Discussion Paper No. 1006

MULTISTAGE
INFORMATION TRANSMISSION
WITH VOLUNTARY
MONETARY TRANSFER

Hitoshi Sadakane

Secondary Revised January 2019
Revised June 2018
June 2017

The Institute of Social and Economic Research
Osaka University
6-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan



Multistage Information Transmission with

Voluntary Monetary Transfer”

Hitoshi Sadakane®

Institute of Economic Research, Kyoto University

November 1, 2018

Abstract

We analyze a cheap talk model in which an informed sender and
an uninformed receiver engage in finite-period communication before
the receiver chooses a project. During the communication phase, in
each period, the sender sends a cheap talk message and the receiver
voluntarily pays money for the message she receives. Our results
show that combining multistage information transmission with the re-
ceiver’s voluntary payments can improve welfare. Moreover, we find
an upper bound of the receiver’s equilibrium payoff and provide a
sufficient condition for it to be approximated by the receiver’s equi-
librium payoff. This result shows that multistage information trans-
mission with voluntary monetary transfer can be more beneficial for
the receiver than a wide class of other communication protocols (e.g.,
mediation and arbitration).

JEL Classification: C72; C73; D82; D83
Keywords: Incomplete information; Cheap talk; Multistage strategic communication;

Voluntary monetary transfer

“This paper is based on the second chapter of my Ph.D. dissertation at Kobe University.
An earlier version of this paper (ISER Discussion Paper No. 1006) was awarded the 19th
ISER-Moriguchi Prize. I am grateful to Yasuyuki Miyahara for his invaluable support. 1
also thank Hideo Suehiro, Hideshi Itoh, Hisao Hisamoto, Kohei Kawamura, Shinsuke Kambe,
Shintaro Miura, Takashi Shimizu, Takeshi Murooka, and seminar participants at the Contract
Theory Workshop, Contract Theory Workshop summer camp, KIER, and ISER for their helpful
comments and suggestions. I gratefully acknowledge financial support from the Grant-in-Aid
for Young Scientists (Start-up) (17H06778). Any remaining errors are my own.

¥ Institute of Economic Research, Kyoto University, Sakyo-ku, Kyoto 6068501, Japan
E-mail address: sadakane@kier.kyoto-u.ac.jp



1. Introduction

Alack of information typically leads to inefficient decisions. Therefore, in many
economic situations, decision makers need to gather the relevant information
before making their decisions. One canonical way of gathering information
is consulting informed experts. For example, CEOs consult management con-
sultants; politicians seek advice from strategic planners; and law enforcement
officers hire informants. In the abovementioned examples, the individuals who
supply information are often paid for doing so.

Contract theory indicates that a properly designed contract containing in-
formation contingent payments helps the decision maker to screen the informa-
tion possessed by the informed expert. However, if information is transmitted
through ordinary and informal talk, or equivalently, through “cheap talk,” con-
tractibility does not always exist. In such situations, the decision maker cannot
commit to information-contingent payments. Hence, it seems that allowing
the decision maker to make “voluntary” payments does not affect information
transmission. Nevertheless, the information transmitted via cheap talk is often
bought and sold without signing a contract.

Can voluntary payments by the decision maker facilitate cheap talk com-
munication? If they can, how should the decision maker pay for cheap talk
messages? To address this question, we enrich the canonical cheap talk model
originally provided by Crawford and Sobel (1982) (hereafter, CS). Specifically,
we analyze a sender-receiver game in which an informed expert (sender or
he) and an uninformed decision maker (receiver or she) engage in finite-period
communication. During the communication phase, in each period, the sender
sends a cheap talk message to the receiver, and then the receiver pays money
to the sender voluntarily. Once the communication phase is over, the receiver
chooses a project.

In the CS model, the project choice and underlying asymmetric information
are one-dimensional. Moreover, the sender’s most desirable project is always

higher than that of the receiver to a certain degree. Hence, the sender has an



incentive to cheat the receiver into choosing a higher project than the receiver’s
most profitable one. This fact prevents detailed information transmission. By
contrast, if the receiver can make message-contingent payments, by paying
more money for the messages inducing the lower projects, the receiver can
weaken the sender’s exaggeration incentive. However, when the information
transmission is one shot, the receiver never pays since making payments after
receiving a message is a waste of money. In the present study, we consider a
scenario in which information is conveyed in a gradual fashion and show thatby
combining multistage information transmission with the receiver’s voluntary
payments, a message-contingent payment scheme can be self-enforcing.! As a
result, information transmission can be improved even in situations in which
there is no contractibility.

We find that under some conditions (i) the receiver can obtain more detailed
information from the sender than in the CS model? and (ii) an equilibrium whose
outcome Pareto-dominates all the equilibrium outcomes in the CS model can
exist.> We also show that no fully separating equilibrium exists in our model.
This result implies that information transmission is still limited even in the
communication procedure that we describe. By considering the well-known
uniform-quadratic model, i.e., with quadratic preferences regarding the project
and a uniform type distribution, we find an upper bound of the receiver’s
equilibrium payoff and provide a sufficient condition for it to be approximated
by the receiver’s payoff under an equilibrium.

To demonstrate the benefit of multistage information transmission with

'Without monetary transfer, allowing multiple rounds of unilateral (one-sided) communi-
cation in the CS model does not affect the set of equilibria identified by the original model.
Krishna and Morgan (2004) show that allowing multiple rounds of “bilateral” (face-to-face or
two-sided) communication in the CS model leads to Pareto improvements.

2This result means that there exists an equilibrium whose partition has a greater number of
elements than that achieved in any equilibrium in the CS model.

3In our model, there always exists an equilibrium in which the receiver never pays money
to the sender. For instance, irrespective of the number of periods in the communication phase,
there exists an equilibrium in which the sender sends an informative message to the receiver
only in the first period and the receiver never pays. The equilibrium partition achieved in
such an equilibrium is achievable in the CS model. Obviously, players waste time on pointless
communication; in other words, the receiver does not use long-term communication effectively.
Therefore, by constructing equilibria inducing Pareto improvements, we show the benefit of
multistage information transmission.



voluntary transfer payments, we construct an interval partition equilibrium in
which information about the state of the world is conveyed in order from the
right-most interval on the state space. Specifically, in the first period, if the
sender sends a message that means that the true state belongs to the right-most
interval, the receiver will neither pay money nor obtain additional information
in the future. Otherwise, the receiver pays a certain amount of money to the
sender. After this payment, in the second period, the sender conveys whether
the true state belongs to the second right-most interval that is the neighbor to
the left of the first one. If the receiver learns that the true state belongs to the
second right-most interval, she will neither pay money nor obtain additional
information in the future. Otherwise, the receiver pays money to the sender
and then the sender conveys additional information in the next period. This
information elicitation is repeated in the communication phase. If the receiver
deviates in terms of payment in a period, the sender conveys no information
thereafter. Once communication is over, the receiver chooses her best project
based on the information she has.

The logic underlying this equilibrium is as follows. First, under the in-
formation elicitation explained above, the receiver pays money to the sender
whenever the information opposite to the sender’s bias is conveyed. As aresult,
the receiver makes message-contingent payments on the equilibrium path: a
higher payment for information inducing a lower project. As noted earlier, this
payment scheme weakens the sender’s exaggeration incentive. Second, since
the sender can gradually convey his information, he can punish the receiver
for not paying by babbling. Thus, the receiver makes a payment in the cur-
rent period to prevent the sender’s babbling in the future. Roughly speaking,
similar to Benoit and Krishna (1985), the dependence of the selection of the
future equilibrium on players’ past behavior constructs punishments for their
deviation. This fact enables the receiver to make message-contingent payments
to some extent during the communication phase.

Our model is potentially applicable for studying the effective use of infor-

mants. The Federal Bureau of Investigation (FBI) mentions that the “use of



informants to assist in the investigation of criminal activity may involve an
element of deception, ... or cooperation with persons whose reliability and
motivation may be open to question.”* This statement suggests that informants
are often biased and that their information might neither be credible nor certifi-
able. Alemany (2002) indicates that cooperation agreements between the Drug
Enforcement Agency (DEA) and informants are often silent with respect to the
compensation of the latter. This fact implies that the parties may not always be
able to sign a contract containing information-contingent payments. Indeed,
there are numerous cases of oral promises made by DEA agents to informants
subsequently being broken.” The present study shows that by using multistage
information elicitation and voluntary transfer payments, information transmis-
sion can be improved even in situations in which there is no contractibility.
Our results have important implications for the theory of organizational
economics regarding designing communication protocols and organizational
structures. We show that multistage information transmission with voluntary
transfer payments can be more beneficial for the receiver than a wide range of
other communication protocols. It is well known that information transmis-
sion can be improved when more general communication protocols (i.e., noisy
communication) are available.® By considering a mediation model under the
uniform-quadratic assumption,” Goltsman et al. (2009) characterize the optimal
level of noise in the communication. We compare our communication proce-
dure with the optimal mediation that maximizes the receiver’s ex ante expected
payoff and show that under some conditions, the receiver prefers the former to

the latter.

FBI, Frequently Asked Questions, “What is the FBI’s policy on the use of informants?”
(https://www.fbi.gov/about/faqs/what-is-the-fbis-policy-on-the-use-of-informants).

°For details, see Alemany (2002).

®Many studies highlight that noisy communication leads to improved information trans-
mission (e.g., Krishna and Morgan, 2004; Blume et al., 2007; Goltsman et al., 2009; Ivanov, 2010;
and Ambrus et al., 2013). Goltsman et al. (2009) characterize the optimal mediation mechanism
that controls the noise in communication. Blume et al. (2007) and Krishna and Morgan (2004)
show that the optimal mediation mechanism can be implemented under some communication
protocols without monetary transfer.

“Under mediation analyzed by Goltsman et al. (2009), a neutral third party (mediator) asks
the sender for information and advises the receiver who chooses a project.
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Dessein (2002) studies a simple delegation problem® and establishes the re-
markable result that the receiver prefers full delegation to communication as
long as the incentive conflict is not too large. Since the work of Dessein (2002),
designing “who decides what” has been extensively studied. Many works
investigate general settings in which the parties can commit to an information-
contingent decision rule.” Under the uniform-quadratic assumption, Goltsman
et al. (2009) characterize an optimal information-contingent decision rule, the
optimal arbitration.’® Although, under arbitration, players benefit from a “formal
contract” that forces them to commit to the predetermined decision rule, sur-
prisingly, our results show that the receiver can obtain a higher ex ante expected

payoff in our communication procedure than under the optimal arbitration.

Related Literature A seminal analysis of the strategic information transmis-
sion between an informed sender and an uninformed receiver was provided
by CS. In the CS model, the sender sends a costless and unverifiable! message
about his private information to the receiver, who then decides on the project
that affects the payoffs of both players. CS obtain a complete characterization of
the set of equilibria in their model and show that the existence of the incentive
conflict prevents the full revelation of information. In the present study, we
investigate how information transmission can be improved under multistage
information transmission with voluntary monetary transfers.

Krishna and Morgan (2008) study an amendment to the CS model by allow-

8The receiver chooses whether to communicate with the sender. She decides herself after
cheap talk communication or fully delegates the decision-making authority to the sender.
One simple decision rule for the receiver is to delegate authority to the sender, but possibly to
constrain the set of available decisions. This class of mechanisms (analyzed by Holmstrém, 1977;
Melumad and Shibano, 1991; and Alonso and Matouschek, 2008) is called delegation mechanism.
Goltsman et al. (2009) show that the optimal arbitration mechanism is deterministic as a conse-
quence and that the optimal arbitration includes the optimal delegation mechanism.
9Under arbitration, a neutral third party (arbitrator) asks the sender for information and
chooses a project according to a predetermined potentially stochastic decision rule.
11Seidmann and Winter (1997) and Mathis (2008) study the sender—receiver game in which the
message sent by the sender is (partially) verifiable, that is, the set of available messages depends
on the sender’s type. These authors provide the sufficient conditions (Mathis (2008) provides the
necessary and sufficient conditions) for the existence of a fully revealing equilibrium. Forges
and Koessler (2008) study a multistage sender-receiver game with certifiable messages and
geometrically characterize the set of equilibrium payoffs.
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ing the parties to write a contract containing message-contingent payments.
They show that full information revelation is feasible but not optimal and they
characterize the optimal contract. In their model, there is a crucial assumption
that the receiver can commit herself to compensate the sender for his mes-
sage. We show that when the communication phase has multiple periods, the
receiver can control the sender’s incentive through voluntary payments even
though there is no contractibility.

Our results are closely related to those of Krishna and Morgan (2004). Both
their study and our analysis investigate how information transmission can
be improved through the receiver’s active participation in the communication
process. Krishna and Morgan (2004) add a long communication protocol to
the CS model.'? They show that if bilateral (face-to-face) communication be-
tween the receiver and sender is possible before the sender sends a message
about his private information to the receiver, there exists an equilibrium whose
outcome Pareto-dominates all the equilibrium outcomes in the CS model. The
key factor to their results is that after the sender conveys some information
in the face-to-face communication, multiple equilibria exist in the remaining
game. The outcome of this face-to-face communication, which could be ran-
dom, determines which of these equilibria is played in the future. This affects
what the sender conveys during the face-to-face communication. Therefore, in
Krishna and Morgan (2004), the receiver tries to control the sender’s incentive
by controlling the degree of uncertainty associated with the outcome of the
face-to-face communication. By contrast, in our model, the receiver tries to
control the sender’s incentive directly through voluntary transfer payments.

Spence (1973) shows that costly signaling helps people convey their private
information credibly. In the framework of the CS model, Austen-Smith and

Banks (2000), Kartik (2007), and Karamychev and Visser (2016) show that in-

12Aumann and Hart (2003) study a finite simultaneous-move (long conversation) game in
which there are two players, one being better informed than the other. They provide a complete
geometrical characterization of the set of equilibrium payoffs when the state of the world is
finite and long communication is possible. In this study, the state space and players” action
space must be finite. Therefore, we cannot directly apply the results of Aumann and Hart (2003)
to the model in the present paper.



formation transmission can be improved when the sender can send a costly
message (money burning, or equivalently, paying money to the receiver) to
signal information.” In their settings, a fully separating equilibrium that is op-
timal from the receiver’s perspective can exist. However, in the equilibrium that
maximizes the sender’s ex ante expected payoff, the sender does not pay money
to separate an interval of states. Karamychev and Visser (2016) show that in
the sender’s optimal equilibrium, he pays to adjust the pooling intervals. In the
present study, we focus on the situation in which the sender cannot pay money
(or equivalently, cannot send a costly signal) to the receiver and show that the
signaling structure can be endogenously generated by the receiver’s voluntary
payment. Moreover, Section 4.4 shows that under the uniform-quadratic as-
sumption, the receiver can obtain the higher ex ante expected payoff than that
under the sender’s optimal equilibrium in the model analyzed in Karamychev
and Visser (2016). This result suggests that in some cases, it might be better
for the receiver to generate the signaling structure by herself through voluntary
payments rather than to rely on the sender’s costly signaling.

