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Abstract

We consider the problem of probabilistically allocating a single
indivisible good among agents when monetary transfers are allowed.
We construct a new strategy-proof rule, called the second price trad-
ing rule, and show that it is second best efficient. Furthermore, we
give the second price trading rule three characterizations with (1)
strategy-proofness, “budget-balance”, equal treatment of equals, weak
decision-efficiency, and simple generatability, (2) strategy-proofness,
“equal rights lower bound”, equal treatment of equals, weak decision-
efficiency, and simple generatability, (3) strategy-proofness, “envy-
freeness, no-trade-no-transfer”, equal treatment of equals, weak decision-
efficiency, and simple generatability.

Keywords: Strategy-proofness, Probabilistic allocation problem, Second
price trading rule, Budget-balance, Second best efficiency
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1 Introduction

We study the probabilistic allocation problem of a single indivisible good
among agents when monetary compensations are possible. Each agent has
a preference expressed by quasi-linear utility function and maximizes his ex-
pected utility. A rule determines an assignment probability of the indivisible
good and a monetary transfer to each agent for each preference profile. We
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consider incentive-compatible rules that elicit the preference of each agent.
We especially focus on strategy-proof rule, where the truthful report of one’s
preference is always dominant strategy.

On the deterministic allocation problems, many researches have stud-
ied the class of the Groves rules, which is the only class of rules satisfy-
ing strategy-proofness and decision-efficiency [Holmstrom (1979)]. Decision-
efficiency requires that the good is assigned to an agent who has the high-
est value. Among them, the Vickery (1961) rule! is one of the most ana-
lyzed rules. It is well-known that the Vickery rule is the only deterministic
rule satisfying strategy-proofness, individual rationality, non-positive trans-
fer, and either decision-efficiency [Holmstrom (1979)], envy-freeness [Svens-
son (1983)], or equal treatment of equals® (anonymity)? [Ashlagi and Serizawa
(2012)]. Individual rationality requires that no one be worse off than the
initial state. Non-positive transfer requires that any agent’s transfer be non-
positive. Envy-freeness requires that no one prefer other agent’s assignment
to his own. Equal treatment of equals requires that the agents who have
the same preference be treated equally. Anonymity requires that a rule be
defined independently of the names of the agents.*

Although the Vickery rule has excellent features, it has also several draw-
backs. A well-known drawback is that the Vickery rule does not satisfy
budget-balance. Budget-balance requires that the total amount of monetary
transfers is always zero. This implies that monetary transfers flow out of
agents. This drawback is, however, not particular to the Vickery rule, because
all the Groves rules do not satisfy budget-balance [Green and Laffont (1977)].
Furthermore, even if we consider finitely restricted domains, there exists no
deterministic rule satisfying strategy-proofness, budget-balance, and® neither
decision-efficiency [Ohseto (2000)], envy-freeness [Ohseto (2000)], nor equal
treatment of equals [Kato et al. (2015)]. Hence, it is very difficult to achieve
budget-balance among deterministic rules.®

To improve welfares of agents but not achieving budget-balance, the Bai-

!Sometimes, this rule is called VCG [Vickery (1961), Clarke (1971), and Groves (1973)]
rule.

2Strictly speaking, the results on the deterministic model are valid with equal treatment
of equals in welfare or anonymity in welfare.

3See also Sakai (2013).

4 Anonymity implies equal treatment of equals.

®Ando et al. (2008) have constructed a rule satisfying strategy-proofness, budget-
balance, individual rationality, and weak symmetry on heavily restricted domain.

SFujinaka (2008) has designed an outstanding rule, which satisfies Bayesian incentive
compatibility, individual rationality, budget-balance, decision-efficiency, envy-freeness, and
anonymity, but does not strategy-proofness.



ley (1997) rule has been recently paid attention by many researchers.” The
Bailey rule is a redistribution rule of some payments of Vickery rule maintain-
ing strategy-proofness, decision-efficiency, and individual rationality [Porter
et al. (2004) and Cavallo (2006)]. The Bailey rule has excellent features
for efficiency and fairness. Not only there exists no Groves rule that Pareto-
dominates the Bailey rule [Guo et al. (2013)], but also the Bailey rule satisfies
anonymity and other condition of fairness [Porter et al. (2004)]. Although
the Bailey rule does not satisfy envy-freeness, this drawback is inevitable
among deterministic rules, because any rule satisfying strategy-proofness,
anonymity, envy-freeness, and individual rationality is dominated by some
strategy-proof rule [Sprumont (2013)].

Other drawback of the Vickery rule is that it does not satisfy equal rights
lower bound. Equal rights lower bound® requires that any agent’s assignment
be at least better than the equal assignment. This drawback is also not
particular to the Vickery rule, because there exists no deterministic rule
satisfying strategy-proofness and equal rights lower bound [Moulin (2010)].

Hence, in order to overcome these drawbacks, we need expand the research
scope from deterministic rules to probabilistic ones. Among probabilistic
rules, there exist many rules satisfying strategy-proofness, budget-balance,
equal rights lower bound, and envy-freeness. For example, the rule which al-
ways assigns the indivisible good with the equal probability and no monetary
transfer to each agent trivially satisfies these desirable properties. However,
by Holmstrém’s (1979) theorem, it is impossible to design a probabilistic rule
satisfying strategy-proofness and Pareto-efficiency. Thus, the first interesting
question we should answer is “what rule satisfying these desirable properties
is second best efficient?” After then, the second interesting question is “Is it
the only rule satisfying desirable properties?”

To answer the questions, we construct a new rule, called the second price
trading rule, which satisfies strategy-proofness, budget-balance, equal rights
lower bound, and envy-freeness. Then, we show that this rule is second best
efficient. Furthermore, we show that the second price trading rule is only
rule satisfying strategy-proofness, equal treatment of equals, weak decision-
efficiency, simple generatability, and either budget-balance or equal rights
lower bound. Weak decision-efficiency requires that almost all probability
be assigned the agent(s) who has the first highest value, and all probability
be assigned the agents who have at least the second highest value. Simple
generatability requires that the probability can be generated by a simple

"See Porter et al. (2004), Cavallo (2006), Atlamaz and Yengin (2008), Guo and Conitzer
(2009), Moulin (2009), Moulin (2010), and Clippel et al. (2014).
8This property is called unanimity lower bound by Moulin (2010).



device. We also show that the second price trading rule is only rule satisfying
strategy-proofness, equal treatment of equals, weak decision-efficiency, simple
generatability, envy-freeness, and no-trade-no-transfer. No-trade-no-transfer
requires that when all agents get the equal probability, their transfers are
Zero.

The rest of this paper is organized as follows: Section 2 sets up the model.
Section 3 introduces a new rule. Section 4 defines axioms. Section 5 states
results. Section 6 verifies independence of axioms. All proofs are provided
in Section 7.

2 Model

Let N ={1,2,...,n} be the set of agents, where we assume n > 3. We con-
sider an environment with a single indivisible good, hereafter called good, and
one divisible good called money. The good can be allocated probabilistically.

Each agent ¢ € N has a preference over bundles consisting of a probabil-
ity s; € [0,1] that he gets the good and a monetary transfer ¢; € R that he
receives. We assume that this preference is represented by a utility function
w;i(si,t;) = s;v; + t; for some v; € V. = R,. Since a preference is identi-
fied by v;, we regard v; and V' as the preference and the set of preferences,
respectively. We call a list v = (v;);en € V™ a preference profile.

The set of feasible allocations is

Z ={(si,t:)ien € ([0,1] xR)": > s;=1and » t; <0}.

