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Abstract

This paper considers collective decision-making when individu-

als are partitioned into groups (e.g., states or parties) endowed with

voting weights. We study a game in which each group chooses an

internal rule that specifies the allocation of its weight to the alterna-

tives as a function of its members’ preferences. We show that under

quite general conditions, the game is a Prisoner’s Dilemma: while

the winner-take-all rule is a dominant strategy, the equilibrium is

Pareto dominated. We also show asymptotic Pareto dominance of

the proportional rule. Our numerical computation for the US Elec-

toral College verifies the sensibility of the asymptotic results.
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1 Introduction

A fundamental question about representative democracy is how social deci-

sions should reflect the opinions of individuals belonging to distinct groups,

such as states or parties. Typically, each group has a voting weight, in the

form of a number of representatives or a weighted vote assigned to a unique

representative. The groups allocate the weights to decision alternatives,

and the one that receives the most weight becomes the social decision. In

such cases, the quality of social decision-making depends not only on the

apportionment of weights among the groups, but also on the rules that al-

locate the groups’ weights to alternatives, based on the preferences of their

individual members. The present paper is concerned with how the weight

allocation rules affect individuals’ welfare.

Existing institutions use different weight allocation rules. On the one

hand, the winner-take-all rule devotes all the weight of a group to the

alternative preferred by the majority of its members. Most states in the

Untied States use this rule to allocate presidential electoral votes. A coun-

cil of national ministers, each with a weighted vote (e.g., the Council of

the European Union), is another example, provided the ministers can be

thought of as representing their countries’ majority interests. Party disci-

pline frequently observed in legislative voting may also be understood as

the winner-take-all rule used by parties.

On the other hand, the proportional rule allocates a group’s weight in

proportion to the number of members who prefer the respective alterna-

tives. In many parliamentary institutions at the national or international

level, each constituency (e.g., state or prefecture) elects a set of repre-

sentatives whose composition more or less proportionally reflects its resi-

dents’ preferences. Alternatively, when the representatives are viewed as

standing for parties rather than states or prefectures, the proportional rule

corresponds to a party’s rule that allows its representatives to vote for or

against proposals based on their own preferences, provided the composi-

tion of the party’s representatives proportionally reflects the opinions of all
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party members.

The weight allocation rules are often exogenously given to all groups,

but there are also cases where each group chooses its own rule. For instance,

in national parliaments, how the representatives are elected from the re-

spective constituencies is stipulated by national law. By contrast, parties

often have control over how their representatives vote, by punishing those

who violate the party lines. As another example, the US Constitution stip-

ulates that it is up to each state to decide the way in which the presidential

electoral votes are allocated (Article II, Section 1, Clause 2).

If groups are allowed to choose their rules, it is possible that each group

has an incentive to allocate the weight so as to increase the influence of

its members’ opinions on social decisions, at the cost of the other groups’

influence. It is not clear whether such an incentive at the group level is

compatible with desirable properties of the overall preference aggregation,

such as efficiency. To address this issue, we need to model the choice of

rules as a non-cooperative game.

In this paper, we consider a model of social decision-making where

individuals are partitioned into groups endowed with voting weights. The

society makes a binary decision through two stages: first, all individuals

vote; then each group allocates its weight to the alternatives, based on the

number of votes they received from the group’s individual members. The

winner is the alternative with the most weight. A rule for a group is a

function that maps each possible vote result in the group to an allocation

of its weight to the alternatives. Examples are the winner-take-all and

proportional rules. A profile is a specification of rules for all groups. We

study the game in which the groups independently choose their rules, so as

to maximize their members’ expected welfare.

The main result of this paper is that the game is a n-player Prisoner’s

Dilemma (Theorem 1). On the one hand, the winner-take-all rule is a

dominant strategy, i.e., it is an optimal strategy for each group regardless

of the rules chosen by the other groups. On the other hand, if each group

has less than a half of the total weight, then the winner-take-all profile is

Pareto dominated, i.e., some other profile makes every group better off. In

brief, no group has an incentive to deviate from the winner-take-all rule, but

every group will be better off if all groups jointly move to another profile.
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The dilemma structure exists for any number of groups (> 2) and with little

restriction on the joint distribution of preferences. Individuals’ preferences

may be biased, and also correlated within and across groups, or not, which

would be true when the groups are parties with different but overlapping

political goals, or states that tend to support specific alternatives, e.g.,

blue, red or swing states in the US elections.

