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Abstract

This paper considers collective decision-making when individuals are

partitioned into groups (e.g., states or parties) endowed with voting weights.

We study a game in which each group chooses an internal rule that specifies

the allocation of its weight to the alternatives as a function of its mem-

bers’ preferences. We show that under quite general conditions, the game

is a Prisoner’s Dilemma: while the winner-take-all rule is a dominant strat-

egy, the equilibrium is Pareto dominated. We also show asymptotic Pareto

dominance of the proportional rule. Our numerical computation for the US

Electoral College verifies the sensibility of the asymptotic results.
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1 Introduction

A fundamental question about representative democracy is how social decisions

should reflect the opinions of individuals belonging to distinct groups, such as

states or parties. Typically, each group has a voting weight, in the form of a

number of representatives or a weighted vote assigned to a unique representative.

The groups allocate the weights to decision alternatives, and the one that receives

the most weight becomes the social decision. In such cases, the quality of social

decision-making depends not only on the apportionment of weights among the

groups, but also on the rules that allocate the groups’ weights to alternatives, based

on the preferences of their individual members. The present paper is concerned

with how the weight allocation rules affect individuals’ welfare.

Existing institutions use different weight allocation rules. On the one hand, the

winner-take-all rule devotes all the weight of a group to the alternative preferred

by the majority of its members. Most states in the Untied States use this rule

to allocate presidential electoral votes. A council of national ministers, each with

a weighted vote (e.g., the Council of the European Union), is another example,

provided the ministers can be thought of as representing their countries’ majority

interests. Party discipline frequently observed in legislative voting may also be

understood as the winner-take-all rule used by parties.

On the other hand, the proportional rule allocates a group’s weight in pro-

portion to how many members prefer the respective alternatives. In many par-

liamentary institutions at the national or international level, each constituency

(e.g., state or prefecture) elects a set of representatives whose composition more

or less proportionally reflects its residents’ preferences. Alternatively, when the

representatives are viewed as standing for parties rather than states or prefectures,

the proportional rule corresponds to a party’s rule that allows its representatives

to vote for or against proposals based on their own preferences, provided the com-

position of the party’s representatives proportionally reflects the opinions of all

party members.

The weight allocation rules are often exogenously given to all groups, but there

are also cases where each group chooses its own rule. For instance, in national

parliaments, how the representatives are elected from the respective constituencies

is stipulated by national law. By contrast, parties often have control over how their

representatives vote, by punishing those who violate the party lines. As another

example, the US Constitution stipulates that it is up to each state to decide the

way in which the presidential electoral votes are allocated (Article II, Section 1,
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Clause 2).

If groups are allowed to choose their rules, it is possible that each group has

an incentive to allocate the weight so as to increase the influence of its members’

opinions on social decisions, at the cost of the other groups’ influence. It is not

clear whether such an incentive at the group level is compatible with desirable

properties of the overall preference aggregation, such as efficiency. To address this

issue, we need to model the choice of rules as a non-cooperative game.

In this paper, we consider a model of social decision-making where individuals

are partitioned into groups endowed with voting weights. The society makes a

binary decision through two stages: first, all individuals vote; then each group

allocates its weight to the alternatives, based on the number of votes they received

from the group’s individual members. The winner is the alternative with the most

weight. A rule for a group is a function that maps each possible vote result in the

group to an allocation of its weight to the alternatives. Examples are the winner-

take-all and proportional rules. A profile is a specification of rules for all groups.

We measure an individual’s expected welfare under a profile by the probability of

success, i.e., the probability that the profile produces the social decision preferred

by the individual, where the probability is defined at the ex ante stage in which

individuals’ preferences between the alternatives are unknown. We study the

game in which the groups independently choose their rules, so as to maximize

their members’ expected welfare.

The main result of this paper is that the game is a Prisoner’s Dilemma. On

the one hand, the winner-take-all rule is a dominant strategy, i.e., it is an optimal

strategy for each group regardless of the rules chosen by the other groups. On the

other hand, the winner-take-all profile is Pareto dominated, i.e., some other profile

makes every group better off. In brief, no group has an incentive to deviate from

the winner-take-all rule, but every group will be better off if all groups jointly

move to other rules. The dilemma structure exists for any number of groups (> 2)

and with little restriction on the joint distribution of preferences. Individuals’

preferences may be biased, and also correlated within and across groups, which

would be true when the groups are parties with different but overlapping political

goals, or states that tend to support specific alternatives, e.g., blue, red or swing

states in the US.

We then turn to an asymptotic and normative analysis of the model. We

consider situations where the number of groups is sufficiently large, and the pref-

erences are independent across groups and distributed symmetrically with respect

to the alternatives. In this case, we show that the proportional profile Pareto dom-
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inates every other symmetric profile (i.e., one in which all groups use the same

rule), including the winner-take-all one. The assumptions on the preference dis-

tribution abstract from the fact that in reality, some groups tend to prefer specific

alternatives. Such an abstraction would be reasonable on the grounds that nor-

mative judgment about rules should not favor particular groups because of their

characteristic preference biases. To see how many groups are typically sufficient

for the asymptotic result, we perform numerical computations in a model based on

the US Electoral College, using the current apportionment of electoral votes. The

numerical comparisons indicate that the proportional profile does Pareto dominate

the winner-take-all profile in the model with fifty states and a federal district.

The observation that the winner-take-all rule is a dominant strategy is consis-

tent with the fact that all but two states in the US currently use it to allocate

presidential electoral votes,1 and also with the widely observed party discipline in

assemblies. Despite the various problems or limitations that have been pointed

out concerning the winner-take-all rule,2 it is still used prevalently.

While the above result suggests that the proportional profile asymptotically

performs well in terms of efficiency, it is silent about the equality of individuals’

welfare. In fact, our model also provides some insight into how rules affect the

distribution of welfare. We examine an asymmetric profile called the congressional

district profile. This profile is inspired by the Congressional District Method cur-

rently used by Maine and Nebraska, in which two electoral votes are allocated

by the winner-take-all rule and the remaining ones are awarded to the winner of

each district-wide popular vote.3 We show that the congressional district profile

achieves a more equal distribution of welfare than any symmetric profile by making

1One of the most recent attempts of reform by a state took place in 2004, when a ballot
initiative for an amendment to the state constitution was raised in Colorado. The suggested
procedure is the proportional rule, in which the state electoral votes are allocated proportionally
to the state popular votes. The amendment did not pass, garnering only 34.1% approval.

2Some of the major arguments against the winner-take-all rule are the following. First, the
winner of the election may be inconsistent with that of the popular votes. Such a discrepancy
has happened five times in the history of the US presidential elections, including recently in
2000 and 2016. Second, it may cause reduced dimensionality: (i) the parties have an incentive
to concentrate campaign resources only in the battleground states, and (ii) voters’ incentive
to turn out or to invest in information may be small and/or uneven across states, since the
probability of each voter to be pivotal is so small under the winner-take-all rule, and even
smaller in the non-swing states.

3The idea of allocating a part of the votes by the winner-take-all rule and allowing the rest to
be awarded to potentially distinct candidates can be seen as a compromise between the winner-
take-all and the proportional rules. Symbolically, the two votes allocated by the winner-take-all
rule is the same number as the Senators in each state, while the rest is equal to the number of
the House representatives. The idea behind such a mixture is in line with the logic supporting
bicameralism, which is supposed to provide checks and balances between the states and the
federal governance.

4



individuals in smaller groups better off.

A technical contribution of this paper is to develop an asymptotic method for

analyzing players’ expected welfare in weighted voting games. One of the major

challenges in analyzing such games is their discreteness. By the nature of com-

binatorial problems, obtaining an analytical result often requires a large number

of classifications by cases, which may include prohibitively tedious and complex

tasks in order to obtain general insights. We overcome this difficulty by consider-

ing asymptotic properties of games in which there are a sufficiently large number

of groups. This technique allows us to obtain an explicit formula that captures

the asymptotic behavior of the probability of success for each individual, which

holds for a wide class of distributions of weights among groups (the correlation

lemma: Lemma 3).

1.1 Literature Review

The incentives for groups to use the winner-take-all rule have been studied by

several papers. Hummel (2011) and Beisbart and Bovens (2008) analyze models of

the US presidential elections. Gelman (2003) and Eguia (2011a,b) give theoretical

explanations as to why voters in an assembly form parties or voting blocs to

coordinate their votes. Their findings are coherent with our observation that the

winner-take-all rule is a dominant strategy.

Beisbart and Bovens (2008) and Gelman (2003) also contain comparisons of

the winner-take-all and proportional profiles. Under the current apportionment of

electoral votes in the US, Beisbart and Bovens (2008) numerically compares these

profiles, in terms of inequality indices on citizens’ voting power and the mean

majority deficit, on the basis of a priori and a posteriori voting power measures.

Gelman (2003) compares the case with coalitions of equal sizes in which voters

coordinate their votes to the case without such coordination. Our analysis is

based on Pareto dominance between profiles, and provides results which hold

under general distribution of groups’ weights or sizes. In that sense, Beisbart and

Bovens’s positive analysis is complementary to our normative analysis of properties

of the proportional profile.

De Mouzon et al. (2019) provides a welfare analysis of popular vote interstate

compacts, and shows that, for the regional compact, welfare of the member states

is single-peaked as a function of the number of the participating states, while it is

monotonically decreasing for the non-member states. The second effect dominates

in terms of the social welfare, unless a large majority (approximately more than
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2/π ≃ 64%) of the states join the compact, implying that a small- or middle-sized

regional compact is welfare detrimental. For the national compact, the total wel-

fare is increasing, as it turns out that even the non-members would mostly benefit

from the compact, implying that the social optimum is attained when a majority

joins the compact, i.e. the winner is determined by the national popular vote.