1EN iEN

A rule is a function f : V" — Z. Given a rule f and a preference profile
v € V" we denote by fi(v) = (s;(v),t;(v)) € [0,1] x R agent 4’s assignment
under f(v). Forany v € V" and N’ C N, let vy € V#N and v_y: € V#N\Y
denote (v;);jen’ and (v;);¢nv, respectively.

3 New Rule

To define a new rule, we need some notation. For any v € V", let denote
vy and v(g) the first and the second highest value among v, respectively. In
formally, v(1) = max;en v; and v(z) = max;en fi+} v; Where ¢* € arg max;ey v;.
So, v(1) = v(2) may occur. For any v € V", define [1,] = {i € N : v; = vy)}
and [2,] = {i € N : v; = v9)}. Notice that [1,] = [2,] when v(1) = v(g).
Then, we introduce the new rule. It is just like a trading rule as follow.
Initially, all agents have the equal probability % They trade the probability



at the second price v). The agents in [1,] are buyers, and the others are
sellers, except the case #[1,] = 1 and #[2,] = 1, where the agent in [2,]
is neither buyer nor seller. Each seller sells the initial probability % Each
buyer buys equally the sold probability.

Definition The second price trading rule is defined as follows. For any
v e V" when #[1,] =1 and #[2,] = 1,

filv) = {(17 —frve) e L),

(0, Lv) otherwise,
and when #[1,] > 1

filv) = (g — (i — »ve) i€ (L],
Z (0, %U(z)) otherwise.

4 Axioms

We introduce some properties that the second price trading rule satisfies.
First, strategy-proofness says that it is a dominant strategy for any agent to
report his true preference.

Definition A rule f satisfies strategy-proofness (SP) if for any v € V",
any ¢ € N, and any v} € V, it holds that

si(v)v; + ti(v) > si(vl, v_)v; + (V5 v_y).

Second best efficiency says that the rule is in the Pareto frontier among
strategy-proof rules.

Definition A strategy-proof rule f is second best efficient if there does
not exist other strategy-proof rule f* such that for any v € V™ and any

1€ N,
s;(v)v; + 5 (v) > si(v)v; + ti(v),
and for some v € V™ and some j € N,

si(v)vj +t5(v) > sj(v)v; +t5(v).



Budget balance says that the transfers among agents are closed.

Definition A rule f satisfies budget balance (BB) if for any v € V" it
holds that

> ti(v) =0.

i€EN

Equal treatment of equals says that the agents who have the same pref-
erence get the same assignment.

Definition A rule f satisfies equal treatment of equals (ETE) if for
any v € V" and any 4,5 € N, if v; = v;, then it holds that

fi(w) = f;(v).

Equal rights lower bound says that the assignment is at least better than
the equal assignment (%, 0).

Definition A rule f satisfies equal rights lower bound (ERLB) if for
any v € V™ and any ¢ € N, it holds that

1
si(v)v; + t;(v) > —wv;.
n

Envy-freeness says that no agent prefers another agent’s assignment to
his own assignment.

Definition A rule f satisfies envy-freeness (EF) if for any v € V™ and
any 4, j € N, it holds that

si(v)vi + ti(v) = s;(v)vi +t5(v).

No-trade-no-transfer says that when all agents get the equal probability
%, their transfers are zero.

Definition A rule f satisfies no-trade-no-transfer (NTNT) if for any
veVmiffor any 1 € N,

1
si(v) = e
then for any ¢« € N, it holds that

Weak decision-efficiency says that almost all probability is assigned the
agent(s) whose valuation is the first highest, and all probability is assigned
the agents whose valuations are at least the second highest.

6



Definition A rule f satisfies weak decision-efficiency (wDE) if for any
v € V™ it holds that
> sil) =
oon
i€[1]

Z si(v) = 1.

1€[1]U[2]

and

Simple generatability says that the probability can be generated by a
simple device, like n balls.

Definition A rule f satisfies simple generatability (SG) if for any v €
V™ and any ¢ € N, there exist some non-negative integers m,m’ < n such
that

si(v) =

JE

5 Results

We state the results. All proofs are provided in the final section. The first
result says that the new rule satisfies our main axiom, strategy-proofness.

Theorem 1 The second price trading rule satisfies strategy-proofness.

The next result says that the new rule is in the frontier among strategy-
proof rules.

Theorem 2 The second price trading rule is second best efficient.

From the above result, we can say that the new rule is not bad. To say
that the new rule is good, we need to show that the new rule has a special
feature. The next three results say that the new rule is the only rule satisfying
good properties.

Theorem 3 A rule satisfies strategy-proofness, budget-balance, equal treat-
ment of equals, weak decision-efficiency, and simple generatability if and only
if it is the second price trading rule.

Theorem 4 A rule satisfies strategy-proofness, equal rights lower bound,
equal treatment of equals, weak decision-efficiency, and simple generatability
if and only if it is the second price trading rule.



Theorem 5 A rule satisfies strategy-proofness, envy-freeness, no-trade-no-
transfer, equal treatment of equals, weak decision-efficiency, and simple gen-
eratability if and only if it is the second price trading rule.

6 Independence of Axioms

We verify that none of the axioms in Theorems 3, 4, and 5 is redundant. We
exhibit rules that satisfy all but one of the axioms. Let n = 3.

Example 1 (not SP) Let f be as follows: for any v € V3 and any i € N,
when #[1,] = 3,

and when #[1,] < 3,

fi(v) = (o — (g — $ew) i€ L),
Z (©, %U(l)) otherwise.

This rule satisfies all but not strategy-proofness.

Example 2 (not ETE) Let f be as follows: for any v € V3, when v =
(0,0,0),
fi(v) = (1,0) and fo(v) = fs(v) = (0,0),

and when v # (0,0,0),
f(v) is determined by the second price trading rule.
This rule satisfies all but not equal treatment of equals.

Example 3 (not wDE) Let f be as follows: for any v € V3 and any i € N,

This rule satisfies all but not weak decision-efficiency.

Example 4 (not SG) Let f be as follows: for any v € V3 and any i € N,
when for some a > 0, v = («,0,0), v = (0,,0), or v = (0,0, ),

,0) i e [L,),
,0) otherwise,



and when the other cases,
f(v) is determined by the second price trading rule.
This rule satisfies all but not simple generatability.

Example 5 (not BB, not ERLB, not NTNT) Given a > 0. Let f be
as follows: for any v € V3 and any i € N,

s;(v) is determined by the second price trading rule,
and
ti(v) = —a+ his transfer determined by the second price trading rule.

This rule satisfies all but not budget-balance, not equal rights lower bound,
and not no-trade-no-transfer.

Example 6 (not BB, not ERLB, not EF) Given a > 0. Let f be as
follows: for any v € V3 and any i € N,

si(v) is determined by the second price trading rule,
and when #{j € N:v; =0} =2and i€ {j € N :v; =0},
ti(v) = —a + his transfer determined by the second price trading rule,
and when #{j € N:v; =0} =2and i ¢ {j € N :v; =0},
ti(v) = his transfer determined by the second price trading rule,
and when #{j € N:v; =0} =1landi€ {j € N:v; =0},
t;(v) = his transfer determined by the second price trading rule,
and when #{j € N:v; =0} =1andi ¢ {j € N:v; =0},
t;(v) = —a+ his transfer determined by the second price trading rule,
and when the other cases,
t;(v) = his transfer determined by the second price trading rule.

This rule satisfies all but not budget-balance, not equal rights lower bound,
and not envy-freeness.



