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Abstract

This paper proposes a novel estimation method for the weak factor models, a slightly
stronger version of the approximate factor models of Chamberlain and Rothschild (1983),
with large cross-sectional and time-series dimensions (N and T , respectively). It assumes
that the kth largest eigenvalue of data covariance matrix grows proportionally to Nαk

with unknown exponents 0 < αk ≤ 1 for k = 1, . . . , r. This is much weaker than the
typical assumption on the recent factor models, in which all the r largest eigenvalues
diverge proportionally to N . We apply the SOFAR method of Uematsu et al. (2019) to
estimate the weak factor models and derive the estimation error bound. Importantly, our
method yields consistent estimation of αk’s as well. A finite sample experiment shows
that the performance of the new estimator uniformly dominates that of the principal
component (PC) estimator. We apply our method to analyze S&P500 firm security
returns and find that the first factor is consistently near strong while the others are
indeed weak. Another application demonstrates that forecasting bond yields based on
our method outperforms that based on the PC.

Keywords. Approximate factor models, Weak factors with sparse factor loadings, Non-
asymptotic error bound, Factor selection consistency.

1 Introduction

The approximate factor model with large cross-sectional and time-series dimensions (N and
T , respectively) has become an increasingly important tool for the analysis of psychology,
finance, economics, and biology, among many others. See, for example, Fan et al. (2018) for
an excellent review of the high-dimensional factor models and their applications.
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Suppose that a vector of zero-mean stationary time series xt ∈ RN , t = 1, . . . , T , is
generated from the factor model

xt = B∗f∗t + et, (1)

where B∗ = (b∗1, . . . ,b
∗
N )′ ∈ RN×r with b∗i ∈ Rr is a matrix of deterministic factor loadings,

f∗t ∈ Rr is a vector of zero-mean latent factors, and et ∈ RN is an idiosyncratic error vector.
For a while suppose r is given. Let Σx = E[xtx

′
t], Σ∗f = E[f∗t f∗t

′], and Σe = E[ete
′
t]. Assuming

uniform boundedness of λk(Σe) together with an exogeneity condition, we observe that

λk(Σx) � λk(B∗Σ∗fB∗
′) for each k = 1, . . . , r

and λk(Σx) are uniformly bounded for all k = r + 1, . . . , N .
In the studies on high-dimensional factor models, including Connor and Korajczyk (1986,

1993), Stock and Watson (2002), Bai and Ng (2002, 2006, 2013), Bai (2003) and Fan et al.
(2018), it is typically assumed that all the r largest eigenvalues diverge proportional to N ,
namely, λk(B

∗Σ∗fB
∗′) � N for all k = 1, . . . , r. We call the models with this condition the

strong factor (SF) models. This SF assumption seems unduly restrictive, as it does not permit
slower divergence rates than N nor different divergence rates among the r largest eigenvalues.
The original approximate factor model proposed by Chamberlain and Rothschild (1983) is
an important exception, which assumes that λr(B

∗Σ∗fB
∗′) → ∞ as N → ∞. Inspired by

Chamberlain and Rothschild (1983), in this paper we will significantly relax the SF condition
and consider estimation of the weak factor (WF) model in which

λk(B
∗Σ∗fB

∗′) � Nk := Nαk with 0 < αk ≤ 1 for each k = 1, . . . , r. (2)

This condition allows different divergence rates of the signal eigenvalues, which can be slower
than N .

It is known in the literature that estimation of factor models, including (1), has an
identification issue. To address it, we impose r2 restrictions on the model. Since the column
and row spaces of F∗ = (f∗1 , ..., f

∗
T )′ and B∗′ are identical to those of F∗H and H−1B∗′,

respectively, for any invertible matrix H, we choose a specific (but frequently employed)
rotation without loss of generality:

xt = B0f0t + et, (3)

where f0t = Hf∗t and B0′ = H−1B∗′ with Σf = E[f0t f0t
′
] = Ir and B0′B0 being a diagonal

matrix. Because the eigenvalues of (2) are invariant to any rotation, we have

Nk � λk(B0B0′) = λk(B
0′B0) for each k = 1, . . . , r. (4)

For estimation purpose, we need an assumption that entails (4); we suppose that B0 is
(approximately) sparse such that (4) and diagonality of B0′B0 simultaneously hold. Note
that, even if sparseness of B0 is not rotation invariant, we can identify the r signal eigenvalues
of model (1) as long as B0 is sparse. Also note that the sparse structure of B0 is row
permutation invariant; see Bai et al. (2016).

Unlike the PC estimator, our estimator requires the sparsity-inducing `1-norm regular-
ization. The numerical optimization is more complicated than that for the PC due to the
imposition of both sparsity and orthogonality on the estimator. Despite this difficulty, we
propose a novel estimator of the WF models by employing the recently developed frame-
work, the sparse orthogonal factor regression (SOFAR) of Uematsu et al. (2019). Hereafter
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the new estimator is called the WF-SOFAR estimator. As theoretical contributions, we will
establish the estimation error bounds as well as validating the method of Onatski (2010)
for determining the number of factors in our setting. Perhaps surprisingly, our WF-SOFAR
can consistently estimate the WF models with αk less than 1/2. We also propose the adap-
tive version of the WF-SOFAR estimator, which yields factor selection consistency. This
asymptotically guarantees the true support recovery of the sparse loadings. It is remarkable
that this property enables us to consistently estimate each exponent αk of the divergence
rates as a corollary. The assumptions we will make are in line with the literature of the
approximate factor models. Thus the statistical theory we will explore are substantially
different from those in Uematsu et al. (2019). In particular, the theoretical investigation of
the adaptive SOFAR is completely new to the literature. We apply our method to analyze
S&P500 firm security monthly returns. The results show that the first factor is consistently
near strong, while the second to the fourth exponents vary over months between 0.90 and
0.65. In another application, we compare the out-of-sample performance of forecasting bond
yields using extracted factors via our method and the PC method. The statistical evidence
suggests that our method outperforms the PC method.

The sparse factor loadings are frequently observed in macroeconomic and finance data.
As an illustration, we have regressed each of 451 monthly security excess returns, which
constitute the S&P500 index on December 2015, with 120 months observations back (among
500 securities) on the celebrated Fama and French (2015) five common factors, Market, SMB,
HML, RMW and CMA, and an intercept. The numbers of securities, for which the Market,
SMB, HML, RMW or CMA is significant at the 5% level t-test, are 446, 107, 126, 68 and
62, respectively.1 Apart from the market factor, the common factors are not significantly
different from zero for large portions of the securities. This evidence strongly suggests sparse
factor loadings for the firm security returns and supports our approach.

To our knowledge, this is the first study to propose a method that can estimate the WF
models, separately identifying spans of B∗ and F∗, while taking the possibly different rates
(2) into account. There are some studies that consider WF models, but most of them have
focused only on the case where all the divergence rates are identical. Such examples are seen
in De Mol et al. (2008) and Lam et al. (2011); the former consider the Bayesian forecasts
with the PC estimates for WF models, and the latter propose an efficient estimator for WF
models with a specific correlation structure. Other related research includes Johnstone and
Lu (2009), Onatski (2012), Bryzgalova (2016), and Lettau and Pelger (2018). They consider
the properties of the PC estimator with the bounded maximum eigenvalue of Σx, i.e., αk = 0
for all k in our WF specification. The only exception we have found is Freyaldenhoven (2018),
but his focus is different from ours; he investigates the properties of the PC estimator for the
WF models with possibly different divergence rates of the eigenvalues, and proposes methods
to estimate the number of common components diverging faster than a specific rate.

1Specifically, we run the time series regression rti − rft = ai + bi (rmt − rft) + siSMBt + hiHMLt +
riRMWt + ciCMAt + eti, where rti is the i-th security monthly return at the month t, rft is the one-month
treasury bill rate, rmt is the market return, SMBt is the return on a diversified portfolio of small stocks minus
the return on a diversified portfolio of big stocks, HMLt is the difference between the returns on diversified
portfolios of high and low B/M stocks, RMWt is the difference between the returns on diversified portfolios
of stocks with robust and weak profitability, and CMAt is the difference between the returns on diversified
portfolios of the stocks of low and high investment firms, which is called conservative and aggressive, and eti
is the error term. Then we implement the t-tests for bi = 0, si = 0, hi = 0, ri = 0 and ci = 0, referring their
absolute values to 1.96. The firm security return is computed as explained in Section 6.1, and other variables
are obtained from the Kenneth R. French Data Library. See Fama and French (2015) for more details of the
data and the regression.
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The rest of this paper is organized as follows. Section 2 formally defines the WF models.
Section 3 proposes the novel WF-SOFAR estimator and considers its adaptive extension.
Section 4 investigates the theoretical properties, such as determination of the number of weak
factors and the estimation error bounds of the (adaptive) WF-SOFAR estimator. Section
5 confirms the validity of our WF-SOFAR estimator by Monte Carlo experiments. Section
6 gives empirical illustrations of the WF-SOFAR. Section 7 concludes. The proofs for the
main results are collected in Appendix, and the related lemmas and their proofs as well as
other supplementary materials are relegated to Appendices in Online Supplements.

For any matrix M = (mti) ∈ RT×N , we define the Frobenius norm, `2-induced (spec-
tral) norm, entrywise `1-norm, and entrywise `∞-norm as ‖M‖F = (

∑
t,im

2
ti)

1/2, ‖M‖2 =

λ
1/2
1 (M′M), ‖M‖1 =

∑
t,i |mti|, and ‖M‖max = maxt,i |mti|, respectively, where λi(S) refers

to the ith largest eigenvalue of any symmetric matrix S. We denote by IN and 0T×N the
N ×N identity matrix and T ×N zero matrix, respectively. We use . (&) to represent ≤
(≥) up to a positive constant factor. For any positive sequences an and bn, we write an � bn
if an . bn and an & bn. For any positive values a and b, a ∨ b and a ∧ b stand for max(a, b)
and min(a, b), respectively. The indicator function is denoted by 1{·}.

2 Weak Factor Models

Consider the factor model in (3) more precisely. Stacking the vectors vertically like X =
(x1, . . . ,xT )′, F0 = (f01 , . . . , f

0
T )′, and E = (e1, . . . , eT )′, we rewrite it as the matrix form

X = F0B0′ + E = C0 + E, (5)

where C0 is called the matrix of common components. By the construction, the model sat-
isfies the restrictions: EF0′F0/T = Ir and B0′B0 is a diagonal matrix. Then the covariance
matrix reduces to

Σx = B0B0′ + Σe.

As discussed in Introduction, we consider sparsity-induced WF models. Specifically, we
assume sparse factor loadings B0 such that the sparsity of kth column (i.e., the number of
nonzero elements in b0

k ∈ RN ) is Nk := Nαk for k ∈ {1, . . . , r}, where 1 ≥ α1 ≥ · · · ≥ αr > 0
and exponents αk’s are unknown. Note that Nr must diverge since αr > 0 and N → ∞.
We may relax the exact sparseness by introducing the approximate sparse loadings; that is,
B0 = (bik) such that

∑N
i=1 |bik| � Nk. This does not necessarily require exact zeros in B0.

However, we choose not to pursue this direction to avoid a complicated technical issue.
By the sparseness assumption and the diagonality of B0′B0, there exist some constants

d1 ≥ · · · ≥ dr > 0 such that

B0′B0 = diag
(
d21N1, . . . , d

2
rNr

)
.

Then, under the assumption of uniform boundedness of λj(Σe), we have

λj(Σx)

{
� λj(B0B0′) = λj(B

0′B0) = d2jNj for j ∈ {1, . . . , r},
is uniformly bounded for j ∈ {r + 1, . . . , N}.

Apparently, this specification fulfills the requirement of the WF structure (4).
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For later use, we confirm the connection between C0 = F0B0′ and its singular value
decomposition (SVD) C0 = U0D0V0′. Here, U0 ∈ RT×r and V0 ∈ RN×r are respec-
tively matrices of the left- and sparse right-singular vectors of C0 that satisfy restrictions
U0′U0/T = Ir and V0′V0 = N with N = diag(N1, . . . , Nr), and D0 = diag(d1, . . . , dr) ∈
Rr×r is composed of the singular values d1 ≥ · · · ≥ dr > 0. In view of the restrictions
on model (5), it is reasonable to set F0 = U0 and B0 = V0D0. This construction yields
F0B0′ = C0 and satisfies the restrictions.

3 Estimation

We propose our WF-SOFAR estimator based on the SOFAR framework of Uematsu et al.
(2019) for the WF models. In this section, we denote by r̂ an estimate of the number of
factors. The actual method of estimating r is introduced in Section 4.1.

3.1 WF-SOFAR estimation

Once the WF model is defined via the sparsity assumption on B0, it is natural to introduce a
sparsity-inducing penalty term, such as the `1-norm of B, to obtain a sparse estimate of B0

in the same fashion as the Lasso by Tibshirani (1996). In fact, the WF-SOFAR estimator is
conceptually defined as

(F̂, B̂) = arg min
(F,B)∈RT×r̂×RN×r̂

{
1

2

∥∥X− FB′
∥∥2
F

+ η‖B‖1
}

(6)

subject to F′F/T = Ir̂ and B′B diagonal,

where r̂ is the predetermined number of factors and η > 0 is a regularization coefficient. If
η = 0 in (6), then the resulting estimator reduces to the PC estimator (F̂PC, B̂PC). This
means that the WF-SOFAR estimator closely approximates the PC estimator as η → 0 even
if the model does not exhibit sparseness.

It is well-known that the PC estimator is easily obtained by the eigenvalue problem on
XX′; specifically, for given r̂, F̂PC is obtained as T 1/2 times the eigenvectors corresponding
to the top r̂ largest eigenvalues of (NT )−1XX′ and B̂PC = X′F̂PC/T . On the other hand,
the WF-SOFAR estimator is no longer computed by the eigenvalue problem. Even some
algorithms used for the lasso, such as coordinate descent, cannot be directly applied to
the problem due to the restrictions, sparsity and orthogonality (diagonality). In order to
overcome this difficulty, we apply the SOFAR algorithm proposed by Uematsu et al. (2019) to
solving (6). Roughly speaking, the algorithm provides estimates for the SVD of a coefficient
matrix in a multiple linear regression, with simultaneously exhibiting both low-rankness in
the singular values matrix and sparsity in the singular vectors matrices. Recall the connection
between (F,B) and (U,D,V), which has been defined by the SVD of C, in Section 2. Then
for given r̂, the SOFAR algorithm can solve (6) to get (F̂, B̂) = (Û, V̂D̂).

The algorithm to compute the WF-SOFAR estimate is based on the augmented La-
grangian method coupled with the block coordinate decent, and is numerically stable; see
Uematsu et al. (2019) for more information on the computational aspects. The associated
R package (rrpack) is available at https://cran.r-project.org/package=rrpack.
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3.2 Adaptive WF-SOFAR estimation

It is interesting to observe which factors truly contribute to xt. In general, the lasso estimator
tends to select more variables than necessary due to the bias caused by the regularization.
To reduce the bias, Zou (2006) proposed the adaptive lasso. Here we introduce the adaptive
WF-SOFAR based on a similar principle. Let B̂ini = (b̂iniij ) denote the first-stage initial
estimator, such as the PC estimator. Then the (i, j)th element of the weighting matrix
W = (wij) is defined as wij = 1/|b̂iniij |. Then the adaptive WF-SOFAR estimator is defined
as a minimizer of the second-stage weighted SOFAR problem:

(F̂ada, B̂ada) = arg min
(F,B)∈RT×r̂×RN×r̂

{
1

2

∥∥X− FB′
∥∥2
F

+ η‖W ◦B‖1
}

(7)

subject to F′F/T = Ir̂ and B′B diagonal,

where A ◦B represents the Hadamard product of two matrices, A and B, of the same size.
Estimating exponents αk’s is of great interest to empirical research since, as discussed

in Bailey et al. (2016), they are interpreted as the strength of the influence of the common
factors and of the cross-sectional correlations. Recall that the kth column of B0, b0

k, has

Nk = Nαk nonzero entries. Similarly, let N̂k denote the number of nonzero elements in b̂ada
k .

