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Abstract

We study strategy-proof probabilistic mechanisms in a binary pub-
lic decision model when monetary transfers are allowed. We consider
not only the pivotal mechanism, the majority voting mechanism, the
random serial dictatorship mechanism, and the unanimity mechanism,
but also the random chair pivotal mechanism (Faltings 2005), which
is a probabilistic variant of the pivotal mechanism.

We first show that the random chair pivotal mechanism, the ma-
jority voting mechanism, the random serial dictatorship mechanism,
and the unanimity mechanism are second-best efficient.

Next, we calculate the expected welfare of the mechanisms by the
Monte Carlo method, where each agent’s valuation is independently,
identically, and uniformly (or normally) distributed. These calcula-
tions exhibit that the random chair pivotal mechanism is more efficient
than the other mechanisms. We also show that in large economies,
the random chair pivotal mechanism is efficient, while the other mech-
anisms might be highly inefficient.

Finally, we characterize the random chair pivotal mechanism with
strategy-proofness, budget-balance, equal treatment of equals, and
decision-robustness.
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1 Introduction

We study a mechanism design problem in a binary public decision model
when monetary transfers are allowed. Each agent has a quasi-linear pref-
erence. A (direct) mechanism determines a public decision and monetary
transfers depending on agents’ preferences. We focus on mechanisms satisfy-
ing strategy-proofness, which requires that it be a dominant strategy for any
agent to report his true preference.1

The pivotal mechanism (Clarke 1971) is the most well-known mechanism2

on this model. It satisfies not only strategy-proofness but also decision-
efficiency. Decision-efficiency requires that the mechanism select a public
decision that maximizes the aggregate valuation. Moreover, it is the only
mechanism satisfying strategy-proofness, decision-efficiency, and some wel-
fare lower bound property (Moulin 1986).

Although the pivotal mechanism has the special features, it also has sev-
eral drawbacks.3 A well-known drawback is that it does not satisfy budget-
balance. Budget-balance requires that the monetary transfers be closed
among the agents. On the quasi-linear environments, decision-efficiency and
budget-balance are equivalent to Pareto-efficiency. Hence, the pivotal mech-
anism is not Pareto-efficient. However, this drawback is not particular to the
pivotal mechanism, because there exists no mechanism satisfying strategy-
proofness and Pareto-efficiency (Green and Laffont 1977).4 Furthermore,
this negative result is valid even when we admit probabilistic mechanisms
(Holmström 1979). Thus, we cannot obtain the first-best strategy-proof
mechanism.5

Then, our next aim is to find good second-best efficient mechanisms
among strategy-proof ones. Second-best efficiency requires that the mecha-
nism be on the Pareto-frontier among mechanisms.6 As candidates for such
mechanisms, we consider well-known ones; the majority voting mechanism,

1Carbajal et al. (2013) have comprehensively analyzed strategy-proof mechanisms. See
also Mishra and Sen (2012) and Marchant and Mishra (2015).

2This is sometimes called VCG mechanism (Vickrey 1961; Clarke 1971; Groves 1973).
3They have been mentioned in Groves and Ledyard (1977) and discussed in Green and

Laffont (1979).
4On continuous public decision models with very restricted domains, strategy-proofness

and Pareto-efficiency are sometimes compatible (Groves and Loeb 1975; Green and Laffont
1979; Laffont and Maskin 1980; Tian 1996; Liu and Tian 1999).

5Hence, Moulin (1994), Serizawa (1996, 1999), and Ohseto (2000) have researched
strategy-proof mechanisms satisfying budget-balance instead of decision-efficiency. See
also Bailey (1997).

6Zhou (2007) has analyzed a second-best efficient mechanism with regard to expected
social welfare.
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the random serial dictatorship mechanism, and the unanimity mechanism.
We also consider a mechanism that is a probabilistic variant of the piv-
otal mechanism, called the random chair pivotal mechanism (Faltings 2005).
First, it selects randomly one agent called “chair.” Second, the pivotal mech-
anism among the agents except the chair determines the public decision and
their transfers. Finally, the chair obtains the surplus derived in the previous
step.7

We first show that the random chair pivotal mechanism, the majority
voting mechanism, the random serial dictatorship mechanism, and the una-
nimity mechanism are second-best efficient. These results say that there is no
Pareto-domination among them. Hence, we next calculate the expected wel-
fare of the mechanisms by the Monte Carlo method, where each agent’s val-
uation is independently, identically, and uniformly (or normally) distributed.
These calculations exhibit that the random chair pivotal mechanism is more
efficient than the other mechanisms. We also show that in large economies,
the random chair pivotal mechanism is efficient, while the other mechanisms
might be highly inefficient.8 Thus, the random chair pivotal mechanism is
superior in terms of efficiency. Finally, we characterize the random chair
pivotal mechanism with strategy-proofness, budget-balance, equal treatment
of equals, and decision-robustness. Equal treatment of equals requires that
the agents who have the same preference get the same assignment. Decision-
robustness requires that we respect for only the support for the public de-
cision that is robust in some sense. Therefore, the random chair pivotal
mechanism is an excellent strategy-proof mechanism.

The paper is organized as follows. In Section 2, we set up the model. In
Section 3, we introduce the mechanisms. In Section 4, we state our results.
In Section 5, we provide the proofs.

2 Model

Let N = {1, 2, . . . , n} be the set of agents, where we assume n ≥ 3. We con-
sider an environment with a binary public decision on {0, 1} and one divisible
good called money. The binary public decision can be made probabilistically.

Each agent i ∈ N has a preference over the set of pairs consisting of
a probability s ∈ [0, 1] that the society selects the public decision 1 and a
monetary transfer ti ∈ R that he receives. We assume that this preference is
represented by a utility function ui(s, ti; vi) = svi + ti for some vi ∈ V ≡ R.

7See also Guo et al. (2011).
8Green et al. (1976), Green and Laffont (1979), Rob (1982), and Mitsui (1983) have

studied the budget surplus of the pivotal mechanism in large economies.
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Since a preference is identified by vi, we regard vi and V as the preference
and the set of preferences, respectively. We call a list v ≡ (vi)i∈N ∈ V n a
preference profile.

The set of feasible allocations is

Z = {(s, t1, . . . , tn) ∈ [0, 1]× Rn :
∑
i∈N

ti ≤ 0}.

A mechanism is a function f : V n → Z. Given a mechanism f and a prefer-
ence profile v ∈ V n, we denote f(v) ≡ (s(v), t(v)) ≡ (s(v), t1(v), . . . , tn(v)),
where s(v) and ti(v) mean the probability and agent i’s transfer at v, respec-
tively. For any v ∈ V n and N ′ ⊆ N , let vN ′ ∈ V #N ′

and v−N ′ ∈ V #N\N ′

denote (vj)j∈N ′ and (vj)j /∈N ′ , respectively.
We define the basic properties. First, strategy-proofness says that it is a

dominant strategy for any agent to report his true preference.

