R,
#NO > H#MO. Thus, M° # () implies that N £ (.
Step 2. Let K > 1. As induction hypothesis, assume that for each k < K —1, M* C M*(p)
and N* £ ().

First, we show that M% C M™*(p). Suppose that there is z € M* \ M*(p). Then, x = 0
or p® = 0. By the induction hypothesis, there is a sequence {z(s),i(s)}% , such that

z(K) € D(Ri_,),p) N M, k) = z(K).

Let z(K + 1) € D(Ryk),p) N M°. For each s € {1,2,..., K}, let 25 = (Ti(s11), P"iC+D),
and for each j € N\ {i(s)}£ ,, let 2; = 2;. Then, 2 € Z*, and

#{ye M (p):Jie N st. &=yt =#{ye M (p):Jie N st. z;=y}+ 1L

This is a contradiction to (1). Thus, MK C M*(p).
Next, we show that N5 # (. By MX C M*(p) and the induction hypothesis, i, M* C
M™(p). Thus, since Uszl MP is not underdemanded at p for R,

K K
# N =M (2)
k=0 k=0



By the definitions of M* and N*, for each k, k" € {0,1,..., K} with k # k', N* 0N N* =0,
which also implies that M* N M* = . Thus,

K K K K
#JN=D #NE and # M =D #ME
k=0 k=0 k=0 k=0

Then, by (2),
K-1 K K K
HNF 4 N =D NP =N HME = M HMO. (3)
k=0 k=0 k=0 k=1

For each k > 1, by M* C M*(p), #M* = #N*=1. Thus, kK:Bl H#NF = Zszl HMF
Then, by (3),
HNE > 400
Thus, by M° # 0, #N% > 1, and so N¥ #£ 0.
Since M™(p) is finite, by the above induction argument, for large K, #UkK:O MFE =
S #ME > #MH(p). Since i, M* € M*(p), this is a contradiction. O

Part IT  Proof of Fact 4.5.
Let R C RE.

Lemma A.1. Leti € N and R; € R. Let p,q € R} and x,y € L be such that x € D(R;,p)
and (y,q¥) P; (x,p*). Then, y € M and ¢¥ < pY.

Proof of Lemma A.1. Since (y,¢¥) P; (x,p*) and x € D(R;,p), we have (y,¢¥) P; (z,p") R; 0.
Thus, y € M. Also, by x € D(R;,p), (y,¢") Fi (z,p") Ri (y,p?). Thus, (y,¢") P; (y, p¥) implies
that ¢¥ < pY. O

Let R, R € R™, and let (z,p) and (Z,p) be Walrasian equilibria associated with R and R,
respectively. Define

={ic N:%4 Pz}, M>={x € M :p" > p"},
E{IGLZH@Ele.t.JIZ’:Z‘}, and X' ={z € L:3ie N st. & =z}

Lemma A.2: Decomposition (Demange and Gale, 1985). Let R € R™ and (z,p) be a
Walrasian equilibrium for R. Let R € R" be the d-truncation of R such that for eachi € N,
d; < —CVi(0; 2;), and let (2,p) be a Walrasian equilibrium for R. Then, X* = X' = M?,

Proof of Lemma A.2. First, we show that X! C M2. Let # € X'. Then, there is i € N*
such that &; = z. By i € N1, (&;,p%) B (z;,p*). Thus, by x; € D(R;,p), Lemma A.1 implies
that &, € M and p* < p%, and so x = &; € M2 Thus, X' C M2

Next, we show that M? C X!, Let x € M?. Then, v € M and 0 < p* < p®. Thus, by
(WE-ii), there is ¢ € N such that x; = x. Since d; < —C'V;(0; 2;), Lemma 4.2-(ii) implies that
(24, p%) P; (x4, p®). Thus, i € N, and so o = ; € X1t Thus, M? C X!

Note that by the definition of X! and X!, #X! < #N! and #Xl < #N'. Since
X! C M? C M, each agent in N receives a dlfferent object, and so #X! = #N! > #X1.



