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Abstract

In this paper, we propose a robust approach against heteroskedasticity, error serial cor-
relation and slope heterogeneity for large linear panel data models. First, we establish
the asymptotic validity of the Wald test based on the widely used panel heteroskedastic-
ity and autocorrelation consistent (HAC) variance estimator of the pooled estimator under
random coefficient models. Then, we show that a similar result holds with the proposed
bias-corrected Bai’s (2009) estimator for models with unobserved interactive effects. Our
new theoretical result justifies the use of the same slope estimator and the variance esti-
mator, both for slope homogeneous and heterogeneous models. This robust approach can
significantly reduce the model selection uncertainty for applied researchers. In addition,
we propose a novel test for the correlation and dependence of the random coefficient with
covariates. The test is of great importance, since the widely used estimators and/or its
variance estimators can become inconsistent when the variation of coefficients depends on
covariates, in general. The finite sample evidence supports the usefulness and reliability of
our approach.
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1 Introduction

The recently increasing availability of panel data sets in which both cross-section dimension N
and times series dimension 1" are large has produced opportunities to develop statistical methods
to exploit richer information, while presenting associated technical challenges. In particular,
controlling cross-sectional dependence, heterogeneity in parameters and distributions, and serial
dependence has been a main focus of the literature.

The celebrated fixed effects model permits intercept to be cross-sectionally heterogeneous
whilst slope coefficients are constant across cross-section units and time. Hansen (2007) has
shown that, under mild conditions, the heteroskedasticity and autocorrelation consistent (HAC)
variance estimator of Arellano (1987), which is originally proposed for a short panel fixed effects
estimator, will be asymptotically valid for large panels. Greenaway-McGrevy et al. (2012)
propose to use the HAC estimator for the pooled principal component based (PC) estimator
for the model with unobserved interactive effects.

The random-coefficient model, in which the slope coefficients are allowed to vary with the
cross-sectional units, has attracted great attention in recent years.! It can control differences in
behaviour across cross-section units which are not captured by the control variables. For such
models, the estimate of interest is often the population average of slope coefficients. Interest-
ingly, if the cross-sectional variation of slopes in the random coefficient model is independent
of covariates, the fixed effects estimator is consistent to the population average of slope coef-
ficients. A non-parametric variance-covariance estimator for such pooled estimators has been
implicitly proposed in Pesaran (2006), in which the population variation of slopes is replaced
by its sample counterpart — the variation of the estimates of cross-section specific slopes. The
evidence has shown that the variance estimator behaves very well in finite samples.

There are some issues about this variance estimator for our robust approach. First, for
the choice between the HAC and this variance estimator, the practitioner would like to know
if there is slope heterogeneity or not. Second, some estimation methods, such as Bai’s (2009)
estimator, do not permit slope heterogeneity models, and making use of statistics involving
individual slope estimates might not be asymptotically justified.

In this paper, we propose a robust approach against heteroskedasticy, error serial correlation
and slope heterogeneity for large linear panel data models. First, we establish the asymptotic
validity of the Wald test based on the panel HAC variance estimator for the pooled estimator
under random coefficient models. Then, we show that a similar result holds with the bias-
corrected Bai’s (2009) estimator for models with interactive effects when the regressor has a
factor structure. Our new theoretical result justifies the use of the original Bai’s iterative
estimator and the variance estimator, both for slope homogeneous and heterogeneous models.
This robust approach is expected to substantially reduce the model selection uncertainty for
applied researchers.?

Another main contribution of this paper is a novel test for the correlation and dependency
of the random coefficient on covariates. We extend the test proposed by Wooledridge (2010)
by robustifying against (uncorrelated) random coefficients, proposing a Lagrange Multiplier
test along with a Wald test, and developing them for the models with unobservable interactive
effects. The test is of great importance, since the widely used estimators and/or its variance
estimators can become inconsistent when the variation of coefficients is correlated or dependent
with covariates, in general.

We have examined the finite sample performance of the estimators, tests of linear restrictions,

'See Hsiao and Pesaran (2008) for an excellent survey of random coefficient panel data models.
?Galvao and Kato (2014) consider estimation and inference of fixed effects estimation for large panels under
misspecification.



and the LM tests for correlated random coefficients. The evidence illustrates the usefulness of
our approach. In particular, for the estimation of the models with unobserved interactive ef-
fects, the size of the proposed robust Wald test using the bias-corrected Bai’s (2009) estimator
is very close to the nominal level, under both slope homogeneity and slope heterogeneity, while
maintaining satisfactory power. Also, the LM tests for correlated random coefficients have cor-
rect size under both slope homogeneity and slope heterogeneity due to pure random coefficients,
while exhibiting high power when the random coefficients depend on covariates.

The paper is organised as follows. The robust Wald test is proposed for standard linear
panel data models in Section 2, then for the models with unobserved interactive effects in
Section 3. A test for correlation of slopes with covariates is proposed in Section 4. The finite
sample performance of the proposed bias-corrected estimator, the associated Wald test and the
correlation test is investigated using the Monte Carlo method in Section 5. Section 6 contains
some concluding remarks. Proofs of the main results in Sections 2 and 3 are contained in Online
Appendices A and B, respectively.

Notations: we denote the largest eigenvalues of the N x N matrix A = (a;j) by fpax(A),
its trace by tr(A) = Zf\il a;, its Frobenius norm by ||A|| = /tr(A’A). The projection matrix
on Ais Py =A(A’A)"1A’ and My =1 - P,. A is a generic positive constant large enough,
6%VT =min{N,T}. We use N,T — oo to denote that N and T pass to infinity jointly.

2 Benchmark Panel Data Model

Consider a panel data model with cross-sectionally heterogeneous slopes:
yitzxgtﬂi+5it7 (’L: 1,2,..,N,t= 1,2,...,T) (1)

X;+ is a k X 1 vector of observed covariates, and €;; is disturbances. The k x 1 slope coefficients
are generated as

B, =8"+m, (2)
where n; is independently distributed random vector across i, with E (n;) = 0. When n; = 0
for all 4, it reduces to the homogeneous slope model. Throughout the paper, our interest is in

the estimation and testing of the linear restrictions of 3°. Now stack the T equations of (1) to
form
yi = XiB3; + &, (3)

! ! !
where y; = (yi1, Yi2, -, ¥ir) s Xi = (X1, Xi2, -, Xq7), and &; = (€41, €42, ..., €i1) -

Remark 1 For notational simplicity, we do not include individual and time specific effects in
the model. But all the discussion below will hold by replacing {yi, X}, } with transformed variables
{ijie X0}, where %, = (ya — 5 — Ge +§) and Xy = (xip — % — %y + %) with §; = T~V 30 yar,
gp =Nt Zfil Yie, = N1 Zf\il Ui, and X;, X4 and X are defined analogously.

We can rewrite the equations (2) and (3) as
yi = X8 + u, u; = Xin; + €. (4)
The pooled estimator of 3° is given by

_1N

N
G- (z x;xz-) S Xy, 5
i=1 =1



To analyse the asymptotic properties of B, we extend the assumptions in Hansen (2007) to
accommodate random coeflicient models as follows:

Assumption Al: {x},,e;} is independent across ¢ = 1,2,...,N for all ¢, a strong mixing

sequence in t with a of size —3s/(s — 4) for s > 4, with Ee;[*™ < A < oo, Bz <
A < oo for all i,t,h = 1,2,....,k and E (g|X;) = 0; HBOH < A; {n;} is independent across
i=1,2,...,N and of {g;} for all i, B|n;|*™ < A < oo and E (n;|X;) = 0.

Assumption A2: (Identification): A7 = T7'E(X}X;) is uniformly positive definite and
A =limy 700 AT, With Axp = N2 N | Ayp, is fixed and positive definite.

Assumption A3: (Variance Matrix 1): By = T71E (X!X..;X;) and E..; = E (g;€}|X;) are
uniformly positive definite and B =limy 7,00 By7, with By = N1 Zfil B,r, is fixed and
positive definite.

Assumption A4: (Variance Matrix 2): Cir = T2°E (X} X;Q,, ;X! X;) and ,,; = E (n;n|X;)
are uniformly positive definite and C =limy 17— Cn7, With Cy7 = N -1 Zf\i 1 Cir, is fixed
and positive definite.

Assumption A1l allows serial dependence in {x[;, £;+} but assumes independence across i. The
random coefficient is independent across i. Both the idiosyncratic errors and random coefficient
are assumed to be uncorrelated with x;;. Assumption A2 is a fairly standard identification
condition. Assumption A3 allows conditional heteroskedasticity across ¢ and ¢. Assumption A4
permits a conditionally heteroskedastic random coefficient process.

For later use, let us define the sample counterpart of Ay and A;r defined in Assumption
A2:

N
_ 1 _ — XX,
ANt = — ZAZ'T7 A === (6)
N P T
Substituting (3) into (5) gives
R N Y
P - (L) Y
i—1 i—1
1 & 1 <
— AL I = A .
= Ayr <NT ;Xz‘ez + N ; Aﬁm) . (7)

Let us consider the asymptotic properties of the first term of (7). We state the following
theorem, which is proven by Hansen (2007):

Theorem 1 Consider model (4). Under Assumptions A1-A3, as (N,T) — oo,
1 N d
At — § ‘Xle; — N (0,A"'BA™! 8
NTUNT 2 ( ) (8)

where AnT, A, and B are defined in (6), Assumptions A2 and A3, respectively.

This is a very useful result, since, in the absence of slope heterogeneity n;, even when the
dimension of ¥..; = E (g;€}|X;) is unbounded as T' — oo (but ., (Beei) < A with serially
correlated errors), the theorem tells us that the use of the celebrated heteroskedasticity and
autocorrelation consistent (HAC) variance estimator of Arellano (1987) for short panel models
will be asymptotically justified for large panels.

The next theorem states the asymptotic properties of the second term of (7).



Theorem 2 Consider model (4). Under Assumptions A1, A2 and A4, as (N,T) — oo,

o1 &
A 7w 2

=1

Agm, -5 N (0,A7'CA ™) (9)
where AnT and Ay are defined in (6), A and C are defined in Assumptions A2 and A4,
respectively.

As discussed in Pesaran (2006) and Reese and Westerlund (2018), the pooled estimator B is
consistent to the centred value 8 under the random coefficient assumption, and the variation of
3 due to the dispersion of slope coefficients dominates the variation due to the linear function
of idiosyncratic errors. The following corollary of these two theorems clarify this point:

Corollary 1 Consider model (4). Under Assumptions A1-A4, as (N,T) — oo,
VN (B -p°) -4 N (0,A7'cAY) (10)
whilst under slope homogeneity, n;, = 0 for all i,
VNT (B _ ,30) 4, N (0,A"'BAY), (11)
where B is defined by (5), A, B and C are defined in Assumptions A2, A8 and A4, respectively.

In view of this, Pesaran (2006) proposes to estimate the variance of B under random coeffi-
cient assumption by

35 = %A—lT('iNTA;VlT, (12)
where ) N L
Cvr =y L Aa (8- B) (B, - B) A, (13)

Bi = (X;Xz‘)f1 X'y; and B=N-1 Zf\il BZ The idea is to approximate the unobserved slope
heterogeneity m; by its sample counterparts, BZ - B The empirical evidence has proven that
this estimator works well in finite samples.®> However, there are some issues with this variance
estimator for our robust approach. First, because it is different from the HAC variance estimator
assuming slope homogeneity, at the choice the practitioner would like to know if there is slope
heterogeneity or not. Second, some estimation methods, such as Bai’s (2009) estimator, do
not permit slope heterogeneity models and computation of statistics involving individual slope
estimates might not be justified*. In practice we do not necessarily have a priori information on
whether slopes are homogeneous or heterogeneous, which may make the choice of the variance
estimator subject to uncertainty.?

#See experimental results in Pesaran (2006), for example.

In Section 3, we demonstrate that Bai’s estimator continues to be consistent even for heterogenous model if
the regressor has a factor structure.

’Pesaran and Yamagata (2008) and Su and Chen (2013), for example, propose slope homogeneity tests, which
can guide such a choice.



We propose a simple robust approach against such a choice. Based on the above discussion,
under slope heterogeneity we have

N N N
1 1
NTE ;E (XiwuX) = ;E (XX 82, XXi) + 1o ;E (X[2eeiXs)
1 N
= 7 OB (XiXif2y, XXi) + 0 (T71). (14)
i=1

This suggests a new alternative estimator of C:

N ~
oy 1 -~ -~ X/u’lu/XZ
Cnr = Z Cir, Cir= ZT7217 (15)
where ﬁz =Yy — XZB
Under homogeneous slopes (; = 0 for all i), 5= Zfil E (Xjuu/X;) = w7 Zf\il E(X)3.iX;)
as u; = €;, hence, following Hansen (2007), we propose the following estimator of B:

N .
~ 1 ~ ~ X'u;aiX;
Byt = N ZBiT, Bir = % (16)

We summarise the asymptotic properties of the estimators C N7 and B n7 in the following
proposition:®

Proposition 1 Consider the model (3) and the pooled estzmator B, which is defined by (5).
Under Assumptions A1-A4, under slope heterogeneity CNT 2, C, whilst under slope homo-

geneity (m; = 0 for all i) BNT L, B, as (N,T) — oo, where u; = y; — X; ﬁ, CNT and BNT
are defined by (15) and (16), and C and B are defined in Assumptions A3 and AJ.

This proposition implies that the use of a widely employed HAC variance estimator for short
panel data models,

N N -1
> = (Z X’X) [Z X/ ,0,X ] (Z X’X) , (17)
=1 i=1

is asymptotically justified for large panel data models under both slope homogeneity and slope
heterogeneity.

When there is strong evidence that coefficients are heterogeneous, an alternative pooled
estimator, such as a mean group estimator, may be preferred. In this paper we are more in line
with the robust approach, which is widely employed in the literature - avoiding uncertainty in
specifying and estimating ‘nuisance’ parameters for potential efficiency gain. As will be discussed
in the next section, this approach turns out to be useful for some popular estimation methods,
in particular, estimation of linear panel data models with unobserved interactive effects.

The following theorem formally demonstrate the validity of the Wald test based on the
proposed robust variance estimator of ,@

The proof of the consistency of By is given by Hansen (2007).



Theorem 3 Consider testing q linearly independent restrictions of 3°, Hy : RB° = r against
Hy : RB° # r, where R is a q x k fized matriz of full row rank. Consider the model (3) and
the Wald test statistic

Wyp = (RB - r)/ {RE:BR’}*1 (RB - r) , (18)

where B and f)a are defined by (5) and (17), respectively. Suppose that Assumptions A1-A/
hold. Then, under the Hy, for both heterogenous slopes and homogeneous slopes (n; = 0 for all

i), Wnr i>Xg, as (N,T) — oo.

Note that in view of (10), (11), (15) and (16), the rate of convergences of homogeneous and
heterogeneous models are different. Such a difference is automatically adjusted in (18).

In this section, we have considered a simple random coefficient panel regression model and
showed that valid inference is possible by estimating homogenous panel models even if the
true model is homogenous panel model. In the next section, we extend the model to include
unobserved factors in the residual, and demonstrate that a robust inference such as Theorem 3
is possible even for such a general model.

3 Panel data models with interactive effects
We consider the following heterogeneous coefficients panel data models

yie = XB; + AV + ey, (i=1,2,...,N;t=1,2,...,T), (19)
xi = Vg + v, (20)

where x;; is a k x 1 vector of regressors, f{ and g9 denote r1 x 1 and r x 1 vectors of latent factors,
respectively. Correspondingly, their factor loadings are )\? and T'Y = ('y(l)i, ...,’yzi). Without loss
of generality, we assume that f; and g, are different factors. ¢; and v;; are the idiosyncratic
disturbance terms.

If we stack the equation (19) and (20) over ¢, we have

yi = XiBi+FA) +e, (21)
X; = GTY+vV; (22)

where Yi = (yih cee 7yiT)la XZ = (Xih T aXiT)I7 FO = (f?v T 7f’?’)/7 GO = (g(l)v e 7g(7)“)la € =
(€1, &) and V; = (vi1,...,vep). If B; has the form 8, = B° + n,; as in the previous
section, we can rewrite the heterogeneous model in terms of homogenous model as follows:

yi = X;8°+H¢) +e;, (23)
e, = Vim,+e;

where H? = (G% F%) and ¢ = (n/TY, AY) with r = r1 + r2. For later use, define u; =
H’¢) + e;. Note that this form incorporates the homogeneous panel data models (n; = 0),
where H? = FO, ¢ = A) and e; = &;. Thus, by setting the definitions of H?, ¢? and e;, (23)
gives a unified representations for the heterogeneous slope model and homogeneous slope model.

When HO is unobserved, it should be replaced with a suitable estimator, and in this case
a further careful analysis is required. In particular, using estimated variables will result in
some asymptotic biases in the pooled estimator, as discussed in Pesaran (2006), Bai (2009)



and Westerlund and Urbain (2015), among others. Here we consider Bai’s (2009) estimator.”
Our theoretical contributions to this strand of literature are: (i) establishing the consistency
of a bias-corrected estimator both under homogeneous and heterogeneous slopes; (ii) showing
the limit distribution of the Wald test statistic based on the HAC variance estimator both
under homogeneous and heterogeneous slopes, and; (iii) proposing a new test for correlation
and dependence of the random coefficients with the regressors (in the next section).

