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Abstract

We study how high-frequency traders (HFTs) strategically decide their speed level

in a market with a random speed bump. If HFTs recognize the market impact of their

speed decision, they perceive a wider bid-ask spread as an endogenous upward-sloping

cost of being faster. We find that the speed elasticity of the bid-ask spread (slope of the

endogenous cost function) negatively depends on the expected length of a speed bump

since a longer delay makes market makers insensitive to HFTs’ speed increment. Hence,

speed bumps promote the investment of HFTs in high-speed technology by reducing

the marginal cost of getting faster, undermining their intended purpose of protecting

market makers. Depending on the expected length of a bump, an arms race among HFTs

exhibits both complementarity and substitution. These findings explain the ambiguous

empirical results regarding speed bumps and adverse selection for market makers.
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1 Introduction

“Never before in human history have people gone to so much trouble and

spent so much money to gain so little speed.”—Flash Boys: A Wall Street

Revolt by Lewis (2014).

The ever-increasing speed of electronic financial markets pushes traders to be lightning

fast. They are obsessed with being the first to acquire information for trading purposes,

spending significant amounts of money on high-speed technologies. These include custom-

built fiber-optic cables, microwave/millimeter-wave transmissions, and even lasers that

can send signals from one place to another. With these sophisticated tools, high-frequency

traders (HFTs) can extract information from massive layers of signals at the speed of light.

Regulators are concerned about how quickly HFTs can access and act on information.

It is argued that the informational advantage that HFTs obtain through increasing speed

exposes market makers to the cost of adverse selection in the sense of Glosten and Milgrom

(1985). That is, HFTs engage with market makers only if they receive news that is not yet

publicly available and find market makers’ orders outdated and mispriced.1 By exploiting

their speed advantage, HFTs “snipe” stale quotes provided by market makers (Budish et al.,

2015).

The speed race by HFTs has prompted some exchange platforms to slow down HFT-

involved transactions by introducing speed bumps. A speed bump imposes a delay on the

arrival or execution of orders at a market, aiming to protect traders from exposure to the

above-mentioned risks. For example, the Investors Exchange (IEX) adopts a 350-microsecond

speed bump on incoming orders and outgoing information from the exchange. The Ae-

quitas NEO Exchange and TMX Group, both Canadian exchanges, also apply a few mil-

liseconds of random delay to non-cancellation orders.2 Specifically, the speed bump in the

latter markets aims to slow down only HFT-involved orders by classifying traders into high-

frequency (latency-sensitive) and non-high-frequency categories.3

1One of the most frequently cited market benefits is liquidity provision by high-frequency market makers.

However, extremum events, such as the May 2010 “flash crash,” make regulators increasingly concerned that

the liquidity provided by HFTs is likely to evaporate when it is most needed. See, Conrad et al. (2015) for the

empirical study of this liquidity evaporation.
2See Appendix F of Baldauf and Mollner (2017) which provides a comprehensive summary of institutional

details.
3Depending on the institutional details, the types of traders (or orders) to be protected may change. For
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This paper analyzes the effect of speed bumps on speed decision of HFTs and on the

adverse selection cost for market makers. We focus on a non-cancellation delay aimed at

hampering sniping behavior of HFTs. As mentioned in Subsection 1.1, the empirical results

are ambiguous: in some studies, less (or more) frequent executions by platforms do not

affect a spread, while others find that they mitigate the problem. In this study, these results

can be reconciled by considering a strategic speed decision by HFTs with an endogenously

derived cost.

In our model, a speed bump can increase the speed of HFTs. Specifically, once we allow

HFTs to strategically choose their speed level, a speed bump increases the marginal benefit

of being faster. The strategic choice of speed means that each HFT decides her speed level,

anticipating the reaction of price setters (i.e., market makers). That is, just as the monopo-

listic trader of Kyle (1985) knows the price impact of her trading behavior, each HFT in our

model knows the price impact of her speed decision.4

These conditions arise because major high-speed financial institutions have significant

shares in the trading volume in markets.5 For example, Table I shows the top five high-

frequency financial institutions and their shares in the BrokerTec platform, through which

more than half of the U.S. Treasury is traded. Typically, HFTs benefit from a huge number of

small, short-lived transactions, and each trading decision does not impact the equilibrium

price. However, when an institution decides a speed technology, she becomes aware of

the market impact of her choice because a sizable number of transactions involve the same

speed technology and affect the equilibrium price.

Once HFTs understand how their speed influences the price, they perceive the reaction

of the bid-ask spread set by market makers as an endogenous cost of being faster. As the lit-

erature points out, the faster the HFTs, the more severe adverse selection the market makers

instance, the speed bump in the IEX is more likely to protect pegged orders from non-HFTs, but not market

makers on a lit LOB, from being sniped by HFTs. The non-cancellation delay and the HFT-specific delay

adopted by the two Canadian exchanges are more likely to save market makers from adverse selection cost.
4The term “speed” includes the choice of the geographical location of the firm’s information server. For

example, a spot in the mid-Atlantic ocean is the optimal point to exploit the price difference between the

NYSExchange and the London Stock Exchange.
5There is anecdotal evidence for HFTs being aware of the market impact of their speed choice. For example,

clients who purchase a speed device from a trade technology company often try to hide it by asking to peel

corporate logos from shipments due to confidentiality clauses. See, for example, https://www.wsj.com/ and

Lewis (2014).
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Table I: Top 5 Firms by Volume on BrokerTec

Firm Volume($ millions) Market Share
Jump Trading 2,291,000 28%
Citadel LLC 1,004,000 12%

Teza Technologies 905,000 11%
KCG 798,000 10%

JP Morgan 649,000 8%
Note: It tabulates shares in May-June, 2015. Data regarding top-10
HFTs is also available and indicates a similar result. Source: Risk.com,
October 2015, Issue 10.

face. Thus, a higher speed puts positive pressure on the bid-ask spread and, in turn, reduces

the sniping profit of HFTs. Therefore, the spread works as an endogenous upward-sloping

cost of being faster. To our knowledge, the existing models of the speed decision of HFTs,

such as those by Foucault et al. (2003, 2016), and Delaney (2018), deal only with the ex-

ogenous sunk cost of speed. By contrast, we propose endogenous cost as a means through

which a speed bump affects the speed decision of HFTs. This is because market makers’

adverse selection risk, as well as the equilibrium spread, is affected by a speed bump, while

the traditional exogenous sunk cost is independent of it. Specifically, the sensitivity of the

spread to HFTs’ speed, which is an endogenous marginal cost, determines the optimal speed

level, and it varies with the length of a speed bump.

To separate this intuition, we consider a simple benchmark structure: homogeneous

markets with a single HFT, having a random speed bump of a d-period with l = E[d]. If

l increases, market makers know that they are less likely to be picked off by the HFT. As

a result, they do not care much about a marginal increase in the HFT’s speed, and their

pricing behavior, i.e., the bid-ask spread, becomes less responsive. This induces a lower

endogenous marginal cost of speed investment for the HFT, providing her with a stronger

incentive to be faster.

As an extension, we consider a speed competition among multiple HFTs—an “arms

race”—and allow them to serve not only as snipers but also as high-frequency market mak-

ers. In the literature, such as Foucault et al. (2003), traders’ speed levels interact with each

other because one trader’s speed affects other traders’ probability of being picked off. Im-

portantly, unlike the traditional exogenous (sunk) cost, our endogenous cost of speed pro-

vides a new channel for the interaction because a bid-ask spread is an equilibrium variable.
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We find that a speed bump has the same positive impact on the equilibrium speed as in the

benchmark model, and, depending on the relative significance of the exogenous and en-

dogenous costs, the arms race can exhibit both strategic complementarity and substitution.

If the exogenous sunk cost is relatively insignificant compared to the endogenous cost,

an arms race creates strategic complementarity. In this case, a speed-up by a competitor

(trader B) makes an HFT (trader A) respond tit for tat to keep herself faster. This is because

the speed-up by the opponent as a market maker reduces the sensitivity of a spread to

trader A’s speed-up. Also, a faster opponent decreases the sniping probability of trader

A, who cares less about an adverse price movement caused by her speed increase. As a

result, a faster opponent reduces trader A’s marginal cost of being faster and enhances her

investment in speed.

When an arms race exhibits strategic complementarity, the introduction of a speed bump

or a longer delay can backfire. By the same arguments as in the benchmark, a higher l

makes each HFT willing to be faster, triggering a fiercer speed competition and positive

externality due to complementarity. Although a speed bump protects market makers and

mitigates adverse selection via its direct effect, the equilibrium speed increases substantially

and dominates the direct protection, worsening adverse selection risk.

On the other hand, if the exogenous cost is more significant, playing tit for tat is costlier,

leading to a negative reaction of trader A to a speed-up by her opponent. Intuitively, trader

A needs to pay a sunk cost anyway, while it rewards her only if she can snipe trader B’s limit

order. If trader B becomes faster, a decline in the sniping probability of trader A makes the

sunk cost more salient, leaving her reluctant to increase her speed. This reasoning follows

the existing literature, in which an arms race involves strategic substitution. In this case,

a speed bump or a longer delay can achieve its primary purpose: HFTs slow down and

adverse selection is mitigated.

We can compare our strategic model with the endogenous cost of speed to a traditional

model with an exogenous sunk cost. These models can be seen as two extreme cases. On

the one hand, traditional models show that an arms race involves strategic substitution and

that a speed bump reduces the equilibrium speed, mitigating adverse selection both by the

protection of market makers (the direct effect) and by slowing HFTs down. These effects are

summarized by the solid arrows in Figure I. On the other hand, a speed bump in our strate-

gic model triggers an intensive arms race, dramatically increases the equilibrium speed, and
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Figure I: Effects of a speed bump

Note:The right box summarizes the effect of speed bumps on market makers (MMs)’ behavior, and the left
box represents those on the HFTs’ speed choice.

imposes more severe adverse selection (the red dashed arrow in Figure I). By adjusting the

cost parameter for an exogenous sunk cost and by changing the expected length of delay,

our model navigates between these extremes. Thus, our results propose a way to recon-

cile the existing empirical findings that report positive, negative, and insignificant effects of

speed bumps.