Definition 1. A mechanism f satisfies strategy-proofness (SP) if for any
v ∈ V n, any i ∈ N , and any v′i ∈ V , it holds that

s(v)vi + ti(v) ≥ s(v′i, v−i)vi + ti(v
′
i, v−i).

Next, second-best efficiency says that the mechanism is on the Pareto-
frontier among strategy-proof mechanisms.

Definition 2. A strategy-proof mechanism f ∗ is second-best efficient if
there does not exist another strategy-proof mechanism f such that for any
v ∈ V n and any i ∈ N ,

s(v)vi + ti(v) ≥ s∗(v)vi + t∗i (v),

and for some v ∈ V n and some j ∈ N ,

s(v)vj + tj(v) > s∗(v)vj + t∗j(v).

3 Mechanisms

3.1 Pivotal Mechanism

We introduce the pivotal mechanism (Clarke 1971). It selects the public
decision that maximizes the aggregate valuation of agents. Each agent pays
the amount of money corresponding to the externality that he is imposing
on the other agents. When there is a tie on the public decision, the tie is
broken arbitrarily. Hence, to be precise, the pivotal mechanism is not unique.
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However, we treat the pivotal mechanism as being unique because all of them
are welfare equivalent.

To define it formally, we need some notation. For any v ∈ V n, define d(v)
as follows:

d(v) ≡


0 if

∑
k∈N vk < 0,

y if
∑

k∈N vk = 0,

1 if
∑

k∈N vk > 0,

where y is an arbitrary value in {0, 1} and might depend on v.
For any v ∈ V n and any i ∈ N , define d−i(v) as follows:9

d−i(v) ≡



0 if
∑

k ̸=i vk < 0,

0 if
∑

k ̸=i vk = 0 and vi < 0,

y if
∑

k ̸=i vk = 0 and vi = 0,

1 if
∑

k ̸=i vk = 0 and vi > 0,

1 if
∑

k ̸=i vk > 0,

where y is an arbitrary value in [0, 1] and might depend on v.

Definition 3. The pivotal mechanism fPV = (sPV , tPV ) is defined as
follows: For any v ∈ V n,

sPV (v) ≡ d(v),

and for any i ∈ N ,

tPV
i (v) ≡

∑
k ̸=i

vkd(v)−
∑
k ̸=i

vkd
−i(v).

3.2 Random Chair Pivotal Mechanism

We introduce the random chair pivotal mechanism (Faltings 2005), which
is one variant of the pivotal mechanism. First, one agent called chair is
selected randomly. Next, the pivotal mechanism among the agents except
the chair determines the public decision and their transfers, and the chair
obtains the surplus. When there is a tie on the public decision among the
agents except the chair, the chair breaks the tie. When it is also a tie for the
chair, the tie is broken arbitrarily. Hence, to be precise, the random chair
pivotal mechanism is not unique. However, we treat the random chair pivotal
mechanism as being unique, because all of them are welfare equivalent.

9For the pivotal mechanism, d−i(v) is arbitrary when
∑

k ̸=i vk = 0. This specification
is to define the next mechanism.
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To define it formally, we need some notation. Note that we can regard
d−j(v) as the public decision determined by the pivotal mechanism among
the agents except the chair j. For any v ∈ V n and any i, j ∈ N such that
i ̸= j, define d−ij(v) as follows:

d−ij(v) ≡


0 if

∑
k ̸=i,j vk < 0,

y if
∑

k ̸=i,j vk = 0,

1 if
∑

k ̸=i,j vk > 0,

where y is an arbitrary value.10

For any v ∈ V n and any i, j ∈ N such that i ̸= j, define p−j
i (v) as follows:

p−j
i (v) ≡

∑
k ̸=i,j

vkd
−j(v)−

∑
k ̸=i,j

vkd
−ij(v).

Hence, p−j
i (v) is agent i’s transfer of the pivotal mechanism among the agents

except the chair j. The chair j obtains this surplus −p−j
i (v) from each agent

i ̸= j.

Definition 4. The random chair pivotal mechanism fRC = (sRC , tRC)
is defined as follows. For any v ∈ V n,

sRC(v) ≡ 1

n

∑
i∈N

d−i(v),

and for any i ∈ N ,

tRC
i (v) ≡ 1

n
[−

∑
j ̸=i

p−i
j (v) +

∑
j ̸=i

p−j
i (v)].

Example 1. Consider the three-agent case. Let v = (3, 2,−4). Then, we
obtain that

d−1(v) = 0,

d−2(v) = 0,

d−3(v) = 1.

We also obtain that

d−12(v) = d−21(v) = 0,

10We need d−ij(v) to define p−j
i (v). In the definition of p−j

i (v), when
∑

k ̸=i,j vk = 0, we

have
∑

k ̸=i,j vkd
−ij(v) = 0 regardless of value of d−ij(v). Hence, we allow d−ij(v) to take

an arbitrary value.
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d−13(v) = d−31(v) = 1,

d−23(v) = d−32(v) = 1.

Hence, it follows that

p−1
2 (v) = 0 and p−1

3 (v) = −2,

p−2
1 (v) = 0 and p−2

3 (v) = −3,

p−3
1 (v) = 0 and p−3

2 (v) = 0.

Thus, the allocation of the random chair pivotal mechanism at v is

sRC(v) =
1

3
and tRC(v) = (

2

3
,
3

3
,−5

3
).

3.3 Other Mechanisms

We introduce the other mechanisms that are well-known in mechanism design
or social choice theory. These mechanisms always make no transfer among
agents.

First, we introduce the majority voting mechanism. It selects the public
decision that is supported by the majority.

Definition 5. The majority voting mechanism fMV = (sMV , tMV ) is
defined as follows. For any v ∈ V n,

sMV (v) ≡


0 if #{i ∈ N : vi > 0} < #{i ∈ N : vi < 0},
1
2

if #{i ∈ N : vi > 0} = #{i ∈ N : vi < 0},
1 if #{i ∈ N : vi > 0} > #{i ∈ N : vi < 0},

and for any i ∈ N ,
tMV
i (v) ≡ 0.

Next, we introduce the random serial dictatorship mechanism. The public
decision selected by this mechanism is determined as follows: We randomly
fix a linear ordering on N . The first priority agent chooses the public decision
according to his favor. If the first priority agent is indifferent between {0, 1},
then the second priority agent chooses the public decision according to her
favor, and so on. We represent this mechanism simply as follows.