Their findings are coherent with ours: if the winner-take-all rule is applied only to

a subset of the groups, then the member states enjoy the benefit at the expense

of the welfare loss of the non-member states, and the total welfare decreases. The

social optimum is attained when the entire nation uses the popular vote.

The winner-take-all rule has been a regular focus of the literature. The history,

objectives, problems, and reforms of the US Electoral College are summarized,

for example, in Edwards (2004) and Bugh (2010). One of the most scrutinized

problems of the Electoral College is its reduced dimensionality. The incentive of

the candidates to concentrate their campaign resources in the swing and decisive

states is modeled in Strömberg (2008), which is coherent with the findings of the

seminal paper in probabilistic voting by Lindbeck and Weibull (1987). Strömberg

(2008) also finds that uneven resource allocation and unfavorable treatment of

minority states would be mitigated by implementing a national popular vote,

which is coherent with the classical findings by Brams and Davis (1974). Voters’

incentive to turn out is investigated by Kartal (2015), which finds that the winner-

take-all rule discourages turnout when the voting cost is heterogeneous.

Constitutional design of weighted voting is studied extensively in the literature.

Seminal contributions are found in the context of power measurement: Penrose

(1946), Shapley and Shubik (1954), Banzhaf (1968) and Rae (1946). Excellent

summaries of theory and applications of power measurement are given by, above

all, Felsenthal and Machover (1998) and Laruelle and Valenciano (2008). The

tools and insights obtained in the power measurement literature are often used in

the apportionment problem: e.g., Barberà and Jackson (2006), Koriyama et al.

(2013), and Kurz et al. (2017).

2 The Model

Let us consider a society which consists of n disjoint groups : i ∈ {1, 2, · · · , n}.
Let Mi be the set of members of group i. The society makes a collective decision

between two alternatives, denoted −1 and +1. Each group i is endowed with a

weight wi > 0. To exclude trivial cases, we assume that each group’s weight is

less than half the total weight: wi <
1
2

∑n
j=1wj for all i = 1, · · · , n.
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Let

Xim ∈ {−1, 1}

be the random variable which represents the alternative preferred by member

m(∈ Mi) of group i. Since the model is concerned with the weight allocation by

each group which aggregates the preferences of its members, it is most appropriate

to suppose that the groups’ aggregation rules are fixed prior to the realization of

the preferences. The following is the assumption on the preference distribution.

Assumption 1. There exists a latent random vector (Θi)
n
i=1 that is absolutely

continuous and has support [−1, 1]n, such that conditional on Θ = θ, the individ-

uals’ preferences Xim are independent and distributed with:

P{Xim = +1|Θ1 = θ1, · · · ,Θn = θn} = (1 + θi)/2,

P{Xim = −1|Θ1 = θ1, · · · ,Θn = θn} = (1− θi)/2,

for each group i = 1, · · · , n and member m ∈Mi.
4

In this paper, we focus on the situation in which the group size |Mi| is suffi-

ciently large for all i = 1, · · · , n. By the Law of Large Numbers,

1

|Mi|
∑
m∈Mi

Xim → Θi for all i = 1, · · · , n, almost surely.

The left-hand side is the group-wide margin for alternative +1 in group i, i.e.,

the fraction of members of i preferring +1 minus the fraction of those preferring

−1. Throughout the paper, we therefore regard the random variable Θi itself as

representing the group-wide margin for alternative +1.

The latent variables Θi allow us to capture intra-group correlations of the

preferences. For any two members m,m′ of group i, the correlation is given by

Corr(Xim, Xim′) = Var(Θi)/(1−E(Θ2
i )). Since Θi has full support, the preferences

of members of group i are positively correlated. In addition, since Assumption 1

does not exclude correlation of (Θi)
n
i=1 across groups, individuals’ preferences may

also be correlated across groups. See Remark 1 for more details.

The society decides between the alternatives through two stages: (i) each indi-

vidual votes for his preferred alternative; (ii) each group allocates its weight to the

two alternatives, based on the group-wide margin. The winner is the alternative

which receives a majority of the weight.

4Throughout the paper, we use capital Θi for representation of a random variable, and small
θi for the realization.
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At the second stage, each group’s allocation of weight is determined as a func-

tion of the group-wide margin. A rule for group i is defined as a measurable

function

ϕi : [−1, 1] → [−1, 1].

The value ϕi(θi) means the fraction of wi allocated to alternative +1 minus that

allocated to −1, given that the group-wide margin is θi. That is, the rule allocates

wiϕi(θi) more weight to alternative +1 than alternative −1. The following rules

deserve particular attention:

Winner-take-all rule: ϕWTA
i (θi) = sgn θi,

Proportional rule: ϕPR
i (θi) = θi,

Mixed rules : ϕai (θi) = aϕWTA
i (θi) + (1− a)ϕPR

i (θi), 0 ≤ a ≤ 1.

The winner-take-all rule devotes all the weight of a group to the winning alterna-

tive in the group. The proportional rule allocates the weight in proportion to the

vote shares of the respective alternatives in the group. The mixed rule ϕa allocates

the fixed ratio a of the weight by the winner-take-all rule and the remaining 1− a

part by the proportional rule.

A profile ϕ = (ϕi)
n
i=1 consists of rules specified for all groups. By symmetric

profile, we mean that the same rule is used by all groups. For instance, the above

three rules naturally define the following symmetric profiles: the winner-take-all

profile ϕWTA = (ϕWTA
i )ni=1, the proportional profile ϕPR = (ϕPR

i )ni=1, and mixed

profiles ϕa = (ϕai )
n
i=1, a ∈ [0, 1].

The winning alternative is the one which obtains more weight from the groups.

In the case of a tie, we assume that both alternatives are chosen with equal prob-

ability. To define it formally, let

Sϕ =
n∑
i=1

wiϕi(Θi)

be the difference between the total weight cast for alternatives +1 and −1. The

social decision Dϕ is

Dϕ =

sgnSϕ if Sϕ ̸= 0

±1 with equal probabilities if Sϕ = 0.
(1)

We say that the social decision is a success for member m of group i, if it

coincides with his preferred alternative: Xim = Dϕ. Each group’s objective is to
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maximize the ex ante probability of success for its members. Since Assumption

1 implies that the ex ante probability is the same for all members of the same

group, we can define

πi(ϕ) = P{Xim = Dϕ}

to be the probability of success for the members of group i, given the profile ϕ =

(ϕi)
n
i=1. Since each group chooses a rule as a function of the group-wide margin,

maximizing πi(ϕ) with respect to its own rule ϕi is equivalent to maximizing the

conditional probability of success given the group-wide margin Θi = θi,

πi(ϕ|θi) = P{Xim = Dϕ|Θi = θi},

for almost every θi ∈ [−1, 1].

The probabilistic models that have been extensively studied in the literature

also assume existence of the latent variables.

Remark 1. The Impartial Culture (IC) assumes that all members’ preferences are

independently distributed and they are equally likely to prefer the two alternatives.

In our model, this corresponds to the case where Θi = 0 for all i. In particular,

πi(ϕ
WTA) coincides with an affine transformation of the Banzhaf-Penrose index

when the coalitions are formed according to the IC distribution (Straffin (1988)).

The Impartial Anonymous Culture (IAC) assumes that the fraction of members

in the society who prefer a specific alternative is uniformly distributed. IAC

corresponds to the case in which all the latent variables are perfectly correlated,

Θ1 = · · · = Θn, so that the preferences of the members in the society are equally

correlated both across and within groups, and are uniformly distributed on [−1, 1].

Similar to IC, πi(ϕ
WTA) coincides with an affine transformation of the Shapley-

Shubik index when the coalitions are formed according to the IAC distribution. A

variant of IAC, called the Impartial Anonymous Culture* (IAC*), assumes that the

fraction of members who prefer one alternative to the other is uniformly distributed

in each group, and is independent across groups. This corresponds to the case

where (Θi)
n
i=1 are independent and uniformly distributed on [−1, 1]. Under IAC*,

the members in a group are allowed to share common interests, and thus their

preferences are positively correlated within the group, but not across groups. By

contrast, no correlation among the members is allowed under IC, whereas the

correlation is allowed but in exactly the same way within and across groups under

IAC. IAC* fits best to the analysis if we consider the situation in which a group

is not merely a collection of members with independent preferences, but rather
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they may share common interests and/or values, although the correlation is not

required to be perfect.5

3 The Dilemma

We consider a non-cooperative game Γ in which each group chooses a rule to

allocate its weight to the alternatives. Each group’s objective is to maximize the

ex ante probability of success for its members. Formally, the game Γ is defined

as follows. The set of players is the set of groups, i.e., {1, · · · , n}. The strategy

space for group i is the set of all rules, i.e., {all measurable functions ϕi : [−1, 1] →
[−1, 1]}. The payoff of group i is the probability of success, i.e., πi(ϕ).

Two rules ϕi and ψi are called equivalent if ϕi(Θi) = ψi(Θi) almost surely. Two

profiles ϕ and ψ are called equivalent if Dϕ = Dψ almost surely.

A rule (or strategy) ϕi for group i dominates another rule ψi if πi(ϕi, ϕ−i) ≥
ϕi(ψi, ϕ−i) for any ϕ−i, with strict inequality for at least one ϕ−i. A rule ϕi is a

dominant strategy for group i if it dominates every rule not equivalent to ϕi. A

profile ϕ Pareto dominates another profile ψ if πi(ϕ) ≥ πi(ψ) for all i, with strict

inequality for at least one i. If ϕ is not Pareto dominated by any profile, it is

called Pareto efficient.

The main result of this paper is the following.

