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Abstract

In this paper, we propose a robust approach against heteroskedasticity, error serial cor-
relation and slope heterogeneity for large linear panel data models. First, we establish
the asymptotic validity of the Wald test based on the widely used panel heteroskedastic-
ity and autocorrelation consistent (HAC) variance estimator of the pooled estimator under
random coe¢ cient models. Then, we show that a similar result holds with the proposed
bias-corrected Bai�s (2009) estimator for models with unobserved interactive e¤ects. Our
new theoretical result justi�es the use of the same slope estimator and the variance esti-
mator, both for slope homogeneous and heterogeneous models. This robust approach can
signi�cantly reduce the model selection uncertainty for applied researchers. In addition,
we propose a novel test for the correlation and dependence of the random coe¢ cient with
covariates. The test is of great importance, since the widely used estimators and/or its
variance estimators can become inconsistent when the variation of coe¢ cients depends on
covariates, in general. The �nite sample evidence supports the usefulness and reliability of
our approach.
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1 Introduction

The recently increasing availability of panel data sets in which both cross-section dimension N
and times series dimension T are large has produced opportunities to develop statistical methods
to exploit richer information, while presenting associated technical challenges. In particular,
controlling cross-sectional dependence, heterogeneity in parameters and distributions, and serial
dependence has been a main focus of the literature.

The celebrated �xed e¤ects model permits intercept to be cross-sectionally heterogeneous
whilst slope coe¢ cients are constant across cross-section units and time. Hansen (2007) has
shown that, under mild conditions, the heteroskedasticity and autocorrelation consistent (HAC)
variance estimator of Arellano (1987), which is originally proposed for a short panel �xed e¤ects
estimator, will be asymptotically valid for large panels. Greenaway-McGrevy et al. (2012)
propose to use the HAC estimator for the pooled principal component based (PC) estimator
for the model with unobserved interactive e¤ects.

The random-coe¢ cient model, in which the slope coe¢ cients are allowed to vary with the
cross-sectional units, has attracted great attention in recent years.1 It can control di¤erences in
behaviour across cross-section units which are not captured by the control variables. For such
models, the estimate of interest is often the population average of slope coe¢ cients. Interest-
ingly, if the cross-sectional variation of slopes in the random coe¢ cient model is independent
of covariates, the �xed e¤ects estimator is consistent to the population average of slope coef-
�cients. A non-parametric variance-covariance estimator for such pooled estimators has been
implicitly proposed in Pesaran (2006), in which the population variation of slopes is replaced
by its sample counterpart �the variation of the estimates of cross-section speci�c slopes. The
evidence has shown that the variance estimator behaves very well in �nite samples.

There are some issues about this variance estimator for our robust approach. First, for
the choice between the HAC and this variance estimator, the practitioner would like to know
if there is slope heterogeneity or not. Second, some estimation methods, such as Bai�s (2009)
estimator, do not permit slope heterogeneity models, and making use of statistics involving
individual slope estimates might not be asymptotically justi�ed.

In this paper, we propose a robust approach against heteroskedasticy, error serial correlation
and slope heterogeneity for large linear panel data models. First, we establish the asymptotic
validity of the Wald test based on the panel HAC variance estimator for the pooled estimator
under random coe¢ cient models. Then, we show that a similar result holds with the bias-
corrected Bai�s (2009) estimator for models with interactive e¤ects when the regressor has a
factor structure. Our new theoretical result justi�es the use of the original Bai�s iterative
estimator and the variance estimator, both for slope homogeneous and heterogeneous models.
This robust approach is expected to substantially reduce the model selection uncertainty for
applied researchers.2

Another main contribution of this paper is a novel test for the correlation and dependency
of the random coe¢ cient on covariates. We extend the test proposed by Wooledridge (2010)
by robustifying against (uncorrelated) random coe¢ cients, proposing a Lagrange Multiplier
test along with a Wald test, and developing them for the models with unobservable interactive
e¤ects. The test is of great importance, since the widely used estimators and/or its variance
estimators can become inconsistent when the variation of coe¢ cients is correlated or dependent
with covariates, in general.

We have examined the �nite sample performance of the estimators, tests of linear restrictions,

1See Hsiao and Pesaran (2008) for an excellent survey of random coe¢ cient panel data models.
2Galvao and Kato (2014) consider estimation and inference of �xed e¤ects estimation for large panels under

misspeci�cation.
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and the LM tests for correlated random coe¢ cients. The evidence illustrates the usefulness of
our approach. In particular, for the estimation of the models with unobserved interactive ef-
fects, the size of the proposed robust Wald test using the bias-corrected Bai�s (2009) estimator
is very close to the nominal level, under both slope homogeneity and slope heterogeneity, while
maintaining satisfactory power. Also, the LM tests for correlated random coe¢ cients have cor-
rect size under both slope homogeneity and slope heterogeneity due to pure random coe¢ cients,
while exhibiting high power when the random coe¢ cients depend on covariates.

The paper is organised as follows. The robust Wald test is proposed for standard linear
panel data models in Section 2, then for the models with unobserved interactive e¤ects in
Section 3. A test for correlation of slopes with covariates is proposed in Section 4. The �nite
sample performance of the proposed bias-corrected estimator, the associated Wald test and the
correlation test is investigated using the Monte Carlo method in Section 5. Section 6 contains
some concluding remarks. Proofs of the main results in Sections 2 and 3 are contained in Online
Appendices A and B, respectively.

Notations: we denote the largest eigenvalues of the N � N matrix A = (aij) by �max(A),
its trace by tr(A) =

PN
i=1 aii, its Frobenius norm by kAk =

p
tr(A0A). The projection matrix

on A is PA = A(A0A)�1A0 andMA = I�PA. � is a generic positive constant large enough,
�2NT = minfN;Tg. We use N;T !1 to denote that N and T pass to in�nity jointly.

2 Benchmark Panel Data Model

Consider a panel data model with cross-sectionally heterogeneous slopes:

yit = x
0
it�i + "it; (i = 1; 2; :::; N; t = 1; 2; :::; T ) (1)

xit is a k � 1 vector of observed covariates, and "it is disturbances. The k � 1 slope coe¢ cients
are generated as

�i = �
0 + �i, (2)

where �i is independently distributed random vector across i, with E (�i) = 0. When �i = 0
for all i, it reduces to the homogeneous slope model. Throughout the paper, our interest is in
the estimation and testing of the linear restrictions of �0. Now stack the T equations of (1) to
form

yi = Xi�i + "i, (3)

where yi = (yi1; yi2; :::; yiT )
0, Xi = (xi1;xi2; :::;xiT )

0, and "i = ("i1; "i2; :::; "iT )
0.

Remark 1 For notational simplicity, we do not include individual and time speci�c e¤ects in
the model. But all the discussion below will hold by replacing fyit;x0itg with transformed variables
f�yit; �x0itg, where �y�it = (yit � �yi � �yt + �y) and �xit = (xit � �xi � �xt + �x) with �yi = T�1

PT
t=1 yit,

�yt = N
�1PN

i=1 yit, �y = N
�1PN

i=1 �yi, and �xi, �xt and �x are de�ned analogously.

We can rewrite the equations (2) and (3) as

yi = Xi�
0 + ui, ui = Xi�i + "i. (4)

The pooled estimator of �0 is given by

b� =  NX
i=1

X0iXi

!�1 NX
i=1

X0iyi. (5)
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To analyse the asymptotic properties of b�, we extend the assumptions in Hansen (2007) to
accommodate random coe¢ cient models as follows:

Assumption A1: fx0it; "itg is independent across i = 1; 2; :::; N for all t, a strong mixing
sequence in t with � of size �3s=(s � 4) for s > 4, with E j"itj4+4� � � < 1, E jxithj8+8� �
� < 1 for all i; t; h = 1; 2; :::; k and E ("ijXi) = 0;

�0 � �; f�ig is independent across
i = 1; 2; :::; N and of f"ig for all i, E j�ihj4+4� � � <1 and E (�ijXi) = 0.
Assumption A2: (Identi�cation): AiT = T�1E (X0iXi) is uniformly positive de�nite and
A = limN;T!1ANT , with ANT = N�1PN

i=1AiT , is �xed and positive de�nite.

Assumption A3: (Variance Matrix 1): BiT = T�1E (X0i�"";iXi) and �"";i = E ("i"0ijXi) are
uniformly positive de�nite and B = limN;T!1BNT , with BNT = N�1PN

i=1BiT , is �xed and
positive de�nite.

Assumption A4: (Variance Matrix 2): CiT = T�2E (X0iXi
��;iX0iXi) and
��;i = E (�i�0ijXi)
are uniformly positive de�nite and C = limN;T!1CNT , with CNT = N�1PN

i=1CiT , is �xed
and positive de�nite.

Assumption A1 allows serial dependence in fx0it; "itg but assumes independence across i. The
random coe¢ cient is independent across i. Both the idiosyncratic errors and random coe¢ cient
are assumed to be uncorrelated with xit. Assumption A2 is a fairly standard identi�cation
condition. Assumption A3 allows conditional heteroskedasticity across i and t. Assumption A4
permits a conditionally heteroskedastic random coe¢ cient process.

For later use, let us de�ne the sample counterpart of ANT and AiT de�ned in Assumption
A2:

�ANT =
1

N

NX
i=1

�AiT , �AiT =
X0iXi
T

. (6)

Substituting (3) into (5) gives

b� � �0 =

 
NX
i=1

X0iXi

!�1 NX
i=1

X0iui

= �A�1NT

 
1

NT

NX
i=1

X0i"i +
1

N

NX
i=1

�AiT�i

!
. (7)

Let us consider the asymptotic properties of the �rst term of (7). We state the following
theorem, which is proven by Hansen (2007):

Theorem 1 Consider model (4). Under Assumptions A1-A3, as (N;T )!1,

�A�1NT
1p
NT

NX
i=1

X0i"i
d�! N

�
0;A�1BA�1

�
(8)

where �ANT , A, and B are de�ned in (6), Assumptions A2 and A3, respectively.

This is a very useful result, since, in the absence of slope heterogeneity �i, even when the
dimension of �"";i = E ("i"0ijXi) is unbounded as T ! 1 (but �max (�"";i) � � with serially
correlated errors), the theorem tells us that the use of the celebrated heteroskedasticity and
autocorrelation consistent (HAC) variance estimator of Arellano (1987) for short panel models
will be asymptotically justi�ed for large panels.

The next theorem states the asymptotic properties of the second term of (7).
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Theorem 2 Consider model (4). Under Assumptions A1, A2 and A4, as (N;T )!1,

�A�1NT
1p
N

NX
i=1

�AiT�i
d�! N

�
0;A�1CA�1

�
(9)

where �ANT and �AiT are de�ned in (6), A and C are de�ned in Assumptions A2 and A4,
respectively.

As discussed in Pesaran (2006) and Reese and Westerlund (2018), the pooled estimator b� is
consistent to the centred value � under the random coe¢ cient assumption, and the variation ofb� due to the dispersion of slope coe¢ cients dominates the variation due to the linear function
of idiosyncratic errors. The following corollary of these two theorems clarify this point:

Corollary 1 Consider model (4). Under Assumptions A1-A4, as (N;T )!1,
p
N
�b� � �0� d�! N

�
0;A�1CA�1

�
(10)

whilst under slope homogeneity, �i = 0 for all i,

p
NT

�b� � �0� d�! N
�
0;A�1BA�1

�
, (11)

where b� is de�ned by (5), A, B and C are de�ned in Assumptions A2, A3 and A4, respectively.

In view of this, Pesaran (2006) proposes to estimate the variance of b� under random coe¢ -
cient assumption by e�b� = 1

N
�A�1NT

�CNT �A
�1
NT , (12)

where

�CNT =
1

N

NX
i=1

�AiT

�b�i � b���b�i � b��0 �AiT , (13)

b�i = (X0iXi)�1X0iyi and b� = N�1PN
i=1
b�i. The idea is to approximate the unobserved slope

heterogeneity �i by its sample counterparts, b�i � b�. The empirical evidence has proven that
this estimator works well in �nite samples.3 However, there are some issues with this variance
estimator for our robust approach. First, because it is di¤erent from the HAC variance estimator
assuming slope homogeneity, at the choice the practitioner would like to know if there is slope
heterogeneity or not. Second, some estimation methods, such as Bai�s (2009) estimator, do
not permit slope heterogeneity models and computation of statistics involving individual slope
estimates might not be justi�ed4. In practice we do not necessarily have a priori information on
whether slopes are homogeneous or heterogeneous, which may make the choice of the variance
estimator subject to uncertainty.5

3See experimental results in Pesaran (2006), for example.
4 In Section 3, we demonstrate that Bai�s estimator continues to be consistent even for heterogenous model if

the regressor has a factor structure.
5Pesaran and Yamagata (2008) and Su and Chen (2013), for example, propose slope homogeneity tests, which

can guide such a choice.
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We propose a simple robust approach against such a choice. Based on the above discussion,
under slope heterogeneity we have

1

NT 2

NX
i=1

E
�
X0iuiu

0
iXi
�
=

1

NT 2

NX
i=1

E
�
X0iXi
��;iX

0
iXi
�
+

1

NT 2

NX
i=1

E
�
X0i�""iXi

�
=

1

NT 2

NX
i=1

E
�
X0iXi
��;iX

0
iXi
�
+O

�
T�1

�
. (14)

This suggests a new alternative estimator of C:

bCNT = 1

N

NX
i=1

bCiT , bCiT = X0ibuibu0iXi
T 2

; (15)

where bui = yi �Xib�.
Under homogeneous slopes (�i = 0 for all i),

1
NT

PN
i=1 E (X0iuiu0iXi) =

1
NT

PN
i=1 E (X0i�""iXi)

as ui = "i, hence, following Hansen (2007), we propose the following estimator of B:

bBNT = 1

N

NX
i=1

bBiT , bBiT = X0ibuibu0iXi
T

. (16)

We summarise the asymptotic properties of the estimators bCNT and bBNT in the following
proposition:6

Proposition 1 Consider the model (3) and the pooled estimator b�, which is de�ned by (5).
Under Assumptions A1-A4, under slope heterogeneity bCNT p�! C, whilst under slope homo-
geneity (�i = 0 for all i) bBNT p�! B, as (N;T ) ! 1, where bui = yi �Xib�, bCNT and bBNT
are de�ned by (15) and (16), and C and B are de�ned in Assumptions A3 and A4.

This proposition implies that the use of a widely employed HAC variance estimator for short
panel data models,

b�b� =
 

NX
i=1

X0iXi

!�1 " NX
i=1

X0ibuibu0iXi
# 

NX
i=1

X0iXi

!�1
; (17)

is asymptotically justi�ed for large panel data models under both slope homogeneity and slope
heterogeneity.

When there is strong evidence that coe¢ cients are heterogeneous, an alternative pooled
estimator, such as a mean group estimator, may be preferred. In this paper we are more in line
with the robust approach, which is widely employed in the literature - avoiding uncertainty in
specifying and estimating �nuisance�parameters for potential e¢ ciency gain. As will be discussed
in the next section, this approach turns out to be useful for some popular estimation methods,
in particular, estimation of linear panel data models with unobserved interactive e¤ects.

The following theorem formally demonstrate the validity of the Wald test based on the
proposed robust variance estimator of b�.

6The proof of the consistency of bBNT is given by Hansen (2007).
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Theorem 3 Consider testing q linearly independent restrictions of �0, H0 :R�0 = r against
H1 : R�0 6= r, where R is a q � k �xed matrix of full row rank. Consider the model (3) and
the Wald test statistic

WNT =
�
Rb� � r�0 nRb�b�R0

o�1 �
Rb� � r� , (18)

where b� and b�b� are de�ned by (5) and (17), respectively. Suppose that Assumptions A1-A4
hold. Then, under the H0, for both heterogenous slopes and homogeneous slopes (�i = 0 for all

i), WNT
d�! �2q ; as (N;T )!1.

Note that in view of (10), (11), (15) and (16), the rate of convergences of homogeneous and
heterogeneous models are di¤erent. Such a di¤erence is automatically adjusted in (18).

In this section, we have considered a simple random coe¢ cient panel regression model and
showed that valid inference is possible by estimating homogenous panel models even if the
true model is homogenous panel model. In the next section, we extend the model to include
unobserved factors in the residual, and demonstrate that a robust inference such as Theorem 3
is possible even for such a general model.

3 Panel data models with interactive e¤ects

We consider the following heterogeneous coe¢ cients panel data models

yit = x0it�i + �
00
i f

0
t + "it ; (i = 1; 2; : : : ; N ; t = 1; 2; : : : ; T ); (19)

xit = �00i g
0
t + vit; (20)

where xit is a k�1 vector of regressors, f0t and g0t denote r1�1 and r2�1 vectors of latent factors,
respectively. Correspondingly, their factor loadings are �0i and �

0
i = (

0
1i; :::;

0
ki). Without loss

of generality, we assume that ft and gt are di¤erent factors. "it and vit are the idiosyncratic
disturbance terms.

If we stack the equation (19) and (20) over t, we have

yi = Xi�i + F
0�0i + "i ; (21)

Xi = G0�0i +Vi (22)

where yi = (yi1; : : : ; yiT )
0, Xi = (xi1; � � � ;xiT )0, F0 = (f01 ; � � � ; f0T )0, G0 = (g01; � � � ; g0T )0, "i =

("i1; � � � ; "iT )0 and Vi = (vi1; : : : ;viT )
0. If �i has the form �i = �0 + �i as in the previous

section, we can rewrite the heterogeneous model in terms of homogenous model as follows:

yi = Xi�
0 +H0�0i + ei; (23)

ei = Vi�i + "i

where H0 = (G0;F0) and �0i = (�0i�
00
i ;�

00
i )
0 with r = r1 + r2. For later use, de�ne ui =

H0�0i + ei. Note that this form incorporates the homogeneous panel data models (�i = 0),
where H0 = F0, �0i = �

0
i and ei = "i. Thus, by setting the de�nitions of H

0, �0i and ei, (23)
gives a uni�ed representations for the heterogeneous slope model and homogeneous slope model.

When H0 is unobserved, it should be replaced with a suitable estimator, and in this case
a further careful analysis is required. In particular, using estimated variables will result in
some asymptotic biases in the pooled estimator, as discussed in Pesaran (2006), Bai (2009)
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and Westerlund and Urbain (2015), among others. Here we consider Bai�s (2009) estimator.7

Our theoretical contributions to this strand of literature are: (i) establishing the consistency
of a bias-corrected estimator both under homogeneous and heterogeneous slopes; (ii) showing
the limit distribution of the Wald test statistic based on the HAC variance estimator both
under homogeneous and heterogeneous slopes, and; (iii) proposing a new test for correlation
and dependence of the random coe¢ cients with the regressors (in the next section).

Remark 4 One of the important results in this paper is that if the regressors have a factor
structure as in (20), Bai�s (2009) estimator continues to be consistent and a valid inference can
be conducted even for heterogenous slope models with our approach. Therefore, by assuming a
factor structure in the regressor, Bai�s (2009) estimator becomes robust to slope heterogeneity.
This robustness property is the added value by assuming a factor structure in the regressor.8

We now introduce the Bai�s estimator. The least squares objective function is de�ned as

SSR(�;H; f�igNi=1) =
1

NT

NX
i=1

(yi �Xi� �H�i)0(yi �Xi� �H�i)

subject to the constraints H0H=T = Ir and
PN
i=1�i�

0
i being diagonal.

The least squares estimator for (�;H) denoted by
�b�; bH� is the solution of the following

nonlinear equations:

b� =  NX
i=1

X0iM bHXi
!�1 NX

i=1

X0iM bHyi
!

"
1

NT

NX
i=1

�
yi �Xib���yi �Xib��0# bH = bHVNT

(24)

where VNT is a diagonal matrix that contains the r largest eigenvalues of the above matrix in
the brackets in decreasing order. Given

�b�; bH� ; we can estimate �i by
b�i = 1

T
bH0(yi �Xib�):

We impose the following assumptions. They are basically similar to Bai (2009).

Assumption B1 (idiosyncratic error in y): (i) "it distributes independently across i; (ii)
E"it = 0 and Ej"itj8+� � �; (iii) T�1

PT
s=1

PT
t=1 Ej"is"itj1+� � �; (iv) EjN�1=2PN

i=1 ["is"it � E("is"it)] j4 �
� for each (s; t); (v) N�1T�2

PN
i=1

PT
t=1

PT
s=1

PT
r=1

PT
w=1 jcov ("is"it; "ir"iw)j � �; (vi) 
";i =

E("i"0i) is positive de�nite and its largest eigenvalue is bounded, uniformly every i and T .