As the lasso in a linear regression, we may expect that the adaptive WF-SOFAR estimate
B̂ada can successfully recover the true sparsity pattern of B0. If this is true, the estimators
of exponents αk’s can naturally be obtained as α̂k = log N̂k/ logN by a simple algebraic
formulation. In the next section, we will prove this estimator is actually consistent for αk.

4 Theory

We investigate the theoretical properties of the (adaptive) WF-SOFAR estimators. We
first reveal the asymptotic behavior of the eigenvalues of XX′ generated by the WF model
in Section 4.1. This helps us to determine the number of weak factors. Next we derive the
estimation error bound in Section 4.2. Furthermore, the asymptotic property of the adaptive
WF-SOFAR estimator is derived in Section 4.3. For the sake of convenience, we assume the
existence of some underlying divergent sequence n that satisfies the principle that N and T
are both functions of n and that they simultaneously diverge as n→∞ (i.e., N = N(n)→∞
and T = T (n)→∞ as n→∞). For example, we may simply suppose n = N ∧ T →∞.

The theory is developed on the basis of sub-Gaussian assumption on the factors and
errors. Following Rigollet and Hütter (2017), we introduce a sub-Gaussian random variable:
a random variable X ∈ R is said to be sub-Gaussian with variance proxy σ2 if E[X] = 0
and its moment generating function satisfies E[exp(sX)] ≤ exp(σ2s2/2) for all s ∈ R. This
is denoted by X ∼ subG(σ2). Define Ln = (N ∨ T )ν − 1 for an arbitrary constant ν > 0.
Throughout the paper, including all the proofs in Appendix, ν is assumed to be fixed.

Assumption 1 (Latent factors). The factor matrix F0 = (f01 , . . . , f
0
T )′ is specified as the

vector moving average process of order Ln (VMA(Ln)) such that

f0t =

Ln∑
`=0

Ψ`ζt−`, lim
n→∞

Ln∑
`=0

Ψ`Ψ
′
` = Ir,

where ζt = (ζt1, . . . , ζtr)
′ with {ζtk}t,k i.i.d. subG(σ2ζ ) that has E ζ2tk = 1, and where Ψ0 is a

nonsingular, lower triangular matrix.
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Assumption 2 (Factor loadings). Each column b0
k of B0 has the sparsity Nk = Nαk with

0 < αr ≤ · · · ≤ α1 ≤ 1 and B0′B0 = diag{d21N1, . . . , d
2
rNr} with 0 < dr ≤ · · · ≤ d1 < ∞. If

Nk = Nk−1, there exists a constant δ > 0 such that d2k−1 − d2k ≥ δ1/2d2k−1.

Assumption 3 (Idiosyncratic errors). The error matrix E = (e1, . . . , eT )′ is specified as the
VMA(Ln) such that

et =

Ln∑
`=0

Φ`εt−`, lim sup
n→∞

Ln∑
`=0

‖Φ`‖2 <∞,

where εt = (εt1, . . . , εtN )′ with {εti}t,i i.i.d. subG(σ2ε) and Φ0 is a nonsingular, lower trian-
gular matrix.

Assumption 4 (Parameter space). The parameter space of B in optimization (6) is given
by B(Ñ) = {B ∈ RN×r : ‖B‖0 . Ñ/2} for Ñ ∈ [N1, N ]. (Define α̃ to be such that Ñ = N α̃.)

Assumptions 1 and 3 specify the stochastic processes {ft} and {et}, respectively, to
be stationary VMA(Ln), where Ln � (N ∨ T )ν diverges with an arbitrary fixed constant
ν > 0. This construction is regarded as the asymptotic linear process, which includes a wide
range of cross-sectional and time series dependent processes. By Assumption 3, we have
λ1(E ete

′
t) < ∞. Assumption 2 is key to our analysis and provides the sparse structure of

the factor loadings B0 that leads to the WF models. The sparsity makes the divergence
rate of λk(B

0′B0) possibly slower than N . This can be called weak pervasiveness in contrast
to the so-called pervasive condition of Fan et al. (2013) that assumes the SF model (i.e.,
Nk = N for all k ∈ {1, . . . , r}). Note that under Assumptions 1 and 2 the summability
condition, together with the strong law of large numbers, gives F0′F0/T = Ir(1 + o(1)) a.s.
and the relative eigengap condition entails the eigen-separation required in B0′B0.

Assumption 4 is used only when the parameter estimation is considered. Note that B0 is
included in B(Ñ) for any Ñ ∈ [N1, N ] under Assumption 2. If Ñ is set to N , B(N) coincides
with the whole space, RT×r. Whereas, if Ñ is set to N1, B(N1) becomes as sparse as B0.
The PC estimator always requires optimization on B(N) since it cannot be sparse, but the
WF-SOFAR estimator can allow sparse B(Ñ) with Ñ ∈ [N1, N) when the true loadings
matrix is expected to be sparse. An important consequence of taking sparser space is that,
as explained in Section 4.2, a wider class of the WF models can be allowed in estimation.

Lemma 1. Suppose that Assumptions 1–3 hold. Then the following inequalities simultane-
ously hold with probability at least 1−O ((N ∨ T )−ν):

(a) ‖E‖2 . (N ∨ T )1/2,

(b) ‖EB0‖max . N
1/2
1 log1/2(N ∨ T ),

(c) ‖E′F0‖max . T 1/2 log1/2(N ∨ T ),

(d) maxi∈{1,...,N}

∣∣∣∑T
t=1

(
e2ti − E e2ti

)∣∣∣ . T 1/2 log1/2(N ∨ T ).

Lemma 1 guarantees that the stochastic terms can be bounded by some deterministic
sequences with high probability. As a result, we can deal with these stochastic terms as if
they were deterministic sequences in the proofs. It is worth mentioning that the results are
of independent interest in the literature of high-dimensional time series analysis.
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4.1 Determining the number of weak factors

Before investigating the properties of the estimator, we first observe the asymptotic behavior
of the eigenvalues of XX′ under the WF model. This result yields important information
for determining the number of weak factors, r. Write T = N τ for some constant τ > 0 to
understand the size of T relative to N . Recall that Nj = Nαj for some αj ∈ (0, 1].

Theorem 1. Suppose that Assumptions 1–3 and condition

α1 < 2αr (8)

hold. Then for any finite integer kmax > r, the jth largest eigenvalue of (N ∨ T )−1XX′,
denoted by λj, satisfies

λj

&
NjT

N ∨ T
for j ∈ {1, . . . , r},

= O(1) for j ∈ {r + 1, . . . , kmax},

with probability at least 1−O((N ∨ T )−ν). Divergence of λr is ensured by condition

αr + τ > 1. (9)

Theorem 1 suggests the means of determining the number of weak factors. This presents
a case in which the method of Onatski (2010) works. Namely, for δ > 0, define

r̂(δ) = max {j = 1, . . . , kmax − 1 : λj − λj+1 ≥ δ} .

Then, the following important corollary is obtained.

Corollary 1. Suppose that Assumptions 1–3 hold. If conditions (8) and (9) are true, then
for any fixed positive constant δ, we have r̂(δ)→ r with probability at least 1−O((N ∨T )−ν).

In practice, δ should appropriately be predetermined. In fact, Onatski (2010) suggested
the edge distribution (ED) method based on a calibration; see that paper for full details. If δ
is appropriately chosen, r̂(δ) will successfully detect the true number of factors r even when
the biggest gap is observed not between λr and λr+1 but among λ1, . . . , λr. Meanwhile, the
method of Ahn and Horenstein (2013), which was designed for SF models, is likely to fail
in detecting r in the WF models because it defines r̂ as the point at which the largest gap
is observed among λ1, . . . , λkmax ; this is not always the case for the WF models. In Section
5, we will check the validity of Onatski’s ED estimator in our model through numerical
simulations.

4.2 Non-asymptotic error bound for the WF-SOFAR estimator

We suppose that the WF model satisfies conditions (8) and (9) and that r is known in view of
Corollary 1. Recall that Ñ = N α̃ (see Assumption 4), and introduce an additional condition

α1 + (α̃ ∨ τ)/2 < αr + αr ∧ τ. (10)

This condition is necessary to derive a nontrivial error bound. Note that condition (10) with
any α̃ ∈ [α1, 1] implies (8) because α1 < αr + αr ∧ τ − (α̃ ∨ τ)/2 < αr + αr ∧ τ ≤ 2αr. For
notational convenience, we put Kn = {N1 log1/2(N ∨ T )}/{Nr(Nr ∧ T )}.
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Theorem 2 (WF-SOFAR). Set ηn � T 1/2 log1/2(N∨T ) in optimization (6). If Assumptions
1–4 and conditions (9) and (10) hold with any Ñ ∈ [N1, N ] (i.e., α̃ ∈ [α1, 1]), then the
following error bounds hold with probability at least 1−O((N ∨ T )−ν):

T−1/2‖F̂− F0‖F . N
1/2
1 Kn, N−1/2‖B̂−B0‖F .

N
1/2
1 T 1/2

N1/2
Kn.

In particular, the upper bounds converge to zero.

The convergence rates do not depend on the choice of Ñ . Through condition (10),
however, it provides a class of the WF models that can consistently be estimated. In fact,
the range of αr restricted by (10) becomes the largest when Ñ = N1 (i.e., α̃ = α1). This
point is reconsidered in Remark 1 below in comparison with the PC estimation.

Theorem 3 (PC). If Assumptions 1–4 and conditions (9) and (10) hold with Ñ = N (i.e.,
α̃ = 1), then the following error bounds hold with probability at least 1−O((N ∨ T )−ν):

T−1/2‖F̂PC − F0‖F . N1/2Kn, N−1/2‖B̂PC −B0‖F . T 1/2Kn.

In particular, the upper bounds converge to zero.

First, when the model has strong factors only (i.e., Nr = N), the convergence rates in
the theorems correspond to that obtained from Bai (2003) up to the logarithmic factor. We
also observe that the convergence rates of the WF-SOFAR and the PC estimators become
identical if N1 = N . On the other hand, when the model has weak factors with N1 < N , the
WF-SOFAR can take advantage of utilizing the sparsity due to the `1-penalty and achieve
the tighter upper bounds while the PC cannot. Therefore, the WF-SOFAR estimator is
likely to converge at least as fast as the PC estimator even when all the factors are strong.
Of course a precise discussion requires a lower bound, but it is beyond the scope of this paper
and left for a future study.

Although the WF-SOFAR can choose Ñ = N1 as already mentioned, the PC necessarily
selects Ñ = N since it does not exploit sparse parameter spaces. In view of (10), this leads
to the fact that the WF-SOFAR can consistently estimate a wider class of the WF models
than the PC can.

Remark 1. We consider the class of WF models that can consistently be estimated by the
WF-SOFAR and the PC, respectively. Condition (10) with Ñ = N1 (i.e., α̃ = α1) naturally
brings the largest class of the WF models. In this case, the lower bound of αr is 1/3, which
is achievable when α1 = αr and τ = 2/3. Likewise, the upper bound of the difference α1−αr
is found to be 1/4, which is attainable when τ ∈ (3/4, 1] and α1 = 1. Note that these results
can be obtained not by PC but by WF-SOFAR. Contrary to the case of Ñ = N1, condition
(10) with Ñ = N restricts αr to be strictly larger than 1/2. This is more restrictive than
the case of Ñ = N1 though the upper bound of the difference is the same.

In sum, the WF-SOFAR can consistently estimate the WF models with exponents αk’s
smaller than or equal to 1/2 by supposing a sparse parameter space. The finite sample evi-
dence in Section 5 shows that the WF-SOFAR estimator seems quite robust to the violation
of the restrictions on the region of (τ, α1, αr) discussed in this remark.
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4.3 Factor selection consistency of the adaptive WF-SOFAR estimator

We prove the factor selection consistency, which guarantees that the adaptive WF-SOFAR
recovers the true sparsity pattern of the loadings and correctly select the relevant factors.
As a corollary, we also establish consistency of the estimated exponents, α̂k’s.

Before stating the theorem, define the index set of nonzero signals in B0 as S = supp(B0) ⊂
{1, . . . , N} × {1, . . . , r}. For any (sparse) matrix A = (aik) ∈ RN×r, we define AS =
(aik1{(i, k) ∈ S}) and aS = vec AS ∈ RrN . Write b0n = min(i,k)∈S |b0ik|. Introduce additional
conditions:

α1 − αr < τ/4, (11)

1 .
ηn/b

0
n

T 1/2 log1/2(N ∨ T )
.
N1(Nr ∨ T )

Nr(Nr ∧ T )
. (12)

Condition (11) further restricts the model in terms of the maximum difference of α1 and αr
when τ < 1. However, the difference can be 1/4, which is the same as the maximum value
obtained by constraint (10) only, as long as τ = 1. The lower bound of αr can also achieve
1/3 even if (11) is additionally supposed. Condition (12) restricts the relation between ηn
and b0n.

Theorem 4 (Adaptive WF-SOFAR). If Assumptions 1–3 and conditions (9)–(12) hold,
then for the weighting matrix W constructed by any estimator B̂ini such that

‖B̂ini −B0‖max . b0n (with high probability), (13)

the adaptive WF-SOFAR estimator satisfies

T−1/2
∥∥∥F̂ada − F0

∥∥∥
F

= Op

(
N

1/2
1 Kn

)
, (14)

N−1/2
∥∥∥B̂ada
S −B0

S

∥∥∥
F

= Op

(
N

1/2
1 T 1/2

N1/2
Kn

)
, (15)

P
(

supp(B̂ada) = S
)
→ 1. (16)

If the PC estimator is used for the initial estimator, b0n & T−1/2 log1/2(N∨T ) is allowed in
(13) (see Lemma 6 in Appendix). The rates of convergence (14) and (15) are identical to those
in Theorem 2, and hence they converge to zero. Finally, we prove that α̂k = log N̂k/ logN ,
which is defined in Section 3.2, is consistent for αk because of (16).

Corollary 2. If the model selection consistency in (16) holds, then we have

P (α̂k = αk for all k = 1, . . . , r)→ 1.