The observation that the winner-take-all rule is a dominant strategy

is consistent with the fact that it has been dominantly employed by the

states in the US Electoral College since 1830s in order to allocate presi-

dential electoral votes,1 and also with the widely observed party discipline

in assemblies. Despite the various problems or limitations that have been

pointed out concerning the winner-take-all rule,2 it is still used prevalently.

Our conventional knowledge that direct majority voting by all individ-

uals maximizes the utilitarian welfare of the society is not sufficient to see

whether every group is better off under the proportional profile than the

winner-take-all profile. We provide a counterexample later (Example 1):

a small group may be strictly better off under the winner-take-all profile

than the proportional profile. Indeed, this is an oft-used argument by the

small states in the US, on which their support for the winner-take-all rule

is based. The welfare criterion used in Theorem 1 (ii) is Pareto dominance,

which is obviously stronger than the utilitarian welfare evaluation: there

exists a profile under which every group is better off than the winner-take-

all profile. Example 1 shows that it is not necessarily the proportional

profile. Then, what profile Pareto dominates the winner-take-all profile?

1One of the recent attempts of reform by a state took place in 2004, when a ballot
initiative for an amendment to the state constitution was raised in Colorado. The sug-
gested procedure is the proportional rule, in which the state electoral votes are allocated
proportionally to the state popular votes. The amendment did not pass, garnering only
34.1% approval.

2Some of the major arguments against the winner-take-all rule are the following.
First, the winner of the election may be inconsistent with that of the popular votes
(May (1948), Feix et al. (2004)). Such a discrepancy has happened five times in the
history of the US presidential elections, including recently in 2000 and 2016. Second,
it may cause reduced dimensionality: (i) the parties have an incentive to concentrate
campaign resources only in the battleground states, and (ii) voters’ incentive to turn
out or to invest in information may be small and/or uneven across states, since the
probability of each voter to be pivotal is so small under the winner-take-all rule, and
even smaller in the non-swing states. Although campaign resource allocation and voter
turnout are important issues, they are beyond the scope of this paper.
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A full characterization of the Pareto set is provided in Lemma 1.

To further study welfare properties, we turn to an asymptotic and nor-

mative analysis of the model. We consider situations where the number

of groups is sufficiently large, and the preferences are independent across

groups and distributed symmetrically with respect to the alternatives. In

this case, we show that the proportional profile Pareto dominates every

other symmetric profile (i.e., one in which all groups use the same rule),

including the winner-take-all one. The assumptions on the preference dis-

tribution abstract from the fact that in reality, some groups tend to pre-

fer specific alternatives. Such an abstraction would be reasonable on the

grounds that normative judgment about rules should not favor particular

groups because of their characteristic preference biases. To see how many

groups are typically sufficient for the asymptotic result, we provide numer-

ical computations in a model based on the US Electoral College, using the

current apportionment of electoral votes. The numerical comparisons indi-

cate that the proportional profile does Pareto dominate the winner-take-all

profile in the model with fifty states and a federal district.

While the above result suggests that the proportional profile asymp-

totically performs well in terms of efficiency, it is silent about the equality

of individuals’ welfare. In fact, our model also provides some insight into

how rules affect the distribution of welfare. We examine an asymmetric

profile called the congressional district profile. This profile is inspired by

the Congressional District Method currently used by Maine and Nebraska,

in which two electoral votes are allocated by the winner-take-all rule and

the remaining ones are awarded to the winner of each district-wide popular

vote.3 We show that the congressional district profile achieves a more equal

distribution of welfare than any symmetric profile by making individuals

in smaller groups better off.

A technical contribution of this paper is to develop an asymptotic

method for analyzing players’ expected welfare in weighted voting games.

3The idea of allocating a part of the votes by the winner-take-all rule and allowing
the rest to be awarded to potentially distinct candidates can be seen as a compromise
between the winner-take-all and the proportional rules. Symbolically, the two votes
allocated by the winner-take-all rule is the same number as the Senators in each state,
while the rest is equal to the number of the House representatives. The idea behind
such a mixture is in line with the logic supporting bicameralism, which is supposed to
provide checks and balances between the states and the federal governance.
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One of the major challenges in analyzing such games is their discreteness.