7 Proofs

Throughout the all proofs, we use the following Lemma which have been
shown by Myerson (1981).

Lemma (Myerson, 1981) A rule f satisfies strategy-proofness if and only
if for any ¢ € N, any v;,v, € V such that v; < v}, and any v_; € V"1 it
holds that

si(vi, v_g) < 5i(vj,v-),

and that
ti(vi, v_;) = t;(0,v_;) — s3(vi, v_3)v; + / 5i(2i, v_;)dx;.
0

From this, we also have the following easily.” If a rule f satisfies strategy-
proofness, then for any ¢ € N, any v;,v; € V such that v; < v}, and any
v_; € V"1 it holds that

Vi
ti(v, v) = ti(vi, v_i) — si(vi, v_i)v; + si(vi, v_i)vi + / si(xi, v_;)dx;.
v;

7.1 Proof of Theorem 1

We show that the second price trading rule satisfies strategy-proofness. Let
f denote the second price trading rule. Let : € N. Let v € V". We divide
the argument into two cases.

Case 1. The number of agent whose valuation is the first highest in
N\ {i} is 1.
Let v;,,v;, € V denote the first and the second highest valuation in N\ {:},
respectively. Note that

if v; < gy,
if Vi < Vi < V4,

si(v) = )
if Vi = Uiy,

I3 |= O

I
—

if Vi < V.

3

Note also that
(3 »y Y—1) — n 12

9Subtract t;(v;,v_;) from t; (v}, v_;).

10



Then, it follows that

%Uiz lf U; S UZ‘2,
vi 0 if v, <v; <
ti((),U—i)—Si(Ui,U—i)UmL/ 8wy, v_)dr; = 11 L ' v
0 —(5 — E)Uil if V; = U4y,

_anZUil if Uiy < ;.
Thus, we have t;(v;, v_;) = t;(0,v_;) — s;(vy, v_;)v; + fovi si(x;,v_;)dx;. Then,
Myerson’s Lemma implies that f satisfies strategy-proofness.

Case 2. The number of agents whose valuations are the first highest in
N\ {i} is more than 1.
Let m denote the number of agents whose valuations are the first highest in

N\ {i}. Let v;; € V denote the first highest valuation in N \ {:}. Note that

0 if v; < Uy,
si(v) = m;+1 if v; = v,
1 if Uiy < V5.
Note also that 1

tl(O, ’U,Z') = —Uj-
n

Then, it follows that

1 .

v ~V4y it v; < vy,
_ 1 1 :

ti(O, U—i) - Si(UuU—i)Uz’ + / Si(ﬂfi,v—i)dﬂfi = —(m—+1 - ;)Uz'l if v; = vy,
0 _ .

—n—l’l)l'1 if Vi, < ;.

Thus, we have t;(v;, v_;) = t;(0,v_;) — s;(vy, v_;)v; + fovi si(x;, v_;)dx;. Then,
Myerson’s Lemma implies that f satisfies strategy-proofness.
(I

7.2 Proof of Theorem 2

We show that the second price trading rule is the second best efficient. Let
f denote the second price trading rule. Let f* be a strategy-proof rule as
follows: for any v € V", it holds that

s;(v)v; + 5 (v) > s;(v)v; + t;(v). (1)

Let v € V™. For simplicity of notation, we assume 1 € [1,] and 2 € [2,]. We
divide the argument into three cases.

11



Case 1: #[1,] =1 and #[2,] > 1.

Note that
f(0) = (1, —=2=Lwy) if i € [1,],
' (0, %Uz) otherwise.

We claim that sj(v) = 1. Suppose to the contrary that sj(v) < 1. Then,
from (1), we have

s1(v)vg + t1(v) > s1(v)va + t1(v).
For any i # 1, from (1), we also have
s;(v)vg + t7(v) > si(v)vy + ti(v).
By summing up these inequalities, it follows that
Vg > Vg,
which is a contradiction. So, we have
si(v) = 1.

This implies for any i # 1,
s;(v) =0.

So, for any ¢ € N, it holds that

Case 2: #[1,] =1 and #[2,] = 1.

Note that
(=L, —n=2y,) if i € [1,],
filv) =< (£,0) if i € [2,],
(0, L) otherwise,

By case 1, it holds that

. 1.
fZ*(U%U*?) = (07 ﬁv2>7

where 0, = v(3). Since f* satisfies SP, it follows that

1 ~ * ~ *
~by 2 s3(0)8a + t5(0). (2)

12



By combining the inequalities (1) and (2), we have

(s3(0) = ) (w2 = 02) > 0.

Since vy — U9 > 0, this implies that

We claim that s3(v) =
any ¢ € N, from (1), w

si(v)vy + t7(v) > si(v)vy + ti(v),

where the inequality is strict for agent 2. By summing up these inequalities,
it follows that
v > vy,

which is a contradiction. So, we have

s5(v) =

This implies that

We claim that si(v) = =%, Suppose to the contrary that sj(v) < “=*. Then,
from (1), we have

s1(v)vg + t1(v) > s1(v)vy + 1 (v).
For any i # 1, from (1), we also have
s;(v)vg + 17 (v) > 55(v)va + t;(v).
By summing up these inequalities, it follows that
Vg > Vg,

which is a contradiction. So, we have

. n—1
si(v) = o
This implies for any 7 # 1, 2,

si(v) = 0.

13



So, for any 7 € N, it holds that
ti(v) = t;(v).
Case 3: #[1,] > 1.

Note that
1 1 1 e
fi(v) = Gy — (g — w)vn) if7 € (L),
Z (0, %Ul) otherwise,

We claim that for any j ¢ [L,], sj(v) = 0. Suppose to the contrary that for

some h ¢ [1,], s} (v) > 0. Then, from (1), we have
sp(v)vy +t5(v) > sp(v)vy + th(v).
For any j ¢ [1,], from (1), we also have
si(v)vr + 5 (v) = sj(v)vr +t(v).

Note that

Z si(v)vy + Z ti(v) > | si(v)vy + Z ti(v).

i€[ly] i€[ly] i€[ly] i€[ly]

By summing up these inequalities, we have

dosivr + > ) > s+ Y ti(v),

ieN ieN ieN ieN
which implies v; > vy, a contradiction. So, for any j ¢ [1,], we have
si(v) = 0.

Then, for any j ¢ [1,], it follows that
ti(v) = t;(v).
These imply that for any i € [1,], it holds that
s (v)vi + 17 (v) = si(v)v; + 1:(v).

Thus, f is the second best efficient.

14



7.3 Proof of Theorem 3

In the following, for any partition (I,C,0O) of N where some set may be
empty, we use the notation v = (v}, ve,v)) in which for any i,j € I, any
ke C,and any h,h' € O, v; = v; > v, > v) = v}, where v} and v) are any
values in V.

Let f be a rule satistying SP, BB, ETE, wDE, and SG. We show that
for any v € V", f(v) coincides with the allocation determined by the second
price trading rule. To do so, we prove the following induction.

1. (A% For any (v},vc,vd) € V™ such that #C = 1 and #I = 1,
f(vi, ve,vd) coincides with the allocation determined by the second

price trading rule.
(B°) For any (v},v)) € V", f(v},v) also do.

2. Given any integer c such that 2 <c¢<n —2. If
(A) for any (vi,vo,vd) € V" such that #C < ¢ — 1 and #I = 1,
(v}, ve,vy) coincides with the allocation determined by the second
price trading rule, and
(B) for any (v},vc,vd) € V™ such that #C < ¢ — 2 and I # 0,
f(vi,ve,vy) also do, then
(A") for any (v}, ve,vd) € V™ such that #C = cand #1 = 1, f(v},vo, vd)
also do, and
(B') for any (v},vc,vd) € V™ such that #C = ¢ — 1 and T # 0,
(v} ve,vd) also do.