Theorem 1. Under Assumption 1, game Γ is a Prisoner’s Dilemma:

(i) the winner-take-all rule ϕWTA
i is a dominant strategy for each group i;

(ii) the winner-take-all profile ϕWTA is Pareto dominated.

We use the following lemmata to prove the theorem. The proofs of the lemmata

are relegated to the Appendix.

Lemma 1. (Formula of the probability of success) Under Assumption 1,

2πi(ϕ|θi)− 1

= θi
(
P{wiϕi(θi) + Sϕ−i

> 0|Θi = θi} − P{wiϕi(θi) + Sϕ−i
< 0|Θi = θi}

)
,

where Sϕ−i
=

∑
j ̸=iwjϕj(Θj).

5De Mouzon et al. (2019) provide a detailed comparison of IC, IAC, and IAC* and find, in
particular, a peculiarity of IAC in their numerical computations.
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In Lemma 2 below, a generalized proportional profile refers to a profile in which

ϕi(θi) = λiθi, i = 1, · · · , n, for some vector λ ∈ [0, 1]n \ {0}.

Lemma 2. (Characterization of the Pareto set) Under Assumption 1, a profile ϕ

is Pareto efficient if and only if it is equivalent to some generalized proportional

profile.

Remark 2. Lemma 2 characterizes the entire Pareto set of game Γ. In the

Appendix, we prove the lemma by showing: (i) a profile is Pareto efficient if and

only if it maximizes a weighted sum of probabilities of success of the groups;

(ii) the weighted sum
∑
qiπi(ϕ) is maximized if and only if ϕ is equivalent to

the generalized proportional profile with coefficients proportional to qi/wi. As a

simplest example, the profile that maximizes the (unweighted) sum of probabilities

of success for all individuals is the generalized proportional profile with coefficients

proportional to ni/wi, where ni is the population share of group i.

Proof of Theorem 1. Part (i). By Lemma 1, if θi > 0 (resp. θi < 0), then

πi(ϕ|θi) is non-decreasing (resp. non-increasing) in ϕi(θi) ∈ [−1, 1]. We thus

have πi(ϕ
WTA
i , ϕ−i|θi) ≥ πi(ϕi, ϕ−i|θi) for any (ϕi, ϕ−i) and θi. Therefore

πi(ϕ
WTA
i , ϕ−i) ≥ πi(ϕi, ϕ−i)

for any (ϕi, ϕ−i). Now we show that for any subprofile ϕ−i in which each ϕj :

[−1, 1] → [−1, 1] (j ̸= i) is onto (e.g., ϕPR
j ), the strict inequality

πi(ϕ
WTA
i , ϕ−i) > πi(ϕi, ϕ−i) (2)

holds for any rule ϕi that is not equivalent to ϕWTA
i . To see this, note that for

such ϕ−i, the full-support assumption on (Θj)
n
j=1 implies that the conditional

distribution of Sϕ−i
given Θi = θi has support [−

∑
j ̸=iwj,

∑
j ̸=iwj]. Since wi <∑

j ̸=iwj, the formula in Lemma 1 implies that if θi > 0 (resp. θi < 0), then πi(ϕ|θi)
is strictly increasing (resp. decreasing) in ϕi(θi) ∈ [−1, 1]. Thus πi(ϕ

WTA
i , ϕ−i|θi) >

πi(ϕi, ϕ−i|θi) holds at any θi for which ϕWTA(θi) ̸= ϕi(θi). Since Θi has full support,

this implies that (2) holds for any ϕi that is not equivalent to ϕ
WTA
i .

Part (ii). By the characterization of the Pareto set (Lemma 2), it suffices to

check that ϕWTA is not equivalent to any generalized proportional profile. Suppose,

on the contrary, that ϕWTA is equivalent to a generalized proportional profile with
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coefficients λ ∈ [0, 1]n \ {0}. Then, since (Θi)
n
i=1 has full support,

DϕWTA(θ) = sgn
n∑
i=1

wiλiθi at almost every θ ∈ [−1, 1]n. (3)

Since no group dictates the social decision, the coefficients λi are positive for at

least two groups. Without loss of generality, assume λ1 > 0 and λ2 > 0. Now, fix

θi for i ̸= 1, 2 so that they are sufficiently small in absolute value. Then, according

to (3), for (almost any) sufficiently small ε > 0, DϕWTA(θ) = +1 if θ1 = 1− ε and

θ2 = −ε, while DϕWTA(θ) = −1 if θ1 = ε and θ2 = −1 + ε. This contradicts the

fact that DϕWTA(θ) depends only on the signs of (θi)
n
i=1.

In contrast with the winner-take-all profile, the proportional profile has the

following property.

Proposition 1. Under Assumption 1, the proportional profile ϕPR is Pareto effi-

cient.

Proof. This follows from the characterization of the Pareto set (Lemma 2).

However, the proportional profile does not necessarily Pareto dominate the

winner-take-all profile. This is illustrated by the following example.

Example 1. Let us consider three groups with weights (w1, w2, w3) = (49, 49, 2).

The group-wide margins Θi are independent and uniformly distributed on [−1, 1].

On the one hand, under the winner-take-all profile ϕWTA, all groups are per-

fectly symmetric, and a simple calculation shows that the probability of success

is πi(ϕ
WTA) = 0.625 for all i = 1, 2, 3. On the other hand, under the proportional

profile ϕPR, group 3 is extremely unlikely to affect the social decision, and π3(ϕ
PR)

is close to 0.5 (approximately 0.507). Group 3 is better off under ϕWTA than ϕPR,

and so ϕPR does not Pareto dominate ϕWTA. By what profile is ϕWTA Pareto

dominated? The characterization lemma provides an answer. Consider the gener-

alized proportional profile ϕ̂ with coefficients λi = 1/wi. Then, the distribution of

the weight assigned to the alternative is exactly the same across groups, and thus

πi(ϕ̂) is the same for all i. By Pareto efficiency of the generalized proportional

profile, πi(ϕ̂) > 0.625 for all i.
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4 Asymptotic and Computational Results

4.1 Asymptotic analysis

We saw above that the game is a Prisoner’s Dilemma. In this section, we provide

further insights on the welfare properties, by focusing on the following situations

in which: (i) the number of groups is sufficiently large, and (ii) the preferences of

the members are distributed symmetrically. These properties allows us to provide

an asymptotic and normative analysis.

Often the difficulty of analysis arises from the discrete nature of the problem.

Since the social decision Dϕ is determined as a function of the sum of the weights

allocated to the alternatives across the groups, computing the success probabil-

ity may require classification of a large number of success configurations which

increases exponentially as the number of groups increases, rendering the analysis

prohibitively costly. We overcome this difficulty by studying asymptotic proper-

ties. In order to check the sensibility of our analysis, we provide Monte Carlo

simulation results later in the section, using the example of the US Electoral Col-

lege.

In order to study asymptotic properties, let us consider a sequence of weights

(wi)
∞
i=1, exogenously given as a fixed parameter.

Assumption 2. The sequence of weights (wi)
∞
i=1 satisfies the following properties.

(i) There exists w̄ such that wi ∈ [0, w̄] for all i.

(ii) As n → ∞, the statistical distribution Gn induced by (wi)
n
i=1 weakly con-

verges to a distribution G whose support contains an open interval.6

Assumption 2 guarantees that for large n, the statistical distribution of weights

Gn is sufficiently close to some well-behaved distribution G, on which our asymp-

totic analysis is based.

Additionally, we impose an impartiality assumption for our normative analysis:

Assumption 3. The variables (Θi)
∞
i=1 are drawn independently from a common

symmetric distribution F .

6The statistical distribution function Gn induced by (wi)
n
i=1 is defined by Gn(x) = #{i ≤

m : wi ≤ x}/n for each x. Gn weakly converges to G if Gn(x) → G(x) at every point x of
continuity of G.
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As in Felsenthal and Machover (1998), a normative analysis requires impartial-

ity, and a study of fundamental rules in the society, such as a constitution, should

be free from any dependence on the ex post realization of the group characteristics.

Assumption 3 allows our normative analysis to abstract away the distributional

details. Of course, a normative analysis is best complemented by a positive anal-

ysis which takes into account the actual characteristics of the distributions (as in

Beisbart and Bovens (2008)).

Following the symmetry of the preferences, our analysis also focuses on sym-

metric profiles, in which all groups use the same rule: ϕi = ϕ for all i. With a

slight abuse of notation, we write ϕ both for a single rule ϕ and for the symmetric

profile (ϕ, ϕ, · · · ), which should not create any confusion as long as we refer to

symmetric profiles. As for the alternatives, it is natural to consider that the label

should not matter when the group-wide vote margin is translated into the weight

allocation, given the symmetry of the preferences.

Assumption 4. We assume that the rule is monotone and neutral, that is, ϕ is

a non-decreasing, odd function: ϕ(θi) = −ϕ(−θi).

Let πi(ϕ;n) denote the probability of success for group i(≤ n) under profile

ϕ when the set of groups is {1, · · · , n} and each group j’s weight is wj, the jth

component of the sequence of weights. The definition of πi(ϕ;n) is the same as

πi(ϕ) in the preceding sections; the new notation just clarifies its dependence on

the number of groups n.

The main welfare criterion employed in this section is the asymptotic Pareto

dominance.

Definition 1. For two symmetric profiles ϕ and ψ, we say that ϕ asymptotically

Pareto dominates ψ if there exists N such that for all n > N and all i = 1, · · · , n,

πi(ϕ;n) > πi(ψ;n).

4.2 Pareto Dominance

The following is the main result in our asymptotic analysis.

Theorem 2. Under Assumptions 1-4, the proportional profile asymptotically Pareto

dominates all other symmetric profiles. In particular, it Pareto dominates the Nash

equilibrium of the game, i.e., the symmetric winner-take-all profile.