1.1 Literature Review

This paper contributes to the literature on high-frequency trading and market structure (see

Jones, 2013; O’Hara, 2015; Menkveld, 2016 for reviews). Biais et al. (2015) analyze the effect

of an arms race and show that a higher speed triggers more severe adverse selection for

slow traders. Delaney (2018) describes the speed decision of HFTs as a model of irreversible

investment with an optimal stopping time, while Bongaerts and Van Achter (2016) view

it from a perspective of high-frequency market making.6 However, the speed decision in

these models is discrete (i.e., being fast or not), and they abstract away from addressing the

implications of the equilibrium level of speed. Based on Foucault et al. (2003), Liu (2009)

6Aı̈t-Sahalia and Saglam (2013), Hoffmann (2014), Foucault et al. (2016) construct models with HFTs to

address the effect of high-frequency market making. See Conrad et al. (2015) for the empirical study of high-

frequency quoting.
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and Foucault et al. (2016) investigate a continuous choice of speed based on the monitoring

intensity of traders.7 However, traders decide on the speed level simultaneously with other

types of players (e.g., market makers), which requires them to focus on the exogenous cost

of speed investment. Our model differs from theirs since the speed decision is continuous

and bears an endogenous cost due to the strategic motive of HFTs. Our results are unique

since these two modifications empower us to analyze how speed choice is affected by speed

bumps.

As traders get faster, questions arise regarding the speed and frequency of executions

by a trading platform. By altering the trading frequency of the Kyle-type model, Du and

Zhu (2017) show that a low-frequency platform works better to reallocate assets, though

it limits the ability to react to new information promptly. Pagnotta and Philippon (2018)

also consider platforms’ decisions regarding execution frequency and fees to attract speed-

sensitive traders. Menkveld and Zoican (2017) also explore the effect of latency on HFTs’

strategy and spread, citing risk aversion as a key to generating the result.8 In their analyses,

which pays little attention to the speed choice of HFTs, the frequency of transactions is

determined at a market level and applies to all investors.

Our model shares the same interests as the studies on the impact of slow market struc-

tures, such as frequent batch auctions (Budish et al., 2015; Haas and Zoican, 2016) and speed

bumps (Baldauf and Mollner, 2017; Brolley and Cimon, 2017; Aldrich and Friedman, 2018),

on HFTs’ behavior and adverse selection for market makers. However, they do not con-

sider a continuous optimal speed decision by HFTs with a delay-sensitive endogenous cost.

Thus, they conclude that these mechanisms mitigate adverse selection for market makers,

an assertion that will be overturned in our model.9

The scope of the literature extends to other empirical findings regarding the HFT and the

7Foucault et al. (2013) consider the optimal choice of the monitoring intensity by high-frequency snipers

and market makers. It involves the exogenous cost but is not strategic. Both snipers and market makers

obtain a positive profit from trading due to heterogeneous private values of an asset, generating strategic

complementarity in an arms race.
8Menkveld and Zoican (2017) obtain a hump-shaped equilibrium spread against a delay. This stems from

the switch from the pure-strategy to mixed-strategy equilibrium, and it depends on the risk aversion parame-

ter.
9Moreover, these models do not study the coexistence of slow and fast markets, which is analyzed in

Appendix A.2. In independent work, Brolley and Cimon (2017) explore this coexistence and find a result

consistent with ours, although it stems from a completely different mechanism.
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effect of bumps.10 Hu (2018) analyzes the SEC approval of the IEX as a national securities

exchange, making traders route their orders under the “Order Protection Rule,” and finds

a net improvement in market quality measured by the spreads. Shkilko and Sokolov (2016)

exploit interruptions of messaging via microwave communication caused by precipitation

(i.e., rain or snow) to find a reduction in quoted spreads.11 Chen et al. (2017) investigate

the effect of a bump in the TMX Alpha, reporting an increase in quoted spreads. In our

model, we can reconcile these results because, depending on the relative significance of the

exogenous cost and the level of expected delay, speed bumps will affect a spread negatively,

positively, or not at all.

2 The Benchmark Model

This section proposes a simple benchmark model to separate the main mechanism. Con-

sider a one-shot exchange of an asset, in which a short-lived HFT tries to snipe stale limit

orders. This single asset has a stochastic liquidation value v = ±s with equal probability. v

is publicly announced at a stochastic time T, which occurs as a Poisson arrival with intensity

g. With the public announcement, the asset is liquidated. It is traded during t < T due to

liquidity needs or the arrival of private information, as in Glosten and Milgrom (1985) and

Budish et al. (2015). Following the convention of market microstructure, we assume that

each trader can hold only a unit position.

10Hendershott and Moulton (2011) analyze the impact of the hybrid market at the NYSE and show that

the faster market structure increases quoted and effective spreads and adverse selection cost. Riordan and

Storkenmaier (2012) focus on the system upgrade in the Deutsche Boerse, Frino et al. (2014), Boehmer et al.

(2015), and Brogaard et al. (2015) study the colocation as an example of latency reduction, and Hasbrouck

and Saar (2013) construct a measure of low-latency in the NASDAQ to find subsequent shrinkages in spreads.

On the other hand, Ye et al. (2013) analyze the importance of the tick-size constraint and report that latency

declines at the NASDAQ did not significantly alter spreads (except for the smallest stocks).
11Although the interruption by precipitation may have a similar effect to a speed bump, they mentioned

that this phenomenon is not paid much attention by financial institutions, while traders anticipate a speed

bump and take it into their decision making.
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2.1 Traders

There is a continuum of competitive slow, uninformed market makers with a unit mass.

At the beginning of the trading game (t = 0), all market makers submit a single-unit limit

order with a half spread s to commit to trade at this price. The order will disappear from the

limit order book if there is a taker or if the market maker cancels it based on public news.

To focus on the short-horizon behavior, we assume that market makers do not return to the

market once they exit. Cancellation is immediate and incurs no cost.

There is one (N = 1) risk-neutral high-frequency trader (HFT). Before t = 0, the HFT

invests in a technology that provides the speed f.12 Equipped with the speed device with

f, she can observe private news regarding v and react to it with a Poisson probability with

intensity f. We denote TH as the arrival time of this Poisson news. Upon the arrival of the

news, the HFT immediately submits market orders to “snipe” stale limit orders provided

by the continuum of market makers.13,14

In addition, there is a continuum of liquidity traders who are exposed to a liquidity

shock. The shock exogenously makes them submit buy or sell market orders with equal

probability. We can think of them as noise traders, and trading against them conveys no

information to market makers. Let TL be the timing of the Poisson shock which arrives with

intensity b(� g).

Finally, as in Haas and Zoican (2016) and Brolley and Cimon (2017), assume that trad-

ing information, including traders’ identity, becomes public immediately after an order is

executed, i.e., the market is perfectly transparent.

12In the benchmark model with N = 1, imposing a sunk cost on the speed investment does not change our

result. In the extension with N � 2, we need a positive and convex cost to hamper the strategic complemen-

tarity and to derive an equilibrium.
13If we give an index i 2 [0, 1] to each market maker, the HFT submits marketable limit orders to obtain

sniping profit s � si from each i. Since all the market makers quote a competitive homogeneous spread, the

HFT’s aggregate gain is
R 1

0 (s � s)di = s � s.
14We can show that the HFT does not intentionally delay the timing of the order submission: if she gets

information at t, she immediately sends the order at t. Putting a time lag between obtaining the information

and submitting the order can reduce a spread and increase sniping profit. However, without a commitment

device, this cannot be an equilibrium since it is always optimal for the HFT at the information arrival time TH

to snipe immediately given the lag she announces at t = 0, i.e., there is a time inconsistency.
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2.2 Market Structure

A continuous market imposes a random speed bump on incoming orders from the HFT.

Specifically, an order submitted to the market at date t arrives at t + d, where d is a ran-

dom delay. Orders from liquidity traders and cancellation requests from market makers are

executed promptly.15 Thus, during t 2 (t, t + d), outstanding limit orders can be illusory

for the HFT if liquidity traders trade against them or if market makers cancel due to public

news.

For notational simplicity, we assume that d follows an exponential distribution with a

parameter b, and the expected length of a delay is denoted by l ⌘ E[d] = b�1.16

Alternative Market Structures

As an extension, we analyze a situation with multiple HFTs, N � 2, in Section 3, in which

each HFT serves not only as a sniper but also as a high-frequency market maker. This

setting sheds light on a strategic property of an “arms race.” Appendix A.1 considers a case

where market makers can continuously update (cancel and resubmit) their limit orders. The

coexistence of slow and fast markets is analyzed in Appendix A.2. This shows that a bump

triggers a shift of adverse selection from slow markets with a bump to fast markets with no

bumps, consistent with the empirical result by Chen et al. (2017).

2.3 Equilibrium

We conceptualize our model as a sequential game with two stages, as depicted in Figure II.

In the first stage, the HFT decides the level of f.17 Given this, each market maker submits

a competitive limit order, anticipating a confrontation with the informed HFT and liquidity

traders. In the trading stage, the HFT looks for an opportunity to snipe.

15For simplicity, we assume that there are no other sources for a latency, while the primitive parameters,

such as b, can be seen as the potential latency that characterizes the speed of each type of trader.
16The randomness of d does not significantly affect our result, while it makes the solution simpler. The case

with a deterministic d is available on request.
17Of course, the setting of the speed decision used in our model does not comprehensively reflect real-world

conditions. As Dugast et al. (2014) suggest, some components of speed choice may occur simultaneously with

market makers’ behavior. However, we believe that the ex-ante strategic speed decision is still significant

because HFTs would not invest in speed ex-ante if they did not exploit it in an ex-post trading game.