The First Part.
Before proving (A°) and (B°), we show preliminary results. Pick up any two
agents, say 1,2 € N, and set O = N \ {1,2}. Let v},v? € V be such that
v} > Y. By ETE and BB, we have for any i € N,

1
fi(“?)u{m}) = (570)

By wDE, SG, and ETFE, we have
Sl(UiJUgU{Q}) =1
By Myerson’s Lemma, it holds that

n—1,
v2-

t (01, 00u0;) = —
Then, by ETE and BB, it follows that for any i # 1,

1
fi(vh Ugu{2}> = (07 EU(2)>

15



So, f(vi,vd, {2}) coincides with the allocation determined by the second price
trading rule. By wDFE and ETE, we have
1 0 1 0 1
51(“{1,2}7”0) = 52(?1{1,2},7)0) 9

By wDE and SG, for any 9, € V such that v{ < 9 < v{, it follows that
So(v1, B, v)) is either 0 or L.
We claim that for any such vy, it holds that
1
15 .0
so(v1, D9, 08) = —.
(052, 1) =

Suppose to the contrary that for some 9, € V such that v? < 9, < vf, it
holds that
52(0%7 '&27 Ug) =0.

Then, by Myerson’s Lemma, there exists a € V such that 0, < a < v{, and
the following is satisfied: For any vj € V such that v) < v} < a, we have

82(1)%7 Ué? U?)) =0

and for any vy € V such that a < v} < v{, we have

1
1,7 .0y _ +
82(’01”0271) ) T
Furthermore, Myerson’s Lemma gives that
1 1
ta(vf1 9y, V5) 7 —(5 - E)U%-
By ETFE and BB, it holds that for any ¢ # 1,2,

1
ti(”%l,?}a U%) # EU%

By wDE and ETE, we have

33(”%1,2,3}, U(())\{g}) =

Wl

By wDE, for any 93 € V such that v) < 03 < vy, it follows that

33(“%1,2}7 U3, Ug\{g}) = 0.
Then, Myerson’s Lemma gives that

Ly

1
t3(“%1,2,3}>v%\{3}> # _(g - ﬁ)”l-

16



Repeating the same argument, we have
1 1
ta (v —(= =)y =0.
(vh) %~ — !

Since, by ETE and BB, it must be t,(v};) = 0, this is contradiction. Thus,

for any 9, € V such that v? < 9y < v}, it holds that
1 s .0 1
So(vy, U2, v5) = —.

Then, by Myerson’s Lemma, we have

,—(3+ 2)vt) if vy =0,

,0) if v} > vy > ).

folwh vp,08) = {< 3)

—~
S| NI

The (A°) Part.
Let (v}, ve,vy) € V™ be such that #C =1 and #1 = 1. We denote I = {i;}
and C = {iy}. From (3), we have f;,(v],vc,v)) = (£,0). Then, by wDF, we
have )
n p—
si, (v}, v0,vY) = :

1

Since? from (3)a fi1 (7}2’17’06’71}%) = (§a _(% - %)'Ulé) where @il = Uiy, by Myer'

son’s Lemma, we have

n—2
ti1(v}vv(17v?)) ==

Vig -
n

Then, by BB and ETE, for any h € O, it holds that

1
fh(v}v Ve, Ug) - (07 ﬁviz)'

Thus, (AY) is valid.

The (B°) Part.
Let v = (v},v) € V™. When #I = 0 or 1, we have already shown as the
preliminary results. So, consider the case of #1 > 1.

Let 7,5 € I. From (3), it follows that

1 1 1
fi(v‘%i,jﬁvgul\{i,j}) = (57 _(5 - _)Uil)'

Then, by BB and ETE, for any h € OU I \ {i,j}, it follows that

1

fh(”%i,j}? U?)ul\{z‘,j}) = (0, Ev,}),
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that is, f(vy, ;y,950n ) coincides with the allocation determined by the
second price trading rule. By the similar way, we can show that for any
kel\{ij}, f(v} Uik UOUI\{” ry) coincides with the allocation determined
by the second price trading rule. Repeating the same argument, we have
(BY). Thus, the first part is valid.

The Second Part.
Given any integer ¢ such that 2 < ¢ < n — 2. Before proving (A4’) and (B’),
we show preliminary results. Let (v}, ver, vd) € V™ be such that #C" = c—1
and #I = 1. For simplicity of notation, we denote I = {1}, and vy as the
highest valuation in C’. Pick up any agent h € O.

Note that by wDE, SG, and ETE, we have

0 if v) < vy < vy,
1 0 _ 1. 1
8h(Vn, U1, Vo, Vo ry) = {0 or & if vy < v, < vj,
1 e o1
3 it vy, = vy.

We claim that for any v, € V' such that vy < v < v%, we have

1

1 0 _
Sh(UmUI?UC’UUO\{h}) o

Suppose to the contrary that for some 9, € V such that vy, < o, < v}, it
holds that
N 0 _
Sh('Uh7 UI7 Ve, UO\{h}) = O
Then, by Myerson’s Lemma, there exists a € V such that 9, < a < v}, and
the following is satisfied: For any v}, € V such that v} < v} < a, we have

1 0
Sh(v;w Uy Ve, 'UO\{h}) =0
and for any v, € V such that a < v}, < v{, we have

1

/ 1 0 —
Sh(UmUI)UC’HUO\{h}) o

Since, by the induction hypothesis (A), f(vi,ver, vY) = (0, 2vy), Myerson’s

‘n
Lemma also gives that

1 1,

th(v}u{h}a Ve, Ug\{h}) # —(5 - E>U1'

Note that, by wDE, for any j € C', s;(v,Vor, o\ ny) = 0. Since, by
the induction hypothesis (B), for any j € ', fj(v}u{h}7vc/\{j}7Ugu{j}\{h}) =
(0, Lo1), by strategy-proofness, it holds that

1
t (U}U{h}v Ve, U?)\{h}) = EU%-
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By ETE and BB, it holds that for any i € O \ {h},

1
ti(ViLny Vers Vo gny) 7 ﬁ”f

Pick up any agent ' € O\ {h}. By wDE, SG, and ETE, we have

1
Sh/ (U}U{h,h’}a ver, U%\{h,h’}) = 3

By wDE, for any 0, € V such that v), < 95 < vf, it follows that

Sp! (f)h/, U}U{h}’ Ve, U?)\{h,h’}) =0.
Then, Myerson’s Lemma gives that

1 1,

th'(v}u{h,hf}w@, Ug\{h,h’}) + —(g - E>U1'

Repeating the same argument, we have for any ¢ € I U O,

1

s vhorte) = o)

and
1 1.,

. 1 / — U — .
tl('UIUO7,UC) 7é (TL — (C — 1) n)vl
By the induction hypothesis (B) and SP, for any k& € C’, it holds that

1
tr(viL0, ver) = HU%'

These, however, contradict BB. Thus, for any v, € V such that vy < v;, < v},
we have

1
Sh(vh7U}7UC”>U%\{h}) = n
Then, by Myerson’s Lemma, we have
(0, Lvy) if v) < vy, < vy
fh(vh,v},vcx,vg\{h}) =14 (+,0) if vy < vy < v} (4)

(3 =G =) v =op.