Assumption B2 (idiosyncratic error in x): Let v`it be the `-th element of vit and v`;i =
(v`i1; � � � ; v`iT )0. Then we assume that (i) vit is independently distributed across i and group-
wise independent from f"jsg for 1 � j � N and 1 � s � T ; (ii) Evit = 0 and Ekvitk8+� � �; (iii)

7 Indeed, the results of this paper hold for the PC estimator due to Westerlund and Urbain (2015). The proof
is available upon request from the authors.

8The model for the regressor speci�ed in (20) can be seen as slightly restrictive comparing to that in Bai
(2009), in which no factor structure is imposed. Nonetheless, the process (20) has been widely accepted in the
literature including Pesaran (2006), Bai and Li (2014), Westerlund and Urbain (2015), among many others.
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T�1
PT
s=1

PT
t=1 E kvisv0itk

1+� � �; (iv) EjN�1=2PN
i=1 [v`isv`it � E(v`isv`it)] j4 � � for every `, s

and t; In addition, we assume that (v)N�1T�2
PN
i=1

PT
t=1

PT
s=1

PT
r=1

PT
w=1 jcov(v`isv`it; v`irv`iw)j �

�; (vi) the largest eigenvalue of E(v`;iv0`;i) is bounded uniformly for every `, i and T .

Assumption B3 (random coe¢ cient): �i is independent across i, and is group-wise inde-
pendent of "it, vit, �i and �i; E�i = 0 and Ek�ik4 � �; E(�i�0i) = �
�;i is a �xed positive
de�nite matrix uniformly over i.

Assumption B4 (factor components): (i) Ekf0t k4 � � and T�1
PT
t=1 f

0
t f
00
t

p! �f as
T ! 1 which is a �xed positive de�nite matrix, f0t is group-wise independent from vit and
"it; (ii) Ekg0t k4 � � and T�1

PT
t=1 g

0
tg
00
t

p! �g as T ! 1 which is a �xed positive def-
inite matrix, g0t is group-wise independent from vit and "it; (iii) Let lt = (f00t ; g

00
t )
0. We

assume T�1
PT
t=1 ltl

0
t

p! �l, which is positive de�nite. (iv) Ek�0i k4 � �, Ek�0i k4 � �,
N�1PN

i=1 �
0
i�

00
i

p! ��, N�1PN
i=1 �

0
i�i�

0
i�
00
i

p! �� and N�1PN
i=1 �

0
i�

00
i

p! ��, where ��,
�� and �� are positive de�nite matrices. �0i and �

0
i are group-wise independent from vit and

"it.

Assumption B5 (identi�cation and Variance Matrices): De�ne Zi = Xi�N�1PN
`=1�

00
i �

�1
�0
�0`X`

with ��0 = N
�1PN

i=1�
0
i�

00
i . Then, we assume that the four matrices

A0 = lim
N;T!1

1

NT

NX
i=1

E(V0
iVi); A1 = plim

N;T!1

1

NT

NX
i=1

Z0iMH0Zi;

C0 = lim
N;T!1

1

NT 2

NX
i=1

E(V0
iVi�i�

0
iV

0
iVi); B1 = plim

N;T!1

1

NT

NX
i=1

Z0iMH0E("i"0i)MH0Zi

are �xed and positive de�nite.

Idiosyncratic errors "it and vit are independent groups of each other, independent over i,
but allowed to be serially correlated as structured by Assumptions B1 and B2. Assumption B3
implies there are r factors, and the factor loadings �0i and �

0
i have mean zero without loss of

generality and are allowed to be correlated with each other. Assumption B4 implies that the
random coe¢ cients can be heteroskedastic but should be independent of all other cross-section
varying variables.

Under B1-B5, the consistency of b� and bH for homogenous slope model can be proved in the
same way as Bai (2009). The following proposition is the consistency results for heterogeneous
slope model.

Proposition 5 When the slope in the model is heterogeneous and given Assumptions B1-B5,
as N;T !1, we have b� � �0 p�! 0

and let R = (�0�=N)(T�1H00 bH)V�1
NT where � =(�1; :::;�N )

0. Then R and R�1 both are r�r
invertible matrices and Op(1), and

1

T
k bH�H0Rk2 = Op(k�0 � b�k2) +Op(��2NT ):

Given consistency, we can derive the rate of convergence as follows:

8



Theorem 6 Let Assumptions B1-B5 hold. (a)When the model�s slopes are heterogeneous, we
have b� � �0 = Op(N�1=2) +Op(�

�2
NT )

and b� � �0 =  1

NT

NX
i=1

V0
iVi

!�1
1

NT

NX
i=1

V0
iVi�i +Op(�

�2
NT ):

(b) When the model�s slope is homogeneous, we have

b� � �0 =  1

NT

NX
i=1

Z0iMH0Zi

!�1
1

NT

NX
i=1

Z0iMH0"i +
1

N
�NT +

1

T
�NT +Op(�

�3
NT )

where the bias terms are given by

�NT =�
 
1

NT

NX
i=1

ZiMH0Zi

!�1
1

NT

NX
i=1

TX
t=1

Z0iH
0(H00H0)�1��1

�0
�0iE(e2it);

�NT =�
 
1

NT

NX
i=1

ZiMH0Zi

!�1
1

N2

NX
i=1

NX
j=1

XiMH0E(eje0j)H0(H00H0)�1��1
�0
�0i :

To derive the asymptotic distribution of b�, following Bai (2009), we impose the following
assumption:
Assumption B6 (Central Limit Theorem):

1p
NT

NX
i=1

Z0iMH0"i
d�! N (0;B1) :

Corollary 7 Assume Assumptions B1-B6 hold and T=N ! � 2 (0;�]. (a)When the model�s
slope is heterogeneous, we have

p
N(b� � �0) d�! N(0;A�10 C0A

�1
0 )

(b)When the model is homogeneous, we have

p
NT (b� � �0) d�! N(�1=2�0 + �

�1=2�0;A
�1
1 B1A

�1
1 )

where �0 and �0 are the probability limit of �NT and �NT , respectively.

From this result, it is found that the asymptotic distribution of b� for homogenous slope
model is biased. Therefore, to make a valid inference, we need to remove the bias of the
asymptotic distribution. For this, we use the alternative expression given in the following
corollary.

Corollary 8 When the model�s slopes are heterogeneous and given Assumptions B1-B5 hold.
We have b� � �0 =  1

NT

NX
i=1

Z0iMH0Zi

!�1
1

NT

NX
i=1

Z0iMH0ei +Op(�
�2
NT )
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when the model�s slope is homogeneous, we have

b� � �0 =  1

NT

NX
i=1

Z0iMH0Zi

!�1
1

NT

NX
i=1

Z0iMH0ei +
1

N
�NT +

1

T
�NT +Op(�

�3
NT ):

To derive asymptotically unbiased estimator of �0 in the case of homogeneous slope, we con-

sider to estimate the bias terms. Let bZi = Xi�N�1PN
`=1

b�0i b��1
�
b�`X` with b�� = N

�1PN
i=1
b�ib�0i,

and b
 = diag(N�1PN
j=1 be2j1; � � � ; N�1PN

j=1 be2jT ). De�ne
e� = b� � 1

N
b�NT � 1

T
b�NT (25)

where

b�NT =�
 
1

NT

NX
i=1

bZiM bHbZ0i
!�1

1

NT 2

NX
i=1

TX
t=1

bZ0i bH b��1
�
b�ibe2it

b�NT =�
 
1

NT

NX
i=1

bZiM bHbZ0i
!�1

1

NT

NX
i=1

X0iM bH b
 bH b��1
�
b�i

or e�NT= �
 
1

NT

NX
i=1

bZiM bHbZ0i
!
1

N

NX
i=1

\X0iMH
H

T
b��1
�
b�i:

with

\X0iMH
H

T
=

1

TN

NX
j=1

"
TX
t=1

bu2jtbxitbh0t + SX
s=1

TX
t=s+1

�
1� s

S + 1

� bujtbuj;t�s �bxitbh0t�s + bxi;t�sbh0t�
#
.

Note that b�NT is a consistent estimator for �NT for serially uncorrelated case while e�NT is
a consistent estimator for serially correlated case. In the Monte Carlo simulation in the next
section, we use e�NT with S = bT 1=4c.

The stochastic representation of b� is given by the following theorem.
Theorem 9 Given Assumptions B1-B5 hold. In addition, E("2it) = �2it and E("it"js) = 0 for
i 6= j or t 6= s. When the model�s slopes are heterogeneous, we havee� � �0 = Op(N

�1=2) +Op(�
�2
NT )

=

 
1

NT

NX
i=1

Z0iMH0Zi

!�1
1

NT

NX
i=1

X0iMH0Vi�i +Op(�
�2
NT )

=

 
1

NT

NX
i=1

Z0iMH0Zi

!�1
1

NT

NX
i=1

Z0iMH0ui +Op(�
�2
NT )

When the model�s slope is homogeneous, we have

e� � �0 =

 
1

NT

NX
i=1

Z0iMH0Zi

!�1
1

NT

NX
i=1

Z0iMH0"i +Op(�
�3
NT )

=

 
1

NT

NX
i=1

Z0iMH0Zi

!�1
1

NT

NX
i=1

Z0iMH0ui +Op(�
�3
NT )

as (N;T )!1 and T=N ! � 2 (0;�].
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The asymptotic distribution of the bias-corrected estimator e� is given as follows:
Corollary 10 Assume Assumptions B1-B6 hold and T=N ! � 2 (0;�]. (a)When the model�s
slope is heterogeneous, we have

p
N(e� � �0) d�! N(0;A�10 C0A

�1
0 ):

(b)When the model is homogeneous, we have

p
NT (e� � �0) d�! N(0;A�11 B1A

�1
1 ):

This result state that the rate of convergence and asymptotic variance of the e� are di¤erent
for homogeneous and heterogeneous models. However, as in the previous section, we can conduct
a valid inference without paying attention to that di¤erence. To introduce a robust Wald test,
de�ne

b�e� =
 

NX
i=1

bZ0iM bHbZi
!�1 NX

i=1

bZ0iM bHbuibu0iM bHbZi
! 

NX
i=1

bZ0iM bHbZi
!�1

(26)

where bui = yi �Xie� and bZi = Xi �N�1PN
`=1

b�0i b��1
�
b�`X` with b�� = N

�1PN
i=1
b�ib�0i.

Theorem 11 Consider testing q linearly independent restrictions of �, H0 : R� = r against
H1 : R� 6= r, where R is a q � k �xed matrix of full row rank. Consider the model (23) and
the Wald statistic fWNT = (Re� � r)0 �Rb�e�R0

��1
(Re� � r) (27)

where e� and b��� are de�ned by (25) and (26), respectively. Suppose that Assumptions B1-B6
hold. Then, under the H0, for both heterogeneous slopes and homogeneous slopes (�i = 0 for all

i), fWNT
d! �2q, as (N;T )!1 and T=N ! � 2 (0;�].

Remark 12 Our approach is also robust against mixtures of homogeneous and heterogeneous
slopes.9 To see this, consider the mode without common components and the case in which
the k slopes are partitioned in such a way that k = k1 + k2, without loss of generality, where
�i =

�
�01i;�

00
2

�0
, �1i = �01 + �1i, E (�1i) = 0 and V ar (�1i) = 
1i, with �0 =

�
�001 ;�

00
2

�0
.The

expansion of the pooled estimator b� gives
p
N
�b� � �� = A�1NT

p
N

NT

" PN
i=1X

0
1iuiPN

i=1X
0
2iui

#

= A�1NT
1p
NT

NX
i=1

X0iui = A
�1
NT

1p
N

NX
i=1

�
X0iX1i
T

�
�1i +Op

�
1=
p
T
�

d! N
�
0;A�1CA�1

�
where

C = plim
N;T!1

1

N

NX
i=1

�
X0iX1i
T

�
�1i�

0
1i

�
X01iXi
T

�
.

Observe that under assumptions we have made, C is positive de�nite. Also note that the con-
vergence rate of (b�1 and) b�2 is pN , as the variation of b� is dominated by �1i.

9We do not consider cross-sectional and/or time-series structural breaks in �i which is beyond the scope of
this paper.
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Now consider a special case in which X01iX2i = 0. De�ne a scaling diagonal matrix of order k
as

D =

� p
NIk1 0

0
p
NT Ik2

�
; (28)

so that

D
�b� � �0��b� � �0�0D =

�
D�A

�1
NTD

�1
� 

D
NX
i=1

X0iuiu
0
iXi

T 2N2
D

!�
D�1 �A�1NTD

�
. (29)

It is easily seen that D�A�1NTD
�1 = �A�1NT since �A

�1
NT is block diagonal. Recalling that ui =

Xi�i + "i, �i = (�
0
1i;0

0)0 and E (�i"
0
i) = 0, the probability limit of the middle term is

plim
N;T!1

NX
i=1

D
X0iuiu

0
iXi

T 2N2
D =

�
C11 0
0 B22

�
; (30)

where

C11 = plim
N;T!1

1

N

NX
i=1

�
X01iX1i
T

�1i�
0
1i

X01iX1i
T

�
; (31)

B22 = plim
N;T!1

1

N

NX
i=1

X02i"i"
0
iX2i

T
. (32)

Therefore, the asymptotic normality of b�, the consistency of the HAC estimator and the asymp-
totic validity of Wald test hold with mixtures of homogeneous and heterogeneous slopes.

4 Wald and LM tests for Correlation of Random Coe¢ cients
with Covariates

As discussed earlier, the proposed robust approach works for random coe¢ cients. If it is �xed
cross-sectionally varying coe¢ cients or correlated random coe¢ cients with Xi, the approach
may not work. To see this, consider the model (4) but without factor components. We haveb� � �0=�PN

i=1X
0
iXi

��1PN
i=1X

0
i [Xi�i + "i]. If E (�ijXi) 6= 0, E [X0iXiE (�ijXi)] is not nec-

essarily zero, and in general it renders b� biased.
In view of this, we propose novel tests for correlation or dependence of random coe¢ cients

with covariates, substantially extending the test proposed by Wooledridge (2010; Ch11.7.4).
The main distinctions of our tests from Wooldridge�s are: (i) we consider the test for large
panels whilst he considers for short panels; (ii) our tests are robust against (uncorrelated)
random coe¢ cients;10 (iii) we propose a Lagrange Multiplier test along with a Wald test; (iv)
ours permit E (�ijXi) to be a non-linear function of Xi.

More generally, suppose that the random part of the coe¢ cients is modeled as

�i = h (Xi)� �h + �i (33)

with E [h (Xi)] = �h and E (�ijXi) = 0, where various forms of function of Xi can be enter-
tained. For the testing purpose, we consider h (Xi) = �i� with

�i =
�
�x
(1)
i ; �x

(2)
i ; :::; �x

(g)
i

�
; (34)

10Wooldridge (2010;p.386) points out that the drawback of his test is that it cannot detect heterogeneity in �i
that is uncorrelated with �xi. In our robusti�ed test, this becomes the desirable property.
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where �x(g)i =
�
�x
(g)
i1 ; �x

(g)
i2 ; :::; �x

(g)
ik

�0
, �x(g)ih = T�1

PT
t=1 x

g
ith.

11 Note that xith is the (t; h) element

of Xi.12 Consider an augmented regression

yi =Wi� + �i; (35)

whereWi = [Xi;Li] with
Li = Xi

�
�i � ��

�
; (36)

�� = N�1PN
i=1�i, � =

�
�0; �0

�0, and the associated unrestricted estimator b� =�bb�0; b��0 =�PN
i=1W

0
iWi

��1PN
i=1W

0
iyi. Under the null hypothesis of H0 : � = 0 and Assumptions A1-

A4, for homogeneous or heterogeneous slopes, Theorem 3 establishes that

W
(g)
CRC =

b�0 b��1�� b� d! �2g (37)

as (N;T )!1, where b��� is de�ned as the bottom right partition of b�b� =
 b��� b���b��� b���

!
=�PN

i=1W
0
iWi

��1 �PN
i=1W

0
ib�ib�0iWi

��PN
i=1W

0
iWi

��1
, b�i = yi �Wi

b�.
For the model with unobserved factors, the test statistic is computed based on yi andcWi = [bZi; bLi] with bLi = bZi �b�i � b�� and b�i = �bx(1)i ; bx(2)i ; :::; bx(g)i �, bx(g)i =

�bx(g)i1 ; bx(g)i2 ; :::; bx(g)ik �0,bx(g)ih = T�1
PT
t=1 bxgith; bXi = M bHXi = �bxgith� and the bias-corrected Bai�s estimator e�Bai =�ee�0Bai; e�Bai�0, which is discussed in Section 3.

We also consider the Lagrange Multiplier (LM) or Score test of the correlated random
coe¢ cient. One of the advantages of employing the LM test is that, unlike the Wald test,
computation of the LM test only requires the estimation results of the null model. The LM test
statistic for the model without factors is de�ned as

LM
(g)
CRC =

 
NX
i=1

L0ibui
!0 NX

i=1

K0
ibuibu0iKi

!�1 NX
i=1

L0ibui
!

(38)

where bui = yi �Xib� with b� =�PN
i=1X

0
iXi

��1PN
i=1X

0
iyi and

K0
i = L

0
i �
 

NX
i=1

L0iXi

! 
NX
i=1

X0iXi

!�1
X0i. (39)

For the Bai�s estimator, the LM test statistic is given by

LM
(g)
CRCBai

=

 
NX
i=1

bL0ieui
!0 NX

i=1

bK0
ibuibu0i bKi

!�1 NX
i=1

bL0ieui
!

(40)

where bui = yi �Xib�Bai , eui = yi �Xie�Bai with e�Bai being the bias corrected estimator, and
bK0
i=
bL0i �

 
NX
i=1

bL0ibZi
! 

NX
i=1

bZ0ibZi
!�1 bZ0i. (41)

11Cross product terms, such as T�1
PT

t=1 x
(g)
ithx

(f)
itj for h 6= j, could be included in �i.

12For the model with �xed e¤ects, the test variable �i should not be based on within-transformed Xi, otherwise
�x
(1)
i = 0 for all i.
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By the standard discussion of asymptotic equivalence of the LM and Wald tests, it is readily

established that under the null hypothesis LMCRC
d! �2g as (N;T )!1, and LMCRCBai

d! �2g
as (N;T ) ! 1 such that N=T ! c 2 (0;�]. It may be su¢ cient to consider g = 2 to
approximate the function g (Xi) for our testing purpose.

When the test is rejected in favour of alternatives, it is preferable to employ estimators
which are consistent when variation of �i is dependent on covariates. For the estimation of the
models with observed factors, the mean group estimator proposed by Chamberlain (1982) and
Pesaran and Smith (1995) would be possible choices.

5 Monte Carlo Experiments

In this section we investigate the �nite sample performance of our robust approach against slope
heterogeneity, error serial correlation and heteroskedasticity. We consider the performance of
the following estimators: (two-way) �xed e¤ects estimator b�FE , which is the pooled ordinary
least square (OLS) estimator of within-transformed and cross-sectionally demeaned variables;
Bai�s (2009) iterative PC estimator, both bias-non-corrected b�Bai de�ned by (24) and the bias-
corrected estimator e�Bai de�ned by (25). For simplicity, in all the experiments, we assume that
the number of factors r is known.13

In particular, we examine bias and root mean square errors (RMSE) of the estimators, and
empirical size and power of the (Wald) test for linear restrictions of slope coe¢ cients, as well
as the performance of the LM test for correlation and dependence of slope coe¢ cients with
covariates.14

5.1 Design

Consider the following data generating process:

yit =
kX
h=1

xith�ih +
rX
`=1

ft`�i` + �";it"it; i = 1; 2; :::; N ; t = 1; 2; :::; T (42)

where �i` � iidN(0; 1), ft` = �fft�1;` +
q
1� �2f�t`, �t` � iidN(0; 1) with f0;` � iidN (0; 1) for

` = 1; ::; r; "it = �""it�1 +
p
1� �2"�it; �it � iidN(0; 1) with "i0 � iidN (0; 1), and

�";it = (�";i�";t)
1=2 , �";i � iidU (0:5; 1:5) and �";t = 0:5 + t=T . (43)

The regressors xith, h = 1; 2; ::; k, are generated as

xith =
rX
`=1

ft`ih` + %�v,itvith; (44)

where vith = �vvit�1;h +
p
1� �2v$it;h. We consider two types of distribution for $it;h: (i)

$it;h =
�
$�it;h � c

�
=
p
2c, $�it;h � iid�2c and vi0;h =

�
v�i0;h � c

�
=
p
2c, v�i0;h � iid�2c with c = 6,

and (ii) $it;h � iidN(0; 1) with vi0;h � iidN(0; 1). The factor loadings in xith are generated as

ih` = 0:7�i` +
�
1� 0:72

�1=2
'ih`; (45)

13The Pesaran�s (2006) CCE estimator is not considered in our experiments, since, to our knowledge, feasible
analytical bias correction for the pooled estimator under slope homogeneity is not available.
14The �nite sample performance of the Wald version of the correlated random e¤ects test is much worse than

the LM test version. Therefore, its summary results are not reported.
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'ih` � iidN(0; 1) for h = 1; ::; k and ` = 1; ::; r; so that they are correlated with factor loadings
in yit.