10



Figure II: Timeline

The equilibrium concept is a subgame perfect equilibrium, and the HFT chooses the

optimal level of speed f in light of the optimal reaction of market makers. That is, the HFT

knows the price impact of her speed choice, as the monopolist in Kyle (1985) knows the price

impact of her trading behavior. In contrast to Kyle (1985), however, the trading stage in

t 2 (0, T) is competitive, and the HFT behaves as if her trading strategy does not have a

price impact. This is because she splits her orders and sends them to an infinitely large

number of market makers given the outstanding limit orders. This follows the literature

and captures the real-world behavior of HTFs, who send and cancel a massive number of

small orders within a very short time frame.

First, we analyze the behavior of market makers given f. Then, we formulate the ex-

pected profit function of the HFT in the trading stage given market makers’ behavior and

the speed. Finally, we determine the optimal speed for the HFT.

2.3.1 Optimal Behavior of Market Makers

In a perfect competition, a limit order sent by a market maker yields zero expected profit,

as in Glosten and Milgrom (1985). Without a loss of generality, let us consider how an ask

price s is determined when v = s.18

Given that a market order arrives at date t, it is possible that the taker is information

or liquidity driven. As a result, the spread is set so that s = E[v|buy order at t], where the

expectation is over d and the timing of the trade. The key effect of a bump is to reduce the

probability of being picked off by the HFT or, put differently, to increase the probability that

18Results for the opposite case can be given by a symmetric argument.
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market makers observe public news to cancel their limit orders.

Suppose that a trade takes place at date t. If t < d, there is no fear of facing an information-

driven HFT because of the speed bump. Put differently, the fastest possible arrival of the

HFT occurs at d. During this “safe interval,” liquidity traders arrive before the public news

with a density be�(b+g)t. Otherwise, market makers can cancel their orders with density

ge�(b+g)t at period t.

If a trade occurs at t � d, on the other hand, it bears an adverse selection cost: the HFT

buys an asset only if the limit order is mispriced given the true information. The HFT gets

to trade if she becomes informed at t � d, and there are no liquidity shocks or public news

events during (t � d, t). In this case, a market maker obtains s � s. Market makers can also

trade with liquidity traders if there is a liquidity shock at t, and the HFT becomes informed

after t � d. In this case, the trading profit is s � E[v] = s. Since d is stochastic, the expected

return for a market maker is

V = Ed

Z d

0
sbe�(b+g)tdt +

Z •

d
(bs + f(s � s))e�y(t�d)e�(b+g)ddt

�
, (1)

where the expectation relates to d, and y ⌘ f + b + g. The first integral in (1) shows the

trading profit in t < d, while the second describes the case with t � d.

This formulation is the result of the following probabilities: given d,

Pr(HFT arrives at t) = fe�f(t�d)e�(b+g)t,

Pr(Liq. traders arrive at t) = be�f(t�d)e�(b+g)t,

Pr(cancellation at t) = ge�f(t�d)e�(b+g)t,

which lead to the second term in (1). It is then possible to get the equilibrium spread from

the break-even condition:

Proposition 1. The equilibrium (half) spread is given by

s =
fEd[e�(b+g)d]

(f + b)Ed[e�(b+g)d] + by
b+g (1 � Ed[e�(b+g)d])

=

f
1+ly
f

1+ly + b
s. (2)

A few remarks on s are in order. First, a direct effect of the speed bump appears in the

form of the discount on the arrival rate of the HFT, which is given by (1 + ly)�1. This term
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mitigates adverse selection risk by generating a safe interval.

If f is fixed, a lower l induces a higher spread since the expected delay becomes shorter.

Also, an infinitely small expected delay (l ! 0) makes s converge to the traditional equilib-

rium spread of Glosten and Milgrom (1985). Therefore, as Budish et al. (2015) and Baldauf

and Mollner (2017) point out, the direct effect of a bump mitigates the adverse selection cost

for market makers.

This argument is built on the assumption that f is fixed, i.e., the HFT’s speed decision

is not influenced by the bump. When the speed choice by the HFT is considered, the speed

bump affects s via the fluctuation of the optimal speed as well. Namely, the optimal f

depends on the expected length of the delay, l. The existing models argue that the incentive

to be faster diminishes as the bump gets longer, i.e., a higher l reduces s not only by the

direct effect but also by making f lower. Our model proposes the opposite effect of l on s

through f.

The following properties of s are useful to understand the mechanism. First, note that

the price impact of the speed is positive:

∂s
∂f

> 0.

We call this the “sensitivity” of a spread (price) to a speed-up by the HFT. It turns out that

this represents the slope of the endogenous cost of being faster. At the same time, we have

the following:

Lemma 1. The sensitivity of the price to the speed is decreasing in l, i.e.,

∂

∂l

✓
∂s
∂f

◆
< 0.

Therefore, the longer the expected delay, the less sensitive the spread becomes. A market

with a higher l is protected by a longer (expected) safe interval, and market makers behave

as if the share (arrival rate) of the HFT is small. Hence, market makers care less about the

speed investment by the HFT, making their pricing behavior less sensitive to f.
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2.3.2 Profit of the HFT

When the HFT becomes informed and submits market orders at t, they will be executed at

t + d if (i) there is no liquidity shock during (t, t + d) and (ii) no public news arrives in the

same interval. This happens with

pt(f, d) ⌘ Pr(TH = t, min{T, TL} > t + d) = fe�yte�(b+g)d. (3)

Thus, if the random delay is d, the profit from sniping at t is pt(f, d)(s � s).

The first coefficient in (3) represents the probability that the HFT obtains the information

at t. The sniping probability involves an additional exponential coefficient, e�(b+g)d, which

shows the disadvantage of the HFT that stems from a speed bump, i.e., front-running by

liquidity traders or cancellation by market makers due to the d-delay. Therefore, a longer

delay directly reduces the expected profit of the HFT in the second stage.

The objective function of the HFT in the first stage takes a simple form:

W(f) ⌘ Ed

Z •

0
pt(f, d)(s � s)dt

�
=

f

y

1
1 + (b + g)l

(s � s). (4)

Note that the HFT always submits unit orders since she exits the market once her orders are

executed, i.e., she is a short-term investor.19

2.3.3 Optimal Speed

We move on to the speed choice by the HFT in the first stage. To obtain an interior solution,

we make the expected length of the delay relatively short:

l <
1p

b(b + g)
. (5)

The intuition behind this condition will be provided after offering our main propositions.

19See Appendix A.1 for a more general setting with continuous updating by market makers and time-

dependent st.
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Under (5), the optimization problem of the HFT is

max
f

W(f) ⌘ Ed

Z •

0
pt(f, d)(s � s)dt

�
, (6)

s.t. s =
f

1+ly
f

1+ly + b
s.

This indicates that the HFT decides f knowing the price impact of her speed decision, i.e.,

she is strategic. In this case, being faster pushes up the price charged by market makers

and saps her sniping profit. For this reason, we can think of the equilibrium spread as an

endogenous cost of speed. Importantly, Lemma 1 suggests that the slope of this endogenous

cost is affected by l, and, in turn, affects the marginal cost of being faster for the HFT.

To analyze how l alters the optimal decision, consider a marginal gain of being faster:

dW
df

= Ed

Z •

0

⇢
(s � s(f))

dpt(f, d)
df

+ pt(f, d)
d

df
(s � s(f))

�
dt
�

. (7)

= (s � s(f))Ed

Z •

0

dpt(f, d)
df

dt
�
(1 � #(f)),

where

# ⌘ � d log(s � s(f))
d log Ed

⇥R •
0 pt(f, d)dt

⇤ > 0.

# is the sensitivity of the sniping profit (s� s) to a change in the expected sniping probability

of the HFT (Ed
⇥R •

0 pt(f, d)dt
⇤
). We call this the elasticity, and Appendix B.1 provides an

explicit formula. Note that obtaining a higher f affects W through two competing channels

and exhibits a price-liquidity tradeoff: it increases the sniping probability (the first term in

[7]), while reducing the sniping profit via the adverse price movement (the second term in

[7]).

When the equilibrium spread s is more sensitive to f than the sniping probability p(f),

being faster harms the profit of the HFT, and incentive to increase f dwindles. On the other

hand, if the HFT knows that the price impact of her speed choice is small, it is more likely

that an improvement in sniping probability (dp
df ) dominates a decline in profit due to the

wider spread ( d(s�s)
df ), luring her to be faster. In other words, for the strategic HFT, the

marginal cost captured by the sensitivity of the spread matters considerably.

The following results guarantees the concavity of the problem (see Appendix B.1 for

proofs):
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Lemma 2. The elasticity is increasing in the speed: d#(f)/df > 0.

When the HFT is fast, market makers estimate that the economy is inhabited by a rela-

tively large measure of the HFT in terms of the arrival rate. Therefore, a marginal increase

in f reduces market makers’ expected profit, and they charge a wide spread to compen-

sate for the expected loss. That is, as the HFT becomes faster, market makers grow more

concerned about facing the HFT, and their pricing behavior is more sensitive to changes in

speed. Thus, as f increases, it is more likely that the steeper endogenous marginal cost of

being faster will outweigh the higher marginal benefit from a higher p, making the objective

function (6) concave.20

As a result, the optimal speed f⇤ is derived by solving for the FOC.

Proposition 2. (i) The optimal speed is given by

f⇤ =

p
b + g(1 + l(b + g))

1 � l
p

b(b + g)
. (8)

(ii) f⇤ is increasing in l.

Proof. See Appendix B.1. ⇤

In contrast to the traditional models, Proposition 2 demonstrates that, if the speed choice

is strategic, a speed bump increases the equilibrium speed of the HFT. This modification of

the speed decision is natural given that several high-frequency financial institutions control

significant shares, as discussed in Section 1 and shown in Table I. When the HFT knows how

her speed investment affects the pricing behavior of market makers, an equilibrium spread

generates an endogenous cost of being faster. This not only guarantees a bounded solution

even without an exogenous cost of speed, but also overturns the traditional result.

