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Abstract

We consider the allocation problem of assigning heterogenous objects to a group of
agents and determining how much they should pay. Each agent receives at most one object.
Agents have non-quasi-linear preferences over bundles, each consisting of an object and a
payment. Especially, we focus on the cases: (i) objects are linearly ranked, and as long
as objects are equally priced, agents commonly prefer a higher ranked object to a lower
ranked one, and (ii) objects are partitioned into several tiers, and as long as objects are
equally priced, agents commonly prefer an object in the higher tier to an object in the lower
tier. The minimum price rule assigns a minimum price (Walrasian) equilibrium to each
preference profile. We establish: (i) on a common-object-ranking domain, the minimum
price rule is the only rule satisfying effi ciency, strategy-proofness, individual rationality
and no subsidy, and (ii) on a common-tiered-object domain, the minimum price rule is
the only rule satisfying these four axioms.
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1 Introduction

We consider the allocation problem of assigning heterogenous objects to a group of agents and
determining how much each agent should pay. Each agent receives at most one object. Agents
have non-quasi-linear preferences over bundles, each consisting of an object and a payment.
Non-quasi-linear preferences describe the environment where changing the same amount of
money at different payments for a given object exerts different impacts on the benefit deriving
from consuming that bundle. In addition to the non-quasi-linearity, the allocation problem we
investigate also has the following features, which are exemplified below:
Example A: Central business districts are located in the city center where households are
employed and commute everyday with same public transportation system. Houses are similar
in qualities and sizes, but much different in the distances from the city center. Each household
needs at most one house. As long as houses are equally priced, households prefer a house with
shorter distance to the city center to the one with longer distance, since longer distance takes
more commuting fee and time. However, when several houses have the same distance to the
city center, even if those houses are equally prices, households might have different preferences
on them. Since the purchase of houses has a great impact on the budget of most households,
each household has non-quasi-linear preferences over houses and payments.1

Example B: Several condominiums belong to the same building and similar in qualities and
sizes. Each household needs at most one condominium. As long as condominiums are equally
priced, households commonly prefer condominiums in higher floors to those in lower floors.
However, households might have different preferences on condominiums on the same floor even if
they are equally prices. Similarly to Example 1, each household has non-quasi-linear preferences
over condominiums and payments.
The above examples introruce our special focus of the non-quasi-linear environment:

(i) Objects are linearly ranked, and as long as objects are equally priced, agents commonly
prefer a higher ranked object to a lower ranked one.
(ii) Objects are partitioned into several tiers, and as long as objects are equally priced, agents
commonly prefer an object in the higher tier to an object in the lower tier. However, even if
objects are equally priced, agents may have different preferences over the objects in the same
tier.
We try to identify the (allocation) rules satisfying effi ciency, strategy-proofness, individual

rationality and no subsidy for above-mentioned allocation problems defined on the common-
object-ranking domain and common-tiered-object domain. An allocation specifies how the ob-
jects are allocated and how each agent should pay. A rule is a mapping from the set of agents’
preference profiles (called “domain”) to the set of allocations. The common-object-ranking
domain contains a set of preference profiles where for each preference profile, individual prefer-
ence satisfies money monotonicity, object monotonicity, possibility of compensation, and more
importantly, commonly ranks objects according to some object permutation. The common-
tiered-object domain contains a set of preference profiles where for each preference profile, in

1The housing market in a monocentricity has been investigated under different contents by Kaneko (1983),
Kaneko, et al (2006) and Sai (2016) etc.
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addition to the previous first four assumptions, objects are partitioned into several tiers and
individual preference commonly ranks objects according to the tier partition. An allocation is
effi cient if no one can be better offwithout reducing others’welfare or reducing the total amount
of the payments. Effi ciency describes the property of a rule that for each preference profile,
the rule always selects the effi cient allocation. Strategy-proofness says that for each agent and
each preference profile, truthfully revealing the private information is always a weakly dominant
strategy. Individual rationality says that for each agent and each preference profile, everyone
should be no worse than getting and paying nothing. This property guarantees the agents’
voluntary participations. For the last property, no subsidy, it just says that the payment for
each object is non-negative.
The “minimum price (Walrasian) rule”is an important rule satisfying the above-mentioned

four properties. In our model, the set of equilibrium prices forms a non-empty complete lattice
and the minimum (Walrasian) equilibrium price vector is well defined.2 Theminimum price rule
is a rule that given each preference profile, it always selects an equilibrium with the minimum
price vector. We establish: (i) on a common-object-ranking domain, a rule satisfies effi ciency,
strategy-proofness, individual rationality and no subsidy if and only if it is the minimum price
rule; and (ii) on a common-tiered-object domain, the minimum price rule is the only rule
satisfying these four axioms.
Effi cient and strategy-proof rules for non-quasi-linear preferences have already been studied

by the literature.3 Much attention has been paid to the model where the set of equilibrium prices
or payoffs has the lattice structure. In the one-to-one two-sided matching model with money
transfer, although the set of equilibrium payoffs forms a non-empty complete lattice, no rule
satisfies effi ciency and strategy-proofness, in addition to individual rationality and no pairwise
budget deficit. However, if strategy-proofness is weakened to one-sided strategy-proofness, the
one-sided optimal core rule satisfies this property in addition to effi ciency, individual rationality
and no pairwise budget deficit. Furthermore, it is the only rule satisfying those properties
(Demange and Gale, 1985; Morimoto, 2016).
As a special case of the one-to-one two-sided matching model with money transfer, object

assignment models with money transfer have also been studied.4 In these models, the set of
equilibrium prices also forms a non-empty complete lattice and consequently, the minimum
price (the agent-sided optimal core allocation) rule is well defined. Two strands of literature
address this issue.
One strand analyzes the case where objects are identical. In this case, the minimum price

rule is equivalent to the Vickrey rule (Vickrey, 1961). The Vickrey rule is the only rule satisfying
effi ciency and strategy-proofness, in addition to individual rationality and no subsidy (Saitoh
and Serizawa, 2008; Sakai, 2008). Moreover, the Vickrey rule is the only rule satisfying those

2See Fact 1 and Fact 2 for details.
3Some authors also investigate the strategy-proof and fair rules for the non-quasi-linear preferences, for

example, Alkan et al, (1991), Sun and Yang (2003), Andersson, et al, (2010), Adachi (2014), and Tierney (2015)
etc. Recently, Baisa (2015a, 2015b) investigates the auction models for the non-quasi-linear preferences.

4Assuming each agent at most receives one object is also important for identifying effi cient and strategy-proof
rules for non-quasi-linear preferences. Recently, Kazumura and Serizawa (2015) relax this assumption and show
some impossibility results.
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properties on subdomains including preferences only exhibiting positive or negative income
effects.
The other strand analyzes the case where objects are heterogenous. In this case, the Vickrey

rule is not equivalent to the minimum price rule.5 The minimum price rule is the only rule sat-
isfying effi ciency, strategy-proofness, individual rationality and no subsidy for losers (Morimoto
and Serizawa, 2015). Housing markets with bounded house prices and existing tenants are also
studied recently. In those models, the minimum price rule may not be well defined. However,
with some mild conditions, there still are some (constraint) effi cient and strategy-proof rules
(Andersson and Svensson, 2014; Andersson et al, 2016).
This paper is a further study of the effi cient and strategy-proof rules on the restricted

non-quasi-linear domains for the heterogenous objects case. Although Morimoto and Serizawa
(2015) already establish the characterization on a larger domain by using similar axioms, our
results are independent of them in the following points.
First, our focus are the smaller domains, common-object-ranking domains and common-

tiered-object domains. The above properties of rules are weaker on those domains than on the
domain of Morimoto and Serizawa (2015). When we analyze the allocation problems exemplified
above, the domain of Morimoto and Serizawa (2015) includes unsuitable preferences and their
results cannot be applied.
Second, although we owe some proof structure to Morimoto and Serizawa (2015) to establish

the characterizations, the detailed contents of the proofs are different. In addition, most of our
proofs do not impose any restrictions on the numbers of agents and objects while the assumption
that the number of agents is larger than the number of objects plays an important role in the
proof of Morimoto and Serizawa (2015)’s characterization.
The common-tiered-object domain has already been studied to identify the effi cient and

strategy-proof rules in the two-sided matching model without money transfer and probabilistic
assignment model without money transfer (Kandori et al., 2010; Kesten, 2010; Kesten and
Kurino, 2013; Akahoshi, 2014). However, such domains have not been studied in the object
assignment model with money transfer for non-quasi-linear preferences. Our paper is the first
one that studies the common-tiered-object domain with money transfer.
The remaining parts are organized as follows. Section 2 introduces concepts and establishes

the model. Section 3 defines the minimum price equilibria. Section 4 provides characterizations.
Section 5 gives concluding remarks. All proofs are placed in the Appendix.

2 The model and definitions

Consider an economy with n ≥ 2 agents and m ≥ 1 objects. Denote the set of agents by
N ≡ {1, 2, · · · , n} and the set of (real) objects byM ≡ {1, 2, · · · ,m}. Not receiving an object
is called receiving a null object. We call it object 0. Let L ≡ M ∪ {0}. Each agent receives
at most one object. We denote the object that agent i ∈ N receives by xi ∈ L. We denote the

5Precisely speaking, when objects are heterogenous, the Vickrey rule is equivalent to the minimum price rule
for the quasi-linear preferences (Leonard, 1983). But these two rules are distinct for non-quasi-linear preferences
(Morimoto and Serizawa, 2015).
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amount that agent i pays by ti ∈ R. The agents’common consumption set is L× R, and a
generic (consumption) bundle for agent i is a pair zi ≡ (xi, ti) ∈ L× R. Let 0 ≡ (0,0).
Each agent i has a complete and transitive preference Ri over L× R. Let Pi and Ii be the

strict and indifference relations associated with Ri. A generic class of preferences is denoted by
R. We call (R)n a domain.
The following are basic properties of preferences, which we assume throughout the paper:

Money monotonicity: For each xi ∈ L and each pair ti, t′i ∈ R, if ti < t′i, (xi, ti)Pi (xi, t
′
i).