14



We use the following lemma to prove Theorem 2. The proof of Lemma 3

is relegated to the Appendix. The proof of part (ii) uses a more general result,

Lemma 4, stated in the next subsection, whose proof also appears in the Appendix.

Lemma 3. Under Assumptions 1-4, the following statements hold.

(i) For any symmetric profile ϕ, as n→ ∞,

πi(ϕ;n)−
1

2

=

∫ 1

0

θiP

{
− wiϕ(θi) <

∑
j≤n, j ̸=i

wjϕ(Θj) ≤ wiϕ(θi)

}
dF (θi).

(ii) For any symmetric profile ϕ, as n→ ∞,

√
2πn

(
πi(ϕ;n)−

1

2

)
→ wi

√
E[Θ2]∫ w̄

0
w2dG(w)

· Corr[Θ, ϕ(Θ)], 78

uniformly in wi ∈ [0, w̄]. The limit depends on ϕ only through the factor

Corr[Θ, ϕ(Θ)].

Proof of Theorem 2.

The heart of the proof is in the correlation result shown in part (ii) of Lemma 3.

It follows that if ϕ(Θ) is more correlated with Θ than ψ(Θ) is, then for each group

i, there exists Ni such that if the number of groups (n) is greater than Ni, group

i (≤ n) will be better off under ϕ than ψ.

Note that the convergence in part (ii) of Lemma 3 is uniform in wi ∈ [0, w̄].

This implies that the convergence is uniform in i = 1, 2, · · · .9 Thus there is N with

the above property, without subscript i, which applies to all groups i = 1, 2, · · · .
Therefore, if ϕ(Θ) is more correlated with Θ than ψ(Θ) is, then ϕ asymptotically

Pareto dominates ψ.

7We write Θ for a random variable having the same distribution F as Θi.
8Since Θ and ϕ(Θ) are symmetric, the correlation is given by Corr[Θ, ϕ(Θ)] =

E[Θϕ(Θ)]/
√

E[Θ2]E[ϕ(Θ)2] unless ϕ(Θ) is almost surely zero. If ϕ(Θ) is almost surely zero,
then the correlation is zero.

9A more detailed explanation of this step is the following. By Lemma 3 (i),
√
2πn(πi(ϕ;n)−

1/2) asymptotically behaves as
√
2πn

∫ 1

0
θP{−wiϕ(θ) <

∑
j≤n wjϕ(Θj) ≤ wiϕ(θ)}dF (θ),

where whether or not to include the ith term wiϕ(Θi) in the sum does not matter in
the limit. The estimate of

√
2πn(πi(ϕ;n) − 1/2) therefore has the form fn(wi), where

fn(x) :=
√
2πn

∫ 1

0
θP{−xϕ(θ) <

∑
j≤n wjϕ(Θj) ≤ xϕ(θ)}dF (θ). Lemma 3 (ii) implies

that fn(x) converges uniformly in x ∈ [0, w̄], which in turn implies that the convergence of√
2πn(πi(ϕ;n)− 1/2) ≈ fn(wi) is uniform in i = 1, 2, · · · .
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Since the perfect correlation Corr[Θ, ϕPR(Θ)] = 1 is attained by the propor-

tional rule, Theorem 2 follows.

Theorem 2 shows the Pareto dominance of the symmetric proportional profile

over any other symmetric profile. Intuitively, when there are sufficiently many

groups, the members’ preferences are most efficiently aggregated to the social

decision if the weights are allocated proportionally to the alternatives by all groups.

However, such a profile cannot be sustained as a Nash equilibrium of the game,

since each group has an incentive to deviate to a dominant strategy, i.e., the

winner-take-all rule. This typical Prisoner’s Dilemma situation suggests to us

that a Pareto efficient outcome is not expected to be achieved under decentralized

decision making, and a coordination device is necessary in order to attain a Pareto

improvement.

The above results show that the winner-take-all rule is characterized by its

strategic dominance, while the proportional rule is characterized by its asymptotic

Pareto dominance. The following proposition provides a complete Pareto order

among all the linear combinations of the two rules.

Remember that we defined the mixed rules in Section 2 above. For 0 ≤ a ≤ 1,

a fraction a of the weight is assigned to the winner of the popular vote, while the

rest, 1− a, is distributed proportionally to each alternative:

ϕa(θi) = aϕWTA(θi) + (1− a)ϕPR(θi).

Proposition 2. Under Assumptions 1-3, mixed profile ϕa asymptotically Pareto

dominates mixed profile ϕa
′
for any 0 ≤ a < a′ ≤ 1. In particular, the propor-

tional profile asymptotically Pareto dominates any mixed profile ϕa for 0 < a < 1,

which in turn asymptotically Pareto dominates the winner-take-all profile. In other

words, all mixed profiles can be ordered by asymptotic Pareto dominance, from the

proportional rule as the best, to the winner-take-all rule as the worst.

Proof. In Appendix.

The winner-take-all rule is not only asymptotically Pareto inefficient, but the

worst among the symmetric mixed profiles. Is it worse than any other symmetric

profile? We provide an answer in Remark 3 below.

Remark 3. Theorem 2 leaves the natural question of whether the winner-take-all

profile is the worst among all symmetric profiles, in terms of asymptotic Pareto

dominance. The answer is negative. To see this, note first that, for the winner-

take-all profile, the correlation in Lemma 3 is strictly positive: Corr[Θ, ϕWTA(Θ)] =
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E(|Θ|)/
√

E(Θ2) > 0. On the other hand, for the symmetric profile ϕ0 in which the

rule is defined by ϕ0(θ) = 0 for any θ, the correlation is obviously zero. This rule

assigns exactly half of the weight to each alternative, regardless of the group-wide

vote. The profile ϕ0 thus ignores the group-wide vote results and is the worst

among all symmetric profiles.

4.3 Congressional District Method

The analysis in the preceding subsection suggests that the proportional profile

is optimal in terms of Pareto efficiency. However, our model also implies that

this profile produces an unequal distribution of welfare among individuals; in fact,

this unequal nature pertains to all symmetric profiles. The Correlation Lemma 3

(ii) shows that for these profiles, normalized probability of success for a group is

asymptotically proportional to its weight, providing a high success probability to

the members in a group with a large weight.

In this subsection, we examine whether such inequality can be alleviated with-

out impairing efficiency by using an asymmetric profile, based on the Congressional

District Method, currently used in Maine and Nebraska. This profile allocates a

fixed amount c of each group’s weight by the winner-take-all rule and the rest by

the proportional rule:

wiϕ
CD(θi, wi) = cϕWTA(θi) + (wi − c)ϕPR(θi).

We consider the profile in which the rule is used by all groups. To ensure that the

profile is well-defined, we impose that the weight sequence (wi)
∞
i=1 has a positive

lower bound.

Assumption 5. There exists w > 0 such that wi > w for all i.

Theorem 3. Under Assumptions 1-5, let us consider the congressional district

profile with parameter c ≤ w. For any symmetric profile ϕ, there exists w∗ ∈ [0, w̄]

with the following property: for any ε > 0, there is N such that for all n > N and

i = 1, · · · , n,

wi < w∗ − ε⇒ πi(ϕ
CD;n) > πi(ϕ;n),

wi > w∗ + ε⇒ πi(ϕ
CD;n) < πi(ϕ;n).

The proof of Theorem 3 uses the following lemma. Its proof and the Local

Limit Theorem used in the proof are stated in the Appendix.
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Lemma 4. Under Assumptions 1-4, let ϕ be a symmetric profile, or the congres-

sional district profile (in which case Assumption 5 is also assumed), so that the

rule for group i is denoted ϕ(·, wi). Then, as n→ ∞,

√
2πn

(
πi(ϕ;n)−

1

2

)
→ wiE[Θϕ(Θ, wi)]√∫ w̄

0
w2E[ϕ(Θ, w)2]dG(w)

, 10

uniformly in wi ∈ [0, w̄].

Proof of Theorem 3. By Lemma 4, the normalized success probability for group

i under a symmetric profile ϕ tends to a linear function of wi. Let Aϕ be the

coefficient:

lim
n→∞

√
2πn

(
πi(ϕ;n)−

1

2

)
=

wiE[Θϕ(Θ)]√
E[ϕ(Θ)2]

∫ w̄
0
w2dG(w)

=: Aϕwi.

(4)

For the congressional district profile, remember the definition:

wjϕ
CD (θj, wj) = cϕWTA (θj) + (wj − c)ϕPR (θj)

= c sgn (θj) + (wj − c) θj.

We claim that the limit function is affine in wi:

lim
n→∞

√
2πn

(
πi(ϕ

CD;n)− 1

2

)
= Bwi + C. (5)

To see that, let us apply Lemma 4 again:

lim
n→∞

√
2πn

(
πi(ϕ

CD;n)− 1

2

)
=

wiE
[
ΘϕCD (Θ, wi)

]√∫ w̄
0
w2E

[
ϕCD (Θ, w)2

]
dG(w)

=
cE [|Θ|] + (wi − c)E [Θ2]√∫ w̄
0
w2E

[
ϕCD (Θ, w)2

]
dG(w)

.

Since |θ| ≥ θ2 with a strict inequality for 0 < |θ| < 1, the full support condition

10This formula implicitly excludes the case where the denominator is zero, but this causes no
problem. First suppose ϕ is a symmetric profile in which the rule takes the zero value almost
surely, i.e., E[ϕ(Θ)2] = 0. Then the social decision is almost always determined by coin tossing,
and so the probability of success is 1/2 for all groups. Therefore the limit in the lemma is zero.
For the congressional district profile, E[ϕCD(Θ, x)2] > 0 for each x > w, so the formula in the
lemma is well-defined.
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for Θ implies E [|Θ|] > E [Θ2], which induces that the intercept C is positive. The

coefficient of wi is:

B =
E [Θ2]√∫ w̄

0
w2E

[
ϕCD (Θ, w)2

]
dG(w)

.