The (A") Part.
Let v = (v],vc,v)) € V™ be such that #C = ¢ and #I = 1. We denote
I = {i1}, and v;, as the highest valuation in C, that is, i € [2,]. We divide
the argument into two cases.

19



The case 1: #[2,] = 1.
From (4), we have f;,(v},ve,v3) = (£,0). Then, by wDF, we have

n—1

Sil(v}7U07U0) =

1

Since, from (4), fi, (0, vc,v)) = (3, —(3 — )vy,) where 0;, = v;,, by Myer-

son’s Lemma, we have

ti, (vr, v, vp) = —
Then, for any 7 # i1, i9, it holds that
si(v],ve,vy) = 0.
By the induction hypothesis (A), for any k& € C'\ {i2}, it follows that

1
fk(“%’ VC\{k}» v%u{k}) = (07 Eviz)'

So, by SP, for any k € C'\ {i2}, it holds that

1
tk(v},vo,v%) = ﬁviQ.

Then, by BB, for any h € O, it follows that

1
th(v},vo,vg) = Evb.

The case 2: #[2,] > 1.
From (4), for any i € [2,], we have f;(v},ve,v8) = (0, Lv;,). Then, by wDF,
we have
si, (v7, Ve, v8) = 1.

Since, by the induction hypothesis (B), fi, (9, vc, vd) = (#[21}“, —(#[21]“ —

L)v;,) where ;, = v;,, by Myerson’s Lemma, we have

n—1

ti1(v}71}07v%) == Vi -

n
Then, for any i ¢ [1,] U [2,], it holds that

si(v],ve,v9) = 0.
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By the induction hypothesis (A), for any k € C'\ [2,], it follows that

1
fewr, vovpy vougy) = (O, 5%).

So, by SP, for any k € C'\ [2,], it holds that

1
ti(v},vg,vg) = Evh.

Then, by BB and ETE, for any h € O, it also follows that

1
th(v},vc,voo) = EUZ-Q.

Thus, (A’) is valid.

The (B') Part.
Let v = (v},vo,vd) € V™ be such that #C = ¢ — 1 and [ # 0. If #I = 1,
then the induction hypothesis (A) implies the conclusion. So, consider the
case of #I > 1.

Let i,7 € I. Let i3 € C be such that his valuation v;, is the highest in C.
From (A’), it holds that

) 1
f] (Uju Ui17 Ve, U?\{i,j}’ UOO) - (0’ E,Ui2>

where 0; = v;,, and that for any v € V such that v} > v} > v;,,

1

sj(v;,vil,vc,v?\{i’j},vg) =

Since, by wDE and ETE, sj(v%i,j}, Ve, v?\{i7j}, v)) = %, by Myerson’s Lemma,
it follows that

)v;.

S|

1
tj(v{lz‘,j}aUC’aU(I)\{i,j}avg) = —(5 -
Then, for any k # 1, j, we have
Sk(u%i,j}a Ve, U?\{i,j}a U?)) =0.
Note that by the induction hypothesis (B), for any k € C, it follows that

1
fk(v‘%i»j}’ VO\{k}> U?\{i,j}a U%u{k}) - (O, Evz1>

So, by SP, for any k € C, we have

1
1 0 0 1
tk(V(i gy, VOs U\ figys Y0) = Vi
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Then, by BB and ETE, for any h € OU I\ {i,j}, it also follows that

1
th(”%i,j}a Ve, U?\{i,j}a Uoo) = Ev},

that is, f (U%Z j},vc,v?\ i j},vg) coincides with the allocation determined by
the second price trading rule. By the similar way, we can show that for
any k € I\ {i,j}, f(v {”k},vc,vl\{uk},vo) coincides with the allocation
determined by the second price trading rule. Repeating the same argument,
we have (B’). Thus, the second part is valid. Therefore, this theorem is
valid.

O

7.4 Proof of Theorem 4

Let f be a rule satisfying SP, FRLB, ETE, wDE, and SG. We show that
for any v € V", f(v) coincides with the allocation determined by the second
price trading rule. To do so, we prove the following induction.

1. (A% For any (v},vc,vd) € V™ such that #C = 1 and #I = 1,
f(vf,ve,vy) coincides with the allocation determined by the second

price trading rule.
(B°) For any (v},v)) € V", f(v},v)) also do.

2. Given any integer ¢ such that 2 < ¢ <n —2. If
(A) for any (v},ve,vd) € V™ such that #C < ¢ — 1 and #I = 1,
f(v},ve,vy) coincides with the allocation determined by the second
price trading rule, and
(B) for any (v},vc,vd) € V™ such that #C < ¢ — 2 and I # 0,
f (v}, ve,vy) also do, then
(A") for any (v}, ve, vo) € V" such that #C = cand #I = 1, f(v}, v, vd)
also do, and
(B') for any (v},vc,vd) € V™ such that #C = ¢ — 1 and I # 0,
f(vi,ve,vd) also do.

The First Part.
Before proving (A°) and (B°), we show preliminary results. Pick up any two
agents say 1,2 € N, and set O = N\ {1,2}. Let v},v € V be such that
v} >0 By ETE and ERLB, we have for any i € N,

Fi(obopia) = (=,0).

n
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By wDFE, SG, and ETFE, we have

s1(v1, Vougey) = 1.
By Myerson’s Lemma, it holds that

n—1,
v2-

t (07, 00u0;) = —

Then, by ETE, ERLB, and feasibility of transfer, it follows that for any 7 # 1,

1
fi(”%? Ugu{z}) = (0, ﬁvg>

So, f(vi,vd, {2}) coincides with the allocation determined by the second price
trading rules. By wDFE and ETE, we have

1
31(”%1,2}77}%) = 52(”%1,2}’1)00) 9

By wDE and SG, for any 0, € V such that v) < 0, < v{, it follows that
s2(vi, 02, v8) is either 0 or +.
We claim that for any such vy, it holds that

. 1
sg(v%,vg,vg) = _,

Suppose to the contrary that for some 9, € V such that v? < 0y < v}, it
holds that

so(v1, D9, v9) = 0.
Then, by SP, we have

1

to(vl, 09, 02) = =0,

2( 15 Y2 ) n 2
which contradicts ERLB. Thus, for any 0, € V such that v? < 0y < v, it
holds that 1

52(1)%7 6271)2)) - -

Then, by Myerson’s Lemma, we have

,—(3+ 2)vt) if vy =0,

,0) if v} > vy > ).

(5)

—
S|~ NI

fQ(ULU??Ug) = {

The (A") Part.
Let (v}, vc,vd) € V™ be such that #C = 1 and #1 = 1. We denote I = {i;}

23



and C' = {iy}. From (5), we have f;,(v],vc,vd) = (+,0). Then, by wDF, we

have
n—1

Siy (U}7U07Ug) =
Since, from (5), fi, (0, vc,v8) = (3, —(2 — L)v;,) where 0;, = v;,, by Myer-
son’s Lemma, we have

til (U}v Ve, Ug) = -
Then, for any h € O, it holds that
sn(vf,ve,vd) = 0.

By ETEFE and feasibility of transfer, for any h € O, it also holds that

1
1 0
th(”[a Ve, Uo) < ﬁvig'

We claim that ¢,(vf, ve, v3) = Lv;,. Suppose to the contrary that

1
1 0
th(vy,ve,v5) < —Viy.

By wDFE, SG, and ETFE, we have

sh(ﬁh,v},vc,v%\{h}) =0,
where 0, = v;,. Then, by SP, it holds that

1
N 0 1 0
th(On, vr, V0, Vo\ny) = th(vr, Vo, V) < i)

which contradicts FRLB. So, for any h € O, it holds that

1
th(v},vc,voo) = EviT

Thus, (AY) is valid.