Horner and Skrzypacz (2016) study a model of gradual persuasion in which
the sender is paid and gradually reveals “certifiable” information. They show
that the sequential revelation of partially informative signals can increase pay-
ments to the sender who is trying to sell his information to the receiver. In
their model, cheap talk communication is of no help. In the present paper, we
show that gradual information transmission can perform well with voluntary
transfer payments even in the situation in which the sender can send only cheap
talk messages.

In all the abovementioned studies, once the communication phase is over,
the receiver chooses a project; that is, the project choice is once and for all.
By contrast, in the studies mentioned hereafter, there are multiple rounds of
communication and actions. More precisely, in each period, the sender sends

a message and the receiver chooses a project. Hence, these models differ from

13Relatedly, Kartik et al. (2007) and Kartik (2009) study amendments to the CS model with
other means of costly signals such as lying costs.
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mine.

Golosov et al. (2014) study strategic information transmission in a finitely
repeated cheap talk game. Only the sender knows the state of the world,
which remains constant through out the game. They show that the sender can
condition his message on the receiver’s past actions; in addition, the receiver
can choose actions that reward the sender for following a path of messages that
eventually leads to the full revelation of information. In contrast to this result,
there is no fully revealing equilibrium in our model.

Kolotilin and Li (2017) investigate the optimal relational contracts in an
infinitely repeated cheap talk game. In their model, both the sender and receiver
can pay each other. Therefore, there are equilibria in which the sender always
reveals his private information completely. They show that full separation
can be attained in the equilibrium, whereas partial or complete pooling is
optimal if preferences are divergent. In contrast to our study, the sender’s
private information is not persistent in their model. Hence, gradual information

transmission does not appear.

Paper Outline The rest of the paper is organized as follows. Section 2 in-
troduces the model. Section 3 derives the general properties of the perfect
Bayesian equilibria in the model. Section 4 analyzes the uniform-quadratic
model and shows the benefits of multistage information transmission with
voluntary monetary transfers. Section 4.1 shows the two main results by con-
structing an equilibrium in which information is transmitted within two pe-
riods. Section 4.2 shows the benefit of long-term communication. Section 4.3
discusses the implications for organization design. In Section 4.4, we compare
our communication procedure with the sender’s optimal signaling. Section 5
generalizes the players’ payoff functions and prior probability distribution, and
describes two results that correspond to the results in Section 4.1. Section 6 gives

some concluding remarks.



2. Model

There are two players, a sender (S) and a receiver (R). R has the authority to
choose a project y € Y = R,, but the outcome produced by project y depends
on S’s private information, 6 € ® = [0, 1], which is distributed according to a
differentiable distribution function G with density g.

Before R chooses a project, R and S engage in T-period communication. Each
period consists of two stages, stage 1 and stage 2. At stage 1, S sends a costless
and unverifiable message to R. Let M = [0, 1] be S’s message space. A message
sent by S at stage 1 in period t is denoted by m;. At stage 2, R voluntarily pays
money to S. Let w; € W = R, be a payment amount R pays at stage 2 in period
t. After T-period communication, the game proceeds to period T + 1, in which
R chooses a project.

Let w be a sequence of transfers, w = (wy, ..., wr) € WI. The players’ payoff
functions UR : YX@XWT - Rand U° : Y x®X W' — R are defined as follows:

T

UR(y, 6,w)=r-u(y,0) - Z w;

t=1

T
Us(y,6,w) =s - uS(y,0,b) + ) w,
t=1

where 7, s, and b are positive constants. The term Y/, w; represents the total
amount of payments.
Here, r - uR(y, 0) and s - u® (y, 0, b) denote utilities from project y for R and S,

respectively. The functions uR and u° satisfy CS’s assumptions:
o uf(y,0) = u’(y,6,0);

o 1S is twice-continuously differentiable in y, 6, and b for all y € R, 0 € ©,

and b € R;;

e for all 0 € ® and b € R, there exists y € R, such that uf(y, 0,b) =
%(y, 0,b) = 0; and

e 15, (y,0,b) = ‘g—y“;(y, 0,b) <0,u3,(y,0,b) = g;g;(y, 0,b) > 0,and uj,(y, 6,b) =
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3;32(]/, 0,b)>0forallyeR,,0€®,and b € R,.

Under these assumptions, for each given (0, b), there exists a unique maximizing
project: y*(0) = argmax, u*(y, 0) and y°(0,b) = argmax, u°(y, 6, b). Parameter
b > 0 represents “bias,” which measures how much S’s interest differs from R’s.
Since u3,(y, 6,b) > 0 and b > 0, we obtain y*(0) < y°(6,b). Constants r > 0 and
s > 0 are scalar parameters that measure the relative importance of the project
choice versus transfer payments.

The timing of game is summarized as follows:

1. Before the game starts, nature randomly draws a state 0 € ® with common

prior G, and S observes 0 privately.
2. Rand S engage in T-period communication.

e Atstage 1in period ¢, S sends a message m; to R,

e At stage 2 in period ¢, R voluntarily pays w; to S.
3. After T-period communication, R chooses a project y and the game ends.

Hereafter, I'(b, s, 7, T) denotes this T-period communication game.

2.1. History and Strategies

A (public) history k") is defined as a sequence of players’ past actions realized

until the beginning of stage j in period t.

my, Wy, ..., M1, Wi ifj=1,
- (mq, wy -1, Wi—1) ]

(mll Wiyeee, Mpq,Wt-1, mt) lf] = 2

A (public) history h"*! is defined as a sequence of players’ past actions realized

until the beginning of period T + 1, in which R chooses a project.

W = (my, wy, ..., mr, wr).
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Let H*) and H™*! be the set of h*) and h™*!, respectively. We assume that
HM is a singleton set {¢}. The set of all histories at stage j is denoted by
Hi= UL HOD. Let iV € @ x HOD = HYY be S’s private history at stage 1 in
period t. Let H{ be the set of all private histories of S: H = © x H'.

S’s behavior strategy o specifies a probability distribution of messages that
S of type 6 sends at stage 1 in period t, 0 : Hy — AM.' R’s pure strategy is a
function p : H*UH™! — RR,," which specifies the payment amount and project.
Note that p(h*?) € W, and p(h™*!) € Y.1® A belief system, f : H> U HT*! — A@,
specifies R’s belief about S’s types at history € H> U H*1.

3. Equilibrium

We analyze (weak) perfect Bayesian equilibria”: both players’ strategies must
maximize their expected payoffs after all histories, and the system of beliefs
f must be consistent with the regular conditional probability derived from
((o,p), f) and G. The formal definition of perfect Bayesian equilibria can be
found in Appendix 3.A. Hereafter, we call a perfect Bayesian equilibrium simply

equilibrium. In this section, we derives the general properties of the equilibria.

3.1. Relationship to the CS Model

We discuss the relationship between the equilibria in the CS model and those in

I'(b,s,r, T). Since R cannot obtain additional information about 0 after stage 2

T

in period T, she has no incentive to choose w" > 0. Therefore, wT must be

equal to 0 in any equilibrium. Consequently, I'(b, s, 7, 1) is essentially equivalent

“Let B(X) be the Borel algebra on a set X. S’s behavior strategy o is defined as {o'}]_, where
ot : B(M) x Hg’l) — [0, 1] holds the following two properties: (1) for every M € B(M), a function
atl(M,) : Hg'l) — [0,1] is (IB(Hg’l)),]B([O,1]))—measurab1e, (2) for every hg’l) € Hg’l), function
ol(, hg’l)) : B(M) — [0, 1] is a probability measure. The definition of ¢ originates from Milgrom
and Weber (1985).

>More precisely, p is defined as {p'}[*! such that p’ : H' — R, is (B(H"), B(R,))-measurable.
Note that H' = H®? fort < T, and that H' = HI* fort = T + 1.

1®Due to the strict concavity of R’s preference over projects, she never mixes projects in
period T + 1.

7There always exists an equilibrium that is essentially equivalent to a perfect Bayesian
equilibrium in the CS model. Hence, in this study, we do not prove the existence theorem.
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to the CS model, and we call it the one-shot cheap talk game. CS have shown
that in the one-shot cheap talk game, for every b > 0, there exists a positive
integer 7i(b) such that, for every n € {1,...,7(b)}, there exists at least one equi-
librium with an n-element partition: {[a,,a,-1), [a4-1,84-2),...,[41,a0]}. In this
equilibrium, S’s type 0 € [ai41,4;) conveys that his type belongs to this inter-
val, and after receiving the message that “0 belongs to [a;.1,4;),” R chooses the
project ¥(ai+1,4;) = arg max, fu aﬂ uR(y, 0)¢(0)d6. We define y(ai1,a;) = yR(a) for
a1 = a; = a. Since uR is strictly concave, ¥(a;11,4;) is uniquely determined.
Moreover, since ufz(y, 0) > 0, y(ai+1,a;) is strictly increasing in both of its argu-
ments. S whose type falls on a boundary between adjacent intervals must be
indifferent between the associated values of y. Therefore, we have the following

conditions.”® Fori=1,...,n -1,

5: us(y(aﬂl/ ai)/ ai, b) -5 ”S@(ﬂi/ ai—l)/ ai, b) = 0/ (1)
a, =0; (2)
ag = 1. (3)

We call a sequence a = {ay,...,a,} a (backward) solution of (1) if a satisties

(1)—(3). We impose the following monotonicity condition on a solution of (1).

17

Condition M . If a’ and a” are two solutions of (1) with a; = a

’ ”
and a; > a7,

then a, > a; foralli > 2.

This condition is met by standard versions of the CS model, such as the
uniform-quadratic case: s - u°(y, 0,b) = —s(y — (6 + b))%, r - uR(y, 0) = —r(y — 0)?,
and G(6) is uniform distribution over [0,1]. CS show that Condition M also
holds for more general specifications.

Consider a strategy profile such that S sends an informative message only
in period 1 and R pays nothing to S at any payment stage. If both S’s strategy
regarding m; and R’s strategy regarding project choice are the same as an
equilibrium in the CSmodel, then this strategy profile constitutes an equilibrium

inI'(b,s,r, T). This outcome immediately yields the following Fact 1.
18See the condition (A) on page 1437 in CS (1982).
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Fact 1. Any equilibrium partition achieved in the CS model can be achieved under an

equilibrium in I'(b, s, r, T).

3.2. Relationship to Direct Contract

In this subsection, we first discuss the relationship between equilibriainI'(b, s, r, T)
and those in a case in which R can sign a contract that specifies the transfer and
project as functions of messages sent by S.

Fix an equilibrium & = ((g,p), f). Let us : ® — A(M") be a probability
distribution over M" derived from (o, p). Given p and a sequence of messages
m € M7, asequence of paymentsw € W and a project y are determined. Let w; :
M" —» WT and y; : M" — Y be the functions derived from p, respectively. Note
that f: denotes the belief system that is consistent with the regular conditional
probability derived from p; and G.»

Consider the case in which R can write an indirect contract (M', w¢, y¢) that
specifies w and y dependently on m. Obviously, sending m € supp{u(0)}
is optimal for S of type 0, and y:(m) maximizes R’s expected payoff under
f<(-/m). Furthermore, the assessment (ug, (M, w, y:)) and the given equilibrium
& induce a same probability distribution on W x Y for any 6.

Next, we discuss the relationship between (Bayesian Nash) equilibria un-
der an indirect contract (M”, we, ) and those under a direct contract in which
R can sign a contract that specifies transfers and projects as functions of the
direct message y : ©® — ©. Let (O, we, ye) be a direct contract under which
R pays we(u) and chooses yy(u) as S reports u € ©. According to the stan-
dard revelation principle for Bayesian games, when R can commit to both the

payment scheme w:(m) = (w;(m),...,wr(m)) and a project y:(m), there is a

YPrecisely, pe : BIMMT) x ® — [0,1] is a function with the properties such that p:(M7,-) :
© — [0,1] is (B(®), B([0, 1]))-measurable for any M € B(M?); and p(-, 6) : B(MT) — [0,1]
is a probability measure. Hence, the joint probability P(©, MT) that defines the simultane-
ous behavior of (6, m) is given by feec:) pe(MT,0)G(d0). Fix ® € B(®), then the probability
measure P(Q,) : B(MT) — [0,1] on (MT,B(MT)) is absolutely continuous with respect to
P(®,-) : B(MT) — [0,1]. Therefore, R’s posterior belief Prob(®|m) is defined as a Radon-
Nikodym derivative fr such that P(©, M") = meMT f(©m)P(®,dm) for any © € B(®) and
MT € B(MT).
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direct contract (®, we, ye) under which there exists a truth telling equilibrium
such that u(0) = 0, we(0) = Zthl wy(m), and ye(0) = y:(m) for any 0 € ©
and m € suppus(+|0). Because of the definition of (u:, we, y:), we immediately
obtain the following Proposition 1. This result shows that the outcome of £ can

be replicated by a direct contract (®, we, ve).

Proposition 1. Fix an equilibrium & in I'(b,s,r, T). Then, there is a direct contract
(©, we, yo) under which a truth telling equilibrium that is outcome equivalent to &

exists.

3.3. Partition Equilibrium

As is the case in the CS model, all the equilibria in I'(b,s,r, T) are interval

partitional, that is, all the equilibria are partition equilibria.

Definition 1 (Partition Equilibrium). Fix an equilibrium & in I'(, s, r, T). Con-
sider a truth telling equilibrium under a direct contract (®, we, ye) which is

outcome equivalent to &. If there exists a family of sets {1} cx Over © such that
1. {Za}rea constitutes an interval partition® over ©;
2. yo(0) = ye(0’) and we(0) = we(0’) for all 0, 0’ € 1,; and
3. yo(0) # ye(0’) forall 0 € 7, and 0" € 1.4, then
we call & partition equilibrium, and {1 1} ea equilibrium partition.
First, we show the following Proposition 2.
Proposition 2. All equilibria under a direct contract are partition equilibria.

The proof is in Appendix 3.B. As shown in Subsection 3.2, any equilibrium
outcome in I'(b,s, 7, T) is also achieved in equilibrium under a corresponding
direct contract. Therefore, Proposition 2 means that all equilibria in I'(b, s, 7, T)

are partition equilibria.