If Aϕ < B, combined with C > 0, the right-hand side of (5) is above that of (4).

Then, set w∗ = w̄. If Aϕ > B, again combined with C > 0, the two limit functions

(4) and (5) intersect only once at a positive value ŵ. Let w∗ = min{ŵ, w̄}.
Since the convergences (4) and (5) are uniform in wi, for any ε > 0 there is N

with the property stated in Theorem 3.

If the weight is an increasing function of the group size, the theorem implies

that the congressional district profile makes members of small groups better off,

compared with any symmetric profile.

The intuitive reason why the congressional district profile is advantageous for

small groups is as follows. Under this profile, the ratio of weights cast by the

winner-take-all rule (i.e. c/wi) is higher for small groups than large groups. The

congressional district profile therefore resembles the situation where the rules used

by the smaller groups are relatively close to the winner-take-all rule, whereas those

by the larger groups are close to the proportional rule. The strategic dominance

of the winner-take-all rule suggests that this deviation is profitable for the small

groups.

In addition to Theorem 3, we can also show that the congressional district

profile allocates success probabilities to individuals more equally than any sym-

metric profile does, in the sense of Lorenz dominance. A distribution of success

probabilities among individuals is said to Lorenz dominate another distribution if

the share of success probabilities acquired by any bottom fraction of individuals is

larger in the former distribution than in the latter.11 Lorenz dominance, whenever

it occurs, agrees with equality comparisons by various inequality indices includ-

ing coefficient of variation, Gini coefficient, Atkinson index, and Theil index (see

Fields and Fei (1978) and Atkinson (1970)). To see why the congressional district

profile is more equal than any symmetric profile, recall equations (4) and (5) in

the proof of Theorem 3, which assert that when the number of groups is large, the

11Formally, if H is a distribution of success probabilities among individuals, the Lorenz curve

of H is the graph of the function
∫H−1(p)

0
πdH(π)/

∫ 1

0
πdH(π), 0 ≤ p ≤ 1, where we define

H−1(p) = sup{π : H(π) ≤ p}. A distribution Lorenz dominates another if the Lorenz curve of
the former lies above that of the latter.
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normalized success probability for each member of group i is approximately Aϕwi

for the symmetric profile, and it is approximately Bwi + C for the congressional

district profile. The constant term C > 0 for the congressional district profile

means equal additions to all individuals’ probabilities of success, which results in

a more equal distribution than when there is no such term. More precisely, we

can prove the following statement. The proof is relegated to the Appendix.

Theorem 4. Fix n as the number of groups. Under Assumptions 1-5, let us con-

sider the distributions of success probabilities among individuals under the congres-

sional district profile and any symmetric profile ϕ, in which each member of group

i receives πi(ϕ
CD;n) and πi(ϕ;n), respectively. For sufficiently large n, the distri-

bution under the congressional district profile Lorenz dominates the distribution

under the symmetric profile.

4.4 Computational Results

The results in the previous subsection concern cases with a large number of groups.

The question remains as to whether the conclusions obtained there are also valid

for a finite number of groups. In this section, we study this question by numerically

analyzing a model of the US presidential election.

There are 50 states and one federal district. The weight wi for state i is the

number of electoral votes currently assigned to it. This number equals the state’s

total number of seats in the Senate and House of Representatives. Thus, wi is

two plus a number that is roughly proportional to the state’s population. The

first and second columns of Table 1 describe the distribution of weights among the

states.

We assume IAC* (Impartial Anonymous Culture*): the statewide popular vote

margins Θi are independent and uniformly distributed on [−1, 1]. For any profile

ϕ, we can compute the probability of success for state i via the formula:

π̃i(ϕ) := πi(ϕ)−
1

2
= 0.551

∫ 1

−1

· · ·
∫ 1

−1

θi1A(θ1, · · · , θ51)dθ1 · · · dθ51 (6)

where A =
{
(θ1, · · · , θ51)

∣∣∣∑51
j=1wjϕj(θj) > 0

}
.12

We consider four distinct profiles: ϕWTA, ϕPR, ϕa with a = 102/538, and ϕCD

with coefficient c = 2. As before, these are respectively the winner-take-all profile,

the proportional profile, a mixed profile, and a congressional district profile. The

12It is easy to check that under the uniform distribution assumption, (6) is equivalent to the
expression in Lemma 3 (i).
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parameter c = 2 of the congressional district profile is the number currently used

in Maine and Nebraska, namely, it corresponds to two seats assigned to each state

in the Senate. The parameter a = 102/538 of the mixed profile is chosen so that

the proportion of electoral votes allocated on the winner-take-all basis is the same

for all states, and the total number of electoral votes allocated in this way is the

same as in the congressional district profile.

We compute (6) under these four profiles by a Monte Carlo simulation with

1010 iterations. The results are summarized in Tables 1 and 2. Table 1 shows the

probabilities of success (πi(ϕ)) under the respective profiles. Table 2 shows the

ratios of normalized success probabilities between different profiles:

π̃i(ϕ)

π̃i(ψ)
=
πi(ϕ)− 1/2

πi(ψ)− 1/2
.

If the ratio is below 1, state i prefers ψ to ϕ.

It follows from Lemma 3 (ii) that as the number n of states increases, the

ratios π̃i
(
ϕWTA

)
/π̃i

(
ϕPR

)
and π̃i (ϕ

a) /π̃i
(
ϕPR

)
converges to the respective corre-

lations Corr[Θ, ϕWTA(Θ)] ≈ 0.866 and Corr[Θ, ϕa(Θ)] ≈ 0.989, where the values

are computed for Θ uniformly distributed on [−1, 1]. Table 2 indicates that for

the present example with 50 states plus DC, these ratios are indeed close to the

respective correlations, which suggests that convergence of the π̃-ratios is fairly

quick. In particular, as expected by Theorem 2, the proportional profile Pareto

dominates the winner-take-all profile in the present case. As suggested by Propo-

sition 2, all states prefer the mixed profile ϕa to the winner-take-all profile, and

all states except California prefer the proportional profile to ϕa.

The ratios π̃i(ϕ
CD)/π̃i(ϕ

PR) in Table 2 are consistent with the result in Theorem

3. Small states prefer the congressional district profile to the proportional one.

In addition, the values of π̃i(ϕ
CD)/π̃i(ϕ

WTA) in the table show that the winner-

take-all profile is Pareto dominated by the congressional district profile, and the

welfare improvement by switching to the congressional district profile is greater

for small states than for large states.
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Table 1: Estimated probabilities of success in the US presidential election, based
on the apportionment in 2016, via Monte Carlo simulation with 1010 iterations.
The estimated standard errors are in the range between 3.9 and 4.1× 10−6.

electoral number π(ϕWTA) π(ϕPR) π(ϕa) π(ϕCD)
votes of states
3 8 0.5057 0.5066 0.5065 0.5084
4 5 0.5075 0.5089 0.5087 0.5105
5 3 0.5094 0.5111 0.5109 0.5126
6 6 0.5113 0.5133 0.5130 0.5146
7 3 0.5132 0.5155 0.5152 0.5168
8 2 0.5151 0.5177 0.5174 0.5189
9 3 0.5170 0.5199 0.5196 0.5210
10 4 0.5189 0.5222 0.5218 0.5231
11 4 0.5208 0.5244 0.5240 0.5252
12 1 0.5227 0.5266 0.5262 0.5273
13 1 0.5246 0.5288 0.5283 0.5294
14 1 0.5265 0.5311 0.5306 0.5315
15 1 0.5284 0.5333 0.5328 0.5336
16 2 0.5304 0.5356 0.5350 0.5357
18 1 0.5342 0.5401 0.5394 0.5400
20 2 0.5381 0.5446 0.5438 0.5443
29 2 0.5560 0.5652 0.5642 0.5637
38 1 0.5747 0.5864 0.5853 0.5838
55 1 0.6178 0.6307 0.6307 0.6253
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Table 2: Ratios between normalized success probabilities.

electoral number π̃(ϕWTA)
π̃(ϕPR)

π̃(ϕa)
π̃(ϕPR)

π̃(ϕCD)
π̃(ϕPR)

π̃(ϕCD)
π̃(ϕWTA)

votes of states
3 8 0.852 0.982 1.260 1.479
4 5 0.852 0.982 1.182 1.387
5 3 0.852 0.982 1.134 1.331
6 6 0.852 0.982 1.103 1.294
7 3 0.852 0.982 1.080 1.268
8 2 0.852 0.982 1.064 1.248
9 3 0.852 0.982 1.050 1.232
10 4 0.853 0.983 1.040 1.220
11 4 0.853 0.983 1.031 1.210
12 1 0.853 0.983 1.024 1.201
13 1 0.853 0.983 1.018 1.194
14 1 0.853 0.983 1.013 1.187
15 1 0.854 0.983 1.009 1.181
16 2 0.854 0.983 1.005 1.177
18 1 0.854 0.983 0.998 1.168
20 2 0.855 0.983 0.993 1.161
29 2 0.859 0.985 0.978 1.138
38 1 0.864 0.987 0.970 1.122
55 1 0.901 1.000 0.959 1.064
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5 Concluding Remarks

This paper shows that the decentralized choice of the weight allocation rule in

representative voting constitutes a Prisoner’s Dilemma: the winner-take-all rule

is a dominant strategy for each group, whereas the Nash equilibrium is Pareto

dominated. We also show that the proportional rule Pareto dominates every other

symmetric profile, when the number of the groups is sufficiently large. Each group

has an incentive to put its entire weight on the alternative supported by the

majority of its members in order to reflect their preferences in the social decision,

although it fails to efficiently aggregate the preferences of all members in the

society, if the winner-take-all rule is employed by all groups.