It is well-known that the adaptive Lasso as well as penalized regressions with folded-
concave penalties, such as the SCAD by Fan and Li (2001), can establish the asymptotic
normality for the nonzero subvector of the estimator. Likewise, the asymptotic normality
of the adaptive WF-SOFAR might be proved. However, we do not consider it due to the
criticism by Leeb and Pötscher (e.g., Leeb and Pötscher (2008) and references therein).
Instead, it is interesting to investigate “debiasing” the WF-SOFAR estimator in a manner
similar to Javanmard and Montanari (2014). We leave the problem as a future challenge.
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5 Monte Carlo Experiments

We investigate the finite sample behavior of estimators of the number of factors and the
proposed WF-SOFAR estimators by means of Monte Carlo experiments. In this section,
indexes i, t, and k run over 1, . . . , N , 1, . . . , T , and 1, . . . , r, respectively, unless otherwise
noted. Denote by Nk = bNαkc, where b·c is the floor function, with 0 < αk ≤ 1 for each k.
We consider the following Data Generating Process (DGP):

xti =

r∑
k=1

bikftk +
√
θeti. (17)

The factor loadings bik and factors ftk are formed such that N−1
∑N

i=1 bikbi` = 1{k = `} and

T−1
∑T

t=1 ftkft` = 1{k = `}, by applying Gram–Schmidt orthonormalization to b∗ik and f∗tk,
respectively, where b∗ik ∼ i.i.d.N(0, 1) for i = 1, . . . , Nk and b∗ik = 0 for i = Nk+1, . . . , N , and
f∗tk = ρfkf

∗
t−1,k + vtk with vkt ∼ i.i.d.N(0, 1− ρ2fk) and f∗0k ∼ i.i.d.N(0, 1). The idiosyncratic

errors eti are generated by eti = ρeet−1,i + βεt,i−1 + βεt,i+1 + εti, where εti ∼ i.i.d.N(0, σ2ε,ti)

with σ2ε,ti being set such that Var(eti) = 1. The DGP is in line with that considered in the
existing representative literature of approximate factor models, such as Bai and Ng (2002),
Onatski (2010), and Ahn and Horenstein (2013), among many others. The main difference
in our DGP from the literature is that the absolute sums of the factor loadings over i are
allowed to diverge proportionally to Nk.

As the benchmark DGP, we set r = 2, ρfk = ρe = 0.5 for all k, β = 0.2, and θ = 1. We
focus on the performance of the estimators for different values of exponents (α1, α2). In par-
ticular, we consider the combinations (0.9, 0.9), (0.8, 0.5) and (0.5, 0.4). All the experimental
results are based on 1,000 replications.

5.1 Determining the number of weak factors

Based on Corollary 1 and the discussion in Section 4.1, we confirm validity of Onatski’s
ED estimator r̂(δ). As already explained, the estimator is the maximum value of k with
which λk − λk+1 exceeds the threshold δ. Following the ED algorithm of Onatski (2010), we
compute δ̂ by calibration.2

The other competitor statistics include the ER (eigenvalue ratio) and GR (growth ratio)
estimators of Ahn and Horenstein (2013). We also consider the information criteria IC3 and
BIC3 proposed by Bai and Ng (2002). Note that these competitors are designed for SF
models. Especially, the ER and GR just identify the maximum gap between the ordered
eigenvalues. Hence, when the gap of divergence rates, Nk − Nk+1, is relatively large, these
statistics might pick up k as the estimate of r, even when k < r.

5.1.1 Results

Table 1 reports the average of the estimated number of factors over the replications by
the ED of Onatski (2010), GR of Ahn and Horenstein (2013), and BIC3 of Bai and Ng
(2002).3 We set the maximum number of factors, kmax, as five. All the combinations of

2We have found no experimental results on the finite sample performance of the ED estimator with the
WF models apart from ours.

3To save the space, we do not report the results for ER and IC3 since the performance of ER is very similar
to that of GR, and the performance of IC3 is mostly outperformed by BIC3. These results are available upon
request from the authors.
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N,T = 100, 200, 500, 1000 are considered. As can been seen in Table 1, when α1 and α2 are
both close to unity, all the methods perform very well, picking up the true number of factors
with very high probability. Indeed, in the case of exponents (α1, α2) = (0.9, 0.9), GR and
BIC3 choose the correct number of factors for all the replications, while ED very slightly
tends to overestimate the number of factors.

However, the performance of GR and BIC3 deteriorates when the gap of the values
between α1 and α2 widens, or when both values α1 and α2 are further away from unity;
for example, see the cases when (α1, α2) = (0.8, 0.5) and (α1, α2) = (0.5, 0.4). They tend
to underestimate r. In contrast, ED performs very well, and its estimation quality is very
similar to that when both exponents are close to unity. Even under the most challenging
set up (α1, α2) = (0.5, 0.4), ED consistently estimates the number of factors for sufficiently
large T and N .

We conclude that the finite sample evidence suggests that the ED method of Onatski
(2010) provides a reliable estimation of the number of factors in WF models, while the
methods of GR and BIC3 may not be as reliable as the ED, in general.

Table 1: Average of the chosen number of factors for WF models by edge distribution
algorithm (ED), Growth Ratio (GR), and BIC3 methods: r = 2, kmax = 5

ED GR BIC3

T,N 100 200 500 1000 100 200 500 1000 100 200 500 1000
(α1, α2) = (0.9, 0.9)
100 2.05 2.04 2.02 2.01 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
200 2.04 2.04 2.03 2.02 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
500 2.04 2.04 2.03 2.02 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
1000 2.02 2.04 2.03 2.02 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
(α1, α2) = (0.8, 0.5)
100 1.96 1.96 1.95 1.90 1.30 1.18 1.04 1.00 1.30 1.17 1.02 1.00
200 2.02 2.02 2.03 2.02 1.40 1.30 1.09 1.01 1.39 1.36 1.12 1.01
500 2.03 2.03 2.02 2.02 1.61 1.45 1.24 1.10 1.41 1.51 1.53 1.42
1000 2.02 2.03 2.02 2.02 1.52 1.45 1.24 1.10 1.43 1.51 1.53 1.42
(α1, α2) = (0.5, 0.4)
100 1.54 1.52 1.36 1.14 1.50 1.47 1.39 1.33 1.03 1.00 1.00 1.00
200 1.83 1.88 1.89 1.86 1.52 1.53 1.50 1.39 1.03 1.02 1.00 1.00
500 2.00 2.00 2.01 2.02 1.67 1.64 1.65 1.59 1.03 1.05 1.02 1.01
1000 1.92 2.00 2.01 2.02 1.60 1.64 1.65 1.59 1.04 1.05 1.02 1.01

5.2 Finite sample properties of the WF-SOFAR estimator

We investigate the finite sample properties of our WF-SOFAR estimator, and compare these
with those of the PC estimator. Here we treat the number of factors, r, as given. Initially
we consider the exponents (α1, α2) = (0.9, 0.9) and (0.8, 0.5) and all the combinations of
N,T = 100, 200, 500, 1000.4 Then, we investigate more challenging case, (0.5, 0.4). In this
case, we consider large sample sizes, N,T = 500, 1000, only. We report the results of the
adaptive WF-SOFAR estimator with regularization coefficient ηn determined by BIC, which
we recommend to use.5

4Note that when the value of α1 is 0.8, the associated lowest bound of αr implied by condition (10) is 0.6.
5We examined all the combinations of WF-SOFAR and adaptive WF-SOFAR with AIC, cross-validation,

BIC and GIC. The results of which are available upon request from the authors.
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For performance comparison purposes, we consider the `2-norm losses based on the scaled

estimators: L(F̂) = ‖
∑r

k=1 T
−1/2[abs(f̂k) − abs(f0k )]‖2, L(B̂) = ‖

∑r
k=1N

−1/2
k [abs(b̂k) −

abs(b0
k)]‖2, and L(Ĉ) = ‖

∑r
k=1 T

−1/2N
−1/2
k [Ĉk − C0

k]‖F, where abs(a) takes elementwise
absolute value of a real vector a. Due to the scaling, the performance of the estimators
can be comparable across different combinations of the values of N , T , and αk’s. Observe
that these norm losses are not sensitive to the sign indeterminacy of the estimators (i.e.
f0kb0′

k =
(
−f0k

) (
−b0′

k

)
) and the change of the order of the factor components if α1 = α2 (e.g.,

for r = 2, the estimated first factor can be of the true second factor).

5.2.1 Results

Table 2 reports the averages and standard deviations (s.d.) of α̂1 and α̂2 based on Corollary
2, and the average of the norm losses (multiplied by 100) of the scaled estimated factors,
factor loadings, and common components by the WF-SOFAR (WS in the tables) and PC
estimators over the replications. In this table, we consider (α1, α2) = (0.9, 0.9) and (0.8, 0.5).
Each panel of the table has four column blocks for T = 100, 200, 500, 1000, and each column
block for given T contains four row blocks for N = 100, 200, 500, 1000.

First, focus on (α̂1, α̂2). In a nutshell, they are sufficiently accurate but tend to slightly
underestimate when αk is closer to one and overestimate when it is around 0.5. The precision
improves as T and N increase. For example, see the results when (α1, α2) = (0.8, 0.5). The
estimation precision is remarkable since given α1 = 0.8 the lower bound of α2 implied by
condition (10) is 0.6, which is much larger than the actual value considered here, α2 = 0.5.

Now we turn our attention to the performance of the WF-SOFAR and PC estimates. In
terms of the norm loss given above, the WF-SOFAR uniformly beats the PC across all the
designs. Perhaps surprisingly, the WF-SOFAR estimate of the factors is much more accurate
than the PC even in the most favorable experimental design to the PC, with (α1, α2) =
(0.9, 0.9). In terms of their ratios, the WF-SOFAR factor estimates become more accurate
than the PC factor estimates as N rises with given T . As expected, the accuracy of the
WF-SOFAR estimates of factor loadings is uniformly superior to that of the PC estimates.
This gap in accuracy becomes wider when the exponents are further from unity; see the
case of (α1, α2) = (0.8, 0.5), for instance. The norm loss of the WF-SOFAR stabilizes while
that of the PC fast rises. However, when T grows with given N , the accuracy of both
the WF-SOFAR and the PC factor loadings estimates improves (but the former is always
more accurate than the latter). Consequently, the accuracy of the WF-SOFAR estimator of
common component is uniformly superior to that of the PC estimator.

Table 3 reports the same information as Table 2, but for more challenging models with
(0.5, 0.4). As the WF-SOFAR estimation naturally requires a larger sample size for these
cases, we consider the combinations for N,T = 500, 1000 only. As can be seen in the
table, remarkably, even when one of the exponent is 0.4, our WF-SOFAR method provides
sufficiently accurate estimates of α1 and α2 as well as far superior estimates of factors, factor
loadings and common components to the PC method.

To summarize, the WF-SOFAR estimator performs very well when the exponents are
close to unity, thus, signal of common components is high, even with a smaller sample size.
When the signal of common components is weak, namely when the value(s) of exponent(s)
are around 0.5 or below, the WF-SOFAR estimator is sufficiently precise in terms of norm
loss, but requires a larger sample size. Significantly, even when the gap between α1 and α2

is larger than the condition (10) implies, the WF-SOFAR estimator is sufficiently accurate
in terms of norm loss and its accuracy improves as the sample size rises. Conversely, the PC
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estimator fails to improve the performance when N rises due to its inability to identify zero
elements in sparse loadings, and consequently the PC estimator is uniformly superseded by
the WF-SOFAR estimator in terms of norm loss.

5.3 A hierarchical factor structure

Recently estimation of a hierarchical factor structure or a multi-level factor structure has
been gaining serious interest in the literature. Ando and Bai (2017) and Choi et al. (2018)
consider factor models with two types of factors, global factors and local factors. The factor
loadings of global factors are non-zero values for all the cross-section units, whereas the local
factors have non-zero loadings among the cross-section units of specific cross sectional groups.
Ando and Bai (2017) and Choi et al. (2018) propose sequential procedures to identify the
global and local factors separately. In fact, the WF structure nests the hierarchical factor
structure and hence our WF-SOFAR method can be readily applied to such models. In
contrast to the existing approaches, given the total number of global and local factors, our
approach permits us to consistently estimate the hierarchical model in one go.

Figure 1: True factor loadings Figure 2: WF-SOFAR estimate Figure 3: PC estimate

For illustration, We generate the data of four factors models, xti =
∑r

k=1 bikftk + eti,
where ftk and eti are generate as above. We set r = 4. The first factor is a global factor,
i.e., bi1 ∼ i.i.d.N(0, 1) for i = 1, . . . , N . The other three factors are local ones, i.e., bi2 is
drawn from N(0, 1) for the first third, bi3 for the second third, and bi4 for the last third of
cross section units while the rests are zero. We obtained a simulated data with N = 450
and T = 120, and estimated the factor model given r = 4 by the PC and WF-SOFAR. To
visualize the quality of the factor loadings, we provide heat maps of three N ×N matrices,∑4

k=1 ωk abs(b0
kb

0
k
′
),
∑4

k=1 ωk abs(b̂kb̂
′
k) and

∑4
k=1 ωk abs(b̂PC,kb̂

′
PC,k), which are reported in

Figures 1-3, respectively. To clarify the difference between the global factor loadings and local
ones, which overlaps in the heat maps, we use the weight ω1 = 1/8 and ω2 = ω3 = ω4 = 1.
As is clear, the WF-SOFAR estimator successfully recover the hierarchical pattern while the
PC estimator fails.

6 Empirical Applications

In this section we provide two empirical applications. In the first subsection, the WF-SOFAR
is applied to firm security returns to analyse changes in the presence of systematic risks in the
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(Ĉ
) ×

1
0
0

6.
0

12
.7

12
.3

99
.6

3.
0

6.
8

7.
2

46
.3

1.
4

2.
9

4.
8

19
.0

0.
9

1.
7

4.
1

11
.0

15



Table 3: Performance of the WF-SOFAR (WS) and PC estimators for approximate factor
models with two factor components with (α1, α2) = (0.5, 0.4)

T=500 T=1000
Design (α1, α2) (0.5, 0.4) (0.5, 0.4)

N=500 mean s.d. mean s.d.

α̂1 0.47 0.03 0.47 0.03
α̂2 0.41 0.04 0.40 0.04

WS PC WS PC

L2
F (F̂)×100 13.4 17.9 13.1 15.2

L2
F (Λ̂)×100 4.6 48.3 2.9 24.4

L2
F (Ĉ)×100 17.3 48.6 16.0 31.1

T=500 T=1000
Design (α1, α2) (0.5, 0.4) (0.5, 0.4)

N=1000 mean s.d. mean s.d.

α̂1 0.48 0.02 0.48 0.02
α̂2 0.40 0.03 0.40 0.03

WS PC WS PC

L2
F (F̂)×100 9.7 15.2 9.5 12.0

L2
F (Λ̂)×100 3.7 65.6 2.3 32.2

L2
F (Ĉ)×100 13.0 57.4 12.0 32.9

market over the decades. In the second subsection we compare the forecasting performance
of predictive regressions based on the factors extracted by the WF-SOFAR and PC.

6.1 Firm security returns

In this subsection we apply our method to estimate approximate factor models using excess
returns of firm securities which are used to compute the Standard & Poor’s 500 (S&P 500)
index of large cap U.S. equities market. In particular, we obtain the 500 securities that
constitute the S&P 500 index each month over the period from January 1984 to April 2018
from Datastream. The monthly return of security i for month t is computed as rti =
100× (Pti−Pt−1,i)/Pt−1,i +DYti/12, where Pti is the end-of-the-month price of the security
and DYti is the per cent per annum dividend yield on the security. The one-month US
treasury bill rate is chosen as the risk-free rate (rft), which is obtained from Ken French’s
data library web page. The excess return is defined as re,ti = rti − rft.

Following the literature, we estimate the factor model for the standardized excess return,
r∗e,ti. In view of the experimental results shown earlier, we report the results based on the
adaptive WF-SOFAR with ηn selected by BIC. For each window month, T = September
1998 to April 2018, we chose securities that contain the data extending 120 months back
(T = 120) from T. This gives the different number of securities for each window T (NT). The
average number of securities over the estimation windows is 443 (N̄ = 443). In this exercise,
we set the maximum number of factors as four. As will be shown below, three or four factors
are estimated over the windows. We identify the factors and signs of the factors and factor
loadings, given the estimates of the initial window month, T = September 1989, based on
the correlation coefficients between the factors at T and the appropriately lagged T.6

We report α̂`, ` = 1, 2, 3, 4, of the security return covariance matrix, which are associated
with the four factors. Observe that, as discussed earlier, the estimated exponents are in-
variant to the rotation of the estimated common components. Table 4 reports the summary
statistics of α̂`’s and the portion of non-zero factors, N`T/NT and Figure 4 plots α̂` over the
estimation window months, T = September 1989 to April 2018.