Corollary 1. All equilibria in I'(b, s, r, T) are partition equilibria.
DForall A # A/, IyNIy =0. Forall A € A, I, is convex, and | J,c, L1 = ©.
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Fix an equilibrium &, then we have an equilibrium partition {7, },cs. For any
0 € I =[ay,ax-1] and any m € supp{u:(0)}, we obtain f:(6lm) = g(6)/[G(ar-1)—

G(a,)]. Hence, it must be satisfied that for any 0 € 7, = [a,,a,-1],

A1 8
ve(0) = y(ar, ar-1) = arg max fA lG(aA_i(_)G(aA)uR(y, 0)|46.

The following Proposition 3 shows that there is no fully separating equilib-

rium in I'(b,s,r, T).
Proposition 3. There exists no fully separating equilibrium in I'(b, s, r, T).

The proof is in Appendix 3.C. If R can commit herself to compensating for
S’s message, fully separating equilibria (full revelation contracts) are always
feasible. However, in our model, since there is neither commitment nor con-
tractibility, R pays money to S only when paying money is optimal for her. For
S’s truth telling (u(0) = 0) to be optimal, the total amounts of monetary transfers
must be different for each 0 € ©. Precisely, wg(0) must be strictly decreasing
in 0 € ©. This means that if the given R’s payment strategy leads to S’s truth
telling, R almost certainly reaches a history where she pays a certain amount
of money to S even though she has already detected the true state. At such a
history, R has no incentive to pay. For this reason, there is no fully separating
equilibrium.

Whether the cardinality of the equilibrium partition is finite remains an open
question. Next, we provide a sufficient condition (Assumptions 1 and 2) for the

cardinality of the equilibrium partition to be finite.

Assumption 1. S’s utility function u® satisfies

1y, 0,b) = Py — 0 - b)),

where " (-) < 0 and ' (0) = 0.

Assumption 2. The distribution G and R’s utility function u® jointly satisfy: for any

15



colsed interval [a,a) with0 <a<a <1,

o ' 0 a
Y(a,a) = argrgr/leel}{xf [%é@ul{(y, 0)|de < % +b. (4)

Assumption 2 is mild. For example, suppose thatu®(y, 6,b) = I(ly—0|), where
I"(-) < 0 and I'(0) = 0, and that G is non increasing. Then, the inequality (4)
holds.

Proposition 4. Under Assumption 1 and 2, in any equilibrium, the equilibrium

partition has a finite number of elements.

The proofisin Appendix 3.D. Proposition 4 shows that under Assumptions 1
and 2, the equilibrium partition is a finite set. In Appendix 4.E, we discuss the
fact that an equilibrium which has separating intervals in its partition might
exist if Assumption 2 is not satisfied.

Hereafter, [a,,a,_1) denotes 1, and w, denotes we(O) for O € [a),a,-1). In

any equilibrium, there must exist A € A such that wj,; < w;.*! From S’s
incentive compatibility condition,
P(y(@s,az) —az = bl) 2 P(ly(az, a;) —az = bl). (5)

Figure 1 illustrates the inequality (5). The blue curveis ¢Y([y(a;,,,a;) — 0 —bl),
and the red curve is Y(|y(az, a5_,) — 0 — bl). Note that y5,, = y(a5,1,43); Vi =
Y(@3,85-1); Yie = Y(Yaa —ay — bl); and 3 = Py —a; — b)).

Since y(az,1,a;) < a3, the left-hand side of the inequality (5) is less than 1(b).
Moreover, from Assumption 2, the right-hand side of the inequality (5) is higher
than y([as_, —a3]/2). Therefore, we must have a;y_; —a; > 2b irrespective of the
length of the communication phase.

This result implies that in any equilibrium, at history h"*! where R believes

that 0 € [a3,a;_), R’s conditional expected utility from project is strictly less

ZSuppose that this condition does not hold. If the true state belongs to the leftmost element of
the equilibrium partition, R almost certainly reaches a history where she pays a certain amount
to S even though she does not obtain additional information in the future.
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Y(y, 0,bly)

a]t+l ) 0?
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A+
P

1
1®

Figure 1: (w; — wj1)/s = Y — P31 20

than the optimal:

A1 8(0) _
' f [ o s T, e)] 46

= 8(6) % R l
<r£ [G(a;_n—G(a;)” (y(6). 6)) 9. (6)

Moreover, R reaches such a history with probability G(a;_;) — G(a;). Hence, in

any equilibrium, R’s expected payoff is strictly less than U:

_ A-1 _

U=r f |3(0)uR¥(as,a51),0)|dO + 1 f [2©u* ("), 0)] 40
a3 O¢lazaz4]

1
<r f |50 (" (0), 0)] do.
0
To make the characterization more specific, we assume the following.
Assumption 3. R’s utility from project uR satisfies
u'(y, 0) = Iy - o),

where I”(-) < 0and I'(0) = 0.
Assumption 4. The distribution G is the uniform distribution.
Under Assumptions 3 and 4, Assumption 2 is satisfied.

Proposition 5. Under Assumptions 1, 3, and 4, the upper bound of R’s equilibrium
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payoff is given by
uw,r) =r f 1(12b — 0))d6.
0[0,46]

The proof is in Appendix 3.F. One of the main findings in our analysis is that
when T is sufficiently high and s/r is small enough, this upper bound U(b, r)
can be approximated by R’s equilibrium payoff. For the details of this result,

see Proposition 10 in Section 4.

4. The Uniform-quadratic Case

In this section, we show the benefits of multistage information transmission
with voluntary payments, concentrating on the well-known uniform-quadratic
case: r-uR(y,0) = —r(y—0)?,s-u°(y, 6,b) = —s(y — (6 +b))?, and G(6) is a uniform

distribution over ©.

4.1. Two-period Information Elicitation

The key idea on which we build the analysis is that the dependence of fu-
ture information on past payments ensures that R makes message-contingent
payments. To understand the intuition behind this idea, we construct an equi-
librium in which information is transmitted within two periods and R pays a
positive amount of money to S on the equilibrium path. By constructing such an
equilibrium, we show that multistage information transmission with voluntary
payments can be more beneficial for both S and R than the one-shot cheap talk
communication. In Section 5, we generalize the players’ payoff functions and
prior probability distribution and show the results that correspond to those in
this subsection.

Suppose that b € (1/12,1/4). Then, there are two equilibria in the one-
shot cheap talk game. One is the uninformative equilibrium: the babbling
equilibrium. The other is a partially informative equilibrium: ay = 1, a; =

1/2 = 2b and a, = 0. CS have shown that both S and R prefer the partially
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informative equilibrium to the uninformative equilibrium. In the partially
informative equilibrium, the ex ante expected payoff of R is —#(1/48+b?) whereas
that of S is —s(1/48 + b?) — sb>.

The first result establishes that if T > 2 and r is large relative to s, there exists
an equilibrium whose partition has more steps than the one-shot cheap talk

game does.

Proposition 6. Fix b € (1/12,1/4). If s/r < (1 —4b)/(1 + 12b), there is a continuum

of 3-element partition equilibria.

We characterize a class of 3-element partition equilibria in which information
is transmitted in order from the rightmost element of the equilibrium partition.
In the equilibrium, S gradually conveys his information within the first and
second period. If S conveys information contrary to his bias in the first period,
then R pays to S in order to extract more precise information in the second
period. If R does not pay in the first period, then S never gives additional
information. As s becomes smaller, the necessary payment becomes smaller
since the effect of the message-contingent payment on S’s incentive becomes
larger. Furthermore, as r becomes higher, the punishment by babbling message

becomes more severe. This is the reason why s/r needs to be small enough.

Proof. Consider a strategy profile under which the information is transmitted
in the following steps. At stage 1 in period 1, S of type 0 < a; randomly sends
a message m; according to a uniform distribution over [0,4;), and S of type
0 > a; randomly sends a message m; according to a uniform distribution over
[a1,1]. If R receives m; < a; at stage 1 in period 1, then she pays w; = w to S.
Otherwise, she pays nothing to S at stage 2 in period 1. At stage 1 in period 2,
if my < a; and w; > w, then S of type 0 < a, randomly sends a message m,
according to a uniform distribution over [0,4;), and S of type 0 > a, randomly
sends a message m, according to a uniform distribution over [a,,1]. Otherwise,
S conveys no information, i.e., any type of S randomly sends a message m,
according to a uniform distribution over [0, 1]. In period t > 2, R pays nothing

to S. In period t > 3, S conveys no information.
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Once communication is over, R chooses her best project based on the in-
formation she has. At h™*! such that m; > a;, since R believes 0O is uniformly
distributed over [ay, 1], the optimal project for Ris y; = (a1 + 1)/2. At h™1 such
that m; < ay, w1 > w, and my > ay, since R believes 0 is uniformly distributed
over [ay,a1), the optimal project for Ris y, = (ay+a;)/2. Ath™+! such thatm; < ay,
wy > w, and m, < a,, since R believes 0 is uniformly distributed over [0, a5), the
optimal project for R is y3 = a,/2. At h™1 such that m; < a; and wy < w, since
R believes 0 is uniformly distributed over [0,4,), the optimal project for R is

7 = a1/2. Figure 2 illustrates the equilibrium strategy.

a3 nmy A1« My, g

0 | i ¢
ot @< | @ =0)
m, =babbling  m, =babbling
| (wy =0) V(w2 =0)
=3 =5
a3, My, 0, My (a1)____.a0 0
0 ' } ' 1
wy = 0 wy = 0
a ¢ ai+ay
Y3=7% 2= 73

Figure 2: Equilibrium Strategy

In what follows, we ensure that by taking a;, 4, and w suitably, we can
construct an equilibrium in which S and R follow the abovementioned strategy
profile.

In period t > 2, R always pays nothing to S. Therefore, the partition
{[0,a3), [a2, a1)} must coincide with the 2-element equilibrium partition achieved
in the one-shot cheap talk game in which 0 is drawn from the uniform distri-

bution over [0,4;). By CS, the following must be satisfied:

ar = a1/2 —2b. (7)

Since we now focus on a 3-element partition equilibrium, we must have a, > 0.
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Hence, a; > 4b must be satisfied.
Under the abovementioned strategy profile, S of type 0 € (a;,4;_1) sends
messages so that y; would be chosen by R. Hence, S’s payoff is derived as

follows:

—s(y3 — (60 + b))* +w for O € [0,a,);
—s(y, — (0 + b))2 +w for O € [ay,m);
—s(y; — (6 + b))* for O € [ay, 1].

Since we suppose that a, = a;/2 — 2b, we obtain

—s(ys — (0 + b))? > —s(y2 — (0 + b))? for O €[0,a,);
—s(y3 — (0 + b))* < —s(y> — (0 + b))* for O € (ay,1];
—s(y3 — (6 + b))* = —=s(y» — (0 + b))* for O = a,.

Clearly, at stage 1 in period 2 such that m; < a; and w; > w, S has no incentive to
deviate from the given strategy. Moreover, if m; < a; and w; < w, or if m; > a,
S sends a babbling message. Therefore, S has no incentive to deviate at such a
history. The same can be said in period ¢ > 3. Hence, we conclude that S has
no incentive to deviate in period t > 2 when a, = a;/2 — 2b.

At stage 1 in period 1, if S of type O sends m; > a;, then he obtains —s(y; —
(6 + b))% Otherwise, S of type 6 > a, obtains —s(y, — (6 + b))* + w, and S of type
0 < a, obtains —s(y; — (6 + b))* + w. If the following equation (8) holds, then the
inequalities (9) and (10) hold.

—5(y1 — (a1 + b))’ = =s(y — (11 + b))’ + w; (8)
—s(y1 — (0 +b))* > r_r}%{—s(ym — (60 +b))*+w)} for 0 >ay; )
jelt,

—5(yjs1 — (O + D) +w > —=s(y1 — (6 + b))* for j={1,2} and O € [aj1,a;). (10)
If (9) and (10) hold, S has no incentive to deviate at stage 1 in period 1.
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By equation (8), we obtain
w=w(m) =s[(2+4b —ay)(—2 + 12b + 3ay)]/16. (11)

Since w(ay ) is strictly increasing ina; € [4), 1], we have an inverse function of w(-)
such that w™(w) = a;(w) is strictly increasing in w € [w(4b), w(1)]. Moreover,
since we suppose that b € (1/12,1/4), R’s payment is nonnegative: w(4b) =
5(12b — 1)/4 > 0. Note that ay(w) = 2{2 — \[(T + 6b) — 12w/s} and a1 (w) € (4b,1)
where w € (w(4b), w(1)).

In summary, we conclude that S has no incentive to deviate from the given

strategy when the boundaries of the partition satisty the following conditions:

1 for i =0,

%{2 - \/(1 + 6b)? — 12w/s} for i=1,

ai(w) = (12)

o - @+ 6by—12w/s| - 2b for i=2,

0 for i = 3.

where w € (w(4b), w(1)). Figure 3 illustrates S’s incentive compatibility condi-

tions.

Us(y, 0, wly)

Blue curve: s - u®(ys, 6,b) + w
Red curve: s - u(y,,0,b) + w
Black curve: s - u°(y;, 6, b)

Figure 3: S’s payoff on the equilibrium path

At any h?, R has no incentive to increase the amount of payment because
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it would not affect S’s behavior. Therefore, we have only to ensure that paying
w is optimal for R after receiving m; < a;.

If R pays w; > w after receiving m; < a;, then she obtains u*(w,):

2 .
1 b [dina ta; ]2

‘W) = ~w-—) fin T8 gl e

u'(ws) w - A j:lr[ 5

2

"
—w1 — Tal Z(ﬂz‘ - ﬂi+1)3

i=1

’
—w — E(ai + (a1 — 02)3)-

On the other hand, by paying w; < w, R obtains u(w,):

_ 11
Hw) = —w + f EUR(%,Q)dQ
0
_ _L 1 11_1_ 2
B w1 a1 Jo (2 6) de
ay
—w = 7.

The payoffs u*(w;1) and u(w;) have a unique maximum at w; = w and w; = 0,
respectively. Thus, paying w is an optimal decision for R if and only if u*(w) >

u(0). Using condition (12) yields

u(w) >u(0) r(

(o (@) _ bz)

> w.
6 >w (13)

Since ay(w) = 2{2 - /(1 + 6D)2 — 12w/s}, for any w € (w(4b), w(1))
e a;(w) is strictly increasing in w;

{a1(w))? 2 {a1 (w(4b))}? 2 _n.
° T_b >0andT—b =0;

o Limw))?>0.