Remark 4 One of the important results in this paper is that if the regressors have a factor
structure as in (20), Bai’s (2009) estimator continues to be consistent and a valid inference can
be conducted even for heterogenous slope models with our approach. Therefore, by assuming a
factor structure in the regressor, Bai’s (2009) estimator becomes robust to slope heterogeneity.
This robustness property is the added value by assuming a factor structure in the regressor.’

We now introduce the Bai’s estimator. The least squares objective function is defined as

N

> (vi—XiB—Hg,) (yi — Xi8 — H;)

i=1

1

N y_ -
SSR(B,H,{¢;}iL1) = NT

subject to the constraints H'H/T = I, and Y.~ | ¢;¢’ being diagonal.
The least squares estimator for (3,H) denoted by ([Ai, ﬁ) is the solution of the following

nonlinear equations:
R N -1 /N
i=1 i=1

3 (24)
! > (Yi - Xﬁ) <Yi - Xﬁ) ,] H = HVyr

NT

1=

where V7 is a diagonal matrix that contains the r largest eigenvalues of the above matrix in
the brackets in decreasing order. Given <B, H) , we can estimate ¢, by

1~ N
¢, = TH,Q’i - XiB).

We impose the following assumptions. They are basically similar to Bai (2009).

Bey = 0 and Ble; 370 < A; (i) T 0 ST Blegseir| 70 < A; (iv) BIN Y2 N | [eiseir — Bleisear)] [* <

A for each (s, t); (v) N~'T 2 Zz]\il Zthl Zstl ZTT:1 25:1 |cov (€isEit, Eiriw)| < A (Vi) Qe

E(e;e}) is positive definite and its largest eigenvalue is bounded, uniformly every i and 7'

Assumption B1 (idiosyncratic error in y): (i) ¢; distributes independently across ; (ii)
(

Assumption B2 (idiosyncratic error in x): Let vy be the (-th element of v and v; =
(vgit, - -+ ,vgr)'. Then we assume that (i) vy is independently distributed across i and group-
wise independent from {e;s} for 1 < j < Nand 1 < s < T (ii) Evy = 0 and E||v;]|3° < A; (iii)

"Indeed, the results of this paper hold for the PC estimator due to Westerlund and Urbain (2015). The proof
is available upon request from the authors.

8The model for the regressor specified in (20) can be seen as slightly restrictive comparing to that in Bai
(2009), in which no factor structure is imposed. Nonetheless, the process (20) has been widely accepted in the
literature including Pesaran (2006), Bai and Li (2014), Westerlund and Urbain (2015), among many others.



! Zs 1 Zt 1 E ||stvzt||1+5 < A (IV) IE‘|‘N 1/2 Z [Ufzsvfzt - E(Uéisvéit)] |4 < A for every l,s

and t; In addition, we assume that (v) N~1772 Zi:l thl Zs:l Zgzl 2511 |cov (VeisVeits VeirVeiw )| <
A; (vi) the largest eigenvalue of E(Vgﬂ'VZ’i) is bounded uniformly for every ¢, i and T.

Assumption B3 (random coefficient): 7, is independent across i, and is group-wise inde-
pendent of &, vy, A; and T'y; En; = 0 and E|n;||* < A; E(nn)) = Q,; is a fixed positive
definite matrix uniformly over i.
Assumption B4 (factor components): (i) E|[f?||* < A and T! Zthl 10 2 3y as
T — oo which is a fixed positive definite matrix, f? is group-wise independent from v;; and
ei; (i) Ellg?||* < A and T7! Z?:l g 2 ¥, as T — oo which is a fixed positive def-
inite matrix, g is group-wise independent from v; and e;; (iii) Let I, = (£, g¥). We
assume 7! ZT ltl’ 2, %, which is positive definite. (iv) B|TY* < A, BJAY|* < A,
NN r? 2 s NN lrﬂnmzr(” Los, and NTTSN AN B owy | where 3o,

Y,y and X are posmve definite matrices. I‘Z and )\? are group-wise independent from v;; and

Eit-
Assumptlon B5 (identification and Variance Matrices): Define Z; = X;— N1 Ze 1 d)O'T #9X,
with Y o = -1 Zi:l #pY. Then, we assume that the four matrices
| X
— 1 !/ . — -
Ay = Mlp}rgoo ~7 ;E(ViVZ), A= Np%inw NT Z Z!MpoZ;,
i
T
Co = i E(VVnn ViV, B; = plim — Y Z/MgoE MgyoZ;
0 N’%IEOO NT2 Zz; (ViVinm; ViVi), 1 NpTlinooNT Z HoB(ei€;) Mppo

are fixed and positive definite.

Idiosyncratic errors ¢;; and v;; are independent groups of each other, independent over i,
but allowed to be serially correlated as structured by Assumptions B1 and B2. Assumption B3
implies there are r factors, and the factor loadings I‘? and /\io have mean zero without loss of
generality and are allowed to be correlated with each other. Assumption B4 implies that the
random coefficients can be heteroskedastic but should be independent of all other cross-section
varying variables.

Under B1-B5, the consistency of B and H for homogenous slope model can be proved in the
same way as Bai (2009). The following proposition is the consistency results for heterogeneous
slope model.

Proposition 5 When the slope in the model is heterogeneous and given Assumptions B1-B5,
as N, T — oo, we have

B-p"Lo0
and let R = (®'®/N)(T 1HO’H)V ~r Where ® = (¢4, ...,¢x)". Then R and R™1 both are r xr
invertible matrices and Op(1), and

1 ~ ~ _
SIF - HORIE = 0,(18° - BI?) + Oy(633).

Given consistency, we can derive the rate of convergence as follows:



Theorem 6 Let Assumptions B1-B5 hold. (a)When the model’s slopes are heterogeneous, we
have

B —B" = 0y(N"Y%) + Op(837)

and
1 & R
B-8"=|-—— V| — "V, e
P (Vv Vv s o)
(b) When the model’s slope is homogeneous, we have

-1

N N

~ 1 1 1 1 _

BB = (NT Z Z;MH0Z1> NT Z Z;Myoe; + NoNT T HlNr + Op(6x7)
i=1 i=1

where the bias terms are given by

N - N T

1 1
Eny = — <NT g ZiMHOZi> NT E E Z;HO HO/HO 1T¢0 ¢OE( zt)
i=1 = —

1 1

.
~

N N N
1 1
Cnp = — <NT§ :ZiMHoZ¢> D § § X;MpoE(eje)H'(HH")~ 1'1‘
i=1 =1 j=1

To derive the asymptotic distribution of B, following Bai (2009), we impose the following
assumption:
Assumption B6 (Central Limit Theorem):

N
1 Z d
=1

Corollary 7 Assume Assumptions B1-B6 hold and T/N — p € (0,A]. (a)When the model’s

slope is heterogeneous, we have
VN(B - 8% - N(0,A;'CoA;Y)
(b) When the model is homogeneous, we have
VNT(B—B°) =% N(p'& + p7/¢o, AT'B1ATY)
where &y and ¢, are the probability limit of &7 and nr, respectively.

From this result, it is found that the asymptotic distribution of B for homogenous slope
model is biased. Therefore, to make a valid inference, we need to remove the bias of the
asymptotic distribution. For this, we use the alternative expression given in the following
corollary.

Corollary 8 When the model’s slopes are heterogeneous and given Assumptions B1-B5 hold.

We have .

N N
~ 1 1 _
B — /@O = <]VT E Z;MHOZZ) ﬁ E Z;MHoei + Op((SNQT)
i=1 =1

9



when the model’s slope is homogeneous, we have
1 & T 1 1
a 0 -3
B-—p = (NT ;_1 Z;Mppo Zz’) NT ;_1 Z;Mgyoe; + ﬁgNT + fCNT + Op(6xp)-

To derive asymptotically unbiased estimator of 8° in the case of homogeneous slope, we con-
~ ~N~—1~ -~ ~ ~/
sider to estimate the bias terms. Let Z; = X;— N1 Zé\]:l & Xy $Xywith Xy = N1 Zf\il b;0;,

and @ = diag(N 'SV €2 ... NN 82 Define

~ - 1~ ~

/6 = /6 - NgNT - TCNT (25)
where

or

N N X =
~ 1 s o) L X MuQH 1~
Cnr=— <NTZZ1MI?IZ;> NZ : T Yy ¢;
i=1 i=1
with
XMpOH 1 L[, o, K& s N\ - =
Ml [+ 33 (1 5 ) o (Rl )|
j=1 Lt=1 s=1t=s+1

Note that ENT is a consistent estimator for {pp for serially uncorrelated case while ENT is
a consistent estimator for serially correlated case. In the Monte Carlo simulation in the next
section, we use ¢ yp with S = [T1/4].

The stochastic representation of B is given by the following theorem.

Theorem 9 Given Assumptions B1-B5 hold. In addition, E(z—:?t) = azzt and E(eyejs) = 0 for
1 #£ j ort#s. When the model’s slopes are heterogeneous, we have

B-B" = O)(N V%) +0,(64%)
1 & T
— (NT 3 Z;MHoZZ) ~T > XM Vin; + Op(657)
i=1 =1

1 & .
i=1 =1

When the model’s slope is homogeneous, we have
-8 = <1§:Z’-M z-)lliz’.M i+ O0p(537)
NT & WS | N £ ST R ONT
= <1§:sz z-)lliz’.M w; + Op(63)
NT & SRR | N £ SRR RN
as (N, T) — oo and T/N — p € (0, A].
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The asymptotic distribution of the bias-corrected estimator B is given as follows:

Corollary 10 Assume Assumptions B1-B6 hold and T/N — p € (0, A]. (a)When the model’s
slope is heterogeneous, we have

VN@B - 8° -& N(0,A;'CoALY).
(b) When the model is homogeneous, we have
VNT(B - 8% - N(0,A7'B1ATY).

This result state that the rate of convergence and asymptotic variance of the ,[N‘i are different
for homogeneous and heterogeneous models. However, as in the previous section, we can conduct

a valid inference without paying attention to that difference. To introduce a robust Wald test,

define
-1

N LN
5- (o) (Lzmeangz) (Saa)
=1 =1
where G; = y; — X;8 and Z; = X; - N1 3, g’z?; $Xy with Yo = N7V S, 6,6

Theorem 11 Consider testing q linearly independent restrictions of 3, Hy : R3 = r against
Hy : RB # r, where R is a q X k fized matriz of full row rank. Consider the model (23) and
the Wald statistic

Wyt = (RB —r) (RﬁE’R/) T RB-1) (27)

where B and fJB are defined by (25) and (26), respectively. Suppose that Assumptions B1-B6
hold. Then, under the Hy, for both heterogeneous slopes and homogeneous slopes (n; = 0 for all

i), Wnr ixg, as (N,T) — oo and T/N — p € (0, A].

Remark 12 Our approach is also robust against miztures of homogeneous and heterogeneous
slopes.”
the k slopes are partitioned in such a way that k = k1 + ko, without loss of generality, where
B = (B g,)/> Bi; = B+, IE'(’hi) =0 and Var (ny;) = Qu;, with 8° = (8Y, (2),)/-Th€

expansion of the pooled estimator B gives

Zz— Xllzul ]

To see this, consider the mode without common components and the case in which

VN(B-8) = A3 1 VN

NT NT Zz 1 X/21u’L
N
1 X;Xli
= NT\/> ZX _ANlT\/NZ< T >n1i+0P<1/ﬁ>
i=1

4 N (0,A7'CA™Y)

X!X; X1, X
O pim 3 (XK (X0,

N,T—o0 N -7
i=1

where

Observe that under assumptions we have made, C is positive definite. Also note that the con-
vergence rate of (ﬁl and) ,62 is VN, as the variation ofﬁ is dominated by 1y;.

9We do not consider cross-sectional and/or time-series structural breaks in B, which is beyond the scope of
this paper.
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Now consider a special case in which X, X9; = 0. Define a scaling diagonal matriz of order k

as
vV NI, 0
D= ! 2
[ 0 VNTI, (28)
so that

D (B - go) (B - BO)/D - (DA;,ITD—l) (D 3y ;;gx ) (D'ALD).  (29)

It is easily seen that DA&ITD_l = A;T since A;\/lT s block diagonal. Recalling that u; =
Xin; +€i, m; = (0);,0") and E (n;el) = 0, the probability limit of the middle term is

XiwulX; Ci1 O
lim DD = , 30
NI,)T_m; T2N? ( 0 B (30)
where
X/ . X1, X! . X1,
Cu = NpThElooN; < hT l"]linlli hT Z) ) (31)
X/ g€ /X2
B — li il M 32
- NpTlinooN Z T (32)

Therefore, the asymptotic normality of ,@, the consistency of the HAC estimator and the asymp-
totic validity of Wald test hold with miztures of homogeneous and heterogeneous slopes.

4 Wald and LM tests for Correlation of Random Coefficients
with Covariates

As discussed earlier, the proposed robust approach works for random coefficients. If it is fixed
cross-sectionally varying coefficients or correlated random coefficients with X,;, the approach
may not work. To see this, consider the model (4) but without factor components. We have

~ -1
= (SN XX LN X X, + il 1B (m:[X0) # 0, BXXE (1;]X,)] s not nec-

essarily zero, and in general it renders B biased.

In view of this, we propose novel tests for correlation or dependence of random coefficients
with covariates, substantially extending the test proposed by Wooledridge (2010; Ch11.7.4).
The main distinctions of our tests from Wooldridge’s are: (i) we consider the test for large
panels whilst he considers for short panels; (ii) our tests are robust against (uncorrelated)
random coefficients;'” (iii) we propose a Lagrange Multiplier test along with a Wald test; (iv)
ours permit E (n;|X;) to be a non-linear function of X;.

More generally, suppose that the random part of the coefficients is modeled as

n; = h (X))~ i + C; (33)

with E [h(X;)] = pp and E(¢;|X;) = 0, where various forms of function of X; can be enter-
tained. For the testing purpose, we consider h (X;) = E;0 with

=, = (ic(.l),ic@), ...,iﬁ”) : (34)

K3 K3

OWooldridge (2010;p.386) points out that the drawback of his test is that it cannot detect heterogeneity in 3,
that is uncorrelated with X;. In our robustified test, this becomes the desirable property.
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where )‘(Eg) = (:EEI), 53)7 ...,a’cgi)> , x(z) =71 Z:tpzl xf’th.n Note that x;y, is the (¢, h) element

of X;.'2 Consider an augmented regression

yi = W0 + ¢, (35)
where W; = [X, L;] with
Li=X; (8 -8), (36)
—~ o O\
E=N- IZ =i, 0 = (,8’,5’),, and the associated unrestricted estimator 8 = <,B ,5) =

<Zf\i1 W;Wz>_ ZZ]L W!y;. Under the null hypothesis of Hy : § = 0 and Assumptions Al-

A4, for homogeneous or heterogeneous slopes, Theorem 3 establishes that

W =8558 %2 (37)

s (N,T) — oo, where 255 is defined as the bottom right partition of f)g = ( %35 gﬁﬁ ) =
603 66

—1 ~
(Zi]\il WQWi> (Zf\; W;E,ngi) (Zi]\il W;W@-> € =yi— W;0.

For the model with unobserved factors, the test statistic is computed based on y; and
—~ ~ o~ ~ ~ ~ =< ~ /
W, = [Z,,L,] with L; = Z; (E — E.) and B; = (ggn,g@,.,.,ggg)), 2 — (f(:f)f(g)f(g)) :

K3 (]
Eh) =71 Zt 1 zth’ )A(Z = MzX; = (f‘;’th) and the bias-corrected Bai’s estimator EBai =
/
<,8 Bais 0 Bm) , which is discussed in Section 3.

We also consider the Lagrange Multiplier (LM) or Score test of the correlated random
coefficient. One of the advantages of employing the LM test is that, unlike the Wald test,
computation of the LM test only requires the estimation results of the null model. The LM test
statistic for the model without factors is defined as

N "/ N -1 /N
LMY, = (Z L;ﬁZ) (Z K/4;0K; > (Z L;ﬁi) (38)
i=1 i=1 i=1
~ [l AL N / N ’
where U; = y; — X;8 with 8 = (>, XiX; > i1 Xly; and
-1

N N
- (Z LQXZ) (Z X’X) X! (39)
=1 =1

For the Bai’s estimator, the LM test statistic is given by
"/ N L /N
LMY P Cn: = (Z L’uz> (Z K’ﬁzﬁ’KZ) <Z Lgﬁi> (40)
i=1 i=1

where u; = y; — XZ-B Bai s Wi =Yi — Xlﬁ Bai With El Bai Deing the bias corrected estimator, and

~ ~/ N o~~~ N o~ A~ - ~
K=L,; - (§ ngi) <§ jzgzi) Z.. (41)
=1 i=1

' Cross product terms, such as T~ Zt 1 Ethxgj) for h # j, could be included in E;.

2For the model with fixed effects, the test variable E; should not be based on within-transformed X;, otherwise
—(1)
=0 for all 3.
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By the standard discussion of asymptotic equivalence of the LM and Wald tests, it is readily
established that under the null hypothesis LM¢orc LA ngg as (N,T') — oo, and LMcrcy,, A X?;
as (N,T) — oo such that N/T — ¢ € (0,A]. It may be sufficient to consider g = 2 to
approximate the function g (X;) for our testing purpose.