The key mechanism is the negative impact of a speed bump on the sensitivity of the price

in Lemma 1. Since a bump intends to slow down the HFT and protect market makers, the

spread becomes insensitive to a change in the speed. That is, an intentional delay endoge-

nously reduces the marginal cost of being faster. Hence, a speed bump does not prevent a

speed race but promotes it, as Proposition 2 attests.

20The condition in (5) is required to make Lemma 2 hold. If l is sufficiently large, market makers become

too insensitive to make d#
df > 0. Thus, the HFT can be infinitely fast, and we need an exogenous cost to make

the problem well defined.
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This surprising finding highlights the main difference of our results from the literature,

such as Budish et al. (2015), Haas and Zoican (2016), and Baldauf and Mollner (2017). As in

their models, if we assume that the HFT does not care about the effect of her speed choice on

the spread, the second effect in (7) disappears. In this case, some exogenous costs of speed

are required to make f⇤ bounded, and the effect of l on f⇤ becomes reversed. We compare

our model to the traditional ones in more detail in Subsection 3.4.

2.4 Effect on Adverse Selection

We are interested in how a speed bump affects adverse selection cost for market makers. It

is straightforward that there are two competing effects. First, as the literature suggests, a

speed bump reduces adverse selection cost because it dampens the probability for market

makers of confronting the HFT. However, our strategic model adds an opposing channel:

a speed bump promotes speed investment by the HFT since it endogenously reduces the

marginal cost of being faster. In the following, we take the equilibrium half spread s as a

measure of adverse selection and investigate its equilibrium behavior.

Proposition 3. The equilibrium spread is independent of the expected delay, i.e., ds/dl = 0.

Proof. See Appendix B.2. ⇤

This result shows that a speed bump cannot mitigate (or worsen) adverse selection for

market makers. Together with (ii) in Proposition 2, this highlights how our model differs

from the existing ones.

With f fixed, a speed bump reduces the profit of the HFT since the first-d periods be-

come safe intervals for market makers and the HFT cannot snipe. To compensate for this

disadvantage, the strategic HFT gets faster. Anticipating the price impact of her speed in-

vestment, she chooses the level of f that eliminates the cost from the speed bump, thereby

muting its effect. As a result, the two competing consequences of a speed bump cancel each

other out.

Put differently, the speed-up due to a bump or a longer delay is an indirect effect of a

change in the price sensitivity, ds
df . Since the reduction of a spread by l is a direct effect,

the speed-up cannot predominate. In the following sections, however, we show that this

finding regarding adverse selection significantly changes if we consider different market

structures.
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3 Multiple HFTs and High-Frequency Market Making

In the real world, HFTs serve not only as takers (snipers) but also as liquidity providers.

We modify the benchmark model to capture this fact. Assume that there are two HFTs

(i = 1, 2), both of whom provide limit orders at t = 0 at a competitive price. At a random

date, Ti ⇠ exp(fi), HFT i obtains private news about v. When the news arrives, it is optimal

for HFT i to immediately send market orders to snipe the stale limit orders of her opponent

(HFT j) and to simultaneously cancel her limit orders.

The behavior of liquidity traders is the same as in the benchmark, but we ignore public

news at T ⇠ exp(g), since it only adds complexity. The other structures of the game stay

the same as in the benchmark. Note that the results with N = 2 can be easily extended to

N � 3 with an additional parameter N that measures the (inverse of) market power. For

technical reasons, assume that b � 1 and focus on the symmetric equilibrium.

3.1 Optimal Behavior of HFTs

Consider HFT j as a high-frequency market maker (HFMM). Her behavior is the same as

that of ordinary market makers in the benchmark model except that she can cancel her limit

orders at Tj ⇠ exp(fj). Thus, the break-even condition provides the following equilibrium

spread:

sj =
fi

fi + b(1 + l(fi + fj + b))
s.

This spread has the same structure as s in (2): it reflects an expected value of v conditional

on the trade. Note that the symmetric equilibrium makes the spreads set by both HFTs the

same; s = s1 = s2.

We turn to the optimal speed decision of HFT i. Since the competition drives her total

profit from market making to zero, her gains come only from the sniping profit. Thus, the

optimization problem is analogous to (4):

max
fi

Wi(f) =
1

1 + l(b + fj)
fi

fi + fj + b
(s � sj),

s.t., sj =
fi

fi + b(1 + l(fi + fj + b))
.

Since this is exactly the same as the benchmark case if we substitute fj for g, the best re-
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sponse function of HFT i is a modified (8):

BRi(fj) =

p
b + fj[1 + l(b + fj)]

1 � l
q

b(b + fj)
, (9)

as long as 1 > l
q

b(b + fj). Otherwise, fi = • is the best response. In this section, we

focus on bounded responses, while Subsection 3.2 analyzes all possible symmetric equilib-

ria.21 The following property of the best response function helps explain the mechanism:

Proposition 4. The best response function exhibits strategic complementarity, i.e., dBRi(fj)
dfj

> 0.

The intuition behind this proposition should be clear if we analyze the marginal gain for

HFT i:

wi ⌘
∂Wi
∂fi

= (s � sj)
∂pi
∂fi

+ pi
∂(s � sj)

∂fi
, (10)

where

pi ⌘
fi

[1 + l(b + fj)]y

represents her sniping probability. The first term is the marginal improvement in the sniping

probability, and the second stands for a decline in the profit. These terms can be seen as the

marginal benefit and cost of being faster. The structure of the marginal gain of increasing fi

is the same as in the benchmark case, while it depends on the speed of the competitor.

Furthermore, we need a cross derivative to obtain the reaction of BRi.

∂wi
∂fj

=

"
(s � sj)

∂2pi
∂fj∂fi

+
∂pi
∂fi

∂(s � sj)

∂fj

#
+

�z                                         }|                                         {"
∂pi
∂fj

∂(s � sj)

∂fi
+ pi

∂2(s � sj)

∂fj∂fi

#
. (11)

When the opponent (HFT j) increases her speed, it affects both the marginal benefit and

cost of being faster for HFT i. The first component of (11) is a change in the marginal benefit

that stems from a marginal improvement in pi. A faster opponent (i) increases or decreases

the marginal improvement in the sniping probability and (ii) raises the sniping profit, mak-

ing it more worthwhile to have a higher pi. These are the first and second terms in the first

brackets in (11). At the same time, a faster opponent reduces the (endogenous) marginal

cost of being faster for HFT i. Intuitively, (iii) since a faster opponent makes HFT i less
21Technically, we can avoid the unbounded equilibrium if we introduce a positive exogenous sunk cost for

the speed.
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likely to snipe, she does not need to care much about the adverse price movement. More-

over, (iv) a faster opponent becomes more insensitive to HFT i’s speed-up due to the same

logic that states that a higher l makes s less sensitive to f in the benchmark case. As a result,

the second term is positive, as is the total effect of fj on wi, i.e., a faster opponent renders

speeding up more profitable for HFT i.

Moreover, “tit for tat” due to complementarity can be strong enough when the opponent

is sufficiently fast.

Lemma 3. There is a unique fj = f0 such that

d2BRi(fj)

df2
j

> 0 , fj > f0. (12)

Proof. See Appendix B.3. ⇤

If fj is sufficiently high, the negative effect of fi on the expected profit becomes minimal.

This is because a very fast opponent makes it extremely difficult for HFT i to snipe. Thus,

she barely cares about the negative impact of fi on the price. In addition, a fast opponent

as a market maker tends to be highly insensitive to a change in fi because she estimates

that being sniped by HFT i is not likely to happen. Both of these effects strongly prompt an

incentive of HFT i to be faster, making the best response function convex.

3.2 Equilibrium Speed

To see if (9) has a symmetric solution, we first observe that BRi(0) > 0, i.e., when facing a

zero-speed opponent, HFT i still maintains a positive speed. This is because fi > 0 yields a

positive profit, while fi = 0 keeps it at zero. Together with (12), this implies that multiple

equilibria can arise. We focus on the symmetric equilibria.

Proposition 5. (i) There is a unique l = l0. If l > l0, no bounded solution exists. If l  l0,

there are two bounded solutions to BR(f) = f. The low-f solution is stable and the high-f solution

is unstable.

(ii) In the stable equilibrium, f⇤ ⌘ fi = fj is increasing in l.

Proof. See Appendix B.3. ⇤
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Figure III: Best Response Functions

Note that a higher l has the same implication as a higher fj for the sensitivity of s to

fi and for the improvement in the sniping probability pi. Thus, due to the same logic as

in Lemma 3, a sufficiently high l makes the complementarity strong enough to eliminate a

bounded solution, i.e., f = • is always optimal. On the other hand, when l is small, we

obtain bounded symmetric equilibria.

Following the convention (Hendershott and Mendelson, 2000; Zhu, 2014), we use stabil-

ity as an equilibrium selection criterion. The unstable equilibrium is not robust to a small

perturbation in a parameter value, whereas the stable one does not diverge even if a param-

eter changes slightly. Figure III provides the best response functions for different values of

l. In multiple equilibria, a small-f solution is stable, while a higher f makes “tit for tat”

strong and the solution can explode.

As Figure III indicates, a longer delay has the same effect on the optimal speed as in the

benchmark, i.e., it increases the marginal benefit of being faster. Thus, the best response

function shifts upward, leading to a higher speed in the stable equilibrium.

3.3 Effect of Speed Bumps on the Spread

The effect of a bump on the spread and adverse selection can be derived analytically. Due

to “fast market making,” adverse selection risk is mitigated by fast market makers, and it

helps l protect them. However, in the symmetric equilibrium, the increase in market mak-

ers’ speed occurs identically for snipers. Then, the above-mentioned effect of fast market

making is offset by the increase in the snipers’ speed.
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Since the strategic complementarity is sufficiently strong, this arms race outweighs the

direct protection of the speed bump, expanding the spread.