Since X1 C M2 C X!, #X1 < #M? < #X!. Thus, #X! = #M? = #X!. By #X! = #M?>
and X' C M2, X' = M2, By #M? = #X* and M2 C X!, M? = XL, O
Lemma A.3: Lattice Structure (Demange and Gale, 1985). Let R € R" and (z,p)
be a Walrasian equilibrium for R. Let R be the d-truncation of R such that for each i € N,
d; < —CVi(0; ), and let (2,p) be a Walrasian equilibrium for R. Then,

(i) p7) = p AP is a Walrasian equilibrium price for R, and

A

(ii) p) = pV p is a Walrasian equilibrium price for R.:
Proof of Lemma A.3. Let N'={i € N: % P, z} and M*>={z € M : p* > p"}.

Proof of (i). Let 2(7) be an allocation such that for each i € N, zl-(_) = %;, and for each
i€ N\ N, zl(*) = 2. We show that (2(7),p(7)) is a Walrasian equilibrium for R.

Step 1. (z(7),p\7)) satisfies (WE-i).

Let 1 € N and = € L. In the following two cases, we show that (xg_),p(*)“’ﬁ) R; (z,p)?),
which implies xl(_) € D(R;,p7)).
Case 1. i € N'. - -

Since ng) = Z;, by Lemma A.2, SL’Ei) € M?, and so 9(:2(7) € M and p* = < p® . Thus,

) g

p( ) k3 = p k3 .

First, we assume that © € M?. Then, by p(7)? = p*,
(@) = 5 R () = (2.p0%),

where the preference relation follows from z; € D(}?i, p). Since }?i, is the d;-truncation of R;,
aig_) # 0, and = # 0, Remark 4.1 implies that (:E(_),p(*)xgi)) R; (z,p)").

2

Next, we assume that o ¢ M?. Then, by p{=)* = p®,
(27, pO% ) = 5 P2 Ry (w,p%) = (2,p7%).

where the strict preference relation follows from i € N, and the second preference relation
from x; € D(R;, p).
Case 2. z?é N'. (

Since :1:'2-7) = x;, by Lemma A.2, ng) ¢ M?. Thus, p% < p% orx; ' = 0. First, we
assume that # € M2. Then, p{=)* = p*. Note that i ¢ N' implies (xg_),p(_)xz(f)) =z R; Z;.
Case 2-1. 7; # 0. R R

By #; € D(R;,p), 2 R; (x,p°) = (x,p{7)%). Since R; is the d;-truncation of R;, ; # 0,
and z # 0, Remark 4.1 implies that Z; R; (z,p"). Thus,
(o7, p5) = 2 R 24 B, 57) = (2,007,

Case 2-2. z; = 0. R - -
Then, z; = 0. Since z; € D(R;,p), CV;(x;0) < p*. Thus, if CV;(z;0) < CV;(x;0), then,
Z; R; (x,p"), which implies that,

— _ CE(_) A AL —)x
@, pm Y = 2 Ry 2 Ri (2, 7%) = (2, p)7).

Next, assume that C'V;(z;0) > 5‘\/2(3:, 0). Then, since R; is the dj-truncation of R;,
d; > 0, which implies that z; # 0.2 Then, by d; < —CV;(0; 2;), CVi(z; 2;) < CV;(x;0) < p°,

"Denote p A p = (min{p®, p”}zen and pV p = (max{p®, p"})zenm.
2To see this, suppose that #; = 0. Then, d; < —CV;(0; 2;) = 0, which contradicts d; > 0.
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which implies that z; R; (z, p*). Thus,

_ ) AT )T
(@, pO%7) = 2 R (2, %) = (2, pO).

Next, we assume that # ¢ M?2. Then, p{=)* = p*. Since xz(»_) =u1z; € D(R;,p),

(2, p7 ) = 2 Ry (,p7) = (,p07).
Step 2. (2(7),p\7)) satisfies (WE-ii).