When the test is rejected in favour of alternatives, it is preferable to employ estimators
which are consistent when variation of 3, is dependent on covariates. For the estimation of the
models with observed factors, the mean group estimator proposed by Chamberlain (1982) and
Pesaran and Smith (1995) would be possible choices.

5 Monte Carlo Experiments

In this section we investigate the finite sample performance of our robust approach against slope
heterogeneity, error serial correlation and heteroskedasticity. We consider the performance of
the following estimators: (two-way) fixed effects estimator B i, Which is the pooled ordinary
least square (OLS) estimator of within-transformed and cross-sectionally demeaned variables;
Bai’s (2009) iterative PC estimator, both bias-non-corrected 8p,; defined by (24) and the bias-
corrected estimator ,B Bai defined by (25). For simplicity, in all the experiments, we assume that
the number of factors r is known.!?

In particular, we examine bias and root mean square errors (RMSE) of the estimators, and
empirical size and power of the (Wald) test for linear restrictions of slope coefficients, as well
as the performance of the LM test for correlation and dependence of slope coefficients with
covariates.!

5.1 Design

Consider the following data generating process:
k r
vie = > TunBin + Y frudie + 0cqgi, i =1,2,.., Nit =1,2,..,T (42)
h=1 =1

where \ip ~ #dN(0,1), foo = ppfi-1,+ /1 — p?vtg, vie ~ 1dN(0,1) with fo ¢ ~ iidN (0,1) for
C=1,..,7 it = pit—1 + /1 — p2&;y, & ~ 11dN(0,1) with g59 ~ itdN (0,1), and

Oeit = (Keikies)? | key ~ iidU (0.5,1.5) and ke, = 0.5 +t/T. (43)
The regressors x;n, h = 1,2, .., k, are generated as
T
Tith = Y, fuVine + 00 itVitn, (44)
=1

where viip, = pyVie—1n + /1 — p2wi. We consider two types of distribution for w;; p: (i)
Wit h = (w:t,h — c) /v 2¢, wzt,h ~ didx? and Vioh = (Vfoyh — c) /V2¢, VZOJZ ~ didx? with ¢ = 6,
and (ii) @y p ~ dN(0,1) with v, ~ idN (0, 1). The factor loadings in x;, are generated as

1/2
Yine = 0.TXi¢ + (1 — 0.7%) / Cines (45)

"3 The Pesaran’s (2006) CCE estimator is not considered in our experiments, since, to our knowledge, feasible
analytical bias correction for the pooled estimator under slope homogeneity is not available.

Y4The finite sample performance of the Wald version of the correlated random effects test is much worse than
the LM test version. Therefore, its summary results are not reported.
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Yine ~ 1WdN(0,1) for h =1,..,k and ¢ = 1, .., 7, so that they are correlated with factor loadings
n yit.

Oyit = (Fyitiy )2, Kyi ~ iidU (0.5,1.5) and ry; = 0.5 +t/T, (46)
and ¢? = {2,3}. Finally we have

Bin = Bn + oy <\/ 1= paymin + pmwih) : (47)

N, ~ 1dN (0,1) for h =1,.., k, and

1 qzihp—zhp
Wiy = — Zuvwp  Zhip 48
o ()

where Zz,, = N1 Zf\il Zihp Szh,p = (N - 1)71 Zfil (zih,p—ih,p)Q. We consider z, =
T Yy (@)

We set k = 2 (two regressors) for all the experiments. We consider two sets of design:
the model without factors (r = 0) to examine the fixed effects estimator where >, ; fuXie is
removed from (42), and the model with two factors (r = 2) to examine the Bai’s estimator. As
recommended in Remark 1, before the estimation the data is all within transformed and cross-
sectionally demeaned, to make the results invariant to the inclusion of (additive) individual
effects and time effects. For parameter values, we set (51, 85) = (1, 3).

To look into the bias and RMSE of the estimators, and the size and power of the test of
linear restrictions for the estimators, we consider the following sets of designs:

(A) homogeneous slopes (o, = 0 in (47));

(B) heterogeneous slopes (o, = 0.2 in (47)).

In order to see the effects of dependence of 3; with the regressors upon the bias of the
estimators and the associated tests, we set p,, = 0.5 in (47). To investigate the effects of the
symmetry of the distribution upon the performance of the estimators and the tests, we consider
two types of distribution of disturbances in x;, :

(©) (i — 6) V12, =}y, ~ i3, with py, = 0.5

(D) wit,p ~ 4idN(0,1), with p,, = 0.5.

For designs (C) and (D), we consider two types of dependence of (3;;, upon regressors: (3;, is
a linear function of the following cross-sectionally standardised values: (1) 7= 27 @i (ie.,
g=1and p=1in (48)) and (ii) T-' 3/, z3, (e, ¢g=1and p=2in (48)).

Finally, the size and the power of the LM tests with degrees g = 1,2, are examined as the
set (E). The empirical size is obtained using designs (A) and (B), and the empirical power is
computed by designs (C) and (D).

We consider all the combinations of N = 50,100,200 and T" = 25, 50, 100, 200. Throughout
the experiments, we set py = 0.5, p, = 0.5 and p, = 0.5. To save space, we report the results
with o2 = 2 only.'® All the tests are conducted at the five per cent significance level. All the
experimental results are based on 2,000 replications.

5.2 Results

Table 1 summarises the performance of the Fixed Effect estimator for the model of (5;, 85) =
(1,3), with time-series and cross-section heteroskedastic, serially correlated errors in the absence
of interactive effects. Panel A reports the bias, the root mean square error (RMSE) of estimates

5The results with ¢ = 3 are qualitatively very similar to those with o? = 2, which are available upon request
from the authors.
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of 31, and the size of the Wald test for Hy : #; = 1 and the power for Hy : 8; = 0.95, under
homogeneous slopes, and Panel B under heterogeneous random slopes. The results for G5 are
qualitatively similar and not reported. As predicted by the theory, the Wald test based on
the HAC variance estimator has correct size both under slope homogeneity and heterogeneity.
Panels C&D report the bias of the estimates and the size of the Wald test for Hy : 8, = 1,
to see the effects of dependence between random coefficients and regressors. In Panel C the
regressors are generated by asymmetric disturbances and in Panel D, they are drawn from
symmetric distribution. In Panel C, when m; depends on Zle Tih, the fixed effects estimator
exhibits systematic bias, but in Panel D, it does not. This is because when the third moment
of x;, is zero, by construction E [X!X;n;] = 0 which makes the estimator unbiased. However,
as can be seen in Panel D, the size of the test declines systematically as sample size rises, which
suggests that the HAC variance estimates will not be consistent. When 7, is a linear function
of Zthl z2,, regardless of the shape of the distribution of regressors, it exhibits serious bias
in estimates (see Panels C&D). Therefore, it is of great importance to statistically check the
evidence of dependence of 3; with regressors. The performance of the proposed LM test for
correlation and dependence of random coefficients with regressors is summarised in Panel E. As
can be seen, it has correct size with slope homogeneity and random coefficients, and the LM test
with g = 2 has high power against both types of dependence of 3,, Zle ZTin and Zle x?th,
whilst the LM test with g = 1 lacks power when 3, depends on Zthl :c?th only. Therefore, it is
recommended to employ g = 2 in practice.

Let us turn our attention to the estimation of the models with unobservable interactive
effects. The relevant results are reported in Table 2. Table2 contains Panels A-E, which corre-
spond to the panels in Table 1. To illustrate the effectiveness of the bias-correction, we report
the results both for bias-non-corrected and bias-corrected estimators.

Consider Panel A of Table 1, which deals with the slope homogeneous case. First look
at the bias of the estimators. Non-bias-corrected estimator (5p,,;) has very little bias and the
magnitude of correction is very small. As reported in Bai (2009), the bias-corrected estimator
(Bpag) has very small bias and it becomes smaller as N and/or T rise. In terms of RMSE, 8g,;
and Bp,; are very similar for all the combinations of (N,T'). The size of the Wald test based
on (g, and Bpg,; is close to nominal level for the sample sizes which we consider.

Now let us turn our attention to the random coefficient model, the results of which are
summarised in Panel B, Table 2. The magnitude of the bias of the estimators under slope
heterogeneity is larger than under slope homogeneity, especially with small N and T, but it
gets smaller as NV and T increase. As in the homogeneous slope case, the bias of both 3p,, and
BBai is relatively small. The properties of the results reported in Panels C, D and E are very
similar to those commented earlier on the corresponding panels in Table 1.

6 Concluding Remarks

In this paper, we have proposed a robust approach against heteroskedasticity, error serial corre-
lation and slope heterogeneity for large linear panel data models. First, we have established the
asymptotic validity of the Wald test based on the panel HAC variance estimator of the pooled
estimator under random coefficient models. Then, we have shown that a similar result holds
with the bias-corrected Bai’s estimator for models with unobserved interactive effects. Our new
theoretical result has justified the use of the same slope estimator and the variance estimator,
both for slope homogeneous and heterogeneous models. This robust approach can significantly
reduce the model selection uncertainty for applied researchers.

In addition, we have proposed a novel test for correlation and dependence of the random
coefficient with covariates. The test is of great importance, since the widely used estimators
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and /or its variance estimators can become inconsistent when the variation of coefficients depends
on covariates, in general.

We have examined the finite sample performance of the estimators, tests of linear restric-
tions, and the LM tests for correlated random coefficients. The evidence illustrates the usefulness
of our approach. In particular, for the estimation of the models with unobserved interactive
effects, the size of the proposed robust Wald test using the bias-corrected Bai’s (2009) estima-
tor is very close to the nominal level, under both slope homogeneity and slope heterogeneity,
while maintaining satisfactory power. Also, the LM tests for correlated random coefficients
have correct size under both slope homogeneity and slope heterogeneity due to pure random
coefficients, while exhibiting high power when the random coefficients depend on covariates. In
view of these finite sample performance, the proposed robust approach based on Bai’s (2009)
estimator is useful in practice.

Recently estimation of panel models with a group structure has been gaining great interest
in the literature. Su et al. (2016) propose a method for identifying and estimating latent group
structures using so called C-Lasso. Consider:

/ /
Yit = Xitﬁg + Ui, Ui = ft’Yi + &it,

g = 1,..,G. For individual i € g, the slope is given by B,. It may be possible to assume
heterogeneous slope, mean of which has group structure: B;c, = By + 7;cg-

As emphasised in the paper, when the test of correlated random coefficient rejects the null in
favour of alternatives, it is preferable to employ estimators which are consistent when variation
of slopes is dependent on covariates. The mean group estimator proposed by Chamberlain
(1982), Pesaran and Smith (1995) and Pesaran (2006) would be possible choices, however, to
our knowledge, no satisfactory inferential methods have been proposed in the literature. Thus,
developing such methods will be an important future research theme.
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Table 1: Summary results of Fixed Effects estimator for the model with {3,8,} = {1,3},
heteroskedastic and serially correlated errors

Panel A: Homogeneous Slopes, 3,;, = 3, for all i, h =1,2

ih

for 3, Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
Bri

25  -0.148 -0.115 -0.005 2.572 1.848 1.276 5.5 59 4.9 474 76.1 96.9
50  -0.077 -0.040 0.008 1.853 1.305 0.920 6.0 54 5.2 76.0 96.6 100.0
100  -0.061 -0.015 -0.001 1.372 0.954 0.674 5.9 5.7 54 95.5 100.0 100.0
200 -0.017 0.004 0.007 0.955 0.677 0479 54 6.1 53 100.0 100.0 100.0
Panel B: Heterogeneous Slopes, 3,, = 3, + 1, with n;, ~ #dN (0,0.04) for all 4, h = 1,2

for g, Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
Bre

25 -0.038 -0.064 0.045 4.122 2.966 2.146 5.6 55 54 23.0 39.3 66.6
50  -0.015 -0.010 0.057 3.679 2.592 1.869 6.6 54 5.1 30.2 50.5 78.6
100  -0.031 0.009 0.039 3.327 2.328 1.661 5.7 4.6 4.8 33.0 573 852
200 0.025 0.037 0.050 3.129 2.194 1.562 6.1 5.5 4.9 36.5 63.2 90.0

Notes for Panels A and B: Data is generated as v = i;,10;1 + Tit 2050 + Oejit€it, ¢ = 1,..,N, t = 1,..,T,
it = pocit—1 + /T — p2E,,, & ~ 1idN(0,1) with ei0 ~ “dN(0,1), 0eit = (Keiker)?, ke ~ iidU (0.5,1.5)
and ke,e = 0.5+ t/T; 3, j, = 00v.itVit,n, Where Vien = pyVie—1,n + /1 — p2w@ien, @wit,n ~ did (xg — 6) /v/12 with
vion ~ iid (xg — 6) /V12, oyt = (Ky,ifin t)?, Koy i ~ iidU (0.5,1.5) and Ky, = 0.5 +t/T. We set p. = p, = 0.5
and ¢ = 2. EFE is the pooled regression of within-transformed and cross-sectionally demeaned variables. The

size is rejection frequency of the proposed Wald test (defined by (18)) for Ho : 3; = 1 and the power for
Hy : 3, = 0.95, based on the 5% level test. All results are based on 2000 replications.
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Table 1 continued

Panel C: Correlated Heterogeneous Slopes, p,, = 0.5, z};;, generated using X2

(i) B, is function of ), 7, (ii) By, is function of ), (z%,)°
for 3, Bias (x100) Size Bias (x100) Size
T,N 50 100 200 50 100 200 50 100 200 50 100 200

Bre
25 0.068 0.019 0.147 52 50 44 1.145 1.158 1.27v3 6.0 6.9 8.5

50  0.107 0.088 0.164 5.7 46 3.3 1208 1.247 1315 7.8 6.8 9.4
100  0.075 0.099 0.153 5.5 3.6 3.8 1.236 1.317 1350 7.7 7.6 99
200  0.151 0.145 0.188 5.2 43 3.2 1.398 1.450 1473 74 8.9 12.7

Panel D: Correlated Heterogeneous Slopes, p,,, = 0.5, z};, generated using N (0,1)

(i) B, is function of ), 7, (ii) By, is function of ), (z%,,)°
for 3, Bias (x100) Size Bias (x100) Size
T,N 50 100 200 50 100 200 50 100 200 50 100 200

Bre
25 0.046 0.022 0.031 6.6 52 47 1213 1.18 1206 76 74 7.6

50  -0.045 -0.008 -0.016 6.4 4.6 3.5 1.134 1.168 1.183 6.8 6.2 8.5
100 -0.033 -0.021 -0.015 5.7 47 29 1192 1.194 1222 6.1 7.6 8.7
200  -0.062 -0.049 -0.043 6.0 46 3.3 1235 1.236 1.266 7.1 7.4 9.8

Notes for Panels C and D: The data generating process (DGP) is the same as that for Panel B, except 3;;, =
B + on (, /1 — pgnnih + pwnwih) s Min ~ 1dN (0,1) for h = 1,2, w, = Zinp—Fhp where Zhp = Nt Z:II\;1 Zihpy

Szh,p

2y =(N=1)""SN (zinp — Znp)s zinp = T 31, (z30)7, p = 1,2. The DGP for Panel D is identical to
of Panel C, except that ws,n ~ iidN (0,1).
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Table 2: Summary results of Bai’s estimators for the model with {3, 85} = {1, 3}, interactive
effects, heteroskedastic and serially correlated errors

Panel A: Homogeneous Slopes, 3,;, = 3, for all i, h =1,2

ih

for 3, Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
gBai

25 0.048 0.015 0.091 2.717 1.932 1336 6.9 6.5 5.5 50.5 762 97.1
50  0.013 0.018 0.048 1919 1.341 0942 6.9 64 5.6 76.5 96.6 100.0
100  -0.021 0.018 0.021 1.413 0.972 0.681 74 6.4 5.6 95.1 99.9 100.0
200  0.007 0.024 0.021 0.989 0.688 0.485 7.3 6.2 5.5 100.0 100.0 100.0
BBai

25 0.038 0.006 0.082 2.712 1931 1.334 6.9 64 5.5 50.2  76.1 97.1
50  0.003 0.009 0.040 1918 1.341 0942 6.8 6.2 5.6 76.3  96.7 100.0
100  -0.031 0.010 0.015 1.415 0.973 0.682 7.3 6.6 5.5 95.1 99.9 100.0
200 -0.008 0.014 0.014 0.996 0.689 0485 7.1 6.1 54 99.9 100.0 100.0
Panel B: Heterogeneous Slopes, 5;, = 0, + 1;, with 7, ~ #dN (0,0.04) for all i, h =1,2

for 3, Bias (x100) RMSE (x100) Size Power
T,N 50 100 200 50 100 200 50 100 200 50 100 200
BBai

25 0.002 -0.009 0.108 4.228 3.049 2.190 78 6.3 6.2 26.2 418 67.3
50  -0.095 -0.038 0.052 3.741 2.627 1.882 85 6.7 6.1 329 528 79.0
100  -0.170 -0.050 0.013  3.364 2.344 1.668 7.7 5.8 5.2 36.5 58.8 85.7
200  -0.134 -0.037 0.017 3.152 2.198 1564 8.1 6.5 5.3 39.8 644 90.3
BBai
25 -0.016 -0.024 0.096 4.227 3.049 2.189 7.7 6.3 6.2 25.9 416 66.9
50 -0.116 -0.056 0.038 3.742 2.629 1.882 84 6.9 5.9 32.8 52.6 788
100  -0.196 -0.070 -0.001  3.365 2.345 1.668 7.6 5.7 5.3 36.2 58.6 854
200  -0.181 -0.071 -0.004 3.153 2.200 1.565 7.7 64 5.3 394 63.3 90.0