The (B°) Part.
Let v = (v},v}) € V. When #I = 0 or 1, we have already shown as the
preliminary results. So, consider the case of #1 > 1.

Let i,j € I. From (5), it follows that

1 1 1
fi@%i,j}avgul\{m}) = (5, _(5 - _)Uil)'
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For any h # i, 7, it holds that

Sh(v%i,jb U%u[\{i,j}) = 0.
By ETE and feasibility of transfer, for any h # 4, j, it also follows that
P 0 < 15
h(”{i,j}a UOUI\{i,j}) > nvi‘
We claim that th(v%i’j}, U%U]\{M}) = Ly}, Suppose to the contrary that

1
ta(V(i1 Youngigy) < 5”3 :

By wDE, for any 0, € V such that v) < o), < v}, it follows that

sn (Va1 On Voun (o iny) = 0-

By ETE, we have
1

1 0
Sh (U{i,j,h}v UOUI\{i,j,h}) 3
Then, Myerson’s Lemma implies that

1 1 1
th(“{li,j,h}aU%ul\{z‘,j,h}) = th(“%i,j}vvgul\{i,j}) - gvzl < _(g — =)oy

which contradicts FRLB. Thus, for any h # i, 7, it holds that

1
th(”%i,j}? UOOUI\{i,j}) = Evil,

that is, f(vf; y,voun ;) coincides with the allocation determined by the
second price trading rule. By the similar way, we can show that for any
kel\{ij}, f(v‘}l.’j’k}, UOO‘UI\{%,C}) Coincid(?s with the allocation determined
by the second price trading rule. Repeating the same argument, we have

(BY). Thus, the first part is valid.
The Second Part.

Given any integer ¢ such that 2 < ¢ < n — 2. Before proving (A’) and (B'),
we show preliminary results. Let (v}, ver, vd) € V™ be such that #C" = c—1
and #1 = 1. For simplicity of notation, we denote I = {1}, and v, as the

highest valuation in C”. Pick up any agent h € O.
Note that by wDFE, SG, and ETFE, we have

if vf, < vy < vg,

1 0 _ 1 1
$1(Vns V1, V07, Vo (ny) = or ~ if vy < vy <0y,

o= O O

if vy, = v,
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We claim that for any v, € V' such that vy < v < v%, we have

1

1 0 —
Sh(UmUpUC'an\{h}) o

Suppose to the contrary that for some 9, € V such that v < 0, < vf, it
holds that

su(0n, v}, ver, vg\{h}) =0.
Since, by the induction hypothesis (A), fi(vi,ver, vy) = (0, %1)2), by SP, we

have
1

th({)ha U}a Ve, U?)\{h}) = EU%
which contradicts ERLB. So, for any v, € V such that vy < v, < v{, we have

1
1 0
Sh(UmU[aUC”aUO\{h}) =

Then, by Myerson’s Lemma, we have

(0, tvy) if v) <wp <y
fh(vh,v},vcl,vg\{h}) = (%,O) if vy < vy, < v} (6)
G-G-Del) it =l
The (A") Part.
Let v = (v},vc,vY) € V™ be such that #C = ¢ and #I = 1. We denote
I = {i1}, and v;, as the highest valuation in C, that is, is € [2,]. We divide
the argument into two cases.
The case 1: #[2,] = 1.
From (6), we have f;,(v},ve,v3) = (£,0). Then, by wDF, we have

n—1

Sil(v}7U07Ug) - n

Since, from (6), fi, (0, vc,v)) = (3, —(3 — )vy,) where 0;, = v;,, by Myer-

son’s Lemma, we have

ti, (v, v0,0d) = —
Then, for any 7 # iy, 9, it holds that
si(v],ve,vy) = 0.
By the induction hypothesis (A), for any k € C'\ {is}, it follows that

fk(v}v VC\{k}s U%u{k}) = (O, E’UQ).
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So, by SP, for any k € C'\ {iz}, it holds that

1
te(vr,v0,03) = iy

We claim that for any h € O, it holds that

1
th(v},vc,vg) = ﬁviQ.

Suppose to the contrary that for some h € O, it holds that

1
th(v},vo,vg) -+ Evb.

If t,(v],ve,vY) > Lv,, then, by ETE, it violates the feasibility of transfer.
So, consider the case of t,(v}, ve,v)) < Zv;,. By wDE, SG, and ETE, we
have

Sh(ﬁhv U}a Ve, Ug\{h}) - 07
where 0y, = v;,. Then, by SP, it holds that

1
~ 1 0 1 0
th(vh7vl7UC’7UO\{h}) = tn(vy,ve, vp) < Eviw

which contradicts ERLB. So, for any h € O, it holds that

1
th(v},vc,vg) = Evh.

The case 2: #[2,] > 1.
From (6), for any i € [2,], we have f;(v}, v, vg) = (0, £v,). Then, by wDF,
we have
si, (v7,ve,v0) = 1.

Since, by the induction hypothesis (B), fi, (4, vc, vd) = (#[21}“, —(#[211)]+1 —
L)v;,) where 9;, = v;,, by Myerson’s Lemma, we have
n—1
til(v}7UC’7U8) == n Vi -

Then, for any i ¢ [1,] U [2,], it holds that
si(v],ve,vy) = 0.
By the induction hypothesis (A), for any k € C'\ [2,], it follows that
fr(vr, ven iy Youg) = (0, Vi)
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So, by SP, for any k € C'\ [2,], it holds that

1
tk(v},vc,v%) = Evig.

We claim that for any A € O, it holds that

1
th(v},vc,vg) = Evh.

Suppose to the contrary that for some h € O, it holds that

1
th(v},vc,vg) + ﬁviz'

If t,(v],ve,vY) > Luy,, then, by ETE, it violates the feasibility of transfer.
So, consider the case of t,(v}, ve,v)) < Zv;,. By wDE, SG, and ETE, we
have

Sh(ﬁhv U}a Ve, Ug\{h}) - 07
where 05, = v;,. Then, by SP, it holds that

1
N 0 1 0
th(On, v1, Vo, Vo ny) = th(vr, Vo, V) < Vi,

which contradicts ERLB. So, for any h € O, it holds that

1
th(v}, ve,vd) = Vi

Thus, (A’) is valid.

The (B') Part.
Let v = (v},ve,vd) € V™ be such that #C =c— 1 and I # (. If #I =1,
then the induction hypothesis (A) implies the conclusion. So, consider the
case of #I > 1.

Let i,7 € I. Let i3 € C' be such that his valuation v;, is the highest in C.
From (A’), it holds that

) 1
fj (Uja 'Uila Ve, U?\{@j}’ U%) - (O’ ;,Uzé)

where 0; = vj,, and that for any v € V such that v} > v} > v,

1
roa1 0 0y _
Sj(vj7vi’UC’UI\{i,j}7vO) - E

Since, by wDE and ETE, Sj(l)%i,j}, Ve, v?\{i7j}, v)) =
it follows that

, by Myerson’s Lemma,

N |

)v;.