�v,it = (�v;i�v;t)
1=2 , �v;i � iidU (0:5; 1:5) and �v;t = 0:5 + t=T , (46)

and �2 = f2; 3g. Finally we have

�ih = �h + ��

�q
1� �2x��ih + �x�wih

�
; (47)

�ih � iidN (0; 1) for h = 1; ::; k, and

wih =
1
p
q

qX
p=1

zih;p � �zh;p
szh;p

, (48)

where �zh;p = N�1PN
i=1 zih;p, s

2
zh;p = (N � 1)�1

PN
i=1 (zih;p � �zh;p)

2. We consider zih;p =

T�1
PT
t=1 (x

�
ith)

p.
We set k = 2 (two regressors) for all the experiments. We consider two sets of design:

the model without factors (r = 0) to examine the �xed e¤ects estimator where
Pr
`=1 ft`�i` is

removed from (42), and the model with two factors (r = 2) to examine the Bai�s estimator. As
recommended in Remark 1, before the estimation the data is all within transformed and cross-
sectionally demeaned, to make the results invariant to the inclusion of (additive) individual
e¤ects and time e¤ects. For parameter values, we set (�1; �2) = (1; 3).

To look into the bias and RMSE of the estimators, and the size and power of the test of
linear restrictions for the estimators, we consider the following sets of designs:

(A) homogeneous slopes (�� = 0 in (47));
(B) heterogeneous slopes (�� = 0:2 in (47)).
In order to see the e¤ects of dependence of �i with the regressors upon the bias of the

estimators and the associated tests, we set �x� = 0:5 in (47). To investigate the e¤ects of the
symmetry of the distribution upon the performance of the estimators and the tests, we consider
two types of distribution of disturbances in xith :

(C)
�
$�it;h � 6

�
=
p
12, $�it;h � iid�26, with �x� = 0:5

(D) $it;h � iidN(0; 1), with �x� = 0:5.
For designs (C) and (D), we consider two types of dependence of �ih upon regressors: �ih is

a linear function of the following cross-sectionally standardised values: (i) T�1
PT
t=1 xith (i.e.,

q = 1 and p = 1 in (48)) and (ii) T�1
PT
t=1 x

2
ith (i.e., q = 1 and p = 2 in (48)).

Finally, the size and the power of the LM tests with degrees g = 1; 2, are examined as the
set (E). The empirical size is obtained using designs (A) and (B), and the empirical power is
computed by designs (C) and (D).

We consider all the combinations of N = 50; 100; 200 and T = 25; 50; 100; 200. Throughout
the experiments, we set �f = 0:5, �" = 0:5 and �v = 0:5. To save space, we report the results
with %2 = 2 only.15 All the tests are conducted at the �ve per cent signi�cance level. All the
experimental results are based on 2,000 replications.

5.2 Results

Table 1 summarises the performance of the Fixed E¤ect estimator for the model of (�1; �2) =
(1; 3), with time-series and cross-section heteroskedastic, serially correlated errors in the absence
of interactive e¤ects. Panel A reports the bias, the root mean square error (RMSE) of estimates

15The results with %2 = 3 are qualitatively very similar to those with %2 = 2, which are available upon request
from the authors.
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of �1, and the size of the Wald test for H0 : �1 = 1 and the power for H0 : �1 = 0:95, under
homogeneous slopes, and Panel B under heterogeneous random slopes. The results for �2 are
qualitatively similar and not reported. As predicted by the theory, the Wald test based on
the HAC variance estimator has correct size both under slope homogeneity and heterogeneity.
Panels C&D report the bias of the estimates and the size of the Wald test for H0 : �1 = 1,
to see the e¤ects of dependence between random coe¢ cients and regressors. In Panel C the
regressors are generated by asymmetric disturbances and in Panel D, they are drawn from
symmetric distribution. In Panel C, when �i depends on

PT
t=1 xith, the �xed e¤ects estimator

exhibits systematic bias, but in Panel D, it does not. This is because when the third moment
of xith is zero, by construction E [X0iXi�i] = 0 which makes the estimator unbiased. However,
as can be seen in Panel D, the size of the test declines systematically as sample size rises, which
suggests that the HAC variance estimates will not be consistent. When �i is a linear function
of
PT
t=1 x

2
ith, regardless of the shape of the distribution of regressors, it exhibits serious bias

in estimates (see Panels C&D). Therefore, it is of great importance to statistically check the
evidence of dependence of �i with regressors. The performance of the proposed LM test for
correlation and dependence of random coe¢ cients with regressors is summarised in Panel E. As
can be seen, it has correct size with slope homogeneity and random coe¢ cients, and the LM test
with g = 2 has high power against both types of dependence of �i,

PT
t=1 xith and

PT
t=1 x

2
ith,

whilst the LM test with g = 1 lacks power when �i depends on
PT
t=1 x

2
ith only. Therefore, it is

recommended to employ g = 2 in practice.
Let us turn our attention to the estimation of the models with unobservable interactive

e¤ects. The relevant results are reported in Table 2. Table2 contains Panels A-E, which corre-
spond to the panels in Table 1. To illustrate the e¤ectiveness of the bias-correction, we report
the results both for bias-non-corrected and bias-corrected estimators.

Consider Panel A of Table 1, which deals with the slope homogeneous case. First look
at the bias of the estimators. Non-bias-corrected estimator (b�Bai) has very little bias and the
magnitude of correction is very small. As reported in Bai (2009), the bias-corrected estimator
(e�Bai) has very small bias and it becomes smaller as N and/or T rise. In terms of RMSE, b�Bai
and e�Bai are very similar for all the combinations of (N;T ). The size of the Wald test based
on b�Bai and e�Bai is close to nominal level for the sample sizes which we consider.

Now let us turn our attention to the random coe¢ cient model, the results of which are
summarised in Panel B, Table 2. The magnitude of the bias of the estimators under slope
heterogeneity is larger than under slope homogeneity, especially with small N and T , but it
gets smaller as N and T increase. As in the homogeneous slope case, the bias of both b�Bai ande�Bai is relatively small. The properties of the results reported in Panels C, D and E are very
similar to those commented earlier on the corresponding panels in Table 1.

6 Concluding Remarks

In this paper, we have proposed a robust approach against heteroskedasticity, error serial corre-
lation and slope heterogeneity for large linear panel data models. First, we have established the
asymptotic validity of the Wald test based on the panel HAC variance estimator of the pooled
estimator under random coe¢ cient models. Then, we have shown that a similar result holds
with the bias-corrected Bai�s estimator for models with unobserved interactive e¤ects. Our new
theoretical result has justi�ed the use of the same slope estimator and the variance estimator,
both for slope homogeneous and heterogeneous models. This robust approach can signi�cantly
reduce the model selection uncertainty for applied researchers.

In addition, we have proposed a novel test for correlation and dependence of the random
coe¢ cient with covariates. The test is of great importance, since the widely used estimators
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and/or its variance estimators can become inconsistent when the variation of coe¢ cients depends
on covariates, in general.

We have examined the �nite sample performance of the estimators, tests of linear restric-
tions, and the LM tests for correlated random coe¢ cients. The evidence illustrates the usefulness
of our approach. In particular, for the estimation of the models with unobserved interactive
e¤ects, the size of the proposed robust Wald test using the bias-corrected Bai�s (2009) estima-
tor is very close to the nominal level, under both slope homogeneity and slope heterogeneity,
while maintaining satisfactory power. Also, the LM tests for correlated random coe¢ cients
have correct size under both slope homogeneity and slope heterogeneity due to pure random
coe¢ cients, while exhibiting high power when the random coe¢ cients depend on covariates. In
view of these �nite sample performance, the proposed robust approach based on Bai�s (2009)
estimator is useful in practice.

Recently estimation of panel models with a group structure has been gaining great interest
in the literature. Su et al. (2016) propose a method for identifying and estimating latent group
structures using so called C-Lasso. Consider:

yit = x
0
it�g + uit; uit = f

0
ti + "it,

g = 1; :::; G. For individual i 2 g, the slope is given by �g. It may be possible to assume
heterogeneous slope, mean of which has group structure: �i2g = �g + �i2g.

As emphasised in the paper, when the test of correlated random coe¢ cient rejects the null in
favour of alternatives, it is preferable to employ estimators which are consistent when variation
of slopes is dependent on covariates. The mean group estimator proposed by Chamberlain
(1982), Pesaran and Smith (1995) and Pesaran (2006) would be possible choices, however, to
our knowledge, no satisfactory inferential methods have been proposed in the literature. Thus,
developing such methods will be an important future research theme.
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Table 1: Summary results of Fixed E¤ects estimator for the model with f�1; �2g = f1; 3g,
heteroskedastic and serially correlated errors

Panel A: Homogeneous Slopes, �ih = �h for all i, h = 1; 2
for �1 Bias (�100) RMSE (�100) Size Power
T;N 50 100 200 50 100 200 50 100 200 50 100 200b�FE
25 -0.148 -0.115 -0.005 2.572 1.848 1.276 5.5 5.9 4.9 47.4 76.1 96.9
50 -0.077 -0.040 0.008 1.853 1.305 0.920 6.0 5.4 5.2 76.0 96.6 100.0
100 -0.061 -0.015 -0.001 1.372 0.954 0.674 5.9 5.7 5.4 95.5 100.0 100.0
200 -0.017 0.004 0.007 0.955 0.677 0.479 5.4 6.1 5.3 100.0 100.0 100.0
Panel B: Heterogeneous Slopes, �ih = �h + �ih with �ih � iidN (0; 0:04) for all i, h = 1; 2
for �1 Bias (�100) RMSE (�100) Size Power
T;N 50 100 200 50 100 200 50 100 200 50 100 200b�FE
25 -0.038 -0.064 0.045 4.122 2.966 2.146 5.6 5.5 5.4 23.0 39.3 66.6
50 -0.015 -0.010 0.057 3.679 2.592 1.869 6.6 5.4 5.1 30.2 50.5 78.6
100 -0.031 0.009 0.039 3.327 2.328 1.661 5.7 4.6 4.8 33.0 57.3 85.2
200 0.025 0.037 0.050 3.129 2.194 1.562 6.1 5.5 4.9 36.5 63.2 90.0

Notes for Panels A and B: Data is generated as y�it = x�it;1�i1 + x
�
it;2�i2 + �";it"it, i = 1; :::; N , t = 1; :::; T ,

"it = �""it�1 +
p
1� �2"�it; �it � iidN(0; 1) with "i0 � iidN(0; 1), �";it = (�";i�";t)

1=2, �";i � iidU (0:5; 1:5)

and �";t = 0:5 + t=T ; x�it;h = %�v,itvit;h, where vit;h = �vvit�1;h +
p
1� �2v$it;h, $it;h � iid

�
�26 � 6

�
=
p
12 with

vi0;h � iid
�
�26 � 6

�
=
p
12, �v,it = (�v ;i�v ;t)

1=2, �v ;i � iidU (0:5; 1:5) and �v ;t = 0:5 + t=T . We set �" = �v = 0:5
and %2 = 2. b�FE is the pooled regression of within-transformed and cross-sectionally demeaned variables. The
size is rejection frequency of the proposed Wald test (de�ned by (18)) for H0 : �1 = 1 and the power for
H0 : �1 = 0:95, based on the 5% level test. All results are based on 2000 replications.

18



Table 1 continued

Panel C: Correlated Heterogeneous Slopes, �x� = 0:5, x
�
ith generated using �

2
6

(i) �ih is function of
P

t x
�
ith (ii) �ih is function of

P
t (x

�
ith)

2

for �1 Bias (�100) Size Bias (�100) Size
T;N 50 100 200 50 100 200 50 100 200 50 100 200b�FE
25 0.068 0.019 0.147 5.2 5.0 4.4 1.145 1.158 1.273 6.0 6.9 8.5
50 0.107 0.088 0.164 5.7 4.6 3.3 1.208 1.247 1.315 7.8 6.8 9.4
100 0.075 0.099 0.153 5.5 3.6 3.8 1.236 1.317 1.350 7.7 7.6 9.9
200 0.151 0.145 0.188 5.2 4.3 3.2 1.398 1.450 1.473 7.4 8.9 12.7
Panel D: Correlated Heterogeneous Slopes, �x� = 0:5, x

�
ith generated using N (0; 1)

(i) �ih is function of
P

t x
�
ith (ii) �ih is function of

P
t (x

�
ith)

2

for �1 Bias (�100) Size Bias (�100) Size
T;N 50 100 200 50 100 200 50 100 200 50 100 200b�FE
25 0.046 0.022 0.031 6.6 5.2 4.7 1.213 1.185 1.205 7.6 7.4 7.6
50 -0.045 -0.008 -0.016 6.4 4.6 3.5 1.134 1.168 1.183 6.8 6.2 8.5
100 -0.033 -0.021 -0.015 5.7 4.7 2.9 1.192 1.194 1.222 6.1 7.6 8.7
200 -0.062 -0.049 -0.043 6.0 4.6 3.3 1.235 1.236 1.266 7.1 7.4 9.8

Notes for Panels C and D: The data generating process (DGP) is the same as that for Panel B, except �ih =
�h + ��

�p
1� �2x��ih + �x�wih

�
; �ih � iidN (0; 1) for h = 1; 2; wih =

zih;p��zh;p
szh;p

, where �zh;p = N�1PN
i=1 zih;p,

s2zh;p = (N � 1)�1
PN

i=1 (zih;p � �zh;p)
2, zih;p = T�1

PT
t=1

�
x�it;h

�p
, p = 1; 2: The DGP for Panel D is identical to

of Panel C, except that $it;h � iidN (0; 1).
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Table 2: Summary results of Bai�s estimators for the model with f�1; �2g = f1; 3g, interactive
e¤ects, heteroskedastic and serially correlated errors

Panel A: Homogeneous Slopes, �ih = �h for all i, h = 1; 2
for �1 Bias (�100) RMSE (�100) Size Power
T;N 50 100 200 50 100 200 50 100 200 50 100 200b�Bai
25 0.048 0.015 0.091 2.717 1.932 1.336 6.9 6.5 5.5 50.5 76.2 97.1
50 0.013 0.018 0.048 1.919 1.341 0.942 6.9 6.4 5.6 76.5 96.6 100.0
100 -0.021 0.018 0.021 1.413 0.972 0.681 7.4 6.4 5.6 95.1 99.9 100.0
200 0.007 0.024 0.021 0.989 0.688 0.485 7.3 6.2 5.5 100.0 100.0 100.0e�Bai
25 0.038 0.006 0.082 2.712 1.931 1.334 6.9 6.4 5.5 50.2 76.1 97.1
50 0.003 0.009 0.040 1.918 1.341 0.942 6.8 6.2 5.6 76.3 96.7 100.0
100 -0.031 0.010 0.015 1.415 0.973 0.682 7.3 6.6 5.5 95.1 99.9 100.0
200 -0.008 0.014 0.014 0.996 0.689 0.485 7.1 6.1 5.4 99.9 100.0 100.0
Panel B: Heterogeneous Slopes, �ih = �h + �ih with �ih � iidN (0; 0:04) for all i, h = 1; 2
for �1 Bias (�100) RMSE (�100) Size Power
T;N 50 100 200 50 100 200 50 100 200 50 100 200b�Bai
25 0.002 -0.009 0.108 4.228 3.049 2.190 7.8 6.3 6.2 26.2 41.8 67.3
50 -0.095 -0.038 0.052 3.741 2.627 1.882 8.5 6.7 6.1 32.9 52.8 79.0
100 -0.170 -0.050 0.013 3.364 2.344 1.668 7.7 5.8 5.2 36.5 58.8 85.7
200 -0.134 -0.037 0.017 3.152 2.198 1.564 8.1 6.5 5.3 39.8 64.4 90.3e�Bai
25 -0.016 -0.024 0.096 4.227 3.049 2.189 7.7 6.3 6.2 25.9 41.6 66.9
50 -0.116 -0.056 0.038 3.742 2.629 1.882 8.4 6.9 5.9 32.8 52.6 78.8
100 -0.196 -0.070 -0.001 3.365 2.345 1.668 7.6 5.7 5.3 36.2 58.6 85.4
200 -0.181 -0.071 -0.004 3.153 2.200 1.565 7.7 6.4 5.3 39.4 63.3 90.0

Notes for Panel A: Data is generated as y�it =
P2

h=1 x
�
ith�ih +

P2
`=1 ft`�i` + �";it"it; i = 1; 2; :::; N ; t = 1; 2; :::; T ,

where �i` � iidN(0; 1), ft` = �fft�1;` +
q
1� �2f�t`, �t` � iidN(0; 1) with f0;` � iidN (0; 1) for ` = 1; ::; r; "it =

�""it�1 +
p
1� �2"�it; �it � iidN(0; 1) with "i0 � iidN (0; 1), and �";it = (�";i�";t)

1=2, �";i � iidU (0:5; 1:5) and
�";t = 0:5+t=T ; x�ith =

Pr
`=1 ft`ih`+%�v,itvith;where vith = �vvit�1;h+

p
1� �2v$it;h, $it;h � iid

�
�26 � 6

�
=
p
12

with vi0;h � iid
�
�26 � 6

�
=
p
12, ih` = 0:7�i` +

�
1� 0:72

�1=2
'ih`, 'ih` � iidN(0; 1), �v,it = (�v ;i�v ;t)

1=2, �v ;i �
iidU (0:5; 1:5) and �v ;t = 0:5 + t=T , %2 = 2. b�Bai is non-bias-corrected and e�Bai is bias-corrected estimator
proposed by Bai (2009). The size is rejection frequency of the proposed Wald test (de�ned by (18)) for H0 : �1 = 1
and the power for H0 : �1 = 0:95, based on the 5% level test. All results are based on 2000 replications. Notes
for Panel B: See notes to Panel A.
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Table 2 continued

Panel C: Correlated Heterogeneous Slopes, �x� = 0:5, x
�
ith generated using �

2
6

(i) �ih is function of
P

t x
�
ith (ii) �ih is function of

P
t (x

�
ith)

2

for �1 Bias (�100) Size, H0 : �1 = 1 Bias (�100) Size, H0 : �1 = 1
T;N 50 100 200 50 100 200 50 100 200 50 100 200b�Bai
25 0.439 0.456 0.576 7.5 6.1 5.4 0.591 0.724 0.918 6.7 6.1 6.9
50 0.364 0.456 0.546 8.6 5.9 5.1 0.556 0.754 0.911 8.4 6.5 7.1
100 0.352 0.497 0.571 7.4 5.4 5.4 0.526 0.789 0.918 7.8 6.7 7.0
200 0.476 0.594 0.660 7.3 6.2 5.2 0.650 0.881 1.008 7.4 7.6 8.4e�Bai
25 0.424 0.442 0.563 7.5 6.2 5.5 0.580 0.712 0.907 6.7 6.2 6.8
50 0.347 0.439 0.533 8.6 5.9 5.1 0.540 0.739 0.898 8.4 6.4 6.9
100 0.332 0.479 0.558 7.4 5.5 5.4 0.508 0.767 0.904 7.9 6.7 7.0
200 0.444 0.566 0.641 7.1 5.9 5.0 0.619 0.843 0.978 7.7 7.5 8.0

Panel D: Correlated Heterogeneous Slopes, �x� = 0:5, x
�
ith generated using N (0; 1)

(i) �ih is function of
P

t x
�
ith (ii) �ih is function of

P
t (x

�
ith)

2

for �1 Bias (�100) Size, H0 : �1 = 1 Bias (�100) Size, H0 : �1 = 1
T;N 50 100 200 50 100 200 50 100 200 50 100 200b�Bai
25 -0.006 -0.016 0.083 8.6 5.9 4.3 0.605 0.736 0.873 9.2 6.5 6.5
50 -0.174 -0.090 -0.014 7.7 6.2 4.3 0.460 0.678 0.804 8.2 6.8 6.2
100 -0.177 -0.114 -0.033 7.5 5.1 3.6 0.497 0.698 0.818 8.2 6.5 6.4
200 -0.227 -0.159 -0.079 7.4 5.5 4.0 0.525 0.709 0.831 8.3 6.4 6.6e�Bai
25 -0.022 -0.030 0.071 8.5 6.0 4.2 0.592 0.723 0.862 9.2 6.4 6.5
50 -0.191 -0.104 -0.026 7.9 6.2 4.3 0.443 0.665 0.793 8.1 6.8 6.2
100 -0.200 -0.131 -0.046 7.4 5.3 3.5 0.474 0.675 0.804 8.1 6.3 6.3
200 -0.266 -0.186 -0.097 7.3 5.5 4.1 0.486 0.669 0.800 8.4 6.1 6.6

Notes for Panel C: The data generating process (DGP) is the same as Panel B, except �ih = �h +

��
�p
1� �2x��ih + �x�wih

�
; �ih � iid

�
�26 � 6

�
=
p
12 for h = 1; 2; wih =

zih;p��zh;p
szh;p

, where �zh;p = N�1PN
i=1 zih;p,

s2zh;p = (N � 1)�1
PN

i=1 (zih;p � �zh;p)
2, zih;p = T�1

PT
t=1

�
x�it;h

�p
, p = 1; 2. See notes to Panel C. The DGP for

Panel D is identical to of Panel C, except that $it;h � iidN (0; 1).
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Supplementary Appendix

for

�A robust approach to heteroskedasticity, error serial
correlation and slope heterogeneity for large linear panel data

models with interactive e¤ects�

by G. Cui, K. Hayakawa, S. Nagata and T. Yamagata

In what follows, we repeatedly use Cauchy-Schwarz inequality, triangular inequality, Minkowski in equal-
ity, Holder�s inequality, and other well-established results: for conformable matrices ABC, vec (ABC) =

(C0 
A) vec (B), E kA
Bks �
�
E kAk2s E kBk2s

�1=2
, for square matrices, kABk � kAk�max kBk.