Hence, if r({a;(w(1))}?/16 —b?) > w(1), then the function r({a;(w)}?/16 —b?), where
a(w) = 2{2 - /(1 + 6b)2 — 12w/s}, has a fixed point w(s/r) € (w(4b), w(1)) such
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that for all w € [w(s/r), w(1)), the inequality (13) holds. Note that w(s/r) | w(4b)
ass/r | 0.
Sincea; (w(1)) = 1and w(1) = s(1+4b)(1+12b)/16, the inequality r({a;(w(1))}? /16—

b*) > w(1) can be simplified into

1—-4b
1+12b

S
- <
r

Therefore, if s/r < (1 —4b)/(1 + 12b), then the given strategy profile and
the system of beliefs constitute an equilibrium when w € [w(s/r), w(1)) and the

boundaries of partition satisfy the condition (12). O

Remark 1. In the equilibrium, meaningful information transmission must occur
after R pays w. For this reason, in the equilibrium outlined above, it is necessary

thata, = a;/2 — 2b > 0. Hence, both 4b < a; and b < 1/4 must be satisfied.

There is a possibility of the existence of a 3-element partition equilibrium
in which S conveys information in a different order. For example, consider the
following strategy profile. In period 1, S reveals whether 0 > a,. If 0 > ay,
then R pays @, and then, S reveals whether 6 < a;. Note that a, < 4;. The
following Proposition 7 shows that there is no equilibrium where information

is transmitted in such a way.

Proposition 7. Fix b € (1/12,1/4). There exists no 3-element partition equilibrium
such that information is transmitted in order from the leftmost element of the equilibrium

partition.

The proof of is in Appendix 4.A. Under the abovementioned strategy profile,
R pays @ > 0 only when she receive the message that means 0 > a,. Intuitively,
this payment strategy affects S’s incentive for misrepresentation negatively,
since it strengthens the exaggeration incentive of S whose type is close to the
right boundary of the interval. Hence, even if we consider the equilibrium
in which information is transmitted in order from the leftmost element of the
equilibrium partition, we cannot increase the elements of equilibrium partition.

It can be confirmed that if 7 is large relative to s, R can obtain the greater

expected “revenue from the project” under a 3-element partition equilibrium
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constructed in Proposition 6 than under the 2-element partition equilibrium
in the one-shot cheap talk game. This result is due to the fact that R can
obtain more detailed information about S’s type. However, since R has to
make a payment to improve information transmission, multistage information
transmission with voluntary transfer payments is not always beneficial to R.
We now show the second result that when 7 is large relative to s, multistage
information transmission with voluntary transfer payments is more beneficial
to both R and S than the one-shot cheap talk communication.

In the one-shot cheap talk game, both players always strictly prefer the 2-
element partition equilibrium to the babbling equilibrium from the ex-ante per-
spective. Let EU* be the ex ante expected payoffof k € {R, S} under the 2-element
partition equilibrium in the one-shot cheap talk game, where {[4,, 41)[41, 4o]} is
the equilibrium partition. As noted earlier, 4; = d@y/2—2b =1/2—2b. Let EUK(x)
be the ex ante expected payoff of k¥ € {R, S} in the 3-element partition equilib-
rium with the partition {[a3,a,), [42,a1)[a1, a0]}, where x = a; and a, = x/2 - 2b.
Since w € [w(s/r), w(1)), we must have x € [a,(s/r), 1), where a,(s/r) = ai(w(s/7)).
Recall that w(s/r) | w(4b) as s/r | 0. Hence, a,(s/r) | 4bass/r | 0.

The following lemma shows that if r is large relative to s, there exists a 3-
element partition equilibrium that R prefers to all the equilibria in the one-shot

cheap talk game.

Lemma 1. There exists a positive value n*(b) such that if s/r < (),
EER(x) > EUR for some x € [a,(s/r),1).

Proof. Supposethats/r < (1-4b)/(1+12b). Fix a 3-element partition equilibrium

constructed in the proof of Proposition 6. By the definition of a;(w), we have
w(x) = a{l(x) =s[(2+4b - x)(-=2 +12b + 3x)]/16 for x = a; € [a,(s/r),1).

Hereafter, the function w(x) is denoted by s-a(b, x). Recall thats-a(b, x) is strictly

greater than zero for x € [a,(s/r),1).
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R’s expected payoff EER(x) is given by

_x S0 faamrat) )
EU (x) = —Zf rl——@] dO — xs - a(b, x)
i—1 Yai(x) 2
_ X’ ) LA T S
= r{48+xb} 12(1 x)° — xs - a(b, x).
CS show that

2 i1 5 ~ 2
MR 2 ‘ Ai-1 +a;i
EU" = L f; r[ > 9] do

_ .-
= I3 rb-.

Let 5(b, x) = L{EU (x) — EUIR}. We obtain

5(b,x) = —11—6(1 P 2(1 — )+ (1 —x) - zxa(b,x).

6(b,x) > 0 holds if and only if

-+ -+ (1)
n(b,x) = xa(b, x) g

N1 »

We obtain 2L|,; < 0, 7°(b, 1) = 0, and infeegs, /1) (b, X) = a,(s/r)a(b, a,(s/r)) >
0. Therefore, n"(b,x) > 0 for some x € (4b,1), and 1"(b,x) < +oo for any x €
la,(/7),1).

For any x € (4b,1), if s/r < g{l(x), it is satisfied that x € [g,(s/7), 1). Hence, by
taking n*(b) as sup, [min{gl‘l(x), n*(b, x)}] where X = {x : (b, x) > 0} N (4b, 1),
we can conclude that if s/r < 1°(b), then 6(b, x) > 0 for some x € [a,(s/r),1). This

completes the proof of Lemma 1. O

Remark 2. Note that x is almost equal to 1. Then, boundaries of the 3-element
partition equilibrium almost coincide with boundaries of the 2-element partition
equilibrium in the one-shot cheap talk game. Nevertheless, the payment of
monetary transfer is strictly higher than 0. Therefore, if s/r < (1 — 4b)/(1 + 12b),

there always exists a 3-element partition equilibrium that is unfavorable to
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R. Namely, for any s/r < (1 —4b)/(1 + 12b), there exists &(s/r) > 0 such that
n'(b,x) <s/rforall x € (1 —&(s/r),1).

Next, we show the following lemma.
Lemma 2. EU () > ECR implies that EU (x) > EU.

Proof. Recall that EU(x) denotes the ex ante expected payoff of S under the

3-element partition equilibrium with a; = x € [a,(s/r), 1). We obtain

—S$ 5 (Y Ta () + aix) ’
EU (x) —E f s[——@] dO — sb* + x - w(x)
i=1 vaix) 2

; {EUR(x) +x- w(X)} — sb® + x - w(x).

CS show that

2 di—1 ~ ~ 2
NS a1+ 4a; _ a2
EU° = ;:1 f s[ > 6] dO — sb

= SEOR — g2,
r

Clearly, if EU (x) > EUR, then EU (x) > EUS. O
From Lemma 1 and 2, we immediately obtain the following result.

Proposition 8. Fix b € (1/12,1/4). Then, there exists a positive value 1°(b) such that
if s/r < 1°(b), there exists a 3-element partition equilibrium whose outcome ex ante

Pareto-dominates all the equilibrium outcomes in the one-shot cheap talk game.

It is known that the existence of a non-strategic mediator leads to improved
information transmission. Now, we compare the information elicitation de-
scribed in Figure 2 with the optimal mediation. In the mediation model, S can
send a message to an impartial mediator, who then passes on a recommenda-
tion to R according to some predetermined stochastic rule. R chooses her best
project based on the recommendation from mediator. Goltsman et al. (2009)

characterize the optimal mediation under which R’s ex ante expected payoff is
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—rb(1-"0)/3. The following corollary shows that in two-period information elic-
itation with voluntary monetary transfer, R can obtain a higher ex ante expected

payoff than that under the optimal mediation.

Corollary 2. Fix b € (1/12,(4 +V3)/26).22 Then, there exists 1/'(b) such that if
s/r<1n'(b),

EUR(x) > —gb(l —b) for some x € [a,(s/r),1).

Since this corollary can be proved in the same way as the proof of Lemma 1,
the formal proof is omitted. When b is almost equal to 1/4, boundaries of the
3-element partition equilibrium almost coincide with those of the 2-element
partition equilibrium in the one-shot cheap talk game: 4, * 1 and a, = 1/2 - 2b.
The value of —rb(1 — b)/3 is always strictly higher than R’s equilibrium payoff
under the 2-element partition equilibrium in the one-shot cheap talk game.

Therefore, the parameter b needs to be strictly less than 1/4.

4.2. Effective Long-term Communication

In the previous subsection, we restrict attention to the equilibrium in which
information is transmitted within only two periods, regardless of the length
of communication. It seems that R does not use T-period communication
effectively. In this subsection, we show the benefit of long-term communication.

Recall the earlier discussion of the upper bound of R’s equilibrium payoff.

Proposition 5 provides it as

uw,r) =r f 1(2b — 0))d6
0€[0,4b]

_ 161b°
3

One of the main findings in the present paper is that when T is long enough,

this upper bound U(b,r) = —16rb°/3 can be approximated by R’s equilibrium

2Note that 1 < & (4 +\/§) <1
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payoft.

First, we demonstrate that under a certain condition, there exists an equilib-
rium in which information is transmitted within the whole T-period in order
from the rightmost element of the equilibrium partition. Specifically, we con-
sider the following information elicitation. In period 1, S conveys whether the
value of O is less than a;. If O < a3, then R pays a certain amount of money. After
that, in period 2, S conveys whether the value of 0 is less than a,. If 0 < a,, then
R pays again. This information elicitation is repeated until the last period in the
communication phase. In the last period, S of type 0 < ar_; conveys whether
the value of 0 is less than ar. Under this communication process, R eventually
learns to which element of a partition {[a;.1, at)}thl U [a1, 9] the state O belongs.
We call this communication process (monotone) effective T-period communication.?®

Figure 4 illustrates this information elicitation.

ar+1 M 4o 0
0 Lwl >0 1
ar+1 ay a1 Ay 0
0 iZUZ >0 1
ar+1 : ag a1 -+ Ay a1 do 0
0 lwt >0 gl
in—l >0
ar+1 4ar ar-1 az a1 Ao 0
Otwr=0 twr =0 1
ar+1 ar ‘ r-1 -+ A4 4z 0 41 Ao
0 Yr+1 YT Ys Yz Yo Y11

Figure 4: Effective T-period communication

Proposition 9. Fixb € (0,1/4). Ifs/r < (1—4b)/(1+12b), there exists an equilibrium

with effective T-period communication.

Under the effective T-period communication, the information is transmitted

in the following steps. At h) such that my < ay and wy > w;, forall ' <t, S of

ZThis information elicitation is similar to that in Ivanov (2015) and Horner and Skrzypacz
(2016).
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type 0 < a; randomly sends a message m; according to a uniform distribution
over [0,a;), and S of type 0 > a; randomly sends a message m; according to a
uniform distribution over [4;,1]. Otherwise, any type of S randomly sends a
message according to the same distribution, a uniform distribution over [0, 1].
If S conveys that O < a; at stage 1 in period t, then R pays w; to S at stage 2.
Otherwise, he pays nothing.

Let I(h™*1) be the closure of {6 € © : f(Olh™*!) > 0}. Under the abovemen-
tioned strategy profile, for any h"*!, the closed set I(h"*!) belongs to {[a;, ;-1 ]} ' U
{[ar+1,at—1]}tT:2, and R’s posterior belief f(O|hT*) is a uniformly distribution on
I(h™1). Therefore, R chooses y = {min I(h"*') + max I(h"*1)}/2 at h*1.

At hT? such that my < ap and wy >

w;, for all ' < T, since R does not
obtain additional information after making a payment, w}. must be equal to 0.
Therefore, {[ar.1,ar), [ar,ar-1)} coincides with the 2-element equilibrium parti-
tion achieved in the one shot cheap talk game where ® = [0,a7_1). Hence, we
obtain

EITIaTT_l—zb.

This implies that ar_; > 4b. Define a;, and wy; as follows:

1—ta fortef{l,..., T—-1},

ap = @—Zb fort =T, (14)
0 fort=T+1.
2bsa forte{0,...,T -2},

wp = (S{1+12b-a(T+ {1 +4b—a(T-3)} fort=T-1, (15)
0 fort=T.

Suppose that a < (1 —4b)/(T — 1). Then, 4b < ar_; and a,.1 —a; = a > 0 for
tef{l,...,T-1} Note that w}_, > 0ifa < min{(1+12b)/(T +1), (1 +4b)/(T - 3)}.
Since we suppose that T > 3, we obtain (1 + 4b)/(T —3) > (1 — 4b)/(T - 1).
Therefore, if a < min{(1 — 4b)/(T — 1),(1 + 12b)/(T + 1)}, the given boundaries
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and payments are well-defined. Moreover, forany t € {1, ..., T -1}, w; becomes

a solution to an equation,

Apy1 + 4y

2 2
—S(M — (a; + b)) = —S(T — (a; + b)) + wj,

2
derived from S’s incentive compatibility condition: S whose type falls on the
boundaries between adjacent intervals is indifferent between the associated
values of y.

The abovementioned strategy profile and system of beliefs, hereafter &7,
cannot always be an equilibrium. Whether it is so depends on the value of a.
We ensure that &7 can be an equilibrium when a is small enough. R’s payment
w; ineacht < T—2 goes to 0 asa goes to 0. Consider a history at stage 2 in period
T —1such that m; <a; forallt <T—1and w; > wj for all t < T — 1. Then, there
are two cheap talk equilibria in the remaining game: the babbling equilibrium
and the 2-element partition equilibrium. Since we now suppose that a = 0,
if the 2-element partition equilibrium is chosen in period T, R’s continuation
payoff is approximated by —r(b*> — 1/48). Otherwise, R’s continuation payoff
is approximated by —r/12. Moreover, w;_; ~ s(1 + 12b)(1 + 4b)/16. Since we
suppose that s/r < (1 —4b)/(1 + 12b), we have

—r(bz _ l) _ (—é) > (1+125)(1 + 4b),

Thus, R has an incentive to pay w7_, at this history so that the babbling equi-
librium would not be chosen in the last period. Furthermore, at 1 where R
pays w;, if w} is small enough, R pays to ensure that the babbling equilibrium
would not be chosen in the future. Hence, by taking a small enough, we can
construct an equilibrium with effective T-period communication. The formal
proof is found in Appendix 4.B.

Proposition 9 shows only the possibility of the effective T-period communi-
cation. In order for &7 to be an equilibrium, it might be necessary for ar_; to be
close to 1. If ar_; is close to 1, R reaches a history hT') at which (k™) = [0,ar_4]

with a high probability on the equilibrium path. Moreover, {[ar.1,a7), [ar, ar-1)}
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almost coincides with the 2-element equilibrium partition achieved in the one-
shot cheap talk game. In such a case, the initial (T — 1)-period communication
does not have much meaning from ex ante perspective. However, as S becomes
less concerned with the project, the effects of monetary transfer on S’s incentive
becomes larger. In other words, the necessary payments for controlling S’s
incentive becomes smaller as s goes to 0. Hence, if s is small enough, it is not
necessary for ar_; to be close to 1. This fact suggests that long-term communi-
cation becomes more beneficial for R as s becomes smaller. To see this, we show

the following Proposition 10.