Definition 6. The random serial dictatorship mechanism fRD = (sRD, tRD)
is defined as follows. For any v ∈ V n,

sRD(v) ≡

{
#{i∈N :vi>0}
#{i∈N :vi ̸=0} if #{i ∈ N : vi ̸= 0} ̸= 0,
1
2

if #{i ∈ N : vi ̸= 0} = 0,
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and for any i ∈ N ,
tRD
i (v) ≡ 0.

Finally, we introduce the unanimity mechanism. It selects the public de-
cision that is unanimously supported. When there is no such public decision,
it selects 0 or 1 with an equal probability for both.

Definition 7. The unanimity mechanism fUN = (sUN , tUN) is defined as
follows. For any v ∈ V n,

sUN(v) ≡


0 if #{i ∈ N : vi ≤ 0} = n and #{i ∈ N : vi < 0} ≠ 0,

1 if #{i ∈ N : vi ≥ 0} = n and #{i ∈ N : vi > 0} ≠ 0,
1
2

otherwise,

and for any i ∈ N ,
tUN
i (v) ≡ 0.

4 Results

We state the results. All the proofs are provided in the final section.

4.1 Second-Best Efficiency

The first result says that the random chair pivotal mechanism is on the
Pareto-frontier among strategy-proof mechanisms.

Theorem 1. The random chair pivotal mechanism is second-best efficient.

To establish that the majority voting mechanism, the random serial dicta-
torship mechanism, and the unanimity mechanism are second-best efficient,
we show the following proposition.

Proposition 1. Let f ∗ = (s∗, t∗) be a strategy-proof mechanism satisfying
the following conditions:
(i) for any v ∈ V n and any i ∈ N ,

t∗i (v) = 0,

(ii) for any v ∈ V n such that for any i ∈ N , vi ≥ 0 and that for some i ∈ N ,
vi > 0,

s∗(v) = 1,

(iii) for any v ∈ V n such that for any i ∈ N , vi ≤ 0 and that for some i ∈ N ,
vi < 0,

s∗(v) = 0.

Then, f ∗ is second-best efficient.
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Since three mechanisms satisfy the conditions (i), (ii), and (iii), we have
the following corollaries.

Corollary 1. The majority voting mechanism is second-best efficient.

Corollary 2. The random serial dictatorship mechanism is second-best ef-
ficient.

Corollary 3. The unanimity mechanism is second-best efficient.

Remark 1. It is an open question whether the pivotal mechanism is second-
best efficient.

4.2 Expected Welfare

Since the random chair pivotal mechanism, the majority voting mechanism,
the random serial dictatorship mechanism, and the unanimity mechanism
are second-best efficient, there is no Pareto-domination among them. Thus,
we next calculate the expected welfare of mechanisms by the Monte Carlo
method and compare the mechanisms. Let g(·) denote a probability density
function for valuation profile v ∈ V n.

Definition 8. Given a mechanism f = (s, t), the expected welfare of f is
defined as follows:

E[
∑
i∈N

ui(s(v), ti(v); vi)] ≡
∫
v∈V n

∑
i∈N

ui(s(v), ti(v); vi)g(v)dv.

Let fPE be a Pareto-efficient mechanism, that is, a first-best efficient
one.11 In Figure 1, we exhibit numerical results to compare the expected
welfare of the mechanisms, where each agent’s valuation is independently,
identically, and uniformly distributed on [−1, 1]. For each mechanism f ∈
{fPE, fPV , fRC , fMV , fRD, fUN} and each number of agents n = 3, . . . , 10,
we generated 100 estimates of the expected welfare by simple Monte Carlo
integration and calculated the mean value based on those 100 estimates.12

In Figure 1, we plot the mean values for each mechanism f and each number
of agents n. These results indicate that the random chair pivotal mechanism
is more efficient than the other mechanisms. Notice that the majority voting
mechanism also has good performance.

11By Holmström’s (1979) theorem, any first-best mechanism does not satisfy strategy-
proofness.

12For each set of 100 estimates, the Kolmogorov-Smirnov (KS) test failed to reject the
null hypothesis of normality at the 0.05 level and the estimated standard error is less than
0.0002. All estimates were obtained using NIntegrate, which is a function implemented
in Mathematica.
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=======================
Insert Figure 1 around here.

=======================

In Figure 2, we also exhibit numerical results, where each agent’s valua-
tion is independently, identically, and normally distributed with the mean 0
and the variance 1. We estimated each of the expected welfare in the same
way as the uniform distribution case.13 Figure 2 indicates that the expected
welfare of each mechanism behaves in a similar manner as it does in Figure
1.

=======================
Insert Figure 2 around here.

=======================

4.3 Large Economy

We investigate welfare of mechanisms when the economy is large. We define
the welfare loss of mechanism. It is the difference between the first best
welfare and the welfare of mechanism that we consider.

Definition 9. Given a mechanism f = (s, t) and a preference profile v ∈ V n,
the welfare loss of f at v ∈ V n is defined as follows:

WL(v; f) ≡ max{
n∑

i=1

vi, 0} − [
n∑

i=1

ui(s(v), ti(v); vi)]

= max{
n∑

i=1

vi, 0} − [s(v)
n∑

i=1

vi +
n∑

i=1

ti(v)].

We study large economies by means of replica.

Definition 10. Let a valuation profile (vi)
n
i=1 ∈ V n. For any positive integer

r, (vi)
n×r
i=1 ∈ V n×r is r-replica of (vi)

n
i=1 if for any positive integer r′ < r and

any i ∈ N , it holds that
vn×r′+i = vi.

The following results say that in large economies, the random chair piv-
otal mechanism is efficient, while the other mechanisms might be highly
inefficient.

13For each set of 100 estimates, the KS test failed to reject the null hypothesis of
normality at the 0.05 level and the estimated standard error is less than 0.002.
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Theorem 2. For any finite sequence of valuations (vi)
n
i=1, the welfare loss

of the random chair pivotal mechanism at (vi)
n×r
i=1 that is r-replica of (vi)

n
i=1

converges to 0 as r → ∞, that is,

lim
r→∞

WL((vi)
n×r
i=1 ; f

RC) = 0.

Proposition 2. There exists a finite sequence of valuations (vi)
n
i=1 such that

the welfare loss of the pivotal mechanism at (vi)
n×r
i=1 that is r-replica of (vi)

n
i=1

infinitely diverges as r → ∞, that is,

lim
r→∞

WL((vi)
n×r
i=1 ; f

PV ) = ∞.

Proposition 3. There exists a finite sequence of valuations (vi)
n
i=1 such that

the welfare loss of the majority voting mechanism at (vi)
n×r
i=1 that is r-replica

of (vi)
n
i=1 infinitely diverges as r → ∞, that is,

lim
r→∞

WL((vi)
n×r
i=1 ; f

MV ) = ∞.