Proposition 6. A longer speed bump widens the spread; ds
dl > 0.

Proof. See Appendix B.4. ⇤

The introduction of a speed bump or a longer expected delay can backfire not only in

terms of speed but also of adverse selection. In the benchmark model, we have ds
dl = 0

because the speed-up by the single HFT is an indirect consequence of the speed bump and

cannot offset the direct protection of market makers.

By contrast, multiple HFTs generate a positive externality through strategic complemen-

tarity (Proposition 4). In this situation, an increase in l indirectly affects the best response

functions of both HFTs, shifting them upward, as shown in Figure III. This triggers an arms

race with positive externality, amplifying the first indirect effect. As a result, the speed-up

in the symmetric equilibrium dominates the direct protection of market makers, leading to

more severe adverse selection.

3.4 Comparison with Traditional Models with an Exogenous Cost

The results in the previous subsection run counter to traditional models with an exogenous

cost of speeding up. To illustrate this, consider a model with non-strategic HFTs; Instead

of an endogenous cost, we introduce an exogenous sunk cost of being faster denoted by

C(fi) =
c
2 f2

i , as in Foucault et al. (2016). To make the comparison clearer, we call our model

in Subsection 3.1 the strategic model.

If the strategic motive is absent, the FOC in (10) and cross derivative in (11) are modified

as follows:

wi ⌘
∂Wi
∂fi

= (s � sj)
∂pi
∂fi

� cfi,

∂wi
∂fj

=(s � sj)
∂2pi

∂fj∂fi
+

∂pi
∂fi

∂(s � sj)

∂fj
. (13)

The second term of (10) that represents an endogenous marginal cost is replaced by the

exogenous marginal cost, cfi, and the effect of the opponent’s speed via the strategic motive,

denoted by the second set of brackets in (11), disappears from (13). We focus on a symmetric

equilibrium and obtain the following results.
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Proposition 7. (i) Around the symmetric equilibrium, the best response function exhibits strategic

substitution; dBRi(fj)
dfj

< 0.

(ii) The equilibrium speed and spread are decreasing in l.

Proof. See Appendix B.5. ⇤

The third column (panels A3, B3, and C3) of Figure IV shows these results. As we have

established, if HFTs are strategic, HFT j’s speed-up improves wi through the second brackets

in (11), while this effect is absent in the traditional models.

To understand this intuition, note that the profit function of an HF sniper is roughly

given by

Vi = max
fi

pi(fi, fj, l)(s � s)� C(fi),

where pi is the sniping probability of HFT i. In this formulation, the interaction between

HFT i and j occurs only through pi.

A marginally faster opponent in a traditional model affects HFT-i’s decision by making

sniping more difficult, i.e., fj changes Vi only through pi. Since the exogenous cost is sunk,

HFT i must pay it anyway. By contrast, her speed investment pays out only if her sniping

attempt is fulfilled. Therefore, if HFT i thinks she is less likely to snipe due to a faster oppo-

nent (a lower pi), the exogenous cost becomes more salient (C/pi increases), hampering her

speed investment. This logic applies to a speed bump as well: a bump makes sniping less

likely, leaving HFTs reluctant to pay the sunk cost. This is why traditional models conclude

that a speed bump is effective to slow HFTs down and mitigate adverse selection, which is

replicated by Proposition 7.

Once HFTs become aware of the price impact of their speed choice, they perceive the

price as s = s(fi, fj, l), generating a new channel through which fj affects Vi. In the pre-

vious subsection, we showed that this modification overturns the result of the benchmark.

This is because the pricing behavior of market makers becomes insensitive to an increase in

fi (the endogenous marginal cost declines) when the opponent becomes faster or a bump is

expected to be longer. In our strategic model, this endogenous cost channel works against

the traditional exogenous cost.
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3.5 Strategic Complementarity or Substitution

As Proposition 7 and the following discussion suggest, an exogenous sunk cost tends to

make an arms race exhibit strategic substitution, while an endogenous cost in our model

promotes complementarity (Proposition 4). These results imply that introducing an exoge-

nous sunk cost in our strategic model allows us to explain both complementarity and sub-

stitution in an arms race, as well as the positive and negative reaction of the spread to a

bump, by changing the parameter values.

Consider a model that is the same as in Subsection 3.1, except that HFT i solves

max
fi

Wi(f) =
1

1 + l(b + fj)
fi
y
(s � sj)� C(fi),

s.t., sj =
fi

fi + b(1 + l(fi + fj + b))
,

where C(f) = c
2 f2 is the exogenous sunk cost of speed.

The best response functions, equilibrium speed, and spread are provided in Figure IV.

The strategic model in Subsection 3.1 corresponds to c = 0. As expected, a small exogenous

cost (panels A1 and A2 with c = 0.002 and 0.01) offers strategic complementarity and an

increasing f⇤ against l (panel B1). This leads to the increasing s against l (panel C1).

As long as c > 0, f⇤ becomes flatter as l rises and can be hump shaped (panels B1 and

B2). This is because a higher l makes C more salient. That is, a longer delay makes sniping

more difficult, and HFTs become more reluctant to pay the sunk cost. In this situation, an

arms race exhibits both complementarity and substitution (Panel A2 with c = 0.04), i.e.,

the BR curves become hump shaped. When l is small enough, the model is close to our

strategic model with complementarity, while a large l makes it similar to the traditional

model with substitution. As a result, the direct protection of market makers by the bump

dominates the speed increase in the high-l region, and s slopes downward, as shown in

Panels C1 with c = 0.002 and C2.

Finally, if the exogenous cost is sufficiently large, the economy reverts to the tradi-

tional world with no strategic speed choice (panels A3, B3, and C3). The competition ex-

hibits global substitution, and the equilibrium speed and the spread are downward sloping

against l, i.e., a speed bump mitigates adverse selection.

Overall, we can think of the strategic model with complementarity and the traditional
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Figure IV: Effect of Exogenous Cost

Note: The first row plots the best response functions with different (cl), the second and third rows plot the
optimal speed and the equilibrium spread, respectively, against the expected length of a speed bump with
different values of c. In each row, c = 0 corresponds to the strategic model with no exogenous costs. The
figures in the third column replicate the traditional results.

models with substitution as two extremes. By changing the significance of the exogenous

cost, c, we can explain intermediate cases. Moreover, we have established that a speed

bump, l, also works to adjust the relative significance of the exogenous cost because a

longer delay makes it more salient. This premise is summarized in Figure V and has some

empirical implications.
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Figure V: Summary

4 Empirical Implications and Policy Discussion

Our model provides some testable implications for the strategic nature of an arms race

among HFTs and for the effect of speed bumps on a spread and adverse selection for market

makers.

As Subsection 3.5 demonstrates, an arms race exhibits strategic complementarity or sub-

stitution depending on the exogenous cost of speed investment and the expected length

of a speed bump. As summarized in Figure V, a long (resp. short) expected speed bump

or a significant (resp. slight) exogenous cost of speed creates strategic substitution (resp.

complementarity), and the introduction of a bump and a marginally longer delay would

effectively reduce (resp. widen) a spread.

In the real world, the speed cost for HFTs involves two factors. The first is a large sunk

cost to develop a high-speed communication technology or investigate the optimal location

of an information servers to exploit an arbitrage between segmented markets. For exam-

ple, it is well known that Spread Networks LLC invested about $300 million to reconstruct

a fiber-optic network between the Chicago and New York exchanges. The second cost can

be a relatively small subscription fee to access these technologies developed by communi-

cation service companies or to colocate an information server to an exchange platform.22

Depending on the condition of the financial markets, our model suggests different implica-

tions. If HFTs take the first investment approach, the traditional model fits better: an arms

race involves strategic substitution and a bump is effective. In contrast, if the exogenous

cost is relatively small compared to the total profit, our strategic model is more appropri-

ate, suggesting the complementarity and detrimental effect of a bump. This comparison

22For example, monthly payments to plug into NSYSE and NASDAQ amount to $10,000⇠$22,000.
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can also be applied to the market power of a high-frequency financial institution because

the endogenous cost stems from the strategic motives of HFTs. In other words, when N is

large, the adverse price impact of increasing fi diminishes, leaving the model close to the

traditional one.

Also, we can vary the length of a speed bump or the distribution of a random delay

to test the implications of l on a spread. If a bump is expected to be long, a marginally

longer delay can be effective, slowing HFTs down due to the substitution in the traditional

model. On the other hand, if a platform tries to avoid a delay cost by keeping the length

of a bump minimal, the introduction of a bump can aggravate adverse selection since HFTs

become faster. Although we can compare the length of bumps in each platforms (i.e., bumps

in the ANEO and TMX are longer than those in the IEX or Chicago Stock Exchange), our

model shows that the level of l also matters. Deriving the critical (c, l) involves numerical

calculation in our model, and estimating it requires further data on the cost of the speed

technologies, speed levels, profit, and the market power of high-frequency financial institu-

tions.

4.1 Policy Implications

Recently, exchange platforms have experienced declines in their revenue from transaction

fees. Instead, they charge an increasingly high price to the fast access to their data, such

as colocation of data servers. In other words, one of the suppliers of the speed technology,

which we did not specify in the model, can be the exchange platforms. That is, on the one

hand, exchange platforms introduce innovation, such as a speed bump or frequent batch

auction (FBA) to slow traders down, while, on the other hand, they offer a speed technology

at a positive fee.

Importantly, our model suggests that the introduction of a delay does not necessarily

conflict with a provision of the expensive speed technologies by an exchange platform.

That is, a speed bump can increase HFTs’ demand for fast information access, allowing

an exchange platform to charge a higher price.

In this situation, we can analyze whether “the market will fix the market,” as Budish et

al. (2018) put forth. They argue that a platform does not have an incentive to introduce FBA,

as long as competing platforms can copy the innovation with a low cost. In our model, a

bump does not always mitigate adverse selection, while an exchange platform may have
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an incentive to introduce a bump to obtain the higher demand for the speed technology.