Notes for Panel A: Data is generated as y; = 2,21:1 TienBin + 2321 frehie +oc e, i =12, N;t=1,2,...,T,
where A ~ 4dN(0,1), fro = psfi-1,6+4/1 — pfcyt[, v ~ 1idN(0,1) with fo e ~ iidN (0,1) for £ =1,..,7, €4 =
pecit—1 + /1 — p2€;,, €, ~ iidN(0,1) with ei0 ~ 4GdN (0,1), and oc it = (ke,ikie)'/?, Ke,i ~ #dU (0.5,1.5) and
Kep = 0.54t/T; xfp = oy feeVinet00v.itvitn,where Vien = p,Vie—1,n++/1 — p2w@it,n, @it ~ did (xg — 6) /V12
with vion ~ did (X2 — 6) /V12, Yine = 0.7hie + (1= 0.72) > o0y @ine ~ AN (0,1), 0.t = (y,ikin,0) /2, ki ~
iidU (0.5,1.5) and kv, = 0.5+ t/T, o> = 2. BBM- is non-bias-corrected and BBM- is bias-corrected estimator
proposed by Bai (2009). The size is rejection frequency of the proposed Wald test (defined by (18)) for Ho : 8, =1

and the power for Hp : 8; = 0.95, based on the 5% level test. All results are based on 2000 replications. Notes
for Panel B: See notes to Panel A.
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Table 2 continued

Panel C: Correlated Heterogeneous Slopes, p,, = 0.5, z};;, generated using X2

(i) B;p, is function of Y, 7, (ii) By, is function of ), (z%,)°
for 5, Bias (x100) Size, Hy: 8, =1 Bias (x100) Size, Hy: 3; =1

T,N 50 100 200 50 100 200 50 100 200 50 100 200
BBai
25 0.439 0.456 0576 7.5 6.1 54 0591 0.724 0918 6.7 6.1 6.9
50 0.364 0.456 0.546 8.6 5.9 5.1 0.556 0.754 0911 84 6.5 7.1
100 0.352 0.497 0571 7.4 54 54  0.526 0.789 0.918 7.8 6.7 7.0
200 0.476 0.594 0.660 7.3 6.2 52 0.650 0.881 1.008 74 7.6 8.4
BBai
25 0.424 0.442 0.563 7.5 6.2 55 0.580 0.712 0.907 6.7 6.2 6.8
50 0.347 0.439 0.533 8.6 5.9 51 0.540 0.739 0.898 84 6.4 6.9
100 0.332 0479 0558 7.4 55 54 0508 0.767 0904 79 6.7 7.0
200 0.444 0.566 0.641 7.1 5.9 50 0.619 0.843 0978 7.7 7.5 8.0
Panel D: Correlated Heterogeneous Slopes, p,, = 0.5, z};, generated using N 0,1)

(i) B;p, is function of ), 7, (ii) By, is function of ), (zz‘th)Q
for 3, Bias (x100) Size, Hy: 8, =1 Bias (x100) Size, Hy: 8, =1

T,N 50 100 200 50 100 200 50 100 200 50 100 200
BBai
25 -0.006 -0.016 0.083 86 5.9 4.3 0.605 0.736 0.873 9.2 6.5 6.5
50 -0.174 -0.090 -0.014 7.7 6.2 4.3 0460 0.678 0.804 8.2 6.8 6.2
100  -0.177 -0.114 -0.033 7.5 5.1 3.6 0.497 0.698 0.818 82 6.5 6.4
200 -0.227 -0.159 -0.079 7.4 5.5 4.0 0.525 0.709 0.831 8.3 6.4 6.6
/gBai
25 -0.022 -0.030 0.071 85 6.0 4.2 0592 0.723 0.862 9.2 6.4 6.5
50 -0.191 -0.104 -0.026 7.9 6.2 4.3 0443 0.665 0.793 8.1 6.8 6.2
100 -0.200 -0.131 -0.046 7.4 5.3 3.5 0474 0.675 0804 81 6.3 6.3
200 -0.266 -0.186 -0.097 7.3 5.5 4.1 0486 0.669 0.800 84 6.1 6.6

Notes for Panel C: The data generating process (DGP) is the same as Panel B, except B,, = B8) +
On (mnzh + px'r]wih) 77]ih ~ iid (Xg - 6) / Vv 12 for h = 17 27 Wip = Mv where 2h,p = N_l Ziil Zih,ps

Szh,p

$Zhp = (N — DTSN (Zing = ), zinp =T 1300 (z5:.n)", p=1,2. See notes to Panel C. The DGP for
Panel D is identical to of Panel C, except that w;,, ~ dN (0, 1).
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Supplementary Appendix
for

“A robust approach to heteroskedasticity, error serial
correlation and slope heterogeneity for large linear panel data
models with interactive effects”

by G. Cui, K. Hayakawa, S. Nagata and T. Yamagata

In what follows, we repeatedly use Cauchy-Schwarz inequality, triangular inequality, Minkowski in equal-
ity, Holder’s inequality, and other well-established results: for conformable matrices ABC, vec (ABC) =

(C'®A)vec(B), E|[A®B|° < (E|AI*E |\BH25)1/27 for square matrices, ||AB]| < [|A]l fmax 1Bl

Appendix A: Lemmas and Proofs for the Results in Section 2

We rely on the law of large numbers and central limit theorem results, which are stated in Lemmas
A.1 and A.2, which are given and proved in Hansen (2007). The results which are stated as Lemmas
A.3-A.6 are discussed and proven in Hansen (2007), but replicated here for convenience. The proof of
main results, which are readily proven based on the lemmas, are given in A.2. We provide proofs of
LemmaA.8 in A.3.16

A.1: Lemmas for Section 2

Lemma A.1 Suppose {W;r} are independent across i =1,2,...,N for all T with B (W; ) = pu; 7 and
I[*J|WZ»7T|1+‘5 < A < oo for some 6§ >0 and all i, T. Then N1 vazl (Wi — pi.r) 20 as (N, T) % 0.

Lemma A.2 Suppose {w; r}, hx1 random vectors, are independent acrossi=1,2,...,N for all T with
E(w;7) =0, E (Wi’TWE’T) =31 and E||wi’T||2+6 < A < oo for some § > 0 and all i, T. Assume
Y = limNT—oo N1 Zfil X is positive definite and the smallest eigenvalue of 3 is strictly positive.
Then, N—1/2 Zil Wi T <, N (0,%) as (N,T) ERES

Lemma A.3 Let {w;} be a strong mizing sequence with E (wy) = 0, E|wy|*™® < A < 0o and mizing
coefficient o (m) of size (1 —¢)r/(r—c) where ¢ € 2N, s < ¢ < r. Then, there is a constant C' depending

only on s and «(m) such that B ‘Zthl wt)s < C D/(s,6,T), where D (s,6,T) is as defined in Doukhan
(1994) and satisfying D (5,6, T) = O(T) for s <2 and D (s,8,T) = O(T*/?) for s > 2.

Lemma A.4 Under Assumptions Al and A2, Ayp — A L0 and Ay, — A1 20 as (N,T) — oo,
where Ant and A are defined by (6) and in Assumption A2, respectively.

Lemma A.5 Under Assumptions A1-AS3, \/11\77 Zfil Xie; 4N (0,B), where B is defined in Assump-
tion A3.

Lemma A.6 Under Assumptions A1-A3, N1 Zf\;1 f’)i,T -B 2 0 as (N,T) — oo, where ﬁi7T =
T-'X'g€X; with €; = y; — XyB with n;= 0 for all i, and B is defined in Assumption A3.

Lemma A.7 Under Assumptions A1-Aj, ﬁ Zi\;1 XIXin,; 4, N (0,C), where C is defined in As-
sumption A4.

Y6 Proof of other Lemmas in this subsection is provided in Appendix C.1 for convenience.

S.1



Lemma A.8 Under Assumptions A1-A4, N1 Zf\;l GLT ~-C 20 as (N, T) — oo, where (AZLT =
T2X!w;u,X; with U; = y; — X3 and C is defined in Assumption AJ.

1+6 1+6 2426

<B|tr (T7'X/X,)|
1+6

1 1+6
B . . 146\ T4 146\ 45
= T (1+6) l(E ‘Zh:l Zt:l x%th‘ < T 1+6 Zh 1 Zt 1 (E ‘ Lth| ) S k1+6A <

oo using Holder’s and Minkowski’s inequality and Assumption A2, then applying Lemma A.1 gives
Ayr—A 5o Applying continuous mapping theorem yields AR, —A 150 m
Proof of Lemma A.5. We have

Proof of Lemma A.4. E|A;r| 7 =E|T7'X/X;|| " <E|T-2X]|

2(146 . 2425\ THE

< |z

h=1

2426
(A.1)

E HT—l/ngei

sy L

h=1

kl-‘ré (

T
1
Z Tith€it E Nis > i
t=1

(s,é,T)) <A < oo,

IN

where the third inequality follows, because, by Assumption A1, E (z;ne:) = 0, E |xitheit|s+5 <E \a:ith|28+26 E \6it|25+25 <
26

2A%5F28 < o0 for s > 2 and all h = 1, ..., k, and using Lemma A.3 E =C D(s,6,T) =

O (T2+2 ) Therefore E HT_l/QXQé‘inJF%

the result follows. m
Proof of Lemma A.6. We write

1 - 1 X N
NZBZST = ZXz eig;X; — WZX;XZ’ (ﬂ—ﬂ) ;X (A.2)
i=1 i=1
—%ZXéei (B—ﬁ) XX, +—ZXX (ﬁ B) (B—ﬁ)'x'x
i=1

T
thl Tith€it

< A and together with Assumption A3, applying Lemma A.2

— D,-D,-D;s+Ds. (A.3)
First
XX X €
T~ vec (D3) = ( ) (5 ﬂ) (A.A4)
Nf Z ST
E (X;TXi ® %) = 0 by Assumptions Al and A2. Noting
1 2426
15 k T 2426\ 2F2%
BT XX < EHT— = Bl (17XX) [ =100 | [B|S. a2,
h=1t=1
kT M kan
< T-0+9) [ZZ (E |$;1th 1+6> 2+2é] <EHPA < oo (A.5)
h=1 t=1
XX, X,s 146 3 12426 xre. 12426\ V2 XX, Xle
andEH L@ = g(E’v’ ‘1—1H ) < Aand by Lemma A.1 N~ 121 1( : 7®%):

op (1) and together with B-pB= O, (1/\/ NT), vec (D3) = 0, (N~'/2). In a similar manner, vec (D) =

—~ 2
0p (N"12). D4l < (T/N) SN, |71 XX, || Hﬁ—ﬁH =0, (NN, B[ = B || Xese}X; | <

E || 712X, ||

0 as required. m

= O (1) by (A.1), and we apply Lemma A.1 to conclude plimy 7,50 N1 Zy‘,=1 ( T — Bi,T) =

S.2



Proof of Lemma A.7. First E (T*lxgxmi) =0 and Var (T*1X;Xmi) = C;p.

2 1+6
k| ok
E 7lxlx_ 2426 < 2+2§)E
||T 7 1"1“ = T Z ZZ%th%timg
h=1|0=1 t=1
X P o265y s |0
< T CPOINTLEDY S winaien
h=1 =1 t=1
but as
P 2426 v T | 72426
5\ 7728
E szithxmmz < [ZZ (E|xithxit€77ié|2+2 ) 1
=1 t=1 =1 t=1
2426 4446 atas\ /2
E |ziniten;,| < | E|zinzil B ;]
1/4 1/2
§ § §
< (Bloanl™ Blawl*) " (Blne| ") T <A
we have
e [rh T | q2426\ THT 1+e
_ 2426 _ o\ 2726
BT XX, [ < 7@ |3 (S5 (Bl ) ]
h=1 \ Le=1t=1
1 146
v [tk T 24285\ THs
< rels (1355 ]
h=1 \ Le=1 t=1
< T7(2+26)k‘1+§A [/CT]2+26 -0 (1) (AG)

Applying Lemma A.2 the required result follows. m
Proof of Lemma A.8. We write

N N
%ZGT = TQZXl u ZXZ-—#ZX,’L-Xi (8- 8)ux
i=1 i=1

s 30w (- 8) et 3 (3-5) (5 ) i
- El_E21E3+E4. B

Recall u; = X;n, + €;. First

N N
1 ~ / 1 ~ /
By = oy > XX (B-8) XiXi+ 15 > Xiei (B-8) XiXi (A7)
i=1 =1
= E31 + E32, say. (AS)
N
1 XX, XX, ) /a
o) = 3 (X0t e X)) (5-5) (A9
i=1
<X,  xx. |1+ 12420 xox, (1228 Y2 -
butEH X By, S(E]~ H Xip ) < Aby (A.1) and (A.6). As(ﬂfﬁ):
Oy (N71/2), Egy = 0, (N1/?). Similarly vec(Bgp) = N7 120N, (¥ 0 X2 (3-) =

S.3



Op (N=V2T71/2) thus, E3 = O, (N~/2) + 0, (N~Y/2T71/2)_ It is easily seen that E; = O, (N~1/2) +
0, (N=127-1/2) By < NI YN |71 XX, | HB - ﬂH2 =0, (N~1). Finally,

R , ’
E. = = ;Xl (Xin; + &) (Xim; + €i) Xy

N N N N
1 1 1 1
= o XX XX+ o Y XieelXi 1o Y XiXimel X + oy D Xiem XX,
i=1 i=1 i=1 =1
= Gi1+ Go + G3 + Gy, say.

1+6 1+6 8
+ ) + H2+2

Since, B ||T7%/2X[X;me/Xs|| " < E (|77 'X[Xm, || |77V Xles||) " < EB||T7'X[Xim,
A by by (A.1) and (A.6), Gs = O, (T_1/2). By a similar derivation, it is easily seen that G4 =
O, (T~'/?). By (A.1), Gy = O, (T™!). Finally by (A.6), G; — C —,, 0, and the required result follows.
|

A.2: Proofs of Main Results in Section 2

Proof of Theorem 1. Applying Lemmas A.4 and A.5, the result immediately follows. m

Proof of Theorem 2. Applying Lemmas A.4 and A.7, the result immediately follows. m

Proof of Proposition 1. Applying Lemmas A.8 and A.6, the result immediately follows. m

Proof of Theorem 3. In the case of both slope homogeneity and slope heterogeneity, using Theorems

1&2, together with Proposition 1, 251/2 (B — ,8) 4N (0,1;) as (N,T) — oo. It is straightforward to
~ -1/2 ,
impose the linear restriction Hy : R3 = r and show that under the null, [REBR/] (Rﬁ — r) 4,

~ l ~ -1 ~
N (0,1,) which implies that (’Rﬂ - r) {RE@R/} (R,@ - r) 4, X(QJ as (N,T) — oo. This completes
the proof. m

Appendix B: Lemmas and Proofs for the Results in Section 3

Lemma B.1 For slope heterogeneous models, when Assumptions Bl to B4 hold, we have

N
1 /
a) sup —E XiMu(Vin; +€;)|| = op(1),
N
b) su —Ej YHYMy(Vin, +&)|| = 0,(1),
() HE?—[ Ti:1¢z H( 771 ) P()
1
© gup, 1577 S (Vimi+ e Pu(Vin + &9)| = o,(1)

where H ={H: HH/T =1,}.

Proof of Lemma B.1. Consider (a). By Bai (2009a), we have supgcqy Hﬁ Z[I\Ll X! Mpe;

= 0p(1).
Note that n; is independent from X;V; by Assumption B3, then Hﬁ Zf\il XiVin;|| = op(1). Then it

= 0p(1). Using Py = T-'HH/, we have

is sufficient to show that supgeqy H 7 Zf\’:1 X/ PuaVn,

1 N
NT &

Z X;PHV[I’]Z-
i=1

N
Z lx/ 1HIVZ,’,’7I)

T
_ 1 _ 1
<|T-'*H] - N Z HT 1/2XiH HT > hyvi,
=1 t=1

[[n:]]-

S.4

E||T-1/*X]e;
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Since | T~'/?H|| = \/r1 + r2, the above term is bounded in norm by

(B.1)

1 T
72 b,
t=1

T N 1 N
—1/2%.1|2 2.
(N > ITVEXil ] ) D

Note that X; is independent of 7);, we can take the expectation of the first term of (B.1) to show that it
is Op(1) easily. The second term of (B.1) is equal to

N T T , door
NT2 Zzzh h E(vivi) + NT? Zzzhihs(‘dsvit —E(Viyvit)) -
t=1

i=1 s=1 i=1 s=1t=1

The first expression is bounded in norm by

N 2

E V Vzt

N
ZE ViVit)

1=1

Z\H

1 T T T T
< S e Y
s=1t=1 =

s=1t=1

1 T T
ﬁZZHhtHHth
s=1t=1

with [N~ SN B(v],vir)

norm by

< 74 by Assumption B2(i) and (iii). The second expression is bounded in

1 | LT L LT ~
o\ o Il 2 ST = S (Vhvi — B(vivi))| = 0,(N )
\/N T s=1t=1 y
by Assumption B2(iv). With the above two expressions, the second term of (B.1) is OP(N*1/2) +
Op(T /%) uniformly over #, which implies that supgres Hﬁ Ziv:l X;PHVz’niH = 0p(1), so we have

(a). The proofs for (b) and (c) are similar to that of (a), so are omitted. This completes the proof. B

Proof of Proposition 5.