By the nature of combinatorial problems, obtaining an analytical result

often requires a large number of classifications by cases, which may include

prohibitively tedious and complex tasks in order to obtain general insights.

We overcome this difficulty by considering asymptotic properties of games

in which there are a sufficiently large number of groups. This technique

allows us to obtain an explicit formula that captures the asymptotic be-

havior of the probability of success for each individual, which holds for a

wide class of distributions of weights among groups (the correlation lemma:

Lemma 2).

1.1 Literature Review

The incentives for groups to use the winner-take-all rule have been studied

by several papers. Hummel (2011) and Beisbart and Bovens (2008) analyze

models of the US presidential elections. Gelman (2003) and Eguia (2011a,b)

give theoretical explanations as to why voters in an assembly form parties

or voting blocs to coordinate their votes. Their findings are coherent with

our observation that the winner-take-all rule is a dominant strategy.

Beisbart and Bovens (2008) and Gelman (2003) also contain compar-

isons of the winner-take-all and proportional profiles. Under the current

apportionment of electoral votes in the US, Beisbart and Bovens (2008) nu-

merically compares these profiles, in terms of inequality indices on citizens’

voting power and the mean majority deficit, on the basis of a priori and a

posteriori voting power measures. Gelman (2003) compares the case with

coalitions of equal sizes in which voters coordinate their votes to the case

without such coordination. Our analysis is based on Pareto dominance be-

tween profiles, and provides results which hold under general distribution

of groups’ weights or sizes. In that sense, Beisbart and Bovens’s positive

analysis is complementary to our normative analysis of properties of the

proportional profile.

De Mouzon et al. (2019) provides a welfare analysis of popular vote

interstate compacts, and shows that, for the regional compact, welfare of

the member states is single-peaked as a function of the number of the par-

ticipating states, while it is monotonically decreasing for the non-member
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states. The second effect dominates in terms of the social welfare, unless a

large majority (approximately more than 2/π ≃ 64%) of the states join the

compact, implying that a small- or middle-sized regional compact is wel-

fare detrimental. For the national compact, the total welfare is increasing,

as it turns out that even the non-members would mostly benefit from the

compact, implying that the social optimum is attained when a majority

joins the compact, i.e. the winner is determined by the national popular

vote. Their findings are coherent with ours: if the winner-take-all rule is

applied only to a subset of the groups, then the member states enjoy the

benefit at the expense of the welfare loss of the non-member states, and

the total welfare decreases. The social optimum is attained when the entire

nation uses the popular vote.

The winner-take-all rule has been a regular focus of the literature. The

history, objectives, problems, and reforms of the US Electoral College are

summarized, for example, in Edwards (2004) and Bugh (2010). One of the

most scrutinized problems of the Electoral College is its reduced dimen-

sionality. The incentive of the candidates to concentrate their campaign

resources in the swing and decisive states is modeled in Strömberg (2008),

which is coherent with the findings of the seminal paper in probabilistic

voting by Lindbeck and Weibull (1987). Strömberg (2008) also finds that

uneven resource allocation and unfavorable treatment of minority states

would be mitigated by implementing a national popular vote, which is

coherent with the classical findings by Brams and Davis (1974). Voters’

incentive to turn out is investigated by Kartal (2015), which finds that the

winner-take-all rule discourages turnout when the voting cost is heteroge-

neous.

Constitutional design of weighted voting is studied extensively in the

literature. Seminal contributions are found in the context of power mea-

surement: Penrose (1946), Shapley and Shubik (1954), Banzhaf (1968)

and Rae (1946). Excellent summaries of theory and applications of power

measurement are given by, above all, Felsenthal and Machover (1998) and

Laruelle and Valenciano (2008). The tools and insights obtained in the

power measurement literature are often used in the apportionment prob-

lem: e.g., Barberà and Jackson (2006), Koriyama et al. (2013), and Kurz

et al. (2017).
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2 The Model

Let us consider a society which consists of n disjoint groups : i ∈ {1, 2, · · · , n}.
The society makes a collective decision between two alternatives, denoted

−1 and +1. For instance, the alternatives may represent presidential can-

didates in a two-party system, or the status quo and a proposal in a legis-

lature. Each group i is endowed with a weight wi > 0.