Proposition 4. There exists a finite sequence of valuations (vi)
n
i=1 such that

the welfare loss of the random serial dictatorship mechanism at (vi)
n×r
i=1 that

is r-replica of (vi)
n
i=1 infinitely diverges as r → ∞, that is,

lim
r→∞

WL((vi)
n×r
i=1 ; f

RD) = ∞.

Proposition 5. There exists a finite sequence of valuations (vi)
n
i=1 such that

the welfare loss of the unanimity mechanism at (vi)
n×r
i=1 that is r-replica of

(vi)
n
i=1 infinitely diverges as r → ∞, that is,

lim
r→∞

WL((vi)
n×r
i=1 ; f

UN) = ∞.

4.4 Characterization

We characterize the random chair pivotal mechanism. To do so, we introduce
other properties.

First, budget-balance says that the transfers among the agents are closed.

Definition 11. A mechanism f satisfies budget-balance (BB) if for any
v ∈ V n, it holds that ∑

i∈N

ti(v) = 0.

Second, equal treatment of equals says that the agents who have the same
preference get the same assignment.
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Definition 12. Amechanism f satisfies equal treatment of equals (ETE)
if for any v ∈ V n and any i, j ∈ N , if vi = vj, then it holds that

ti(v) = tj(v).

Finally, we introduce decision-robustness. Let us consider the following
valuation profiles:

v′ = (10, 10, 1), v′′ = (10, 10,−1), v′′′ = (10, 10,−15).

Note that all the aggregate valuations at the three profiles are positive.
Hence, public decision 1 is efficient in decision at the three profiles. At
v′, all agents unanimously support it. At v′′, although agent 3 may oppose
it, the society might be able to persuade agents to select it because the sup-
port for it is by a large margin or robust in the sense that even if any one
agent changes his opinion to be neutral, the society still supports it. At v′′′,
on the other hand, the support for it is by a narrow margin or not robust,
that is, if agent 1 or agent 2 becomes neutral, the society does not support
it. Then, can the society justify to select s(v′′′) = 1? Why, for example, is
s(v′′′) = 1

3
bad? Formally, when

∑
k∈N vk > 0, we say that the support for

the public decision 1 is robust with agent i ∈ N if
∑

k ̸=i vk ≥ 0. Similarly,
when

∑
k∈N vk < 0, we say that the support for the public decision 0 is robust

with agent i ∈ N if
∑

k ̸=i vk ≤ 0. Decision-robustness says that we respect
for only the supports for the public decision that are robust with agents.

Definition 13. A mechanism f satisfies decision-robustness (DR) if for
any v ∈ V n such that

∑
k∈N vk > 0, it holds that

s(v) =
1

n
#{i ∈ N :

∑
k ̸=i

vk ≥ 0},

and for any v ∈ V n such that
∑

k∈N vk < 0, it holds that

s(v) = 1− 1

n
#{i ∈ N :

∑
k ̸=i

vk ≤ 0}.

The following result says that the random chair pivotal mechanism is the
only mechanism satisfying desirable properties.

Theorem 3. Amechanism satisfies strategy-proofness, budget-balance, equal
treatment of equals, and decision-robustness if and only if it is the random
chair pivotal mechanism.
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We verify that none of the axioms in Theorems 3 is redundant. We exhibit
mechanisms that satisfy all but one of the axioms. Let n = 3.

Example 2 (not SP). Let f = (s, t) be as follows: for any v ∈ V 3,

s(v) = sRC(v) and t(v) = (0, 0, 0).

This mechanism satisfies all but not strategy-proofness.

Example 3 (not BB). Let α > 0. Let f = (s, t) be as follows: for any
v ∈ V 3,

s(v) = sRC(v) and t(v) = (tRC
1 (v)− α, tRC

2 (v)− α, tRC
3 (v)− α).

This mechanism satisfies all but not budget-balance.

Example 4 (not ETE). Let α > 0. Let f = (s, t) be as follows: for any
v ∈ V 3,

s(v) = sRC(v) and t(v) = (tRC
1 (v)− α, tRC

2 (v) + α, tRC
3 (v)).

This mechanism satisfies all but not equal treatment of equals.

Example 5 (not DR). Let f = (s, t) be as follows: for any v ∈ V 3,

s(v) = 0 and t(v) = (0, 0, 0).

This mechanism satisfies all but not decision-robustness.

5 Proofs

Throughout the proofs, we use the following lemma that have been shown
by Myerson (1981).

Lemma 1 (Myerson, 1981). If a mechanism f satisfies strategy-proofness,
then for any i ∈ N , any vi, v

′
i ∈ V such that vi ≤ v′i, and any v−i ∈ V n−1, it

holds that
si(vi, v−i) ≤ si(v

′
i, v−i)

and

ti(v
′
i, v−i) = ti(vi, v−i)− s(v′i, v−i)v

′
i + s(vi, v−i)vi +

∫ v′i

vi

s(xi, v−i)dxi.

Before proving Theorem 1 and Proposition 1, we show the following
lemma.
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Lemma 2. Let f ∗ = (s∗, t∗) be a mechanism satisfying budget-balance. Let
f = (s, t) be a mechanism such that for any v ∈ V n and any i ∈ N ,

s(v)vi + ti(v) ≥ s∗(v)vi + t∗i (v). (1)

Then, it follows that for any v ∈ V n, if s(v) = s∗(v), then t(v) = t∗(v).

Proof of Lemma 2. Let v ∈ V n. Assume s(v) = s∗(v). Then, (1) implies
that for all i ∈ N ,

ti(v) ≥ t∗i (v).

Suppose to the contrary that for some j ∈ N ,

tj(v) > t∗j(v).

Then, by BB of f ∗, these imply that

n∑
i=1

ti(v) >
n∑

i=1

t∗i (v) = 0,

which contradicts the feasibility of f . Thus, we have t(v) = t∗(v).

5.1 Proof of Theorem 1

We show that the random chair pivotal mechanism fRC = (sRC , tRC) is
second-best efficient. Let f = (s, t) be a strategy-proof mechanism such that
for any v ∈ V n and any i ∈ N ,

s(v)vi + ti(v) ≥ sRC(v)vi + tRC
i (v). (2)

We show that for any v ∈ V n and any i ∈ N ,

s(v)vi + ti(v) = sRC(v)vi + tRC
i (v). (3)

Let v ∈ V n. In the following, we divide the argument into three cases.

Case 1.
∑n

i=1 vi > 0.

From Lemma 2, it is sufficient for (3) to show s(v) = sRC(v).

Claim 1. s(v) ≥ sRC(v).
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Proof of Claim 1. By adding (2) for all agents, we have

s(v)
n∑

i=1

vi +
n∑

i=1

ti(v) ≥ sRC(v)
n∑

i=1

vi +
n∑

i=1

tRC
i (v).