For the slope heterogeneous model, without loss of generality, we assume that f; and g, are different
factors. Then HY = (G, F°) and ¢! = (,TY, ). Given 3 and H, we can concentrate out {¢;} ¥,
and derive the following concentrated objective function

N

1
Snt(8,H) = NT ;(Yl - X,;8)Mu(y: — X:8).
Define
~ 1 X 9 XN
Snr(8,H) =NT > (8 - BXMuXi(8° - 8) + ~NT > (8% - B) X MuH ¢!
i=1 i=1
L
+ NT 2 qb?/HO’MHHqu?.
Then
N
Svr(8,H) =Sy (8, H Z (8° — B)XMu(Vin, + &)
= .
Z ¢y H'Mu(Vin, + &) tNT Z in; +€i) (P — Ppo)(Vin,; + €i).
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Wi
B
o

th Lemma B.1, we can follow the argument in the proof of Proposition 1 in Bai (2009a) to show that
—B° % 0and |Pg — Pgo|| 0. In addition, we have that H”H/T is invertible and (H”H/T)!
p(1)-

With the definition of fI, we have

N
1 ~ PN
NT Z(Yi - X,;8)(y; — XiB)'H =HVyr

where y; — XZ'B =X,;(8° - B) + H¢? + V;n, + ;. Then, we have

1 -~

1 ~
—HVyr — ———= Y H¢)¢p)H"H
VT N NTVT & Z ¢id;

= IZXB —B)(B° - B)X/H + \FZXﬁ ~ B H"H

NT\/» Z B() E;I’_‘I ~ \/» Z () ﬂ() B)/X;I”_\I

N
1 0 N~ X 1 0/ 70/ 17
n Zg. ~B)YXH + § A > eipVH'H
NTVT = (87 =B) NT\f T NTVT gt @

N N
1 / 1 0 2V~/1I
n cic'H X4 'VIH + Vi, (8° — B)YX/H
NTVT ; NT\F Z g NTVT ; (8"~ F)

N N
1 ~ 1 ~ 1 N
+7§ H’¢!n | VIH + § Vin, oV H"H + E Vin,eiH
NTVT = i NTVT = e NTVT = !

N N
1 ~ 1 N
+ 72 e VH+ ——— E V.n,n,V:H
NTVT &= =T N £ T
= A+ -+ A5 (B.2)
Following the argument in the proof of Proposition A.1 in Bai (2009a), the first five terms are O, (||3° —

BH) The sixth to the eighth term O,(6yy) with xr = min[v/N,v/T]. Analogously, the ninth to

tenth terms are O,(]|3" — BH) The eleventh to fourteenth terms are O,(N~1/2). The last term can be
decomposed as follows:

N N
Ags = NTlx/T ;E(meéVé)ﬁ + NTlx/T Zl (Vinimi Vi — B(Vinm; V) H. (B.3)
Note that
1Y 1Y
N S B (Vi mmivi)| = Z [tr (B(n,m) B(virvis))| < A > IEvivi)

i=1 i=1

by Assumption B2(i). The first expression of (B.3) is bounded in norm by

2

T T
125y 1 1 -
TR < A 1 DS Bl = 0y )

s=1t=1

1 1 &
SNES

s=1t=1

1 N
N ZE 1577 nzvlt
i=1

with Assumption B2(iii). The second expression (B.3) is bounded in norm by

N 2
S (i~ B (Vv [T H] = 0,(N2).

i=1

1

NS>

s=1t=1

3~

b
VN
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Thus, A5 is O, (857). Collecting the above terms, we have
S 1
VT NTVT &

Since N"' 3N ¢%¢Y and T-"H”H both are invertible and O, (1), then

HVyr — ZH°¢ @Y HYH = 0,(|8° = Bl) + Op(557)-

1~ 1o 1 & o -
—HY (HO’H> ( ¢?¢?/> - —H"=0,(8° - BII) + Op(6 57)-
JT N\ T N; VT P PENT

The rest of the proof exactly follows Proposition A.1 in Bai (2009a) with changes in notation. Below we
summarize the results as follows:

1. Vyr is invertible and V7 = V, where V (r x r) is a diagonal matrix consisting of the eigenvalues

of E@EH
2. Let R = (®'®/N)(T-'H”H)Vy.. Then R and R~ both are r x 7 invertible matrices and O, (1),
and

1, ~ _
7IH —HR[* = 0,(|8" = BII*) + Op(837)

This completes the proof. B

In all remaining proofs, 8 and 3° are used interchangeably, and so are H and H°.

Lemma B.2 Under Assumptions B1 to B4, when the slopes are heterogeneous, we have

(a) TT'HY(H - H'R) = 0,(|8° — BI) + 0, (837)

) TTHH(H - H'R) = 0,(|8" ~ BIl) + Op(637)

(¢) RR' — (HH’/T)™" = 0,(|8" - BIl) + Op(637) .

(d) T'VL(H ~HR) = Op(T~28" = Bl)) + Op(N"H18° = BI) + Op(857) for each k =1,...N

(¢) T™'el(H—H'R) = 0,(T 28"~ BIl) + Op(NH|8° ~ BI) + Op(8x7) for each k=1,...N
) Mg — Mo = O,([18° = BI) + Op(6x7) -

N
(9) ﬁ Zvuﬁ —HR) = O,((NT)""/?8° = BI[) + Op(NH8° = BI)) + Op(N"1/2637) + Op(N 1),

N
(h) Z (H—HR) = O,(NT)™/?8° = BI)) + Op(N1(|8° = BI)) + Op(N72637) + Op (N 7).
k
Proof of Lemma B.2. Without loss of generality, we assume that f; and g, are different factors. Then
= (G F°) and ¢? = (0T, AY'Y. Consider (a). With (B.2), we have
T-'HY(H - H°R) = T~ V2HYA, Vyk + -+ T7V2HY A5 VL

we can follow the proof in Bai (2009a) to show that the terms 7~Y/2H”A; V5 to T~Y/2HYAgV i is

0,(18° = BI|) + 0, (63%). Since Vyk = 0,(1), we omit it in the following proof. Analogously, we can
prove that the terms 7~ Y/2HYAgVyh and T-Y/2HYAoVyr are both O,([|3° — Bl). T-Y2HYAq, is
bounded in norm by

N
¢'n/V/H®
=1
1 1 .
+ TN eamti s Sl Wikia Z PV (H - HOR)”
=1

=0, (N"Y2T412) + 0,(N/2) [0,(118° — BI) + O (63)]| = Op(N2]18° — Bll) + O, (63%)

. ||T71/2H0H2

1
— R
T IR

S.7



by Proposition 5 and R = O,(1). Similarly, we can show that T7~1/2H" A1, is O, (1/\/ NT). T-12HY A4
is bounded in norm by

1

VNT

Similarly, we can show that T—Y/2HYA,4 is also O,(1/v/NT). By Proposition 5 and R = O,(1), the
last term T~ '/2HY A5 is bounded in norm by

N
ﬁ S H"Vine! HT—WﬁH =0, (1/\/NT) .
=1

N N

1 _ 1 _ _ 1,5

7 I ROV PIR] + - S IT PV | T Vi (H - HOR)|
=1 1=1

N
_ 1
<ONT ™) + | 37 2 NIT—H/2HO Vi, |2 ZZIIsztII 1T~ (H - HR))|

=1 i=1 t=1
=0p(T1) + 0,(T %) [05(18° = BI) + Op (851)] = Op(T 218" = BI) + Op(83%).
Thus,
HO’(H H'R) = 0,(||8° = B) + Op(6x7) -

Consider (b), which is given by
1o, = 1 . 1~ _
fH’(H -HR) = TR’HO’(H ~-HR) + T(H - H'R)(H - HR).

The first term is O, (]| 3° — Bl + 0,(85%) by (a), the second is bounded in norm by T-H-HR|]? =
0,(IB° = BII?) + 0,(65%) by Proposition 5. Then we have (b).
With (a) and (b), we can follow the argument in the proof of Lemma A.7 of Bai (2009a) to derive

().
Consider (d). With (B.2), we have

1 ~
TV;(H —~H°R)

N N
1 ~ ~ . 1 ~ .
=73 Z ViXi(8" = B)(8° - BY X HVyr + 1o Z ViXi(8" - B)¢) HYHV

NTQZVk (8° ~ B)e Yy + NTQZVkH% (8° — B XHVy}

1

+ 72 ZV;Q(BO — B)XHVy + — NT2 Zv’ H ¢ e/ HV ),
1 X . 1 .
+ 72 > Vieid)!HYHV L + 77 Z Vieie HV L
1= =1

N N
1 ~ ~ 1 ~ ~
+ gz 2 ViXi(B = BImVIHVAT + s D ViVini(8” - B) XHV
i i=1

N N N
1 ~ 1 ~ 1 _
+ s 2 VIO VIV + o > ViV ¢V HY AV L + s > Vi Vinel HV
i=1 i=1 i=1
1 N N
! 1
+ N7 ZZIVkstV HVyr + NT2 ka A e

=B1 + B2+ -+ Bys.

S.8



Hereafter, we ignore Vg,lT, which is Op(1). With X, = H'TY + V;, By is equal to

B, =

N
S Vi Vi(8° - B)(8° - B)XH.

/ 0 2 0 2V~ 1Y
Zv HOT(B - B~ BYXIR+ 1 Y

NT2

The first term is bounded in norm by

N
1 _ /96 -~ 1 _ _ -~

I (T AR TR 87 = Bl - Y I IIT X = O (T 12)18° - BI)
while the second term is bounded in norm by

1 - .

i Z 1T B(VIVHIIT X 18° — BT~/ *H]|

fN ZHT V2 (VLY =BV V) IIT~2Xl[18° - BIPIT~/*H]|

=0p(N 0 - BIP) + Op(T12)18" - BII*)

with Assumption B2(i). Then, B; is O,(N~!||8° — B2 + O, (T~1/2|18° — B|1). Analogously, we can
show that By, B3, By and By both are O,(N~'||8° — 8) + O,(T~/?|8° — B]|). We can also show that
B, and B both are O,(T~1/2||8° — B||). B is bounded in norm by

1
VNT

B~ is bounded in norm by

T VR

| Z¢0 /— 1/2 H — OP(N71/2T71/2)’
v i=1

|T~V2HO | |72 H| = O, (N Y2112,

N
1 1
LI N o
e 3 vies
by Assumptions B4(iv). Bg is bounded in norm by

1
VTN &

=0,(T™1) + 0y(T V%) [0, (18° - BIl) + 0,)(6;”)] = 0,(TV28° = Bll) + 0p(633)

by Proposition 5. By; is bounded in norm by

N

1 _ -

7 2T Ve IT e B[R + ZIIT VAVie|IT7 el T/ (H - HOR))|
i=1

N
1 _ 1
A ‘chb?néVéHo R
=1
N
1 -~ 1 _ ~
o I VIR o S etV [ (- 1R |
=1

—0,(N"2T71) + O, (N2 12) [0, (18° = BIl) + Op(67y)| = Op(NTV2T 2|8 = Bl)) + Oy (637)-

By, is equal to (ignoring H”H/T since it is O »(1))

z
z

S D BVEVn !+ 57 3 VIV~ BVl

in which the first term to be O,(1/N), the second terms can be shown to be O,(1/vVNT), easily.
Then B2 = Op(1/VNT) + Op(1/N). Similar to the argument in the proof Bis, we can show that
Bis = O,(1/VNT) + O,(1/N).

S.9



B4 is bounded in norm by

1 & 1 O
—— N Viem\VH=—=- |TV2Vei|l|m T~ >V/H|||R
e 2 Viemi VI =7 3012 Vil VIR

N
11 .
+—== Y T 2VieillIn |17 /2 V|| 7712 (H - H'R
VTN 2 | kEllllmalll il ( )l

=0,(T™1) + 0p(T™/2) |0,(118° = BI) + Op(83}r) | = Op(T~/2118° = BI) + Oy (637)-
By5 is equal to

N N

1 ~
> ViVinmVH'R + > ViVinnVi(H - HR). (B.4)
i=1 =1

By = —
T NT2 £ NT? &

The first term of (B.4) is bounded in norm by (ignoring R)
11w
—= 2T BV l[m|* T2 VH|
VTN =
N
1 _ _ A _
F o ST (VYL — B(VEV) [y 272 VIEO = O,(N='T772) + 0,7,
i=1
and the second term is bounded in norm by
1 & N
N S AT BVEV) gl PIT 2V - | T2 (H - HR)||
i=1

N
1 1 _ _ _ o
+ Y NTEVEVE = B(VEV)) [l PIT 2V - | 772 (H - HOR)||
=1

VTN 2
= [0,(N"1) + 0,(T773)] [0,(18° = Bll) + Op(63%)] -
Thus, Bys is O,(T~/2||8" — BH) +O0,(N18° - BH) + 0, (8x%)- Collecting the above terms, we have
T7'Vi(H — H'R) = O,(T~"2[18° = B|l) + O,(N"18° = Bll) + Op(837) -

The claim (e) can be proved by following the argument in the proof of (d), then details are omitted.
For (f), we decompose the left hand side term as

1~ ~ ~ 1
Mg — Mpyo = —TH(H ~-H°R)'(H-HR)R'H” — THO (RRT'HYH")"')HY
then it will be bounded in norm by

|77 V2H||| TV (H - HOR)|| + | R|77Y2H)||77Y/2(H - H°R)|| + |7~Y/?H°|]*|RR'~"TH H®) !
=0,(|8° = B|) + O, (63+)

with (a), (b), (c) and the facts that | T~Y/2H||2 = ry + r and E||T~Y/2H||2 < A by Assumption B4(i)
and (ii). Thus, we complete the proof. (g) and (h) are derived from (e) and (f), respectively.ll
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Proofs of Theorem 6 and Corollary 8.

Without loss of generality, we assume that the factors F are different from G. Since the slopes
heterogeneous, H? = (G, F) and ¢} = (g/TY, AY)". By the definition of 8, we have

N
fa—g:(zx;Mﬁxi) 3" XiMgu,
i=1 i=1
N -1 N N -1 N
:<ZX§MﬁXi> ZXQMﬁHOngﬂL(ZXQMﬁXz’) > XiMgVin,
=1

i=1 i=1 i=1
iX'»MAX)liX’-MAs'
7 H*™? 03 H-?
i=1

i=1

_|_

oY

which implies that

1

are

N -1 N N N
1 ~ 1 1
— E X'MaX; — = — E X' MzH¢? + — E X'Mgae; + — E X'MaV,n..
(NT pt *TH ) B-8) NT pt ©TH i +NT pt e +NT e i YTl

Consider the first term of (B.5). With (B.2), we have

N N
1 1 N
—E X' MsH"¢? —E X'Mgs(HY — HR1)g?
NT Pt 7 H ¢Z NT — 7 H( )¢7,

11

= /TN Z;XQMQ(A% + o Ags) (HYH/T) ™ (@'®/N) ' )

= Fi+Fa+-- +Fis.
F; can be shown to be 0p(||,@ — B]?) easily. Fy is equal to

N N
B 1 / 0 _ TR -1\T0 40/ (&’ ~140 (30 _ 73
Fy = —W;:lkzlxiMﬁ(H —~HR™HT¢, (®'®/N)"'¢; - (B" - B)

N N
—ﬁ YD XMy Vgl (2'@/N) ¢! - (8° - B)
i=1 k=1

which is bounded in norm by
N N
i DT X2 - i STl - 1T 2 H — HRY|[|(®'®/N) 7| - [18° - Bl
N 7 i N k k
i=1 k=1

11 & N ~
S IT XD oY (@'®/N) V|| - 18° - B
=1

TNVTE =
=0, (65 18° = BI) + 0, (18° — BI?)

2

-18° -8

T

N
11
+ = DT XG4 D
N2 \/T — H H

s=1

N
S oY (@' ®/N) g,

k=1

=0,(6xr18° = BIl) + 0,(18° = BII*)

1 - —1/2 0 / -1 1 -
+ 7 2T 197 - /(2R /N) T D
i=1 s=1

=0, (55718 = Bl) + 0,(18° - BI1*)

2

N
1 ~
— > vl NV -
ﬁN; "V

S.11
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by Proposition 5. F3 is bounded in norm by

=

1 XN N
18° =8| - N Z 172X - || (HYH/T) = ]|(2'®/N) 7|
i=1

2 \

N
Z 1Xkllller. ] - O, (18° — Bl))
k:

=]~
3\

N
Z”T_l/QXkHHT Ve HOYIR] - O,(118” — BI)
=1

N
1 - ~1/2(f 3
*NZ ST e TR - HOR) - O,(18° - B)

Oy (85 118° = B) + Op(118° - BIP).

Analogously, Fg is proved to be O, (65 ||8° — Bl + 0,(/|8° - ,@HQ) F, is equal to

1 NN - = 3 -~ /
Fi= 7 2 > XiMg(H’ - HR™")¢;(8" - B) X, HH"H/T) " (2'®/N) ' ¢!

i=1 k=1

which is bounded in norm by

1 & . . _ _ o
i Z(HT*I/QXZ-II||<7J?||)2 T RH|ITVAES - HRTY)8° - Bl |(HYH/T) 7|22 /N) 7|
= [0,18° ~ Bl + 0,(63)] 118° = Bll = 0,(118° ~ BI?) + O (55 118° ~ Bl

with [[MgX;|| < [|Xl, T-1/2|H|| = /r1 + 12 and Proposition 5. Fs is equal to

Fs = — NzTQZZX’ aer(8° — B) X, HH"H/T) ™ (&'®/N) ' ¢!