In turn we discuss the trajectories of α̂` in some details by referring to Table 4 and Figure
4. The first factor does seem to be almost always “strong,” in that the divergence rate N1 is

6For example, define (T − 1)-dimensional vector of `th factor of T as f̂`T = (f̂`T,1, f̂`T,2, . . . , f̂`T,T−1)
′ and

that of T − 1 as f̂`T−1 = (f̂`T−1,2, f̂`T−1,2, . . . , f̂`T−1,T)
′, ` = 1, . . . , r. For f̂`T, if max1≤k≤r |corr(f̂`T, f̂kT−1)| =

|corr(f̂`T, f̂2T−1)| and corr(f̂`T, f̂2T−1) < 0, say, f̂2T ≡ −f̂`,T and b̂i2T ≡ −b̂i`T.
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very close to N . As reported in Table 4, the average of α1 over the month windows is 0.995
and standard deviation is very small (0.004) with the minimum value of 0.979. Actually,
the values of the factor loadings to this factor have the same sign, which strongly suggests
that this is the market factor. Apart from the first factor, which is always strong, the
strengths of the common components vary over the months and can become quite weak.
For example, for the second to the fourth factors, the maximum portion of nonzero factor
loadings is between 44.5% and 59.5%, while the minimum portion is merely 12.0% to 17.6%.
Furthermore, the divergence rates are very different over the factors. For example, for the
window month of March 1998, {α̂1, α̂2, α̂3} = {0.991, 0.774, 0.653}, and the corresponding
numbers of non-zero factors are 425, 113 and 54 out of 450 securities. These strongly imply a
potentially substantial efficiency gain in estimation of the approximate factor models through
our WF-SOFAR over the PC.

In line with the well-observed phenomenon that the correlation among the securities in
the financial market rises during periods of turmoil, sharp rises of exponents in some months
can be observed. For example, α2 goes up sharply around February 2000 then rises gradually.
This period corresponds to the peak of the dot-com bubble and its burst on March 2000 (the
main contributor to the factor loadings of the second factor is Technology industry, see
Appendix D). Similarly, a sharp rise of α3 is observed from July 2008 to April 2009. This
period coincides with the 2008 financial crisis. In just ten months, it goes up by 0.12, from
0.74 to 0.86 (one of the main contributors to the factor loadings of the third factor is the
Financial industry, see Appendix D).

It is also interesting that the orders in terms of values of the exponents, α2, α3, and α4,
change over the period. In particular, from September 1989, α2 is larger than α3 most of the
time until December 2010, then α3 is almost always larger than α2. Since the estimate of α4

first appeared in February 2004, it was mostly smaller than other exponents. It is estimated
every month from March 2010 onward, seemingly becoming more and more strong toward
the latest month, April 2018. After the sharp one-off drop in February 2015,7 α4 rises to
become the highest next to the first factor from November 2016 onward.

Table 4: Summary statistics of the estimated exponents, α`T, and the portion of non-zero
factor loadings, N`T/NT, ` = 1, 2, 3, 4, from September 1989 to April 2018.

Exponents of Loadings Portion of Non-zero Loadings
α1 α2 α3 α4 N1/N N2/N N3/N N4/N

mean 0.995 0.824 0.770 0.781 97.1% 36.2% 26.2% 27.3%
s.d. 0.004 0.046 0.045 0.028 2.4% 9.6% 7.0% 5.0%
max 1.000 0.895 0.860 0.854 100.0% 59.5% 44.5% 49.7%
min 0.979 0.713 0.653 0.665 88.2% 17.6% 12.0% 13.1%

Notes: The estimated α`, ` = 1, 2, 3, 4 for the each month of 120 months window, T =
September 1989,...,April 2018.

6.2 Forecasting bond yields

We consider out-of-sample performance of forecasting regressions for bond yields using ex-
tracted factors via our WF-SOFAR and the PC, from a large number of macroeconomic

7This coincides with the period at bottom of the biggest sharp fall of oil price between 2014-2015.
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Figure 4: Plot of the estimated αk’s from September 1989 to April 2018. The estimated α`,
` = 1, 2, 3, 4 for the each month of 120 months window, T = September 1989,...,April 2018.

variables in line with the analysis of Ludvigson and Ng (2009). We use the same data set
provided by Ludvigson and Ng.8 Specifically, the data consists of the continuously com-

pounded (log) annual excess returns on an n-year discount bond at month t, y
(n)
t , and a

balanced panel of i = 1, . . . , 132 monthly macroeconomic series at month t, xti, spanning the
period from January 1964 to December 2003. We consider the maturities n = 2, 3, 4, 5. For
more details of the data, see Section 3 of Ludvigson and Ng (2009).

We consider one-year-ahead out of sample forecast comparisons. In order to minimize
possible adverse effects of structural breaks, we set the rolling window at 252 months. The
forecast comparison procedure is explained below. For the Tth month rolling window and
maturity n, we extract factors {f̂tk}r̂Tk=1 from xti via our WF-SOFAR and the PC, i =
1, . . . , N = 132, t = T, . . . , TT − 12, where t denotes months from January 1964 to December
2003, T and TT denote the start and end months of the Tth rolling window, respectively.
Observe that r is estimated for each estimation window to avoid using “future” information.9

Then, run the predictive regression

y
(n)
t+12 = β̃

(n)
0 +

r̂T∑
k=1

β̃
(n)
k f̂tk + ε̃

(n)
t , t = T, . . . ,TT − 12, n = 2, 3, 4, 5

and obtain the forecast error

ε̂
(n)
TT+12|TT = y

(n)
TT+12 − ŷ

(n)
TT+12|TT ,

8The data file is obtained from Sydney Ludvigson’s web page:
https://www.sydneyludvigson.com/s/RFS2009-u1e1.xls

9In another experiment, we estimated the number of factors using a whole sample period and implemented a
similar exercise. The forecast based on our estimator uniformly outperformed that based on the PC estimator.

18



with ŷ
(n)
TT+12|TT = β̃

(n)
0 +

∑r̂T
k=1 β̃

(n)
k f̂TTk. This produces H = 217 forecast errors. To esti-

mate r for each window, we set the maximum number of factors to nine and use the ED
estimator. The estimate varies from one to six over the forecast windows. In Table 5, we

report the mean absolute deviation of the forecast errors, MAE(n) = H−1
∑H

s=1

∣∣∣ε̂(n)s|s−1

∣∣∣, and

Diebold-Mariano forecasting performance test statistics with associated p-values, based on
the MAEs. As can be seen, the MAEs of the WF-SOFAR are smaller than those of the PC
for all the maturities. The Diebold-Mariano forecasting performance test strongly rejects
the null of the same forecasting performance for all the maturities, in favor of the alternative
that our method outperforms the PC. The average values of exponents over the windows
are {α1, α2, α3, α4, α5, α6} = {0.92, 0.82, 0.87, 0.78, 0.77, 0.74}, which suggests that even the
(first) strongest factor is not strictly strong. As is evidenced in the previous section, the
accuracy of our estimator is much higher than the PC estimator under such situations, and
the better forecasting performance may not be too surprising in this empirical exercise.

Table 5: Mean absolute forecast errors and Diebold-Mariano forecast comparison test result
WS PC Diebold-Mariano Statistic [p-value]

y
(2)
t+12 1.164 1.191 -3.58 [0.0003]

y
(3)
t+12 2.304 2.354 -3.54 [0.0004]

y
(4)
t+12 3.354 3.429 -3.73 [0.0002]

y
(5)
t+12 4.197 4.278 -3.20 [0.0014]

Notes: For the computation of the long-run variance for the Diebold-Mariano test statistic
of Diebold and Mariano (1995), the window is chosen by the Schwert criterion with the
maximum lag of 14.

7 Conclusion

This paper has considered estimation of the weak factor (WF) models induced by sparse
factor loadings in a high-dimensional setting. We suppose sparse factor loadings B0 that
lead to the WF structure, λk(B

0′B0) � Nαk with 0 < αk ≤ 1 for k = 1, . . . , r (weak
pervasiveness condition). This model is much less restrictive than the widely employed
strong factor model in the literature, in which λk(B

0′B0) � N for k = 1, . . . , r. The proposed
WF-SOFAR estimator and its adaptive version enable us to consistently estimate the WF
models, separately identifying B0 and F0. As theoretical contributions, we have established
the estimation error bound of the WF-SOFAR estimators, the factor selection consistency of
the adaptive WF-SOFAR estimator, and consistent estimation of each exponent αk as well as
validating the method of Onatski (2010) for the number of weak factors. All the theoretical
results are supported by the Monte Carlo experiments and two empirical examples. In fact,
they have revealed not only validity of the WF-SOFAR but also superiority to the PC in
estimating the WF models.
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Appendix

A Proofs of the Main Results

Proof of Theorem 1. We denote by Mk:` ∈ RT×(`−k+1) a submatrix of M constructed by
its kth to `th columns. Following Ahn and Horenstein (2013), we evaluate the eigenvalues
of XX′ with recalling notation based on the SVD rather than F0 and B0. We define P =
V0N−1V0′, Q = IN − P, and U∗ = U0 + EV0N−1(D0)−1. Then, we can write XX′ =
U∗D0ND0U∗′ + EQE′ since V0′V0 = N = diag(N1, . . . , Nr) by the definition. We also
define W1:k as the matrix of k eigenvectors corresponding to the first k largest eigenvalues
of U∗D0ND0U∗′.

We first evaluate the r largest eigenvalues of XX′. Because λk(U
0D0ND0U0′) = d2kNkT ,

it is sufficient to show that for any k ∈ {1, . . . , r},

λk(XX′) = λk(U
∗D0ND0U∗′) +O(N ∨ T ), (A.1)

λk(U
∗D0ND0U∗′) = λk(U

0D0ND0U0′) +O
(
TN

1/2
1 log1/2(N ∨ T ) +N ∨ T

)
. (A.2)

Then (A.1) and (A.2) lead to

λk(XX′) = λk(U
0D0ND0U0′) +O(TN

1/2
1 log1/2(N ∨ T ) +N ∨ T )

= d2kNkT +O
(
TN

1/2
1 log1/2(N ∨ T ) +N ∨ T

)
,

which gives the desired result under condition (8). We show (A.1). Lemma A.5 of Ahn and
Horenstein (2013) yields the upper bound

k∑
j=1

λj(XX′) =
k∑
j=1

λj(U
∗D0ND0U∗′ + EQE′)

≤
k∑
j=1

λj(U
∗D0ND0U∗′) + kλ1(EQE′ + EPE′)

=
k∑
j=1

λj(U
∗D0ND0U∗′) + kλ1(EE′) .

k∑
j=1

λj(U
∗D0ND0U∗′) + T ∨N,
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where the last inequality follows from Lemma 1(a), with probability at least 1−O((N∨T )−ν).
Moreover, the lower bound is given by

k∑
j=1

λj(XX′) ≥ T−1 tr(W′
1:kXX′W1:k)

= T−1 tr(W′
1:kU

∗D0ND0U∗′W1:k) + T−1 tr(W′
1:kEQE′W1:k)

≥
k∑
j=1

λj(U
∗D0ND0U∗′).

Hence, these two inequalities imply (A.1). Next, we verify (A.2). By the construction of U∗,
the upper bound is

k∑
j=1

λj(U
∗D0ND0U∗′) = T−1 tr(W′

1:kU
0D0ND0U0′W1:k)

+ 2T−1 tr(W′
1:kU

0D0V0′E′W1:k) + T−1 tr(W′
1:kEPE′W1:k)

.
k∑
j=1

λj(U
0D0ND0U0′) + TN

1/2
1 log1/2(N ∨ T ) +N ∨ T,

where the last inequality holds by Lemma 3 with probability at least 1 − O((N ∨ T )−ν).
Similarly, the lower bound is

k∑
j=1

λj(U
∗D0ND0U∗′) &

k∑
j=1

λj(U
0D0ND0U0′)− TN1/2

1 log1/2(N ∨ T ).

Hence, these two inequalities imply (A.2).
Finally, we consider the lower and upper bounds of λr+j(XX′) for j = 1, . . . , kmax.

Because λr+j(U
∗D0ND0U∗′) = 0 for all j ≥ 1, Lemma 3 entails

λr+j(XX′) ≤ λr+j(U∗D0ND0U∗′) + λ1(EQE′) = λ1(EQE′) . T ∨N

with probability at least 1−O((N ∨ T )−ν). This completes the proof.

Proof of Theorem 2. The optimality of the WF-SOFAR estimator implies

2−1‖X− F̂B̂′‖2F + ηn‖B̂‖1 ≤ 2−1‖X− F0B0′‖2F + ηn‖B0‖1.

By plugging model (5) and letting ∆ = F̂B̂′ − F0B0′, this is equivalently written as

2−1‖E−∆‖2F + ηn‖B̂‖1 ≤ 2−1‖E‖2F + ηn‖B0‖1.

Define ∆f = F̂− F0 and ∆b = B̂−B0. Expanding the first term and using decomposition
∆ = ∆fB0′ + ∆f∆b′ + F0∆b′ lead to

(1/2)‖∆‖2F ≤ tr E∆′ + ηn

(
‖B0‖1 − ‖B̂‖1

)
≤
∣∣∣tr EB0∆f ′

∣∣∣+
∣∣∣tr E∆b∆f ′

∣∣∣+
∣∣∣tr ∆bF0′E

∣∣∣+ ηn

(
‖B0‖1 − ‖B̂‖1

)
. (A.3)
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We bound the traces in (A.3). By applying Hölder’s inequality and using properties of the
norms, the first term is bounded as∣∣∣tr EB0∆f ′

∣∣∣ ≤ ‖EB0‖max‖∆f‖1 ≤ (rT )1/2‖EB0‖max‖∆f‖F.

Similarly, the second and third terms of (A.3) are bounded as∣∣∣tr E∆b∆f ′
∣∣∣+
∣∣∣tr ∆bF0′E

∣∣∣ ≤ ‖E∆b‖2‖∆f‖∗ + ‖∆b‖1‖F0′E‖max

≤ r1/2‖E∆b‖2‖∆f‖F + ‖∆b‖1‖F0′E‖max.