Since
∑n

i=1 ti(v) ≤ 0 and
∑n

i=1 t
RC
i (v) = 0, this implies that

(s(v)− sRC(v))
n∑

i=1

vi ≥ 0.

Since
∑n

i=1 vi > 0, it follows that

s(v) ≥ sRC(v).

Claim 2. s(v) = sRC(v).

Proof of Claim 2. We show this claim by the following induction.

1. If sRC(v) = 1, then s(v) = sRC(v).

2. Let m be such that 1 ≤ m ≤ n − 1. Assume that for any v′ ∈ V n

such that
∑n

i=1 v
′
i > 0 and sRC(v′) > n−m

n
, we have s(v′) = sRC(v′). If

sRC(v) = n−m
n

, then s(v) = sRC(v).

Since, by Claim 1, we have s(v) ≥ sRC(v), the first part is obviously
valid. In the following, we show the second part. Without loss of generality,
we assume that v1 ≥ v2 ≥ · · · ≥ vn.

SubClaim 2-1.
∑

i̸=m vi < 0.

Proof of SubClaim 2-1. Suppose to the contrary that
∑

i̸=m vi ≥ 0. Since

sRC(v) = n−m
n

, there exist m agents such that for such agent j, we have14∑
i̸=j

vi < 0.

Then, there exists h ∈ N such that m < h and
∑

i̸=h vi < 0. Since vm ≥ vh,
it holds that

0 ≤
∑
i̸=m

vi =
∑
i∈N

vi − vm ≤
∑
i∈N

vi − vh =
∑
i̸=h

vi < 0,

which is a contradiction. Hence,
∑

i̸=m vi < 0.

14Note that, since
∑

i∈N vi > 0, it does not occur that
∑

i ̸=j vi = 0 and vj ≤ 0.
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SubClaim 2-2. vm > 0.

Proof of SubClaim 2-2. By SubClaim 2-1, we have
∑

i ̸=m vi < 0. Since∑
i∈N vi > 0, we have the desired result.

SubClaim 2-3. Let v̄n = −
∑

i̸=m,n vi. Then, we have v̄n > vn and

sRC(v̄n, v−n) >
n−m
n

.

Proof of SubClaim 2-3. Note that∑
i̸=m,n

vi + v̄n = 0. (4)

By SubClaim 2-1, it holds that∑
i̸=m,n

vi + vn =
∑
i̸=m

vi < 0.

These imply that v̄n > vn.
It implies that for any i ∈ N ,

d−i(v̄n, v−n) ≥ d−i(v).

Since, by SubClaim 2-1,
∑

i̸=m vi < 0, we have

d−m(v) = 0.

By SubClaim 2-2 and (4), it holds that

d−m(v̄n, v−n) = 1.

These imply that

sRC(v̄n, v−n) ≡
1

n

∑
i∈N

d−i(v̄n, v−n) >
1

n

∑
i∈N

d−i(v) ≡ sRC(v) =
n−m

n
.

SubClaim 2-4. For any v̂n < v̄n, we have sRC(v̂n, v−n) ≤ n−m
n

.

Proof of SubClaim 2-4. Let v̂n < v̄n. For any m′ < m, since we assume
vm′ ≥ vm, we have∑

j ̸=m′,n

vj + v̂n ≤
∑

j ̸=m,n

vj + v̂n <
∑

j ̸=m,n

vj + v̄n = 0.

16



This implies that for any m′ ≤ m,

d−m′
(v̂n, v−n) = 0,

that is, there exist at least m agents such that for such agent j, it holds that

d−j(v̂n, v−n) = 0.

Hence, we have
1

n

∑
i∈N

d−i(v̂n, v−n) ≤
n−m

n
,

which is the desired result.

SubClaim 2-5. For any v̂n ∈ V such that vn ≤ v̂n < v̄n, we have
sRC(v̂n, v−n) = sRC(v).

Proof of SubClaim 2-5. Let v̂n ∈ V be such that vn ≤ v̂n < v̄n. Remember
that sRC(v) = n−m

n
. By SubClaim 2-4, we have sRC(v̂n, v−n) ≤ n−m

n
. Since

vn ≤ v̂n, by SP of fRC and Myerson’s Lemma, it holds that

n−m

n
= sRC(v) ≤ sRC(v̂n, v−n) ≤

n−m

n
,

which is the desired result.

SubClaim 2-6. sRC(v̄n, v−n) = s(v̄n, v−n) and tRC(v̄n, v−n) = t(v̄n, v−n).

Proof of SubClaim 2-6. By SubClaim 2-3, we have v̄n > vn. Hence, it follows
that ∑

i̸=n

vi + v̄n >
∑
i∈N

vi > 0.

By SubClaim 2-3, we have sRC(v̄n, v−n) > n−m
n

. Thus, by the induction
hypothesis, it holds that

sRC(v̄n, v−n) = s(v̄n, v−n).

Then, by Lemma 2, it follows that

tRC(v̄n, v−n) = t(v̄n, v−n).

SubClaim 2-7. sRC(v) = s(v).

17



Proof of SubClaim 2-7. By SubClaim 2-6 and SP of f , we have

sRC(v̄n, v−n)v̄n + tRC
n (v̄n, v−n) = s(v̄n, v−n)v̄n + tn(v̄n, v−n)

≥ s(v)v̄n + tn(v).

Moreover, by (2), we have

s(v)vn + tn(v) ≥ sRC(v)vn + tRC
n (v).

These imply that

sRC(v̄n, v−n)v̄n + tRC
n (v̄n, v−n)− s(v)v̄n ≥ sRC(v)vn + tRC

n (v)− s(v)vn. (5)

From Myerson’s Lemma and SubClaim 2-5, it holds that

tRC
n (v̄n, v−n) = tRC

n (v)− sRC(v̄n, v−n)v̄n + sRC(v)vn +

∫ v̄n

vn

sRC(xn, v−n)dxn

= tRC
n (v)− sRC(v̄n, v−n)v̄n + sRC(v)vn + sRC(v)(v̄n − vn)

= tRC
n (v)− sRC(v̄n, v−n)v̄n + sRC(v)v̄n. (6)

Substituting (6) for (5), we have

(sRC(v)− s(v))(v̄n − vn) ≥ 0.

Since, by SubClaim 2-3, v̄n > vn, this implies that

sRC(v) ≥ s(v).

By Claim 1, we have the desired result.

Thus, Claim 2 is valid.

Therefore, Case 1 is completed. □

Case 2.
∑n

i=1 vi < 0.

By an argument similar to Case 1, we have s(v) = sRC(v). We omit the
details. □

Case 3.
∑n

i=1 vi = 0.

Suppose to the contrary that there exists some j ∈ N such that

s(v)vj + tj(v) > sRC(v)vj + tRC
j (v).