Let z € M be such that p(-)* > 0. We show that there is i € N such that xl(-_) = x. Since
p=) =pAp, pi)* > 0 implies that p* > 0 and p* > 0.
Case 1. z € M*
By Lemma A.2, there is i € N! such that &; = 2. Since i € N, xz(»_) = 7;. Thus, xg_) =z.
Case 2. = ¢ M?.
( )Since p® > 0, there is i € N such that z; = x. By Lemma A.2, i ¢ N*'. This implies that

x;, ' = x;. Thus, xz(*) = . U

Proof of (ii). Let z(*) be an allocation such that for each i € N, zi(H = z;, and for each
i€ N\ N, zfr) = %, We show that (), p(t) is a Walrasian equilibrium for R.

Step 1. (2, p™)) satisfies (WE-i).

Let i € N and x € L. In the following two cases, we show that (:Z:Z(H,p(*)xzm) R; (z, pH)7),
which implies xEH e D(R;, p™)).
Case 1. i € N'.
Since xﬁﬂ = x;, by Lemma A.2, :L‘EJF) € M?, and so xEH € M and ]5“75 < p””gﬂ. Thus,
)z ()

i =p% . First, we assume that x € M?. Since e =g € D(R;,p) and p™)* = p,

i

+)
p

2P T z
<x§+)7p(+) [ ) = Z; R’L (x,p ) = ($7p(+) )

Since R; is the d;-truncation of R;, xgﬂ # 0, and = # 0, Remark 4.1 implies that

(x§+)7p(+)x§+)) R (z, pHo).

Next, we assume that z ¢ M?. Then, p* < p® or x = 0.
Case 1-1. z # 0.

Since x§+) = 2; € D(R;,p) and pH* = p* > p?,

2P T z

Since R; is the di-truncation of R; and 2\ # 0, (z!7, p®™=") R (2, pH7).
Case 1-2. © = 0.
Since R; is the d;-truncation of R; and d; < —CV;(0; z;),

) D T
(xz('+)ap(+) ‘ ) = Z R’LO = (xap(—H )

Case 2. i ¢ N'.



Since x§+) = 75, by Lemma A.2, x(+) ¢ M?. Thus, pr < p%  or x§+) =0. If xEH =0,

( A A
<x§+),p(+)z +)) =0= 2@ Rz ('r?ﬁz) Rz (map(Jr)x)a
where the first preference relation follows from z; € D(ﬁ’i, p), and the second from pr =
max{p®, p*}.
Thus, we assume that x§+) =% 0. Then,
(@ p07) = 5 By (w,57) B (,07),
where the first equality follows from p“’ciﬂ <p® w" = p(He 7" , the first preference relation from
#; € D(R;,p), and the second preference relation from p(* o = max{p”, p” }.

Step 2. (xg ) pD)Y satisfies (WE-ii).

Let 2 € M be such that p()® > 0. We show that there is i € N such that :L'EH = . Since
p™) =pvp, pi* > 0 implies that p® > 0 or p* > 0.
Case 1. z € M*.

By Lemma A.2, there is i € N! such that z; = x. Sincei € N, xl(-ﬂ = x;. Thus, xEH =x.
Case 2. z ¢ M>.

If p* = 0, then p® = 0 < p®. Thus, x € M?, which is a contradiction. Thus, p* > 0.
Then, there is i € N such that Z; = . By Lemma A.2, i ¢ N, which implies that x( ) = Zi.
Thus, m£+) = . O

The following is obtained as a corollary of Lemma A.3.

Corollary A.1. Let R € R™. Let p and p be Walrasian equilibrium prices for R. Then,
pAD and pV p are also Walrasian equilibrium prices for R.

We now proceed to prove Fact 4.5.
Fact 4.5 (Roth and Sotomayor, 1990). Let R € R™ and let R be the d-truncation of R
such that for each i € N, d; > 0. Then, puin(R) < pmin(R).
Proof of Fact 4.5. Let (2, p) be a Walrasian equilibrium for R. Then, for each i € N, since
CVi(0;%) < 0 and d; > 0, —di < 0 < —CV,(0;4). Since R is the (—d)-truncation of R,
Lemma A.3 implies that p( = P A pmin(R) is a Walrasian equilibrium price for R. Thus,
since pm1n<R) < p( )a pmln(R) S pmin(R)~ l
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