Let Θi ∈ [−1, 1] be the random variable which represents the group-

wide margin, i.e., the fraction of members of i preferring alternative +1

minus the fraction of those preferring −1.4 For instance, Θi = −0.2 means

that 60% of members of group i prefer alternative −1 and the remaining

40% prefer +1. Since the model is concerned with the weight allocation

by each group which aggregates the preferences of its members, it is most

appropriate to suppose that the groups’ aggregation rules are fixed prior

to the realization of the preferences, and hence of the group-wide margins.

The following is the assumption on the joint distribution of the group-wide

margins.

Assumption 1. The joint distribution of group-wide margins (Θi)
n
i=1 is

absolutely continuous and has full support [−1, 1]n.

Assumption 1 permits a wide variety of joint distributions of individu-

als’ preferences, in which intra- and inter-group correlations and biases are

possible. First, the assumption imposes no restriction on preference cor-

relations within each group. Second, individuals’ preferences may also be

correlated across groups, since the group-wide margins (Θi)
n
i=1 can be cor-

related. This allows us to capture situations where, for instance, residents

of different states or members of different parties have common interest on

some issues. Third, preferences may be biased toward a particular alterna-

tive, since Θi can be asymmetrically distributed. For instance, blue (resp.

red) states in the US might be described as groups whose group-wide mar-

gins have a distribution biased to the left (resp. right). In contrast, swing

states might be described as groups whose distributions are concentrated

around zero.

4Throughout the paper, we use capital Θi for representation of a random variable,
and small θi for the realization.
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The society decides between the alternatives through two stages: (i)

each individual votes for his preferred alternative; (ii) each group allocates

its weight to the two alternatives, based on the group-wide margin. The

winner is the alternative which receives a majority of the weight.

At the second stage, each group’s allocation of weight is determined as

a function of the group-wide margin.

Definition 1. A rule for group i is defined as a Borel-measurable5 function:

ϕi : [−1, 1] → [−1, 1].

The value ϕi(θi) is the fraction of the weight wi allocated to alternative

+1 minus that allocated to −1, given that the group-wide margin is θi.

That is, the rule allocates wiϕi(θi) more weight to alternative +1 than

alternative −1. For example, if wi = 50 and ϕi(θi) = −0.2, it means that

the rule allocates 20 (resp. 30) units of weight to the alternative +1 (resp.

−1).

Let

Φ = {ϕi|Borel-measurable}

be the set of all admissible rules.

Examples of rules. Among all admissible rules, the following ones deserve

particular attention:

(i) Winner-take-all rule: ϕWTA
i (θi) = sgn θi.

(ii) Proportional rule: ϕPR
i (θi) = θi.

(iii) Mixed rules : ϕai (θi) = aϕWTA
i (θi) + (1− a)ϕPR

i (θi), 0 ≤ a ≤ 1.

The winner-take-all rule devotes all the weight of a group to the winning

alternative in the group. The proportional rule allocates the weight in

proportion to the vote shares of the respective alternatives in the group.

The mixed rule ϕa allocates the fixed ratio a of the weight by the winner-

take-all rule and the remaining 1− a part by the proportional rule.

5Borel-measurability is needed to ensure that each ϕi(Θi) is a well-defined random
variable.
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A profile ϕ = (ϕi)
n
i=1 consists of rules specified for all groups. By sym-

metric profile, we mean that the same rule is used by all groups. For

instance, the above three rules naturally define the following symmetric

profiles: the winner-take-all profile ϕWTA = (ϕWTA
i )ni=1, the proportional

profile ϕPR = (ϕPR
i )ni=1, and mixed profiles ϕa = (ϕai )

n
i=1, a ∈ [0, 1].

The winning alternative is the one which obtains more weight from the

groups. In the case of a tie, we assume that both alternatives are chosen

with equal probability. To define it formally, let

Sϕ =
n∑
i=1

wiϕi(Θi)

be the difference between the total weight allocated for alternatives +1 and

−1. The social decision Dϕ is

Dϕ =

sgnSϕ if Sϕ ̸= 0

±1 with equal probabilities if Sϕ = 0.
(1)

The payoff of each individual is 1 or −1, depending on whether she

prefers the social decision or not. We define group i’s (expected) payoff as

the average expected payoff of its members. Since the average payoff of

group-i members is Θi or −Θi depending on whether the social decision is

+1 or −1, the group’s expected payoff is

πi(ϕ) = E(ΘiDϕ).