1=1 k=1

which is bounded in norm by

1 N
NT > (B = BYX, || - T2 H||(FYE/T) ) [[(2'®/N) Y| - ZIIT‘”2X 11665 1
k=1
N R 1 A N 2 R
=7 | o8~ BYX 0 £ S 7 DS e S enmly| - 16° B0
k=1 s=1t=1 k=1
=0,(N~1/2|8° - B]).
Fg is equal to
N
Fez—ﬁzzngﬁ(Ho R ele, HHYH/T) " (®'®/N) ' ¢?

i=1 k=1
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which is bounded in norm by

72— AR n|| z¢ | 0
_ ~_ 1
< - R |2 S e ) -0,
k=1
N 1 X
+[|77V2H - HR Y| —= 7Z¢2€;€ N~U2)
VR &

=0y (NTPT72850) 4+ Oy (NPT 2)|8° = BI|) + 0, (T71/2637) + 0,(T 712 8° - B|1?)
=0,(T™1?657) + Op (N1 712 8° — B|) + 0,(T/|8° - BII*)
with Proposition 5. Since H? = (G° F?), F° = H’S, where S = (0,, x,,,I,)". F7 is equal to

0/ aR -1V 0 AT—1H'H)—1 / -1&'&\—1 .40
NQT;;I‘S —HR )Mgergy (N '@'®) "' g NQT;;ngb '®) ",
NmZZ ViHH e, g} (N7'2'2) "' 6]

i=1 k=1

which is bounded in norm by (ignoring (N ~1®'®)~1)

N N
1 _ _ ~ 1 1
3 2 TN T~ BR D) | > e
1 1 _
RIS ol EEE S [ ZVHH H ZH’sm‘é’
NT VNT & NT —~

:Op(Nil/Z(SJ_v}f) + Op(Nil/ZHIBO - BH)
Analogously, we can prove that Fg is equal to O,(8y%) + O, (||8° — Bl2). Fio is equal to

1

N N
o D D XM Vi, (8° — B X, H(HYH/T) "1 (@'®/N) ¢!

i=1 k=1

Fio=—

which is bounded in norm by

N
L kankw— TR | (R T) |2 B /N) - ZHT 125,160

ka")k ﬁ /8) X/ ( )

N N -

Z Vi, (8° = BYTY || |T72HO|| - 0,(1) + = | D Vimi(8” = B)' Vi - 0, (1)

k= k=1
<Ls -3 if} ifjri’v; e 2 0,(1)
B N Ts:l Nk:l ’

e Bl iii ii / L0,(1) = 0,(N"2|8° - B|)
\/N 2s:lt:l \/Nk:lnkaSth 3 -

by Assumption B3. Following the argument in the proof of Fg, we can prove that Fy; is equal to

NmZZX’M H ), VI HHYH/T) ™ (@'®/N) 7 ¢} = 0,(657) + 0,(118° - BI1»).
i=1 k=1

S.13



F5 is equal to

N N
— —NiT >y rys'H - HR )My Vin, oy (®'®/N) ¢!
i=1 k=1
1 N N N
— 57 2o 2 BVIV)m 8 (2R /N) ] + T DS ViV —E(ViVL) m ¢y (2'®/N) "' )
1=1 k=1 i=1 k=1
1 N N N
+ 3z 2 Vi HH'V,n, 6} (®'®/N)
i=1 k=1

It is easy to show that the first expression is O, (N =28 h)+0,(N~1/? 18°=B||), the second expression is
O, (N~1), the third term is O, (N ~Y/2T~1/2) the forth term is O, (6 y7) +O0,(|8° — B?). Fi3 is bounded

in norm by

1 N
NZIIT_1/2X¢IIII¢?II-H(FO’F/T) Hi@'®/N)H -+

N
1 1 1 ~
=7 7T |7 2 VemeE| - 0()
k=1
I S A [T YRR N Sl |2 (B -F")||- o)
- p 7 p
VNT VT ||VNT 2= VN T |V &

=0, (N85 + 0, (N~1/2)|8° = B).

Similar to the argument in the proof of Fi3, we can prove that Fyi4 is equal to Op(N_l/Q(va{f) +
O,(N=2||B° — B|)). Fys is equal to

N N

SN XM Vienn, ViHEYH/T)" (3'®/N) ' ¢}
1=1 k=1

1

Fis =~ Noge

which can be proved to be O,(65y%) + O,([18° — B2 by following the argument in the proof of Fis.
Collecting the above terms, we can show that the first term of (B.5) can be written as

1 & - -
N7 2 XiMgH ¢} = 0,(857) + Op((18” = BI*) + Op (657 (18" - BI)- (B.6)
i=1

Consider the second term of (B.5). By arranging the terms, we have

N N N
1 Z 1 Z 0 0 fAip-1 1 } :
i=1 i=1 i=1

N

1 ~ ~

72 § rYs'(H° - HR!)YHR'H"¢;
=1

N
1 P
=7 2 TVS'(H' —HR)'e; -
=1
R 1 Ly
IVS'(H — HR\)H(H - HR)'s, + — > Vie, — —— 3 V;HH's,.
+NT2; 1S( R ) ( R)E +NT Pt i€ NT2 — 1 €

Then, using vec(ABC) = (C’' ® A) vec(B) for any comfortable matrices A, B and C, the first expression
can be written as

= N
% ;Vec (F?/s/(HO _ IA{R—l)/si) = % ; [} @ (TV'S")] vec {(HO _ ﬁR_l)’]
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which is bounded in norm by

T
J S| S

N7Y28° = B|)) + O, (N V2531 .

Hvec H0 - ITIR*I)’]

N
\/i Z ; I‘OlS

ﬂ\

|T72HC - HRTY)|

Analogously, we can prove that the third expression is o,(N~1/2||8° — 8l + 0p(N=Y26 %), Tt is easy

to show that the second expression is O,(T~/?||3° — 8l + O,(T~1/282.), the fourth expression is
O,(N~1/2T=1/2). The last expression is further decomposed into

N
/ Y/ e 1Y/
NT2 § VIHRR'H's, + § V/(H - HR)R'H'e;

ZVHRH HR)'e; + ZV’H HR)(H — HR)'¢;

NT2 NT2

which is equal to

NlTé {s; ® (T—1/2ng)} . vec (RR’T—1/2H’) + NlTi_V; [(T‘1/2€;H) ® V;} - vec (T‘W(ﬁ _ HR)R’)
* N7

'ﬂ

Z [s ® ( —l2v H)} vec( ~1?R(H — HR) ’) + NITQ zN: le; @ V] - vec ((ﬁ — HR)(H — HR)’)

then following the argument in the proof of the first expression, we can show that it is O, (N —1/27=1/2) 4
O,(N~172|18° = B?>) + O,(N~1/263%). Then, we have

N
1 - ~ - _
7 2 XiMgei = Op(y7[18° = BIl) + Op(N "V 2857) + Op(T712837) (B.7)
i=1

Consider the third term of (B.5). Since Mg — Mg = 7~ '(H-HR)R'H''HR(H - HR)' ' (H —
HR)(H — HR)"'H(RR' — (H'H/T)"")H', we have

N N
1 1
= > XMy Vi, — — > X/MuV,n,
7 H [ K 7 (A K
NT pt NT pt

N N
_ 1 00/ (17 'Y\ .o 1 07407 = INT .
=- 7 ;r FU(H - HR)R'H'Vin, — ;r FYHR(H — HR)'V,n,
1 N R R N
- 73 > TYFY(H - HR)(H - HR)'V,n, — T Z IFYH(RR' — (H'H/T) H'V,n,
=1 L
N A~
- 7 ng(H —~HR)R'H'V;n, — NT2 ZV HR(H — HR)'V;7,
-1
NT2 ZV’ H- HR)(H-HR)'V;n, — NT2 ZV H(RR' — (H'H/T) H'V;n,.

Following the argument in the proof of the first expression of the second term, we can show that
the first expression is O,(N~Y/271/2) . T=1|H”(H — HR)||, which is O,(N~ 127~ 1/2|8° — B|) +

O,(N~=127-1/252) by Lemma B.2(a); The second expression is O, (N~ 1/2) -T~'/2||H — HRY|, which
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is O,(N~1/2|8° - ,@H) + O,(N~1/28%) by Proposition 5; the third term is O,(N~'/2). T*1||HO’(I/:I —
HR)||-T~'/2|H—HRY|, which is dominated by the second expression; the forth term is O, (N~Y27-1/2).
|IRR/ — (H'H/T) " ||, which is O, (N~Y/27-1/2|8° — B|) + O,(N~/2T-1/2632) by Lemma B.2(c); the
fifth term and the sixth term both are O,(N—1/2T7~1/2).T=1/2||H — HR/, which are dominated by the
second term, thus omitted; the seventh term is O,(N~1/2). 71 |H — HR/|2, which is also dominated by
the second term; the eighth term is O,(N~'/2T7-1). |RR’ — (H'H/T) " ||, which is dominated by the
forth term. Then, we have

N N

1 1 _ -~ —1/2—
o S XM Vi, = o > XMy Vi, + Oy (N V280 = Bl) + O, (N V253%). (BS)

i=1 i=1
In addition, with Lemma B.2 (f), we can derive that
1 & _
7 2 Xi(Mg — Mu)Xi = 0,(18° = Bl) + Op(85%) = 0,(1). (B.9)
i=1

With equations (B.6) to (B.9), we can rewrite (B.5) as follows

N N
1 ~ 1 _
i=1 i=1

which implies that
B-8= <IXN:X’.MHX:>_1 iix’M Vin; + 0, (6 57)
NT £ SR | N 2 SRR o)
Then we have 3 — 3 = O,(N~Y2) 4 0,(85%)- Tt is easy to show that
L ﬁ:x<MHX« . XN:V<MHV- = iiv’.v +0,(T7h)
NT & ’ NT &= ’ NT & " ’ P ’

N N
1 4 ) _ 1 ! ) _ 1 I\T . -1
§‘ X!MuVin, = NT ;ZIVZ.MHVmF ~T ;:1 ViV, ++0,(T71).

Thus, for the slope heterogeneous model, we can derive the following expression as given in Theorem 6

N -1 N
~ 1 1 _
B-pB= (NT E V;Vz> NT E Vsz"’?z‘ + Op(6N27‘)'
=1

i=1

Next, we derive an asymptotic representation in slope heterogeneous case as given in Corollary 8.
Since Yy = N1 | ¢,¢) and Z; = X; — NP X;¢/Y ;" ¢;, we have

1 & 1 &
—= > ZMuZ; — — > XMuX;
NT & NT &

N N N N
1 fam—1 1 /am—1
~N2T Z ZX;‘MHXi@TqS b; = N2T Z ZV;MHVi¢iT¢ ?;
i=1j=1 i=1j=1
1 N N 1 N N
/ar—1 /ar—1
=27 2L D B(VIVIRY ¢ + 5o D (ViVi = E(ViV))iY "o
i=1 j=1 i=1 j=1
1 N N
— g O O VIHEH/T) THV$(Y, ;.

i=1 j=1
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The first term is N 271 Zfil E(V;VZ-)¢;T;1¢Z» by Assumption B2(i), which is bounded in norm by
AN—2 vazl ||¢)1||2HT(;1|| = 0,(N~1) by Assumption B2(iv). The second term is O,(N~'T~/2). The

third term is bounded by 7! - (N1 Zivzl ||T*1/2H’Vi||||qbi||)2|\'r;1||H(H’H/T)*1|| = 0,(T~1). With
the above three terms, we have

N N
1 1
~T > ZMuZ; - N7 Y XMuX; = Op(N~1) + 0,(T )
i=1 i=1

which implies that
-1

N -1 N
1 ) 1 , _ ~
i=1 i=1

With this equation and the fact that (NT) " Zi\; X' MuV;n; = O,(N~/2), we can derive that

N -1 N
B—pB= (NT E Z;MHZ1> NT E XMuVin; + Op(857)- (B.10)
i=1

=1

Furthermore, we can show that

N N
1 —
N7 Z Z X, P X MuVin;

i=1 f=1

,1 1 al ’ ’ —1/—1/2¢7/v/.
\FT N Z & (\/ﬁ ; ¢eVeH> (HH/T)" (T H'V;)n,
=0,(N™1) + O, (NTV2T71),

It is casy to show that N=27-1 3N S~V Y, X Mue; = Op(N~/2T71/2) and N~1T—1 SN X Mye; =
O,(N~1/27-1/2). With (B.10) and the above facts, we can derive that

N -1 N
~ 1 1 _
i=1 i=1

as Z; =X; — N1 0, 9, Xy
Lastly, we consider the case in which the panel’s slope is homogeneous. Then 1, = 0, which implies
that HO = FO, ¢? = )\? and e; = g;. By Proposition A.3 in Bai (2009a), ,@ has the following asymptotic
representation
—1

B-03= <1§:Z’-MHZ:> iiz’.MHe
NT &= ‘) NT & ‘
| -1 TR
— (]\[T‘ ZZ;MHZ1> NoT ZZZ;H(H/H)_lr(Zl(ﬁJEei
=1

i=1 t=1
N -1 N N
1 1 L B
. <NT Z ZgMHZi) N2T Z Z X MuE(e;e}) H(H'H) 'Y ¢, + Oy (éx7)
i=1

i=1j=1

1 < T 1 1
1=1 =1
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Thus, we complete the proof. B

Lemma B.3 Under Assumptions B1 to B/, when the slopes are heterogeneous, we have
N 1M N
(@) N7U@— @R VP = 31— RTGY = 0,(18° — BI?) + 0y (635
i=1

N
() N'(@ - @R )® = > (3~ RN = 0,(18° — Bl) + 0,633,
=1

() &/N-RYB/N)RV = 0,(]8° - B) + 0,632,
(d) ('B/N)" —R/(®B/N)"'R=0,(|8° - Bll) + 0,(63%).

1L - ~
(&) D18 —R 190 = 0,(118° — Bl) + Oy (63,
=1
1 & R R
(F) 5 2T 2Xilll1b; = R} = O0p(I18” = BIl) + Op(037)
i=1

Proof of Lemma B.3. Since y; — Xl,@ = Hoqb? +Vin, +e& + Xi(,@O — B), we have

¢; —R'¢) =T 'H(y; - X;B) ~R™'¢
=T HH$ — R1¢0 + T'H Vi, + T He; + T 'H'X,(8° - B)
=T 'H'(H° - HR ")¢? + T"'H'V,n, + T'H'e, + T-'H'X,(8° — B)

with H? = (H” — HR~') + HR~L. For (a), we have,

N N N
1 -~ _ A ~ 1 4 I
Dl — RGP <l TR (H — HRDPC ST 97 + 1 Y I Vi 2
i=1 i=1

i=1

N N
4 —11y/ 2 4 —11y/ 0 2\2
JFN;”T H'e| JFﬁ;”T H'X;(8" - B8)|~

Hereafter we omit the scale 4. With Lemma B.2(b), the first term is O,(||3° — ,@Hz) + Op(6 1) The
second term is bounded in norm by

IIRH2 NZHT VPH'Vin, | + |77V (H - HR) |- ZIIT VAV |

=1 zl

=0,([18° = BI*) + 0, (637)-

Following the proof of the second term, we can prove that the third term is O,(]|3° — ﬁ”z) + 0, (67
It is casy to show that the forth term is O,(]|3° — B||?). Thus,

1L .
v 2 ll6i =RTIGNZ = 0,(118° = BI*) + Op(837)-
i=1

Consider (b), we have

N N
. 1 .

_ o / -1 0 .0 / o

E_ ¢ R™'¢))¢; TH (H’-HR™)- E QP + -+ E H'V;n,¢;

2 \



The first term is O, (||3° —,@H)—i—Op(éR,ZT) by Lemma B.2(b). By decomposition H= (ﬁ—HR)—f—HR, we
can derive that the second and the third terms is O, (N ~'/2T=1/2)4+-0,(N~/2||B°—B|)+0,(N =125y 11).
It is easy to show that the forth term is O,(]|3° — B||). With the above four terms, we can derive that

1 X , _
5 2@~ RTINS = 0y(18° — Bll) + Op(637)-
=1

By adding and substracting terms, (a) and (b), we have (¢) and (d). For (e), we have,

N

1 ~ B A

T2 lléi —RGY) <|TH/(HO - ans I+ = ZHT TH'V |
=1

=1

5 ZIIT Heil| + ZHT TH'X,(8° - B)|-

i=1

The first term is O, (]|3° — Bl + 0,(8 %) by Lemma B.2(b). The second term is bounded in norm by

N

1 -

% 2 ITTIRE V| + ZHT (H -~ HR)'Vin,|
i=1

<T12|R]| - ZHT VRV | + || T

Z 1T~ Vim,||
=0,(/18° = BI) + 0, (63

by Proposition 5. Similarly, we can derive that the third term is O,(]|3° — Bl + O, (65)- Tt is easy to
show that the fourth term is O,(]|3° — B|). Then

1L .
& 2 16 = R7'9il = 0p(I18° = BIl) + Op(6x7):
i=1

Analogously, we can show that (f). Thus, we complete the proof. B

Proof of Theorem 9.