S|

1
tj(”%z’,j}aUCaU?\{i,j}’U%) = _(5 -
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Then, for any k # 1, j, we have

Sk(vb,j}a Ve, U(I)\{i,j}> Uoo) = 0.
Note that by the induction hypothesis (B), for any k € C, it follows that
1
Je(Vii 3 vengrys VA gy Youmy) = (0, Evzl)‘
So, by SP, for any k € C, we have
1
tk(”«%i,jpvcav?\{i,j}a U%) = Evzl
We claim that for any A € O, it holds that
1
t (Vi gy 00y VI\(i g3 VO) = ;-
Suppose to the contrary that for some h € O, it holds that
1
th(”%i,j}? Ve, U?\{i,j}a U?)) # ﬁvzl
If th(v%i’j},vc,v?\{i’j},v%) > 2o}, then, by ETE, it violates the feasibility of
transfer. So, consider the case of th(v{li’j},vg,v?\{iyj},vg) < tv}. By wDE
and ETE, we have

1
Sh(V4igy 00 VR iy VOV = 3

Since, by wDE, for any v, € V such that v} > v} > v},

sn(Vh, U%i,j}v ve, U(I)\{i,j}’ UOO\{h}) =0,
by Myerson’s Lemma, we have
1, 1 1

th (Vg j.mys VO VD gy Vo ty) = (Vi gys Ve, VI iy VO) — 3V < —(§ - H)U'

Y

which contradicts ERLB. So, by ETE, for any h € OUT\ {4, j}, it holds that

1
th(”%i,j}a Ve, U?\{i,j}a Uoo) = ﬁvil,

that is, f(v} Ugs > VC vI\ n ]},vo) coincides with the allocation determined by
the second price trading rule. By the similar way, we can show that for
any k € I\ {i,7}, f(v{”k},vc,v]\{wk},vo) coincides with the allocation
determined by the second price trading rule. Repeating the same argument,
we have (B’). Thus, the second part is valid. Therefore, this theorem is
valid.

(Il
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7.5 Proof of Theorem 5

Let f be a mechanism satisfying SP, EF, NTNT, ETE, wDE, and SG. In the
following, for any partition (I, C, X)) of N where some set may be empty, we
use the notation v = (v}, ve, v%) in which for any i,j € I, any k € C, and
any h,h' € X, v} =vj > v, > v} = v}, where v} and v} are any values in V.

1. (A% For any C C N such that #C = 1, and any I C N such that
#I =1, f(v},ve,v%) coincides with the allocation determined by the

quasi second price mechanism.
(B%) For any I C N, f(v},v%) also do.

2. Given any integer ¢ such that 2 <c¢<n—1. If
(A) for any C' C N such that #C = ¢ — 1, and any I C N such that
#I =1, f(v},ve,v%) coincides with the allocation determined by the
quasi second price mechanism, and
(B) for any C' C N such that #C = ¢ — 2, and any non-empty I C N,
(v} ve,v%) also do, then
(A") for any C' C N such that #C = ¢, and any I C N such that
#I =1, f(v},vo,v%) also do, and
(B') for any C' C N such that #C = ¢ — 1, and any non-empty I C N,
f(v}, v, v%) also do.

The First Part.
Pick up any two agents, say 1,2 € N, and set X = N\ {1,2}. Let v},0{ € V
be such that v{ > v¥. By ETE and NTNT, we have for any i € N,

1

fi(“g(u{1,2}) = (E’O)'

Then, by wDFE, SG, and ETE, we have
sl(vi,z&u{g}) =1
By Myerson’s Lemma, we also have

n—1

ty(v1, v5ugy) = — - 3.

Then, by ETE, EF and feasibility of transfer, it follows that for any i # 1,

x 1 T
fi<U%7UXU{2}) = <07 51}2)‘
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So, f(vi,v%, {2}) coincides with the allocation determined by the quasi second
price mechanism. By wDE, SG, and ETE, we have

N | —

31(”%1,2}#’?() = 52(”%1,2}7“?() =

By wDE and SG, for any 0, € V such that v¥ < @y < v}, it follows that
so(vi, ba, v%) is either 0 or L.
We claim that for any such vy, it holds that
R 1
so(vy, Do, V%) = e

Suppose to the contrary that for some 9, € V such that v{ < 0y < v}, it
holds that
s9(v1, Ug, v%) = 0.

Then, by Myerson’s Lemma, there exists a € V such that 0 < a < v{, and
the following is satisfied: For any v € V' such that v] < v} < a, we have

SQ(U%7U;7U§() =0

and for any vy € V such that a < vj < v{, we have

1
82(1)%71);7@?() = -

Furthermore, Myerson’s Lemma gives that

1 1, 1

ta(vf1 9y, V%) = —(5 - 5)01 —(a— Uf)ﬁ-

If t3(v], 9y, v%) > 51, then agent 1 envies agent 3. So, it must be

ta(vf1,25, V%) < EU%-

By wDE, for any 93 € V such that v < 93 < v{, it follows that

83(7}%1’2}, @3, 'U;j(\{g}) =0.

By ETE, we have
1

33(“%1,2,3}, U?{\{s}) 3’

Then, Myerson’s Lemma implies that
1 T 1 T 1 1
t3(v{12,33: Vingsy) = ta(vpip, V%) — 3u < _<§ — —)vy.
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If t4(v] 55y, Vi (37) = w01, then agent 3 envies agent 4. So, it must be

1
ta(Vi10,3), Vi g3}) > ﬁvi

By repeating the same argument, we have

1 L1,

tn(v{l,&..‘,n}) < _<ﬁ - 5)01 = 0.

Since, by ETE, for any i € N, sl-(v{lm_._n}) = L this contradicts NTNT.
Thus, for any 9, € V such that v% < 9y < v{, it holds that

1 A T
So(vy, U9, 0% ) = —.
n
Then, by Myerson’s Lemma, we have

—Ged) it =l

,0) if v} > vy >0}

fo(vi,v2,0%) = { (7)

/ /
3= NI

The (A°) Part.
Let C' C N be such that #C = 1, and I C N be such that #I = 1. Let
v = (vhve,v%) € V. We denote I = {i;} and C' = {iy}. From (7), we have
fi, (v}, vc,v%) = (£,0). Then, by wDF, we have

n—1

Sil(v}>UC>U§() =
Since» from (7)7 fil (@iUUC’yvg() = (%7 _(% - %)%‘2) where ®i1 = Uiy, by Myer—
son’s Lemma, we have

ti1(v}’UC’U§() ==
Then, for any A € X, it holds that
sn(vf,ve, v%) = 0.

By ETE and feasibility of transfer, for any h € X, it also holds that
th(v],ve, %) < —vg,.
n
We claim that ¢, (v7, ve, v%) = +v;,. Suppose to the contrary that
th(v},ve,v%) < —Viy.
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By wDE, SG, and ETE, it follows that

sn(vr, ve, On, Vi y) = 0,

where 05, = v;,. Then, SP implies that

1 ~ x _ 1 x
th(U],UC,UmU)(\{h}) - th(UDUC’?UX) < ﬁviz'

For k # 41,19, h, by wDE and EF), it follows that

. . 1
tk(v}avcavh,vfg\{h}) = th(”}ﬁ&”hﬂ?{\{ﬂ) < 7 Viz-

By repeating the same argument, we have,

1 . 1
th’(”lu”Cu”X) < ﬁviga

where for any h' € X, 0y = v;,. Since f(v{, Oxuyi,}) coincides with the alloca-
tion determined by the quasi second price mechanism, this is a contradiction.
Thus, for any h € X, it holds that

1
th(v},vc,vi) = EUZ-Q.

Thus, (A°) is valid.

The (B°) Part.
Let I C N be non-empty set. Let v = (v},v%) € V. When #I = 1, we
have already shown. So, consider the case of #I > 1.