Object monotonicity: For each xi ∈M and each ti ∈ R, (xi, ti)Pi (0, ti).
Possibility of compensation: For each ti ∈ R and each pair xi, xj ∈ L, there is a pair
tj, t

′
j ∈ R such that (xi, ti)Ri (xj, tj) and (xj, t′j)Ri (xi, ti).

Continuity: For each zi ∈ L× R, the upper contour set at zi, UC(Ri, zi) ≡ {z′i ∈ L× R :
z′iRi zi} and the lower contour set at zi, LC(Ri, zi) ≡ {z′i ∈ L×R : ziRi z

′
i}, are closed.

A preference Ri is classical if it satisfies the four properties just defined. Let RC be the
class of classical preferences. We call (RC)n the classical domain.
Note that by money monotonicity, the possibility of compensation and continuity, for each

Ri ∈ RC , each zi ∈ L × R and each y ∈ L, there is a unique amount Vi(y; zi) ∈ R such that
(y, Vi(y; zi)) Ii zi. We call Vi(y; zi) the valuation of y at zi for Ri.
An object allocation is an n-tuple (x1, . . . , xn) ∈ Ln such that for each pair i, j ∈ N , if xi 6=

0 and i 6= j, then xi 6= xj. We denote the set of object allocations byX. A (feasible) allocation
is an n-tuple z ≡ (z1, . . . , zn) ≡ ((x1, t1), . . . , (xn, tn)) ∈ [L × R]n such that (x1, . . . , xn) ∈ X.
We denote the set of feasible allocations by Z. Given z ∈ Z, we denote its object and payment
components at z by x ≡ (x1, . . . , xn) and t ≡ (t1, . . . , tn), respectively.
A preference profile is an n-tuple R ≡ (Ri)i∈N ∈ Rn. Given R ∈ Rn and N ′ ⊆ N , let

RN ′ ≡ (Ri)i∈N ′ and R−N ′ ≡ RN\N ′ ≡ (Ri)i∈N\N ′ .
Next, we introduce two properties of domains we focus on. First is “common-object-

ranking”. It says that objects are ranked linearly, and for each payment, each agent prefers the
bundle consisting of the object that has the higher rank and that payment to the bundle consist-
ing of the object that has the lower rank and that payment. Let π ≡ (π(1), . . . , π(m), π(m+1))
be a permutation of objects in L, where π(1) denotes the object ranked first, π(2) denotes the
object ranked second, and so on. For every pair x, y ∈ L, x >π y means that x has a higher
rank than y according to π.

A preference Ri ∈ RC ranks objects according to π if for each xi ∈ L and each ti ∈ R,
(π(1), ti)Pi (π(2), ti) · · · Pi (π(m), ti)Pi (π(m+ 1), ti).
Remark 1: Since Ri ∈ RC , object monotonicity implies π(m+ 1) = 0.

Figure 1 illustrates a preference Ri ranking objects according to π for M = {A,B,C} and
π = (π(1), π(2), π(3), π(4)) = (C,B,A, 0).
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Figure 1 Illustration of preference ranking objects according to π

In Figure 1, there are four horizontal lines. The bottom line corresponds to the null object,
the middle two lines to objects A and B, and the top line to object C, respectively. The
intersection of the vertical line and each horizontal line denotes the bundle consisting of the
corresponding object and no payment. For example, the origin 0 denotes the bundle consisting
of the null object and no payment. For each point on one of three horizontal lines, the distance
from that point to the vertical line denotes the payment. For example, zi denotes the bundle
consisting of object A and payment t. By money monotonicity, moving rightward along the
same line makes the agent worse off, i.e., if d > 0, then (A, t)Pi (A, t + d). If the bundles are
connected by a indifference curve, for example, zi and z′i, it means that agent i is indifferent
between them, i.e., zi Ii z′i. In Figure 1, for each t ∈ R, (C, t)Pi (B, t)Pi (A, t)Pi (0, t) and Ri

ranks objects according to π = (C,B,A, 0).
Let RR(π) be the class of preferences ranking objects according to π and note that RR(π)  

RC . A preference profile R ranks objects according to π if each preference in the preference
profile all ranks objects according to π, i.e., for each i ∈ N , Ri ∈ RR(π).
Figure 2 illustrates the preference profile R ranking objects according to π for N = {1, 2},

M = {A,B,C}, and π = (π(1), π(2), π(3), π(4)) = (C,B,A, 0).

Figure 2 Illustration of preference profile ranking objects according to π
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In Figure 2, for each t ∈ R, (C, t)P1 (B, t)P1 (A, t)P1 (0, t) and (C, t)P2 (B, t)P2 (A, t)P2 (0, t).
Thus, R ranks objects according to π.
We call (RR(π))n the common-object-ranking domain if there is an object permutation

π such that for each R ∈ (RR(π))n, R ranks object according to π.
Second is “common-tiered-object ranking”. It says that objects are partitioned into

tiers, and for each payment, each agent prefers the bundle consisting of the object in the higher
tier and that payment to the bundle consisting of the object in the lower tier and that payment.
We describe a tier partition by an indexed family T = {Tl}l∈K of non-empty subsets of L such
that (i) K ≡ {1, 2, · · · , k} and 1 ≤ k ≤ m+ 1, (ii) ∪l∈KTl = L and (iii) for each l, l′ ∈ K with
l 6= l′, Tl ∩ Tl′ = ∅, where Tl denotes the l−th tier for each l ∈ K. For every pair x, y ∈ L,
x >T y means that x is in a higher tier than y according to T .
A preference Ri ∈ RC ranks object according to T if for each ti ∈ R, each x ∈ Tl and

each y ∈ Tl′ with l 6= l′ and l < l′, (x, ti)Pi (y, ti).

Remark 2: (i) Since Ri ∈ RC , object monotonicity implies k ≥ 2 and Tk = {0}.
(ii) If a preference Ri ∈ RC ranks objects according to π, then Ri also ranks objects according
to T such that T1 = {π(1)}, T2 = {π(2)}, · · · , Tm+1 = {π(m+ 1)}.
Figure 3 illustrates a preference Ri ranking objects according to T for M = {A,B,C} and

T =T1 ∪ T2 ∪ T3 with T1 = {B,C}, T2 = {A}, and T3 = {0}.

Figure 3 Illustration of preference ranking objects according to T

In Figure 3, for each t ∈ R, each y ∈ T1, each x ∈ T2, namely x = A, and 0 ∈ T3, we have
(y, t)Pi (A, t)Pi (0, t). Note that (C, s)Pi (B, s)Pi (0, t) and (B, s′)Pi (C, s′)Pi (0, t). Thus, Ri

ranks objects according to T , but does not rank objects according to any object permutation.
Let RT (T ) be the class of preferences ranking objects according to T . Obviously, RT (T ) ⊂

RC . A preference profile R ranks objects according to T if each preference in the profile
all ranks objects according to T , i.e., for each i ∈ N , Ri ∈ RT (T ).
Figure 4 illustrates the preference profile R ranking objects according to T for N = {1, 2},

M = {A,B,C}, and T =T1 ∪ T2 ∪ T3 with T1 = {B,C}, T2 = {A}, and T3 = {0}.
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Figure 4 Illustration of preference profile ranking objects according to T

In Figure 4, for each t ∈ R, (C, t)P1 (B, t)P1 (A, t)P1 (0, t) and (B, t)P2 (C, t)P2 (A, t)P2 (0, t).
Thus, R ranks objects according to T .
We call (RT (T ))n the common-tiered-object domain if there is an indexed family T =

{Ti}i∈K such that for each R ∈ RT (T )n, R ranks objects according to T .
Remark 3: (i) Any common-object-ranking domain is included in the common-tiered-object
domain with respect to some T = {Ti}i∈K . If 2 ≤ k < m+1, such a inclusion relation is strict.
(ii) If k = m + 1, a common-tiered-object domain with k tiers is a common-object-ranking
domain.
(iii) Consider two common-tiered-object domains with respect to T = {Tl}l∈K and T ′ =
{T ′l′}l′∈K′ . If T ′ is coarser than T , then the common-tiered-object domain with respect to
T is a subset of the one with respect to T ′.6
(iv) Since the classical domain is the common-tiered-object domain with the coarsest class of
tiers, that is, k = 2, any common-tiered-object domain is a subset of the classical domain.

An (allocation) rule on Rn is a mapping f from Rn to Z. Given a rule f and R ∈ Rn, we
denote bundle assigned to agent i by fi(R) ≡ (xi(R), ti(R)) where xi(R) denotes the assigned
object and ti(R) the associated payment. We write,

f(R) ≡ (fi(R))i∈N , x(R) ≡ (xi(R))i∈N , and t(R) ≡ (ti(R))i∈N .

Now, we introduce standard properties of rules. An allocation z ≡ ((xi, ti))i∈N ∈ Z is
(Pareto-)effi cient for R ∈ Rn if there is no feasible allocation z′ ≡ ((x′i, t′i))i∈N ∈ Z such that7

(i) for each i ∈ N , z′iRi zi, (ii) for some j ∈ N, z′j Pj zj, and (iii)
∑
i∈N

t′i ≥
∑
i∈N

ti.

For each preference profile, the rule chooses an effi cient allocation.

Effi ciency: For each R ∈ Rn, f(R) is effi cient for R.

6T ′ is coarser than T if for each l ∈ K, there is l′ ∈ K ′ such that Tl ⊆ Tl′ .
7Effi ciency described here takes the perspective of object suppliers, i.e., governments and auctioneers. Object

suppliers only care about their revenues.
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No agent ever benefits from misrepresenting his preference.

Strategy-proofness: For eachR ∈ Rn, each i ∈ N and eachR′i ∈ R, fi(
truth

Ri , R−i)
truth

Ri fi(
lie

R′i, R−i).
8

No agent is ever assigned a bundle that makes him worse off than he would be if he had
received the null object and paid nothing.

Individual rationality: For each R ∈ Rn and each i ∈ N , fi(R)Ri 0.

The payment of each agent is always nonnegative.

No subsidy: For each R ∈ Rn and each i ∈ N , ti(R) ≥ 0.
The final property is a weak variant of no subsidy: if an agent receives the null object, his

payment is nonnegative.
No subsidy for losers: For each R ∈ Rn, if xi(R) = 0, ti(R) ≥ 0.