Proposition 10. Fix b € (0,1/4). For any d > 0, there exists T(b,d) and n(b,d) such
that if T > T(b,d) and s/r < n(b,d), R can obtain a higher ex ante expected payoff than
-16rb3/3 —rd.

The proof is in Appendix 4.C. We earlier show that an upper bound of R’s
equilibrium payoff is —16rb°/3. This Proposition 10 shows that if the commu-
nication phase has a sufficiently large number of periods and S weighs transfer
payments more heavily than the project choice, this upper bound can be ap-

proximated by R’s equilibrium payoff.

4.3. Comparison with Predetermined Decision Rules

Now, under the uniform-quadratic assumption, we compare the gradual infor-
mation elicitation, which we have described in previous subsections, with both
delegation and arbitration. When R delegates control, her payoff is given by
—rb? since S always chooses the most desirable project for him: y°(6,b) = 0 +b.
As shown by CS, the ex ante expected payoff of R under the one-shot cheap talk

communication is given by

P - 1
Eugsz—r( SLAY )),

2T 3
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where n € {1, ..., 7}. The maximum number of partition equilibrium outcomes

4363

where [x] denotes the smallest integer greater than or equal to x. Dessein (2002)

i1 is given by

N

il

shows that EU; < —rb? for n > 2, and thus, R prefers delegation to the one-shot
cheap talk communication whenever informative communication is possible,
b<1/4.

By contrast, in our model, if T > T(b, d) and s/r < n(b,d), R can obtain the
higher equilibrium payoff than —16rb°/3 — rd. If b < 3/_ 16 and d < b* — 161°/3,
the inequality —16rb%/3 — rd > —rb* holds.

Next, consider the situation in which arbitration is available. Under arbitra-
tion, S sends a message to a neutral third party (arbitrator), and after receiving
the messages, the arbitrator announces a project. This announcement serves as
a binding recommendation to R. In other words, R cannot choose any action
that is different from the recommended one. Goltsman et al. (2009) charac-
terize the optimal arbitration rule and show that R’s ex ante expected payoff
under optimal arbitration is —rb*(1 — 4b/3).** We immediately verify that if
d < b*(1-4b/3)-16b%/3 and b < 3/20, the inequality —16rb>/3—rd > —rb*(1-4b/3)
holds.

Therefore, Proposition 10 implies that when the communication phase has
a sufficiently large number of periods and R places greater importance on the
project than S does, R can obtain higher ex ante expected payoff than under

delegation and arbitration.”

4.4. Comparison with Sender-optimal Signaling

As noted in Section 1, costly signaling helps people convey their private infor-

mation credibly. Naturally enough, even in our setting, if S can send a costly

2Having restricted attention to deterministic mechanism, Melumad and Shibano (1991)
provide the optimal arbitration (optimal delegation) rule.

2Since the optimal arbitration rule dominates the optimal mediation rule, our communication
protocol could strictly dominate the optimal mediation rule.
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message (paying money to R) to signal information, a fully separating equilib-
rium that is optimal from R’s perspective can exist. However, it is known that
under general assumptions, the perfect separation is never optimal from S’s
perspective although it is feasible.

Karamychev and Visser (2016) study an amendment to the CS model by
allowing S to use both costless and costly messages. They show that in S’s
optimal equilibrium, S pays to adjust the pooling intervals.?* Moreover, under
the uniform-quadratic assumption, they characterize Sender-optimal equilibria
whose partition has at most 71 + 1 steps.” In such equilibria, R’s expected payoff
is less than —7/{12(7i + 1)?}. Since 7 = [(—1 +m) /2], the integer 7i satisfies
that 27(7 + 1) < b < 27(7 — 1).

Therefore, if i1 > 4 holds, we obtain

167b° r r
— > — > — .
3 DRHE+1P . 120+ 1)

This inequality and Proposition 10 suggest that in some cases, it might be better
for R to generate the signaling structure by herself through voluntary payment

rather than to rely on S’s costly signaling.

5. Generalization of Proposition 6 and Proposition 8

In this section, under the more general settings where the players’ payoff func-
tion and the prior probability of the state are kept as is in Section 2, we show
three results that correspond to the results in Section 4.1.

Recall that i (= 71(b) in Section 3.1) denotes the maximum number of elements
of equilibrium partition achievable in the one-shot cheap talk game. As can be
observed from the uniform-quadratic case, after S conveys some information in
period 1, there must be multiple equilibria in the remaining game. Therefore,

we assume that 71 > 2. In the one-shot cheap talk game, if Condition M holds,

%6de Haan et al. (2015) experimentally study the strategic information transmission in a set-
ting where both cheap talk and burning money are available, and they find that the individuals
who supply information prefer to communicate through cheap talk.

¥’See Proposition 4 in Karamychev and Visser (2016).
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then the most informative equilibrium is 7i-element partition equilibrium where
{[ﬁﬁ, ﬁﬁ_l), ce [ﬁl,do]}, and 0 = p <lpq <---<dp <dp= 1.
The following Proposition 11 establishes that an equilibrium whose partition

has more steps that that in the one-shot cheap talk game exists.

Proposition 11. Fix b > 0 and suppose that i > 2. Then, there exists a positive value

n(b) such that if s/r < n(b), there is a continuum of (i + 1)-element partition equilibria.

To prove this Proposition, we construct a strategy profile that induces a
(1 + 1)-element partition: {[dji1,45),...[d1,d0]}, and 0 = G < 3z < --- < dp <
dp = 1. The following strategy profile is an extension of the strategy profile that
we construct in Section 4.1.

At stage 1 in period 1, S conveys whether 0 < 4;. If 0 < 4, then R pays a
certain amount of money, w"*, to S at stage 2 in period 1. Otherwise, she pays
nothing to S. If 0 < 4; and w; > w", at stage 1 in period 2, S conveys to which
element of {[d11,45),...[d2,d1)} the true state O belongs. Otherwise, S conveys
no information regardless of his type. In period t > 2, R always pays nothing
to S. In period t > 3, S conveys no information. In period T + 1, R chooses a
project p(h™*!') = arg max, f uR(y, 6) f(OIh™1)d6. In the rest of this section, (3, P)
denotes the strategy profile defined above, and denote by f the belief system

derived from (g, p).

Ariv1< m A1 my, Ay
1 w — 0
0 1
Lo <o) @=0)
w=w
m; =babbling  m,; =babbling
| (w; =0) } (@ =0)
?(O/ ﬁl) y(dll 1)
A 28; M2 Gy - 4 ™2 (@) 4y 0
+ + + + + i
wy = 0 lwt =0
y(ol ﬁﬁ) y(dfl+1/ﬁfl) y(dZI dl)

Figure 5: Equilibrium
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Under the strategy profile outlined above, we have to take an equilibrium
partition whose boundaries {51, ...,d1} coincide with those of the 7i-element
partition equilibrium in the one-shot cheap talk game, where the state is dis-

a),...,[a3,a3]} be a

tributed on [0,d;) with the density g(-)/G(4;). Let {[4}

+1’

partition that satisfies (1) fori = 2,...,iwitha; = 1,4;, , = 0,and 4] = x € (@, 1).

The following inequality must hold for R’s payment w" to be optimal.

v il
G(@)) ;4

where y(a7,,,47) = argmax, f;’v ul(y(ar,,,av),0)g(0)d6. The left-hand side of

f | uR(y(a},,, ), 0)g(0)d6 — rAx f 1 u(y(0,47),0)g(0)d6 = w', (16)
i, G(ﬂl) 0

i+

i+17 %
this inequality represents the value of additional information, that is, the value
of the partition {[0,43), ..., [}, 4})} that R receives in period 2 by paying w" after
receiving a message that means 60 < 4j. It is obvious that R always strictly
prefers partition {[0,47), ..., [@},4])} to partition {[0, 47)}, which implies that the
left-hand side of the inequality (16) is positive and increasing in » when 71 > 2.
Since w* must be equal to s - u(y(@}, 1), 4%, b) — s - u®(y(@3, a%), a5, b),*® the right-
hand side of the inequality (16) is decreasing in s and goes to 0 as s goes to 0.
Therefore, if r is large enough relative to s, then paying w" is optimal for R.

In Appendix 5.A, we ensure that there exists n(b) > 0 such that if ¢ < n(b),
by taking the boundaries of partition {[4],,,4}),....[4],45]} suitably, ((6, p), 1
constitutes an equilibrium.

Next, we show that under some conditions, multistage information trans-
mission with voluntary monetary transfer is more beneficial to both R and S
than one-shot cheap talk communication. To observe this, we restrict attention
to the equilibrium, ((5, p), f ), which we construct in Proposition 11.

Let EUR(x) be the ex ante expected payoff of R under ((3, ), f) with the
partition {[@}_ ,47),...[4], 451} Define a,(s/r) as the infimum value of z such that

1770

(16) holds for all x € [z, 1).

28Recall Figure 3 in Section 4.1.
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We have
EUR(x) = W(x) — E[w'],

where W(x) denotes R’s ex ante expected utility from project:

Al ot
W =r) f Wk (@, a2,), 0)g(0)do.
i=1 Y

CS show that in the one-shot cheap talk game, under Condition M, R always
strictly prefers fi-element partition equilibrium to any other equilibria. EUZ de-
notes the ex ante expected payoff of R under the fi-element partition equilibrium

in the one-shot cheap talk game. We obtain

it di-1

EUS, = rY f uR (@, di1), 0)g(0)dO.
i=1 Y4

Foranyi € {1,..., 7}, the boundary 4; can be made to be as close to @;_; as desired

by making x sufficiently close to 1. Therefore, we have limy; W(x) = EUX..

This implies that if the following Condition C holds, W(x) > EU?S for some
x € (a,(s/r),1).

Condition C. ‘%’ < 0.

x=1

Under Condition C, for somex € (a,(s/7), 1), the partition{[4, , a7), .. . [4], 451}
is finer than the partition {[d;, d7-1),...[d1,d0]}. Hereafter, we restrict attention
to ((uR,u®),G) under which Condition C holds. Note that there exists a pair
of players’ payoff functions and the prior distribution of state under which
Condition C holds. It is not true that Condition M implies that Condition C. In
Remark 6 in Appendix 5.C, we provide an example in which Condition M is

satisfied, while Condition C is not.

We now show the following Proposition 12.

Proposition 12. Fix b > 0 and suppose that i > 2 and Condition C holds. Then, there

exists a positive value fj(b) such that if s [r < 7j(b), there exists a (7i+1)-element partition
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equilibrium whose outcome ex ante Pareto-dominates all the equilibrium outcomes in

the one-shot cheap talk game.

We prove Proposition 12 by three steps. Let (&, p), f) be a partition equilib-
rium constructed in Proposition 11. First, we show that if s/r < n(b), the set of
(71 + 1)-element partition equilibria that S prefers to all equilibria in I'(b, s, 7, 1)
is nonempty. Second, we show that there exists a positive value 77(b) such that
if s/r < 1(b), the set of (i + 1)-element partition equilibria that R prefers to all
the equilibria in I'(b, s, 7, 1) is nonempty. Finally, we show that there exists a
positive value j(b) such that if s/r < 7j(b), the intersection of the above two sets
is nonempty: The formal proof is in Appendix 5.B.

Finally, we show that Condition C is not necessary for a Prato improvement.

Proposition 13. Fix b > 0 and suppose that it > 3. Then, there exists a positive
value 1j(b) such that if s/r < 1j(b), there exists a fi-element partition equilibrium whose
outcome ex ante Pareto-dominates all the equilibrium outcomes in the one-shot cheap

talk game.

Under the strategy profile on which we focus here, information is elicited
in the same way as the previous Proposition 11 and 12, whereas the number
of elements of the equilibrium partition is 7. Let {[@}, 4} ,),...,[d], 4]} be the
equilibrium partition with @;* = x € (4;,1). The boundaries {47, ..., 47} coincide
with those of the (71 —1)-element partition equilibrium in the one-shot cheap talk
game, where the state space is [0, x). By the definition, if x = 4;, the boundaries

{a

%, @} coincide with those of the 7fi-element partition equilibrium in the

one-shot cheap talk game. In Appendix 5.D, we show that the above strategy

profile can constitute an equilibrium that leads to a Pareto improvement.

6. Concluding Remarks

In this study, we analyzed a cheap talk game in which an informed sender
and an uninformed receiver engage in finite-period communication before the

receiver makes a decision. During the communication phase, the sender sends
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a (cheap talk) message more than once and the receiver can pay money to the
sender whenever she receives a message. We have shown that the dependence
of future information on past payments creates an incentive for the receiver
to pay money. This result ensures that the receiver makes message-contingent
payments to some extent even in the situation in which there is no contractibility,
and consequently, information transmission can be improved relative to the
one-shot cheap talk communication.

Under the assumption of quadratic preferences and a uniform type distri-
bution, we found an upper bound of the receiver’s equilibrium payoff, and
provided a sufficient condition for it to be approximated by the receiver’s pay-
off under a certain equilibrium. Consequently, when the communication phase
has a sufficiently large number of periods and the receiver places greater impor-
tance on the project than the sender does, multistage information transmission
with voluntary payments can be more beneficial for the receiver than a wide
class of other communication protocols (e.g., mediation, arbitration, and the
sender’s optimal signaling).

In this paper, we focused on the multistage unilateral communication. Intu-
itively, it seems that the sender’s punishment by babbling message can create
the receiver’s payment incentive even in situations in which players engage in
more general communication protocols such as multistage bilateral communi-
cation. Hence, a natural question to ask is whether the receiver’s voluntary
payment can work jointly with such general communication protocols? Con-

sidering such a model remains for further research.

Appendix

Appendix 3.A Perfect Bayesian Equilibria

Let H =0 X M; X Wy X--- X My X Wy XY be the set of sequences of the re-

alized state and players’ actions, (6,my,w, ..., mr,wr,y).* Let B(H) be the

2In order to avoid confusion, we add a time operator to the players’ action space.
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Borel algebra on H. Let IP denote a probability measure on the measurable
space (IH, B(IH)) derived from ((o, p), G). Given h € H, the values of players’
payoffs, both UX and U®, are uniquely determined. Moreover, UR : H — R
and U° : H — R are Borel functions. Therefore, the players’ ex ante ex-
pected payoffs E[UX(y, 6, w)|(o, p)] and E[UR(y, 6,w)|(, p)] are well-defined.