Appendix A: Lemmas and Proofs for the Results in Section 2
We rely on the law of large numbers and central limit theorem results, which are stated in Lemmas
A.1 and A.2, which are given and proved in Hansen (2007). The results which are stated as Lemmas
A.3-A.6 are discussed and proven in Hansen (2007), but replicated here for convenience. The proof of
main results, which are readily proven based on the lemmas, are given in A.2. We provide proofs of
LemmaA.8 in A.3.16

A.1: Lemmas for Section 2

Lemma A.1 Suppose fWi;T g are independent across i = 1; 2; :::; N for all T with E (Wi;T ) = �i;T and

E jWi;T j1+� < � <1 for some � > 0 and all i, T . Then N�1PN
i=1

�
Wi;T � �i;T

� p! 0 as (N;T )
j!1.

Lemma A.2 Suppose fwi;T g, h�1 random vectors, are independent across i = 1; 2; :::; N for all T with
E (wi;T ) = 0, E

�
wi;Tw

0
i;T

�
= �i;T and E kwi;T k2+� < � < 1 for some � > 0 and all i, T . Assume

� = limN;T!1N
�1PN

i=1�i;T is positive de�nite and the smallest eigenvalue of � is strictly positive.

Then, N�1=2PN
i=1wi;T

d! N (0;�) as (N;T )
j!1.

Lemma A.3 Let fwtg be a strong mixing sequence with E (wt) = 0, E jwtjs+� < � � 1 and mixing
coe¢ cient � (m) of size (1� c) r=(r� c) where c 2 2N, s � c < r. Then, there is a constant C depending
only on s and � (m) such that E

���PT
t=1 wt

���s � C D (s; �; T ), where D (s; �; T ) is as de�ned in Doukhan

(1994) and satisfying D (s; �; T ) = O(T ) for s � 2 and D (s; �; T ) = O(T s=2) for s > 2.

Lemma A.4 Under Assumptions A1 and A2, �ANT �A
p! 0 and �A�1

NT �A�1 p! 0 as (N;T ) ! 1,
where �ANT and A are de�ned by (6) and in Assumption A2, respectively.

Lemma A.5 Under Assumptions A1-A3, 1p
NT

PN
i=1X

0
i"i

d! N (0;B), where B is de�ned in Assump-
tion A3.

Lemma A.6 Under Assumptions A1-A3, N�1PN
i=1

bBi;T � B p! 0 as (N;T ) ! 1, where bBi;T =

T�1X0
ib"ib"0iXi with b"i = yi �Xi

b� with �i= 0 for all i, and B is de�ned in Assumption A3.

Lemma A.7 Under Assumptions A1-A4, 1p
NT

PN
i=1X

0
iXi�i

d! N (0;C), where C is de�ned in As-
sumption A4.

16Proof of other Lemmas in this subsection is provided in Appendix C.1 for convenience.
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Lemma A.8 Under Assumptions A1-A4, N�1PN
i=1

bCi;T � C p! 0 as (N;T ) ! 1, where bCi;T =

T�2X0
ibuibu0iXi with bui = yi �Xi

b� and C is de�ned in Assumption A4.

Proof of Lemma A.4. E
�AiT

1+� = ET�1X0
iXi

1+� � ET�1=2Xi

2+2� � E ��tr �T�1X0
iXi

���1+�
= T�(1+�)

"�
E
���Pk

h=1

PT
t=1 x

2
ith

���1+�� 1
1+�

#1+�
� T�(1+�)

�Pk
h=1

PT
t=1

�
E
��x2ith��1+�� 1

1+�

�1+�
� k1+�� <

1 using Holder�s and Minkowski�s inequality and Assumption A2, then applying Lemma A.1 gives
�ANT �A

p! 0. Applying continuous mapping theorem yields �A�1
NT �A�1 p! 0.

Proof of Lemma A.5. We have

E
T�1=2X0

i"i

2+2� � E

������
kX
h=1

����� 1pT
TX
t=1

xith"it

�����
2
������
1+�

�

264 kX
h=1

0@E ����� 1pT
TX
t=1

xith"it

�����
2+2�

1A
1

1+�

375
1+�

(A.1)

� k1+�
�
T�

2+2�
2 C D (s; �; T )

�
� � <1,

where the third inequality follows, because, by Assumption A1, E (xith"it) = 0, E jxith"itjs+� � E jxithj2s+2� E j"itj2s+2� �
2�2s+2� <1 for s > 2 and all h = 1; :::; k, and using Lemma A.3 E

���PT
t=1 xith"it

���2+2� = C D (s; �; T ) =
O
�
T

2+2�
2

�
. Therefore E

T�1=2X0
i"i
2+2� � � and together with Assumption A3, applying Lemma A.2

the result follows.
Proof of Lemma A.6. We write

1

N

NX
i=1

bBi;T =
1

NT

NX
i=1

X0
i"i"

0
iXi �

1

NT

NX
i=1

X0
iXi

�b� � �� "0iXi (A.2)

� 1

NT

NX
i=1

X0
i"i

�b� � ��0X0
iXi +

1

NT

NX
i=1

X0
iXi

�b� � ���b� � ��0X0
iXi

= D1 �D2 �D3 +D4. (A.3)

First

T�1vec (D3) =
1

N
p
T

NX
i=1

�
X0
iXi

T

 X

0
i"ip
T

��b� � �� : (A.4)

E
�
X0
iXi

T 
 X0
i"ip
T

�
= 0 by Assumptions A1 and A2. Noting

E
T�1X0

iXi

2+2� � E
T�1=2Xi

4+4� = E ��tr �T�1X0
iXi

���2+2� = T�(1+�)
264
0@E �����

kX
h=1

TX
t=1

x2ith

�����
2+2�

1A
1

2+2�

375
2+2�

� T�(1+�)

"
kX
h=1

TX
t=1

�
E
��x4ith��1+�� 1

2+2�

#2+2�
� k2+2�� <1 (A.5)

and E
X0

iXi

T 
 X0
i"ip
T

1+� � �EX0
iXi

T

2+2� EX0
i"ip
T

2+2��1=2 � � and by Lemma A.1N�1PN
i=1

�
X0
iXi

T 
 X0
i"ip
T

�
=

op (1) and together with b� � � = Op �1=pNT�, vec (D3) = op
�
N�1=2�. In a similar manner, vec (D2) =

op
�
N�1=2�. kD4k � (T=N)

PN
i=1

T�1X0
iXi

2 b� � �2 = Op �N�1�. E kD1k1+� = E
T�1X0

i"i"
0
iXi

1+� �
E
T�1=2X0

i"i
2+2� = O (1) by (A.1), and we apply Lemma A.1 to conclude p limN;T!1N

�1PN
i=1

�bBi;T �Bi;T� =
0 as required.
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Proof of Lemma A.7. First E
�
T�1X0

iXi�i
�
= 0 and V ar

�
T�1X0

iXi�i
�
= CiT .

E
T�1X0

iXi�i
2+2� � T�(2+2�)E

������
kX
h=1

�����
kX
`=1

TX
t=1

xithxit`�i`

�����
2
������
1+�

� T�(2+2�)

�������
kX
h=1

0@E �����
kX
`=1

TX
t=1

xithxit`�i`

�����
2+2�

1A
1

1+�

�������
1+�

but as

E

�����
kX
`=1

TX
t=1

xithxit`�i`

�����
2+2�

�
"

kX
`=1

TX
t=1

�
E jxithxit`�i`j

2+2�
� 1
2+2�

#2+2�

E jxithxit`�i`j
2+2� �

�
E jxithxit`j4+4� E j�i`j

4+4�
�1=2

�
�
E jxithj8+8� E jxit`j8+8�

�1=4 �
E j�i`j

4+4�
�1=2

� �

we have

E
T�1X0

iXi�i
2+2� � T�(2+2�)

�������
kX
h=1

0@" kX
`=1

TX
t=1

�
E jxithxit`�i`j

2+2�
� 1
2+2�

#2+2�1A
1

1+�

�������
1+�

� T�(2+2�)

�������
kX
h=1

0@" kX
`=1

TX
t=1

(�)
1

2+2�

#2+2�1A
1

1+�

�������
1+�

� T�(2+2�)k1+�� [kT ]
2+2�

= O (1) (A.6)

Applying Lemma A.2 the required result follows.
Proof of Lemma A.8. We write

1

N

NX
i=1

bCi;T =
1

NT 2

NX
i=1

X0
iuiu

0
iXi �

1

NT 2

NX
i=1

X0
iXi

�b� � ��u0iXi

� 1

NT 2

NX
i=1

X0
iui

�b� � ��0X0
iXi +

1

NT 2

NX
i=1

X0
iXi

�b� � ���b� � ��0X0
iXi

= E1 �E2 �E3 +E4.

Recall ui = Xi�i + "i. First

E3 =
1

NT 2

NX
i=1

X0
iXi�i

�b� � ��0X0
iXi +

1

NT 2

NX
i=1

X0
i"i

�b� � ��0X0
iXi (A.7)

= E31 +E32, say. (A.8)

vec (E31) =
1

N

NX
i=1

�
X0
iXi

T

 X

0
iXi

T
�i

��b� � �� (A.9)

but E
X0

iXi

T 
 X0
iXi

T �i

1+� � �EX0
iXi

T

2+2� EX0
iXi

T �i

2+2��1=2 � � by (A.1) and (A.6). As �b� � �� =
Op
�
N�1=2�, E31 = Op

�
N�1=2�. Similarly vec (E32) = N�1T�1=2

PN
i=1

�
X0
iXi

T 
 X0
i"ip
T

��b� � �� =
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Op
�
N�1=2T�1=2

�
, thus, E3 = Op

�
N�1=2�+Op �N�1=2T�1=2

�
. It is easily seen that E2 = Op

�
N�1=2�+

Op
�
N�1=2T�1=2

�
. kE4k � N�1PN

i=1

T�1X0
iXi

2 b� � �2 = Op �N�1�. Finally,
E1 =

1

NT 2

NX
i=1

X0
i (Xi�i + "i) (Xi�i + "i)

0
Xi

=
1

NT 2

NX
i=1

X0
iXi�i�

0
iX

0
iXi +

1

NT 2

NX
i=1

X0
i"i"

0
iXi +

1

NT 2

NX
i=1

X0
iXi�i"

0
iXi +

1

NT 2

NX
i=1

X0
i"i�

0
iX

0
iXi

= G1 +G2 +G3 +G4, say.

Since, E
T�3=2X0

iXi�i"
0
iXi

1+� � E �T�1X0
iXi�i

T�1=2X0
i"i
�1+� � ET�1X0

iXi�i
2+2� ET�1=2X0

i"i
2+2� �

� by by (A.1) and (A.6), G3 = Op
�
T�1=2

�
. By a similar derivation, it is easily seen that G4 =

Op
�
T�1=2

�
. By (A.1), G2 = Op

�
T�1

�
. Finally by (A.6), G1 �C!p 0; and the required result follows.

A.2: Proofs of Main Results in Section 2

Proof of Theorem 1. Applying Lemmas A.4 and A.5, the result immediately follows.
Proof of Theorem 2. Applying Lemmas A.4 and A.7, the result immediately follows.
Proof of Proposition 1. Applying Lemmas A.8 and A.6, the result immediately follows.
Proof of Theorem 3. In the case of both slope homogeneity and slope heterogeneity, using Theorems

1&2, together with Proposition 1, b��1=2b�
�b� � �� d! N (0; Ik) as (N;T ) ! 1. It is straightforward to

impose the linear restriction H0 : R� = r and show that under the null,
h
Rb�b�R0i�1=2 �

Rb� � r� d!

N (0; Iq) which implies that
�
Rb� � r�0 hRb�b�R0i�1 �

Rb� � r� d! �2q as (N;T ) ! 1. This completes
the proof.

Appendix B: Lemmas and Proofs for the Results in Section 3

Lemma B.1 For slope heterogeneous models, when Assumptions B1 to B4 hold, we have

(a) sup
H2H

 1

NT

NX
i=1

X0
iMH(Vi�i + "i)

 = op(1) ;
(b) sup

H2H

 1

NT

NX
i=1

�00i H
00MH(Vi�i + "i)

 = op(1) ;
(c) sup

H2H

 1

NT

NX
i=1

(Vi�i + "i)
0PH(Vi�i + "i)

 = op(1) :
where H = fH : H0H=T = Irg.

Proof of Lemma B.1. Consider (a). By Bai (2009a), we have supH2H
 1
NT

PN
i=1X

0
iMH"i

 = op(1).
Note that �i is independent from X0

iVi by Assumption B3, then
 1
NT

PN
i=1X

0
iVi�i

 = op(1). Then it
is su¢ cient to show that supH2H

 1
NT

PN
i=1X

0
iPHVi�i

 = op(1). Using PH = T�1HH0, we have 1

NT

NX
i=1

X0
iPHVi�i

 =
 1N

NX
i=1

(T�1X0
iH)(T

�1H0Vi�i)


�kT�1=2Hk � 1

N

NX
i=1

T�1=2Xi

 1T
TX
t=1

htv
0
it

 k�ik:
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Since kT�1=2Hk =
p
r1 + r2, the above term is bounded in norm byvuuut r

N

NX
i=1

kT�1=2Xik2k�ik2
!
�

0@ 1

N

NX
i=1

 1T
TX
t=1

htv0it


2
1A: (B.1)

Note that Xi is independent of �i, we can take the expectation of the �rst term of (B.1) to show that it
is Op(1) easily. The second term of (B.1) is equal to

1

NT 2

NX
i=1

TX
s=1

TX
t=1

h0thsE(v0isvit) +
1

NT 2

NX
i=1

TX
s=1

TX
t=1

h0ths(v
0
isvit � E (v0isvit)) :

The �rst expression is bounded in norm by

1

T 2

TX
s=1

TX
t=1

khtkkhsk
����� 1N

NX
i=1

E(v0isvit)

����� �
vuut 1

T 2

TX
s=1

TX
t=1

khtk2khsk2 �
TX
s=1

TX
t=1

����� 1N
NX
i=1

E(v0isvit)

�����
2

�r 1p
T

vuut 1

T

TX
s=1

TX
t=1

�2st �
Cp
T

with
���N�1PN

i=1 E(v0isvit)
��� � � st by Assumption B2(i) and (iii). The second expression is bounded in

norm by

1p
N
�

vuut 1

T 2

TX
s=1

TX
t=1

khtk2khsk2 �
1

T 2

TX
s=1

TX
t=1

����� 1pN
NX
i=1

(v0isvit � E (v0isvit))
�����
2

= Op(N
�1=2)

by Assumption B2(iv). With the above two expressions, the second term of (B.1) is Op(N�1=2) +

Op(T
�1=2) uniformly over H, which implies that supH2H

 1
NT

PN
i=1X

0
iPHVi�i

 = op(1), so we have

(a). The proofs for (b) and (c) are similar to that of (a), so are omitted. This completes the proof. �

Proof of Proposition 5.

For the slope heterogeneous model, without loss of generality, we assume that ft and gt are di¤erent
factors. Then H0 = (G0;F0) and �0i = (�

0
i�
00
i ;�

00
i )

0. Given � and H, we can concentrate out f�igNi=1,
and derive the following concentrated objective function

SNT (�;H) =
1

NT

NX
i=1

(yi �Xi�)
0MH(yi �Xi�):

De�ne

eSNT (�;H) = 1

NT

NX
i=1

(�0 � �)0X0
iMHXi(�

0 � �) + 2

NT

NX
i=1

(�0 � �)0X0
iMHH

0�0i

+
1

NT

NX
i=1

�00i H
00MHH

0�0i :

Then

SNT (�;H) =eSNT (�;H) + 2

NT

NX
i=1

(�0 � �)0X0
iMH(Vi�i + "i)

+
2

NT

NX
i=1

�00i H
00MH(Vi�i + "i) +

1

NT

NX
i=1

(Vi�i + "i)
0(PH �PH0)(Vi�i + "i):
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With Lemma B.1, we can follow the argument in the proof of Proposition 1 in Bai (2009a) to show thatb� � �0 p! 0 and kPbH �PH0k p! 0. In addition, we have that H00 bH=T is invertible and (H00 bH=T )�1 =
Op(1).