3 The Minimum price equilibria

In this section, we define the equilibria and minimum price equilibria, and state several facts
related to them. Throughout the section, let us fix R ⊆ RC and obviously, all facts hold on
the common-object-ranking and common-tiered-object domains.

3.1 Definitions of equilibria and minimum price equilibria

Let p ≡ (p1, · · · , pm) ∈ Rm+ be a price vector. The budget set at p is defined as B(p) ≡
{(x, px) : x ∈ L}, where px = 0 if x = 0. Given Ri ∈ R, the demand set at p for Ri is defined
as D(Ri, p) ≡ {x ∈ L : for each y ∈ L, (x, px)Ri (y, py)}.
Definition: Let R ∈ Rn. A pair ((x, t), p) ∈ Z × Rm+ is a (Walrasian) equilibrium for R if

for each i ∈ N , xi ∈ D(Ri, p) and ti = pxi , (E-i)

for each y ∈ M , if for each i ∈ N , xi 6= y, then py = 0. (E-ii)

Condition (E-i) says that each agent receives an object from his demand set and pays its
price. Condition (E-ii) says that the prices of unassigned objects are zero.

Fact 1 (Alkan and Gale, 1990; Alaei et al, 2016) (Existence). For each R ∈ Rn, there is an
equilibrium.

Given R ∈ Rn, we denote the set of equilibria for R by W (R), the set of equilibrium
allocations for R by Z(R), and the set of equilibrium price vectors for R by P (R),
respectively, i.e.,

Z(R) ≡ {z ∈ Z : for some p ∈ Rm+ , (z, p) ∈ W (R)}, and
P (R) ≡ {p ∈ Rm+ : for some z ∈ Z, (z, p) ∈ W (R)}.

8Thomson (2015) introduces this notation.
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Fact 2 (Demange and Gale, 1985) (Lattice property). For each R ∈ Rn, P (R) is a complete
lattice and there is a unique equilibrium price vector p ∈ P (R) such that for each p′ ∈ P (R),
p ≤ p′.
Aminimum price equilibrium (MPE) is an equilibrium whose price vector is minimum.

Given R ∈ Rn, let pmin(R) be the minimum equilibrium price vector for R, Wmin(R) the set
of minimum price equilibria associated with pmin(R) and Zmin(R) the set of minimum
price equilibrium allocations associated with pmin(R), respectively, i.e.,

Zmin(R) ≡ {z ∈ Z : (z, pmin(R)) ∈ Wmin(R)}.

Although there might be several minimum price equilibria, they are indifferent for each
agent, i.e., for each R ∈ Rn, each pair z, z′ ∈ Zmin(R) and each i ∈ N , zi Ii z′i.

3.2 Illustrations of minimum price equilibria

In this subsection, we illustrate the definition of minimum price equilibrium for R ⊆ RC ,
R ⊆ RR(π) and R ⊆ RT (T ) by means of three figures. Since R is fixed, we write pmin instead
of pmin(R) for illustrations.
Figure 5 illustrates a MPE for R ⊆ RC , N = {1, 2, 3}, and M = {A,B,C,D}.

Figure 5 Illustration of minimum price equilibrium for preference profile from
classical domain

In Figure 5, a MPE allocation is as follows: agent 1 receives object A and pays 0. Agent 2
receives object B and pays pminB . Agent 3 receives object D and pays pminD . The prices of objects
A and C are 0.
Let’s see why the allocation z ≡ (z1, z2, z3) is a MPE allocation. First, for each agent

i = 1, 2, 3, zi is maximal for Ri in the budget set {0, (A, pminA ), (B, pminB ), (C, pminC ), (D, pminD )}.
Thus, z is an equilibrium allocation. Let pmin ≡ (pminA , pminB , pminC , pminD ).
Next, let p ≡ (pA, pB, pC , pD) be an equilibrium price. We show p ≥ pmin. By the nonnega-

tivity of prices, pA ≥ 0 = pminA and pC ≥ 0 = pminC .
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If pB < pminB and pD < pminD , then by pA ≥ 0 and pC ≥ 0, all three agents prefer (B, pB) or
(D, pD) to 0, (A, pA) and (C, pC). In such a case, at least one agent cannot receive an object
from his demand set, contradicting (E-i). Thus, pB ≥ pminB or pD ≥ pminD .
If pB < pminB , then pD ≥ pminD . By pA ≥ 0 and pC ≥ 0, both agents 1 and 2 prefer (B, pB) to

0, (A, pA), (C, pC) and (D, pD). In such a case, one of agents 1 and 2 cannot receive the object
he demands, contradicting (E-i). Thus, pB ≥ pminB .
If pD < pminD , then by pA ≥ 0, pB ≥ pminB and pC ≥ 0, both agents 1 and 3 prefer (D, pD) to

0, (A, pA), (B, pB) and (C, pC). In such a case, one of agents 1 and 3 cannot receive the object
he demands, contradicting (E-i). Thus, pD ≥ pminD . Thus, p ≥ pmin and (z, pmin) is a MPE.

In Figure 5, the minimum equilibrium prices may not be monotonic with respect to the
object rankings and which objects are unassigned depends on the preference profile we choose.
However, when R ⊆ RR(π) or R ⊆ RT (T ), the minimum equilibrium prices are monotonic
with respect to the object rankings or object-tier rankings. Unassigned objects are the ones
that have the lower ranks or are in the lower tiers. We specify these features in the following.
Figure 6 illustrates the MPE for R ⊆ RR(π), N = {1, 2, 3}, M = {A,B,C,D}, and

π = (D,C,B,A, 0).

Figure 6 Illustration of minimum price equilibrium for preference profile from
common-object-ranking domain

Similarly to Figure 5, (z, pmin) is a MPE in Figure 6. Note that pminD > pminC > pminB = pminD .
For R ⊆ RR(π), the minimum equilibrium price of object that has the higher rank is larger
than that of object that has the lower rank. This feature is summrized as Remark 4.

Remark 4: Let µ ≡ min{n,m + 1}. In the MPE for R ⊆ RR(π), (i) if m + 1 ≤ n, then
µ = m+ 1, pminπ(1)(R) > · · · > pminπ(m)(R) > pminπ(µ)(R) = 0, and all the objects are assigned, and (ii)
if m + 1 > n, then µ = n, pminπ(1)(R) > · · · > pminπ(µ)(R) = · · · = pminπ(m)(R) = 0 and objects ranked
lower than π(µ) are unassigned.9

9To see (i), let m + 1 ≤ n. Then, µ = m + 1 implies π(µ) = 0 and pminπ(µ)(R) = 0. µ = m + 1 also
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Figure 7 illustrates the MPE for R ⊆ RT (T ), N = {1, 2, 3}, M = {A,B,C,D}, and
T = T1 ∪ T2 ∪ T3 with T1 = {C,D}, T2 = {A,B}, and T3 = {0}.

Figure 7 Illustration of minimum price equilibrium for preference profile from
common-tiered-object domain

Similarly to Figure 5, (z, pmin) is a MPE in Figure 7. Note that min{pminC , pminD } > pminA =
pminB = 0. In the MPE for R ⊆ RT (T ), the prices of the objects in higher tiers are larger than
those in lower tiers. Remark 5 is parrell to Remark 4.

Remark 5: Let µ ≡ min{n,m+ 1}. Let l0 ∈ K be such that
∑l0−1

l=1 |Tl| < µ ≤
∑l0

l=1 |Tl|.10 In
the MPE for R ⊆ RT (T ), (i) if l < l0, for each x ∈ Tl, pminx (R) > 0 and x is assigned to some
agent, (ii) if l < l′ ≤ l0, min{pminx (R) : x ∈ Tl} > max{pminx (R) : x ∈ Tl′}, (iii) there is x ∈ Tl0
such that pminx (R) = 0 and x is assigned to some agent, and (iv) if l > l0, for each x ∈ Tl,
pminx (R) = 0 and x is unassigned.11

implies that there is i ∈ N such that xi = 0. If there is x ∈ M such that pminx (R) = 0, then (x, pminx (R))Pi 0,
contradicting 0 ∈ D(Ri, pmin(R)). Thus, for each x ∈M , we have pminx (R) > 0. Thus, by (E-ii), all the objects
are assigned. To see pminπ(1)(R) > · · · > pminπ(m)(R) > 0, by contradiction, suppose that there is a pair x, y ∈ M
such that y >π x ≥π π(µ) and pminx (R) ≥ pminy (R). Let j ∈ N be such that xj = x. By (E-i), we have
x ∈ D(Rj , pmin(R)). By Rj ∈ RR(π), we have (y, pminy (R))Pj (x, p

min
x (R)), contradicting x ∈ D(Rj , pmin(R)).

Thus 0 = pminπ(µ)(R) < pminπ(µ−1)(R) < · · · < pminπ(1)(R).
To see (ii), let m+ 1 ≥ n. Then, µ = n. If there is a pair x, y ∈M such that x ≥π π(µ) and x is unassinged,

and y <π π(µ) and y is assigned to some i ∈ N , then, by (E-i), we have y ∈ D(Ri, pmin(R)). By (E-ii), we have
pminx (R) = 0. Thus, by Ri ∈ RR(π), we have (x, pminx (R))Pi (y, p

min
y (R)), contradicting y ∈ D(Ri, p

min(R)).
Thus, for each x ∈ M such that x ≥π π(µ), x is assigned to some agent. By µ = n, objects ranked lower than
π(µ) are unassigned. Thus, by (E-ii), we have pminπ(µ+1)(R) = · · · = pminπ(m)(R) = 0. Similarly to (i), we can show
pminπ(1)(R) > · · · > pminπ(µ)(R) ≥ pminπ(µ+1)(R) = 0. If p

min
π(µ)(R) > 0, then {π(1), · · · , π(µ)} is weakly underdemanded,

contradicting Fact 3. Thus pminπ(µ)(R) = 0.
10If l0 = 1, then

∑l0−1
l=1 |Tl| = 0.