Our model may provide explanations for the phenomena that we observe in

existing collective decision making. In the United States Electoral College, the rule

used by the states varied in early elections until it converged by 1832 to the winner-

take-all rule, which remains dominantly employed by nearly all states since then.

In many parliamentary voting situations, we often observe parties and/or factions

forcing their members to align their votes in order to maximally reflect their

preferences in the social decision, although some members may disagree with the

party’s alignment. The voting outcome obtained by the winner-take-all rule may

fail to efficiently aggregate preferences, as observed in the discrepancy between

the electoral result and the national popular vote winner in the US presidential

elections in 2000 and 2016. Party discipline or factional voting may also cause

welfare loss when each group pushes their votes maximally toward their ideological

goals, failing to reflect all members’ preferences in the social decision.

The Winner-Take-All Dilemma tells us that the society should call for some

device different from each group’s unilateral effort, in order to obtain a more

socially preferable outcome. As we see in the failure of various attempts to modify

or abolish the winner-take-all rule, such as the ballot initiative for an amendment

to the State Constitution in Colorado in 2004, each state has no incentive to

unilaterally deviate from the equilibrium. The National Popular Vote Interstate

Compact is a well-suited example of a coordination device. As it comes into effect

only when the number of electoral votes attains the majority, each state does not

suffer from the payoff loss by unilateral (or coalitional) deviation until sufficient

coordination is attained. The emergence of such an attempt is coherent with the

insights obtained in this paper that the game is a Prisoner’s Dilemma, and a

coordination device is necessary for a Pareto improvement.

Our analysis is abstract in that we do not impose assumptions on the pref-
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erences distribution based on the observed characteristics in the real representa-

tive voting problems. Additionally, we impose an impartiality assumption in our

asymptotic analysis. Obviously, our normative analysis would be best comple-

mented by a positive analysis, which we leave for future research.

Appendix

A1 Proof of Lemma 1

We prove the lemma for group 1. Consider a fixed member m of group 1. Suppose

m obtains utility 1 or −1, depending on whether the social decision is a success or

failure for him. Suppose also that the group-wide margin has realized: Θ1 = θ1.

Then 2π1(ϕ|θ1)−1 = 1 ·π1(ϕ|θ1)+(−1) · (1−π1(ϕ|θ1)) is the conditional expected
utility for member m. If, in addition, member m prefers +1, then his conditional

expected utility will be P{Sϕ > 0|Θ1 = θ1} − P{Sϕ < 0|Θ1 = θ1}; if he prefers −1

then it will be P{Sϕ < 0|Θ1 = θ1} − P{Sϕ > 0|Θ1 = θ1}.13 So, taking the average

by weighting the two cases by their probabilities (i.e., (1 + θ1)/2 and (1− θ1)/2),

the conditional expected utility for member m before his preference is realized

2π1(ϕ|θ1)−1 = θ1(P{Sϕ > 0|Θ1 = θ1}−P{Sϕ < 0|Θ1 = θ1}), which is the formula

stated in the lemma.

A2 Proof of Lemma 2

Preliminaries. In this proof, we denote by ϕλ the generalized proportional profile

with coefficients λ ∈ Rn
+ \ {0}:

ϕλi (θi) = λiθi, i = 1, · · · , n,

which should not be confused with the notation ϕa for mixed profiles.

We write π̃i(ϕ) = 2πi(ϕ) − 1 for the normalized payoff (i.e., probability of

success) for group i, and π̃(ϕ) = (π̃i(ϕ))
n
i=1 for the vector of normalized payoffs.

13Note that by the tie-breaking rule, the case with Sϕ = 0 has zero expected utility. Note also
that the probabilities appearing in the formulas are conditional only on the group-wide margin
Θ1, and not on member m’s preference, since Assumption 1 implies that once the group-wide
margin (i.e., how many members of group 1 prefer +1) is known, any additional information
about the preference profile of group 1 (i.e., which members of group 1 prefer +1) is irrelevant
to the distribution of Sϕ.
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Let Π be the set of all possible normalized payoff vectors in game Γ:

Π = {π̃(ϕ) : ϕ is a profile}.

For any X ⊂ Rn, let Pareto (X) be the Pareto frontier of X, i.e., the set of points

x ∈ X for which there exists no y ∈ X such that yi ≥ xi for all i, with strict

inequality for at least one i. Let coX denote the closed convex hull of X.

We will refer to the following maximization problem (Mq) parametrized by

vector q ∈ R+ \ {0}:

Problem Mq: max
x∈coΠ

q · x.

Note that the maximization is not directly with respect to profile ϕ. Moreover,

Π may be non-closed or non-convex. Thus, there may be a solution x ∈ coΠ that

is not the normalized payoff vector of any profile ϕ, although we will later disprove

this possibility.

We divide the proof of Lemma 2 into several claims. Claims 2.1-2.4 concern

properties of the solutions to Problem Mq. Claim 2.5 describes the relation be-

tween Problem Mq and Pareto efficiency. Finally, Claim 2.6 completes the proof.

Claim 2.1. A solution of Problem Mq is x = π̃(ϕλ
q
), where λqi = cqi/wi, i =

1, · · · , n.14

Proof of Claim 2.1. Rewrite the formula in Lemma 1 as

π̃i(ϕ|θi) = θiE(sgnSϕ|Θi = θi).

Integrating this with respect to θi gives

π̃i(ϕ) = E (Θi sgnSϕ) . (7)

Thus, for any profile ϕ,

q · π̃(ϕ) = E [(q ·Θ) (sgnSϕ)] ≤ E(|q ·Θ|). (8)

That is, q · x ≤ E(|q · Θ|) for any x ∈ Π. The linearity of the objective function

q · x implies that q · x ≤ E(|q · Θ|) for all x ∈ coΠ. If ϕ = ϕλ
q
, then Sϕ has the

same sign as q ·Θ. Thus for x = π̃(ϕλ
q
), we have q · x = E(|q ·Θ|).

14c > 0 is a constant such that cqi/wi ≤ 1 for all i.
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Claim 2.2. Let v(q) := max
x∈coΠ

q · x be the maximum value of Problem Mq. Then

v(q) = E(|q ·Θ|).

Proof of Claim 2.2. This follows from the proof of Claim 2.1, in which we showed

that q · x ≤ E(|q · Θ|) for all x ∈ coΠ and the upper bound is attained by

x = π̃(ϕλ
q
).

Claim 2.3. A profile ϕ satisfies q · π̃(ϕ) = v(q) if and only if ϕ is equivalent to

ϕλ
q
.

Proof of Claim 2.3. Since q ̸= 0 and Θ is absolutely continuous, we have q ·Θ ̸= 0

almost surely. Thus, (8) holds with equality if and only if

sgnSϕ = sgn (q ·Θ) almost surely.

Since cq ·Θ = Sϕλq , this holds if and only if ϕ is equivalent to ϕλ
q
.

Claim 2.4. x = π̃(ϕλ
q
) is the unique solution of Problem Mq.

Proof of Claim 2.4. We use the absolute continuity of Θ to show that the value

function v(q) = E(|q ·Θ|) is differentiable, with gradient∇v(q) = π̃(ϕλ
q
). Then the

uniqueness follows by the Duality Theorem (Mas-Colell et al. (1995, Proposition

3.F.1)).

To show that v(q) is differentiable, it suffices to show that as vector ε ∈ Rn

approaches 0,

v(q + ε)− v(q)− π̃(ϕλ
q

) · ε = o(∥ε∥). (9)

Using (7) and Claim 2.2, we can rewrite the left-hand side of (9) as:

v(q + ε)− v(q)− π̃(ϕλ
q

) · ε

= E [{(q + ε) ·Θ} × sgn {(q + ε) ·Θ}]

− E [(q ·Θ)× sgn (q ·Θ)]

− E [(ε ·Θ)× sgn (q ·Θ)]

= E[{(q + ε) ·Θ} × {sgn ((q + ε) ·Θ)− sgn (q ·Θ)}].

This expression has the following bound:

|v(q + ε)− v(q)− π̃(ϕλ
q

) · ε| ≤ 2E
(
|(q + ε) ·Θ| 1{sgn ((q+ε)·Θ) ̸=sgn (q·Θ)}

)
.
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The expectation on the right-hand side is∫
A+

q,ε

{(q + ε) · θ}h(θ)dθ −
∫
A−

q,ε

{(q + ε) · θ}h(θ)dθ, (10)

where h is the joint density of Θ and

A+
q,ε = {θ ∈ [−1, 1]n : (q + ε) · θ ≥ 0 ≥ q · θ},

A−
q,ε = {θ ∈ [−1, 1]n : (q + ε) · θ ≤ 0 ≤ q · θ}.

We show that for ε sufficiently close to 0, (q + ε) · θ ≤
√
n∥ε∥ for all θ ∈ A+

q,ε.

To do this, we fix a sufficiently small ε so that for each e ∈ {−1, 1}n (i.e., each

vertex of the hypercube [−1, 1]n), either both q ·e and (q+ε) ·e are non-negative or
both are non-positive.15 Now, consider the following linear-programming problem

(Lq,ε):

Problem Lq,ε: max
θ∈A+

q,ε

(q + ε) · θ.

Let θ∗ be a solution of Problem Lq,ε that is a vertex of A+
q,ε. Then θ∗ belongs

to at least one of the following sets:

Hq+ε = {θ : (q + ε) · θ = 0},

Hq = {θ : q · θ = 0},

{−1, 1}n.