With the de�nition of bH, we have
1

NT

NX
i=1

(yi �Xi
b�)(yi �Xi

b�)0 bH = bHVNT
where yi �Xi

b� = Xi(�
0 � b�) +H0�0i +Vi�i + "i. Then, we have

1p
T
bHVNT � 1

NT
p
T

NX
i=1

H0�0i�
00
i H

00 bH
=

1

NT
p
T

NX
i=1

Xi(�
0 � b�)(�0 � b�)0X0

i
bH+ 1

NT
p
T

NX
i=1

Xi(�
0 � b�)�00i H00 bH

+
1

NT
p
T

NX
i=1

Xi(�
0 � b�)"0i bH+ 1

NT
p
T

NX
i=1

H0�0i (�
0 � b�)0X0

i
bH

+
1

NT
p
T

NX
i=1

"i(�
0 � b�)0X0

i
bH+ 1

NT
p
T

NX
i=1

H0�0i "
0
i
bH+ 1

NT
p
T

NX
i=1

"i�
00
i H

00 bH
+

1

NT
p
T

NX
i=1

"i"
0
i
bH+ 1

NT
p
T

NX
i=1

Xi(�
0 � b�)�0iV0

i
bH+ 1

NT
p
T

NX
i=1

Vi�i(�
0 � b�)0X0

i
bH

+
1

NT
p
T

NX
i=1

H0�0i�
0
iV

0
i
bH+ 1

NT
p
T

NX
i=1

Vi�i�
00
i H

00 bH+ 1

NT
p
T

NX
i=1

Vi�i"
0
i
bH

+
1

NT
p
T

NX
i=1

"i�
0
iV

0
i
bH+ 1

NT
p
T

NX
i=1

Vi�i�
0
iV

0
i
bH

= A1 + � � �+ A15 : (B.2)

Following the argument in the proof of Proposition A.1 in Bai (2009a), the �rst �ve terms are Op(k�0�b�k). The sixth to the eighth term Op(�
�1
NT ) with �NT = min[

p
N;
p
T ]. Analogously, the ninth to

tenth terms are Op(k�0 � b�k). The eleventh to fourteenth terms are Op(N�1=2). The last term can be
decomposed as follows:

A15 =
1

NT
p
T

NX
i=1

E(Vi�i�
0
iV

0
i)
bH+ 1

NT
p
T

NX
i=1

(Vi�i�
0
iV

0
i � E(Vi�i�

0
iV

0
i))
bH: (B.3)

Note that

1

N

NX
i=1

jE (v0is�i�0ivit) j =
1

N

NX
i=1

jtr (E(�i�0i)E(vitv0is))j � �
1

N

NX
i=1

kE(vitv0is)k

by Assumption B2(i). The �rst expression of (B.3) is bounded in norm by

1p
T
�

vuut 1

T

TX
s=1

TX
t=1

����� 1N
NX
i=1

E (v0is�i�0ivit)

�����
2

� kT�1=2 bHk � � 1p
T
�

vuut 1

T

TX
s=1

TX
t=1

kE(vitv0is)k = Op(T�1=2)

with Assumption B2(iii). The second expression (B.3) is bounded in norm by

1p
N
�

vuut 1

T 2

TX
s=1

TX
t=1

����� 1pN
NX
i=1

(v0is�i�
0
ivit � E (v0is�i�0ivit))

�����
2

� kT�1=2 bHk = Op(N�1=2):
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Thus, A15 is Op(��1NT ). Collecting the above terms, we have

1p
T
bHVNT � 1

NT
p
T

NX
i=1

H0�0i�
00
i H

00 bH = Op(k�0 � b�k) +Op(��1NT ):
Since N�1PN

i=1 �
0
i�

00
i and T

�1H00 bH both are invertible and Op(1), then

1p
T
bHVNT � 1

T
H00 bH��1 1

N

NX
i=1

�0i�
00
i

!�1
� 1p

T
H0 = Op(k�0 � b�k) +Op(��1NT ):

The rest of the proof exactly follows Proposition A.1 in Bai (2009a) with changes in notation. Below we
summarize the results as follows:

1. VNT is invertible and VNT
p! V, where V (r� r) is a diagonal matrix consisting of the eigenvalues

of ���H.

2. Let R = (�0�=N)(T�1H00 bH)V�1NT . Then R and R�1 both are r�r invertible matrices and Op(1),
and

1

T
k bH�H0Rk2 = Op(k�0 � b�k2) +Op(��2NT )

This completes the proof. �

In all remaining proofs, � and �0 are used interchangeably, and so are H and H0.

Lemma B.2 Under Assumptions B1 to B4, when the slopes are heterogeneous, we have

(a) T�1H00( bH�H0R) = Op(k�0 � b�k) +Op(��2NT ) ;
(b) T�1 bH0( bH�H0R) = Op(k�0 � b�k) +Op(��2NT ) ;
(c) RR0 � (H00H0=T )�1 = Op(k�0 � b�k) +Op(��2NT ) ;
(d) T�1V0

k(
bH�H0R) = Op(T

�1=2k�0 � b�k) +Op(N�1k�0 � b�k) +Op(��2NT ) for each k = 1; :::; N
(e) T�1"0k(

bH�H0R) = Op(T
�1=2k�0 � b�k) +Op(N�1k�0 � b�k) +Op(��2NT ) for each k = 1; :::; N

(f) MbH �MH0 = Op(k�0 � b�k) +Op(��1NT ) ;
(g)

1

NT

NX
k=1

V0
k(
bH�H0R) = Op((NT )

�1=2k�0 � b�k) +Op(N�1k�0 � b�k) +Op(N�1=2��2NT ) +Op(N
�1) ;

(h)
1

NT

NX
k=1

"0k(
bH�H0R) = Op((NT )

�1=2k�0 � b�k) +Op(N�1k�0 � b�k) +Op(N�1=2��2NT ) +Op(N
�1) :

Proof of Lemma B.2. Without loss of generality, we assume that ft and gt are di¤erent factors. Then
H0 = (G0;F0) and �0i = (�

0
i�
00
i ;�

00
i )

0. Consider (a). With (B.2), we have

T�1H00( bH�H0R) = T�1=2H00A1V�1NT + � � �+ T
�1=2H00A15V�1NT

we can follow the proof in Bai (2009a) to show that the terms T�1=2H00A1V�1
NT to T

�1=2H00A8V�1
NT is

Op(k�0 � b�k) + Op(��2NT ). Since V�1NT = Op(1), we omit it in the following proof. Analogously, we can
prove that the terms T�1=2H00A9V�1NT and T�1=2H00A10V�1NT are both Op(k�

0 � b�k). T�1=2H00A11 is
bounded in norm by

1p
NT

� kT�1=2H0k2
 1p

NT

NX
i=1

�0i�
0
iV

0
iH

0

 kRk
+

1p
N
� kT�1=2H0k2

 1p
NT

NX
i=1

�0i�
0
iV

0�1=2
i ( bH�H0R)


=Op(N

�1=2T�1=2) +Op(N
�1=2)

h
Op(k�0 � b�k) +Op(��1NT )i = Op(N�1=2k�0 � b�k) +Op(��2NT )
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by Proposition 5 andR = Op(1). Similarly, we can show that T�1=2H00A12 isOp
�
1=
p
NT

�
. T�1=2H00A13

is bounded in norm by

1p
NT

 1

T
p
N

NX
i=1

H00Vi�i"
0
i

T�1=2 bH = Op �1=pNT� :
Similarly, we can show that T�1=2H00A14 is also Op(1=

p
NT ). By Proposition 5 and R = Op(1), the

last term T�1=2H00A15 is bounded in norm by

1

NT

NX
i=1

kT�1=2H00Vi�ik2kRk+
1

N

NX
i=1

kT�1=2H00Vi�ik � T�1=2k�0iV0�1
i ( bH�H0R)k

�Op(T�1) +

vuut 1

N

NX
i=1

kT�1=2H00Vi�ik2 �
1

NT

NX
i=1

TX
t=1

k�0ivitk2kT�1( bH�H0R)k

=Op(T
�1) +Op(T

�1=2)
h
Op(k�0 � b�k) +Op(��1NT )i = Op(T�1=2k�0 � b�k) +Op(��2NT ):

Thus,
1

T
H00( bH�H0R) = Op(k�0 � b�k) +Op(��2NT ) :

Consider (b), which is given by

1

T
bH0( bH�H0R) =

1

T
R0H00( bH�H0R) +

1

T
( bH�H0R)0( bH�H0R):

The �rst term is Op(k�0� b�k)+Op(��2NT ) by (a), the second is bounded in norm by T�1k bH�H0Rk2 =
Op(k�0 � b�k2) +Op(��2NT ) by Proposition 5. Then we have (b).

With (a) and (b), we can follow the argument in the proof of Lemma A.7 of Bai (2009a) to derive
(c).

Consider (d). With (B.2), we have

1

T
V0
k(
bH�H0R)

=
1

NT 2

NX
i=1

V0
kXi(�

0 � b�)(�0 � b�)0X0
i
bHV�1NT + 1

NT 2

NX
i=1

V0
kXi(�

0 � b�)�00i H00 bHV�1NT
+

1

NT 2

NX
i=1

V0
kXi(�

0 � b�)"0i bHV�1NT + 1

NT 2

NX
i=1

V0
kH

0�0i (�
0 � b�)0X0

i
bHV�1NT

+
1

NT 2

NX
i=1

V0
k"i(�

0 � b�)0X0
i
bHV�1NT + 1

NT 2

NX
i=1

V0
kH

0�0i "
0
i
bHV�1NT

+
1

NT 2

NX
i=1

V0
k"i�

00
i H

00 bHV�1NT + 1

NT 2

NX
i=1

V0
k"i"

0
i
bHV�1NT

+
1

NT 2

NX
i=1

V0
kXi(�

0 � b�)�0iV0
i
bHV�1NT + 1

NT 2

NX
i=1

V0
kVi�i(�

0 � b�)0X0
i
bHV�1NT

+
1

NT 2

NX
i=1

V0
kH

0�0i�
0
iV

0
i
bHV�1NT + 1

NT 2

NX
i=1

V0
kVi�i�

00
i H

00 bHV�1NT + 1

NT 2

NX
i=1

V0
kVi�i"

0
i
bHV�1NT

+
1

NT 2

NX
i=1

V0
k"i�

0
iV

0
i
bHV�1NT + 1

NT 2

NX
i=1

V0
kVi�i�

0
iV

0
i
bHV�1NT

=B1 + B2 + � � �+ B15 :
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Hereafter, we ignore V�1NT , which is Op(1). With Xi = H
0�0i +Vi, B1 is equal to

B1 =
1

NT 2

NX
i=1

V0
kH

0�0i (�
0 � b�)(�0 � b�)0X0

i
bH+ 1

NT 2

NX
i=1

V0
kVi(�

0 � b�)(�0 � b�)0X0
i
bH:

The �rst term is bounded in norm by

1p
T
� kT�1=2V0

kH
0kkT�1=2 bHk � k�0 � b�k2 � 1

N

NX
i=1

k�0i kkT�1=2Xik = Op(T�1=2k�0 � b�k2)
while the second term is bounded in norm by

1

N

NX
i=1

kT�1E(V0
kVi)kkT�1=2Xikk�0 � b�k2kT�1=2 bHk

+
1p
T

1

N

NX
i=1

kT�1=2 (V0
kVi � E(V0

kVi)) kkT�1=2Xikk�0 � b�k2kT�1=2 bHk
=Op(N

�1k�0 � b�k2) +Op(T�1=2k�0 � b�k2)
with Assumption B2(i). Then, B1 is Op(N�1k�0 � b�k2) + Op(T�1=2k�0 � b�k2). Analogously, we can
show that B2, B3, B9 and B10 both are Op(N�1k�0� b�k)+Op(T�1=2k�0� b�k). We can also show that
B4 and B5 both are Op(T�1=2k�0 � b�k). B6 is bounded in norm by

1p
NT

� kT�1=2V0
kH

0k
 1p

NT

NX
i=1

�0i "
0�1=2
i

bH = Op(N�1=2T�1=2) ;

B7 is bounded in norm by

1p
NT

�
 1p

NT

NX
i=1

V0
k"i�

00
i

 kT�1=2H0kkT�1=2 bHk = Op(N�1=2T�1=2) ;

by Assumptions B4(iv). B8 is bounded in norm by

1

NT

NX
i=1

kT�1=2V0
k"ikkT�1=2"0iH0kkRk+ 1p

T

1

N

NX
i=1

kT�1=2V0
k"ikkT�1=2"ikkT�1=2( bH�H0R)k

=Op(T
�1) +Op(T

�1=2)
h
Op(k�0 � b�k) +Op(��1NT )i = Op(T�1=2k�0 � b�k) +Op(��2NT ) ;

by Proposition 5. B11 is bounded in norm by

1p
NT

� kT�1=2V0
kH

0k
 1p

NT

NX
i=1

�0i�
0
iV

0
iH

0

 kRk
+

1p
NT

� kT�1=2V0
kH

0k
 1p

NT

NX
i=1

�0i�
0
iV

0
i

T�1=2 �bH�H0R
�

=Op(N
�1=2T�1) +Op(N

�1=2T�1=2)
h
Op(k�0 � b�k) +Op(��1NT )i = Op(N�1=2T�1=2k�0 � b�k) +Op(��2NT ):

B12 is equal to (ignoring H00 bH=T since it is Op(1))
1

NT

NX
i=1

E(V0
kVi)�i�

00
i +

1

NT

NX
i=1

[V0
kVi � E(V0

kVi)]�i�
00
i

in which the �rst term to be Op(1=N), the second terms can be shown to be Op(1=
p
NT ), easily.

Then B12 = Op(1=
p
NT ) + Op(1=N). Similar to the argument in the proof B12, we can show that

B13 = Op(1=
p
NT ) +Op(1=N).
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B14 is bounded in norm by

1

NT 2

NX
i=1

V0
k"i�

0
iV

0
i
bH =

1

NT

NX
i=1

kT�1=2V0
k"ikk�ikkT�1=2V0

iH
0kkRk

+
1p
T

1

N

NX
i=1

kT�1=2V0
k"ikk�ikkT�1=2VikkT�1=2( bH�H0R)k

=Op(T
�1) +Op(T

�1=2)
h
Op(k�0 � b�k) +Op(��1NT )i = Op(T�1=2k�0 � b�k) +Op(��2NT ):

B15 is equal to

B15 =
1

NT 2

NX
i=1

V0
kVi�i�

0
iV

0
iH

0R+
1

NT 2

NX
i=1

V0
kVi�i�

0
iV

0
i(
bH�H0R) : (B.4)

The �rst term of (B.4) is bounded in norm by (ignoring R)

1p
T

1

N

NX
i=1

kT�1E(V0
kVi)kk�ik2kT�1=2V0

iH
0k

+
1

NT

NX
i=1

kT�1=2 (V0
kVi � E(V0

kVi)) kk�ik2kT�1=2V0
iH

0k = Op(N�1T�1=2) +Op(T
�1) ;

and the second term is bounded in norm by

1

N

NX
i=1

kT�1E(V0
kVi)kk�ik2kT�1=2Vik � kT�1=2( bH�H0R)k

+
1p
T

1

N

NX
i=1

kT�1=2 (V0
kVi � E(V0

kVi)) kk�ik2kT�1=2Vik � kT�1=2( bH�H0R)k

=
h
Op(N

�1) +Op(T
�1=2)

i h
Op(k�0 � b�k) +Op(��1NT )i :

Thus, B15 is Op(T�1=2k�0 � b�k) +Op(N�1k�0 � b�k) +Op(��2NT ). Collecting the above terms, we have
T�1V0

k(
bH�H0R) = Op(T

�1=2k�0 � b�k) +Op(N�1k�0 � b�k) +Op(��2NT ) :
The claim (e) can be proved by following the argument in the proof of (d), then details are omitted.

For (f), we decompose the left hand side term as

MbH �MH0 = � 1
T
bH( bH�H0R)0�1( bH�H0R)R0H00 � 1

T
H0
�
RR0�1H00H0)�1

�
H00

then it will be bounded in norm by

kT�1=2 bHkkT�1=2( bH�H0R)k+ kRkkT�1=2H0kkT�1=2( bH�H0R)k+ kT�1=2H0k2kRR0�1H00H0)�1k
=Op(k�0 � b�k) +Op(��1NT )
with (a), (b), (c) and the facts that kT�1=2 bHk2 = r1 + r2 and EkT�1=2H0k2 � � by Assumption B4(i)
and (ii). Thus, we complete the proof. (g) and (h) are derived from (e) and (f), respectively.�
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Proofs of Theorem 6 and Corollary 8.

Without loss of generality, we assume that the factors F are di¤erent from G. Since the slopes are
heterogeneous, H0 = (G0;F0) and �0i = (�

0
i�
00
i ;�

00
i )

0. By the de�nition of b�, we have
b� � � = NX

i=1

X0
iMbHXi

!�1 NX
i=1

X0
iMbHui

=

 
NX
i=1

X0
iMbHXi

!�1 NX
i=1

X0
iMbHH0�0i +

 
NX
i=1

X0
iMbHXi

!�1 NX
i=1

X0
iMbHVi�i

+

 
NX
i=1

X0
iMbHXi

!�1 NX
i=1

X0
iMbH"i

which implies that 
1

NT

NX
i=1

X0
iMbHXi

!�1
(b� � �) = 1

NT

NX
i=1

X0
iMbHH0�0i +

1

NT

NX
i=1

X0
iMbH"i + 1

NT

NX
i=1

X0
iMbHVi�i:

(B.5)

Consider the �rst term of (B.5). With (B.2), we have

1

NT

NX
i=1

X0
iMbHH0�0i =

1

NT

NX
i=1

X0
iMbH(H0 � bHR�1)�0i

= � 1p
T

1

N

NX
i=1

X0
iMbH(A1 + � � �+ A15)(H00 bH=T )�1(�0�=N)�1�0i

� F1 + F2 + � � �+ F15:

F1 can be shown to be Op(kb� � �k2) easily. F2 is equal to
F2 = � 1

N2T

NX
i=1

NX
k=1

X0
iMbH(H0 � bHR�1)�0k�

00
k (�

0�=N)�1�0i � (�0 � b�)
� 1

N2T

NX
i=1

NX
k=1

X0
iMbHVk�

00
k (�

0�=N)�1�0i � (�0 � b�)
which is bounded in norm by

1

N

NX
i=1

kT�1=2Xikk�0i k �
1

N

NX
k=1

k�0kkk�0kk � kT�1=2(H0 � bHR�1)kk(�0�=N)�1k � k�0 � b�k
+

1

N2

1p
T

NX
i=1

kT�1=2Xik

NX
k=1

�00i (�
0�=N)�1�0kVk

 � k�0 � b�k
=Op(�

�1
NT k�

0 � b�k) +Op(k�0 � b�k2)
+

1

N2

1p
T

NX
i=1

kT�1=2Xik

vuut TX
s=1


NX
k=1

�00i (�
0�=N)�1�0kv

0
ks


2

� k�0 � b�k
=Op(�

�1
NT k�

0 � b�k) +Op(k�0 � b�k2)
+
1

N

NX
i=1

kT�1=2Xikk�0i k � k(�0�=N)�1k

vuut 1

T

TX
s=1

 1p
N

NX
k=1

�0kv
0
ks


2

�N�1=2k�0 � b�k
=Op(�

�1
NT k�

0 � b�k) +Op(k�0 � b�k2)
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by Proposition 5. F3 is bounded in norm by

1

NT
p
T

NX
k=1

kXkkk"0k bHk � k�0 � b�k � 1N
NX
i=1

kT�1=2Xikk�0i k � k(H00 bH=T )�1kk(�0�=N)�1k
=
1

N

1

T
p
T

NX
k=1

kXkkk"0k bHk �Op(k�0 � b�k)
=
1

N

1p
T

NX
k=1

kT�1=2XkkkT�1=2"0kH0kkRk �Op(k�0 � b�k)
+
1

N

NX
k=1

kT�1=2XkkkT�1=2"kk � kT�1=2( bH�H0R)k �Op(k�0 � b�k)
=Op(�

�1
NT k�

0 � b�k) +Op(k�0 � b�k2):
Analogously, F9 is proved to be Op(��1NT k�

0 � b�k) +Op(k�0 � b�k2). F4 is equal to
F4 = �

1

N2T 2

NX
i=1

NX
k=1

X0
iMbH(H0 � bHR�1)�0k(�

0 � b�)0X0
k
bH(H00 bH=T )�1(�0�=N)�1�0i

which is bounded in norm by

1

N

NX
i=1

(kT�1=2Xikk�0i k)2 � kT�1=2 bHkkT�1=2(H0 � bHR�1)kk�0 � b�k � k(H00 bH=T )�1kk(�0�=N)�1k
=
h
Op(k�0 � b�k) +Op(��1NT )i k�0 � b�k = Op(k�0 � b�k2) +Op(��1NT k�0 � b�k)

with kMbHXik � kXik, T�1=2k bHk = pr1 + r2 and Proposition 5. F5 is equal to
F5 = �

1

N2

1

T 2

NX
i=1

NX
k=1

X0
iMbH"k(�0 � b�)0X0

k
bH(H00 bH=T )�1(�0�=N)�1�0i

which is bounded in norm by

1

NT


NX
k=1

"k(�
0 � b�)0X0

k

 � kT�1=2 bHkk(H00 bH=T )�1kk(�0�=N)�1k � 1
N

NX
i=1

kT�1=2Xikk�0i k

=
1

NT


NX
k=1

"k(�
0 � b�)0X0

k

 �Op(1) � 1p
N
�

vuut 1

T 2

TX
s=1

TX
t=1

 1p
N

NX
k=1

"ksx0kt


2

� k�0 � b�k �Op(1)
=Op(N

�1=2k�0 � b�k):
F6 is equal to

F6 = �
1

N2T 2

NX
i=1

NX
k=1

X0
iMbH(H0 � bHR�1)�0k"

0
k
bH(H00 bH=T )�1(�0�=N)�1�0i
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which is bounded in norm by

kT�1=2(H0 � bHR�1)k
 1

NT

NX
k=1

�0k"
0
k
bH �Op(1)