From these inequalities, the upper bound of (A.3) becomes

(1/2)‖∆‖2F ≤ (rT )1/2‖EB0‖max‖∆f‖F + r1/2‖E∆b‖2‖∆f‖F

+ ‖∆b‖1‖F0′E‖max + ηn

(
‖B0‖1 − ‖B̂‖1

)
. (A.4)

From Lemmas 1 and 4, there exist some positive constants c1–c3 such that the event

E =
{
‖E∆b‖2 ≤ c1‖∆b‖F(Ñ ∨ T )1/2 log1/2(N ∨ T )

}
∩
{
‖EB0‖max ≤ c2N1/2

1 log1/2(N ∨ T )
}
∩
{
‖F0′E‖max ≤ c3T 1/2 log1/2(N ∨ T )

}
occurs with probability at least 1 − O((N ∨ T )−ν) for any fixed constant ν > 0. Set the
regularization parameter to be ηn = 2c3T

1/2 log1/2(N ∨ T ). Then on event E , we have
‖F0′E‖max ≤ ηn/2, and (A.4) is further bounded as

‖∆‖2F . (N1T )1/2 log1/2(N ∨ T )‖∆f‖F + (Ñ ∨ T )1/2 log1/2(N ∨ T )‖∆b‖F‖∆f‖F

+ ηn

(
‖∆b‖1 + 2‖B0‖1 − 2‖B̂‖1

)
. (A.5)

We then focus on the last parenthesis of (A.5). Define index set S = {(i, k) : b0ik 6= 0}, the
support of B0. Note that |S| =

∑r
k=1Nk ≤ rN1. The last parenthesis of (A.5) is rewritten

and bounded as

‖∆b‖1 + 2‖B0‖1 − 2‖B̂‖1 = ‖∆b
S‖1 + ‖∆b

Sc‖1 + 2‖B0
S‖1 − 2‖B̂S‖1 − 2‖B̂Sc‖1

≤ ‖∆b
S‖1 + ‖∆b

Sc‖1 + 2‖B0
S‖1 − 2

(
‖B0
S‖1 − ‖∆b

S‖1
)
− 2‖B̂Sc‖1

= 3‖∆b
S‖1 − ‖B̂Sc‖1 ≤ 3(rN1)

1/2‖∆b
S‖F ≤ 3(rN1)

1/2‖∆b‖F.

Therefore, the upper bound of (A.5) is given by

‖∆‖2F . (N1T )1/2 log1/2(N ∨ T )‖∆f‖F
+ (Ñ ∨ T )1/2 log1/2(N ∨ T )‖∆b‖F‖∆f‖F +N

1/2
1 ηn‖∆b‖F. (A.6)

Meanwhile, Lemma 5 establishes the lower bound of (A.6). Consequently, we obtain

κn

(
‖∆f‖2F + ‖∆b‖2F

)
. (N1T )1/2 log1/2(N ∨ T )‖∆f‖F

+ (Ñ ∨ T )1/2 log1/2(N ∨ T )‖∆b‖F‖∆f‖F +N
1/2
1 ηn‖∆b‖F

=: αn‖∆f‖F + µn‖∆b‖F‖∆f‖F + βn‖∆b‖F

≤ αn‖∆f‖F + µn

(
‖∆b‖2F + ‖∆f‖2F

)
+ βn‖∆b‖F,
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where κn = Nr(Nr ∧ T )/N1, αn = (N1T )1/2 log1/2(N ∨ T ), µn = (Ñ ∨ T )1/2 log1/2(N ∨ T ),

and βn = N
1/2
1 ηn. By condition (10), we have

‖∆f‖2F + ‖∆b‖2F ≤
(αn/κn)‖∆f‖F + (βn/κn)‖∆b‖F

1− µn/κn
.

Rearranging this inequality gives

‖∆f‖F + ‖∆b‖F ≤
3

2

(
αn/κn + βn/κn

1− µn/κn

)
.

Finally, since ηn = 2c3T
1/2 log1/2(N ∨ T ), we observe that

αn + βn = (N1T )1/2 log1/2(N ∨ T ) +N
1/2
1 ηn . (N1T )1/2 log1/2(N ∨ T ).

This completes the proof.

Proof of Theorem 4. Throughout this proof, we omit the superscript of the adaptive estima-
tors (F̂ada, B̂ada) and simply write them as (F̂, B̂). Recall S = supp(B0), which is a subset
of {1, . . . , N} × {1, . . . , r}. For any matrix B = (bik) ∈ RN×r, define BS ∈ RN×r as the ma-
trix whose (i, k)th element is bik1{(i, k) ∈ S}. Similarly, define BSc ∈ RN×r whose (i, k)th
element is bik1{(i, k) ∈ Sc}. By the definition, note that B0

S = B0 and B0
Sc = 0. Recall that

the objective function for obtaining the adaptive WF-SOFAR estimator is given by

Qn(F,B) :=
1

2

∥∥X− FB′
∥∥2
F

+ ηn‖W ◦B‖1 (A.7)

subject to F′F/T = Ir and B′B being diagonal. The strategy of this proof consists of two
steps. In the first step, we show that the oracle estimator (F̂o, B̂o

S), which is defined as a
minimizer of Qn(F,BS), is consistent to (F0,B0

S) with some rate of convergence. In the
second step, we prove that the oracle estimator is indeed a minimizer of the unrestricted
problem, minQn(F,B) over RT×r × RN×r.

(First step) We derive the rate of convergence of the oracle estimator. To this end, it
suffices to show that as n→∞, there exists a (large) constant C > 0 such that

P
(

inf
‖U‖F=C, ‖VS‖F=C

Qn(F0 + rnU,B
0
S + rnVS) > Qn(F0,B0

S)

)
→ 1, (A.8)

where U ∈ RT×r and V ∈ RN×r are deterministic matrices, and

rn =
N1(N1T )1/2 log1/2(N ∨ T )

Nr(Nr ∧ T )
.

This implies that the oracle estimator (F̂o, B̂o
S) lies in the ball{

(F,BS) ∈ RT×r × RN×r : ‖F− F0‖F ≤ Crn, ‖BS −B0
S‖F ≤ Crn

}
with high probability, which gives the desired rate of convergence. In this proof, write
`n = log(N ∨ T ) for notational simplicity.
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To show (A.8), we first have

Qn(F0 + rnU,B
0
S + rnVS)−Qn(F0,B0

S)

= 2−1‖X− (F0 + rnU)(B0
S + rnVS)′‖2F − 2−1‖X− F0B0

S‖2F
+ ηn‖W ◦ (B0

S + rnVS)‖1 − ηn‖W ◦B0
S‖1

≥ − tr(rnE
′F0V′S + rnE

′UB0
S
′
+ r2nE

′UV′S)

+ 2−1‖rnF0V′S + rnUB0
S
′
+ r2nUV′S‖2F − rnηn‖WS ◦VS‖1

=: (I) + (II) + (III). (A.9)

By Lemma 7 (a)–(c), we bound (I) as

|(I)| ≤ rn
∣∣tr V′SE

′F0
∣∣+ rn

∣∣∣tr B0
S
′
E′U

∣∣∣+ r2n
∣∣tr V′SE

′U
∣∣

. rn

(
T 1/2‖VS‖F +N

1/2
1 ‖U‖F

)
`1/2n + r2n‖U‖F‖VS‖F`1/2n .

Next, we bound (II) from below as

(II) = 2−1‖rnF0V′S + rnUB0
S
′
+ r2nUV′S‖2F

≥ 2−1‖rnUB0
S
′‖2F + 2−1‖rnF0V′S‖2F − r3n

∣∣tr VSU
′F0V′S

∣∣− r3n ∣∣tr B0
SU
′UV′S

∣∣− r2n ∣∣tr B0
SU
′F0V′S

∣∣
= (i) + (ii) + (iii) + (iv) + (v).

In view of the Rayleigh quotient, (i) and (ii) are further bounded from below as

(i) + (ii) = 2−1‖UB0′‖2F + 2−1‖F0V′S‖2F
= 2−1r2n‖(IT ⊗B0) vec(U′)‖22 + 2−1r2n‖(IN ⊗ F0) vec(V′S)‖22

& r2n

{
min

u∈RTr\{0}

(
‖(IT ⊗B0)u‖22

‖u‖22

)
‖U‖2F + min

v∈RNr\{0}

(
‖(IN ⊗ F0)v‖22

‖v‖22

)
‖VS‖2F

}
& r2n

(
Nr‖U‖2F + T‖VS‖2F

)
.

Meanwhile, by Lemma 7 (d)–(f), |(iii) + (iv) + (v)| is bounded from above as

|(iii) + (iv) + (v)| . r3n

(
‖U‖F‖VS‖2F`1/2n +N

1/2
1 ‖U‖

2
F‖VS‖F

)
+ r2nN

1/2
1 ‖U‖F‖VS‖F`

1/2
n .

Combining these bounds of (i)–(v) yields

(II) & (i) + (ii)− |(iii) + (iv) + (v)| & r2n
(
Nr‖U‖2F + T‖VS‖2F

)
− r3n

(
‖U‖F‖VS‖2F`1/2n +N

1/2
1 ‖U‖

2
F‖VS‖F

)
− r2nN

1/2
1 ‖U‖F‖VS‖F`

1/2
n .

We then consider (III) in (A.9). Lemma 8 yields

|(III)| = rnηn‖WS ◦VS‖1 ≤ rnηn‖WS‖F‖VS‖F . N
1/2
1 rn(ηn/b

0
n)‖VS‖F,

where b0n = min(i,k)∈S |b0ik|, with high probability.
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Putting together the pieces obtained so far with (A.9), we have

inf
‖U‖F=C, ‖VS‖F=C

Qn(F0 + rnU,B
0
S + rnVS)−Qn(F0,B0

S)

& inf
‖U‖F=C, ‖VS‖F=C

{(II)− |(I)| − |(III)|}

& inf
‖U‖F=C, ‖VS‖F=C

{
r2n
(
Nr‖U‖2F + T‖VS‖2F

)
− r3n

(
‖U‖F‖VS‖2F`1/2n +N

1/2
1 ‖U‖

2
F‖VS‖F

)
− r2nN

1/2
1 ‖U‖F‖VS‖F`

1/2
n

− rn
(
T 1/2‖VS‖F`1/2n +N

1/2
1 ‖U‖F`

1/2
n

)
− r2n‖U‖F‖VS‖F`1/2n −N1/2

1 rn(ηn/b
0
n)‖VS‖F

}
� r2n

(
Nr + T −N1/2

1 `1/2n

)
C2 − r3nN

1/2
1 C3 − rn

(
T 1/2`1/2n +N

1/2
1 `1/2n +N

1/2
1 (ηn/b

0
n)
)
C.

By condition (8), which is implied by (10), and the fact that rn ≥ N
1/2
r T 1/2/(Nr ∨ T ) ≥ 1,

we have

inf
‖U‖F=C, ‖VS‖F=C

Qn(F0 + rnU,B
0
S + rnVS)−Qn(F0,B0

S)

& r2n (Nr ∨ T )C2 − r3nN
1/2
1 C3 − rnN1/2

1 (ηn/b
0
n)C. (A.10)

Furthermore, in (A.10), the first term dominates the second as the ratio, r3nN
1/2
1 /{r2n(Nr ∨

T )} = N2
1 /{N2

r T
1/2}`1/2n , converges to zero by condition (11). Also, the first term dominates

the third in (A.10) by the upper bound of conditions (12) as long as C > 0 is taken to be
large enough. In consequence, the lower bound (A.10) tends to positive for such C > 0 and
(A.8) holds.

(Second step) Set F̂ = F̂o and B̂ = B̂o
S . If the estimator (F̂, B̂) is indeed a minimizer of

the unrestricted problem, minQn(F,B) over RT×r × RN×r, the proof completes. Note that
supp B̂ = S by the construction. Taking the same strategy as in Fan et al. (2014), we check
the optimality of (F̂, B̂). By a simple calculation, the (sub-)gradients of Qn with respect to
F and B are given by

∇FQn(F,B) = FB′B−XB, ∇BQn(F,B) = BF′F−X′F + ηnT,

where the (i, k)th element of T ∈ RN×r is defined as

tik

{
= wik sgn(bik) for bik 6= 0,

∈ wik[−1, 1] for bik = 0.

Then (F̂, B̂) is a strict minimizer of (7) if the following conditions hold:

F̂B̂′B̂−XB̂ = 0T×r, (A.11)

T B̂S − (X′F̂)S + ηnWS ◦ sgn B̂S = 0N×r, (A.12)∥∥∥W−
Sc ◦

{
T B̂Sc − (X′F̂)Sc

}∥∥∥
max

< ηn, (A.13)

where F̂′F̂ = T Ir has been used, and W− ∈ RN×r is the matrix with its (i, k)th elements
given by 1/wik. Since (F̂, B̂S) is a minimizer of Qn(F,BS), it satisfies the Karush–Kuhn–
Tucker (KKT) conditions. Therefore, we only need to check condition (A.13), which is
verified by Lemma 9. This completes the proof of Theorem 4.
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B Proofs of Lemma 1, Theorem 3, and Corollary 2

Proof of Lemma 1. (a) The tth row of E, et ∈ RN , is specified as et =
∑L

`=0 Φ`εt−`,

where εt ∈ RN is composed of i.i.d. subG(σ2ε) by Assumption 3. We also define Ẽ` =
(ε1−`, . . . , εT−`)

′ ∈ RT×N . Then, we can write E =
∑Ln

`=0 Ẽ`Φ
′
`, so that the spectral norm is

bounded as

‖E‖2 ≤
Ln∑
`=0

‖Ẽ`‖2‖Φ`‖2 ≤ max
`∈{0,...,Ln}

‖Ẽ`‖2
∞∑
`=0

‖Φ`‖2.

By Assumption 3, the last infinite sum is bounded from above. Because of the union bound
and sub-Gaussianity (see Section 4 and Theorem 5.39 of Vershynin 2012), there is a positive
constant M such that

P
(

max
`∈{0,...,Ln}

∥∥∥(N ∨ T )−1/2Ẽ`

∥∥∥
2
> M

)
≤ Ln max

`∈{0,...,Ln}
P
(∥∥∥(N ∨ T )−1/2Ẽ`

∥∥∥
2
> M

)
≤ 2(N ∨ T )ν exp (−c1|N ∨ T |) ≤ exp (−c2|N ∨ T |)

for some constants c1, c2 > 0, where the last inequality holds since ν is a fixed positive
constant. Thus, ‖(N ∨ T )−1/2E‖2 is bounded by a constant with probability at least 1 −
exp (−|c2(N ∨ T )|).

(b) By the definition, the (t, k)th element of EB0 is given by e′tb
0
k =

∑Ln
`=0 ε

′
t−`Φ

′
`b

0
k.

Let b̃`k,i denote the ith element of Φ′`b
0
k. Then, we have

‖EB0‖max = max
t∈{1,...,T},k∈{1,...,r}

∣∣∣∣∣
Ln∑
`=0

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣
≤

Ln∑
`=0

max
t∈{1,...,T},k∈{1,...,r}

∣∣∣∣∣‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣ ‖Φ′`bk‖2
≤ max

t∈{1,...,T},k∈{1,...,r},`∈{0,...,Ln}

∣∣∣∣∣‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣max
k

Ln∑
`=0

‖Φ`‖2‖bk‖2

. N
1/2
1 max

t,k,`

∣∣∣∣∣‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣
∞∑
`=0

‖Φ`‖2.
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Since {εt−`,ib̃`k,i}Ni=1 is a sequence of independent subG(σ2ε b̃
2
`k,i) for each t, k, `, we can further

see that ‖Φ′`bk‖
−1
2

∑N
i=1 εt−`,ib̃`k,i ∼ subG(σ2ε) by Lemma 2(b). Thus, the union bound yields

P

(
max
t,k,`

∣∣∣∣∣‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣ > x

)

≤ rT (Ln + 1) max
t,k,`

P

(∣∣∣∣∣‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣ > x

)
≤ 2r(N ∨ T )ν+1 exp

(
− x2

2σ2ε

)
.

Setting x =
(
2σ2ε(2ν + 1) log(N ∨ T )

)1/2
leads to

max
t,k,`

∣∣∣∣∣‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣ ≤ (2σ2ε(2ν + 1) log(N ∨ T )
)1/2

,

which holds with probability at least 1 − O ((N ∨ T )−ν). This together with the first in-
equality achieves the result.