For the slope homogeneous case, we refer the proof to Bai (2009a). Then, it is sufficient to prove the
theorem in the slopes heterogeneous case. Consider the heterogeneous slope models. We decompose
N1 Zivzl ZMgzZ; into the following five terms, that is

1 & 1 &
— N ZMAZ - — S ZMyZ;
NT; s NT; i H S

N N
DY i, X (Mg — Mu)X,

i=1 (=1

N
1 /
~T ‘:E 1 Xz(MH —Mp)X; — NoT

N N L
YD (6 —RTIGN'Y, X MpX,

i=1 f=1

- N2T

1
N2

=
M= 1
M=
o

{inl/ (.’I\.;l _ R/(élé/N)71R> (EKXZMAX/

<.
Il
i
~
l
—

1
N2

¢.(®'®/N)"'R(p, — R1¢) XMz X,.

N
M-
] =

@
Il
—_
~
Il
—_
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The first term is bounded in norm by

N
1 _ _
5 2 ITT2XG 2 [ Mg — M|l = O (8-

i=1

o1
Analogously, we can show that the second term is O, (8y+). Note that [|MgXe|| < ||Xe| and 1Ty || =
Op(1), which is implied by Lemma B.3(d). Then the third term is bounded in norm by

N
1 -~ _ -
~ 2l = RTGIT2X| - ZIIT V2K el - 15 11 = Op(63)
Ni:l

with Lemma B.3(f). Analogously, we can show that the fifth term is O, (6 ). With Lemma B.3(d), we
can derive that the forth term is O,(85%). Combining the above terms, we have