11To see (i), let l < l0. By contradiction, suppose there is x ∈ Tl such that pminx (R) = 0. Then, by l < l0,∑l0−1
l′=1 |Tl′ | < µ ≤ n, (E-i), and (E-ii), there is y ∈M and i ∈ N such that y <T x and y ∈ D(Ri, pmin(R)). By

pminx (R) = 0 and Ri ∈ RT (T ), we have (x, pmin(R))Pi (y, pmin(R)), contradicting y ∈ D(Ri, pmin(R)). Thus, if
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3.3 Overdemanded and underdemanded sets

In the following, we define the concepts of an “overdemanded set”and a “(weakly) underde-
manded set”to characterize minimum equilibrium price vector.
Given p and M ′ ⊆ M , let ND(p,M ′) ≡ {i ∈ N : D(Ri, p) ⊆ M ′} and NWD(p,M ′) ≡ {i ∈

N : D(Ri, p) ∩M ′ 6= ∅}.
Example 1. Figure 5 illustrates ND(p,M ′) and NWD(p,M ′) for M ′ = {A}, {A,B} and
{A,B,D}. For M ′ = {A}, we have ND(pmin, {A}) = ∅ and NWD(pmin, {A}) = {1}. For
M ′ = {A,B}, we have ND(pmin, {A,B}) = {2} and NWD(pmin, {A,B}) = {1, 2}. For M ′ =
{A,B,D}, we have ND(pmin, {A,B,D}) = {1, 2, 3} and NWD(pmin, {A,B,D}) = {1, 2, 3}.
Given a set S, |S| denotes the cardinality of S.

Definition: (i) A non-empty set M ′ ⊆ M of objects is overdemanded at p for R if∣∣ND(p,M ′)
∣∣ > |M ′|.

(ii) A non-empty set M ′ ⊆M of objects is (weakly) underdemanded at p for R if

[∀x ∈M ′, px > 0]⇒
∣∣NWD(p,M ′)

∣∣ (≤) < |M ′| .
By using “overdemanded set”and “(weakly) underdemanded set”, we can characterize the

minimum equilibrium price vector.
Fact 3 (Morimoto and Serizawa, 2015).12Let R ∈ Rn. A price vector p is a minimum equilib-
rium price vector forR if and only if no set is overdemanded and no set is weakly underdemanded
at p for R.
Example 2. Figure 5 illustrates Fact 3. First,

∣∣ND(pmin, {A})
∣∣ = 0 < |{A}| = 1 and∣∣ND(pmin, {C})

∣∣ = 0 < |{C}| = 1. Similarly, {B} nor {D} are overdemanded. Then,∣∣ND(pmin, {A,B})
∣∣ = 1 < |{A,B}| = 2 and ∣∣ND(pmin, {A,C})

∣∣ = 0 < |{A,C}| = 2. Similarly,
l < l0, for each x ∈ Tl, pminx (R) > 0. By (E-ii), x is assigned to some agent.
To see (ii), let l < l′ ≤ l0, x ∈ Tl, and y ∈ Tl′ be such that pminx (R) = min{pminx (R) : x ∈ Tl} and

pminy (R) = max{pminx (R) : x ∈ Tl′}. By contradiction, suppose pminx (R) ≤ pminy (R). By (i) and l < l0,
0 < pminx (R) ≤ pminy (R). Thus, by (E-i) and (E-ii), there is j ∈ N such that y ∈ D(Rj , pmin(R)). By x >T y,
Rj ∈ RT (T ), and pminx (R) ≤ pminy (R), we have (x, pmin(R))Pj (y, pmin(R)), contradicting y ∈ D(Rj , pmin(R)).
Thus, pminx (R) > pminy (R).
To see (iii), if n ≥ m + 1, then µ = m + 1. Thus Tl0 = {0} and pmin0 (R) = 0. By n ≥ m + 1, there is

i ∈ N such that xi = 0. If n < m + 1, then µ = n. By Fact 3, there is x ∈ M such that pminx (R) = 0 and x
is assigned to some agent. Then there is l ∈ K such that x ∈ Tl, and by (i), l ≥ l0. If l > l0, then, for each
x ∈ Tl0 , pminx (R) > 0. If not, then there is y ∈ Tl0 such that pminy (R) = 0. Then, (y, pmin(R))Pi (x, pmin(R)),
contradicting x ∈ D(Ri, pmin(R)). Let l′′ ≤ l0. Thus, for each x ∈ Tl′′ , pminx (R) > 0. However, by the definition
of l0, ∪l∈{1,2,··· ,l0}Tl is weakly underdemanded. This contradicts Fact 3. Thus l = l0.
To see (iv), let l > l0. By contradiction, suppose there is x ∈ Tl such that pminx (R) > 0. Then, by (E-

ii), there is i ∈ N such that x ∈ D(Ri, p
min(R)). If there is l′ < l and y ∈ Tl′ such that pminy (R) = 0,

then (y, pmin(R))Pi (x, pmin(R)), contradicting x ∈ D(Ri, p
min(R)). Thus, for each l′ < l and each y ∈ Tl′ ,

pminy (R) > 0. However, this contradicts (iii). Thus, if l > l0, for each x ∈ Tl, pminx (R) = 0. If there is x ∈ Tl
such that x is assigned to some i ∈ N , then, by the definition of l0 and l > l0, there is y >T x such that y is
unassigned. Thus, by (E-ii), pminy (R) = 0. Then, y, pmin(R))Pi (x, pmin(R)), contradicting x ∈ D(Ri, pmin(R)).
Thus, if l > l0, for each x ∈ Tl, x is unassigned.
12Mishra and Talman (2010) establish the parallel characterization for quasi-linear preferences.
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{A,D}, {B,D}, {B,C} nor {C,D} are overdemanded. Furthermore,
∣∣ND(pmin, {A,B,C})

∣∣ =
1 < |{A,B,C}| = 3, and

∣∣ND(pmin, {A,B,D})
∣∣ = 3 ≤ |{A,B,D}| = 3. Similarly, {A,C,D}

nor {B,C,D} are overdemanded. Thus, no set is ovedemanded. For the objects with pos-
itive prices, namely, B and D,

∣∣NWD(pmin, {B})
∣∣ = 2 > |{B}| = 1,

∣∣NWD(pmin, {D})
∣∣ =

2 > |{D}| = 1 and
∣∣NWD(pmin, {B,D})

∣∣ = 3 > |{B,D}| = 2. Thus, no set of is weakly
underdemanded.
Fact 4 (Demange and Gale, 1985; Miyake, 1998; Morimoto and Serizawa, 2015; Alaei et al,
2016)(Demand connectedness). Let R ∈ Rn and (z, pmin(R)) ∈ Wmin(R). For each x ∈ M
with pminx (R) > 0, there is a sequence {ik}Kk=1 of K distinct agents such that (i) xi1 = 0 or
pminxi1

(R) = 0, (ii) for each k ∈ {2, · · · , K}, xik 6= 0 and pminxik
(R) > 0, (iii) xiK = x and (iv) for

each k ∈ {1, · · · , K − 1}, {xik , xik+1} ∈ D(Rik , p
min(R)).

Example 3. Figures 5 and 6 illustrate Fact 4. In Figure 5, objects B(= x2) and D(= x3) are
connected to object A(= x1) by agent 1’s demand. In Figure 6, object D(= x3) is connected
to object C(= x2) by agent 2’s demand. Object C(= x2) is connected to object B(= x1) by
agent 1’s demand.

3.4 Minimum price rule

Definition: A rule f on Rn is called a minimum price (MP) rule if for each R ∈ Rn,
f(R) ∈ Zmin(R).
The following fact shows the characterization of minimum price rule on (RC)n.

Fact 5 (Morimoto and Serizawa, 2015). Let R ≡ RC and n ≥ m+ 1. A rule f on Rn satisfies
effi ciency, strategy-proofness, individual rationality and no subsidy for losers if and only if it is
a minimum price rule: for each R ∈ Rn, f(R) ∈ Zmin(R).

4 Characterizations of minimum price rule on the common-object-
ranking and common-tiered-object domains

First, we consider the common-object-ranking domain. We show that the minimum price rule
is the only rule satisfying effi ciency, strategy-proofness, individual rationality and no subsidy
on the common-object-ranking domain.
Theorem 1: Let R ≡ RR(π). A rule f on Rn satisfies effi ciency, strategy-proofness, individual
rationality and no subsidy if and only if it is a minimum price rule: for each R ∈ Rn, f(R) ∈
Zmin(R).
Next, we consider a common-tiered-object domain with respect to an indexed family of

tiers T = {Ti}i∈K with |K| = k and 2 ≤ k ≤ m + 1. By Remark 3(ii), Theorem 1 implies
the characterization of k = m + 1. Recall that µ ≡ min{n,m + 1} and l0 ∈ K are such that∑l0−1

l=1 |Tl| < µ ≤
∑l0

l=1 |Tl|.
Theorem 2: Let R ≡ RT (T ) and 2 ≤ k < m + 1. Assume that |Tl0| = 1. Then, a rule f on
Rn satisfies the axioms of Theorem 1 if and only if it is a minimum price rule: for each R ∈ Rn,
f(R) ∈ Zmin(R).
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Remark 6: (i) In Theorem 2, for the case of k = 2, |Tl0| = 1 implies n ≥ m + 1. Then the
characterization result of Theorem 2 coincides with that of Morimoto and Serizawa (2015).
(ii) In contrast to Fact 5, no additional assumption is made on the numbers of agents and
objects for Theorems 1 and 2

Remark 7: In Morimoto and Serizawa (2015), effi ciency, strategy-proofness, individual ratio-
nality, and no subsidy for losers implies no subsidy. In our characterizations, such an argument
still holds when n ≥ m + 1. However, for the case where n ≤ m, no subsidy is not implied by
effi ciency, strategy-proofness, individual rationality, and no subsidy for losers. Consider the MP
rule with negative entry fee on a common-object-ranking domain. This rule satisfies effi ciency,
strategy-proofness, and individual rationality.13 Since n ≤ m, no agent is a loser and such a rule
satisfies no subsidy for losers. However, for the agent who receives π(n), he receives a subsidy
(the negative entry fee). A similar example can be given on a common-tiered-object domain.
The "only if" parts of Theorems 1 and 2 fail if we drop any one of the four axioms. We fix

R ≡ RR(π) and take Theorem 1 as an example.

Example 1 (Dropping Effi ciency). Let f be the no-trade rule that for each preference
profile, it assigns (0, 0) to each agent. Then, f satisfies strategy-proofness, individual rationality,
and no subsidy, but not effi ciency.