Let V3(o, plhg’l), m;) and VR((g, p), fIh"?),w;) be the continuation payoff of S after

(1)

sending m; at h,

and the continuation payoff of R after paying w; at history

W2, respectively.

Definition 2. A strategy profile (0, p) and a belief system f constitute a perfect

Bayesian equilibrium if the following conditions hold. For any t € {1,..., T},

1. for any hg’l) € Hg’l) and m; € supp{o(-lhg’l))},

m; € arg max VS(o, plhg’l), mj),
ml

t

2. for any h*? € Ht?,

p(h"?) € arg rrlu?x {VR((G, p), fIh2, w)) — w;} ,
3. forany h'*! € H*!,
(™) < axgmaxr [ u(y, 0)f (oW,
4. the belief system f is consistent with (g, p).

Consistency of the belief system

Given h"?), the belief system induces a probability measure f(:[1?) on (©, B(9)).
Moreover, since S’s behavior strategy oM, |h*?,w,) : ® — [0,1] is measur-
able for any M € B(M,;1) and w; € W,, we can define a probability mea-
sure P(-|h*?,w;) on (© X M1, B(®) ® B(M,,1)) as follows: for ® € B(®) and

40



Me B(Mt+1)/

P(© x MIK'?, w;) = f o(M, 61h"*?, w,) f(dOIh").
(S]

Therefore, we calculate the conditional probability: if P© x Mh*?,w,) > 0,
then

P(® x MW, w;)
P(® x M2, w;)

Prob(©|h"?, w,, M) =

We would like to define a conditional probability Prob(®[h"?, w;, m;,). Fix
© € B(®). Then, P(® x M|h*?,w;) and P(® x M|h*?,w,) induce probability
measures ¥ and v on (M;,1, B(M}41)), respectively. Since 7 is absolutely contin-
uous with respect to v, there exists a Radon-Nikodym derivative g(m;,1) such

that for any M € B(M},1),

p= fM el )v(dme).

Hence, we require that for m,,, € supp(v),
O = g(mya),

where h**12 = (h*2) w,, m;.1).

If m;,; ¢ supp(v), the conditional probability f(-|h*1?) can be arbitrary.

Appendix 3.B Proof of Proposition 2

Consider a truth telling (Bayesian Nash) equilibrium under a direct contract
(O, we, yo). Then, the existence of a partition {7}, that satisfies the conditions
2-3 in Definition 1 is trivial. Hence, we have only to ensure that 7, is convex

for each A € A. First, we show that yg : © — Y satisfies the following property.

Lemma 3. yg(0) is nondecreasing in 0.
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Proof of Lemma 3. From S’s incentive compatibility condition, for any 0,0’ € ©,

15 (ye(0), 0,b) + we(0) > u°(ye(6'), 0,b) + we(0’), and
w3 (ye(0'), 0',b) + we(0') = u*(ye(0), 0, b) + +we(O).

These inequalities can be simplified into

us(yG(Q)/ 9/ b) - Lﬁ(y@(e,)/ 6/ b) 2 us(}/(a(@)r 6,/ b) - us(yG(Ql)/ 9,/ b)

The assumption u5,(y, 6, b) > 0 yields ye(0) > ye(0’) for 6 > ¢’. O
From Lemma 3, we immediately obtain the following lemma.

Lemma4. Inatruth telling equilibrium under a direct contract (©, we, ye), if yo(0) =
y@(é) for 6 < 0, then ye(0) = ye(0) = y@(é) forall O € [0, 6]. Moreover, we(0) =
we(0) = we(0) for all O € [0, 0).

Lemma 4 implies the convexity of 7,. &

Appendix 3.C Proof of Proposition 3

Suppose that a fully separating equilibrium &f exists. Let (®, wr, yr) be a direct
contract under which there exists a truth telling strategy equilibrium that is
outcome equivalent to &r. Obviously, yr(6) = y*(6) = argmax, u®(y, 0). For
truth telling to be incentive compatible, it is necessary to satisfy the following

condition:
s-u(yR(0),0,b) + wr(0) = s - u(YR(0’), 0,b) + we(0') forall @ # 6.

From the first-order condition, we obtain the differential equation

d d
%C‘)F(Q) =5 uf(yR(G), 0,b)

%]/R(Q)-

Since u5(y*(6), 6,b) > 0 and y'R(0) = LyR(6) > 0, S’s incentive compatibility

condition requires that the compensation schedule that induces full revelation
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is strictly decreasing in 0. We obtain

1
wp(6) = a)p(l)+f s 15 (YR (), z, b)yR (z)dz. (17)
0

We now show that R’s payment strategy satisfying condition (17) never
satisfies the equilibrium condition. Let H(0) denote supp{IP(-|0)}, where P(:|0)
is the probability measure on (H™*!, B(H"*!)) derived from (g, p) given O: the
set of h™*! that has a positive probability under the given & when the true state
is 0.

Step 1: Fix 0e (0,1) and (my, ws, ..., my, wr) € H(E). Then, there exists t < T
such that w; > 0 and w; = 0 for any t > t. Moreover, Zle w; = wp(0) holds.
If supp{f(-|(71, @, ..., 7:)} = {6}, R has no incentive to pay ; at this history.
Therefore, there must exist at least one 0 € supp{f(-|(m1,w, ..., m;)} such that
0+ 6. Furthermore, since wr(6) < wg(0) for 6 > 6, we must have 0 < 0. This
implies that there exists (m,, ..., w;) € H(0) such that (m,,...,w;) = (my, ..., wy),
and w, > 0 for some t € {t+1,T-1}=T,.

Step 2: Let t be the maximum number that satisfies w, > 0. From the
definition of ¢, we have Zle w, = wr(0). Similar to Step 1, there must exist
a 6 € suppf fCl(my, Ql,...,mi)} such that & < 0. Furthermore, there exists
(1111, ..., wr) € H(O) such that (M, ..., @) = (my,...,w,), and @; > 0 for some
te{t+1,T-1}=T,. )

For &r to be an equilibrium, the above operation must be repeated infinitely
regardless of its start point 0. However, this is impossible in the set of finite
numbers. Hence, we conclude that there exists no fully separating equilibrium.

O

Appendix 3.D Proof of Proposition 4

Fix an equilibrium &. Let (©, we, yo) be a direct contract under which there exists
a truth telling strategy equilibrium that is outcome equivalent to £. Proposition 2

shows that & is a partition equilibrium.
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Let [@/,a”] be an element of the equilibrium partition®® such that a’ < a”.

Then, we have
e limgyy s - u*(ye(6),0,b) + we(0) =s - P([y(a’,a”) —a’ = b)) + we(@), and
o s-Y(ly@,a’)—a” —bl) + we(a”) = limgp, s - us(y@(Q), 0,b) + we(0),

where yg(0) = y(a’,a”) for any 0 € [a’,a”]. Moreover, since we assume that

y(a',a”) < (@ +a")/2+ b, we obtain

s-yY(y@,a”)y—a" = bl) >s-Y(y@,a”)—a” - l). (18)

Let © be the set of all boundaries of equilibrium partition. First, we show

the following Claim 1.

Claim 1. If there exists closed intervals [ay.1,ax] and [a;,a;1] such that ax; < ax <

aj < aj_y and [aga, ai], [aj,a,1] € O, then
e w is strictly decreasing in O over [ax.1,ar] and [aj, a;_], and
o limgp, we(0) = w > @ = limgy,, we(0).

Proof of Claim 1. Since [ay1, at], [aj,a;1] C ©, under the given S’s strategy, S of
type O € [ary1,ax]U[a;, a;_ 1] reveals the true state. Hence, we obtain ye(0) = yR(0)
for 0 € [ax1, ar] U [aj,a;4].
The first-order condition for S of type O € [ai41, ax] results in the differential
equation
d

—5@we(0) = =s - 13(y"(6), 6,)

d

EyR(G).

Since u$(y®(6),0,b) > 0, and yR(0) = LyR(O) > 0, S’s incentive compatibility

condition requires that

we(0) = wela) + fk s - ui(y¥R(2), z, b)Yy R (z)dz. (19)
0

30The same argument holds for the cases of [a’,a”), (a’,a”], and (a’,a"")
NIf (agsq,3) C O is satisfied, the [ar.1,a] € © is also satisfied since © is the set of the
boundaries of equilibrium partition.
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The same argument holds for interval [a;,4;_1]. Hence, we obtain

wo(0) = o)+ [ 5@z by @ (20)
0

From conditions (19) and (20), the given compensation schedule is strictly de-
creasing in 0 over [a1, 4] and [aj,a;4].

To simplify the proof, we now suppose that there exists no closed interval
[a,a] C (ax, a;) such that [g,a] € ©. The equilibrium payoffs of S of type a; and a;
are s - (b) + we(ax) and s - Y(b) + we(a;), respectively.

From condition (18), we conclude that s - u°(ye(0), 6, b) + we(6) is strictly

decreasing in 6 over [ax, a;] N ©. Therefore, the following must be satisfied

lims - 1w (yR(0),0,b) + we(0) = s - Y(b) + w

>5-9() +@ = lims - 1S (yR(0), 0,b) + we(0).

This outcome completes the proof of Claim 1. O

Now, we suppose that there exists an interval which is subset of ©. Let
[ak.1, 4] be the leftmost interval such that [ar.,a] € © and 4y < 4y By
Claim 1, for almost every 0 € [ai1,4x], there is no 0 € O\ [ar1, 2] such that
we(0) = we(0). In the same way as the proof of Appendix 3.C, we can prove that
this result contradicts the fact that the given strategy profile is an equilibrium.>
Therefore, the equilibrium partition does not include any separating interval.

Next, we show that the cardinality of © is finite. We prove this by contra-
diction. Suppose that the cardinality of O is countably infinite: {7,} en. Let
[a441,a,) and [a,,a,-1) be adjacent elements of equilibrium partition. The pay-
ment amount S of type 0 € [a;,a;_1) receives is denoted by w;. We have the

following Claim 2.

Claim 2. #{[an, an_1) € {I}\}/\E]N Wy, 2 a)n+1} < 400,

32The proof is a straightforward application of each step in Appendix 3.C. Therefore, it is
omitted.
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Proof of Claim 2. Since S of type 0 = a, is indifferent between y(a,+1,4,) and

Y(an, a,-1), the following must be satisfied:

5 l/’(|y(an+1/ an) —an — bl) + Wy =S IP(W(%, an—l) —ay — bl) + wWy.

Hence, if w, > w,4+1 holds, we have s - Y([y(a,+1,a,) — a, — bl) > s - Y([y(a,, an-1) —
a, — bl). Since s - P([y(ay+1,a,) — a, — bl) is increasing in a,,1 € [0,a,], if 0, > Wyi1

holds, we must have

S- ¢(b) >S- gb(ly(tln, An-1) — a, — b)).

Y(ly — a, — b|) is strictly increasing in v € [0, a, + b] and strictly decreasing in
y € [a, + b, ), and a, < y(a,,a,-1) < (@, + a,-1)/2 + b. Therefore, ifa,_1 —a, < b
holds, we obtain s - ¥(b) < s - ¥([y(a,, a,-1) — a, — bl). This means that if v, >
w41 holds, we must have a,_; —a, > b. Therefore, it must be satisfied that
#{an, a0-1) € (L) }ien : Wy = @yi1) < 1/b. This completes the proof of Claim 2.

O

Claim 2 implies that if the cardinality of ® is countably infinite, there exists
an infinite sequence {[a;,a;_1)};en C {Z2}aen such that w; < w41, and w; # we(0)
for 0 € [0,1] \ {[aj,aj-1)}jen. In the same way as the proof of Appendix 3.C, we
can prove that this result contradicts the fact that the given strategy profile is an
equilibrium. Therefore, the cardinality of © must be finite. Claim 1 and Claim 2

conclude that all equilibria are finite partition equilibria. ¢

Appendix 3.E Discussion of Assumption 2

Assumption 2 guarantees Claim 1 that plays a critical role to prove the finiteness
of equilibrium partition. To see this, suppose that Assumption 2 does not hold.

Then, if there is a pair of 4, a1, and a such that

l.0<a<am<a<l,andl-a=g
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2. we(0) = w; for O € (a,a), and

@ + fgl s -1 (yR(2), 2, b)y"R(z)dz for O € [a,1],
we(60) =

@+ [y ui(y" @),z by @iz for 0 € [0,al,
where u® = ;%

3. s (lyla, a1)—0-bl) = s P(ly(ar, a)—a1-bl), s-P(b)+@ = s-Y(ly(a, a1)—a—bl)+w:,
and s- Y([y(a,a) —a—b) + w1 =s-P(b) + @ + fal s - u3(yR(2), 2, b)y'*(2)dz;
then

the following strategy profile can be constitute an equilibrium, which has sep-
arating intervals.

In the first period, S reveals whether O belongs to (a,a). If 0 € (a,4), R pays w;,
and then, S reveals whether 0 < a;. If 0 ¢ (g,4), R pays @ in period 2. After this
payment, S’s types {€, € +a} pool together and send message m.. After receiving
me, R pays w(m,) = fe ‘s uf(yR(z), z,b)y'®(z)dz in period 2. After receiving w(im,),
S reveals whether O = € or € + a. If R deviates in terms of payment in a period,
S conveys no information thereafter. S’s incentive compatibility condition is
met by the second and third condition of the abovementioned requirements.
Moreover, if s/r is small enough, R makes a payment to prevent S’s babbling.
However, even if the Assumption 2 is not satisfied, the existence of the pair

(a,a1,a) is not guaranteed. It remains an open question.

Appendix 3.F Proof of Proposition 5

Since G is the uniform distribution and u®(y, 0, b) = I(Jy— 6)), the optimal project
for Ris given by y(a,,a)-1) = (ay +ay-1)/2 for any [a,,a,-1) € {L 1} ea. Recall that

there must exists A € A such that wj,; < w;. Therefore, we obtain

Y@z, —az)/2 = bl) = P(l(az_; —az)/2 - bl) = (w; —wisq)/s 20.  (21)

3Clearly, the given we(6) does not hold Claim 1.
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Since aj,; < aj, the inequality (21) can be simplified into
P(b) = Y((as-4 —a3)/2 = bl). (22)
Moreover, since a5 < aj_;, we obtain
b<(ay_,—ay)/2-b & ay,—a;=>4b. (23)
Therefore, we obtain

rfﬁ_l g0 (y(az, a5_y), 0)dO = Vfﬁ_l I((ay_y —az)/2 - 06))

A A
b
<r f 1(12b - 0)).
0

Appendix 4.A Proof of Proposition 7

For S’s incentive compatibility condition to be satisfied, the partition {[a,, a1), [a1, 1]}
must coincide with the 2-element equilibrium partition achieved in the one-shot
cheap talk game where 0 is drawn from the uniform distribution over [0, 4;).
By CS, the boundary a; satisfies that

a 2 a; +a 2
—S(El—al—b) :—s( 12 2—a1—b).