�kT�1=2(H0 � bHR�1)k
 1

NT

NX
k=1

�0k"
0
kH

0

 kRk �Op(1)
+ kT�1=2(H0 � bHR�1)k2 � 1p

T

 1p
N

NX
k=1

�0k"
0
k

 �Op(N�1=2)

=Op(N
�1=2T�1=2��1NT ) +Op(N

�1=2T�1=2k�0 � b�k) +Op(T�1=2��2NT ) +Op(T�1=2k�0 � b�k2)
=Op(T

�1=2��2NT ) +Op(N
�1=2T�1=2k�0 � b�k) +Op(T�1=2k�0 � b�k2)

with Proposition 5. Since H0 = (G0;F0), F0 = H0S, where S = (0r1�r2 ; Ir1)
0. F7 is equal to

� 1

N2T

NX
i=1

NX
k=1

�00i S
0(H0 � bHR�1)0MbH"k�00k (N�1�0�)�1�0i �

1

N2T

NX
i=1

NX
k=1

V0
i"k�

00
k (N

�1�0�)�1�0i

+
1

N2T 2

NX
i=1

NX
k=1

V0
i
bH bH0"k�

00
k (N

�1�0�)�1�0i

which is bounded in norm by (ignoring (N�1�0�)�1)

1

N

NX
i=1

k�0i kk�0i kkN�1=2T�1=2(H0 � bHR�1)k � 1p
T

 1p
N

NX
k=1

"k�
00
k


+

1p
NT

� 1
N

NX
i=1

 1p
NT

NX
k=1

V0
i"k�

00
k

 k�0i k+
 1

NT

NX
i=1

V0
i
bH
 1

NT

NX
k=1

bH0"k�
00
k

 k�0i k
=Op(N

�1=2��1NT ) +Op(N
�1=2k�0 � b�k):

Analogously, we can prove that F8 is equal to Op(��2NT ) +Op(k�
0 � b�k2). F10 is equal to

F10 = �
1

N2T 2

NX
i=1

NX
k=1

X0
iMbHVk�k(�

0 � b�)0X0
k
bH(H00 bH=T )�1(�0�=N)�1�0i

which is bounded in norm by

1

NT


NX
k=1

Vk�k(�
0 � b�)0X0

k

 � kT�1=2 bHkk(H00 bH=T )�1kk(�0�=N)�1k � 1
N

NX
i=1

kT�1=2Xikk�0i k

=
1

NT


NX
k=1

Vk�k(�
0 � b�)0X0

k

 �Op(1)
� 1

N
p
T


NX
k=1

Vk�k(�
0 � b�)0�00k

 kT�1=2H0k �Op(1) +
1

NT


NX
k=1

Vk�k(�
0 � b�)0V0

k

 �Op(1)
� 1p

N
k�0 � b�k �

vuut 1

T

TX
s=1

 1p
N

NX
k=1

�00k v
0
ks�k


2

�Op(1)

+
1p
N
k�0 � b�k �

vuut 1

T 2

TX
s=1

TX
t=1

 1p
N

NX
k=1

�0kvksv
0
kt

 �Op(1) = Op(N�1=2k�0 � b�k)
by Assumption B3. Following the argument in the proof of F6, we can prove that F11 is equal to

� 1

N2T 2

NX
i=1

NX
k=1

X0
iMbHH0�0k�

0
kV

0
k
bH(H00 bH=T )�1(�0�=N)�1�0i = Op(��2NT ) +Op(k�0 � b�k2):

S.13



F12 is equal to

� 1

N2T

NX
i=1

NX
k=1

�00i S
0(H0 � bHR�1)0MbHVk�k�

00
k (�

0�=N)�1�0i

� 1

N2T

NX
i=1

NX
k=1

E(V0
iVk)�k�

00
k (�

0�=N)�1�0i +
1

N2T

NX
i=1

NX
k=1

(V0
iVk � E(V0

iVk))�k�
00
k (�

0�=N)�1�0i

+
1

N2T 2

NX
i=1

NX
k=1

V0
i
bH bH0Vk�k�

00
k (�

0�=N)�1�0i :

It is easy to show that the �rst expression is Op(N�1=2��1NT )+Op(N
�1=2k�0�b�k), the second expression is

Op(N
�1), the third term is Op(N�1=2T�1=2), the forth term is Op(�

�2
NT )+Op(k�

0�b�k2). F13 is bounded
in norm by

1

N

NX
i=1

kT�1=2Xikk�0i k � k(F00bF=T )�1kk(�0�=N)�1k � 1N 1

T
p
T


NX
k=1

Vk�k"
0
k
bF

=
1p
NT

� 1p
T

 1p
NT

NX
k=1

Vk�k"
0
k
bF �Op(1)

� 1p
NT

� 1p
T

 1p
NT

NX
k=1

Vk�k"
0
kF

0

 kRk �Op(1) + 1p
N
� 1
T

 1p
N

NX
k=1

Vk�k"
0
k

T�1=2 �bF� F0� �Op(1)
=Op(N

�1=2��1NT ) +Op(N
�1=2k�0 � b�k):

Similar to the argument in the proof of F13, we can prove that F14 is equal to Op(N�1=2��1NT ) +

Op(N
�1=2k�0 � b�k). F15 is equal to

F15 = �
1

N2T 2

NX
i=1

NX
k=1

X0
iMbHVk�k�

0
kV

0
k
bH(H00 bH=T )�1(�0�=N)�1�0i

which can be proved to be Op(�
�2
NT ) + Op(k�

0 � b�k2) by following the argument in the proof of F12.
Collecting the above terms, we can show that the �rst term of (B.5) can be written as

1

NT

NX
i=1

X0
iMbHH0�0i = Op(�

�2
NT ) +Op(k�

0 � b�k2) +Op(��1NT k�0 � b�k): (B.6)

Consider the second term of (B.5). By arranging the terms, we have

1

NT

NX
i=1

X0
iMbH"i = 1

NT

NX
i=1

�00i S
0(H0 � bHR�1)0MbH"i + 1

NT

NX
i=1

V0
iMbH"i

=
1

NT

NX
i=1

�00i S
0(H0 � bHR�1)0"i �

1

NT 2

NX
i=1

�00i S
0(H0 � bHR�1)0 bHR0H00"i

+
1

NT 2

NX
i=1

�00i S
0(H0 � bHR�1)0 bH( bH�HR)0"i + 1

NT

NX
i=1

V0
i"i �

1

NT 2

NX
i=1

V0
i
bH bH0"i:

Then, using vec(ABC) = (C0 
A) vec(B) for any comfortable matrices A, B and C; the �rst expression
can be written as

1

NT

NX
i=1

vec
�
�00i S

0(H0 � bHR�1)0"i

�
=

1

NT

NX
i=1

�
"0i 
 (�00i S0)

�
vec
h
(H0 � bHR�1)0

i
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which is bounded in norm by

1p
N
� 1p
T

 1p
N

NX
i=1

"0i 
 (�00i S0)
 �
 1p

T
vec
h
(H0 � bHR�1)0

i
=

1p
N
�

vuut 1

T

TX
t=1

 1p
N

NX
i=1

"it�
00
i S

0


2

� kT�1=2(H0 � bHR�1)k

=Op(N
�1=2k�0 � b�k) +Op(N�1=2��1NT ) :

Analogously, we can prove that the third expression is op(N�1=2k�0 � b�k) + op(N�1=2��1NT ). It is easy
to show that the second expression is Op(T�1=2k�0 � b�k) + Op(T�1=2��2NT ), the fourth expression is
Op(N

�1=2T�1=2). The last expression is further decomposed into

1

NT 2

NX
i=1

V0
iHRR

0H0"i +
1

NT 2

NX
i=1

V0
i(
bH�HR)R0H0"i

+
1

NT 2

NX
i=1

V0
iHR(

bH�HR)0"i + 1

NT 2

NX
i=1

V0
i(
bH�HR)( bH�HR)0"i

which is equal to

1

NT

NX
i=1

h
"0i 


�
T�1=2V0

iH
�i
� vec

�
RR0T�1=2H0

�
+

1

NT

NX
i=1

h
(T�1=2"0iH)
V0

i

i
� vec

�
T�1=2( bH�HR)R0

�
+

1

NT

NX
i=1

h
"0i 


�
T�1=2V0

iH
�i
� vec

�
T�1=2R( bH�HR)0�+ 1

NT 2

NX
i=1

["i 
V0
i] � vec

�
( bH�HR)( bH�HR)0�

then following the argument in the proof of the �rst expression, we can show that it is Op(N�1=2T�1=2)+

Op(N
�1=2k�0 � b�k2) +Op(N�1=2��2NT ). Then, we have

1

NT

NX
i=1

X0
iMbH"i = Op(��1NT k�0 � b�k) +Op(N�1=2��1NT ) +Op(T

�1=2��2NT ) (B.7)

Consider the third term of (B.5). SinceMbH�MH = �T�1( bH�HR)R0H0�1HR( bH�HR)0�1( bH�
HR)( bH�HR)0�1H(RR0 � (H0H=T )

�1
)H0, we have

1

NT

NX
i=1

X0
iMbHVi�i �

1

NT

NX
i=1

X0
iMHVi�i

=� 1

NT 2

NX
i=1

�00i F
00( bH�HR)R0H0Vi�i �

1

NT 2

NX
i=1

�00i F
00HR( bH�HR)0Vi�i

� 1

NT 2

NX
i=1

�00i F
00( bH�HR)( bH�HR)0Vi�i �

1

NT 2

NX
i=1

�00i F
00H(RR0 � (H0H=T )

�1
)H0Vi�i

� 1

NT 2

NX
i=1

V0
i(
bH�HR)R0H0Vi�i �

1

NT 2

NX
i=1

V0
iHR(

bH�HR)0Vi�i

� 1

NT 2

NX
i=1

V0
i(
bH�HR)( bH�HR)0Vi�i �

1

NT 2

NX
i=1

V0
iH(RR

0 � (H0H=T )
�1
)H0Vi�i:

Following the argument in the proof of the �rst expression of the second term, we can show that
the �rst expression is Op(N�1=2T�1=2) � T�1kH00( bH � HR)k, which is Op(N�1=2T�1=2k�0 � b�k) +
Op(N

�1=2T�1=2��2NT ) by Lemma B.2(a); The second expression is Op(N
�1=2) � T�1=2k bH�HRk, which
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is Op(N�1=2k�0 � b�k) +Op(N�1=2��1NT ) by Proposition 5; the third term is Op(N�1=2) � T�1kH00( bH�
HR)k�T�1=2k bH�HRk, which is dominated by the second expression; the forth term is Op(N�1=2T�1=2)�
kRR0� (H0H=T )

�1 k, which is Op(N�1=2T�1=2k�0� b�k)+Op(N�1=2T�1=2��2NT ) by Lemma B.2(c); the
�fth term and the sixth term both are Op(N�1=2T�1=2) � T�1=2k bH�HRk, which are dominated by the
second term, thus omitted; the seventh term is Op(N�1=2) �T�1k bH�HRk2, which is also dominated by
the second term; the eighth term is Op(N�1=2T�1) � kRR0 � (H0H=T )

�1 k, which is dominated by the
forth term. Then, we have

1

NT

NX
i=1

X0
iMbHVi�i =

1

NT

NX
i=1

X0
iMHVi�i +Op(N

�1=2k�0 � b�k) +Op(N�1=2��1NT ): (B.8)

In addition, with Lemma B.2 (f), we can derive that

1

NT

NX
i=1

X0
i(MbH �MH)Xi = Op(k�0 � b�k) +Op(��1NT ) = op(1): (B.9)

With equations (B.6) to (B.9), we can rewrite (B.5) as follows" 
1

NT

NX
i=1

X0
iMHXi

!
+ op(1)

#
(b� � �) = 1

NT

NX
i=1

X0
iMHVi�i +Op(�

�2
NT )

which implies that

b� � � =  1

NT

NX
i=1

X0
iMHXi

!�1
1

NT

NX
i=1

X0
iMHVi�i +Op(�

�2
NT ):

Then we have b� � � = Op(N�1=2) +Op(�
�2
NT ). It is easy to show that

1

NT

NX
i=1

X0
iMHXi =

1

NT

NX
i=1

V0
iMHVi =

1

NT

NX
i=1

V0
iVi +Op(T

�1);

1

NT

NX
i=1

X0
iMHVi�i =

1

NT

NX
i=1

V0
iMHVi�i =

1

NT

NX
i=1

V0
iVi�i ++Op(T

�1):

Thus, for the slope heterogeneous model, we can derive the following expression as given in Theorem 6

b� � � =  1

NT

NX
i=1

V0
iVi

!�1
1

NT

NX
i=1

V0
iVi�i +Op(�

�2
NT ):

Next, we derive an asymptotic representation in slope heterogeneous case as given in Corollary 8.
Since �� = N

�1PN
i=1 �i�

0
i and Zi = Xi �N�1PN

j=1Xj�
0
i�

�1
� �j , we have

1

NT

NX
i=1

Z0iMHZi �
1

NT

NX
i=1

X0
iMHXi

=
1

N2T

NX
i=1

NX
j=1

X0
jMHXi�

0
i�

�1
� �j =

1

N2T

NX
i=1

NX
j=1

V0
jMHVi�

0
i�

�1
� �j

=
1

N2T

NX
i=1

NX
j=1

E(V0
jVi)�

0
i�

�1
� �j +

1

N2T

NX
i=1

NX
j=1

(V0
jVi � E(V0

jVi))�
0
i�

�1
� �j

� 1

N2T 2

NX
i=1

NX
j=1

V0
jH(H

0H=T )�1H0Vi�
0
i�

�1
� �j :
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The �rst term is N�2T�1
PN

i=1 E(V0
iVi)�

0
i�

�1
� �i by Assumption B2(i), which is bounded in norm by

�N�2PN
i=1 k�ik2k�

�1
� k = Op(N�1) by Assumption B2(iv). The second term is Op(N�1T�1=2). The

third term is bounded by T�1 � (N�1PN
i=1 kT�1=2H0Vikk�ik)2k��1

� kk(H0H=T )�1k = Op(T�1). With
the above three terms, we have

1

NT

NX
i=1

Z0iMHZi �
1

NT

NX
i=1

X0
iMHXi = Op(N

�1) +Op(T
�1)

which implies that 
1

NT

NX
i=1

Z0iMHZi

!�1
�
 
1

NT

NX
i=1

X0
iMHXi

!�1
= Op(N

�1) +Op(T
�1):

With this equation and the fact that (NT )�1
PN

i=1X
0
iMHVi�i = Op(N

�1=2), we can derive that

b� � � =  1

NT

NX
i=1

Z0iMHZi

!�1
1

NT

NX
i=1

X0
iMHVi�i +Op(�

�2
NT ): (B.10)

Furthermore, we can show that

1

N2T

NX
i=1

NX
`=1

�0i�
�1
� �`X

0
`MHVi�i

=vec

 
1

N2T

NX
i=1

NX
`=1

�0i�
�1
� �`V

0
`Vi�i

!
� 1

N2T

NX
i=1

NX
`=1

�0i�
�1
� �`V

0
`H(H

0H)�1H0Vi�i

=
1

N
� 1p
NT

NX
i=1

�
(�0iV

0
i)
 �0i

�
� vec

"
��1
�

 
1p
NT

NX
`=1

�`V
0
`

!#

� 1p
NT

� 1
N

NX
i=1

�0i�
�1
�

 
1p
NT

NX
`=1

�`V
0
`H

!
(H0H=T )�1(T�1=2H0Vi)�i

=Op(N
�1) +Op(N

�1=2T�1):

It is easy to show thatN�2T�1
PN

i=1

PN
`=1 �

0
i�

�1
� �`X

0
`MH"i = Op(N

�1=2T�1=2) andN�1T�1
PN

i=1X
0
iMH"i =

Op(N
�1=2T�1=2). With (B.10) and the above facts, we can derive that

b� � � =  1

NT

NX
i=1

Z0iMHZi

!�1
1

NT

NX
i=1

Z0iMHei +Op(�
�2
NT )

as Zi = Xi �N�1PN
`=1 �

0
i�

�1
� �`X`.

Lastly, we consider the case in which the panel�s slope is homogeneous. Then �i = 0, which implies
that H0 = F0, �0i = �

0
i and ei = "i. By Proposition A.3 in Bai (2009a), b� has the following asymptotic

representation

b� � � = 1

NT

NX
i=1

Z0iMHZi

!�1
1

NT

NX
i=1

Z0iMHei

�
 
1

NT

NX
i=1

Z0iMHZi

!�1
1

N2T

NX
i=1

TX
t=1

Z0iH(H
0H)�1��1

� �jEe2it

�
 
1

NT

NX
i=1

Z0iMHZi

!�1
1

N2T

NX
i=1

NX
j=1

X0
iMHE(eje0j)H(H0H)�1��1

� �i +Op(�
�3
NT )

=

 
1

NT

NX
i=1

Z0iMHZi

!�1
1

NT

NX
i=1

Z0iMHei +
1

N
�NT +

1

T
�NT +Op(�

�3
NT ):
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Thus, we complete the proof. �

Lemma B.3 Under Assumptions B1 to B4, when the slopes are heterogeneous, we have

(a) N�1kb���R�10k2 = 1

N

NX
i=1

kb�i �R�1�0i k2 = Op(k�0 � b�k2) +Op(��2NT ) ;
(b) N�1(b���R�10)0� =

1

N

NX
i=1

(b�i �R�1�0i )�
00
i = Op(k�0 � b�k) +Op(��2NT ) ;

(c) b�0 b�=N �R�1(�0�=N)R�10 = Op(k�0 � b�k) +Op(��2NT ) ;
(d) (b�0 b�=N)�1 �R0(�0�=N)�1R = Op(k�0 � b�k) +Op(��2NT ) ;
(e)

1

N

NX
i=1

kb�i �R�1�0i k = Op(k�0 � b�k) +Op(��1NT ) ;
(f)

1

N

NX
i=1

kT�1=2Xikkb�i �R�1�0i k = Op(k�0 � b�k) +Op(��1NT ) ;
Proof of Lemma B.3. Since yi �Xi

b� = H0�0i +Vi�i + "i +Xi(�
0 � b�), we have

b�i �R�1�0i =T
�1 bH0(yi �Xi

b�)�R�1�0i

=T�1 bH0H0�0i �R�1�0i + T
�1 bH0Vi�i + T

�1 bH0"i + T
�1 bH0Xi(�

0 � b�)
=T�1 bH0(H0 � bHR�1)�0i + T

�1 bH0Vi�i + T
�1 bH0"i + T

�1 bH0Xi(�
0 � b�)

with H0 = (H0 � bHR�1) + bHR�1. For (a), we have,

1

N

NX
i=1

kb�i �R�1�0i k2 �4kT�1 bH0(H0 � bHR�1)k2 1
N

NX
i=1

k�0i k2 +
4

N

NX
i=1

kT�1 bH0Vi�ik2

+
4

N

NX
i=1

kT�1 bH0"ik2 +
4

N

NX
i=1

kT�1 bH0Xi(�
0 � b�)k2:

Hereafter we omit the scale 4. With Lemma B.2(b), the �rst term is Op(k�0 � b�k2) + Op(��4NT ). The
second term is bounded in norm by

1

T
kRk2 � 1

N

NX
i=1

kT�1=2H0Vi�ik2 + kT�1=2( bH�HR)k2 � 1N
NX
i=1

kT�1=2Vi�ik2

=Op(k�0 � b�k2) +Op(��2NT ):
Following the proof of the second term, we can prove that the third term is Op(k�0 � b�k2) +Op(��2NT ).
It is easy to show that the forth term is Op(k�0 � b�k2). Thus,

1

N

NX
i=1

kb�i �R�1�0i k2 = Op(k�0 � b�k2) +Op(��2NT ):
Consider (b), we have

1

N

NX
i=1

(b�i �R�1�0i )�
00
i =

1

T
bH0(H0 � bHR�1) � 1

N

NX
i=1

�0i�
00
i +

1

NT

NX
i=1

bH0Vi�i�
00
i

+
1

NT

NX
i=1

bH0"i�
00
i +

1

NT

NX
i=1

bH0Xi(�
0 � b�)�00i :
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The �rst term is Op(k�0�b�k)+Op(��2NT ) by Lemma B.2(b). By decomposition bH = ( bH�HR)+HR, we
can derive that the second and the third terms is Op(N�1=2T�1=2)+Op(N

�1=2k�0�b�k)+Op(N�1=2��1NT ).
It is easy to show that the forth term is Op(k�0 � b�k). With the above four terms, we can derive that

1

N

NX
i=1

(b�i �R�1�0i )�
00
i = Op(k�0 � b�k) +Op(��2NT ):

By adding and substracting terms, (a) and (b), we have (c) and (d). For (e), we have,

1

N

NX
i=1

kb�i �R�1�0i k �kT�1 bH0(H0 � bHR�1)k 1
N

NX
i=1

k�0i k+
1

N

NX
i=1

kT�1 bH0Vi�ik

+
1

N

NX
i=1

kT�1 bH0"ik+
1

N

NX
i=1

kT�1 bH0Xi(�
0 � b�)k:

The �rst term is Op(k�0 � b�k) +Op(��2NT ) by Lemma B.2(b). The second term is bounded in norm by

1

N

NX
i=1

kT�1R0H0Vi�ik+
1

N

NX
i=1

kT�1( bH�HR)0Vi�ik

�T�1=2kRk � 1
N

NX
i=1

kT�1=2H0Vi�ik+
T�1=2( bH�HR)0 1

N

NX
i=1

kT�1=2Vi�ik

=Op(k�0 � b�k) +Op(��1NT )
by Proposition 5. Similarly, we can derive that the third term is Op(k�0 � b�k) +Op(��1NT ). It is easy to
show that the fourth term is Op(k�0 � b�k). Then

1

N

NX
i=1

kb�i �R�1�0i k = Op(k�0 � b�k) +Op(��1NT ):
Analogously, we can show that (f). Thus, we complete the proof. �

Proof of Theorem 9.