Example 2 (Dropping Strategy-proofness). Let f be the maximum equilibrium rule that
for each preference profile, it selects the maximum price equilibrium. By Facts 1 and 2, for each
preference profile, there is a unique maximum equilibrium price. Then, f satisfies effi ciency,
individual rationality, and no subsidy, but not strategy-proofness.

Example 3 (Dropping Individual rationality). Let f be the MP rule with positive entry
fee for each agent and n ≥ m+1. Then, f satisfies effi ciency, strategy-proofness, and no subsidy,
but not individual rationality.14

Example 4 (Dropping No subsidy). Let f be the MP rule with negative entry fee for each
agent and n ≤ m. Then, f satisfies effi ciency, strategy-proofness, and individual rationality,
but not no subsidy.15

Similar examples can be given to show the independence of axioms for Theorem 2.

5 Concluding Remark

We use effi ciency, strategy-proofness, individual rationality, and no subsidy to characterize the
MP rule on the common-object-ranking and common-tiered-object domains. Two open ques-
tions remain. The first is to introduce indifference to the preferences ranking objects according
to π and the preferences ranking objects according to T . The second is to investigate the case
where there may be several copies for each object. Our proofs depend on the heterogenous

13See Morimoto and Serizawa (2015).
14n ≥ m + 1 implies that there is i ∈ N such that xi = 0. Since i pays a positive entry fee ei, then,

(0, 0)Pi (0, ei), violating individual rationality.
15See Remark 7 for details.
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objects assumption. We believe the MP rule is still the only rule satisfying those four axioms
for above-mentioned open questions.
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Appendix
We owe Morimoto and Serizawa (2015) for the structure of proofs that they have developed.

However, we emphasize that our domains are smaller than theirs and their proofs often employ
preferences outside our domains. Thus, even in the cases where their proof techniques can be
applied, we have to modify them carefully and in some cases we need to develop new proof
techniques.

Part A: Proof of Theorems 1
Let R ⊆ RR(π). Recall that π = (π(1), . . . , π(m), π(m+1)), π(m+1) = 0, µ ≡ min{n,m+

1}, and for every pair x, y ∈ L, x >π y means that x has a higher rank than y according to π.
Let M0 ≡ {π(1), · · · , π(µ)} and M1 ≡ {π(1), · · · , π(µ− 1)}.
Lemma A.1: Let f satisfy effi ciency. Let R ∈ (R)n. Then, (a) for each x ∈ M0, there is

i ∈ N such that xi(R) = x, and (b) for each i ∈ N, xi(R) ∈M0.

Proof : (a) By contradiction, suppose that there is x ∈ M0 such that for each i ∈ N ,
xi(R) 6= x. By the definition of M0, there is i ∈ N such that x >π xi(R).
Define z′ by: (i) z′i ≡ (x, ti(R)), and (ii) for each j ∈ N\{i}, z′j ≡ fj(R). Then, by R ∈ (R)n,

(x, ti(R)) Pi (π(µ), ti(R)). Thus, z′ dominates f (R), contradicting effi ciency.
(b) If n ≥ m + 1 (i.e., µ = m + 1 and π(µ) = 0), then M0 = L and (b) holds trivially. If

n ≤ m (i.e., µ = n and π(µ) >π 0), then |M0| = n and (b) follows from (a). Q.E.D.

Lemma A.2: Let f satisfy effi ciency, strategy-proofness, and individual rationality. Let
R ∈ (R)n. Then, for each i ∈ N , fi(R)Ri (π(µ), 0).

Proof : By contradiction, suppose that there is i ∈ N such that (π(µ), 0) Pi fi (R).
Claim: For each x ∈M0, Vi(x; fi(R)) > 0.
By contradiction, suppose that there is x ∈M0 such that Vi(x; fi(R)) ≤ 0. Then,

fi (R) Ii (x, Vi(x; fi(R))) Ri
Vi(x;fi(R))≤0

(x, 0) Ri
x∈M0

(π(µ), 0) ,

contradicting (π(µ), 0) Pi fi (R). Thus the Claim holds.
By the above Claim, there is R̂i such that for each x ∈ M0, V̂i(x;0) < Vi(x; fi(R)). By

Lemma A.1(b), xi(R̂i, R−i) ∈M0. Thus,

ti(R̂i, R−i) ≤
individual rationality

V̂i(xi(R̂i, R−i);0) < Vi(xi(R̂i, R−i); fi(R)).

Thus fi(
lie

R̂i, R−i)
truth

Pi fi(
truth

Ri , R−i), contradicting strategy-proofness. Q.E.D.

Lemma A.3: Let f satisfy the four axioms of Theorem 1. Let R ∈ (R)n. Then, for each
i ∈ N , if xi(R) = π(µ), ti(R) = 0.

Proof : Let i ∈ N be such that xi(R) = π(µ). By Lemma A.2, fi(R)Ri (π(µ), 0). Thus
ti(R) ≤ 0 while no subsidy implies ti(R) ≥ 0. Thus, ti(R) = 0. Q.E.D.

Lemma A.4: Let R ∈ (R)n, i, j ∈ N and z ∈ Z be such that ziRi zj and zi Pj zj. Assume
that tj − Vi(xj; zi) < Vj(xi; zj)− ti. Then, there is z′ ∈ Z that dominates z.

17



Proof : Let t′i ≡ Vi(xj; zi) and t′j ≡ ti + tj − Vi(xj; zi).
Define z′ by: (i) z′i ≡ (xj, t

′
i), (ii) z

′
j ≡ (xi, t

′
j), and (iii) for each k ∈ N\{i, j}, z′k ≡ zk.

Then, z′i Ii zi, and for each k ∈ N\{i, j}, z′k Ik zk. Since tj + ti − Vi(xj; zi) < Vj(xi; zj), then
z′j Pj zj. Moreover,∑

k∈N

t′k =
∑

k∈N\{i,j}

t′k + t′i + t′j =
∑

k∈N\{i,j}

t′k + ti + tj =
∑
k∈N

tk.

Thus, z′ dominates z. Q.E.D.

Given zi ≡ (xi, ti) ∈ L×R and Ri ∈ R, R′i ∈ R is a semi-Maskin monotonic transformation
of Ri at zi if (i) for each y <π xi, V ′i (y; zi) < 0, and (ii) for each y >π xi, V ′i (y; zi) < Vi(y; zi).
Let RSMM(Ri, zi) be the set of semi-Maskin monotonic transformations of Ri at zi.

Lemma A.5: Let f satisfy strategy-proofness and no subsidy. Let R ∈ (R)n and R′i
∈ RSMM(Ri, fi(R)). Then, fi(R′i, R−i) = fi(Ri, R−i).

Proof : Strategy-proofness implies

fi(
truth

R′i , R−i)
truth

R′i fi(
lie

Ri, R−i).

Thus, ti(R′i, R−i) ≤ V ′i (xi(R
′
i, R−i); fi(R))).

If xi(R′i, R−i) <π xi(R), then by R′i ∈ RSMM(Ri, fi(R)), we have:
ti(R

′
i, R−i) ≤ V ′i (xi(R

′
i, R−i); fi(R))) < 0, contradicting no subsidy. Thus, xi(R

′
i, R−i) ≥π xi(R).

Suppose xi(R′i, R−i) >π xi(R). Then by ti(R′i, R−i) ≤ V ′i (xi(R
′
i, R−i); fi(R))),

fi(R
′
i, R−i)Ri (xi(R

′
i, R−i), V

′
i (xi(R

′
i, R−i); fi(R))).

Thus by R′i ∈ RSMM(Ri, fi(R)),

(xi(R
′
i, R−i), V

′
i (xi(R

′
i, R−i); fi(R)))Pi (xi(R

′
i, R−i), Vi(xi(R

′
i, R−i); fi(R))) Ii fi(R).

Thus, fi(
lie

R′i, R−i)
truth

Pi fi(
truth

Ri , R−i), violating strategy-proofness. Thus xi(R′i, R−i) = xi(R).

Again, by strategy-proofness, fi(
truth

Ri , R−i)
truth

Ri fi(
lie

R′i, R−i) and fi(
truth

R′i , R−i)
truth

R′i fi(
lie

Ri, R−i).
Thus, by xi(R′i, R−i) = xi(R), we have ti(R′i, R−i) = ti(R). Q.E.D.

GivenR ∈ (R)n, x ∈ L and z ∈ [L×R]n, let ρx(R) ≡ (ρx1(R), · · · , ρxn(R)) be the permutation
on N defined by Vρxn(R)(x; zρxn(R)) ≤ · · · ≤ Vρx1 (R)(x; zρx1 (R)). For each k ∈ N , let C

k(R, x; z) be
the k-th highest valuation of x from z for R, i.e., Ck(R, x; z) ≡ Vρxk(R)(x; zρxk(R)).

Lemma A.6 (Morimoto and Serizawa, 2015): Let f satisfy the four axioms of Theorem
1. Let R ∈ (R)n, i ∈ N and x ≡ xi(R). Then, ti(R) ≥ Cµ(R, x; (π(µ), 0)).

Proof : By Lemma A.1(b), x ∈M0 and x ≥π π(µ).
Case 1: x = π(µ). By Lemma A.3, ti(R) = 0 = Cµ(R, π(µ); (π(µ), 0)).
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Case 2: x >π π(µ). By contradiction, suppose that ti(R) < Cµ(R, x; (π(µ), 0)). By x >π

π(µ), there is R′i ∈ RSMM(Ri, fi(R)) such that −V ′i (π(µ); fi(R)) < Cµ(R, x; (π(µ), 0))− ti(R).
By Lemma A.5, fi(R′i, R−i) = fi(Ri, R−i). Thus

−V ′i (π(µ); fi(R′i, R−i)) < Cµ(R, x; (π(µ), 0))− ti(R′i, R−i).

By Lemmas A.1(b) and A.3, there is j ∈ N\{i} such that fj(R′i, R−i) = (π(µ), 0) and
Vj(x; (π(µ), 0)) ≥ Cµ(R, x; (π(µ), 0)). Thus,

ti(R
′
i, R−i)− V ′i (π(µ); fi(R′i, R−i)) < Cµ(R, x; (π(µ), 0)) ≤ Vj(x; (π(µ), 0)).