Since each group chooses a rule as a function of the group-wide margin,

maximizing πi(ϕ) with respect to its own rule ϕi is equivalent to maximiz-

ing, for almost every θi ∈ [−1, 1], the conditional expected payoff given the

group-wide margin Θi = θi:

πi(ϕ|θi)

= θiE(Dϕ|Θi = θi)

= θi (P {Dϕ = +1|Θi = θi} − P {Dϕ = −1|Θi = θi})

= θi(P{wiϕi(θi) + Sϕ−i
> 0|Θi = θi} − P{wiϕi(θi) + Sϕ−i

< 0|Θi = θi}),
(2)
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where Sϕ−i
=

∑
j ̸=iwjϕj(Θj).

6

Remark 1. Our definition of group payoffs has the following interpretation

based on the members’ preferences. Let Mi be the set of individuals in

group i, and Xim ∈ {−1, 1} be the preferred alternative of member m ∈Mi

in group i. Let us here redefine Θi as a latent variable that parametrizes the

distribution of the random preferences in group i. Specifically, suppose Xim

are independently and identically distributed conditional on the realization

(θi)
n
i=1 with the following probabilities for all i = 1, · · · , n and m ∈Mi:{

P {Xim = +1|Θ1 = θ1, · · · ,Θn = θn} = (1 + θi) /2,

P {Xim = −1|Θ1 = θ1, · · · ,Θn = θn} = (1− θi) /2.
(3)

Then, as the group size becomes large (|Mi| → ∞), the Law of Large Num-

bers implies that the group-wide margin 1
Mi

∑
m∈Mi

Xim indeed converges

to Θi almost surely, which is consistent with our original definition of Θi

as the group-wide margin. Moreover,

P {Xim = Dϕ} = E [P {Xim = Dϕ|Θ}]

= E [P {Xim = 1, Dϕ = 1|Θ}+ P {Xim = −1, Dϕ = −1|Θ}]

= E
[
P {Dϕ = 1|Θ} 1 + Θi

2
+ P {Dϕ = −1|Θ} 1−Θi

2

]
=

1

2
(1 + E [P {Dϕ = 1|Θ}Θi + P {Dϕ = −1|Θ} (−Θi)])

=
1

2
(1 + E [ΘiDϕ]) .

Therefore, πi (ϕ) = E (ΘiDϕ) is an affine transformation of the probability

that the preferred alternative of a member m in group i coincides with

the social decision (Xim = Dϕ), which is called success in the literature of

voting power measurement (Laruelle and Valenciano (2008)). The objective

of the group, formulated as the maximization of πi, is thus equivalent to

maximization of the probability of success.

Under the winner-take-all profile ϕWTA, πi is closely related to the clas-

sical voting power indices studied in the literature. If (Θi)
n
i=1 are indepen-

dently, identically and symmetrically distributed (thus each group’s pre-

6The last expression in (2) uses the assumption that ties are broken by tossing a fair
coin.
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ferred alternative is independently and equally distributed over {−1,+1},
called Impartial Culture), then πi corresponds to the Banzhaf-Penrose in-

dex (Banzhaf (1965), Penrose (1946)) and P {Xim = Dϕ} to the Rae index

(Rae (1946)), up to a multiplication by the constant E [|Θi|]. If (Θi)
n
i=1

are perfectly correlated and symmetrically distributed (called Impartial

Anonymous Culture. See, for example, Le Breton et al. (2016)), then πi

corresponds to the Shapley-Shubik index (Shapley and Shubik (1954)).

Remark 2. Our specification of group’s payoff may sound at first as if

it excludes the case where individuals have different preference intensities.

However, even for the cases in which each group is allowed to use not only

the ordinal, but also the cardinal information of its members’ preferences

(as in Barberà and Jackson (2006), Beisbart et al. (2005), Beisbart and

Bovens (2008), Beisbart and Hartmann (2010)), our assumption comes

along with no loss of generality: it suffices to redefine Θi as the average

payoff difference between alternatives +1 and −1 over group i’s members.