(c) Let Z̃` = (ζ1−`, . . . , ζT−`)
′ ∈ RT×r. Then, by Assumptions 1 and 3, we can write

E′F =
∑L

`,m=0 Φ`Ẽ
′
`Z̃mΨ′m. By the triangle inequality and property of matrix norms, we

observe that

‖E′F‖max ≤
Ln∑

`,m=0

‖Φ`Ẽ
′
`Z̃mΨ′m‖max ≤ r1/2

Ln∑
`,m=0

‖Ψm‖2 max
i∈{1,...,N},k∈{1,...,r}

∣∣∣φ′`,iẼ′`ζm,k∣∣∣
≤ r1/2

Ln∑
`,m=0

‖Ψm‖2 max
i,k

∣∣∣‖φ`,i‖−12 φ
′
`,iẼ

′
`ζm,k

∣∣∣max
i
‖φ`,i‖2

≤ r1/2 max
`,m,i,k

∣∣∣‖φ`,i‖−12 φ
′
`,iẼ

′
`ζm,k

∣∣∣ Ln∑
`,m=0

‖Ψm‖2 max
i
‖φ`,i‖2

≤ r1/2 max
`,m,i,k

∣∣∣‖φ`,i‖−12 φ
′
`,iẼ

′
`ζm,k

∣∣∣ ∞∑
m=0

‖Ψm‖2
∞∑
`=0

‖Φ`‖2,

where φ′`,i and ζm,k are the ith row vector of Φ` and kth column vector of Z̃m, respectively.
We can see that for each i and `, the row vector

φ′`,iẼ
′
` =

 N∑
j=1

φ`,ijε1−`,j , . . . ,
N∑
j=1

φ`,ijεT−`,j


is composed of independent subG(σ2ε‖φ`,i‖22). Since ζm,k = (ζ1−m,k, . . . , ζT−m,k)

′ consists of
i.i.d. subG(σ2ζ ), Lemma 2(a) entails that

‖φ`,i‖−12 φ
′
`,iẼ

′
`ζm,k =

T∑
t=1

‖φ`,i‖−12

N∑
j=1

φ`,ijεt−`,j

 ζt−m,k

is the sum of i.i.d. subE(4eσεσζ). Therefore, the union bound and Bernstein’s inequality for
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the sum of sub-exponential random variables give

P
(

max
`,m,i,k

∣∣∣T−1‖φ`,i‖−12 φ
′
`,iẼ

′
`ζm,k

∣∣∣ > x

)
≤ rN(Ln + 1)2 max

`,m,i,k
P
(∣∣∣T−1‖φ`,i‖−12 φ

′
`,iẼ

′
`ζm,k

∣∣∣ > x
)

≤ 2r(N ∨ T )2ν+1 exp

{
−T

2

(
x2

16e2σ2εσ
2
ζ

∧ x

4eσεσζ

)}

for all x > 0. Putting x =
(

32e2σ2εσ
2
ζ (3ν + 1)T−1 log(N ∨ T )

)1/2
gives

max
`,m,i,k

∣∣∣‖φ`,i‖−12 φ
′
`,iẼ

′
`ζm,k

∣∣∣ ≤ (32e2σ2εσ
2
ζ (3ν + 1)T log(N ∨ T )

)1/2
,

which holds with probability at least 1−O ((N ∨ T )−ν). Combining this with the first bound
yields the result.

(d) To obtain the result, we apply the Hanson–Wright inequality in Rudelson and Ver-
shynin (2013). Let ξ = (ξ1, . . . , ξm)′ ∈ Rm denote a random vector of m independent copies
of ε ∼ subG(σ2ε). Then the inequality states that for any (nonrandom) matrix M ∈ Rm×m,

P
(∣∣ξ′Mξ − E ξ′Mξ

∣∣ > u
)
≤ 2 exp

{
−cmin

(
u2

K4‖M‖2F
,

u

K2‖M‖2

)}
, (A.14)

where c and K are positive constants such that supk≥1 k
−1/2(E |ε|k)1/k ≤ K. In our setting,

we can take K = 3σε (e.g., Rigollet and Hütter (2017), Lemma 1.4).
Let φ′`,i denote the ith row vector of Φ`. Then we have

max
i

∣∣∣∣∣T−1
T∑
t=1

(
e2ti − E e2ti

)∣∣∣∣∣ = max
i

∣∣∣∣∣T−1
T∑
t=1

Ln∑
`=0

(
ε′t−`φ`,iφ

′
`,iεt−` − E ε′t−`φ`,iφ′`,iεt−`

)
+T−1

T∑
t=1

Ln∑
`,m=0,` 6=m

ε′t−`φ`,iφ
′
m,iεt−m

∣∣∣∣∣∣ .
The first term (sum of the diagonal elements) is bounded as

max
i

∣∣∣∣∣T−1
T∑
t=1

Ln∑
`=0

(
ε′t−`φ`,iφ

′
`,iεt−` − E ε′t−`φ`,iφ′`,iεt−`

)∣∣∣∣∣
≤ T−1

Ln∑
`=0

max
i

∣∣ε̃′`A`iε̃` − E ε̃′`A`iε̃`
∣∣ ,

where ε̃` = (ε′1−`, . . . , ε
′
T−`)

′ ∈ RNT and A`i = diag(φ`,iφ
′
`,i, . . . ,φ`,iφ

′
`,i) ∈ RNT×NT . For

any ` ∈ {0, . . . , L} and u > 0, the Hanson–Wright inequality in (A.14) with the union bound
gives

P
(

max
i

∣∣ε̃′`A`iε̃` − E ε̃′`A`iε̃`
∣∣ > u

)
≤ N max

i
P
(∣∣ε̃′`A`iε̃` − E ε̃′`A`iε̃`

∣∣ > u
)

≤ 2N exp

(
−c u2

K4 maxi ‖A`i‖2F

)
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Setting u = ((ν + 1)/c)1/2K2 maxi ‖A`i‖F log1/2(N ∨ T ) yields

T−1
Ln∑
`=0

max
i

∣∣ε̃′`A`iε̃` − E ε̃′`A`iε̃`
∣∣ ≤ K2T−1 log1/2(N ∨ T )

Ln∑
`=0

max
i
‖A`i‖F

. T−1/2 log1/2(N ∨ T )

Ln∑
`=0

max
i
‖φ`,iφ′`,i‖F = T−1/2 log1/2(N ∨ T )

∞∑
`=0

max
i
‖φ`,iφ′`,i‖2

. T−1/2 log1/2(N ∨ T )

with probability at least

1− 2N exp (−(ν + 1) log(N ∨ T )) = 1−O((N ∨ T )−ν).

The second term (sum of the off-diagonal elements) is bounded in the same way, and we
omit it. For detail, see the proof of Lemma 7 in Fan et al. (2019). This completes all the
proofs.

Proof of Theorem 3. Following the proof of Theorem 2, we derive the bound. From (A.4)
with putting ηn = 0, we have

(1/2)‖∆PC‖2F
. T 1/2‖EB0‖max‖∆f

PC‖F + ‖E∆b
PC‖2‖∆

f
PC‖F +N1/2‖∆b

PC‖F‖F0′E‖max. (A.15)

Lemmas 1 and 4 states that the event

E =
{
‖E∆b

PC‖2 . ‖∆b
PC‖F(N ∨ T )1/2 log1/2(N ∨ T )

}
∩
{
‖EB0‖max . N

1/2
1 log1/2(N ∨ T )

}
∩
{
‖F0′E‖max . T 1/2 log1/2(N ∨ T )

}
occurs with probability at least 1−O((N ∨ T )−ν) for any fixed constant ν > 0. On event E
together with Lemma 5, (A.15) becomes

κn

(
‖∆f

PC‖
2
F + ‖∆b

PC‖2F
)
. αn‖∆f

PC‖F + µn

(
‖∆b

PC‖2F + ‖∆f
PC‖

2
F

)
+ βn‖∆b

PC‖F,

where

κn =
Nr(Nr ∧ T )

N1
, µn = (N ∨ T )1/2 log1/2(N ∨ T )

αn = (N1T )1/2 log1/2(N ∨ T ), βn = (NT )1/2 log1/2(N ∨ T ).

The desired result is obtained by rearranging this inequality as in the proof of Theorem 2.
In fact, we have

‖∆f
PC‖F + ‖∆b

PC‖F .
3

2

(
αn/κn + βn/κn

1− µn/κn

)
.

Finally, we observe that

αn + βn = (N1T )1/2 log1/2(N ∨ T ) + (NT )1/2 log1/2(N ∨ T ) . (NT )1/2 log1/2(N ∨ T ).

This completes the proof of Theorem 3.
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Proof of Corollary 2. Recall that α̂j = log N̂j/ logN with N̂j = | supp(b̂ada
j )| and αj =

logNj/ logN by the definition. Because {supp(B̂ada) = supp(B0)} ⊂ {N̂j = Nj for all j =
1, . . . , r}, we have

P (α̂j = αj for all j = 1, . . . , r)

= P
(
N̂j = Nj for all j = 1, . . . , r

)
≥ P

(
supp(B̂ada) = supp(B0)

)
.

The last probability tends to one by the factor selection consistency. This completes the
proof of Corollary 2.

C Related Lemmas and their Proofs

Lemma 2. Assume Xi ∼ ind. subG(α2
i ) and Yi ∼ ind. subE(γi). Then, for any deterministic

sequences (φi) and (ψi), the following statements are true:

(a) XiXj ∼ subE(4eαiαj) for i 6= j.

(b)
∑n

i=1 φiXi ∼ subG(
∑n

i=1 φ
2
iα

2
i ).

(c)
∑n

i=1 ψiYi ∼ subE((
∑n

i=1 ψ
2
i γ

2
i )1/2,maxi |ψi|γi).

Proof. This proof was achieved in Uematsu and Tanaka (2019).

Lemma 3. Suppose the same conditions as Theorem 1. Then, for any H ∈ RT×k (k ≤ r)
such that H′H = T Ik, the following inequalities simultaneously hold with probability at least
1−O((N ∨ T )−ν):

(a) T−1
∣∣∣tr H′U0D0V0′E′H

∣∣∣ . TN
1/2
1 log1/2(N ∨ T ),

(b) T−1 tr H′EPE′H . N ∨ T,
(c) λ1(EQE′) . T ∨N,
(d) T−1 tr(H′EQE′H) . T ∨N.

Proof. Recall the notation based on the SVD of C0: U0 = F0 and V0D0 = B0. We
derive the results on the event that Lemma 1 hold, which occurs with probability at least
1−O((N ∨ T )−ν). Prove (a). Low rankness of each matrix and Lemma 1(b) give∣∣∣tr H′U0D0V0′E′H

∣∣∣ ≤ ‖HH′‖F‖U0‖F‖D0V0′E′‖F . ‖HH′‖F‖U0‖F‖D0V0′E′‖2

. TT 1/2T 1/2‖D0V0′E′‖max . T 2N
1/2
1 log1/2(N ∨ T ).

Prove (b). Since the rank of P is at most r, Lemma 1(a) gives

tr H′EPE′H . ‖HH′‖F‖EPE′‖2 ≤ T‖E‖22‖P‖2 . T (N ∨ T ).

Prove (c). By the argument of the proof of Lemma A.8 in Ahn and Horenstein (2013) and
Lemma 1(a), the bound

λ1(EQE′) ≤ λ1(EQE′ + EPE′) = λ1(EE′) = ‖E‖22 . T ∨N.

Prove (d). From the triangle inequality and result (c), we have

tr(H′EQE′H) . ‖HH′‖F‖EQE′‖2 ≤ ‖HH′‖F(‖EE′‖2 + ‖EPE′‖2) . T (T ∨N).

This completes all the proofs of (a)–(d).
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Lemma 4. Suppose the same conditions as Theorem 2. Then we have

‖E∆b‖2 . ‖∆b‖F(Ñ ∨ T )1/2 log1/2(N ∨ T )

with probability at least 1−O((N ∨ T )−ν).

Proof. In the upper bound of (A.3), we consider a tighter bound of the second trace. The
second trace in the upper bound of(A.3) is bounded as∣∣∣tr E∆b∆f ′

∣∣∣ ≤ ‖E∆b‖2‖∆f‖∗.

Because B̂ and B0 lie in the set B(Ñ) = {B ∈ RN×r : ‖B‖0 . Ñ/2} for Ñ ∈ [N1, N ] by
Assumption 4, we have

‖∆b‖0 ≤ ‖B̂‖0 + ‖B0‖0 . Ñ/2 + Ñ/2 ≤ Ñ .

Define a set of sparse vectors V(A) = {v ∈ RN\{0} : ‖v‖0 = |A|} with A ⊂ {1, . . . , N}.
Then, by the definition of the spectral norm, we have

‖E∆b‖22 = max
u∈Rr\{0}

u′∆b′E′E∆bu

u′u
≤ max

u∈Rr\{0}

u′∆b′E′E∆bu

u′∆b′∆bu
max

u∈Rr\{0}

u′∆b′∆bu

u′u

≤ max
|A|.Ñ

max
v∈V(A)

v′E′Ev

v′v
‖∆b‖22 = max

|A|.Ñ
max

vA∈R|A|

v′AE′AEAvA
v′AvA

‖∆b‖22

≤ max
|A|.Ñ

‖EA‖22‖∆b‖22 ≤ max
|A|.Ñ

max
`∈{1,...,Ln}

‖ẼA,`‖22

(
Ln∑
`=0

‖Φ`‖2

)2

‖∆b‖22

where vA ∈ R|A| consists of elements {vi : i ∈ A} and EA ∈ RT×|A| is composed of the
corresponding columns. Note that the second inequality holds since ‖∆bu‖0 . Ñ , and in the
last inequality ẼA,` is defined in the proof of Lemma 1. We also observe that

∑∞
`=0 ‖Φ`‖2 <

∞ by Assumption 3. By Theorem 5.39 of Vershynin (2012) with the union bound, for some
positive constants c1 and c2 such that c1 < c2 and C, we have

P

(
max
|A|.Ñ

max
`∈{0,...,Ln}

‖ẼA,`‖2 > C(Ñ ∨ T )1/2 log1/2(N ∨ T )

)

≤
(
N

c1Ñ

)
(Ln + 1) max

|A|.Ñ
max

`∈{1,...,Ln}
P
(
‖ẼA,`‖2 > C(Ñ ∨ T )1/2 log1/2(N ∨ T )

)
. N c1Ñ (N ∨ T )ν exp

{
−c2(Ñ ∨ T ) log(N ∨ T )

}
= O

(
(N ∨ T )−Ñ∨T

)
= O

(
(N ∨ T )−ν

)
.

Thus, we have with probability at least 1−O((N ∨ T )−ν),

‖E∆b‖2 . ‖∆b‖2(Ñ ∨ T )1/2 log1/2(N ∨ T ) ≤ ‖∆b‖F(Ñ ∨ T )1/2 log1/2(N ∨ T ),

giving the desired bound.

Lemma 5. Suppose the same conditions as Theorem 2. Then we have

‖∆‖2F & κn

(
‖F̂− F0‖2F + ‖B̂−B0‖2F

)
,

where κn = Nr(Nr ∧ T )/N1.
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Proof. Recall the notation based on the SVD of C0 and Ĉ: U0 = F0, V0D0 = B0, Û = F̂,
and V̂D̂ = B̂. To establish the statement, we derive the following two inequalities:

(a) ‖∆‖2F &
N2
r

N1
‖Û−U0‖2F,

(b) ‖∆‖2F &
TNr

N1
‖D̂V̂′ −D0V0′‖2F.