For the slope homogeneous case, we refer the proof to Bai (2009a). Then, it is su¢ cient to prove the
theorem in the slopes heterogeneous case. Consider the heterogeneous slope models. We decompose
N�1T�1

PN
i=1

bZ0iMbHbZi into the following �ve terms, that is
1

NT

NX
i=1

bZ0iMbHbZi � 1

NT

NX
i=1

Z0iMHZi

=
1

NT

NX
i=1

X0
i(MbH �MH)Xi �

1

N2T

NX
i=1

NX
`=1

�0i�
�1
� �`X

0
i(MbH �MH)X`

� 1

N2T

NX
i=1

NX
`=1

(b�i �R�1�0i )
0 b��1

�
b�`X0

iMbHX`

� 1

N2T

NX
i=1

NX
`=1

�0iR
�10
�b��1

� �R0(�0�=N)�1R
� b�`X0

iMbHX`

� 1

N2T

NX
i=1

NX
`=1

�0i(�
0�=N)�1R(b�` �R�1�`)X

0
iMbHX`:
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The �rst term is bounded in norm by

1

N

NX
i=1

kT�1=2Xik2 � kMbH �MHk = Op(��1NT ):

Analogously, we can show that the second term is Op(�
�1
NT ). Note that kMbHX`k � kX`k and k b��1

� k =
Op(1), which is implied by Lemma B.3(d). Then the third term is bounded in norm by

1

N

NX
i=1

kb�i �R�1�0i kkT�1=2Xik �
1

N

NX
`=1

kT�1=2X`kkb�`k � k b��1
� k = Op(��1NT )

with Lemma B.3(f). Analogously, we can show that the �fth term is Op(�
�1
NT ). With Lemma B.3(d), we

can derive that the forth term is Op(�
�1
NT ). Combining the above terms, we have

1

NT

NX
i=1

bZ0iMbHbZi � 1

NT

NX
i=1

Z0iMHZi = Op(�
�1
NT ):

With the above equation, we can show that 
1

NT

NX
i=1

bZ0iMbHbZi
!�1

�
 
1

NT

NX
i=1

Z0iMHZi

!�1
= Op(�

�1
NT ): (B.11)

Thus, to investigate the stochastic orders of b�NT and b�NT are Op(1), it is su¢ cient to focus on the sto-
chastic orders of two terms �N�1T�2

PN
i=1

PT
t=1

bZ0i bH b��1
�
b�ibe2it and �N�1T�1

PN
i=1X

0
iMbH b
 bH b��1

�
b�i.

Speci�cally, we have

b�yNT =� 1

NT 2

NX
i=1

TX
t=1

bZ0i bH b��1
�
b�ibe2it

=� 1

NT 2

NX
i=1

TX
t=1

X0
i
bH b��1

�
b�ibe2it + 1

N2T 2

NX
i=1

NX
`=1

TX
t=1

b�0i b��1
�
b�`X0

`
bH b��1

�
b�ibe2it

=b�y1NT + b�y2NT
and

b�yNT =� 1

NT

NX
i=1

X0
iMbH b
 bH b��1

�
b�i = � 1

NT

NX
i=1

X0
i
b
 bH b��1

�
b�i + 1

NT 2

NX
i=1

X0
i
bH bH0 b
 bH b��1

�
b�i

=� 1

N2T

NX
i=1

NX
j=1

TX
t=1

xitbh0tbe2jt b��1
�
b�i + 1

N2T 2

NX
i=1

NX
j=1

TX
t=1

X0
i
bHbhtbh0tbe2jt b��1

�
b�i

=b�y1NT + b�y2NT :
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For the term b�y1NT , which has the following decomposition (ignoring the sign)
1

NT 2

NX
i=1

TX
t=1

X0
i
bH b��1

�
b�ibe2it � 1

NT

NX
i=1

TX
t=1

X0
iH(H

0H)�1��1
� �iE(v0it�i + "it)2

=
1

NT 2

NX
i=1

TX
t=1

X0
i(
bH�HR) b��1

�
b�ibe2it + 1

NT 2

NX
i=1

TX
t=1

X0
iHR(

b��1
� �R0��1

� R)b�ibe2it
+

1

NT 2

NX
i=1

TX
t=1

X0
iHRR

0��1
� R(b�i �R�1�0i )be2it

+
1

NT 2

NX
i=1

TX
t=1

X0
iHRR

0��1
� �0i

�be2it � E(v0it�i + "it)2�
+

1

NT 2

NX
i=1

TX
t=1

X0
iH
�
RR0 � (H0H=T )�1

�
��1
� �0i

�be2it � E(v0it�i + "it)2�
�G1 +G2 +G3 +G4 +G5:

Using that beit = v0it�i + "it � x0it(b� � �0)� (b�i �R�1�0i )
0bht � �00i R�10(bht �R0h0t ), we have 1T

TX
t=1

be2it � 1

T

TX
t=1

E(v0it�i + "it)2


�
 1T

TX
t=1

h
x0it(

b� � �0)� (b�i �R�1�0i )
0bht � �00i R�10(bht �R0h0t )

i2
+ 2

 1T
TX
t=1

h
x0it(

b� � �0)� (b�i �R�1�0i )
0bht � �00i R�10(bht �R0h0t )

i
(v0it�i + "it)


+

 1T
TX
t=1

(v0it�i + "it)
2 � 1

T

TX
t=1

E(v0it�i + "it)2


� 3
T

TX
t=1

kxitk2kb� � �0k2 + kb�i �R�1�0i k2 �
3

T

TX
t=1

kbhtk2
+ k�0i k2kR�1k2 � 3

T

TX
t=1

kbht �R0h0tk2 +
2

T

TX
t=1

kxitkkv0it�i + "itkkb� � �0k
+
2

T

b�i �R�1�0i


TX
t=1

h0t (v
0
it�i + "it)

 � kRk
+
2

T
kb�ikk�ik �


TX
t=1

(bht �R0h0t )v
0�1
it

 kb�ik

TX
t=1

(bht �R0h0t )"it


+

 1T
TX
t=1

(v0it�i + "it)
2 � 1

T

TX
t=1

E(v0it�i + "it)2
 :

(B.12)

Consider the term G4, which is bounded in norm by

1

N
p
T

NX
i=1

kXikk�0i k
 1T

TX
t=1

�be2it � E(v0it�i + "it)2�
 � kRk2k��1

� kkT�1=2Hk

=
1

N

NX
i=1

kT�1=2Xikk�0i k
 1T

TX
t=1

�be2it � E(v0it�i + "it)2�
 �Op(1):
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By plugging (B.12) into the above equation, G4 is further bounded in norm by

3

N

NX
i=1

kT�1=2Xik3k�0i k � kb� � �0k2 + 1

N

NX
i=1

kT�1=2Xikk�0i kkb�i �R�1�0i k2 �
3

T

TX
t=1

kbhtk2
+
1

N

NX
i=1

kT�1=2Xikk�0i k3kR�1k2 � 3
T

TX
t=1

kbht �R0h0tk2

+
2

NT

NX
i=1

kT�1=2Xikk�0i k
TX
t=1

kxitkkv0it�i + "itkkb� � �0k
+

2

N
p
T

NX
i=1

kT�1=2Xikk�0i kkb�i �R�1�0i k
 1p

T

TX
t=1

h0t (v
0
it�i + "it)

 � kRk
+
2

N

NX
i=1

kT�1=2Xikk�0i kkb�ikk�ik
vuut 1

T

TX
t=1

kvitk2 �

vuut 1

T

TX
t=1

kbht �R0h0tk2

+
2

N

NX
i=1

kT�1=2Xikk�0i kkb�ik
vuut 1

T

TX
t=1

k"itk2 �

vuut 1

T

TX
t=1

kbht �R0h0tk2

+
1

N

1p
T

NX
i=1

kT�1=2Xikk�0i k
 1p

T

TX
t=1

(v0it�i + "it)
2 � 1p

T

TX
t=1

E(v0it�i + "it)2
 :

The �rst term is Op(kb���0k2), the third term is Op(kb���0k2)+Op(��2NT ) by Proposition 5, the fourth
term is Op(kb� � �0k), the eighth term is Op(T�1=2). Following the proof of Lemma B.3 (a) and (e), we
show that

1

N

NX
i=1

kT�1=2Xikk�0i kkb�i �R�1�0i k2 = Op(kb� � �0k2) +Op(��2NT );
1

N

NX
i=1

kT�1=2Xikk�0i kkb�i �R�1�0i k
 1p

T

TX
t=1

h0t (v
0
it�i + "it)

 = Op(kb� � �0k) +Op(��1NT ):
Then the second term is Op(kb���0k2)+Op(��2NT ), the �fth term is Op(T�1=2kb���0k)+Op(T�1=2��1NT ).
It is easy to show that the sixth term and the seventh term both are Op(kb� � �0k) + Op(��1NT ). With
the above terms, G4 = Op(kb���0k)+Op(��1NT ). With Lemma B.2(c), we can show that G5 = Op(kb��
�0k2) +Op(��1NT kb� � �0k) +Op(��3NT ). The term G3 is decomposed into

G3 =
1

NT 2

NX
i=1

TX
t=1

X0
iHRR

0��1
� R(b�i �R�1�0i )E(v0it�i + "it)2

+
1

NT 2

NX
i=1

TX
t=1

X0
iHRR

0��1
� R(b�i �R�1�0i )

�be2it � E(v0it�i + "it)2� :
The �rst term can be shown to be Op(kb� � �0k) +Op(��1NT ), by following the argument in the proof of
Lemma B.3(e). The second term will be proved to be Op(kb� � �0k2) + Op(��1NT kb� � �0k) + Op(��2NT ),
by following the argument in the proof of G4. G2 is decomposed into

G2 =
1

NT 2

NX
i=1

TX
t=1

X0
iHR(

b��1
� �R0��1

� R)b�iE(v0it�i + "it)2
+

1

NT 2

NX
i=1

TX
t=1

X0
iHR(

b��1
� �R0��1

� R)b�i �be2it � E(v0it�i + "it)2� :
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The �rst term is bounded in norm by

1

NT

NX
i=1

TX
t=1

kT�1=2Xikkb�ikkE(v0it�i + "it)2k � kT�1=2HkkRkk b��1
� �R0��1

� Rk = Op(kb� � �0k) +Op(��2NT )
with Lemma B.3(c). Following the argument in the proof of G4, the second term is shown to be op(kb��
�0k)+op(��2NT ). Then G2 = Op(kb���0k)+Op(��2NT ). Similarly, we can show that G1 = Op(kb���0k)+
Op(�

�1
NT ). Thus, we derive that

1

NT 2

NX
i=1

TX
t=1

X0
i
bH b��1

�
b�ibe2it � 1

NT

NX
i=1

TX
t=1

X0
iH(H

0H)�1��1
� �iE(v0it�i + "it)2 = Op(kb� � �0k) +Op(��1NT ):

Analogously, we can prove that

1

N2
p
N

1

T
p
T

NX
i=1

NX
`=1

TX
t=1

b�0i b��1
�
b�`X0

`
bH b��1

�
b�ibe2it

� 1

N2
p
N

1p
T

NX
i=1

NX
`=1

TX
t=1

b�0i b��1
�
b�`X0

`H(H
0H)�1��1

� �iE(v0it�i + "2it)

=Op(N
�1=2T 1=2kb� � �0k) +Op(N�1=2T 1=2��1NT ):

Following the argument in the proof Lemma A.11 of Bai (2009), we can derive that

1

N2T

NX
i=1

NX
`=1

TX
t=1

b�0i b��1
�
b�`X0

`H(H
0H)�1��1

� �iE(v0it�i + "2it)

� 1

N2T

NX
i=1

NX
`=1

TX
t=1

�0i�
�1
� �`X

0
`H(H

0H)�1��1
� �iE(v0it�i + "2it)

=Op(kb� � �0k) +Op(��1NT ):
Thus, we can also derive that

1

N2T 2

NX
i=1

NX
`=1

TX
t=1

b�0i b��1
�
b�`X0

`
bF b��1

�
b�ibe2it

� 1

N2T

NX
i=1

NX
`=1

TX
t=1

�0i�
�1
� �`X

0
`H(H

0H)�1��1
� �iE(v0it�i + "2it)

=Op(kb� � �0k) +Op(��1NT ):
With the above all terms, we have

b�y1NT + b�y2NT + 1

NT

NX
i=1

TX
t=1

X0
iH(H

0H)�1��1
� �iE(v0it�i + "it)2

� 1

N2T

NX
i=1

NX
`=1

TX
t=1

�0i�
�1
� �`X

0
`H(H

0H)�1��1
� �iE(v0it�i + "2it)

=Op(kb� � �0k) +Op(��1NT ) = Op(��1NT ):
Combining the above facts, the bias term b�NT = Op(1).

Next, we consider b�NT where there is no serial correlation. First, note that b�y1NT has the following
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decomposition (ignoring the sign)

1

N2T

NX
i=1

NX
j=1

TX
t=1

xitbh0tbe2jt b��1
�
b�i � 1

N2T

NX
i=1

NX
j=1

TX
t=1

xith
0
tE(v0jt�j + "jt)2(H0H=T )�1��1

� �i

=
1

N2T

NX
i=1

NX
j=1

TX
t=1

xitbh0t(be2jt � E(v0jt�j + "jt)2) b��1
�
b�i

+
1

N2T

NX
i=1

NX
j=1

TX
t=1

xit(bht �R0ht)
0E(v0jt�j + "jt)2 b��1

�
b�i

+
1

N2T

NX
i=1

NX
j=1

TX
t=1

xith
0
tRE(v0jt�j + "jt)2( b��1

� �R0��1
� R)b�i

+
1

N2T

NX
i=1

NX
j=1

TX
t=1

xith
0
tRE(v0jt�j + "jt)2R0��1

� R(b�i �R�1�i)

+
1

N2T

NX
i=1

NX
j=1

TX
t=1

xith
0
tE(v0jt�j + "jt)2(RR0 � (H0H=T )�1)��1

� �i

=H1 + � � �+H5:

Consider H3, which is bounded in norm by

1

NT

NX
j=1

TX
t=1

khtk
 
1

N

NX
i=1

kxitk2
!1=2

kE(v0jt�i + "jt)2k �

vuut 1

N

NX
i=1

kb�ik2kRk b��1
� �R0��1

� R


=Op(kb� � �0k) +Op(��2NT )
with Lemma B.3(c), then H3 = Op(kb� � �0k) + Op(��2NT ). Analogously, we can show that H5 =
Op(kb� � �0k) +Op(��2NT ). Next, note that, analogous to (B.12), we have 1N

NX
j=1

be2jt � 1

N

TX
j=1

E(v0jt�j + "jt)2


� 3
N

NX
j=1

kxjtk2kb� � �0k2 + 3

N

NX
j=1

kb�j �R�1�0jk2 � kbhtk2
+
3

N

NX
j=1

k�0jk2kR�1k2 � kbht �R0h0tk2 +
2

N

NX
j=1

kxjtkkv0jt�j + "jtkkb� � �0k
+
2

N
kbht �R0h0tk


NX
j=1

�0j (v
0
it�i + "it)

 � kR�1k

+
2

N
kbhtk �


NX
j=1

(b�j �R�1�0j )v
0
jt�j

+ 2

N
kbhtk


NX
j=1

(b�j �R�1�0j )"jt


+

 1N
NX
j=1

(v0jt�j + "jt)
2 � 1

N

NX
j=1

E(v0jt�j + "jt)2
 :

(B.13)
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Consider H1, which is bounded in norm by

1

N2T

TX
t=1

kbhtk

NX
j=1

(be2jt � E(v0jt�j + "jt)2)


NX
i=1

kxitkkb�ik � k b��1
� k

� 1

NT

TX
t=1

kbhtk
vuut 1

N

NX
i=1

kxitk2

NX
j=1

(be2jt � E(v0jt�j + "jt)2)
 �
 b��1

�


vuut 1

N

NX
i=1

kb�ik2
=
1

T

TX
t=1

kbhtk
vuut 1

N

NX
i=1

kxitk2
 1N

NX
j=1

(be2jt � E(v0jt�j + "jt)2)
 �Op(1)

with (B.13), it is further bounded in norm by

3

T

TX
t=1

kbhtk 1
N

NX
i=1

kxitk2
!3=2

kb� � �0k2
+
3

T

TX
t=1

kbhtk3 1
N

NX
i=1

kxitk2
!1=2

� 1
N

NX
j=1

kb�j �R�1�0jk2

+
3

T

TX
t=1

kbht �R0h0tk2kbhtk
 
1

N

NX
i=1

kxitk2
!1=2

� 1
N

NX
j=1

k�0jk2kR�1k2

+
2

T

TX
t=1

kbhtk 1
N

NX
i=1

kxitk2
!1=2

1

N

NX
j=1

kxjtkkv0jt�j + "jtkkb� � �0k
+
2

T

TX
t=1

kbhtkkbht �R0h0tk
 
1

N

NX
i=1

kxitk2
!1=2  1N

NX
j=1

�0j (v
0
it�i + "it)

 � kR�1k

+
2

T

TX
t=1

kbhtk2 1
N

NX
i=1

kxitk2
!1=2vuut 1

N

NX
j=1

kvjtk2k�jk2 �

vuut 1

N

NX
j=1

kb�j �R�1�0jk2

+
2

T

TX
t=1

kbhtk2 1
N

NX
i=1

kxitk2
!1=2vuut 1

N

NX
j=1

k"jtk2 �

vuut 1

N

NX
j=1

kb�j �R�1�0jk2

+
1

T

TX
t=1

kbhtk 1
N

NX
i=1

kxitk2
!1=2  1N

NX
j=1

(v0jt�j + "jt)
2 � 1

N

NX
j=1

E(v0jt�j + "jt)2
 :

(B.14)

Following the arguments in the proof of G4, we can show the terms in the above equation is Op(kb� �
�0k) +Op(��1NT ), then H1 = Op(kb� � �0k) +Op(��1NT ). Analogous to the arguments in the proof of G1,
H2 = Op(kb���0k)+Op(��1NT ). Following the argument in the proof G3, H4 = Op(kb���0k)+Op(��1NT ).
Collecting the above terms, we can derive that

b�y1NT �
0@� 1

N2T

NX
i=1

NX
j=1

TX
t=1

xith
0
tE(v0jt�j + "jt)2(H0H=T )�1��1

� �i

1A = Op(kb� � �0k) +Op(��1NT ):
Analogously, we can derive that

b�y2NT � 1

N2T 2

NX
i=1

NX
j=1

TX
t=1

X0
iH(H

0H=T )�1hth
0
tE(v0jt�j + "jt)2�

�1
� �i

=Op(kb� � �0k) +Op(��1NT ):
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Note that it is easy to show that N�2T�1
PN

i=1

PN
j=1

PT
t=1 xith

0
tE(v0jt�j + "jt)2(H0H=T )�1��1

� �i =

Op(1) and N�2T�2
PN

i=1

PN
j=1

PT
t=1X

0
iH(H

0H=T )�1hth
0
tE(v0jt�j + "jt)2�

�1
� �i = Op(1). Collecting

the above facts, we obtain that

1

N2T

NX
i=1

NX
j=1

TX
t=1

xitbh0tbe2jt b��1
�
b�i � 1

N2T 2

NX
i=1

NX
j=1

TX
t=1

X0
i
bHbhtbh0tbe2jt b��1

�
b�i = Op(1)

which implies that b�yNT = Op(1). Similarly, we can show that e�NT for the case with serially correlated
errors is Op (1) :

Note that, for slope heterogeneous models, by Theorem 6 and Corollary 8, we have

b� � � = 1

NT

NX
i=1

Z0iMHZi

!�1
1

NT

NX
i=1

X0
iMHVi�i +Op(�

�2
NT );

=

 
1

NT

NX
i=1

Z0iMHZi

!�1
1

NT

NX
i=1

Z0iMHei +Op(�
�2
NT )

combining the facts that b�yNT = Op(1) and b�yNT = Op(1), we have
e� � � =b� � � � 1

N
b�NT � 1

T
b�NT

=

 
1

NT

NX
i=1

Z0iMHZi

!�1
1

NT

NX
i=1

X0
iMHVi�i +Op(�

�2
NT )

=

 
1

NT

NX
i=1

Z0iMHZi

!�1
1

NT

NX
i=1

Z0iMHui +Op(�
�2
NT )

which implies that e� � � = Op(N�1=2) +Op(�
�2
NT ).