Let 4,7 € I. From (7), it follows that

1 1 1.,

fi(vb,j}: Ug{u]\{i,j}) = <§’ _(5 - E)Uj)'

Then, for any h # i, j, it follows that

Sh(?ﬁ%@j}? Ug{u]\{i,j}) =0.
By ETE and feasibility of transfer, for any h # 17, j, it also follows that

L

th(”%i,j}y Ug{u]\{i,j}) < Evi'

We claim that th(v%ij}, vﬁul\{”}) = %v} Suppose to the contrary that
L
K3

b (Vgigp Vxungagy) < 0
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By wDE, for any 9, € V such that v¥ < ¢, < v}, it follows that

sn (Ui gy On Vxun i) = 0-

By ETE, we have
1 T 1
Sh(v{z‘,j,h}7UXUI\{i,j,h}) ~ 3

Then, Myerson’s Lemma implies that

th(vb,j,h}aU?{u[\{i,j,h}) = th(“%i,j}? U?(UI\{i,j}) - gvzl < _(g — =)y,

For k +# 4,74, h, if tk(vb’jvh},vi}w\{m,h}) > %vil,
So, it must be

then agent h envies agent k.

1 @ 1
tk(v{i:j,h}a UXUI\{i,j,h}) < Evi .

=

By repeating the same argument, we have

SRS
|
S|
S~—
i~
-
I
ja=)

tn(”%l,&...,n}) < —(

Since, by ETE, for any i € N, Si(v«%l,Q,...,n}) = %, this contradicts NTNT.
Thus, for any h # i, j, it holds that
Ly

b (Vgigp Vxungigy) = —0

Y

that is, f (v%l i1 Uxun g, j}) coincides with the allocation determined by the
quasi second price mechanism. By the same way, we can show that for any
kel\{ij}, f (v{li’j’k}, USunfijxy) coincides with the allocation determined
by the quasi second price mechanism. By repeating the same argument, we
have (B°). Thus, the first part is valid.

The Second Part.
Given any integer ¢ such that 2 < ¢ < n—1. Let C" C N be such that
#C"=c—1. Let I C N be such that #I = 1. Let (v}, ver,v%) € V™. For
simplicity of notation, we denote I = {1}, and v, as the highest valuation in
C’. Pick up any agent h € X.

Note that by wDFE, SG, and ETFE, we have

if vff < vy, <y,

1

0
1 T _ 1 : 1
8h(Vn, U1, Vor, Vi py) = q 0 or = if vy < vy < g,
1 e
3 it vy, = vy.

34



We claim that for any v, € V' such that vy < v < v%, we have

1
1 T
Sh(vhavDUC’avX\{h}) o

Suppose to the contrary that for some 9, € V such that vy < 0, < v{, it
holds that

su(vp, v}, ver, Vx\qny) = 0.

Then, by Myerson’s Lemma, there exists a € V' such that v, < a < vy, and
the following is satisfied: For any v} € V such that vj < v} < a, we have

1
Sh(dzvvlvvCHUgc(\{h}) =0
and for any v}, € V such that a < v}, < v{, we have

1
/ 1 T
Sh(/U}” /UI7 /UCI7 /UX\{h}) — E

Ly,), Myerson’s

‘n

Since, by the induction hypothesis (A4), fr (v}, ver, v%) = (0
Lemma also gives that

1 1., 1

th(“%u{h}vvC’av;ﬁ{\{h}) = _(5 - ﬁ>vl - ﬁ(a — 1}2).

Note that, by wDE, for any j € C’, sj(v}u{h},vcl,v_?(\{h}) = 0. Since, by
the induction hypothesis (B), for any j € ', fj(v}u{h},vcl\{j},vﬁu{j}\{h}) =
(0, 2v}), by strategy-proofness, it holds that

- 1
tj (U}U{h}a ver, UX\{h}) = ﬁv%.

These imply that agent h envies agent j. Thus, for any v, € V such that
vy < vp, < Vi, we have

1
1 x _
Sh('Ufw Uy, Ucr, UX\{h}) - 5

Then, by Myerson’s Lemma, we have

(0, Luy) if of <y < vy
fh(vh7v}7UC’aU§(\{h}) = (%,0) if vg <y, < U% (8)
(3. = —pvl) ifvp =y
The (A") Part.
Let C' C N be such that #C' = ¢, and I C N be such that #I = 1. Let
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v = (vhve,v%) € V. We denote I = {i;}, and v;, as the highest valuation
in C, that is, i2 € [2]. We divide the argument into two cases.

The case 1: #[2] = 1.
From (8), we have f;,(v},ve,v%) = (+,0). Then, by wDF, we have

n—1

511(0}7007026() =

1

Since, from (8), fi, (0;,vc,v%) = (5,

son’s Lemma, we have

—(3 — L)vy,) where 4;, = v;,, by Myer-

ti (vr, v, vy) = —
Then, for any i # 41,49, it holds that
si(vr,ve, v%) = 0.
By the induction hypothesis (A), for any k € C'\ {is}, it follows that

. 1
fk<v}7 U\ {k}> UXU{k}) = (0, Evi2)~

So, by SP, for any k € C'\ {iz}, it holds that

1
tk(v},vc,vﬁ) = Evb.

Then, by EF, for any h € X, it follows that

1
th('z)},vc,v?{) = ﬁvb.

The case 2: #[2] > 1.
From (8), for any i € [2], we have f;(v}, v, v%) = (0, +v;,). Then, by wDF,
we have
si, (v7,v0,0%) = 1.
Since, by the induction hypothesis (B), fi, (0;,, v, v%) = (ﬁ, —(ﬁ—%)vm)
where 9;, = v;, and #[1] is at (9;,, vo, v%), by Myerson’s Lemma, we have

n—1

ti1(v}’UC’U§():_ Vi -

n
Then, by wDE and EF, for any i ¢ [1] U [2], it holds that
fi(v}> vc, U?() = (0, Eviz)‘
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Thus, (A’) is valid.

The (B') Part.
Let C' C N be such that #C' = ¢ — 1, and I C N be non-empty set. Let
v = (v},vc,v%) € V™. If #I = 1, then the induction hypothesis (A) implies
the conclusion. So, consider the case of #1 > 1.

Let 7,5 € I. Let 15 € C be such that his valuation v;, is the highest in C.
From (A’), it holds that

. . - 1
fj(vjavilavcavz\{i,j},vx) = (0, E%)

where 9; = v;,, and that for any v € V' such that v} > v} > vy,

Sj (,U]7 17UC7UI\{1]}7UX)

Since, by wDE and ETE, s, (v{”}, Ve, VR iy V) = 1, by Myerson’s Lemma,
it follows that

- . 1 1
tj(”%i,j}? Ve, UI\{i,j}aUX) = _(5 - E)Uz
Then, for any k # i, j, we have
Sk(v{li,j}» e Uf\{i,j}» vx) = 0.

Note that by the induction hypothesis (B), for any k € C,

fk(v*%i,j}’ U\ {k}> U}:\{i,j}a U;c(u{k}) = (0, ﬁvll)

So, by SP, for any k € C, we have

tk(v%i,j]w Vos V(i gy Vx) = ;.
Then, by EF, for any h € X UT\ {1,}, it also follows that

1 x T\ __ 1
th(vg; g3y VO VR gy V) = Vi

that is, f(v%iyj}, Ve, Uf\{i7j},v§() coincides with the allocation determined by
the quasi second price mechanism. By the same way, we can show that for
any k € I\ {i,j}, f(v{”k},vc,vl\{”k},vx) coincides with the allocation
determined by the quasi second price mechanism. By repeating the same
argument, we have (B’). Thus, the second part is valid. Therefore, this
theorem is valid.

(Il
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