18



Then, from (2), it follows that

s(v)
∑
i∈N

vi +
∑
i∈N

ti(v) > sRC(v)
∑
i∈N

vi +
∑
i∈N

tRC
i (v).

Since
∑n

i=1 vi = 0, by BB of fRC , we have∑
i∈N

ti(v) >
∑
i∈N

tRC
i (v) = 0,

which contradicts the feasibility. Hence, Case 3 is completed. □
Therefore, Theorem 1 is valid.

□

5.2 Proof of Proposition 1

Let f ∗ = (s∗, t∗) be a strategy-proof mechanism satisfying (i), (ii), and (iii)
in Proposition 1. Let f = (s, t) be a strategy-proof mechanism such that for
any v ∈ V n and any i ∈ N ,

s(v)vi + ti(v) ≥ s∗(v)vi + t∗i (v). (7)

We show that for any v ∈ V n and any i ∈ N ,

s(v)vi + ti(v) = s∗(v)vi + t∗i (v). (8)

Let v ∈ V n. In the following, we divide the argument into three cases.

Case 1.
∑n

i=1 vi > 0.

From Lemma 2, it is sufficient for (8) to show s(v) = s∗(v). We show this
by the following claims.

Claim 1. s(v) ≥ s∗(v).

Proof of Claim 1. By the same argument as Claim 1 in proof of Theorem 1,
we can show this claim. We omit the details.

Claim 2. s(v) = s∗(v).

Proof of Claim 2. We show this claim by the following induction.

1. If #{i ∈ N : vi ≥ 0} = n, then s(v) = s∗(v).

2. Let m be such that 1 ≤ m ≤ n − 1. Assume that for any v′ ∈ V n

such that #{i ∈ N : v′i ≥ 0} = m + 1, we have s(v′) = s∗(v′). If
#{i ∈ N : vi ≥ 0} = m, then s(v) = s∗(v).
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First Part.
Since

∑n
i=1 vi > 0, there exists i ∈ N such that vi > 0. Since #{i ∈ N : vi ≥

0} = n, by (ii), we have s∗(v) = 1. Since, by Claim 1, we have s(v) ≥ s∗(v),
the first part is valid.

Second Part.
Without loss of generality, we assume that vn < 0. Let v̄n = 0. Then, by the
induction hypothesis, it holds that

s∗(v̄n, v−n) = s(v̄n, v−n).

Then, by Lemma 2, it follows that

t∗(v̄n, v−n) = t(v̄n, v−n).

Then, by SP of f , these imply that

s∗(v̄n, v−n)v̄n + t∗n(v̄n, v−n) = s(v̄n, v−n)v̄n + tn(v̄n, v−n)

≥ s(v)v̄n + tn(v).

Since v̄n = 0, by (i), it means that

0 = t∗n(v̄n, v−n) ≥ tn(v).

Moreover, by (7) and (i), we have

s(v)vn + tn(v) ≥ s∗(v)vn + t∗n(v) = s∗(v)vn.

These imply that

0 ≥ s∗(v)vn − s(v)vn = (s∗(v)− s(v))vn.

Since vn < 0, this implies that

s∗(v) ≥ s(v).

Since, by Claim 1, we have s(v) ≥ s∗(v), the second part is valid. Thus,
Claim 2 is valid.

Therefore, Case 1 is completed. □
Case 2.

∑n
i=1 vi < 0.

By an argument similar to Case 1, we have s(v) = s∗(v). We omit the
details. □
Case 3.

∑n
i=1 vi = 0.

By the same argument as Case 3 in proof of Theorem 1, we can show this
claim. We omit the details. □

Therefore, Proposition 1 is valid.
□
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5.3 Proof of Theorem 2

Note that the welfare loss of the random chair pivotal mechanism at v is

WL(v; fRC) = max{
n∑

i=1

vi, 0} − sRC(v)
n∑

i=1

vi

=


∑n

i=1 vi −
1
n
#{i ∈ N :

∑
k ̸=i vk ≥ 0}

∑n
i=1 vi if

∑n
i=1 vi > 0,

0− 0 if
∑n

i=1 vi = 0,

0− 1
n
#{i ∈ N :

∑
k ̸=i vk > 0}

∑n
i=1 vi if

∑n
i=1 vi < 0,

=


1
n
#{i ∈ N :

∑
k ̸=i vk < 0}

∑n
i=1 vi if

∑n
i=1 vi > 0,

0 if
∑n

i=1 vi = 0,

− 1
n
#{i ∈ N :

∑
k ̸=i vk > 0}

∑n
i=1 vi if

∑n
i=1 vi < 0.

Let (vi)
n
i=1 be a finite sequence of valuations. Let (vi)

n×r
i=1 be r-replica of

(vi)
n
i=1. When

∑n
i=1 vi = 0, since WL((vi)

n×r
i=1 ; f

RC) = 0, it holds that

lim
r→∞

WL((vi)
n×r
i=1 ; f

RC) = 0.

Hence, we consider the case
∑n

i=1 vi ̸= 0. Without loss of generality, we
assume

∑n
i=1 vi > 0. Define β = max{v1, . . . , vn}. Let r̄ be such that

r̄ ×
n∑

i=1

vi > β.

Then, for any r > r̄ and any i ∈ {1, . . . , n× r}, it holds that

n×r∑
k=1

vk − vi = r
n∑

k=1

vk − vi ≥ r
n∑

k=1

vk − β > 0,

that is,

#{i ∈ N :
n×r∑
k=1

vk − vi < 0} = 0.

Hence, we have

lim
r→∞

1

n× r
#{i ∈ N :

n×r∑
k=1

vk − vi < 0}
n×r∑
k=1

vk = 0.

□
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5.4 Proof of Proposition 2

We exhibit an example of a finite sequence of valuations (vi)
n
i=1 such that

lim
r→∞

WL((vi)
n×r
i=1 ; f

PV ) = ∞.

Note that the welfare loss of the pivotal mechanism at v is

WL(v; fPV ) = −(
n∑

i=1

tPV
i (v)).

Let v1 = 1 and v2 = −1. Let (vi)
2×r
i=1 be r-replica of (v1, v2). Note that for

any r′ < r,
tPV
2r′+1((vi)

2×r
i=1 ) + tPV

2r′+2((vi)
2×r
i=1 ) = −1.

Hence, we have
WL((vi)

2×r
i=1 ; f

PV ) = r.

Thus, limr→∞WL((vi)
2×r
i=1 ; f

PV ) = ∞.
□

5.5 Proof of Proposition 3

We exhibit an example of a finite sequence of valuations (vi)
n
i=1 such that

lim
r→∞

WL((vi)
n×r
i=1 ; f

MV ) = ∞.

Note that the welfare loss of the majority voting mechanism at v is

WL(v; fMV ) = max{
n∑

i=1

vi, 0} − sMV (v)
n∑

i=1

vi.