This equation implies that

1-m :a1—02+4b. (24:)

Moreover, similar to the condition (8), the incentive compatibility condition

for S of type O = a, induces the following equation:

@ = s{(az + a1)/2 = (a2 + b)}* — 5(a2/2 — (a2 + b))

The value of @ is positive if and only if a; —a, > a, + 4b. This means that
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a4, — a, > 4b. Hence, we obtain

@-0)+@ —a)+(1—-ay)=2( —ay) +4b +a,

> 12b + 3a,.

Since we now suppose that b € (1/12,1/4), we obtain 12b + 3a, > 1. Therefore,
boundaries of the partition and the payment @ are not well defined. This
outcome implies that we cannot construct a 3-element partition equilibrium

described in Proposition 7. &

Appendix 4.B Proof of Proposition 9

First, we now ensure of the optimality of S’s strategy. At history 1! such that
wy < w;, or my > ap for some t’ < t, any type of S randomly sends a message
according to the same distribution, a uniform distribution over [0, 1]. Therefore,
there is no profitable deviation for S at such a history.

Athistory hV or h®D such that my < ay and wy > w}, forallt’ < t,if S of type
0 sends m; > a;, then he will obtain —s ((a; + a;-1)/2 — (0 + b))2 in the future. Oth-
erwise, the continuation payoff of S can be —s ((a.1 +a5)/2 — (0 + b))2 + Zj:t w;
for some f € {t,..., T}. Since a4; and w; satisfy (14)—(15), it is easy to verify that
forany f € {t,..., T},

2 . . 2

. (at +2at_1 _©O+ b)) > —g (—af”; %0+ b)) + Z w; forany 0 > a;, (25)
=t
a +a 2 Apq + ag 2

- s( t 2 — -0+ b)) <-s (% -6+ b)) + ) w; forany 0 € [az,1,a),
=t

(26)

2 2

—s(HEEL (94 b)) = s (2 (04 b)) + ) for 0 =a,. @7)

2 t

Moreover, take 6 = a;, then t solves
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Hence, (25)-(27) imply that there is no profitable deviation for S from &r.

Next, we ensure of the optimality of R’s strategy. At any history h'*! €
H™1, the posterior belief f(Olh™' = (W72, wr)) = f(OIhT?) is a uniform dis-
tribution supported on an interval whose mid-point is equal to {minI(h"*!) +
max I(hT*1)}/2. Therefore, y = {min I(h"*') + max I(hT*1)}/2 is an optimal project
for R at any h'*! € H™*1,

Consider a history h*? for t € {1,...,T - 1}. If wy < w}, or my > ay for
some t’ < t, then R has no chance to obtain additional information in the future.
Therefore, she must pay nothing to S at such a history. If my < ay and wy > w;,

forall ' <t and m; < a;,** by paying w; > w;, R obtains u;(w;):

2
ww) = —w— w - - rZ f . i T +al - 6) do
i1 t

i=t+1

T
—w, — Z w%ﬂ _ r(ﬂT—lb + (ar1)’ S (T-1-1 (a)3)

1
a a 48a
i=tv1 1 t f

On the other hand, by paying w; < wj, she obtains u(w;):

_ "1 (a
u(wy) = —wt—rfo a—f(é—@) doe

(ﬂt)2
TR

Clearly, u;(w;) and u;(w;) have amaximum at w; = wj and w; = 0, respectively.

Therefore, paying w; is optimal for R if and only if u;(w;}) > u(0)

arab? (@)’ @ , @\ y .0
- — T-1- > —. 2
‘=”( o asa, t)48 5 12 —;wlat 28)
By making a sufficiently close to 0, the left-hand side of this inequality can
be made as close to r(1/16 — b?) as desired and the right-hand side of this
inequality can be made as close to s(1 + 12)(1 + 4b)/16 as desired. It is obvious
that if s/r < (1 — 4b)/(1 + 12b), there exists d(b, T) > 0 such that if a < a@(b, T),

3R learns 0 < a; at the immediately preceding stage.

50



then u; > u, forany t € {1,..., T — 1}. Takea < min{%, 1T_—_41b,d(b, T)}. Then, &

constitutes an equilibrium. ¢

Appendix 4.C Proof of Proposition 10

We now impose a condition, a = {1-(4b+¢)}/(T—1),on &r. Sincear_; =4b+¢ €
(4b,1), € € (0,1 — 4b) must be satisfied. Moreover,a = {1 — (4b + ¢€)}/(T —1) <
(1-4b)/(T-1) < (1 +4b)/(T —3) holds. Therefore, if a < (1 +12b)/(T + 1), a;
and w; are well defined. We now suppose that T > T(b) = 1/8b + 1/2, and then
a < (14+12b)/(T+1) for any € € (0,1—-4b). Let &, be this modified strategy profile
and system of beliefs. The following lemma shows that if r is large relative to s,

then &, can be an equilibrium.

Lemma 5. Fix b € (0,1/4), and T > T(b). Then, for any ¢ € (0,1 — 4b), there exists
n(b, T, €) such that if s/r < n(b, T, ), then &, constitutes an equilibrium.

Proof of Lemma 5. 1t is obvious that the restrictiona = {1—(4b+¢)}/(T — 1) affects
only R’s optimal decision at h? such that my < ay and wy > w}, forall ¥’ < t—1
and m; < a;,. Therefore, we have only to ensure whether the inequality (28)
holds.

The left-hand side of the inequality (28) can be simplified into

ar—1 {4(ﬂt)3 - (ﬂT—1)3 -(T-1- t)a3 ar-1 2}
r - b ;.
a 48a1_, a;

Since a; = ay_1 + (T — 1 — t)a, we obtain

4(a))® - (ar-1)? = (T -1 -t)a® . (a;)® . (a;)? N aT—_lbz.
4861T_1 1661T_1 16 a;

This implies that

ar— 4(ﬂt)3 - (ﬂT—l)3 —-(T-1- t)ﬂ3 _ar— s o
a; 48a7_4 a; ’

Moreover, since w; > 0, the right-hand side of the inequality (28) is higher than
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0. Therefore, we obtain

uj(w;p) > uy(0) —

ar—1 [4@)’—(ar)*-(T-1-Ha®  ary b2
az 48a1_1 ag

< . (29)

I V)

Note that the value of w;/s does not depend on s. Now, we conclude that there
exists (b, T, €) such that if s/r < 1(b, T, ¢), then the inequality (29) holds and &,

constitutes an equilibrium. 0O

EUR(¢) denotes the ex ante expected payoff of R under a strategy profile &..

T
EUR(e) = rIW(e) — Z w;a;.
i=1

rW(e) denotes the expected revenue from the project under &,:

T+1 i1 4+ a; 2
"W(e) = —er ( — —e) 6
i=1 Y@

, (@b+ef 1 {1-(@b+e)p
r[—(4b L R T o

There exists €(b,d) > 0 such that if € € (0, (b, d)), then

rb® — rd.

r [—(419 +e)b* — b+ 8)3] .16

48 3

This implies that for any ¢ € (0, (b, d)), there exists T(b, ¢,d) such that for any
T>T(,e¢,d),

W(e) > —%rbg’ —rd. (30)

Recall that w; is linearly increasing in s for all i € {1,...,T}. Suppose that

T > T(b, ¢,d). Then, for any ¢ € (0, (b, d)), there exists 7)(b, T, ¢, d) such that

W(e) +16b%/3 +d

s/r <A, T,e,d) = - ZT —
5 i=1 Wit

EUR(e) > —167b°/3 — rd.

52



By Lemma 5, if s/r < 11(b, T, ¢), then &, constitutes an equilibrium. Therefore,
ifs/r <fjb,T,¢,d) = min?ﬁ(b, T,e,d),1(b,T, €)}, the strategy profile &, constitutes
an equilibrium under which EUX(¢) _> —~16rb*/3 — rd.

Define T(b, d) and E(b, d) as follows.

Tﬂhd)zlnax{ min Taneﬂﬁ,Tdﬁ}, and

e€(0,e(b,d))

E(b,d) = {¢ € (0,(b,d)) : T(b, ,d) = T(b,d)}.
Define 1(b, T, d) as follows:

nb,T,d) = sup 7jb,T,¢,d).
- e€E(b,d)

Suppose that &, constitutes an equilibrium of I'(b, s, 7, T) where R obtains
EUR(e) > —16rb®/3 — rd. Consider I'(b,s, 7, T’) where T” > T. Now, construct a
strategy profile &, by modifying &.. In particular, under &/, players follow &,
until period T, and then S conveys no information and R never pays money to S
in the future. It is obvious that &/ constitutes an equilibrium of I'(b, s, 7, T") and
R’s equilibrium payoff is equal to EUR(¢) > —16rb°/3 — rd. Hence, taking n(b, d)
as ﬂ(b, T(b,d),d) completes the proof. ¢ B

Appendix 5.A Proof of Proposition 11

Formally, the strategy profile (5, p) is defined as follows. Atstage 1in period1, S
of type 6 > 4} sends a message m; randomly according to a uniform distribution
over [4],1], and S of type 0 < 4] sends a message m; randomly according to a
uniform distribution over [0,47). If m; < 47, then R pays a certain amount of
money, w*, to S at stage 2 in period 1. Otherwise, she pays nothing to S. If
my < 47 and w; > w", then, at stage 1 in period 2, S of type 6 > 45 randomly
sends a message 1, according to a uniform distribution over [4},1], and S of
type 0 € [4Y,,,4Y), fori € {2,..., 7}, randomly sends a message 1, according to a

uniform distribution over [47, ,47). Otherwise, S randomly sends a message 11,

according to uniform distribution over [0, 1] regardless of his type. In period t >
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2, Ralways pays nothing to S. In period t > 3, S always sends babbling message.
In period T + 1, R chooses a project p(h'*!) = argmax, [ uR(y, 6)f(61hT*1)do.
Let H be the set of all histories where R makes a decision, H = {U,_; H?} U
H™!. The closure of the set {8 € © : f(Olh € H) > 0} is denoted by I(h).
Under the belief system f that is consistent with (&, p), we obtain I(h™*') €
{[ax,,,a%,...[a%,a3), (4, , 431} for any h™*' € H'*'. Therefore, at h'*! such that
0 = (@0

arg max, fx uR(y,0)g(0)d6, and at h™*! such that I(h™*') = [4},,, 4], the op-

n+1’

a7] for i € {0,...7}, the optimal project for R is y(d} ,47) =

X

timal project for R is y(a%, ,4}) = argmax, fxl uR(y, 6)¢(0)d6. Hence, p(h™*?)
a%) at h™! such that I(h"*!) = [47 |, 7] fori € {0,...7}, and p(h"*!)

1+1’
ay) at k™! such that I(h™1) = [a%_, 47].

+17

becomes y(a?, ,,

becomes y(a- . ,,

In period t > 2, R always pays nothing to S, which implies that {[a,,,47)}7,
must coincide with the 7i-element equilibrium partition achieved in a model
with one-shot information transmission where 6 is drawn from a distribution
with density {g(6)/G(@7)} - Lo.41(6). Therefore, the boundaries of this partition,
{[aF ﬁj‘)}?zl, must be solutions to the following non-linear difference equation

i+17

whose initial and terminal conditions are 4 = xand 4%, , = 0: fori = 2,...,1,
S ST(AY 4 N
- uS (G, 87,85, 1) — s - uS (G, 65.,), 85, b) = . (31)

When 47 = 1, the solution to (31) induces a partition that coincides with 7i-
element equilibrium partition in the one-shot cheap talk game.*® Moreover,
the solution to (31) varies continuously with respect to initial condition 47 = x.
Recall that a solution to (1)—(3) in Section 3.1 induces a partition: 0 =d; < --- <
d1 < dp = 1. Therefore, there exists x € (d1,1) such that (31) is well defined for
all 4; € (x,1). Let a, be the minimum value of x such that for all 4; € (x, 1), the
solution to (31) induces an fi-element partition: 0 = 47, < a; < --- < a4y = 4j.
Since the solution to (31) does not depends on both s and 7, the value of 4, also
does not depends on both s and .

Suppose that {43, ..., 47, ,} is a solution to (31) where 47 € (4,,1). Then, there

%¥Condition M ensures that the above difference equation has at most one solution for the
given 7i. See pages 1444-1445 of CS (1982).
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is no profitable deviation for S from ¢ at any hg"l) such that m; < 47 and w; > w".
Moreover, S conveys no information at any hg’l) such that m; > 47, or m; < ay
and w; < w*. The same can be said at any hg’l) for t > 3. This implies that if
ay,....a.,,

hg’l) fort > 2.

} is a solution to (31) where 47 € (g,,1), then ¢ is optimal for S at any

At stage 1 in period 1, if S of type 0 sends m; > 4, then he obtains s -
u*(y(a%,1), 0,b). Otherwise, S of type 0 > 4} obtains s - u®(y(43,4%), 0, b) + w*, and
S of type 0 € [4,,,4Y), for i > 2, obtains s - us(y(ﬁfﬂ,ﬁf), 0,b) + w*. We assume

that u (y,0,b) < 0 and u{,(y, 6,b) > 0. Moreover, y(a},,,4) > y(a7,a; ;) holds.

Therefore, if the following is satisfied

s u (@@}, 1),},0) ~ s - u* (Y@, &), 85,b) = w', then (32)

s U@, 1), 0,0) = max s - u' (@,

a;),0,b) +w" for 0 > dj, and (33)

s-u*(y(@ar,,,ay),0,b) +w' >s-u’(y(a},1),0,b) fori>1and 6 € [4},,,47). (34)

When (33) and (34) hold, S has no incentive to deviate from & at stage 1 in
period 1.
If w*(x) = 0 for some x = 47 € (a,,1), then (1)—(3) has a solution: 0 = 4, <

A

a; < --- <4y = 1. This result means that an equilibrium whose partition
has 71 + 1 steps exists in the one-shot cheap talk game. This is incompatible
with the definition of 7. Hence, R’s payment, w*(x) = s - u°(y(x,1),x,b) — s -
u(y(3, x), x,b), which holds for equation (32), is positive for any x € (a,,1].
Note that w*(1) = s - u*(y*(1),1,b) — s - u*(y(a,1),1,b) > 0 since u3 (y,0,b) < 0
and ¥(d;,1) < y*(1) < y°(1,b).