We claim that θ∗ ∈ Hq. First, we have θ
∗ /∈ Hq+ε, since otherwise θ

∗ minimizes

the objective function (q + ε) · θ subject to θ ∈ A+
q,ε, while the n-dimensional

polytope A+
q,ε contains points that attain larger values of the function. Now,

suppose θ∗ ∈ {−1, 1}n \Hq. The fact that θ
∗ ∈ {−1, 1}n∩A+

q,ε∩Hc
q ∩Hc

q+ε implies

that θ∗ is a vertex of the hypercube [−1, 1]n such that q ·θ∗ < 0 < (q+ε) ·θ∗. This
contradicts the fact that for any vertex e of the hypercube, either both (q + ε) · e
and q · e are non-negative or both are non-positive. Therefore θ∗ ∈ Hq.

We have shown that q · θ∗ = 0. This implies that for any θ ∈ A+
q,ε, (q+ ε) · θ ≤

(q+ε)·θ∗ = ε·θ∗ ≤ ∥θ∗∥∥ε∥ ≤
√
n∥ε∥. It similarly follows that −(q+ε)·θ ≤

√
n∥ε∥

for any θ ∈ A−
q,ε. Therefore, (10) is bounded by

√
n∥ε∥

∫
A+

q,ε∪A−
q,ε
h(θ)dθ. Noting

that the integral
∫
A+

q,ε∪A−
q,ε
h(θ)dθ vanishes as ε→ 0, we obtain (9).

15For each vertex e ∈ {−1, 1}n there is δe > 0 such that if ∥ε∥ < δe then either both q · e
and (q + ε) · e are non-negative or both are non-positive. Thus, it suffices to choose ε so that
∥ε∥ < min{δe : e ∈ {−1, 1}n}.
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Claim 2.5. Let x ∈ coΠ. Then, x ∈ Pareto (coΠ) if and only if there exists

q ∈ Rn
+ \ {0} such that x is the unique solution of Problem Mq, i.e., x = π̃(ϕλ

q
).

Proof Claim 2.5. For any x ∈ Rn, let D(x) = {x + a : a ∈ Rn
+ \ {0}} be the

(convex) set of all points that dominate x. Note that x ∈ Pareto (coΠ) if and only

if D(x) ∩ coΠ = ∅. To prove Claim 2.5, suppose x ∈ Pareto (coΠ). Then there

exists a hyperplane with some normal vector q ∈ Rn
+ \{0} that separates coΠ and

D(x).16 Clearly this hyperplane contains x, which means that x is the solution of

Problem Mq. Conversely, suppose x is the unique solution of Problem Mq. Then

the supporting hyperplane of coΠ with normal vector q separates coΠ and D(x).

The uniqueness of the solution implies that the hyperplane intersects coΠ only at

x. This implies that D(x) ∩ coΠ = ∅.

Claim 2.6. A profile ϕ satisfies π̃(ϕ) ∈ Pareto (Π) if and only if there exists

λ ∈ Rn
+ \ {0} such that ϕ is equivalent to ϕλ. That is, Lemma 2 holds.

Proof of Claim 2.6. By Claim 2.5,

Pareto (coΠ) = Pareto (Π) = {π̃(ϕλq) : q ∈ Rn
+ \ {0}}.

By Claim 2.3, π̃(ϕ) belongs to this set if and only if ϕ is equivalent to ϕλ
q
for some

q ∈ Rn
+ \ {0}. This condition is the same as saying that ϕ is equivalent to ϕλ for

some λ ∈ Rn
+ \ {0}.

A3 Proof of Part (i) of Lemma 3

We prove the statement for group 1. Let π1(ϕ;n|θ) be the conditional probability
of success for group 1 given that the group-wide margin is Θ1 = θ1. We may apply

the formula appeared in Lemma 1. By independence, the formula becomes

π1(ϕ;n|θ1)−
1

2
=
θ1
2
(P{w1ϕ(θ1) + Sϕ−1 > 0} − P{w1ϕ(θ1) + Sϕ−1 < 0}).

Since Sϕ−1 is symmetrically distributed, the second probability can be written as

P{−w1ϕ(θ1) + Sϕ−1 > 0}. Thus, for θ1 ∈ [0, 1], the above expression equals

π1(ϕ;n|θ1)−
1

2
=
θ1
2
P{−w1ϕ(θ1) < Sϕ−1 ≤ w1ϕ(θ1)}.

16Here, separation is in the weak sense that the hyperplane may contain boundary points of
the two sets.
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By symmetry, twice the integral of this expression over θ1 ∈ [0, 1] (instead of

[−1, 1]) equals the unconditional probability π1(ϕ;n)− 1/2, which proves part (i)

of Lemma 3.

A4 Local Limit Theorem

We quote a version of the Local Limit Theorem shown in Mineka and Silverman

(1970). We will use it in the proof of part (ii) of Lemma 3.

LLT. (Mineka and Silverman (1970, Theorem 1)) Let (Xi) be a sequence of inde-

pendent random variables with mean 0 and variances 0 < σ2
i < ∞. Write Fi for

the distribution of Xi. Write also Sn =
∑n

i=1Xi and s
2
n =

∑n
i=1 σ

2
i . Suppose the

sequence (Xi) satisfies the following conditions:

(α) There exists x̄ > 0 and c > 0 such that for all i,

1

σ2
i

∫
|x|<x̄

x2dFi(x) > c.

(β) Let (ai) be any bounded sequence of numbers such that infi P{|Xi − ai| <
δ} > 0 for all δ > 0.17 Define the set

A(t, ε) = {x : |x| < x̄ and |xt− πm| > ε for all integer m with |m| < x̄}.

Then for each t ̸= 0, there exists ε > 0 such that

1

log sn

n∑
i=1

P{Xi − ai ∈ A(t, ε)} → ∞.

(γ) (Lindeberg’s condition.) For any ε > 0,

1

s2n

n∑
i=1

∫
|x|/sn>ε

x2dFi(x) → 0.

Under conditions (α)-(γ), if s2n → ∞, we have√
2πs2nP{Sn ∈ (a, b]} → b− a.18 (11)

17Such a sequence (ai) exists under assumption (α).
18The original conclusion of Theorem 1 in Mineka and Silverman (1970) is stated in terms of

the open interval (a, b). Applying the theorem to (a, b + c) and (b, b + c) and then taking the
difference gives the result for (a, b]. In addition, the original statement allows for cases where
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A5 Proof of Lemma 4

Preliminaries. We prove the lemma for group 1. In the proof, we use the

notation of LLT. Let

Xi := wiϕ(Θi, wi), i = 1, 2, · · · ,

and Sn :=
∑n

i=1Xi.
19 Then Xi has mean 0 and variance σ2

i := w2
iE[ϕ(Θ, wi)2],

and so the partial sum of variances is s2n :=
∑n

i=1w
2
iE[ϕ(Θ, wi)2].20

Define the event

Ωn(θ1, w1) =

{
−w1ϕ(θ1, w1) <

n∑
i=2

Xi ≤ w1ϕ(θ1, w1)

}
.

We divide the proof into several claims. Claims 5.1-5.3 show that the sequence

(Xi) defined above satisfies the conditions of the Local Limit Theorem (LLT) in

Section A4. Claim 5.4 applies LLT to complete the proof of Lemma 4.

Claim 5.1. s2n
n
→

∫ w̄
0
w2E[ϕ(Θ, w)2]dG(w).

Proof of Claim 5.1. This holds since sequence (σ2
i ) is bounded and the statistical

distribution Gn induced by (wi)
n
i=1 converges weakly to G.

Claim 5.2. Conditions (α) and (γ) in LLT hold.

Proof of Claim 5.2. This immediately follows from the fact that sequence (Xi) is

bounded and s2n → ∞.

Claim 5.3. Condition (β) in LLT holds.

Proof of Claim 5.3. Fix t ̸= 0. Recall that the support of G contains an open

interval O. Hence G is strictly increasing on O. Recall also that set A(t, ε) is the

union of open intervals of the form

Am(t, ε) =

(
πm+ ε

|t|
,
π(m+ 1)− ε

|t|

)
,

s2n does not go to infinity, and also mentions uniform convergence. These considerations are not
necessary for our purpose, so we omit them.

19Whether the sum includes the first term X1 or not does not matter in the limit.
20Recall that in Lemma 4, Θ represents a random variable that has the same distribution (F )

as each Θi.
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for integers m = ±1,±2, · · · .21

First suppose ϕ is a symmetric profile. Let r > 0 be such that ±r are in the

support of ϕ(Θ).22 Define ai = −rwi for each i. Then

P{|Xi − ai| < δ} = P{wi|ϕ(Θ)− (−r)| < δ} ≥ P{|ϕ(Θ)− (−r)| < δ/w̄} > 0

for all i and δ > 0, and sequence (ai) is bounded since sequence (wi) is bounded.

Thus (ai) satisfies the requirement in condition (β).

For any sufficiently small ε > 0 and an appropriate subinterval (v, v̄) ⊂ O,

there is an integer m such that ((2r − ε)v, (2r + ε)v̄) ⊂ Am(t, ε), and so

((2r − ε)v, (2r + ε)v̄) ⊂ A(t, ε).

Fix such ε > 0 and (v, v̄) ⊂ O, so that v and v̄ are points of continuity of G.

Define

I := {i : wi ∈ (v, v̄)}.

Since r belongs to the support of ϕ(Θ), we have

p := P{ϕ(Θ) ∈ (r − ε, r + ε)} > 0.

Note that if wi ∈ (v, v̄) and ϕ(θi) ∈ (r−ε, r+ε), then (ϕ(θi)+r)wi ∈ ((2r − ε)v, (2r + ε)v̄) ⊂
A(t, ε). Thus, for all i ∈ I,

P{Xi − ai ∈ A(t, ε)} = P{(ϕ(Θ) + r)wi ∈ A(t, ε)} ≥ p > 0.