Define z′ by:
(i) z′i ≡ (π(µ), V ′i (π(µ); fi(R′i, R−i))),
(ii) z′j ≡ (x, ti(R′i, R−i)− V ′i (π(µ); fi(R′i, R−i))), and
(iii) for each k ∈ N\{i, j}, z′k ≡ fk(R

′
i, R−i).

Then, z′i I
′
i fi(R

′
i, R−i) and z

′
j Pj fj(R

′
i, R−i). Furthermore,

V ′i (π(µ); fi(R
′
i, R−i))+ti(R

′
i, R−i)−V ′i (π(µ); fi(R′i, R−i))+

∑
k∈N\{i,j}

tk(R
′
i, R−i) =

∑
k∈N

tk(R
′
i, R−i).

Thus, z′ dominates f(R′i, R−i), contradicting effi ciency. Q.E.D.

Lemma A.7 (Morimoto and Serizawa, 2015): Let f satisfy the four axioms of Theorem
1. Let R ∈ (R)n and i ∈ N be such that x ≡ xi(R) >π π(µ). Then, Vi(x; (π(µ), 0)) ≥
Cµ−1(R, x; (π(µ), 0)).

Proof : By contradiction, suppose that Vi(x; (π(µ), 0)) < Cµ−1(R, x; (π(µ), 0)). Then,

Vi(x; (π(µ), 0)) ≤ Cµ(R, x; (π(µ), 0)) ≤
Lemma A.6

ti(R) ≤
Lemma A.2

Vi(x; (π(µ), 0)).

Thus, ti(R) = Vi(x; (π(µ), 0)) = Cµ(R, x; (π(µ), 0)) < Cµ−1(R, x; (π(µ), 0)). Thus, Vi(π(µ); fi(R)) =
0 and ∣∣{j ∈ N\{i} : Vj(x; (π(µ), 0)) ≥ Cµ−1(R, x; (π(µ), 0))}

∣∣ = µ− 1.
By xi(R) = x >π π(µ), µ = min{n,m + 1} ≥ 2, and Lemmas A.1 (b) and A.3, there is

j ∈ N\{i} such that fj(R) = (π(µ), 0) and Vj(x; (π(µ), 0)) ≥ Cµ−1(R, x; (π(µ), 0)). Thus

Vj(x; (π(µ), 0)) > Cµ(R, x; (π(µ), 0)) = ti(R).

By Vi(π(µ); fi(R)) = 0 and tj(R) = 0,

tj(R)− Vi(π(µ); fi(R)) = 0 < Vj(x; (π(µ), 0))− ti(R).

By Lemma A.4, fi(R) is not effi cient, a contradiction. Q.E.D.

Given R ∈ (R)n, let Zπ(µ)(R) ≡ {z ∈ Z : ziRi (π(µ), 0) for each i ∈ N}.

19



Lemma A.8: Let f satisfy the four axioms of Theorem 1. Let R ∈ (R)n, i ∈ N , x ∈ M1

and z ∈ Zπ(µ). Assume that
(8-i) for each j ∈ N\{i}, fj(R)Rj zj,
(8-ii) Vi(x; ((π(µ), 0)) > C1(R−i, x; z),
(8-iii) there is ε > 0 such that Vi(x; ((π(µ), 0))− C1(R−i, x; z) > 2ε, and for each y ∈ M1 such
that y <π x,

Vi(y; ((π(µ), 0)) < min{Cµ−1(R, y; ((π(µ), 0)), Vi(x; ((π(µ), 0))− C1(R−i, x; z)− 2ε},

and
(8-iv) for each j 6= i, each t ∈ [0, Vi(m;0)], each t′ ∈ [0, Vj(m;0)] and each y >π x,

t′ − Vi(x; (y, t′)) < Vj(y; (x, t))− t.
Then xi(R) = x.
Proof : By contradiction, suppose xi(R) 6= x. By Lemma A.1(b), there is j ∈ N\{i} such

that xj(R) = x.
Note

tj(R) ≤
(8-i)

Vj(x; zj) ≤ C1(R−i, x; z) <
(8-ii)

Vi(x; ((π(µ), 0)).

Thus, there is R′j ∈ RSMM(Rj, fj(R)) such that
(i) −V ′j ((π(µ); fj(R)) = Vi(x; ((π(µ), 0))− C1(R−i, x; z)− ε,
(ii) for each y ∈M1 such that y <π xj(R), V ′j (y; (π(µ), 0)) > Vi(x; (π(µ), 0))−C1(R−i, x; z)−2ε,
and,
(iii) for each y >π xj(R), (8-iv) holds with respect to the pair Ri and R′j.
By R′j ∈ RSMM(Rj, fj(R)) and Lemma A.5, fj(R′j, R−j) = fj(R). Thus by (i),

(i’) −V ′j ((π(µ); fj(R′j, R−j)) = Vi(x; ((π(µ), 0))− C1(R−i, x; z)− ε.
Let y ≡ xi(R

′
j, R−j). By fj(R

′
j, R−j) = fj(R), y 6= x. If y >π x, then by (iii),

tj(R
′
j, R−j)− Vi(x; fi(R′j, R−j)) < V ′j (y; fj(R

′
j, R−j))− ti(R′j, R−j).

By Lemma A.4, f(R′j, R−j) is not effi cient, a contradiction. Thus, by y 6= x, y <π x.
If y ∈M1, then

Vi(y; (π(µ), 0)) <
(8-iii)

Vi(x; ((π(µ), 0))− C1(R−i, x; z)− 2ε <
(ii)
V ′j (y; (π(µ), 0)).

Since (8-iii) also implies Vi(y; (π(µ), 0)) < Cµ−1(R, y; (π(µ), 0)), then we have

Vi(y; (π(µ), 0)) < Cµ−1((R′j, R−j), y; (π(µ), 0)).

By Lemma A.7, this contradicts y ∈M1. Thus, y <π x but y /∈M1.
By Lemmas A.1(b) and y /∈M1, xi(R′j, R−j) = π(µ). Thus, by Lemma A.3, ti(R′j, R−j) = 0.

Thus, by (i’) and tj(R′j, R−j) = tj(R) ≤ C1(R−i, x; z),

ti(R
′
j, R−j)− V ′j (π(µ); fj(R′j, R−j)) < Vi(x; ((π(µ), 0))− C1(R−i, x; z)

≤ Vi(x; (π(µ), 0))− tj(R′j, R−j).
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Thus, by Lemma A.4, f(R′j, R−j) is not effi cient, a contradiction. Thus xi(R) = x. Q.E.D.

Proposition A.1: Let f satisfy the four axioms of Theorem 1. Let R ∈ (R)n and z ∈
Zmin(R). Then, for each i ∈ N , fi(R)Ri zi.

Proof : Without loss of generality, let π = (π(1), π(2) · · · , π(m + 1)) = (m, · · · , 1, 0). Let
x0 ≡ max{0,m − n + 1}. By µ ≡ min{n,m + 1}, we have µ = m − x0 + 1 and π(µ) = x0.
If m > n, then x0 = m − n + 1. If m ≤ n, then x0 = 0. Note M0 ≡ {x0, · · · ,m} and
M1 ≡ {x0 + 1, · · · ,m}. We only prove f1(R)R1 z1. For each j ∈ N\{1}, fj(R)Rj zj can be
proved similarly.
Case 1 x1 = x0. By Lemma A.3, z1 = (x0, 0). By Lemma A.2, f1(R)R1 z1.
Case 2 x1 > x0. Let Nx0 ≡ {i ∈ N | xi > x0}. By contradiction, suppose that z1 P1 f1(R).
Claim 1: For each k = 0, 1, 2, . . ., there are a set N(k + 1) of k + 1 distinct agents, saying

N(k + 1) ≡ {1, 2, ..., k + 1}, and R′N(k+1) ∈ (R)k+1 such that:
(1-i) zk+1 Pk+1 fk+1(R′N(k), R−N(k));
(1-ii) pminxk+1

(R) < V ′k+1(xk+1; (x0, 0)) < Vk+1(xk+1; fk+1(R
′
N(k), R−N(k)));

(1-iii) for each j ∈ N(k + 1),
(1-iii-a) there is εj > 0 such that V ′j (xj; (x0, 0))− pminxj

(R) > 2εj, and for each y ∈ M1 such
that y < xj,

V ′j (y; (x0, 0))

< min{Cm−x0+1((R′{1,...j−1}, RN\{1,...j−1}), y; (x0, 0)), V
′
j (xj; (x0, 0))− pminxj

(R)− 2εj, Vj(y; (x0, 0))},

(1-iii-b) for each y > xj
(1-iii-(b-1)) for each i ∈ {1, · · · , j − 1}, each t ∈ [0, V ′i (m;0)] and each t′ ∈ [0, V ′j (m;0)],

t′ − V ′j (xj; (y, t′)) < V ′i (y; (xj, t))− t,

(1-iii-(b-2)) for each i ∈ {j + 1, · · · , n}, each t ∈ [0, Vi(m;0)] and each t′ ∈ [0, V ′j (m;0)],

t′ − V ′j (xj; (y, t′)) < Vi(y; (xj, t))− t,

and
(1-iii-(b-3)) V ′j (y; (x0, 0)) < pminy (R);

(1-iv) N(k + 1)  Nx0 .

We inductively prove Claim 1.