For the slope homogeneous case, by Bai (2009a), we have

e� � � =

 
1

NT

NX
i=1

Z0iMHZi

!�1
1

NT

NX
i=1

Z0iMH"i +Op(�
�3
NT )

=

 
1

NT

NX
i=1

Z0iMHZi

!�1
1

NT

NX
i=1

Z0iMHui +Op(�
�3
NT )

Thus, we complete the proof. �

Proof of Theorem 11

For the heterogeneous slope models, with (B.11), we have 
1

NT

NX
i=1

bZ0iMbHbZi
!�1

�
 
1

NT

NX
i=1

Z0iMHZi

!�1
= Op(�

�1
NT )

which implies that  
1

NT

NX
i=1

bZ0iMbHbZi
!�1

�A�1
0 = op(1) (B.15)

For the case with homogeneous slopes, by proof of Proposition 2 in Bai (2009b), we can also derive that 
1

NT

NX
i=1

bZ0iMbHbZi
!�1

�
 
1

NT

NX
i=1

Z0iMHZi

!�1
= Op(�

�1
NT )
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which implies that  
1

NT

NX
i=1

bZ0iMbHbZi
!�1

�A�1
1 = op(1): (B.16)

Using the above facts, we just need to focus on the term
PN

i=1
bZ0iMbHbuibu0iMbHbZi. For the homoge-

neous slope case, bui = H0�0i + "i +Xi(�
0 � ��), we have

1

NT

NX
i=1

bZ0iMbHbuibu0iMbHbZi � 1

NT

NX
i=1

bZ0iMbH"i"0iMbHbZi
=
1

NT

NX
i=1

bZ0iMbHXi(�
0 � ��)"0iMbHbZi + 1

NT

NX
i=1

bZ0iMbHXi(�
0 � ��)(�0 � ��)0X0

iMbHbZi
+

1

NT

NX
i=1

bZ0iMbH"i(�0 � ��)0X0
iMbHbZi + 1

NT

NX
i=1

bZ0iMbHXi(�
0 � ��)�0iH0MbHbZi

+
1

NT

NX
i=1

bZ0iMbHH0�0i (�
0 � ��)0X0

iMbHbZi + 1

NT

NX
i=1

bZ0iMbH"i�0iH0MbHbZi
+

1

NT

NX
i=1

bZ0iMbHH0�0i�
0
iH

0MbHbZi + 1

NT

NX
i=1

bZ0iMbHH0�0i "
0
iMbHbZi

=I1 + I2 + � � �+ I8:

Consider the term I1, which is decomposed into

1

NT

NX
i=1

bZ0iMbHXi(�
0 � ��)"0iMbHbZi

=
1

NT

NX
i=1

X0
iMbHXi(�

0 � ��)"0iMbHXi �
1

N2T

NX
i=1

NX
`=1

b�0i b��1
�
b�`X0

`MbHXi(�
0 � ��)"0iMbHXi

� 1

N2T

NX
i=1

NX
`=1

X0
iMbHXi(�

0 � ��)"0iMbHb�0i b��1
�
b�`X`

+
1

N3T

NX
i=1

NX
`=1

NX
j=1

b�0i b��1
�
b�`X0

`MbHXi(�
0 � ��)"0iMbHb�0i b��1

�
b�jXj

=I1:1 + I1:2 + I1:3 + I1:4:

Consider I1:1, it is further decomposed into

1

NT

NX
i=1

X0
iMHXi(�

0 � ��)"0iMHXi +
1

NT

NX
i=1

X0
i(MbH �MH)Xi(�

0 � ��)"0iMHXi

+
1

NT

NX
i=1

X0
iMHXi(�

0 � ��)"0i(MbH �MH)Xi +
1

NT

NX
i=1

X0
i(MbH �MH)Xi(�

0 � ��)"0i(MbH �MH)Xi:

The second term is bounded in norm by

1

N

NX
i=1

kT�1=2"ikkT�1=2Xik3 � TkMbH �MHkk�0 � ��k = Op(N�1=2T 1=2��1NT ):

Similarly, we can prove that the third term isOp(N�1=2T 1=2��1NT ) and the fourth term isOp(N
�1=2T 1=2��2NT ).

The �rst term is

1

NT

NX
i=1

X0
iMHXi(�

0 � ��)"0iXi �
1

NT

NX
i=1

X0
iMHXi(�

0 � ��)"0iH(H0H)�1H0Xi
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which is bounded in norm by

1

N

NX
i=1

kT�1=2Xik2kT�1=2"0iXik � T 1=2k�0 � ��k

+
1

N

NX
i=1

kT�1=2Xik3kT�1=2"0iHk � k(H0H=T )�1kkHkk�0 � ��k = Op(N�1=2):

Then we can show that I1:1 = Op(N�1=2T 1=2��1NT ). Analogously, we can prove that I1:2 = Op(N�1=2T 1=2��1NT ),
I1:3 = Op(N

�1=2T 1=2��1NT ) and I1:4 = Op(N
�1=2T 1=2��1NT ). Thus, I1 = Op(N

�1=2T 1=2��1NT ). Following
the argument in the proof of I1, we can show that I3 = Op(N�1=2T 1=2��1NT ). Consider the term I2, which
is bounded in norm by

1

N

NX
i=1

kT�1=2bZik2kT�1=2Xik2 � Tk�0 � ��k2 = Op(N�1):

Note that MbHH =MbH(H� bHR�1), then I4 is bounded in norm by

1

N

NX
i=1

kT�1=2bZik2kT�1=2Xikk�ik � TkT�1=2(H� bHR�1)kk�0 � ��k = Op(N�1=2T 1=2��1NT ):

Analogously, we can show that I5 = Op(N�1=2T 1=2��1NT ). Consider the term I6, which is

1

NT

NX
i=1

X0
iMbH"i�0iH0MbHXi �

1

N2T

NX
i=1

NX
`=1

b�0i b��1
�
b�`X0

`MbH"i�0iH0MbHXi

� 1

N2T

NX
i=1

NX
j=1

X0
iMbH"i�0iH0MbHb�0i b��1

�
b�`X`

+
1

N3T

NX
i=1

NX
j=1

NX
`=1

b�0i b��1
�
b�`X0

`MbH"i�0iH0MbHb�0i b��1
�
b�jXj

=I6:1 + I6:2 + I6:3 + I6:4:

For the term I6:1, it is

1

NT

NX
i=1

X0
i"i�

0
i(H� bHR�1)0Xi �

1

NT 2

NX
i=1

X0
i"i�

0
i(H� bHR�1)0 bH bH0Xi

� 1

NT

NX
i=1

X0
i"iH(H

0H)�1H�0i(H� bHR�1)0Xi +
1

NT 2

NX
i=1

X0
i"iH(H

0H)�1H�0i(H� bHR�1)0 bH bH0Xi

+
1

NT

NX
i=1

X0
i(MbH �MH)"i�

0
i(H� bHR�1)0Xi �

1

NT 2

NX
i=1

X0
i(MbH �MH)"i�

0
i(H� bHR�1)0 bH bH0Xi:

The �rst term is bounded in norm by

p
T � 1

N

NX
i=1

kT�1=2X0
i"ikk�ikkT�1(H� bHR�1)0Xik = Op(T 1=2��2NT ):

Analogously, we can show that both the second term, the third term and the fourth term areOp(T 1=2�
�2
NT ).

The �fth term is bounded in norm by

T

N

NX
i=1

kT�1=2XikkT�1=2"ikk�ikkT�1(H� bHR�1)0Xik � kMbH �MHk = Op(T��3NT ):

S.28



Analogously, we can show that the sixth term is Op(T�
�3
NT ). Collecting the above six terms, we can show

that I6:1 = Op(T��3NT ). Following the argument in the proof of I6:1, we can prove that I6:2 = Op(T�
�3
NT ),

I6:3 = Op(T�
�3
NT ) and I6:4 = Op(T�

�3
NT ). Thus, we derive that I6 = Op(T�

�3
NT ). Consider I7, which is

decomposed into

I7 =
1

NT

NX
i=1

X0
iMbHH0�0i�

0
iH

0MbHXi �
1

N2T

NX
i=1

NX
`=1

X0
iMbHH0�0i�

0
iH

0MbHX`
b�0i b��1

�
b�`

� 1

N2T

NX
i=1

NX
`=1

b�0i b��1
�
b�`X0

`MbHH0�0i�
0
iH

0MbHXi

+
1

N3T

NX
i=1

NX
j=1

NX
`=1

b�0i b��1
�
b�`X0

`MbHH0�0i�
0
iH

0MbHX0
j
b�0i b��1

�
b�j

=I7:1 + I7:2 + I7:3 + I7:4:

For I7:1, it can be further decomposed into

1

NT

NX
i=1

X0
i(H� bHR�1)�0i�

0
i(H� bHR�1)0Xi

� 1

NT 2

NX
i=1

X0
i
bH bH0(H� bHR�1)�0i�

0
i(H� bHR�1)0Xi

� 1

NT 2

NX
i=1

X0
i(H� bHR�1)�0i�

0
i(H� bHR�1)0 bH bH0Xi

+
1

NT 3

NX
i=1

X0
i
bH bH0(H� bHR�1)�0i�

0
i(H� bHR�1)0 bH bH0Xi:

The �rst term is bounded in norm by

1

N

NX
i=1

kT�1=2Xikk�ik2kT�1X0
i(H� bHR�1)k � TkT�1=2(H� bHR�1)k = Op(T��3NT ):

Analogously, we can prove that the second term and the third term both are Op(T�
�3
NT ), the fourth

term is Op(T�
�4
NT ). Collecting the above four terms, we can derive that I7:1 = Op(T�

�3
NT ). Similarly,

we can prove that I7:2 = Op(T�
�3
NT ), I7:3 = Op(T�

�3
NT ) and I7:4 = Op(T�

�3
NT ). Consequently, we have

I7 = Op(T��3NT ). Following the argument in the proof of I6, we can prove that I8 = Op(T�
�3
NT ).

Combining I1 to I8, we can derive that

1

NT

NX
i=1

bZ0iMbHbuibu0iMbHbZi = 1

NT

NX
i=1

bZ0iMbH"i"0iMbHbZi +Op(T��3NT ):
Next, we consider the term (NT )

�1PN
i=1

bZ0iMbH"i"0iMbHbZi, which is
1

NT

NX
i=1

bZ0iMbH"i"0iMbHbZi = 1

NT

NX
i=1

X0
iMbH"i"0iMbHXi �

1

N2T

NX
i=1

NX
`=1

X0
iMbH"i"0iMbHX`

b�0i b��1
�
b�`

� 1

N2T

NX
i=1

NX
`=1

b�0i b��1
�
b�`X0

`MbH"i"0iMbHXi

+
1

N3T

NX
i=1

NX
j=1

NX
`=1

b�0i b��1
�
b�jX0

jMbH"i"0iMbHX`
b�0i b��1

�
b�`

=I9:1 + I9:2 + I9:3 + I9:4:
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For I9:1, we have

1

NT

NX
i=1

X0
iMbH"i"0iMbHXi �

1

NT

NX
i=1

X0
iMH"i"

0
iMHXi

=
1

NT

NX
i=1

X0
i(MbH �MH)"i"

0
iMHXi +

1

NT

NX
i=1

X0
iMH"i"

0
i(MbH �MH)Xi

+
1

NT

NX
i=1

Xi(MbH �MH)"i"
0
i(MbH �MH)Xi

=I9:1:1 + I9:1:2 + I9:1:3:

SinceMbH�MH = �T�1( bH�HR)R0H0�1HR( bH�HR)0�1( bH�HR)( bH�HR)0�1H(RR0�
�
T�1H0H

��1
)H0,

I9:1:1 is

� 1

NT 2

NX
i=1

X0
i(
bH�HR)R0H0"i"

0
iMHXi �

1

NT 2

NX
i=1

X0
iHR(

bH�HR)0"i"0iMHXi

� 1

NT 2

NX
i=1

X0
i(
bH�HR)( bH�HR)0"i"0iMHXi

� 1

NT 2

NX
i=1

X0
iH(RR

0 �
�
T�1H0H

��1
)H0"i"

0
iMHXi:

The �rst term is bounded in norm by

1

N

NX
i=1

kT�1=2XikkT�1=2H0"ikkT�1=2"0iXik � kT�1=2( bH�HR)kkRk
+
1

N

NX
i=1

kT�1=2Xik2kT�1=2H0"ik2 � kT�1=2( bH�HR)kkRkk(T�1H0H)�1kkT�1=2Hk = Op(��1NT ):

The second term is bounded in norm by

1

N

NX
i=1

kT�1=2XikkT�1( bH�HR)0"ikkT�1=2"0iXik � T 1=2kT�1=2HkkRk

+
1

N

NX
i=1

kT�1=2Xik2kT�1=2H0"ikkT�1( bH�HR)0"ik � T 1=2kRkk(T�1H0H)�1kkT�1=2Hk2

=Op(T
1=2��2NT ):

Analogously, we can prove that the third term is Op(T 1=2�
�2
NT ) and the fourth term is Op(�

�2
NT ). Thus,

I9:1:1 = Op(T 1=2��2NT ). I9:1:2 is the transpose of I9:1:1, then I9:1:2 = Op(T 1=2�
�2
NT ). Following the argument

in the proof of I9:1:1, I9:1:3 = Op(T��3NT ). Thus,

1

NT

NX
i=1

X0
iMbH"i"0iMbHXi �

1

NT

NX
i=1

X0
iMH"i"

0
iMHXi = Op(T�

�3
NT ):
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Similarly, we can derive that

1

N2T

NX
i=1

NX
`=1

X0
iMbH"i"0iMbHX`

b�0i b��1
�
b�` � 1

N2T

NX
i=1

NX
`=1

X0
iMH"i"

0
iMHX`�

0
i�

�1
� �` = Op(T�

�3
NT )

1

N2T

NX
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NX
`=1

b�0i b��1
�
b�`X0

`MbH"i"0iMbHXi �
1

N2T

NX
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NX
`=1

�0i�
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� �`X

0
`MH"i"

0
iMHXi = Op(T�

�3
NT )

1

N3T

NX
i=1

NX
j=1

NX
`=1

b�0i b��1
�
b�jX0

jMbH"i"0iMbHX`
b�0i b��1

�
b�`

� 1

N3T
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NX
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NX
`=1

�0i�
�1
� �jX

0
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0
iMHX`�

0
i�

�1
� �` = Op(T�

�3
NT ):

Thus, we can derive that

1

NT

NX
i=1

bZ0iMbH"i"0iMbHbZi � 1

NT

NX
i=1

Z0iMH"i"
0
iMHZi = Op(T�

�3
NT ):

Also, since

1

NT

NX
i=1

bZ0iMbHbuibu0iMbHbZi = 1

NT

NX
i=1

bZ0iMbH"i"0iMbHbZi +Op(T��3NT )
1

NT

NX
i=1

Z0iMH"i"
0
iMHZi �

1

NT

NX
i=1

Z0iMHE("i"0i)MHZi = Op(N
�1=2)

and noting that Zi = eXi, we have, for the homogeneous slope model,

1

NT

NX
i=1

bZ0iMbHbuibu0iMbHbZi �B1 = op(1): (B.17)
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For the heterogeneous slopes case, using bui = H0�0i +Vi�i + "i +Xi(�
0 � ��), we have

1

NT 2

NX
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bZ0iMbHbuibu0iMbHbZi � 1

NT 2

NX
i=1

bZ0iMbHVi�i�
0
iV

0
iMbHbZi

=
1

NT 2

NX
i=1

bZ0iMbHXi(�
0 � ��)"0iMbHbZi + 1

NT 2

NX
i=1

bZ0iMbHXi(�
0 � ��)(�0 � ��)0X0
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+

1

NT 2
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+
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bZ0iMbHVi�i(�
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+
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+
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0
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0
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+
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0
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+
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bZ0iMbH"i�0iV0
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+
1

NT 2

NX
i=1

bZ0iMbH"i"0iMbHbZi
=J1 + J2 + � � �+ J15:

The term J1 is bounded in norm by

1

N

NX
i=1

kT�1=2bZik2kT�1=2XikkT�1=2"ik � k�0 � ��k = Op(N�1=2):

Following the argument in the proof of the term J1, we can prove that J2 = Op(N�1), the terms J3 to
J7 both are Op(N�1=2). Note that MbHH =MbH(H� bHR�1), J8 is bounded in norm by 1

NT 2

NX
i=1

bZ0iMbH"i�0i(H� bHR�1)0MbHbZi


� 1

NT 2

NX
i=1

kT�1=2bZik2kT�1=2"ikk�ik � kT�1=2(H� bHR�1)k = Op(��1NT ):

Analogously, we can derive that J9 = Op(��2NT ), the terms J10 to J12 both are Op(�
�1
NT ). Consider J13,
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which is

1

NT 2

NX
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bZ0i(MbH �MH)Vi�i"
0
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+
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+
1

NT 2

NX
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0
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=J13:1 + � � �+ J13:7:

The term J13:1 is bounded in norm by

1

N

NX
i=1

kT�1=2bZik2kT�1=2Vikk�ikkT�1=2"ik � kMbH �MHk = Op(��1NT )

Similarly, we can derive that J13:2 and J13:3 both are Op(��1NT ), and J13:4 is Op(T�1=2). Note thatbZi � Zi = N�1PN
`=1(�

0
i�

�1
� �` � b�0i b��1

�
b�`)X`, we can derive J13:5 and J13:6 both are Op(T�1=2). It

is easy to show that J13:7 is Op(T�1=2). Thus, we have J13 = Op(��1NT ). Following the argument in the
proof of J13, we can derive that J14 = Op(��1NT ) and J15 = Op(�

�1
NT ). Collecting the above terms, we have
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bZ0iMbHVi�i�
0
iV

0
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It is easy to show that
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0
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bZi +Op(��1NT ):
To proceed, we investigate N�1T�2
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i=1

bZ0iMHVi�i�
0
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Consider J16:2 (ignoring the sign), we have
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The �rst term is bounded in norm by
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Analogously, we can prove that the remaining terms except the fourth term is Op(�
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NT ). For the fourth

term, it is
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which is bounded in norm by
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�1):

Collecting the above terms, we can derive that J16:2 = Op(��1NT ). Following the argument in the proof of
J16:2, we can derive that J16:3 = Op(��1NT ) and J16:4 = Op(�

�1
NT ). Consider the term J16:1, which is
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It is easy to show that the last three terms both are Op(T�1). Then
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which implies that
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Collecting the terms J1 to J16, we can derive that
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which implies that
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NX
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bZ0iMbHbuibu0iMbHbZi �C0 = op(1): (B.18)

Combining the equations (B.15), (B.16), (B.18) and (B.17), we can derive the theorem easily. Thus, we
complete the proof. �
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