With the above equation, we can show that

N -1 N -1
1 ~ ~ 1 _
(NT > z;Mﬁzi> - (NT > ngHzZ) =0, (557)- (B.11)
i=1 i=1

Thus, to investigate the stochastic orders of ENT and E NT are Op(1), it is sufficient to focus on the sto-

~~~—1

chastic orders of two terms —N 172N T 7 HT¢ (;SLelt and —N-1T-1 N X MgQHY b;.
Specifically, we have

" 1 sl
Enr =~ o Y. ZHY, ¢

and
~t ~~~—1 1 N N~~~ —1~ 1 N N~~~ o~ —1 o~
Cnp = — TZXM QHY, ¢, = ﬁ;XgﬂHTd) b + N7 ;XQHH’QHT¢ b,
= L ZN:ZN:ZT:X h’AQT qb + — ZN:ZN:XT:XHh h’A2T ¢
N2T =1 j=1 t=1 ! ¢ N2T2 i=1 j=1 t=1 ‘ ¢

=Cinr T C2NT'
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For the term EI N1, which has the following decomposition (ignoring the sign)

N T
1
i’ 1
NTQZ“ZlXHT¢ b — T;;XHHH Y5 0BV, + £i0)?
N T
: ; 1 ’ 1 -1
~ 7 L K - HR)Y, 62 zt*W;;XiHR<T¢ - RYIR)SE,

N T
1 BTN C1 0y
+ 72 > > X/HRR'Y,'R(¢, - R '¢))e},

i=1 t=1

N T
1 o~
T NT2 Z Z X;HRR/T;IQS? (€% — B(viem; +€i)?]

i=1 t=1

NT2 ZZX, H [RR' — (H'H/T)"'| Y ¢ & — E(vin; +en)’]

i=1 t=1

=G1+Ga2+ G3 + G4 + Gs.

Using that € = v},1; + i — X, (8 — 8°) — (¢; — R™1¢")'h; — VR~ (h; — R’hY), we have

1 <& 1 E
T Zé\?t -7 ZE(V;tm + €it)2H
t=1 =
1 £l ~ ~ ~ . 2
< [}alB -8~ (B R B — VR V(hy ~ R'M) H
t=1
1< . . ~ _
+2 T Z {X:t(/@ - /30) — (¢, — R71¢?)/ht — ¢?/R71’(ht — R’hg)} (Viym,; + €it)
t=1
1 <& T
+ TZ( itTi +€1t - Z zz‘/r'z +Ezt ‘
t=1 t=1
_3 ) R
<7 2 Ixitl 18 = B + b — R - Z I (B.12)
t=1 t:l

T
2 3 ym 2 .
+ eI IR - Z Iy = RBYN + 25> il l[[vims + <18 — 6°)
t=1 t=1

T
D o b{(vimi +en)|| - IR

t=1

2 (1~
“ *_R_l 0
+= @ ¢

T T
2 ~
+ 7 l@alllimall - Z — R/ || (1l Z Vet
1 T T
f Z(v;tnl + Elt - Z 1tnz + glt

Consider the term Gy, which is bounded in norm by

T
1 s
7 2 [Fh ~ Bvim + )’

Xilll 71 RIS T H]|

1
mé”

N
1 .
=~ 21T 72Xl - Op(1).
=1

'ﬂ \

T
Z (Vigm; +5it)2}|
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By plugging (B.12) into the above equation, G4 is further bounded in norm by

N N T
3 _ -~ 1 _ ~ 3o
NZIIT X118 = 817 + 5 D IT X100 1 — RNV Y Il
] i=1 t=1

2\~

N T
_ . 3 ~
DT XGNP IR 25 D (e — R
t=1

=1

Z‘M

N T
7 I Xl X Il + <l 1B - 41

t=1

T
Z h? (Viem; +€it)

= IR
VT 5

2 ~
+— § 712X 1671 lp; — R~ Y
NVT 2= | [itexjite

9 Y - 1 <& 1 ~
+ 5 ST 2X 7 bl T > vl - T > |lh; — R/hY|2
3 t=1 t=1

2 I ~ 1 & 1~
+ = > IT2XG 101 lly | = Z leitll® - 4| = Z [h; — R’h{||
N P T T =
T
ztnz + Elt - Z ztnz + Elt H .

f Z 1T~ 2Xalllf | || —=

Z\H

The first term is Op(||,[A3 —3°||?), the third term is Op(HB —BY1?)+ 0, (65%) by Proposition 5, the fourth

term is O, (||8 — B°|)), the eighth term is O,(T~/2). Following the proof of Lemma B.3 (a) and (), we
show that

N
1 _ ~ _ -~ _
~ DI 168 16, — RTGE = 0,18 - B°11%) + 0,633,
i=1

N
1 _ ~ _ -~ _
~ I - R (Vi + 2a)|| = Op(1B = B°1) + Oy (5%
=1

t=1

Then the second term is O, ([|8—B8°||2) +0,(65%), the fifth term is O, (T /2|8 —B°|))+ 0, (T /25 3%).
It is easy to show that the sixth term and the seventh term both are Op(||B —B°) + 0, (6 5). With
the above terms, G4 = Op(||B —B°|) + 0, (65)- With Lemma B.2(c), we can show that G5 = Op(||,B —
B°12) + 0, (65518 — B°|) + O, (65%). The term Gs is decomposed into

X/HRRI ;1R(<7>i - R_1¢?)E(V;tm + 5it)2

XHRR'Y,'R(¢p; — R™'¢)) [¢, — E(viym, +ei)?] .

HMH uMe

i

The first term can be shown to be Op(||,@ — B%)) + O, (6577), by following the argument in the proof of

Lemma B.3(e). The second term will be proved to be O,(||3 — 8°|12) 4+ 0, (655118 — B°||) + 0, (67%),
by following the argument in the proof of G4. G2 is decomposed into

~

T
1 _ ~
Gy =g O O XIHR(Y, — R'Y,IR)GEW)m, +ir)’

N T
T+ SOSUXHR(T, - RIYIR)S, [ BV, +ea)?]
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The first term is bounded in norm by

N T
1 _ ~ -~ ~—1 B ~ _
7 20 I X BBV, + =)l - [T HI IR, = RS RI = 0,(18 - 81) + 0p(63%)

i=1 t=1

with Lemma B.3(c). Following the argument in the proof of G4, the second term is shown to be o,(|| B—

B°) +0p(63%). Then Gy = O,(||B—B°|) + 0, (63%). Similarly, we can show that Gy = O,(||3— 8°||) +
O, (6 x)- Thus, we derive that

N T
~ -1~ ~ _
YN XHY, ¢ - ZX’ (HH) 5 ¢ BV, +2i0)” = Op(|1B — B°) + Op (83 1)-

i=1 t=1 i=1 t=1

NT?

Analogously, we can prove that

] NN T,
== Z Z Z oFp ¢5X2H(H’H)’1T;1¢iE(V2tm +ei)
=0p(N 1/2T1/2Hﬁ ﬁOH p(N71/2T1/2‘51_v§“)-

Following the argument in the proof Lemma A.11 of Bai (2009), we can derive that

N N T
1 o~ =1~ L
N 2 2 6Ty S X H(HH) Y G BV, + <)
i=1 (=1 t=1
1 N N T
N N2T Z Z Z ¢£T (beX@ (H H) IT ¢ E( it + 511‘)
i=1 (=1 t=1
(I8 = B°l1) + Op(837)

N N T
1 ~l s =1
TP D IP B IE D 4 s I
N N T
~ e Z Z Z ¢;T;1¢£X2H(H/H)_1T;1¢¢E(V;tm +e)
i=1

=0,([1B = B°l) + Op(5x37)-

With the above all terms, we have
i ~ 1 L&
Eivr &t + w7 ZZ H(H'H) ™'Y, g E(vin; + i)

N N T
1 _— J— —
©N2T Z Z Z d);Taﬁ 1¢€X2H(H/H) 1T¢ 1¢)iE(V£tni + E?t)
1=1 ¢=1 t=1
=0,(IB = B°I) + 0p(637) = Op(637r)-

Combining the above facts, the bias term €y = O,(1).

o . . . . ~ .
Next, we consider ¢, where there is no serial correlation. First, note that ¢, has the following
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decomposition (ignoring the sign)

N N T N N T
T SN xubie, Y, " — N2T SN xuh(E(m, + ) (HH/T) 'Y, ¢,
i=1 j=1t=1 i=1 j=1 t=1

5
M= I
M= T
M=

- xich} (€5, — E(vjm; +20°) T, &
1

&
I
—
<.
Il
—
o~
Il

T
~ 1~
Z Xt ( hf R'hy)'E(v 3m;+€jt)2T¢ o;

+
Klis
M-

M=

&
Il
-
.
Il
-
o~
I
—

N2

% -
Mz
M=
[M]=

@
Il
-
=
Il
-
~
Il
—

~—1 ~
Xith;RE(V;mj + Ejt)2<T¢> - RIT;R)@

+ xiW{RE(Vj,1; + 250 "R R($; —~R™'9,)

3 -
] =
M-
[M]=

.
I
-
-
I
-
o
Il
-

Mz
M=
M=

1
+ ——

N2T - xihB(vV}n; + ;) (RR' — (HH/T) )Y ' ¢,

ﬁ
Il
—
.
Il
-
~~
Il

1
=H; +--- + Hs.

Consider Hg, which is bounded in norm by

1/2
T Z Z [he | (N Z ||th||2> [B(v)m; +e50)?] -

j=1t=1

N

B RIRI| T - R R|
=1

:Op(”/@ - /5 )+ Op(‘SXIT)

with Lemma B.3(c), then Hz = O,(|8 — B°|) + O,(65%). Analogously, we can show that Hs =
0,18 — BY|)) + 0, (65%). Next, note that, analogous to (B.12), we have

T

N
1 oY 1
N 2% 2B, o)
j=1

2\“

N R 3 N R
> Ixll?18 =817 + N > g —RTYIP - [y
o =

Z\w

N N

— =~ 2 ~
D ISR P I — R + 7 3 cilviem; + exll1B - )
j=1 j=1

J
) N (B.13)
+ lIhe = R'b| > ) (vimi +eu)|| - IRV

N N
25 1 2,5 1
+ el Z¢ — RV | + bl Z¢ ~R7'¢))ese

2
ang +ejt)? (Vim; +€jt)

=
e
HMZ
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Consider H;, which is bounded in norm by

T N N

1 -~ e ~ -1

v 2 el || Y@ — E(m; + 50| Y el dill - 1l
j=1 i=1

T T~ ~

1 ~ ] R

<57 2 I —anztu }j ~EWim, + 50| - [22 ||+ I8
i=1

N N

1 1 5

NZ [[xi¢ ] NZ(eit —B(vim; +¢50)%)| - Op(1)
i=1 j=1

with (B.13), it is further bounded in norm by

3 & 1 & 32
TZIIhtII (NZIIX“2> 18 - B°|I?
t=1 =1
T

N 1/2 N
3 1 2 1 7 —1 .02
+T;||ht|| N;Hx“n W;II@—R &

| eo

T N 1/2 N
3 MOI21Th 1 2 1 011211R =12
o > e = RWPE D xal® ) Do Ig5IPIRTY
T N 4 N 4
t=1 i=1 Jj=1
2 o 1 & X
+ 7> I (N > ||X¢tll2> & 2 Iselllvgem; +e5ll18 - 6°)
t=1 i=1 j=1
5 T L 1/2 L (B.14)
7 > el — BB (N > leﬂﬁ) N 2 i Viemi+ )| - IR
t=1 i=1 =

| b

T 1/2 L& L&
+T2|hf||2< Zx”n) RS S ZAIC T EN S Sy I SEPLIE
=1 = =

!

+

1/2 N N
1 1 ~
I 5 oSG INED SIETENES s ST
j=1 j=1

t=1

Nl

!

1/2 | N
Z|hf||<NZ||th||2> ~ 2 (Vi +ee)” — Z Vi, +€50)”

Following the arguments in the proof of G4, we can show the terms in the above equation is O,(|| [A'J —
B°l) + O, (634, then Hy = O, (|8 — B°|) + Op(65%). Analogous to the arguments in the proof of G,
Hy = O,(]|B—B°||) + 0, (865%). Following the argument in the proof Gs, Hy = O,(||8 — 8°||) + O, (6 35).
Collecting the above terms, we can derive that

N N T

~1 1 e -~ _

Cinvr = | =~ 20 D0 X B, + 50 *(HH/T) 016, | = 0,18 - B°1) + 0, (5
=1 j=1t=1

Analogously, we can derive that
T

N

~ 1 - .

Canr — N2T2 Z Z X H(H'H/T) lhthiE(V;mj + €jt)2T¢1¢i
i=1j=11

=0,(8 — Bll) + Op(637).-

—_
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Note that it is easy to show that N—27~! Zfil Z;\le Zle xihiB(vim; + sjt)Q(H’H/T)*IT;@ =
Op(1) and N=27-252 s> ST XTH(H'H/T) 'hyhE(V,m; + £0)°Y ;' ¢; = Op(1). Collecting
the above facts, we obtain that

N N T
1

N N T
ZZZx”h’ X, '3 - o7 ZZZX'Hhth“2 Y, '3 = 0,(1)

7.1] 1t=1 i=1 j=1t=1

which implies that ELT = O,(1). Similarly, we can show that ¢ N for the case with serially correlated
errors is O, (1).

Note that, for slope heterogeneous models, by Theorem 6 and Corollary 8, we have

N -1 N
~ 1 1 _
; i=1

1 R
= (ZVT Z Z,EMHZi> NT Z Z;MHei + O;D(‘SRIZT)
X =1

combining the facts that ELT = 0,(1) and ELT = 0,(1), we have

~ 1~ 1~
B=B- ENT CNT

-1

N
1 N
( § ZMuZ; ) ~T ?:1 X! MyVin; + 0,(657)

—1

N
1 _
= (NT > ZMuZ; ) T > ZMuu; + O, (637)
=1

which implies that 8 — 8 = Op(N“Y2) + 0,(535%)-
For the slope homogeneous case, by Bai (2009a), we have

N -1 N
~ 1 1 _
B-8 = <NT E Z;MHZi> NT E ZMgyse; +Op(51v%)
i=1 i=1

1 & T
- <NTZZ:MHZ1> WZZ;MHUZ“"OP((SXI%)
i=1 =1

Thus, we complete the proof. B

Proof of Theorem 11

For the heterogeneous slope models, with (B.11), we have
—1

AU 1 &
(m D ZéMﬁZz) - (NT 2 Z;-Msz) = 0,(63)
i=1 i=1
which implies that

N -1
1 ~ ~
(NT > z;Mﬁzl) — At =0,(1) (B.15)

For the case with homogeneous slopes, by proof of Proposition 2 in Bai (2009b), we can also derive that

N -1
1 _
( T Z Z\MgZ,; > <NT > Z;'MHZi) = Op(bxr)
i=1
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which implies that

N -1
1 Sinn 5 _
(NT > z;Mﬁzi> — A7t =0,(1). (B.16)
i=1

Using the above facts, we just need to focus on the term Zfil ngﬁﬁzﬁ;Mﬁzz For the homoge-
neous slope case, 1; = H'¢! + ¢; + X;(8° — B), we have

N N
1 7 0 7 040 7
—TZz;M H'¢) ¢/ H' M5 Z; + NTZz;MﬁH )My Z,
i=1 P
=T, + Ty + - +1Is.

Consider the term Iy, which is decomposed into

N
1 . _ _
~NT > ZMgX;(8° - B)e;MgZ;

1 N N
2TZZ X MgX;(3° — B)e!MgX,

N N N

o~ ~—1~ — ~ o~ —1~
N3T Z Z Z ?:Y, ¢€X,€Mﬁxi(50 - 5)€(L‘Mﬁ¢fr¢ ¢, X
=hi+Lho+Thizs+1a.

Consider I 1, it is further decomposed into

N N
1 — 1 _
7 2 XiMuX;(8° - B)eiMuX; + = > Xi(Mg ~ M) X, (8° - B)e/MnX;
i=1 =1

N

1 — 1 _
N7 > XMuX;(8° - B)e;(Mg — Mu)X; + N7 > Xi(Mg — Mu)X;(8° - B)e}(Mg — Mu)X;.
1=1 i=1

The second term is bounded in norm by

1 _ _ - _ _
N NI el T Mg — Mau[|8° ~ Bl = 0,(NT AT 6.

i=1
Similarly, we can prove that the third term is O, (N ~'/2T"/26 %) and the fourth term is O, (N ~Y/2T/25%.).
The first term is

N
1 _ 1 _ -
NT > XMuX;(8° - B)eX; — T > XMuX,;(8° - B)e;HHH) 'H'X,;
=1 =1
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which is bounded in norm by

NZIIT VEXGIPIT e X - 72|80 — Bl

=1

1 B - - e —
b LS P R T - Bl = Oy (N ),

i=1

Then we can show that I, ; = Op(N_l/QTl/Q(SX,lT). Analogously, we can prove that I; o = Op(N_l/QTl/QéfvlT),

I3 = Op(N~V2TV25 L) and Ty 4 = O,(N~V2TVY28L). Thus, I; = O,(N~Y2T"/2§1.). Following
the argument in the proof of I;, we can show that I3 = OP(N*1/2T1/26;,1T). Consider the term I, which
is bounded in norm by

N
1 _1/95 _ - _
S S ITT R T X2 TYB° — B = Op(N ).

i=1

Note that MgH = Mg (H — I/-\IR’l), then Iy is bounded in norm by

N
1 o _ B ~_ _ -~ _
5 2T P2 T2l TIT 2 (H — HRTY||IB” = B = Op (N1 265y).

i=1
Analogously, we can show that Ts = O,(N~'/2T"/2§%.). Consider the term I, which is
N

N N
1 1 =1
7 2 XMpeid HMgX; — =3 > 6. Y, "6 X Mgei | H'MzX;
i=1 =1 ¢=1

N N
1 )~ =1~
T N2T ZZXéMﬁ€i¢2H/Mﬁ¢iT¢ DXy

i=1 j=1

N N N
ZZZ&?_ XM, s¢H’MH¢T¢¢X
0=

i=1

N3T =i
=l6.1 +I62 + I6.5 + Ig.4.
For the term I 1, it is
1 . ’ / aR -1y 1 > ’ / Oor-1VEW/
~T ;Xieiqbi(H ~HR™)X; - ;Xieiqﬁi(H -~ HR')HH'X;
1 X N

~ 1 =R .
’ / -1 ’ 1/ , , 1 , 1y ,
- ;XieiH(H H) 'Hg{(H - HR™)'X; + s Z X/e,HH'H) 'H¢,(H — HR™')HH'X,

N
1 . .
7 > X{(Mg — Mp)e;¢)(H — HR™')'X; — § X/ (Mg — Mp)e;¢,(H — HR™'YHH'X,.
"

N T2
The first term is bounded in norm by

N
1 ~
VT ST X177 (B — HR X = 0, (T 2633,
2

Analogously, we can show that both the second term, the third term and the fourth term are O, (/2§ %).
The fifth term is bounded in norm by

N
T _ _ _ P _
& 2 T XTI T (H = HR™Y)'X| - Mgy — M| = Op(T87)-
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Analogously, we can show that the sixth term is O,,(Té&%w). Collecting the above six terms, we can show
that g1 = Op(T(S;[BT). Following the argument in the proof of .1, we can prove that Igo = O (T(SX,BT)
Tes = Op(T6x) and Tgq = O,(T6x3). Thus, we derive that Iy = O,(Téx>)

' . Consider I, which is
decomposed into
]- ]. NN A~ ~—1~
I =5 2 XIMgH @@ HMX, - 5= > > XIMgH @ [ H M X, T, &
i=1 i=1 (=1
1T L& e
- NeT Z ¢ Y, ¢ X;MgH ¢ ¢/ H'MgX;

1
N3T

o~

—~7 ) o~ —T1 o~
¢ ¢2X2MﬁHO¢?¢2H/MﬁX3¢¢T¢ ?;

Mz%Mz

HMZ
FMZ

1

1j
=71+ Hm + 173+ ]I744-

For 171, it can be further decomposed into

1 ~ ~
—= > _Xj(H-HR ")¢)¢;(H-HR')X
NT 2~ i R™)o; ¢i( R™)

1 N N N
=1

— 75 2 Xi(H - HR™)¢{¢(H - HR™'YHH'X;
=1

1 PP P PPN
+ 73 Y X/HH'(H - HR )¢} ¢;(H - HR™'YHH'X;.
i=1

The first term is bounded in norm by

& 2 T2l P X (H — HR™)||-T|T/*(H - HR )| = O,(T8 7).
i=1

Analogously, we can prove that the second term and the third term both are O (T(Y3 ), the fourth
term is O,(T6y5). Collecting the above four terms, we can derive that I; 1 = O,(T8y5). Similarly,

we can prove that Iro = O,(Téx3), Iz = Op(T6yy) and Ir 4 = Op(Téj_VEiT). Consequently, we have
I; = OP(T(?K,B’T). Following the argument in the proof of Ig, we can prove that Ig

= 0y(Téx7)-
Combining I; to I, we can derive that
1 & 1 s -
~T Z S0 MgZ; = ~7 > ZMgeielMgZ; + 0,(T6 7).
i=1 i=1
Next, we consider the term (NT')~ Zfil 2;Mﬁ€i€;Mﬁ2i, which is
1 & 51 1 v Sra-ls
N7 Z €MgZi = > X(MgeieiMgX; — o > Y XiMpeieMpXi, X, ¢,
= 1171 - » i=1 (=1
— N2TZZ¢ Y, ¢, X, Mge;eiMgX
1 1;1 5;[1 .
+ NSTZZZ@m ¢, X MpeieMgXe, X, &,
i=1 j=1 (=1



For Iy 1, we have
1 Y 1 Y
~T Z X Mgeie/MgX; — T Z X/ Mpee,MuX;
i=1 =1

N N
1 1
=7 2 XiMg — Mu)eie;MuX; + > X{Mueie;(Mg — Mu)X;
=1 i=1

N
1
+ w7 Y X;(Mg — Mu)eis;(Mg — Mu)X;
i=1

=911+ 19120 +Ig1.3.

Since Mg —My = —T~}(H-HR)R'H'-'HR(H-HR) - (H-HR)(H-HR)'H(RR/— (T~ 'H'H) )H,
Hg,1.1 is

N

1 ~
> X|(H- HR)R'H'e;e,MuX; —
=1

N
1 _
e 3" X/HR(H - HR)'e;e/MuX;
- =1

NT? 4

N
1 . .
- N7 ) X|(H-HR)(H - HR)'e;e)MuX;
i=1
1 N 1
- 73 ZXQH(RR’ — (T7'H'H) )H'e;e;MuX,.
i=1

The first term is bounded in norm by

N

1 ~

5 2T X || T2 X || - | 72 (H - HR) R
i=1

N
1 - _ - N _ _ _ _
£ ST X T AR 2 A - HR) R HE) T 2] = 0,(53h).
i=1
The second term is bounded in norm by

N

1 _

& 2 T X T (H - HR) e |[|T1 26X - T2 7 /2H]||[R|
i=1

N
1 _ _ PP _ 1y
+ 7 2 TGP T PR e || T (H - HR) e | - T2 R |(7 HUH) |72 H?
i=1

—0,(T"263%).

Analogously, we can prove that the third term is Op(Tl/z(SR,QT) and the fourth term is Op(éj_\,QT). Thus,
Ig11 = Op(Tl/Q(SEQT). Ig.1.0 is the transpose of Iy 1.1, then g 1 5 = Op(Tl/Q(SX,QT). Following the argument
in the proof of Ig 1.1, Ig.1.3 = Op(Téfvz}). Thus,

N N
1 1 _
~T Y X Mgeie/MgX; — ~T > X[Mueie,MuX; = O,(T637).
i=1 =1
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Similarly, we can derive that

N N N N
1

Nl o~ =1~ 1 _ -3
T > Y XiMpeieMpXe, X, ¢, — NoT > Y XMueie/MuaX Y, ¢, = Op(T6 )
=1 4=1 1=1 4=1
1 1~ 1 L&

&Y, ¢X,Mgeie]MgX, —

S
M= 1
M=

2

=

o DD B 6 X MueielMuX; = O,(T6})
=1 4=1

&
Il
—
o~
Il
-

~

N
qunf ;X Mpeie/MgX, 4T, b
1¢=1

<

uMz
_ IM=

N
Y, B X MueieiMuX$i X b = Op(T6x7).
=1

Mz
M=

T

I
—
I
-

i J

Thus, we can derive that

NITEN:ZMHEEM Z; — EN:ZMHesMHZ = 0,(T653)
=1 i=1
Also, since
L S MMy Z — 3 ZMy My Z, + 0,(T55%)
NTZ»ZI i H " Y H NT-:l i H"1=1 H“ P NT
1 N N
N7 Y ZMueieMuZ; > ZMuE(eie))MuZ; = O,(N~'/?)
i=1 i=1

N
NT Z ZMguuMgZ; — By = 0,(1). (B.17)
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For the heterogeneous slopes case, using u; = H0d>§J +Vn,+& + Xi(ﬁo — B), we have

N
1 S
T > ZMgu,uMgZ; — NT2 ZZ Mg Vimn,ViMgZ;
i=1
1 XL _ LN i R
=72 2 ZMgXi(8 - B)eiMgZi + 15 > LM Xy (8 - B)(8° — B) XMz Z
i=1 i=1
1 & L&
+

N N
+ Nsz Y ZMgX,(8° - BmiViIMgZ; + Nsz 3 ZMgVin,(8° - B) XMz Z;
+ 57 O ZMH (B8 — BY XMy Zi + 05 > ZMgeid H'MGZ,

) 1;1/\ ) 1 N ) i—1

s O ZMGHU G H M Z: + S ZMgH el Mg Z;
T NT? ZZ;M Vin;¢;H'MgZ; + NTZ ZZ;MﬁHO(p V' MxZ

1;1 i—1

NT2 ZZ Mg Vin,e;MgZ; + NT2 ZZ Mgein,ViIMgZ;

1 =~ ~
i=1
=Ji+Jo+ -4+ Jis.
The term J; is bounded in norm by

N

1 —1/25 _ _ > -

= ST PZ P X e 18° - Bl = Op(N V).
i=1

Following the argument in the proof of the term J;, we can prove that J, = Op(N’l), the terms J3 to
J7 both are O,(N~1/2). Note that MgH = Mg(H — HR™!), Jg is bounded in norm by

Mz

Mgei¢,(H — HR™Y)'MgZ;

=1

“VPZP T el - IT TP (H - HRTY| = Oy (6y7).

Analogously, we can derive that Jo = O,(6y7), the terms Jio to Ji2 both are O,(§y4). Consider Ji3,
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which is

N

1 = ~

NT2 E Z;MHVmis;(Mﬁ — Mn)Z;
i=1

N
1 = ~
NTZ E Z;(MI;I — Myu)Vn,eiMuZ; +

N N
1 =7 / ~ 1 > ’ /
+ w7 Z; Z;(Mg ~ Mu)Vine;(Mg — Mu)Zi + o5 ;(zi — Z:)MuVn,e'MuZ;
1 X N 1 M N
! .o 7. 7.\ .o 7.
+ 72 i:ZlZiMHVstZMH(ZZ Z)) + 57 ;(ZZ Z;)MuVn,e'Mu(Z; — Z;)
1 N
+ > ZMuV,n,e;MuZ;
2 i A
NT? &

=Ji31+ -+ Jiz7.

The term Jy3.1 is bounded in norm by

N
1 125 _ _ _
5 2 NT Tz P 2V |1T 26| - Mg — M| = Op(037)

i=1
Similarly, we can derive that Ji35 and Ji3.3 both are Op(éj_\,lf), and Ji34 is OP(T*I/Q). Note that
Zi—Zi=N"') (6, b, — &;?;1$£)Xg, we can derive Ji35 and Ji3 both are O,(T—1/2). It

is easy to show that Ji37 is O,(T~/2). Thus, we have Ji3 = O,(65+). Following the argument in the
proof of J3, we can derive that Ji4 = O, (8 y) and J15 = O, (8§ 7). Collecting the above terms, we have

N
1 . .
i = N72 > ZMgVinm,VIMgZ; + O, (637).

i=1 i=1

Y
<
o
)
£
<
o
N

It is easy to show that

N
1 ~ A
> ZMuVimn,ViMuZ; + O,(85%).
=1

NT? <

N

1 . .
> ZMgVimmVIMgZ; = NTZ
=1 s

To proceed, we investigate N=1T=2 3N Z/Mg Vim0, V/MuZ;, which is decomposed into

N
1 = .
Ji6 =52 > ZMuVinn;ViMuZ;
i=1
1 X | NN o
:4NT2 Z XQMHme;ViMHXi — W Z ZXQMHmeQVQMHXmﬁiT(ﬁ ¢é
i=1 i=1 (=1
L NN R
T ON2T2 Z Z ¢ir¢ ¢5X2MHV1"'71'"7;V2MHZ¢
i=1 0=1

N N N
1 A=l A1 s -1~
a7 200 2 X MuVin i ViMuX$, X, 6,8, T,

=J16.1 + J16.2 + J16.3 + J16.4-
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Consider Jq6.2 (ignoring the sign), we have

1 N N

o~ =T~
N2T2 Z Z XQMHmeQVQMHXed)Z-T¢ oy}
=1 £=1

1 ~
=N > XiMuVinmiViMuX(¢; - R™'¢,)R/(¥'®/N) "¢,
i=1 ¢=1

N N
1
+ g 2 O XiMu Vi,V MuX¢i('®/N)"'R(¢, ~R™'¢,)

i=1 (=1
1 NN ~—1
S Y XMV VIMAX R (T, - RI(@'8/N) IR,
i=1 (=1
1 N N
+ NoT? Z Z XQMHmeQVQMHXm%T;lm
i=1 ¢=1
. NN R ~
+ gz 2 2 XiMuVinm;ViMuX(¢; ~ R™'¢,) R ('®/N)'R(¢, ~ R™'¢,)
i=1 (=1
AR . R
+ Yoz > Y XIMuVinn,ViMaX@¢;R™ (T, —R/(®'®/N)"'R)(¢,—R "¢,
1=1 (=1
1 NN ~ ~—1
+t Norz2 Z Z XMuVnn;ViMaX.(¢;, —R™'¢,) (¥, —R'(®'®/N)"'R)R"'¢,
i=1 (=1
| NN R . R
+ N7z > > X MuVinn,ViMuX(¢;, - R~ ¢,)’ (T¢ - R'(‘I’/‘I’/N)_lR> (e — R 'opy).
=1 (=1

The first term is bounded in norm by

1 & -
= S IT VP 2| -
i=1

N
1 _ _ _
= SIT Vgl IRIN(®'®/N) | = Oy (83
(=1

Analogously, we can prove that the remaining terms except the fourth term is Op(éfvlT). For the fourth
term, it is

N N
1 _
N2T2 Z Z V;MHme;:V::MHVe@Tqa o,
i=1 (=1
N N 1 N N
= a7z D S VIV VIV X, — <y D0 VIHHH) " H Vi VIVl Y,
i=1 (=1 i=1 (=1
1 N N
- No7e Z D ViV ViHEH) 'H' V4 X' ¢,
i=1 (=1
1 N N
b 303 VIHHE) T HV  VEEH) BV 6,
i=1 (=1
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which is bounded in norm by

N N
1 1 1
_ . — T_1/2V 'V / T—l
i N;H 112l 111151 - fﬁg | 1057l
11 N
tg NZHT VEVIHP |n 21TVl - ZHT*WWHHWH IEB/T) I
=1 _

1

N
1
4+ = T2V H| T2V 2 1P ] - || —= Y H'V et EHE/T)
JNT N;II Il (171723171l \/W; || - 105 IHIHH/T) |

N
1 1 . 1
+ Y NTTEVHIP Pl || ==Y H'V
=0,(N~V2) + 0,(T71).

I /)2

Collecting the above terms, we can derive that Ji62 = Op(éfvlT). Following the argument in the proof of
Ji6.2, we can derive that Jig.3 = Op((SElT) and Jig4 = Op(é&lT). Consider the term J16.1, which is

1

N
1
iR Z XMuVinm,ViMaX; = s > ViMuVinm,V,MuV;
3 i=1

N
1 —
NT2 ZV Vlnznzv V NT2 ZV;H(H/H) IH/VZ’I"Z’I”;V/Vl

NT2 ZV Vi, VVHHH) 'H'V, + —— NT2 ZV HH'H) 'H'V,n,n,VHHH) 'H'V,.

It is easy to show that the last three terms both are Op(

T-1). Then
N 1 N
61 = 373 > XMuVinnViMuX; = ~iE S VIV ViVi+0,(T )
=1 =1

which implies that

N
_ _ 1 _
NT? Y ZMuVinn;ViMuZ; = NT? D VIV ViV + Op(67)-
i=1 =1

Collecting the terms J; to Ji6, we can derive that

complete the proof. B
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