Using them, we can immediately obtain the result.
First we prove (a). We define matrices: Û∗ = T−1/2Û, D̂∗ = D̂N̂1/2, V̂∗ = V̂N̂−1/2,

U0
∗ = T−1/2U0, D0

∗ = D0N1/2, and V0
∗ = V0N−1/2, where N̂ is any p.d. diagonal matrix.

Then, we can see that

T−1/2∆ = Û∗D̂∗V̂
′
∗ −U0

∗D
0
∗V

0
∗
′
=: ∆∗.

For this expression, we can apply the proof of Lemma 3 in Uematsu et al. (2019). That is,
under Assumptions 1 and 2, we have

‖Û∗ −U0
∗‖2F =

r∑
k=1

‖û∗k − u0
∗k‖22 . d2∗1‖∆∗‖2F

r∑
k=1

1

δd4∗k

= d21N1‖∆∗‖2F
r∑

k=1

1

δd4kN
2
k

. ‖∆∗‖2F
N1

N2
r

.

Rewriting this inequality with the original scaling gives result (a).
Next, we prove (b). We begin with rewriting ∆∗ as

Û∗(D̂∗V̂
′
∗ −D0

∗V
0
∗
′
) = ∆∗ − (Û∗ −U0

∗)D
0
∗V

0
∗
′
.

The triangle inequality and unitary property of the Frobenius norm entail that

‖D̂∗V̂′∗ −D0
∗V

0
∗
′‖F ≤ ‖∆∗‖F + ‖(Û∗ −U0

∗)D
0
∗‖F.

We can bound the second term of the upper bound as in the proof of (a). That is, we have

‖(Û∗ −U0
∗)D

0
∗‖2F ≤ ‖∆∗‖2F(cd2∗1/δ)

r∑
k=1

d−2∗k

= ‖∆∗‖2F(cd21N1/δ)

r∑
k=1

(dkN
1/2
k )−2 . ‖∆∗‖2F

N1

Nr
.

Combining these inequalities gives

‖D̂∗V̂′∗ −D0
∗V

0
∗
′‖2F ≤ 2‖∆∗‖2F + 2‖(Û∗ −U0

∗)D
0
∗‖2F

. ‖∆∗‖2F + ‖∆∗‖2F
N1

Nr
= T−1‖∆‖2F

(
1 +

N1

Nr

)
.

Noting that the left-hand side is equal to ‖D̂V̂′ −D0V0′‖2F, we obtain

‖∆‖2F & T

(
1 +

N1

Nr

)−1
‖D̂V̂′ −D0V0′‖2F

=
TNr

N1 +Nr
‖D̂V̂′ −D0V0′‖2F &

TNr

N1
‖D̂V̂′ −D0V0′‖2F.

This completes the proof.
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Lemma 6. Suppose that Assumptions 1–4 with Ñ = N and conditions (9) and (10) hold.
Then we have

‖B̂PC −B0‖max . T−1/2 log1/2(N ∨ T )

with probability at least 1−O((N ∨ T )−ν).

Proof. Let ∆̂ = F̂PC − F0. Define

F =
{

∆ = (δtk) ∈ RT×r : ‖∆‖F ≤ CrPCn
}

with rPCn =
N1(NT )1/2 log1/2(N ∨ T )

Nr(Nr ∧ T )
,

where C is some positive constant introduced in the proof of Theorem 4. By the definition
of the PC estimator under PC1 restriction, we have

B̂PC = T−1X′F̂PC = T−1(B0F0′ + E′)F̂PC

= T−1(B0F0′ + E′)F0 + T−1(B0F0′ + E′)∆̂

= B0 + T−1E′F0 + T−1B0F0′∆̂ + T−1E′∆̂.

Then the triangle inequality implies that

‖B̂PC −B0‖max ≤ T−1‖E′F0‖max + T−1‖B0F0′∆̂‖max + T−1‖E′∆̂‖max. (A.16)

From Lemma 1(c), the first term of (A.16) is bounded by T−1/2 log1/2(N ∨ T ) (up to a
positive constant factor) with probability at least 1− O((N ∨ T )−ν). We then consider the
remaining two terms. For any ∆ ∈ RT×r, we have

∥∥∥B0F0′∆
∥∥∥
max
≤ r

∥∥B0
∥∥
max

∥∥∥F0′∆
∥∥∥
max

.
∥∥∥F0′∆

∥∥∥
max
≤ max

k

∑
`

∥∥∥∥∥Ψ`

∑
t

ζt−`δtk

∥∥∥∥∥
max

.

By Lemma 2 with Assumption 1, we have z`,jk :=
∑

t ζt−`,jδtk ∼ subG(σ2ζ‖δk‖22) for each
fixed δtk, j, and `. By the independence of z`,jk across j and Lemma 2 again, we have∑

j ψ`,ijz`,jk ∼ subG(σ2ζ‖δk‖22‖Ψ`,i·‖22) for each i, k, and `. Therefore, for any fixed ∆ and
`, the subG tail inequality with the union bound entails that

max
k

∥∥∥∥∥Ψ`

∑
t

ζt−`δtk

∥∥∥∥∥
max

. max
i
‖Ψ`,i·‖2‖∆‖F log1/2(N ∨ T )

with probability at least 1−O((N ∨T )−ν). Because maxi ‖Ψ`,i·‖2 ≤ ‖Ψ`‖2 by the definition
of the spectral norm, we have

sup
∆∈F

∥∥∥F0′∆
∥∥∥
max
≤ C

∑
`

‖Ψ`‖2rPCn log1/2(N ∨ T ) . rPCn log1/2(N ∨ T )

with probability at least 1−O((N ∨ T )−ν). Moreover, by the same argument as above with
Assumption 3, we have

sup
∆∈F

∥∥E′∆∥∥
max

. rPCn log1/2(N ∨ T ) =
N1N

1/2T log1/2(N ∨ T )

Nr(Nr ∧ T )
· T−1/2 log1/2(N ∨ T )
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with probability at least 1 − O((N ∨ T )−ν). Consequently, by Theorem 3 with condition
(10), the bound in (A.16) becomes

‖B̂PC −B0‖max . T−1/2 log1/2(N ∨ T ) +
N1N

1/2 log1/2(N ∨ T )

Nr(Nr ∧ T )
· T−1/2 log1/2(N ∨ T )

= T−1/2 log1/2(N ∨ T ) + o(1)T−1/2 log1/2(N ∨ T )

with probability at least 1−O((N ∨ T )−ν). This completes the proof of Lemma 6.

Lemma 7. Suppose the same conditions as Theorem 4. Then, for any deterministic matrices
U = (utk) ∈ RT×r and V = (vik) ∈ RN×r, the following inequalities simultaneously hold with
probability at least 1−O((N ∨ T )−ν):

(a)
∣∣tr EB0U′

∣∣ . N
1/2
1 ‖U‖F log1/2(N ∨ T ),

(b)
∣∣tr E′F0V′S

∣∣ . T 1/2‖VS‖F log1/2(N ∨ T ),

(c)
∣∣tr V′SE

′U
∣∣ . ‖U‖F‖VS‖F log1/2(N ∨ T ),

(d)
∣∣tr VSU

′F0V′S
∣∣ . ‖U‖F‖VS‖2F log1/2(N ∨ T ),

(e)
∣∣tr B0U′UV′S

∣∣ . N
1/2
1 ‖U‖

2
F‖VS‖F,

(f)
∣∣tr B0U′F0V′S

∣∣ . N
1/2
1 ‖U‖F‖VS‖F log1/2(N ∨ T ).

Proof. Recall that VS ∈ RN×r is defined as the matrix whose (i, k)th element is vik1{(i, k) ∈
S}, where S = supp(B0); see the proof of Theorem 4.

(a) First note that the (t, k)th element of EB0 is given by e′tb
0
k. We observe that

∣∣tr EB0U′
∣∣ =

∣∣vec(EB0)′u
∣∣ ≤ rmax

k

∣∣∣∣∣
T∑
t=1

e′tb
0
kutk

∣∣∣∣∣ ,
where we have written as u = vec(U). From Assumption 3, recall that et =

∑L
`=0 Φ`εt−`,

where εt = (εt1, . . . , εtN )′ with {εti}t,i ∼ i.i.d. subG(σ2ε). Let b̃`k,i denote the ith element of
Φ′`b

0
k as in the proof of Lemma 1(b). Then, we have

max
k

∣∣∣∣∣
T∑
t=1

e′tb
0
kutk

∣∣∣∣∣ = max
k

∣∣∣∣∣
T∑
t=1

L∑
`=0

N∑
i=1

εt−`,ib̃`k,iutk

∣∣∣∣∣
≤

L∑
`=0

max
k

∣∣∣∣∣
T∑
t=1

N∑
i=1

εt−`,ib̃`k,iutk

∣∣∣∣∣ ≤
L∑
`=0

max
k

∣∣∣∣∣‖Φ′`bk‖−12

T∑
t=1

N∑
i=1

εt−`,ib̃`k,iutk

∣∣∣∣∣ ‖Φ′`bk‖2
≤ max

k,`

∣∣∣∣∣‖Φ′`bk‖−12

T∑
t=1

N∑
i=1

εt−`,ib̃`k,iutk

∣∣∣∣∣max
k
‖bk‖2

∞∑
`=0

‖Φ`‖2

. N
1/2
1 max

k,`

∣∣∣∣∣
T∑
t=1

utk‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i

∣∣∣∣∣ .
Since {εt−`,ib̃`k,i}i is a sequence of independent subG(σ2ε b̃

2
`k,i) for each t, k, `, we can see that

{‖Φ′`bk‖
−1
2

∑N
i=1 εt−`,ib̃`k,i}t ∼ indep. subG(σ2ε) by Lemma 2. Moreover, Lemma 2 gives

Zk` :=
T∑
t=1

utk‖Φ′`bk‖−12

N∑
i=1

εt−`,ib̃`k,i ∼ subG(σ2ε‖uk‖22).
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Therefore, the subG tail inequality and the union bound entail

P
(

max
k,`
|Zk`| > x

)
≤ r(L+ 1) max

k,`
P (|Zk`| > x)

≤ 2r(N ∨ T )ν exp

(
− x2

2σ2ε maxk ‖uk‖22

)
≤ 2r(N ∨ T )ν exp

(
− x2

2σ2ε‖U‖2F

)
.

Setting x2 = 4σ2ε‖U‖2Fν log(N ∨ T ) leads to getting the bound

max
k,`
|Zk`| ≤ 2σε‖U‖Fν1/2 log1/2(N ∨ T )

with probability at least 1−O((N ∨ T )−ν). Thus the desired upper bound∣∣tr EB0U′
∣∣ . N

1/2
1 log1/2(N ∨ T )‖U‖F

holds with probability at least 1−O((N ∨ T )−ν).
(b) As in the proof of Lemma 1, we write Ẽ` = (ε1−`, . . . , εT−`)

′ ∈ RT×N and Z̃` =
(ζ1−`, . . . , ζT−`)

′ ∈ RT×r. Then we can write E′F =
∑Ln

`,m=0 Φ`Ẽ
′
`Z̃mΨ′m under Assumptions

1 and 3. By the same way as in (a), we have

∣∣tr E′F0V′S
∣∣ =

∣∣∣∣∣∣
∑

(i,k)∈S

Ln∑
`,m=0

φ′`,iẼ
′
`Z̃mψm,kvik

∣∣∣∣∣∣ ≤
Ln∑

`,m=0

∣∣∣∣∣∣
∑

(i,k)∈S

φ′`,iẼ
′
`Z̃mψm,kvik

∣∣∣∣∣∣
=

Ln∑
`,m=0

∣∣∣∣∣∣
∑

(i,k)∈S

vik trψm,kφ
′
`,iẼ

′
`Z̃m

∣∣∣∣∣∣ =

Ln∑
`,m=0

∣∣∣tr Θ`mẼ′`Z̃m

∣∣∣ ,
where Θ`m :=

∑
(i,k)∈S vikψm,kφ

′
`,i with its (h, j)th component given by θ`m,hj for h =

1, . . . , r and j = 1, . . . , N . Recall that Ẽ′` = (ε1−`, . . . , εT−`) and Z̃′m = (ζ1−m, . . . , ζT−m)
from the proof of Lemma 1. Then we have

Ln∑
`,m=0

∣∣∣tr Θ`mẼ′`Z̃m

∣∣∣ =

Ln∑
`,m=0

∣∣∣∣∣∣
r∑

h=1

T∑
t=1

 N∑
j=1

θ`m,hjεt−`,j

 ζt−m,h

∣∣∣∣∣∣
≤ rmax

h

Ln∑
`,m=0

∣∣∣∣∣∣
T∑
t=1

‖θ`m,h‖−12

N∑
j=1

θ`m,hjεt−`,j

 ζt−m,h

∣∣∣∣∣∣ ‖θ`m,h‖2
. max

h,`,m

∣∣∣∣∣∣
T∑
t=1

‖θ`m,h‖−12

N∑
j=1

θ`m,hjεt−`,j

 ζt−m,h

∣∣∣∣∣∣
Ln∑

`,m=0

‖θ`m,h‖2

. max
h,`,m

∣∣∣∣∣∣
T∑
t=1

‖θ`m,h‖−12

N∑
j=1

θ`m,hjεt−`,j

 ζt−m,h

∣∣∣∣∣∣max
h

Ln∑
`,m=0

‖θ`m,h‖2, ,

where θ′`m,h is the hth row vector of Θ`m. By the same reason as in the proof of Lemma
1(c), Lemma 2 entails that the inside of the absolute value is the sum of i.i.d. subE(4eσεσζ)
random variables. Thus, the same bound in that proof can be used. Thus, applying the
union bound, we obtain with probability at least 1−O((N ∨ T )−ν),

max
h,`,m

∣∣∣∣∣∣
T∑
t=1

‖θ`m,h‖−12

N∑
j=1

θ`m,hjεt−`,j

 ζt−m,h

∣∣∣∣∣∣ ≤ (96e2σ2εσ
2
ζνT log(N ∨ T ))1/2.
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Finally, we evaluate maxh
∑Ln

`,m=0 ‖θ`m,h‖2. By the construction, we have

max
h

Ln∑
`,m=0

‖θ`m,h‖2 = max
h

Ln∑
`,m=0

 N∑
j=1

 ∑
(i,k)∈S

vikψm,hkφ`,ij

21/2

≤ max
h

Ln∑
`,m=0

 r∑
k=1

ψ2
m,hk

N∑
i,j=1

φ2
`,ij

1/2

‖vS‖2 ≤
∞∑
m=0

‖Ψm‖2
∞∑
`=0

‖Φ`‖F‖VS‖F.