Let v1 = 3 and v2 = v3 = −1. Let (vi)
3×r
i=1 be r-replica of (v1, v2, v3). Note

that for any r,
sMV ((vi)

3×r
i=1 ) = 0.

Hence, we have
WL((vi)

3×r
i=1 ; f

MV ) = r.

Thus, limr→∞WL((vi)
3×r
i=1 ; f

MV ) = ∞.
□
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5.6 Proof of Proposition 4

We exhibit an example of a finite sequence of valuations (vi)
n
i=1 such that

lim
r→∞

WL((vi)
n×r
i=1 ; f

RD) = ∞.

Note that the welfare loss of the random serial dictatorship mechanism at v
is

WL(v; fRD) = max{
n∑

i=1

vi, 0} − sRD(v)
n∑

i=1

vi.

Let v1 = 2 and v2 = −1. Let (vi)
2×r
i=1 be r-replica of (v1, v2). Note that for

any r,

sRD((vi)
2×r
i=1 ) =

1

2
.

Hence, we have

WL((vi)
2×r
i=1 ; f

RD) =
1

2
r.

Thus, limr→∞WL((vi)
2×r
i=1 ; f

RD) = ∞.
□

5.7 Proof of Proposition 5

We exhibit an example of a finite sequence of valuations (vi)
n
i=1 such that

lim
r→∞

WL((vi)
n×r
i=1 ; f

UN) = ∞.

Note that the welfare loss of the unanimity mechanism at v is

WL(v; fUN) = max{
n∑

i=1

vi, 0} − sUN(v)
n∑

i=1

vi.

Let v1 = 2 and v2 = −1. Let (vi)
2×r
i=1 be r-replica of (v1, v2). Note that for

any r,

sUN((vi)
2×r
i=1 ) =

1

2
.

Hence, we have

WL((vi)
2×r
i=1 ; f

UN) =
1

2
r.

Thus, limr→∞WL((vi)
2×r
i=1 ; f

UN) = ∞.
□
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5.8 Proof of Theorem 3

It is obvious that the random chair pivotal mechanism satisfies the axioms.
Hence, we omit the “if” part.

In the following, we show the “only if” part. Let f = (s, t) be a mechanism
satisfying strategy-proofness, budget-balance, equal treatment of equals, and
decision-robustness.

Claim 1. For any v ∈ V n such that
∑

i∈N vi > 0, we have f(v) = fRC(v).

Proof of Claim 1. We first show s(v) = sRC(v). Next, we show t(v) =
tRC(v).

SubClaim 1-1. For any v ∈ V n such that
∑

i∈N vi > 0, we have s(v) =
sRC(v).

Proof of SubClaim 1-1. Let v ∈ V n be such that
∑

i∈N vi > 0. By DR, we
have

s(v) =
1

n
#{i ∈ N :

∑
k ̸=i

vk ≥ 0}.

By definition, for any i ∈ N such that
∑

k ̸=i vk > 0, we have d−i(v) = 1.

Similarly, for any i ∈ N such that
∑

k ̸=i vk < 0, we have d−i(v) = 0. Since∑
i∈N vi > 0,

∑
k ̸=i vk = 0 means vi > 0. Hence, for any i ∈ N such that∑

k ̸=i vk = 0, we have d−i(v) = 1. Thus, it follows that

#{i ∈ N :
∑
k ̸=i

vk ≥ 0} =
∑
i∈N

d−i(v),

which implies that
s(v) = sRC(v).

SubClaim 1-2. For any v ∈ V n such that
∑

i∈N vi > 0, we have t(v) =
tRC(v).

Proof of SubClaim 1-2. Let v ∈ V n be such that
∑

i∈N vi > 0. We show this
SubClaim by the following induction.

1. If sRC(v) = 1, then t(v) = tRC(v).

2. Let m be such that 1 ≤ m ≤ n − 1. Assume that for any v′ ∈ V n

such that
∑

i∈N v′i > 0 and sRC(v′) > n−m
n

, we have t(v′) = tRC(v′). If
sRC(v) = n−m

n
, then t(v) = tRC(v).
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Without loss of generality, we assume that v1 ≥ v2 ≥ · · · ≥ vn.
First Part.

Assume sRC(v) = 1. Suppose to the contrary that there exists j ∈ N such
that tj(v) ̸= tRC

j (v). By BB, we can take j ̸= 1. Notice that for any v̂ ∈ V n

such that sRC(v̂) = 1 and any i ∈ N , it holds that tRC
i (v̂) = 0. That is,

tj(v) ̸= 0. Let v̄j = v1. Since v̄j ≥ vj, from Myerson’s Lemma, we have

s(v̄j, v−j) ≥ s(v) = sRC(v) = 1,

that is,
s(v̄j, v−j) = s(v).

Then, by SP, we also have

tj(v̄j, v−j) = tj(v).

By ETE, we have
t1(v̄j, v−j) = tj(v̄j, v−j) ̸= 0.

Then, by BB, there exists k ̸= 1, j such that tk(v̄j, v−j) ̸= 0. Let v̄k = v1.
Then, by the same argument, we have

t1(v̄j, v̄k, v−jk) = tj(v̄j, v̄k, v−jk) = tk(v̄j, v̄k, v−jk) ̸= 0.

Repeating the same argument, it follows that for any i ∈ N ,

t1(v1, v̄2, . . . , v̄n) = ti(v1, v̄2, . . . , v̄n) ̸= 0,

which contradicts BB. Thus, the first part is valid.
Second Part.

Assume sRC(v) = n−m
n

. Let k ̸= 1. Let v′k ∈ V be such that v′k > vk.
By taking a sufficiently large v′k, we have sRC(v′k, v−k) > n−m

n
. Then, by

induction hypothesis, we have

tk(v
′
k, v−k) = tRC

k (v′k, v−k).

Then, from Myerson’s Lemma, it follows that

tk(vk, v−k)− s(v′k, v−k)v
′
k + s(vk, v−k)vk +

∫ v′k

vk

s(xk, v−k)dxk

= tk(v
′
k, v−k)

= tRC
k (v′k, v−k)

= tRC
k (vk, v−k)− sRC(v′k, v−k)v

′
k + sRC(vk, v−k)vk +

∫ v′k

vk

sRC(xk, v−k)dxk.
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Since
∑

i∈N vi > 0, for any xk ≥ vk, we have
∑

i ̸=k vi + xk > 0, which, by

SubClaim 1-1, implies s(xk, v−k) = sRC(xk, v−k). Hence, we have

tk(vk, v−k) = tRC
k (vk, v−k).

Then, by BB, we also have

t1(v) = tRC
1 (v).

Thus, the second part is valid. Hence, SubClaim 1-2 is valid.