More detailed analyses can be our future research topics, but aforementioned mechanism

can provide another explanation for why “the market cannot fix the market.”

5 Conclusion

A speed bump, which seeks to mitigate adverse selection for market makers, can backfire.

When HFTs strategically choose their speed level by considering the impact of their speed

decision on market behavior, a bid-ask spread charged by market makers works not only

as a trading cost but also as an endogenous cost of speeding up, since it widens as HFTs

get faster. This endogenous cost tends to be insensitive to an increase in speed by HFTs

when a speed bump is expected to be longer. This is because market makers behave as if

the share of HFTs is small under a longer expected speed bump and do not care much about

a speed increase. Then, if a bump is introduced or the length of a delay becomes longer, the

marginal cost of speed diminishes, leading to a higher equilibrium speed of HFTs.

We also consider an arms race among multiple HFTs who serve both as snipers and as

market makers. When the significance of the exogenous speed cost is not high compared

to the endogenous cost, or when the expected length of a delay is relatively short, a speed

competition can show strategic complementarity. In this situation, a longer speed bump

triggers a positive externality among HFTs, leading to a very fast equilibrium speed. As a

result, the increase in HFTs’ trading speed dominates a direct reduction of an arrival rate

of HFTs by a speed bump. That is to say, a longer bump exacerbates adverse selection and

widens the equilibrium spread. The opposite holds in the case of substitution.

Thus, our model, which incorporates strategic speed choice and the endogenous cost

(i.e., the equilibrium spread), generates results that are opposite to the traditional models, in

which an arms race exhibits strategic substitution, the speed and adverse selection decrease

with the length of the delay, and a bump is effective. By adding a traditional exogenous cost

to our strategic model, we can derive a rich description of the characteristics of an arms race

among HFTs and can explain the somewhat ambiguous effects of speed bumps on spreads

and adverse selection.
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A Different Market Structures

A.1 Continuous Updating by Market Makers
We modify the benchmark case by allowing each market maker to update (cancel and resubmit)
limit orders continuously before HFTs move. Other structures of the model is the same as the bench-
mark.23

Consider a market maker who updates her limit order by resubmitting competitive st. The com-
petition drives st = E[v|trade at t]. Since d is stochastic,

st =
Z •

0
be�bdE[v|trade at t,d]dd

=
Z •

t
be�bdE[v|trade at t,d]dd +

Z t

0
be�bdE[v|trade at t,d]dd (14)

= 0 ⇥
Z •

t
be�bddd +

Z t

0
be�bd f

f + b
sdd (15)

= (1 � e�bt)
f

f + b
s.

In (14), the first term represents the case that t is in the “safe interval,” i.e., 0 < t < d. Conditional on
trade occurs, the market maker expects that E[v] = 0 because the trade must be against a liquidity
trader, and it does not convey any information. This is why the first term in (15) bears 0. The second
is the case that t is outside of the “safe interval,” leading the conditional expected return to be the
probability of the HFT arrival (times s) in (15).

A speed bump has the same effect on the endogenous marginal cost as in the benchmark (the
proof is omitted as it is straightforward):

Proposition 8. (i) ∂st
∂b > 0, and (ii) ∂

∂b

⇣
∂st
∂f

⌘
> 0.

Since b = l�1 represents the inverse of the expected length, a longer delay (i) directly mitigates
adverse selection for market makers, but (ii) it makes the marginal cost (spread) less sensitive to
speed-up by the HFT.

We impose an exogenous sunk cost to make the model well-defined. The optimization problem
of the HFT regarding the speed is given by

max
f

W(f) = Ed

Z •

0
fe�yte�hd(s � st+d)dt

�
� c

2
f2,

s.t., st = (1 � e�bt)
f

f + b
s.

The sniping profit from sending market orders at t is given by s � st+d since they possibly arrive
and executed at t + d. Note that, given that the trade occur, there is no price uncertainty since st is
deterministic.

The behavior of the optimal speed and spread is hard to show analytically. However, the numer-
ical solutions in Figure VI can be discussed by using the ingredients we have already analyzed. In
the single HFT economy, a speed bump positively affects the optimal speed f⇤ through (i) decline
in the marginal cost and (ii) increase in the sniping profit, while (iii) it reduces f⇤ by magnifying the

23We can eliminate the possibility that an informed HFT splits her orders across the time because executions
in a part of the markets let other market makers know the arrival of the HFT and true information. This event
triggers the cancellation of outstanding limit orders. We also abstract away from the possibility of a mixed
strategy since each order from the HFT does not have price impact. As mentioned in Footnote 14, we can
show that the mixed strategy is not an equilibrium because waiting is not credible.
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Figure VI: Effect of l on f⇤ and st

Note: The panel A plots the optimal speed against l with different values of c. The panels B and C plot the
dynamics of the spread, st with different values of l. The panel B is the case with the increasing optimal speed,
df⇤

dl > 0, and the panel C is the decreasing optimal speed, df⇤

dl < 0.

exogenous sunk cost. When l is small, the execution risk is relatively small, leaving effect (iii) less
significant compared to (i) and (ii), while a longer delay in the high-l region makes (iii) more salient.
As a result, f⇤ takes the hump-shaped curve as depicted by Panel A in Figure VI. Given l, a larger
cost slows HFT down as we can see from a parallel shift in the curves.

As (14) suggests, the spread is time dependent and increasing in t. This is because the market
makers expect that they are less likely to be in the safe interval as t increases. The effect of l = b�1 is

dst

dl
= � 1

l2
∂st

∂b
+

df

dl

∂st

∂f

= � 1
l2 te�bt f

b + f
+

df

dl
(1 � e�bt)

b

(f + b)2 . (16)

First, a longer delay (higher l) reduces the spread since market makers are directly protected by the
longer safe interval. This is represented by the first term in (16). However, as a higher l may push f

up or down, it increases or decreases the spread, as the second term in (16) suggests. When df
dl > 0,

the second effect competes with the first effect: the safe interval gets longer, while the HFT becomes
faster. The result is provided by Panel B in Figure VI.

Whether the first effect dominates the second effect depends on t. From (16), the first negative
effect is increasing in t  b�1 and then starts decreasing. On the other hand, the second one is
monotonically increasing in t and concave. There is a unique t = t, such that dst

dl > 0 if and only if
t > t, i.e., a longer speed bump increases the spread and worsens the adverse selection problem in
the long-run.

The intuition is straightforward. When the current period t is t > t, the probability that t is in
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the safe interval is relatively small. Then, market makers think that an increase in l has only a small
effect to mitigate the adverse selection, while it increases the speed of the HFT.

When df
dl < 0, the result is given by Panel C in Figure VI. Since a bump reduces the speed in

this case, the second effect helps the first effect reduce the spread and adverse selection cost. Once
again, whether or not a speed bump increases the equilibrium speed depends on the exogenous
cost, c, competing with the endogenous cost effect. Hence, the effect on the spread is governed by
the market structure c and the time frame t.

A.2 Coexistence of Fast and Slow Markets
In the real economy, the major market structure is still the continuous limit market with no speed
bumps. Thus, the introduction of a speed bump inevitably makes these market structures coexist.
However, analyses provided by the literature deal only with homogeneous markets. We extend our
model to relax this limitation.

A.2.1 Environment

Consider the benchmark economy in Section 2. q 2 (0, 1) fraction of market makers are in the market
with a delay d > 0, which is stochastic, and the rest of them are in the market with no delay, d = 0.
We call the first market the slow market and the latter one the traditional fast market. Each market is
competitive. Market makers in the slow market submit limit orders with the (half) spread sl, while
those who in the traditional fast market provide s0. As in the benchmark, l is the expected length
of the delay. In contrast to the literature (Biais et al., 2015), we impose no restrictions on the venue
choice by the HFT. Transactions information in each market becomes public right after an order
execution, i.e., the markets are perfectly transparent.

A.2.2 Strategies of HFT

Consider a strategy of the HFT who becomes informed of v = s at date t. There are two possi-
ble (pure) trading strategies for the HFT. First, if she submits orders into the fast market, they are
immediately executed, fulfilling 1 � q of her total buying attempts. This market activity is pub-
licly observable, allowing all market makers to realize that the transactions are information driven.24

Based on this premise, market makers in the slow market can cancel their limit orders in the interval
t 2 (t, t + d) which is protected by the speed bump. We call this the “strategy one” and denote it by
A = 1.

Second, the HFT who becomes informed at t can immediately send market orders for q shares
into the slow market, anticipating the execution with the d-delay. She refrains from sending orders
to the fast market at t and waits until the orders sent to the slow market are executed. By observing
the execution in the slow market, she sends orders to the traditional fast market at t + d, which incur
no delay by the construction. In this case, all of her orders arrive at the markets at the same time,
(t + d), and she can conceal her identity. Hence, none of the market makers can cancel their quotes.
This “wait-and-grasp-all” strategy is denoted as A = 2.25 Overall, taking A = 2 bears the execution
risk, though the return from it is larger than A = 1 if accomplished.

The mixed strategy is the probability distribution over the set of actions A 2 A = {1, 2}, and
let qt 2 [0, 1] be the probability that the HFT takes the action A = 2. For A 2 A, let wA(t) be the
expected profit from taking A 2 A when the information arrives at date t. Figures VII and VIII
illustrate the timing of the executions when the HFT becomes informed at t.

24This is because orders from liquidity traders will be fulfilled at the slow and the fast markets simultane-
ously.

25Note that making other lengths of strategic time lag is not optimal for the HFT, as any other intentional
delay than d tells that the orders are not from liquidity traders but from the HFT.
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Figure VII: Strategy 1

Figure VIII: Strategy 2

First, A = 1 does not bear the execution risk because the HFT can immediately snipe limit orders
in the fast market. However, this behavior becomes public immediately, allowing market makers in
the slow market to cancel their orders. Thus, q fraction of quotes disappear, and the expected profit
is given by

w1(t) = (1 � q)(s � s0).