Therefore,

1

log sn

∑
i≤n

P{Xi − ai ∈ A(t, ε)} ≥ n

log sn
· 1
n
·#{i ≤ n : i ∈ I} · p.

The right-hand side goes to infinity as n → ∞, since 1
n
#{i ≤ n : i ∈ I} →

G(v̄) − G(v) > 0 and sn has asymptotic order of
√
n. Thus condition (β) is

satisfied.

Next suppose ϕ is the congressional district profile ϕCD. In this case, Xi =

21In the present case, the upper bound x̄ appearing in the definition of A(t, ε) does not matter:
one can take it to be arbitrarily large without violating conditions (α) and (γ).

22This is possible since ϕ(Θ) is symmetrically distributed, and since we may exclude the trivial
case in which ϕ(Θ) = 0 almost surely.
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c sgn Θi + (wi − c)Θi. Define sequence (ai) by letting ai = c for all i. Then

P{|Xi − ai| < δ} ≥ P{(wi − c)Θ ∈ (0, δ)} ≥ P{Θ ∈ (0, δ/(w̄ − c))} > 0

for all i and δ > 0, where the lower bound is positive since Θ has full support.

Thus sequence (ai) passes the requirement in condition (β).

Let ε > 0 be sufficiently small. Then there is an interval (θ, θ̄) ⊂ [0, 1] such

that for all w ∈ O,

((w − c)θ, (w − c)θ̄) ⊂ A0(t, ε) ⊂ A(t, ε).

Let p := P{Θ ∈ (θ, θ̄)} > 0 and I := {i : wi ∈ O}. Note that if wi ∈ O and

θi ∈ (θ, θ̄), then (wi − c)θi ∈ A(t, ε). Thus, for any i ∈ I,

P{Xi − ai ∈ A(t, ε)} = P{(wi − c)Θ ∈ A(t, ε)} ≥ p > 0.

The rest of the argument is the same as in the previous paragraph, and so omitted.

Thus (β) holds when ϕ = ϕCD as well.

Claim 5.4. As n→ ∞, uniformly in w1 ∈ [0, w̄],∫ 1

0

θ1
√
2πnP{Ωn(θ1, w1)}dF (θ1) →

w1E[Θϕ(Θ, w1)]√∫ w̄
0
w2E[ϕ(Θ, w)2]dG(w)

. (12)

By part (i) of Lemma 3,23 the left-hand side of (12) is
√
2πn

(
πi(ϕ;n)− 1

2

)
, and

therefore Lemma 4 holds.

Proof of Claim 5.4. By Claims 5.2 and 5.3, we may apply LLT to obtain√
2πs2nP{Ωn(θ1, w1)} → 2w1ϕ(θ1, w1).

By Claim 5.1, this means that

√
2πnθ1P{Ωn(θ1, w1)} → 2w1θ1ϕ(θ1, w1)√∫ w̄

0
w2E[ϕ(Θ, w)2]dG(w)

. (13)

Letting θ1 = 1 maximizes the left-hand side of (13) with the maximum value√
2πnP{Ωn(1, w1)}. This maximum itself converges to a finite limit. Hence the

23It is easy to check that part (i) of Lemma 3 holds for rules ϕ(·, wi) that depend on weight
wi as well.
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expression
√
2πnθ1P{Ωn(θ1, w1)} is uniformly bounded for all n and θ1 ∈ [0, 1].

By the Bounded Convergence Theorem,

∫ 1

0

θ1
√
2πnP{Ωn(θ1, w1)}dF (θ1) →

2w1

∫ 1

0
θ1ϕ(θ1, w1)dF (θ1)√∫ w̄

0
w2E[ϕ(Θ, w)2]dG(w)

.

Since F is symmetric and ϕ is odd, this limit is exactly the one in (12).

To check the uniform convergence, note that for each n, the integral on the left-

hand side of (12) is non-decreasing in w1, since event Ωn(θ1, w1) weakly expands

as w1 increases.
24 We have shown that this integral converges pointwise to a limit

that is proportional to the factor w1E[Θϕ(Θ, w1)], which is continuous in w1.
25

Therefore, the convergence in (12) is uniform in w1 ∈ [0, w̄].26

A6 Proof of Part (ii) of Lemma 3

This follows immediately from Lemma 4, by noting that if ϕ is a symmetric profile,

each group’s rule can be written as ϕ(θj, wj) = ϕ(θj).

A7 Proof of Proposition 2

By part (ii) of Lemma 3, we must show that Corr[Θ, ϕa(Θ)] is decreasing in

a ∈ [0, 1]. By simple calculation,

E(Θ2) · Corr[Θ, ϕa(Θ)]2 =
aE(|Θ|) + (1− a)E(Θ2)

a2 + 2a(1− a)E(|Θ|) + (1− a)2E(Θ2)
.

The derivative of this expression with respect to a has the same sign as{
d
da
(aE(|Θ|) + (1− a)E(Θ2))2

}(
a2 + 2a(1− a)E(|Θ|) + (1− a)2E(Θ2)

)
−

(
aE(|Θ|) + (1− a)E(Θ2)

)2{
d
da
(a2 + 2a(1− a)E(|Θ|) + (1− a)2E(Θ2))

}
= a(aE(|Θ|) + (1− a)E(Θ2))(E(|Θ|)2 − E(Θ2)).

24Let θ1 ∈ [0, 1]. If ϕ is a symmetric profile, i.e. if ϕ(θ1, w1) = ϕ(θ1), then w1ϕ(θ1) is
non-decreasing in w1. If ϕ = ϕCD, then w1ϕ

CD(θ1, w1) = c sgn(θ1) + (w1 − c)θ1, which is
non-decreasing in w1 again. Thus event Ωn(θ1, w1) weakly expands as w1 increases.

25If ϕ is a symmetric profile, this factor is linear in wi. If ϕ = ϕCD, the factor equals cE(|Θ|)+
(wi − c)E(Θ2), which is affine in wi.

26It is known that if (fn) is a sequence of non-decreasing functions on a fixed finite interval and
fn converges pointwise to a continuous function, then the convergence is uniform. See Buchanan
and Hildebrandt (1908).
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This is negative for any a ∈ (0, 1], since E(|Θ|)2 ≤ E(Θ2) in general, and the

full-support assumption implies that this holds with strict inequality.

A8 Proof of Theorem 4

Clearly, Lorenz dominance is invariant to affine transformations of success proba-

bilities (see Moyes (1989)). Thus, it suffices to prove that for large enough n, the

distribution in which each member of group i receives the amount
√
2πn(πi(ϕ

CD;n)−
1/2) Lorenz dominates the distribution in which the corresponding amount is√
2πn(πi(ϕ;n) − 1/2). By equations (4) and (5) in the proof of Theorem 3, as

n→ ∞ these amounts converge to Bwi + C and Aϕwi, respectively, where C > 0

is a constant. A result by Moyes (1994, Proposition 2.3) implies that if f and g are

continuous, nondecreasing, and positive-valued functions such that f(wi)/g(wi) is

decreasing in wi, then the distribution of f(wi) Lorenz dominates that of g(wi).

The ratio (Bwi +C)/(Aϕwi) is decreasing in wi, and so the claimed Lorenz dom-

inance holds in the limit as n→ ∞. Recalling that the convergences are uniform,

the dominance holds for sufficiently large n.
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Barberà, S. and M. O. Jackson (2006): “On the weights of nations: Assign-

ing voting weights in a heterogeneous union,” Journal of Political Economy,

114, 317–339.

Beisbart, C. and L. Bovens (2008): “A power analysis of Amendment 36 in

Colorado,” Public Choice, 134, 231–246.

Brams, S. J. and M. D. Davis (1974): “The 3/2’s Rule in Presidential Cam-

paigning,” Americal Political Science Review, 68, 113–134.

Buchanan, H. and T. Hildebrandt (1908): “Note on Convergence of a Se-

quence of Functions of a Certain Type,” Annals of Mathematics, 9, 123–126.

35



Bugh, G., ed. (2010): Electoral College Reform: Challenges and Possibilities,

Ashgate Publishing.

De Mouzon, O., T. Laurent, M. Le Breton, and D. Lepelley (2019):

“Exploring the effects of national and regional popular vote Interstate compact

on a toy symmetric version of the Electoral College: an electoral engineering

perspective,” Public Choice, 179, 51–95.

Edwards, G. C. (2004): Why the Electoral College is Bad for America, Yale

University Press.

Eguia, J. X. (2011a): “Voting blocs, party discipline and party formation,”

Games and Economic Behavior, 73, 111–135.

——— (2011b): “Endogenous parties in an assembly,” American Journal of Po-

litical Science, 55, 16–26.

Felsenthal, D. S. and M. Machover (1998): The measurement of voting

power, Northampton: Edward Edgar.

Fields, G. S. and J. C. H. Fei (1978): “On inequality comparisons,” Econo-

metrica, 46, 303–316.

Gelman, A. (2003): “Forming Voting Blocs and Coalitions as a Prisoner’s

Dilemma: A Possible Theoretical Explanation for Political Instability,” The

B.E. Journal of Economic Analysis and Policy, 2, 1–16.

Hummel, P. (2011): “Proportional versus winner-take-all electoral vote alloca-

tions,” Public Choice, 148, 381–393.

Kartal, M. (2015): “A Comparative Welfare Analysis of Electoral Systems with

Endogeneous Turnout,” Economic Journal, 125, 1369–1392.

Koriyama, Y., J.-F. Laslier, A. Macé, and R. Treibich (2013): “Optimal
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