Therefore, Claim 1 is valid.

Claim 2. For any v ∈ V n such that
∑

i∈N vi < 0, we have f(v) = fRC(v).

Proof of Claim 2. By an argument similar to Claim 1, we can show Claim 2.
We omit the details.

Claim 3. For any v ∈ V n such that
∑

i∈N vi = 0 and that for any i ∈ N ,
vi ̸= 0, we have f(v) = fRC(v).

Proof of Claim 3. We first show s(v) = sRC(v). Next, we show t(v) =
tRC(v).

SubClaim 3-1. For any v ∈ V n such that
∑

i∈N vi = 0 and that for any
i ∈ N , vi ̸= 0, we have s(v) = sRC(v).

Proof of SubClaim 3-1. Let v ∈ V n be such that
∑

i∈N vi = 0 and that for
any i ∈ N , vi ̸= 0. Note that for any i ∈ N ,

∑
k ̸=i vk ̸= 0. Then, by taking

v̄1 > v1 sufficiently close to v1, we can have that for any i ∈ N ,

d−i(v) = d−i(v̄1, v−1),

that is,
sRC(v) = sRC(v̄1, v−1).

Since
∑

k ̸=1 vk + v̄1 > 0, by Claim 1, it holds that

s(v̄1, v−1) = sRC(v̄1, v−1).

Similarly, by taking v̂1 < v1 sufficiently close to v1, we can have that for any
i ∈ N ,

d−i(v) = d−i(v̂1, v−1),

that is,
sRC(v) = sRC(v̂1, v−1).
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Since
∑

k ̸=1 vk + v̂1 < 0, by Claim 2, it holds that

s(v̂1, v−1) = sRC(v̂1, v−1).

Then, from Myerson’s Lemma, these imply that

sRC(v) = s(v̂1, v−1) ≤ s(v) ≤ s(v̄1, v−1) = sRC(v),

which means the desired result.

SubClaim 3-2. For any v ∈ V n such that
∑

i∈N vi = 0 and that for any
i ∈ N , vi ̸= 0, we have t(v) = tRC(v).

Proof of SubClaim 3-2. Let v ∈ V n be such that
∑

i∈N vi = 0 and that for
any i ∈ N , vi ̸= 0. Let k ∈ N . Let v′k > vk. Then, for any xk ∈ V
such that vk < xk ≤ v′k, since

∑
i ̸=k vi + xk > 0, by Claim 1, we have

f(xk, v−k) = fRC(xk, v−k). Then, from Myerson’s Lemma, it follows that

tk(vk, v−k)− s(v′k, v−k)v
′
k + s(vk, v−k)vk +

∫ v′k

vk

s(xk, v−k)dxk

= tk(v
′
k, v−k)

= tRC
k (v′k, v−k)

= tRC
k (vk, v−k)− sRC(v′k, v−k)v

′
k + sRC(vk, v−k)vk +

∫ v′k

vk

sRC(xk, v−k)dxk.

Since, by SubClaim 3-1, s(vk, v−k) = sRC(vk, v−k), this implies that

tk(vk, v−k) = tRC
k (vk, v−k).

Thus, SubClaim 3-2 is valid.

Therefore, Claim 3 is valid.

Claim 4. For any v ∈ V n such that
∑

i∈N vi = 0 and that for some i ∈ N ,
vi = 0, we have f(v) = fRC(v).

Proof of Claim 4. We first show s(v) = sRC(v) by constructing15 an arbitrary
value y ∈ [0, 1]. Next, we show t(v) = tRC(v).

SubClaim 4-1. For any v ∈ V n such that
∑

i∈N vi = 0 and that for some
i ∈ N , vi = 0, we have s(v) = sRC(v).

15See the definition of d−i.
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Proof of SubClaim 4-1. Let v ∈ V n be such that
∑

i∈N vi = 0 and that for
some i ∈ N , vi = 0. Let N0 = {i ∈ N : vi = 0} and #N0 = n0. Let
N− = {i ∈ N : vi < 0} and #N− = n−.

Define y = n
n0 (s(v)− 1

n
n−). We show that 0 ≤ y ≤ 1. Note that for any

i ∈ N \ N0,
∑

k ̸=i vk ̸= 0. Hence, by taking v̂1 < v1 sufficiently close to v1,

we can have that for any i ∈ N \N0,

d−i(v) = d−i(v̂1, v−1),

that is, ∑
i∈N\N0

d−i(v) =
∑

i∈N\N0

d−i(v̂1, v−1).

Note that ∑
i∈N\N0

d−i(v) = n−.

Note also that for any i ∈ N0, it holds that

d−i(v̂1, v−1) = 0.

Then, since
∑

i̸=1 vi + v̂1 < 0, by Claim 2, we have

s(v̂1, v−1) = sRC(v̂1, v−1) ≡
1

n

∑
i∈N

d−i(v̂1, v−1) =
1

n
n−.

Since v̂1 < v1, from Myerson’s Lemma, we have

s(v) ≥ s(v̂1, v−1) =
1

n
n−.

Hence, y ≥ 0. Similarly, by taking v̄1 > v1 sufficiently close to v1, we can
have that for any i ∈ N \N0,

d−i(v) = d−i(v̄1, v−1),

that is,

n− =
∑

i∈N\N0

d−i(v) =
∑

i∈N\N0

d−i(v̄1, v−1).

Note that for any i ∈ N0, it holds that

d−i(v̄1, v−1) = 1.

Then, since
∑

i̸=1 vi + v̄1 > 0, by Claim 1, we have

s(v̄1, v−1) = sRC(v̄1, v−1) ≡
1

n

∑
i∈N

d−i(v̄1, v−1) =
1

n
(n0 + n−).
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Since v̄1 > v1, from Myerson’s Lemma, we have

s(v) ≤ s(v̄1, v−1) =
1

n
(n0 + n−).

Hence, y ≤ 1.
For any i ∈ N0, set d−i(v) = y. Then, it follows that

sRC(v) ≡ 1

n

∑
i∈N

d−i(v)

=
1

n

∑
i∈N0

d−i(v) +
1

n

∑
i∈N\N0

d−i(v)

=
1

n
n0y +

1

n
n−

= s(v)− 1

n
n− +

1

n
n− = s(v).

Thus, SubClaim 4-1 is valid.

SubClaim 4-2. For any v ∈ V n such that
∑

i∈N vi = 0 and that for some
i ∈ N , vi = 0, we have t(v) = tRC(v).

Proof of SubClaim 4-2. By an argument similar to SubClaim 3-2, we can
prove SubClaim 4-2. We omit the details.

Thus, Claim 4 is valid.

Therefore, Theorem 3 is valid.
□
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Figure 1: Expected Welfare on Uniform Distribution.
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Figure 2: Expected Welfare on Normal Distribution.
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