On the other hand, A = 2 can snipe all outstanding liquidity at the same time, while it bears the
execution risk that stems from the d-delay. If there is a liquidity shock or the public news during
(t, t + d), the HFT cannot exploit her information and speed. Given that the HFT gets informed at
date t, she obtains the profit with probability Pr(TL > d, T > d) = e�(b+g)d. Moreover, since the HFT
is a price taker regarding her trading behavior, her expected return is

w2(t) =
Z •

0
be�(b+b+g)d [q(s � sl) + (1 � q)(s � s0)] dd,

=
q(s � sl) + (1 � q)(s � s0)

1 + l(b + g)
.

Note that both of {wj(t)}j2A are time independent due to the memoryless property of the exponen-
tial distribution. This implies that the optimal decision of A 2 A is also time independent. No matter
when the HFT becomes informed, a timing of private news does not matter—only the delay can be
her concern.

A.2.3 Behavior of Market Makers

We take q an exogenous parameter in our model and assume that each market maker is randomly
assigned the structure of the market. Given an assigned market, each market maker earn zero profit
and does not have an incentive to move to another market with a different structure.
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In the Fast Market

The market makers in the fast market suffer from adverse selection cost no matter what strategy the
HFT takes. In other words, They are not given any chances to cancel orders by observing market-
based information before the HFT snipes them. The expected return is

V0 =Ed


q

✓Z d

0
s0be�(b+g)tdt +

Z •

d
e�y(t�d)�(b+g)d(bs0 + f(s0 � s))dt

◆
(17)

+(1 � q)
Z •

0
e�yt(bs0 + f(s0 � s))dt

�
.

The first line is the case that the HFT takes A = 2. In this case, the fast market is under the pro-
tection of the speed bump even though the speed bump is not applied to the fast market.26 This is
because the HFT takes “wait-and-grasp-all” strategy, and she does not snipe the fast market until she
accomplishes her trading attempt in the slow market. The expected profit, in this case, is identical to
those in the benchmark with homogeneous markets. In the second line, the possibility of A = 1 is
characterized. In this case, the speed bump does not matter for the fast market, and the conditional
expected return is the same as a model with l = 0.

In the Slow Market

In contrast to the fast market, the strategy of the HFT determines whether or not market makers in
the slow market are protected. If q = 0, the slow market is perfectly protected by the speed bump:
they can cancel their limit orders to avoid the HFT for sure. On the other hand, if q , 0, it is possible
that the HFT arrives at the slow market to trade.

The expected return is

Vl =E


q

✓Z d

0
s0be�(b+g)tdt +

Z •

d
e�y(t�d)�(b+g)d(bs0 + f(s0 � s))dt

◆
(18)

+(1 � q)
Z •

0
sbe�ytdt

�
.

The intuitions behind the first line are the same as those in (17). As mentioned above, when the HFT
takes A = 1, there is no chance for the HFT to snipe in the slow market. On the other hand, liquidity
traders arrive at the slow market at t if TL = t, TH > t, and T > t, which gives the integrand in the
second line.

A.2.4 Equilibrium in the Trading Stage

Let Q ⌘ (1 � q)/q. We first solve for the equilibrium spread given q:

Proposition 9. The equilibrium spread in fast and slow markets are given by

sj =

8
><

>:

f

f+b+byq l
1+l(b+g)(1�q)

for j = 0,
fq

b+fq+lb(b+g)
⇣

1+ fq
b+g

⌘ for j = l.
(19)

Proof. Solving Vj = 0 yields the result. ⇤

26Liquidity traders arrive at t if (i) the HFT becomes informed after t or (ii) the HFT be-
comes informed before t and takes A = 2. Given that the quote remains alive at t�,
Pr(TH < t, ATH = 2|quote is alive at t�) = Pr(TH < t). Since, otherwise, the HFT arrives immediately at Th

and snipes the stale quotes. Therefore, Pr(Liq. trade at t) = be�yt + be�(b+g)t R t
0 fe�ftdt = be�(b+g)t.
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These formulae show the following:

Corollary 1. q affects s0 and sl in an opposite way, that is,

∂s0

∂q
< 0,

∂sl

∂q
> 0.

With f fixed, s0 is decreasing in q, while sl is increasing in q. For market makers in the fast
market, a higher q (i.e., the probability of A = 2) implies that the fast market is more likely to be
protected by the speed bump in the slow market due to the HFT’s “wait-and-grasp-all” strategy.
This mitigates the adverse selection risk for the market makers in the fast market, making s0 lower.

On the other hand, a higher q (or fq) has a negative impact on market makers in the slow market.
This is because a higher probability of A = 2 reduces the chance for market makers to observe
sniping activity in the fast market to cancel the quote. Thus, a higher q exposes the slow market to
more severe adverse selection and pushes the spread sl up.

Now, the (mixed) strategy is characterized by the following, in which q must satisfy the indiffer-
ence condition, w1 = w2.

Proposition 10. The optimal trading strategy for the HFT is

q =

8
>><

>>:

0 if lQ(b + g) > f+b
b ,

q⇤ 2 [0, 1] if lQ(b + g) 2 [1, f+b
b ],

1 if lQ(b + g) < 1,

(20)

with
q⇤ =

(f + b)� b(b + g)Ql

1 + lQ(b + g)� bl(1 � lhQ)
1 + lh

f
. (21)

Proof. See Appendix B.6. ⇤

With f fixed, the strategy q of the HFT in the second stage game crucially depends on (i) the
expected length of delay l and (ii) the share of the slow market q. As proposed by (20), a higher l
and smaller q make the HFT reluctant to take A = 2 because both negatively impact the expected
profit of A = 2 by imposing a higher execution risk and lower profit in the slow market, respectively.
Thus, as l or Q increases, q⇤ declines and converges to 0. On the other hand, the HFT sticks to the
strategy A = 2 (i.e., q ! 1) when l or Q is sufficiently small.

A higher speed f has two effects on the behavior of q⇤. First, it is straightforward that a higher f
widens the region for q = q⇤ 2 (0, 1). Also, under the mixed strategy, we have the following:

Corollary 2. Ceteris paribus, ∂q⇤

∂f > 0.

When the HFT becomes faster, the spreads in the fast and slow markets are differently affected.
Since the slow market is more likely to be protected by the speed bump, a higher f has a stronger
effect on s0 than sl. Moreover, as mentioned earlier, the slow market will face the HFT only if she
takes A = 2 with probability q. Hence, as we can see from (19), the effect of f on sl is discounted
by q (i.e., f affects sl via fq). Thus, when f is high, the profit from the fast market shrinks more
compared to the profit from the slow market. This induces the stronger incentive for the HFT to
shift her priority towards the gain from the slow markets. Therefore, she tends to refrain from taking
A = 1, and q increases.

A.2.5 Strategic Speed Choice

Given the equilibrium in the trading stage, the HFT decides her speed level. Her objective function
is denoted by

W(f) =
Z •

0
fe�ytwA(f)dt
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subject to

wA(f) =

(
w1(t) = (1 � q)(s � s0(f, q)) if q 2 [0, 1)
w2(t) = Ed

h
e�(b+g)d(s � sl(f, q))

i
if q = 1,

(22)

the spreads in (19) as functions of (f, q), and the equilibrium strategy q given by (20). Note that the
mixed strategy q⇤ 2 (0, 1) makes it indifferent for the HFT to take A = 1 and A = 2, leading to the
first line in (22). Furthermore, when q = 1, the economy converges to the benchmark case since the
effect of the speed bump in the slow market encompasses the fast market too. Thus, s0 = sl, and we
obtain w2 in (22).

A.2.6 Short expected delay

As we have established in (20), a sufficiently short expected delay, such that l < (b + g)�1Q�1,
does not hamper the incentive of the HFT to take A = 2. She always takes “wait-and-grasp-all”
strategy, resulting in q = 1. This makes the economy, as well as the equilibrium results, same as the
benchmark case in Section 2. Therefore, a longer expected speed bump increases the speed level f⇤,
which completely offsets the reduction in the adverse selection cost due to the longer safe interval
(Proposition 3). This region is depicted by the left region of the shaded area in Figure X.

A.2.7 Long expected delay

When a delay is sufficiently long, the HFT becomes reluctant to take A = 2 because of the higher
execution risk. She starts adopting the mixed strategy (q = q⇤) or immediately snipes in the fast
market (q = 0). The switch between these two cases occurs at

f̂ ⌘ b [l(b + g)Q � 1] . (23)

When f < f̂ (resp. f > f̂), the strategy of the HFT is q = 0 (resp. q = q⇤). As we have discussed, this
threshold is increasing in l and decreasing in q since both of them reduce the expected profit from
sniping in the slow market.

Lemma 4. When q = 0, the optimal speed level is given by f⇤
0 =

p
b(b + g). The speed and the spread are

independent of the expected length of the speed bump l.

Proof. Plugging q = 0 into (22) and taking derivative immediately derive the result. ⇤

Since the objective function W switches at f̂, we have a couple of candidates for f⇤ depending
on f̂ ? f⇤

0 , and this is crucially affected by the values of l and Q.
Figure IX plots the objective function W against f with various parameter values for l, in which

the effect of f on q is taken into account. This function is not smooth due to the switch at f = f̂.
When l is relatively small, we have q = q⇤ 2 (0, 1), and the optimal f is higher than f̂. Then the
speed is positively affected by l, i.e., the longer the expected delay, the faster the HFT. As shown by
Corollary 2, this pushes q⇤ up. However, because the longer expected delay escalates the execution
risk and the expected return starts waining, W(q⇤) dips below W(q = 0) at some l. Thus, there is a
l that makes q = q⇤ and q = 0 indifferent.