Thus the desired upper bound holds with probability at least 1−O((N ∨ T )−ν).
(c) We observe that

∣∣tr V′SE
′U
∣∣ =

∣∣∣∣∣
r∑

k=1

T∑
t=1

v′ketutk

∣∣∣∣∣ ≤
r∑

k=1

L∑
`=0

∣∣∣∣∣
T∑
t=1

v′kΦ`εt−`utk

∣∣∣∣∣ .
By Assumption 3 and Lemma 2, we have (v′kΦ`εt−`)t ∼ indep. subG(σ2ε‖v′kΦ`‖22) for each k

and `. Thus, by Lemma 2 again, we further have
∑T

t=1 v′kΦ`εt−`utk ∼ subG(σ2ε‖v′kΦ`‖22‖uk‖22)
for each k and `. Therefore, the subG tail probability gives∣∣∣∣∣

T∑
t=1

v′kΦ`εt−`utk

∣∣∣∣∣ . ‖v′kΦ`‖2‖uk‖2 log1/2(N ∨ T ) ≤ ‖Φ`‖2‖VS‖F‖U‖F log1/2(N ∨ T )

with probability at least 1−O((N ∨ T )−ν). Consequently, we have

∣∣tr V′SE
′U
∣∣ . ∞∑

`=0

‖Φ`‖2‖VS‖F‖U‖F log1/2(N ∨ T ) . ‖VS‖F‖U‖F log1/2(N ∨ T ),

which yields the result.
(d) By the property of norms, we obtain∣∣tr V′SVSU

′F0
∣∣ ≤ ‖V′SVS‖∗‖U′F0‖2

≤ r3/2‖V′SVS‖F‖U′F0‖max . ‖VS‖2F max
j,k

∣∣∣∣∣
T∑
t=1

utjf
0
tk

∣∣∣∣∣ .
By Assumption 1, the last stochastic part is evaluated as

max
j,k

∣∣∣∣∣
T∑
t=1

utkf
0
tk

∣∣∣∣∣ = max
j,k

∣∣∣∣∣
Ln∑
`=0

r∑
m=1

ψ`,km

T∑
t=1

utjζt−`,m

∣∣∣∣∣
≤ rmax

k,m

Ln∑
`=0

|ψ`,km|max
j,m

∣∣∣∣∣
T∑
t=1

ζt−`,mutj

∣∣∣∣∣ ≤ rmax
j,m,`

∣∣∣∣∣
T∑
t=1

ζt−`,mutj

∣∣∣∣∣max
k,m

Ln∑
`=0

|ψ`,km|

. max
j,m,`

∣∣∣∣∣
T∑
t=1

ζt−`,mutj

∣∣∣∣∣
∞∑
`=0

‖Ψ`‖2,

where {ζtm}t,m ∼ i.i.d. subG(σ2ζ ) and
∑∞

`=0 ‖Ψ`‖2 is bounded. By Lemma 2(b), we have∑T
t=1 ζt−`,mutj ∼ subG(σ2ζ‖uj‖22) for any j,m, `. Thus, the subG tail inequality together
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with the union bound establishes that

P

(
max
j,m,`

∣∣∣∣∣
T∑
t=1

ζt−`,mutj

∣∣∣∣∣ > x

)
≤ r2(Ln + 1) max

j,m,`
P

(∣∣∣∣∣
T∑
t=1

ζt−`,mutj

∣∣∣∣∣ > x

)

. (N ∨ T )ν exp

(
− x2

2σ2ζ maxj ‖uj‖22

)
.

Setting x = 2ν1/2σζ maxj ‖uj‖2 log1/2(N ∨ T ) yields

max
j,m,`

∣∣∣∣∣
T∑
t=1

ζt−`,mutj

∣∣∣∣∣ ≤ 2σζ max
j
‖uj‖2 log1/2(N ∨ T ) . ‖U‖F log1/2(N ∨ T )

with probability at least 1−O((N ∨T )−ν). This together with the first inequality yields the
result.

(e) We observe that∣∣tr B0U′UV′S
∣∣ ≤ ‖V′SB0‖F‖U′U‖F . N

1/2
1 ‖U‖

2
F‖VS‖F,

which gives the proof.
(f) By the property of norms, we obtain∣∣tr V′SB

0U′F0
∣∣ ≤ ‖V′SB0‖∗‖U′F0‖2

≤ r3/2‖V′SB0‖F‖U′F0‖max . N
1/2
1 ‖VS‖F max

j,k

∣∣∣∣∣
T∑
t=1

utjf
0
tk

∣∣∣∣∣ .
Thus by the same argument as the proof of (d), we conclude that the stochastic part is
bounded by ‖U‖F log1/2(N ∨ T ), which occurs with probability at least 1− O((N ∨ T )−ν).
This completes the proofs of (a)–(f).

Lemma 8. Suppose the same conditions as Theorem 4. Then we have with high probability

‖WS‖F ≤
2(rN1)

1/2

b0n
.

Proof. Let b0n = min(i,k)∈S |b0ik| and b̂n = min(i,k)∈S |b̂
ini
ik |. For any x > 0, we have

P (‖WS‖F > x) ≤ P
(
‖WS‖F > x | b̂n > b0n/2

)
+ P

(
b̂n ≤ b0n/2

)
. (A.17)

With setting x = 2(rN1)
1/2/b0n, we verify that the upper bound of (A.17) tends to zero. The

first probability of the upper bound is bounded as

P

(
‖WS‖F >

2(rN1)
1/2

b0n
| b̂n > b0n/2

)
≤ P

(
rN1

b̂
2

n

>
4rN1

(b0n)2
| b̂n > b0n/2

)

≤ P

(
2

b̂nb
0
n

>
4

(b0n)2
| b̂n > b0n/2

)
= P

(
b0n/2 > b̂n | b̂n > b0n/2

)
= 0.

By condition (12) and Lemma 6, the second probability of the upper bound of (A.17) is
bounded as

P
(
b̂n ≤ b0n/2

)
≤ P

(
‖B̂ini −B0‖max ≥ b0n/2

)
= o(1).

These two bounds together with (A.17) imply the result.
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Lemma 9. Suppose the same conditions as Theorem 4. Then we have∥∥∥W−
Sc ◦ (X′F̂)Sc

∥∥∥
max

< ηn

with probability at least 1−O((N ∨ T )−ν).

Proof. Let ∆ = (δtk) = F− F0 and ∆̂ = F̂− F0. Define

F =
{
∆ ∈ RT×r : ‖∆‖F ≤ Crn

}
with rn =

N1(N1T )1/2 log1/2(N ∨ T )

Nr(Nr ∧ T )
,

where C is some positive constant introduced in the proof of Theorem 4. Then we have∥∥∥W−
Sc ◦ (X′F̂)Sc

∥∥∥
max
≤
∥∥W−

Sc
∥∥
max

∥∥∥(X′F̂)Sc
∥∥∥
max

=
∥∥∥B̂ini
Sc
∥∥∥
max

∥∥∥(B0F0′∆̂)Sc + (E′∆̂)Sc + (E′F0)Sc
∥∥∥
max

≤
∥∥∥B̂ini −B0

∥∥∥
max

(
sup
∆∈F

∥∥∥(B0F0′∆)Sc
∥∥∥
max

+ sup
∆∈F

∥∥(E′∆)Sc
∥∥
max

+
∥∥(E′F0)Sc

∥∥
max

)
≤
∥∥∥B̂ini −B0

∥∥∥
max

(
sup
∆∈F

∥∥∥B0F0′∆
∥∥∥
max

+ sup
∆∈F

∥∥E′∆∥∥
max

+
∥∥E′F0

∥∥
max

)
.

Therefore, by the same argument as the proof of Lemma 6, we observe that

η−1n

∥∥∥W−
Sc ◦ (X′F̂)Sc

∥∥∥
max

. η−1n

∥∥∥B̂ini −B0
∥∥∥
max

(
T 1/2 + rn

)
log1/2(N ∨ T ),

where T 1/2 + rn = T 1/2(1 + o(1)) by condition (10). Lemma 6 and condition (13) yield

η−1n

∥∥∥W−
Sc ◦ (X′F̂)Sc

∥∥∥
max

. η−1n

∥∥∥B̂ini −B0
∥∥∥
max

T 1/2 log1/2(N ∨ T )

. (2ηn)−1b0nT
1/2 log1/2(N ∨ T )

with high probability. By the lower bound of condition (12) with taking sufficiently large
positive constant factor in ηn, the desired strict inequality is obtained.

D Additional Results of Empirical Example 1: Firm Security Returns

In addition to reporting the divergence rates, we summarize the estimates of the factor
loadings, focusing on analysis of the contributions of industrial sectors to the non-zero factor
loadings. Such contributions can be regarded as measures of sensitivities of industrial sectors
to the factor. Also we look into the signs of the factor loadings. Notice that the firm securities
with negative loadings react to the factor in the opposite direction to those with positive
loadings. Therefore, given the systematic risk factor, the different sign of the factor loadings
could be interpreted as the different investment positions, for example, being long and short.
Note that our analyses on the measures of sensitivities of industrial sectors and the signs of
the factor loadings are conditional on the identification restrictions on the factors and factor
loadings.

For the above purposes, all the firms are categorized to one of the ten industrial sectors
based on Industry Classification Benchmark (ICB)10: (i) Oil & Gas; (ii) Basic Materials; (iii)

10Refer to FTSE Russell for more details about ICB.

13



Industrials; (iv) Consumer Goods; (v) Health Care; (vi) Consumer Services; (vii) Telecom-
munications; (viii) Utilities; (ix) Financials; (x) Technology. Then, for a given factor, the
factor loadings are grouped into the negatives and the positives. For each group, the portion
of the sum of the absolute value of the factor loadings which belong to each industrial sector
is computed and reported. Specifically, we compute the following statistics for factor ` and
industry s for given estimation window:

T−b`,s =

∑N
i=1 b̂i`1{b̂i` < 0}1{i ∈ s}∑N

i=1 b̂i`1{b̂i` < 0}
, T+

b`,s
=

∑N
i=1 b̂i`1{b̂i` > 0}1{i ∈ s}∑N

i=1 b̂i`1{b̂i` > 0}

where b̂i` is the estimated factor loading of ith firm security, and 1{A} is the indicator
function which takes unity if A is true and zero otherwise. We regard the portion T−b`,s and

T+
b`,s

as the statistical measure of the negative and positive sensitivities of the sth industry to
the `th factor. The average of the portion of the industrial sectors in S&P500 and the average
of T−b`,s and T+

b`,s
for the four factors over the estimation windows τ =Sept 1998,...,April 2018,

are reported in Figure SP2.
Figure SP2(a) shows the portion of the industrial sectors to which the securities consists

of S&P500 belong, and the measure T+
b1,s

for the first factor. All the loadings to the first
factor have the same sign (and it is chosen to be positive), which strongly suggests that
this is the market factor. As one might expect, the ‘beta’ (the factor loading) of defensive
industries, Oil&Gas, Health Care, Telecoms and Utilities is relatively small. The ‘beta’ of
cyclical industries such as Industrials, Financials and Basic Materials, is noticeably high.
The averages of the measures of negative and positive industrial contributions to the second
factor loadings are reported in Figure SP2(b). It shows that Utility and Financials account
for around 43% and 23% of negative loadings, respectively, while Technology, Industrials and
Basic Materials share 40%, 17% and 14% of positive loadings, respectively. The averages
of T−b`,s and T+

b`,s
for the third factor are reported in Figure SP2(c). It is clear that this is

the Oil&Gas factor, which share the 67% of the negative loadings. Financials, Consumer
Services and Consumer Goods share 29%, 23% and 19% of positive loadings, which means
that these industrial sectors move opposite direction to the Oil&Gas with respect to the
third factor. In view of Figure SP2(d), the dominating industry of the fourth factor is
Utility, which share 43% of positive loading, together with Health Care with 17% of the
share. No dominant industry is found for negative loadings, which are equally shared by
cyclical industries.

In turn we discuss each factors in more details by analyzing Table SP1, Figures SP1 and
SP2. The first factor does seem to be almost always “strong,” in that the absolute sum of
factor loadings is proportional to N . As reported in Table SP1, the average of α1 over the
month windows is 0.995 and standard deviation is very small (0.004) with the minimum value
of 0.979. Also as is shown later, all the values of the factor loadings to this factor have the
same sign, which strongly suggests that this is the market factor. Now we turn our attention
to the rest of the factors. The divergence rates for the rest of the common components, α2,
α2 and α4, exhibit very different trajectory over the months, and their orders in terms of
value change (i.e., their plots cross).

Let us see the trajectory of α2. From Figure SP2(b), under our identification condition,
the second factor can be understood of Utility and Financials versus Technology, Industrials
and Basic Materials. In Figure SP1 it is seen that α2 moves around 0.80 until October 1998,
but from this month it sharply goes down and stay below 0.75 to October 1999. Then it
sharply goes up to achieve 0.83 in February 2000. Indeed, this period corresponds to the
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turbulence of Basic Material stock index during 1998-2003, the fall of Industrials stock index
around 2001-2 and the dot com bubble towards the peak in 2000. Since then, during most
of the 2000s, α2 goes above 0.85. After achieving the peak of 0.895 in April 2009, it steadily
decreases and stabilizes around 0.75 from November 2012 onward, during which often this
factor is not estimated but the fourth factor is.

Now let us analyze the move of α3. From Figure SP2(c), under our identification condi-
tion, the third factor can be understood of Oil&Gas versus Financials, Consumer Services
and Consumer Goods. According to Table SP1, α3 has the lowest average. In Figure SP1,
it looks co-moving with α2, around 0.1 below, between September 1989 and July 2008. The
exceptions are the periods from 1991 to 1992 and from 1999 to 2000, during which α3 and
α2 are very close. A sharp rise of α3 is observed from July 2008 to April 2009. This period
coincides with the 2008 financial crisis. In just ten months, it goes up by 0.12, from 0.74 to
0.86. This can be interpreted that the Oil&Gas industry was sharply affected by the crisis.
α3 exceeds α2 in December 2010, and this change of the order remains to the latest data
point, April 2018.

Now let us analyze the move of α4. From Figure SP2(d), under our identification condi-
tion, the fourth factor can be understood of Utility and Health Care versus cyclical industries.
As shown in Figure SP1, the first estimate of the fourth factor appears in February 2004,
with the value of α4 being 0.80. Since its appearance, often it is not estimated but it is from
March 2010 onward, seemingly becoming more and more stronger toward the latest month,
April 2018. Since its first appearance, the value of α4 is mostly between 0.75 and 0.80. After
the sharp one off drop in February 2015,11 α4 rises to become the highest next to the first
factor from November 2016 onward.

E Some Extensions

Recently estimation of a hierarchical factor structure or a multi-level factor structure has been
gaining serious interest in the literature. Ando and Bai (2017) and Choi et al. (2018) consider
factor models with two types of factors, global factors and local factors. The factor loadings
of global factors are non-zero values for all the cross-section units, whereas the local factors
have non-zero loadings among the cross-section units of specific cross sectional groups. Ando
and Bai (2017) and Choi et al. (2018) propose sequential procedures to identify the global and
local factors separately. In fact, the WF structure nests the hierarchical factor structure and
hence our WF-SOFAR method can be applied to readily estimate such models. In contrast to
existing approaches, given the total number of global and local factors, our approach permits
us to consistently estimate the number of local groups, the number of global and local factors
and its memberships in one go. For further information and additional simulation results,
see Section 5.3.

In this paper we have focused on the estimation of the common factors and the exponents
of the divergence rates of the r largest eigenvalues. It is of interest to estimate the stock
return covariance matrix for optimal portfolio allocation and portfolio risk assessment. This
can be achieved by consistently estimating the covariance matrix of idiosyncratic errors, in
line with Fan et al. (2008) and Fan et al. (2011), which is an interesting extension of this
paper.

Another possible extension of interest is to consider the estimation of panel data models
with unobservable multiple interactive effects. Pesaran (2006) and Bai (2009), among others,

11This coincides with the period at bottom of the biggest sharp fall in oil price between 2014–2015.
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develop the estimation methods of the panel data model:

yti = x′tiβ + uti, uti = f ′tbi + εti.

For the PC based estimators, such as Bai (2009), uit is typically assumed to have the strong
factor structure (i.e.,

∑N
i=1 bib

′
i/N tends to a fixed matrix), which may not hold in practice,

and the WF structure seems more appropriate. The iterative procedure proposed by Bai
(2009) based on the WF-SOFAR estimation of f ′tbi, instead of the PC estimation, would
potentially improve the precision of the estimates of β.
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