Step 1: We prove Claim 1 for the case of k = 0.
Note N(1) = {1}. By z1 P1 f1(R), (1-i-1) holds and pminx1

(R) < V1(x1; f1(R)). Thus, there is
R′1 ∈ R such that
(1-ii-1) pminx1

(R) < V ′1(x1; (x0, 0)) < V1(x1; f1(R));
(1-iii-a-1) there is ε1 > 0 such that V ′1(x1; ((π(µ), 0))− pminx1

(R) > 2ε, and for each y ∈M1 such
that y < x1,

V ′1(y; (x0, 0)) < min{Cm−x0+1(R, y; (x0, 0)), V
′
1(x1; ((π(µ), 0))− pminx1

(R)− 2ε1, V1(y; (x0, 0))},
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(1-iii-b-1) for each y > x1
(1-iii-(b-2)-1) for each i ∈ N\{1}, each t ∈ [0, Vi(m;0)] and each t′ ∈ [0, V ′1(m;0)],

t′ − V ′1(x1; (y, t′)) < Vi(y; (x1, t))− t,

and
(1-iii-(b-3)-1) V ′1(y; (x0, 0)) < pminy (R).16

Then, by the construction of R′1, (1-ii-1) and (1-iii-1) holds. Thus, we prove (1-iv-1), i.e.,
N(1)  Nx0 . By Lemma A.2, z1 P1 f1(R)R1 (x0, 0). Thus 1 ∈ Nx0 . Thus, N(1) = {1} ⊆ Nx0 .
By contradiction, suppose that Nx0 = {1}. Then by Lemma A.1, µ = min{n,m + 1} = 2,
which implies n = 2 or m = 1. Thus, by Lemma A.1, for each j ∈ N\{1}, zj = (x0, 0).
By z ∈ Zmin(R), z ∈ Zx0 . We show (8-i), (8-ii), (8-iii) and (8-iv) of Lemma A.8 with respect

to z to conclude x1(R′1, RN\{1}) = x1.
By Lemma A.2, for each j ∈ N\{1}, fj(R′1, RN\{1})Rj (x0, 0) = zj. Thus, (8-i) holds.

(1-iii-b-1) implies (8-iv).
Note that for each j ∈ N\{1}, by z ∈ Zmin(R), (x0, 0) = zj Rj z1 and Vj(x1; (x0, 0)) ≤

pminx1
(R). Thus C1(R−i, x1; z) ≤ pminx1

(R), and so by (1-ii-1), (8-ii) holds. By C1(R−i, x1; z) ≤
pminx1

(R) and (1-iii-a-1),

0 < V ′1(x1; (x0, 0))− pminx1
(R)− 2ε1 ≤ V ′1(x1; (x0, 0))− C1(R−i, x1; z)− 2ε1,

which implies (8-iii).
Since (8-i), (8-ii), (8-iii) and (8-iv) of Lemma A.8 hold, x1(R′1, RN\{1}) = x1.
Note

t1(R
′
1, RN\{1}) ≤

Lemma A.2
V ′1(x1; (x0, 0)) <

(1-ii-1)
V1(x1; f1(R)).

Thus, by x1(R′1, RN\{1}) = x1,

f1(
lie

R′1, RN\{1})
truth

P1 f1(
truth

R1 , RN\{1}).

This contradicts strategy-proofness. Thus, N(1)  Nx0 . Thus (1-iv-1) holds.

Induction hypothesis: There are a set N(k) of k > 0 distinct agents, saying N(k) =
{1, 2, ..., k}, and R′N(k) ∈ (R)k such that:
(1-i-k) zk Pk fk(R′N(k−1), R−N(k−1));
(1-ii-k) pminxk

(R) < V ′k(xk; (x0, 0)) < Vk(xk; fk(R
′
N(k−1), R−N(k−1)));

(1-iii-k) for each j ∈ N(k),
(1-iii-a-k) there is εj > 0 such that V ′j (xj; (x0, 0))−pminxj

(R) > 2εj, and for each y ∈M1 such
that y < xj,

V ′j (y; (x0, 0))

< min{Cm−x0+1((R′{1,...,j−1}, RN\{1,...,j−1}), y; (x0, 0)), V
′
j (xj; (x0, 0))− pminxj

(R)− 2εj, Vj(xj; (x0, 0))},
16(1-iii-(b-1)-1) is satisfied vacuously.
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(1-iii-b-k) for each y > xj
(1-iii-(b-1)-k) for each i ∈ {1, · · · , j − 1}, each t ∈ [0, V ′i (m;0)] and each t′ ∈ [0, V ′j (m;0)],

t′ − V ′j (xj; (y, t′)) < V ′i (y; (xj, t))− t,

(1-iii-(b-2)-k) for each i ∈ {j + 1, · · · , n}, each t ∈ [0, Vi(m;0)] and each t′ ∈ [0, V ′j (m;0)],

t′ − V ′j (xj; (y, t′)) < Vi(y; (xj, t))− t,

and
(1-iii-(b-3)-k) V ′j (y; (x0, 0)) < pminy (R);

(1-iv-k) N(k)  Nx0 .

Step 2: We prove Claim 1 for the case of k + 1.
Step 2-1: We prove that there is i ∈ Nx0\N(k) such that zi Pi fi(R′N(k), R−N(k)).
By (1-iv-k), Nx0\N(k) 6= ∅. By contradiction, suppose that for each i ∈ Nx0\N(k),

fi(R
′
N(k), R−N(k))Ri zi.
Let z′ be such that for each i ∈ N\N(k), z′i ≡ zi and for each i ∈ N(k)\{k}, z′i ≡ (x0, 0).

Then z′ ∈ Zx0 . We show (8-i), (8-ii), (8-iii) and (8-iv) of Lemma A.8 with respect to z′ to
conclude xk(R′N(k), R−N(k)) = xk.
For each i ∈ N\Nx0 , by zi = (x0, 0) and Lemma A.2, fi(R′N(k), R−N(k))Ri zi = z′i. For

each i ∈ Nx0\N(k), by z′i = zi, fi(R′N(k), R−N(k))Ri z
′
i. For each i ∈ N(k)\{k}, by Lemma

A.2, fi(R′N(k), R−N(k))R
′
i (x0, 0) = z′i. Thus, (8-i) holds. (1-iii-(b-1)-k) and (1-iii-(b-2)-k) imply

(8-iv).
In the following, we show:

C1((R′N(k)\{k}, R−N(k)), xk; z
′) ≤ pminxk

(R). (∗)

For each i ∈ N\N(k), by z ∈ Zmin(R), z′i = ziRi zk, and so Vi(xk; z′i) ≤ pminxk
(R). For each

i ∈ N(k)\{k}, if xi > xk, (1-iii-a-k) implies:

V ′i (xk; z
′
i) = V ′i (xk; (x0, 0))

< Cm−x0+1((R′{1,..i−1}, RN\{1,..i−1}), xk; (x0, 0))

≤ Cm−x0+1(R, xk; (x0, 0)) ≤ pminxk
(R),

and if xi < xk, (1-iii-(b-3)-k) implies V ′i (xk; z
′
i) = V ′i (xk; (x0, 0)) ≤ pminxk

(R). Thus, (∗) holds.
By (1-ii-k) and (∗), (8-ii) holds.
By (∗) and (1-iii-a-k),

0 < V ′k(xk; (x0, 0))− pminxk
(R)− 2εk ≤ V ′k(xk; (x0, 0))− C1((R′N(k)\{k}, R−N(k)), x1; z′)− 2εk.

Thus, by (1-iii-a-k), (8-iii) holds.
Since (8-i), (8-ii), (8-iii) and (8-iv) of Lemma A.8 hold, xk(R′N(k), R−N(k)) = xk.
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Note

tk(R
′
N(k), R−N(k)) ≤

Lemma A.2
V ′k(xk; (x0, 0)) <

(1-ii-k)
Vk(xk; fk(R

′
N(k)\{k}, R−((N(k)\{k}))).

Thus, by xk(R′N(k), R−N(k)) = xk,

fk(
lie

R′k, R
′
N(k)\{k}, R−N(k))

truth

Pk fk(
truth

Rk , R
′
N(k)\{k}, R−N(k)).

This contradicts strategy-proofness. Thus, there is i ∈ Nx0\N(k) such that zi Pi fi(R′N(k), R−N(k)).
Let N(k + 1) ≡ N(k) ∪ {i}. Without loss of generality, let i ≡ k + 1. By (1-iv-k),

N(k + 1) ⊆ Nx0 . zk+1 Pk+1 fk+1(R′N(k), R−N(k)) implies that there is R
′
k+1 ∈ R satisfying(1-i-

(k + 1)), (1-ii-(k + 1)), and (1-iii-(k + 1)).

Step 2-2: We prove (1-iv-(k + 1)), i.e., N(k + 1)  Nx0 .
By contradiction, suppose that N(k + 1) = Nx0 .
Let z′ ∈ Zx0 be such that for each i ∈ N\{k + 1}, z′i ≡ (x0, 0). We show (8-i), (8-ii), (8-iii)

and (8-iv) of Lemma A.8 with respect to z′ to conclude xk+1(R′N(k+1), R−N(k+1)) = xk+1.
By Lemma A.2, for each i ∈ N\N(k+1), fi(R′N(k+1), R−N(k+1))Ri z

′
i. By Lemma A.2 again,

for each i ∈ N(k + 1)\{k + 1}, fi(R′N(k), R−N(k))R′i z′i. Thus, (8-i) holds. (1-iii-(b-1)-(k + 1))
and (1-iii-(b-2)-(k + 1)) imply (8-iv).
In the following, we show:

C1((R′N(k+1)\{k+1}, R−N(k+1)), xk+1; z
′) ≤ pminxk+1

(R). (∗∗)

For each i ∈ N\N(k + 1), by N(k + 1) = Nx0 , we have zi = (x0, 0). Then, by z ∈ Zmin(R),
z′i = ziRi zk+1. Thus Vi(xk+1; z′i) ≤ pminxk+1

(R). For each i ∈ N(k + 1)\{k + 1}, if xi > xk+1,
(1-iii-a-(k + 1)) implies:

V ′i (xk+1; z
′
i) < Cm−x0+1((R′{1,2,3,..i−1}, RN\{1,2,3,..i−1}), xk+1; (x0, 0))

≤ Cm−x0+1(R, xk+1; (x0, 0)) ≤ pminxk+1
(R),

and if xi < xk+1, (1-iii-(b-3)-(k + 1)) implies V ′i (xk+1; z
′
i) = V ′i (xk+1; (x0, 0)) ≤ pminxk+1

(R). Thus,
(∗∗) holds.
By (1-ii-(k + 1)) and (∗∗), (8-ii) holds.
By (∗∗) and (1-iii-a-(k + 1)),

0 < V ′k+1(xk+1; (x0, 0))− pminxk+1
(R)− 2εk+1 ≤

V ′k+1(xk+1; (x0, 0))− C1((R′N(k+1)\{k+1}, R−N(k+1)), xk+1; z′)− 2εk+1.