As a result, the optimal speed plummets as l increases when q switches from q = q⇤ to q = 0.
Intuitively, the optimal speed must incorporate the execution risk by the speed bump only if the
HFT snipes in the slow market with a strictly positive probability. Otherwise (if q = 0), the speed
bump has nothing to do with the HFT’s expected profit. The speed decision cares only about the
endogenous cost at the fast market, which is more sensitive to the change in f compared to the
endogenous cost that stems from the slow market. As a result, the optimal speed with q = q⇤ is too
fast if q = 0 is the optimal strategy, leading to a dive of f⇤ at the switch. See Figure X for the visual
illustration of the effect of l.
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Figure IX: W(f) with different l

Figure X: Effect of l

A.2.8 Adverse Selection Cost

Figure X shows the level of the optimal speed f⇤, the mixed strategy q⇤, and the spreads in both
markets as functions of l. First, if the delay is sufficiently small, so that lQ(b+ g) < 1, the execution
risk for the HFT is sufficiently low, and she takes A = 2 for sure (q⇤ = 1). The result is the same as
Section 2, and the optimal speed is increasing in l, while the adverse selection cost, measured by the
half spread, is constant. Note that there is no difference between the slow and the fast markets.

Second, if lQ(b + g) > 1 but l is intermediate, the HFT finds it not attractive to take A = 2 with
100% probability because of the relatively high execution risk. Thus, she starts to mix A = 2 with
A = 1, so that she stochastically snipes at the timing of information revelation. This is represented by
the shaded area in Figure X. In this case, if she keeps f constant, the welfare declines as l increases.
However, a longer expected delay makes the endogenous cost (i.e., the spread) insensitive to an
increase in the speed because market makers set s as if the HFT arrives with a lower probability.
This promotes the investment in the speed. In contrast to the speed, the probability of taking A = 2
declines, although a higher f⇤ has a positive impact on q⇤. This is due to the dominating negative
effect of l on q⇤: a longer expected delay makes A = 2 a less attractive choice for the HFT.

Finally, if l becomes sufficiently large, as in the right region of the shaded area, the HFT no longer
figures that taking A = 2 pays out because the execution risk becomes sufficiently high. Thus, she
switches to taking A = 1 with 100% probability, making the optimal level of the speed insensitive
to l. The optimal level f⇤ jumps down from the middle region of l as mentioned in the previous
subsection.

Regarding the adverse selection cost in both markets, the first region with a small l provides the
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constant and same level of s. This is natural because both markets face the same risk of the HFT
arrival. The intermediate region of l makes them behave differently. A higher l directly mitigates
adverse selection for market makers, while it increases the optimal speed and the probability of
the HFT-confrontation. The fast market bears the risk of the HFT no matter what strategy the HFT
takes, though A = 2 is discounted by the delay l. On the other hand, the slow markets are exposed
to the HFT only if she takes A = 2, and this is protected by l. As shown by Corollary 1, this
asymmetry makes sl decreasing and s0 increasing—a longer speed bump protects the slow markets
at the expense of the traditional fast markets.

Once the delay becomes sufficiently long (right side of the shaded area), the risk of HFT com-
pletely diminishes in the slow market because the HFT takes A = 1 for sure. Hence sl = 0. In the
fast market, the spread drops as well because the speed of the HFT is humbled. The fast market still
bears the risk of the HFT and keeps the spread strictly positive.

B Appendix: Proofs

B.1 Proof of Lemma 2 and Proposition 2
Let h ⌘ b + g. The explicit formula for W is given by

W(f) =
1

1 + lh

f

y

b (1 + ly)
f + b (1 + ly)

,

where

p ⌘ Ed

Z •

0
pt(f, d)dt

�
=

1
1 + lh

f

y
,

s � s =
b (1 + ly)

f + b (1 + ly)
.

Therefore,

W 0(f) = p0(s � s) + p(s � s)0

= p0(s � s)(1 � #)

with
# ⌘ � p

p0
(s � s)0

s � s
=

(1 + lh)y
h(1 + ly)

f

f + b (1 + ly)
.

It is obvious that d#/df > 0. This implies that the optimization problem satisfies the SOC.
The solution is derived by solving the FOC, which is reduced to

1 = #(f).

Note that #(0) = 0, #0(f) > 0, and

lim
f!•

#(f) =
1 + lh

hl(1 + b)
.

Thus, as long as limf!• #(f) > 1, there is a unique solution. We can easily check that this condition
is expressed as (5). If this is not satisfied, we have f⇤ = •.

When (5) holds, the f⇤ > 0 solves 1 = #(f), and some tedious calculations show that the solution
is given by (8). The second statement is obvious from (8).
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B.2 Proof of Proposition 3
By taking a derivative, we have

ds
dl

⇠ �fy +
df

dl
(1 + lh). (24)

Moreover, by the implicit function theorem,

df

dl
=

hg2 � f2g

hg2 + by2(1 + hl)2 (25)

where g ⌘ f + b(1 + ly). By substituting (25) for the one in (24),

ds
dl

⇠ yb(1 + lh)(1 + ly)� fg

= hb(1 + ly)2 � f2.

Therefore, at the optimal speed f⇤ =
p

h(1+lh)

1�l
p

bh
, we have ds/dl = 0.

B.3 Proof of Lemma 3 and Proposition 5
Let r ⌘

p
b + fj. The second order derivative of BRi is

d2BRi(fj)

df2
j

=
dr
dfj

R
2r2

✓
r

R0

R
� 1

◆
,

with

R ⌘ 1 + lr2

(1 � l
p

br)2
+

2lr
1 � l

p
br

.

We can check that r R0

R > 1 is identical to Z(r) < 0 with

Z(r) ⌘ 2bl3r3 � l(1 + l
p

b)r2 � l
p

b(3 + 2l)r + 1.

Note that we are focusing on the bounded solution, that is 1 > l
p

br. Since Z( 1
l
p

b
) < 0 and

Z(0) > 0, there is a unique r⇤ such that r > r⇤ , Z(r) < 0. Then, we can define f0 be the solution of
r = r⇤ and obtain the result.

The symmetric equilibrium is given by solving f = BR(f), which is rewritten as X(r, l) = 0
with r ⌘

p
b + f and

X(r, l) = l(1 +
p

b)r3 � r2 + (1 � lb
p

b)r + b.

This function has the following properties:

∂X(r, l)
∂l

> 0, 8r > 0,

X(r, 0) = �r2 + r + b, lim
l!•

X(r, l) = •.

Therefore, as l increases, X shifts up from X(r, 0) and eventually explodes for all r. At l = 0, X = 0
has a unique solution in the positive r region. By the continuity of X regarding l, if l & 0, then
X = 0 attains three solutions, two in the positive region (a larger one can be greater than 1

l
p

b
).

Let r+ and r� be these two solutions. Since ∂X(r+,l)
∂r > 0 and ∂X(r�,l)

∂r < 0, the implicit function
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theorem implies dr+
dl < 0 and dr�

dl > 0, which means that the stable solution is increasing in l. By the
monotonicity of X regarding l, there is a unique l = l0 such that r�(l0) = r+(l0), and X(r, l) > 0
for all r if l > l0, i.e., there are no solutions.

B.4 Proof of Proposition 6
First, by letting y ⌘ Âi fi + b and h ⌘ fj + b, the FOC for HFT i can be expressed as

1 =
fi

fi + b(1 + ly)
Y(y)
Y(h)

,

with
Y(x) =

x
1 + lx

.

Under the symmetric equilibrium, it reduces to

1 = s(f, l)
Y(y)
Y(h)

,

with y ⌘ 2f + b, h ⌘ f + b, and f is the equilibrium speed. We can check that

ds
dl

⇠ fy[y(1 + ly)� 2h(1 + lh)]� lhfy(1 + lb). (26)

Since the symmetric equilibrium solves

f2 = bh(1 + ly)2,

we know that f =
p

bh(1 + ly) � b � 1. By using these conditions, we can check that the RHS of
26 is positive.

B.5 Proof of Proposition 7
First of all, the traditional model satisfies the SOC: By letting G ⌘ fi + b(1 + ly),

dwi
dfi

= (s � s)
∂2pi

∂f2
i
+

∂(s � s)
∂fi

∂pi
∂fi

⇠ �Gb(1 + ly)� y(G � fi(1 + bl))

< 0.

Then, the FOC to solve is

cfi =
b

yG
Y(h)
Y(y)

⌘ K(fi, fj, l), (27)

with y ⌘ Âi fi + b and h ⌘ fj + b. We can easily check that the RHS of (27) is decreasing in fi.
Since K is decreasing in fj and l around the symmetric equilibrium, we can prove that dBRi

dfj
< 0 and

df
dl < 0. Since the form of the equilibrium spread is identical to the strategic model, the opposite
effect of df

dl in Proposition 6 shows that ds
dl < 0.

B.6 Proof of Proposition 10
The comparison is

w1 ? w2 , lhQ(s � s0) ? s � sl.

41



By plugging the formulae for the equilibrium spreads into the inequality above,

L(q) ⌘ lhQ(s � s0) = lhQ
K(q)

f + bK(q)
,

R(q) ⌘ s � sl =
J(q)

f + bJ(q)
,

with
K(q) = 1 +

y

h
q

lh

1 + (1 � q)lh
, J(q) = 1 + lh

✓
1 � q + q

y

h

◆
.

These functions have the following properties:

dL
dq

> 0, L(0) =
lhQ
f + b

, L(1) =
lhQ(1 + ly)
f + b(1 + ly)

,

dR
dq

< 0, R(0) = b�1, R(1) =
1 + ly

f + b(1 + ly)
.

Thus, if lhQ < 1, we have L(1) < R(1), indicating that R > L for all q 2 [0, 1]. Therefore, q⇤ = 1
is the optimal. When lhQ � 1, the result depends on L(0) ? R(0). If lhQ < (b + f)/b, then R(0) >
L(0), which implies that there is a unique interior solution q⇤ that solves the indifference condition.
The solution solves L(q) = R(q), and tedious calculation gives (21). Finally, if lhQ > (b + f)/b, we
have R < L for all q 2 [0, 1]. Thus, q = 1 is the optimal strategy.
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