At any h*?, R has no incentive to increase the amount of payment because
that does not affect S’s behavior. Therefore, we have only to ensure the opti-

mality of p at 112 such that m; < x. At this history, if R pays w; < w*, then she

obtains u(w,):

_ r t
u(w,)) = —w; + @fo u® (y(0,x), 0) g(0)d0.
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On the other hand, by paying w; > w* at history h*? such that m; < x, she

obtains u*(w,):

* _ L - g Ri50a%  Ax
u'(wy) = w1+G(x);ﬁlu (y(@,,, a;),0)g(0)do.

ai+

Therefore, paying w* is an optimal decision for R at #'? such that m; < x if

and only if u*(w*) > u(0)

oo i o A r v .
&L, f LD, 0800 f W (50, %), 0) g(0)d6 > w'. (35)

Let denote r- V(x) be the left-hand side of the inequality (35). V(x) is continuous

inx € (a,,1], and V(x) > O for x € (a,, 1]. Moreover, V(1) = EU{; . —EUZ; , where
EUR . = X0, [ uf @@, 6i1), 6)g(0)d6 and EUR, . = [ uR(F(0,1), 6)g(6)de.

Let a(x) be u° (y(x, 1), x,b) — u® (y(ﬁ;‘, X), X, b). In the following part, s - a(x) de-
notes R’s payment, w*(x), which holds for equation (32). Inequality (35) can be
simplified into s/r < V(x)/a(x). Obviously, V(x)/a(x) is continuous in x € (a,,1],

and < <
V(1) _ E uCS,ﬁ —E uCS,ui

D) B LY e Ga DLy
Therefore, if s/r < n(b) = V(1)/a(1), then {x € (a,, 1) : s/r < V(x)/a(x)} # 0. This

outcome implies that if s/r < n(b), there exists a non-empty set {x € (a,, 1) :
s/r < V(x)/a(x)} such that ((6,p), f) constitutes an (77 + 1)-element partition

equilibrium when x € {x € (a,, 1) : s/r < V(x)/a(x)}. ©

Remark 3. Since V(x)/a(x) > 0 for x € (a;,1] and V(x)/a(x) is continuous in
x € (a,,1], there exists z € (a;, 1) such thats/r < V(x)/a(x) holds for any x € (z, 1).
Let a,(s/r) be the infimum value of z. Then, the value of g,(s/r) is strictly

decreasing and goes to a, as s/r goes to 0.

Appendix 5.B Proof of Proposition 12

First, we show the following Lemma 6.

Lemma 6. Fix b > 0 and suppose that 7i > 2. If s/r < n(b), there exists a (it + 1)-
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element partition equilibrium (6, p), f) such that S always strictly prefers (6, p), f)

to any equilibrium in the one-shot cheap talk game.

Proof of Lemma 6. Now, EUZ, denotes the ex ante expected payoff of S under the
fi-element partition equilibrium with {dj, . . ., o} in the one-shot cheap talk game.
Let EUS(x) be the ex ante expected payoff of S under the (ii+1)-element partition
equilibrium ((6, p), f ) with (7 + 1)-element partition: {[d},,,47),...[d], 3]} where
a7 = x € (a,(s/7),1).

In the one-shot cheap talk game, under Condition M, S always strictly prefers

ex ante fi-element partition equilibrium to any other equilibria. We have

EUgs = SZf_ u®(Y(@, 3i-1), 0, b)(0)do.
i=1 V4

aj

By Proposition 11, it must be satisfied that s/r < n(b) in order for an equilib-
rium ((6, P), f ) to exist. Therefore, in what follows, we suppose that s/r < n(b).

The ex ante expected payoff of S under ((6, p), f) is

fi+1 At
EUS(kx) = S[Z f T US@@, 65), 0,b)2(0)d0 + G(x) - a(x)|.
i=1 Y

Recall that s - a(x) = w*(x) = s - u° (y(x, 1), x, b) — s - u(y(43, x), x, b) is positive
for x > a,, and s - a(x) is continuous in x > 4,.
Let A(x) denote EUS(x) — EUS,. Since lim,; A(x) = a(1) > 0 and A(x) is

continuous in x € (a,, 1], there exists d < 1 such thatd > a,(s/r) and
A(x) >0forallx € (d,1).

This completes the proof of Lemma 6. O

Remark 4. Define d(s/r) = inf{d : d > a,(s/r)and A(x) > Oforallx € (d,1)}.
Remark 3 shows that g,(s/r) is decreasing as s/r is decreasing. Furthermore,
A(x) does not depend on both s and r, the Hence, d(s/r) is weakly decreasing as

s/r is decreasing.

Next, we show the following Lemma 7.
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Lemma 7. Fix b > 0 and suppose that fi > 2. Then, there exists a positive value 1(b)

such that if s/r < 1(b), there exists X € (a,(s/r), 1) such that
EUR(x) > EUZ,.

Intuitively, R seems to prefer the (/i + 1)-element partition with {@},,,..., 45}
to the fi-element partition with {4y, ..., dy} since the former has more steps than
the latter. As we earlier show, if Condition C holds, then there exists x < 1 such
that W(x) > EUR,. Fix x, then W(x) — EUX, is increasing in r. Moreover, since
w" is decreasing and goes to 0 as s goes to 0, the expected payment E[w"] is also
decreasing and goes to 0 as s goes to 0. Thus, if r is large enough relative to s,

then there exists ¥ such that EUR(x) > EUX..

Proof of Lemma 7. In common with the proof of Lemma 6, we suppose that

s/r < n(b).
Let 6(x, s, ) denote {EUR(x) — EUR }/r. We obtain

o(x,s,r) = W(x)—;G(x)-a(x)—Zfi_l uR(y(ﬁi,ﬁi_l),G)g(G)dG.
i=1

aj

o(x,s,r) > 0 holds if and only if

WXL [ @@, 0)3(0)d0
n(b, x) = GO -a@ g

N1 »

Since x belongs to (4,(s/7),1) and infieq (s/n,1) G(X)a(x) > 0, 7(b, x) has a least
upper bound 7(bls/r) = SUP. e, (s/1)1) 1(b, x). Under Condition C, 1(b,x) > 0 for
some x € (a,(s/r),1). This implies that 7(b|s/r) > 0 for s/r < n(b). Moreover,
since a,(s/r) is not increasing as s/r is decreasing, 7(bls/r) is not decreasing as
s/r is decreasing. Therefore, we can take a supremum of s/r € (0, 7(b)), which
satisfies 7(bls/r) > s/r. We denote this supremum by 77(b).** This completes the

proof of Lemma 7. O

%Note that 7j(b) < +oo, since W(x) — ¥, j;" uR(y(d;, i-1), 0)g(0)dO < +oo for any x € (a;, 1).
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Remark 5. Suppose that x almost equal to 1. Then, the partition under the (7i+1)-
element partition equilibrium almost coincides with the partition under the 7-
element partition equilibrium in the one-shot cheap talk game. Nevertheless,
the expected payment of monetary transfer is high (almost coincides with sa(1)).
This means that EUR(x) ~ EUR; — sa(1) for x ~ 1. Therefore, if s/r < 1(b), there

always exists a (71 + 1)-element partition equilibrium that is unfavorable to R.

Finally, we complete the proof of Proposition 12 by demonstrating that if r

is large enough relative to s, then we can take x € (a,(s/r), 1) such that
EU®(x) > EUS, and EU°(x) > EUZ,.

Pproof of Proposition 12 Suppose that s”/r” < s'/r" < 7(b). In the proof
of Lemma 7, we show that {x € (a,(s'/7"),1) : 6(x,s’,7") > 0} # 0 and {x €

(a,(s”/r"),1): 6(x,8”,r"") > 0} # 0. Since a,(s/r) is decreasing as s/r is decreasing,

{x €@, (s'/r),1):0(x,s,7") >0} C{xe(a(s"/r")1):0(x,s",1")>0}

Moreover, since ¥

dn
dx 0

x=1 7 dx

< 0. Furthermore, 77(b,1) = 0 and 7(b, x) is

x=1

continuous in x € (a;,1). Therefore, we obtain
lim sup{x € (a,(s/r),1) : 6(x,s,7) > 0} = 1.
s/rl0 -

Since A(x) > 0 for x € (d(s/r), 1) and d(s/r) is not increasing as s/r is decreas-
ing, there exists 7j(b) such that if s/r < j(b), then {x € (a,(s/7),1) : 6(x,s,7) >
0} N (d(s/r),1) # 0. This completes the proof of Proposition 12. ¢

Appendix 5.C Condition C

Suppose that s - u°(y, 0,b) = —s(y — (6 + b))%, r - uR(y, 0) = —r(y — 0)?, and G(0)

is uniform distribution over [0,1]. In this case, the boundaries of the partition
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derived from ((5, p), f) are given by

1 fori =0,
X fori=1,

mliy —2b(+1-i)i—1) fori=2,...,17,

0 fori=n+1.

Proposition 11 shows that for 71 > 2, there exists n(b) such that if s/r < n(b), then
((6, ), f) constitutes an equilibrium whose partition is induced by a7 where
€ (a,(s/r),1). Note that y(a%,,47) = (@, +47)/2fori=0,..., 7.

The envelope theorem yields

—W(x> Zg”‘) [uR (@, ), &) — uf (7@, L), )]

Since lim,; @} = d;_1, we obtain

AX
dll]+1

AW
dx

-1
Zg @) (@1, 3, 8)) = G @5, 850), )] ——

x=1 j=

x=1
AX

(36)

+g (@) [u® (Y(d1, @), do) — u"(y" (@), do)] o

Therefore, we obtain

dw _ﬁ_l B A ~4;+ 14\’ ”—]_(1—51)2
dx |, o 2 2 f 2
Since d; = T —=2bj(@ - j),

N O S a2
_(mz ]) +(]T]1) T o=
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Moreover,

ﬁi [_ (amz— ﬁj)z N (—ﬁj ; dj1 )2] ﬁ _ J Z {_ (ﬁmz— ﬁf)z + (#ﬂ

=1 1

j=
1—a\
< ( 2 )

This establishes % <0.

x=1

Remark 6. Suppose thats-u5(y, 0, b) = —s(y—(0+D))?, r-ul(y, 6) = —=r(y—0)?, and
G(0) is a distribution over [0, 1] with a density g(0) = =20 + 2. By Theorem 2 in
CS, any solution to (1) satisfies Condition M. By Condition M and u3,(y, 6, b) > 0,

we obtain da7/dx > 0 and
Uk (@4, d),3) — uR@@;, ai), @) > u(G@, a;), a;, b) — uy@, a-),a;,b) > 0.

Since ¢(1) = 0 and 4] = x, the second term of (36) is equal to 0 and the first term

is strictly positive. This result means that ’%Vix: >0

Appendix 5.D Proof of Proposition 13

Under the given strategy profile, If S reveals that 0 < x in the first period, R
pays @(x) = s - u*(y(x,1),x,b) —s - u(y(@, x), x,b). Since each element of the

boundaries {4*

fire

., @3} is continuous in x and converges to a corresponding
element of {dy, ..., dp} as x goes to @;, we must have @(d;) = 0.

Let {[ﬁgj, a),... latat } be the equilibrium partition of (71 —1)-element
partition equilibrium in the one-shot cheap talk game. For anyi € {1,..., 7}, the
boundary 4} can be made to be as close to @]~ as desired by making x sufficiently
close to 1. We obtain @(1) = s - u®(y*(1),1,b) — s - u(y(a’!,1),1,b). Note that
@(1) > 0 since u$,(y,0,b) < 0 and ¥(@,1) < y*(1) < y°(1,b). Condition M
requires the uniqueness of the solution to the deference equation in Section 3.1.

The necessary payment @(x) is strictly positive in x € (d;, 1).
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The following inequality must hold for R’s payment @(x) to be optimal:

-1 s N
ﬁ le f | uRy(@,,, @), 0)g(6)do — ﬁ : 1R (5(0, %), 0) g(0)d0 > @(x). (37)

The left-hand side of (37) is strictly positive when 71 > 3 and x > ;. Recall that
W(x) = s-ax,b) =s-u(y(x,1),x,b) —s - u*(y(@,x),x,b) > 0 for any x € (@, 1).
Summarizing the above, we conclude that for any x € (4, 1), there exists 7j(b, x)
such that if s/r < 7j(b,x), the given strategy profile constitutes a fi-element
partition equilibrium.

The players” equilibrium payoffs are given as follows:
EUR(x) = rWR(x) — s - @(x, b),
where WA = LL, [ ul (i@, & ,), )(6)d6, and
EUS(x) = sW°(x) + s - a(x, b),

where W5(x) =s Y1, j‘l us(y(@, @ ), 0)g(6)do. By the definition of WX(x) and

W5(x), WR(a,) = EUE; and W*(d;) = EUZ,, respectively.
Now, we ensure that if Condition M holds, % . > 0 for ¥ € {R,S}. The

envelope theorem yields

d A7R _ o ~X dﬁf R/ ~x ~X\ ~X Ri=/~x =x ~X
W) = Z‘ @) (@, @), 8) — ' G(@, a5,), @),

dWR
dx

AX

fi—1 L
= Y 8@ G, @), ) - u (@, ), 3)] -
i=1

xX=d xX=a

Condition M guarantees that fori € {1,...,7 — 1}, da7/dx > 0 and the following
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inequality:%’
uR (Y@, @), @) — u (Y@, i), @)
> u (Y(@ie1, @), @) — u° (Y(@;, @i-1), d;) = 0.

dWR
dx X=i

Therefore, we obtain

The total derivative of W5(x) is

d A7S _ﬁ_l ~X dﬁf S(T( /X ~X\ 5X S(T(RX AX ~X
%W (x) = ;g(ai)a[“ (@, @), @) —w(y@, a_y),a;)l

o dy@,, @) (7
+17 70 S =y -
LT f [ @@, &), 0,b)3(0)d0)] .

" 5X
i=0 A1

Since 4; is a solution of the deference equation in Section 3.1, the first term is

equal to 0 at x = ;. Hence,

dWS5

@, @)
- =+ T
dx

_ dx

xX=ay =0

f | [“f@(ﬁm,ﬁi), 0,b) g(@)d@] .

x=d; VY i+l

Condition M guarantees that dy(a,,, @)/dx > 0. Moreover, y(d;,1, ;) maximizes

i+17
faaﬂ ul(y, 0)g(6)do = faaﬂ us(y, 6,0)g(0)d6. Therefore, we obtain % e > Oby
our assumption that u3,(y, 6, b) > 0.

We have already shown that s - @(x, b) > 0 for x € (43, 1). Hence, these results
conclude that there exists 7j(b) such that if s/r < #j(b), for x € {R, S} EU*(x) > E U

holds for some x € (d;,1). ¢
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