Thus, by (1-iii-a-(k + 1)), (8-iii) holds.
Since (8-i), (8-ii), (8-iii) and (8-iv) of Lemma A.8 hold, xk+1(R′N(k+1), R−N(k+1)) = xk+1.

24



Note

tk+1(R
′
N(k+1), R−N(k+1)) ≤

Lemma A.2
V ′k+1(xk+1; (x0, 0))

<
(1-ii-(k+1))

Vk+1(xk+1; fk+1(R
′
N(k), R−(N(k))).

Thus, by xk+1(R′N(k+1), R−N(k+1)) = xk+1,

fk+1(
lie

R′k+1, R
′
N(k+1)\{k+1}, R−N(k+1))

truth

Pk+1 fk+1(
truth

Rk+1, R
′
N(k+1)\{k+1}, R−N(k)).

This contradicts strategy-proofness. Thus, (1-iv-(k + 1)) holds.
By Claim 1, for each k ≥ 0, N(k + 1)  Nx0 . Let k = m− x0. Then, |N(k + 1)| = k + 1 >

m− x0 = |Nx0|, a contradiction. Q.E.D.

The rest of the proof of Theorem 1 is similar to the proofs of Proposition 3 and the com-
pletion of the proof of Theorem 2 in Morimoto and Serizawa (2015). Thus, we omit it.Q.E.D.

Part B: Proof of Theorem 2
Recall that µ ≡ min{n,m+1} and k denotes the number of object tiers. Let 2 ≤ k < m+1.

Recall that l0 ∈ K and
∑l0−1

l=1 |Tl| < µ ≤
∑l0

l=1 |Tl|. Assume |Tl0 | = 1. Then, Tl0 ≡ {τ(µ)}. Let
M0 ≡ ∪

j∈{1,··· ,l0}
Tj and M1 ≡ ∪

j∈{1,··· ,l0−1}
Tj.

Lemma B.1: Let f satisfy effi ciency. Let R ∈ (RT (T ))n. Then, (a) for each x ∈M0, there
is i ∈ N such that xi(R) = x, and (b) for each i ∈ N, xi(R) ∈M0.

Proof : (a) By contradiction, suppose that there is x ∈ M0 such that for each i ∈ N ,
xi(R) 6= x. Since |Tl0| = 1, by the definitions of l0 and M0, there is i ∈ N such that xi(R) ∈
∪

j∈{l0+1,··· ,k}
Tj.

Define z′ by (i) z′i ≡ (x, ti(R)), and (ii) for each j ∈ N\{i}, z′j ≡ fj(R). Then, by R ∈
(RT (T ))n, (x, ti(R)) Ri (τ(µ), ti(R)) Pi (xi(R), ti(R)). Thus, z′ dominates f (R), contradicting
effi ciency.
(b) If n ≥ m+ 1, µ = m+ 1 and τ(µ) = 0. Then M0 = L and (b) holds trivially. If n ≤ m,

µ = n. Then, since |Tl0| = 1, by the definition of l0, |M0| = n and (b) follows from (a). Q.E.D.

The proofs of Lemmas B.2 to B.7 are similar to those of Lemmas A.2 to A.7. Thus, we omit
them.

Lemma B.2: Let f satisfy the four axioms of Theorem 1. Let R ∈ (RT (T ))n. Then, for
each i ∈ N , fi(R)Ri (τ(µ), 0).

Lemma B.3: Let f satisfy the four axioms of Theorem 1. Let R ∈ (RT (T ))n. Then, for
each i ∈ N , if xi(R) = τ(µ), ti(R) = 0.

Lemma B.4: Let R ∈ (RT (T )), i, j ∈ N and z ∈ Z be such that ziRi zj and zi Pj zj.
Assume that tj − Vi(xj; zi) < Vj(xi; zj)− ti. Then, there is z′ ∈ Z that dominates z.
For each x ∈ L, let l(x) ∈ K be such that x ∈ Tl(x). Given zi ≡ (xi, ti) ∈ L × R and

Ri ∈ RT (T ), a preference Ri ∈ RT (T ) is a semi-Maskin monotonic transformation of Ri at
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zi if (i) for each y ∈ ∪
j∈{l(x),··· ,k}

Tj\{xi}, V ′i (y; zi) < 0, and (ii) for each y ∈ ∪
j∈{1,··· ,l(xi)−1}

Tj,

V ′i (y; zi) < Vi(y; zi). Let RSMM(Ri, zi) be the set of semi-Maskin monotonic transformations
of Ri at zi.

Lemma B.5: Let f satisfy strategy-proofness and no subsidy. Let R ∈ (RT (T ))n. Let R′i
∈ RSMM(Ri, fi(R)). Then, fi(R′i, R−i) = fi(Ri, R−i).

Lemma B.6: Let f satisfy the four axioms of Theorem 1. Let R ∈ (RT (T ))n. Let i ∈ N
and x ≡ xi(R). Then, ti(R) ≥ Cµ(R, x; (τ(µ), 0)).

Lemma B.7: Let f satisfy the four axioms of Theorem 1. Let R ∈ (RT (T ))n. Let i ∈ N
be such that x ≡ xi(R) ∈M1. Then, Vi(x; (τ(µ), 0)) ≥ Cµ−1(R, x; (τ(µ), 0)).

Given R ∈ (RT (T ))n, let Zτ(µ) ≡ {z ∈ Z : ziRi (τ(µ), 0) for each i ∈ N}.
Lemma B.8: Let f satisfy the four axioms of Theorem 1. Let R ∈ (RT (T ))n. Let i ∈ N ,

x ∈M1 and z ∈ Zτ(µ). Assume that
(8-i) for each j ∈ N\{i}, fj(R)Rj zj,
(8-ii) Vi(x; (τ(µ), 0)) > C1(R−i, x; z),
(8-iii) there is ε > 0 such that Vi(x; (τ(µ), 0)) − C1(R−i, x; z) − 2ε > 0 and for each y ∈

∪
j∈{l(x),··· ,l0−1}

Tj\{x},

Vi(y; (τ(µ), 0)) < min{Cµ−1(R, y; (τ(µ), 0)), Vi(x; (τ(µ), 0))− C1(R−i, x; z)− 2ε},

and
(8-iv) for each j 6= i, each t ∈ [0,max

y∈T1
Vi(y;0)], each t′ ∈ [0,max

y∈T1
Vj(y;0)] and each y ∈

∪
j∈{1,··· ,l(x)−1}

Tj, t′ − Vi(x; (y, t′)) < Vj(y; (x, t))− t.

Then xi(R) = x.

Proof : By contradiction, suppose xi(R) 6= x. By Lemma B.1(b), there is j ∈ N such that
xj(R) = x.
Note

tj(R) ≤
(8-i)

Vj(x; zj) ≤ C1(R−i, x; z) <
(8-ii)

Vi(x; (τ(µ), 0)).

Thus, there is R′j ∈ RSMP (Rj, fj(R)) such that
(i) −V ′j (τ(µ); fj(R)) = Vi(x; (τ(µ), 0))− C1(R−i, x; z)− ε,
(ii) for each y ∈ ∪

j∈{l(x),··· ,l0−1}
Tj\{x}, V ′j (y; (τ(µ), 0)) > Vi(x; (τ(µ), 0))−C1(R−i, x; z)−2ε, and,

(iii) for each y ∈ ∪
j∈{1,··· ,l(x)−1}

Tj, (8-iv) holds with respect to the pair Ri and R′j.

By R′j ∈ RSMP (Rj, fj(R)) and Lemma B.5, fj(R′j, R−j) = fj(R). Thus, by (i),
(i’) −V ′j (τ(µ); fj(R′j, R−j)) = Vi(x; (τ(µ), 0))− C1(R−i, x; z)− ε.
Let y ≡ xi(R

′
j, R−j). By fj(R

′
j, R−j) = fj(R), y 6= x. If y ∈ ∪

j∈{1,··· ,l(x)−1}
Tj, then by (iii),

tj(R
′
j, R−j)− Vi(x; fi(R′j, R−j)) < V ′j (y; fj(R

′
j, R−j))− ti(R′j, R−j).

By Lemma 5.4, f(R′j, R−j) is not effi cient, a contradiction. Thus, by y 6= x, y ∈ ∪
j∈{l(x),··· ,k}

Tj\{x}.
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If y ∈ ∪
j∈{l(x),··· ,l0−1}

Tj\{x}, then

Vi(y; (τ(µ), 0)) <
(8-iii)

Vi(x; (π(µ), 0))− C1(R−i, x; z)− 2ε <
(8-ii)

V ′j (y; (τ(µ), 0)).

Since (8-iii) also implies Vi(y; (τ(µ), 0)) < Cµ−1(R, y; (τ(µ), 0)), then we have

Vi(y; (τ(µ), 0)) < Cµ−1((R′j, R−j), y; (τ(µ), 0)).

By Lemma B.7, this contradicts y ∈ ∪
j∈{l(x),··· ,l0−1}

Tj\{x}. Thus y ∈ ∪
j∈{l(x),··· ,k}

Tj\{x} but

y /∈ ∪
i∈{l(x),··· ,l0−1}

Ti\{x}.

By Lemma B.1(b) and y /∈ ∪
i∈{l(x),··· ,l0−1}

Ti\{x}, xi(R′j, R−j) = τ(µ). Thus, by Lemma A.3,

ti(R
′
j, R−j) = 0. Thus, by (i’) and tj(R

′
j, R−j) = tj(R) ≤ C1(R−i, x; z),

ti(R
′
j, R−j)− V ′j (τ(µ); fj(R′j, R−j)) < Vi(x; ((τ(µ), 0))− C1(R−i, x; z)

≤ Vi(x; (τ(µ), 0))− tj(R′j, R−j).

Thus, by Lemma B.4, f(R′j, R−j) is not effi cient, a contradiction. Thus xi(R) = x.Q.E.D.

Proposition B.1: Let f satisfy the four axioms of Theorem 1. Let R ∈ (RT (T ))n. Let
z ∈ Zmin(R). Then, for each i ∈ N , fi(R)Ri zi.

The proof of Proposition B.1 is similar to that of Proposition A.1. Thus, we omit it.

The rest of the proof of Theorem 2 is similar to that the proof of Theorem 1. Thus, we also
omit it. Q.E.D.
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