3 The Dilemma

We consider a non-cooperative game Γ in which each group chooses a rule

to allocate its weight to the alternatives. Each group’s objective is to

maximize the average expected payoff of its members. Formally, the game Γ

is defined as follows. The set of players is the set of groups: {1, · · · , n}. The
strategy space for group i is the set of all rules: {all measurable functions

ϕi : [−1, 1] → [−1, 1]}. The payoff of group i is its per capita expected

payoff: πi(ϕ).

Two rules ϕi and ψi are called equivalent if ϕi(Θi) = ψi(Θi) almost

surely. Two profiles ϕ and ψ are called equivalent if Dϕ = Dψ almost

surely.

A rule (or strategy) ϕi for group i dominates another rule ψi if πi(ϕi, ϕ−i) ≥
πi(ψi, ϕ−i) for any ϕ−i, with strict inequality for at least one ϕ−i. A rule ϕi

is a dominant strategy for group i if it dominates every rule not equivalent

to ϕi. A profile ϕ Pareto dominates another profile ψ if πi(ϕ) ≥ πi(ψ) for

all i, with strict inequality for at least one i. If ϕ is not Pareto dominated

by any profile, it is called Pareto efficient.
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To show the main theorem, we need the following assumption on the

allocation of weights among the groups.

Assumption 2. Each group has less than half the total weight: wi <
1
2

∑n
j=1wj for all i = 1, · · · , n.

Theorem 1. Under Assumptions 1 and 2, game Γ is a Prisoner’s Dilemma:

(i) the winner-take-all rule ϕWTA
i is a dominant strategy for each group

i;

(ii) the winner-take-all profile ϕWTA is Pareto dominated.

We use the following lemma to prove the theorem. A generalized pro-

portional profile refers to a profile in which ϕi(θi) = λiθi, i = 1, · · · , n, for
some vector λ ∈ [0, 1]n \ {0}.

Lemma 1. (Characterization of the Pareto set) Under Assumption 1, a

profile ϕ is Pareto efficient if and only if it is equivalent to some generalized

proportional profile.

Proof of Theorem 1. Part (i). By (2), if θi > 0 (resp. θi < 0), then the con-

ditional expected payoff πi(ϕ|θi) is non-decreasing (resp. non-increasing)

in ϕi(θi) ∈ [−1, 1]. We thus have πi(ϕ
WTA
i , ϕ−i|θi) ≥ πi(ϕi, ϕ−i|θi) for any

(ϕi, ϕ−i) and θi. Therefore

πi(ϕ
WTA
i , ϕ−i) ≥ πi(ϕi, ϕ−i)

for any (ϕi, ϕ−i). Now we show that for any subprofile ϕ−i in which each

ϕj : [−1, 1] → [−1, 1] (j ̸= i) is onto (e.g., ϕPR
j ), the strict inequality

πi(ϕ
WTA
i , ϕ−i) > πi(ϕi, ϕ−i) (4)

holds for any rule ϕi that is not equivalent to ϕ
WTA
i . To see this, note that

for such ϕ−i, the full-support assumption on (Θj)
n
j=1 implies that the condi-

tional distribution of Sϕ−i
given Θi = θi has support [−

∑
j ̸=iwj,

∑
j ̸=iwj].

Since wi <
∑

j ̸=iwj by Assumption 2, formula (2) implies that if θi > 0

(resp. θi < 0), then πi(ϕ|θi) is strictly increasing (resp. decreasing) in

ϕi(θi) ∈ [−1, 1]. Thus πi(ϕ
WTA
i , ϕ−i|θi) > πi(ϕi, ϕ−i|θi) holds at any θi for
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which ϕWTA
i (θi) ̸= ϕi(θi). Since Θi has full support, this implies that (4)

holds for any ϕi that is not equivalent to ϕ
WTA
i .

Part (ii). By the characterization of the Pareto set (Lemma 1), it

suffices to check that ϕWTA is not equivalent to any generalized proportional

profile. Suppose, on the contrary, that ϕWTA is equivalent to a generalized

proportional profile with coefficients λ ∈ [0, 1]n \ {0}. Then, since (Θi)
n
i=1

has full support,

DϕWTA(θ) = sgn
n∑
i=1

wiλiθi at almost every θ ∈ [−1, 1]n. (5)

Since no group dictates the social decision, the coefficients λi are positive

for at least two groups. Without loss of generality, assume λ1 > 0 and

λ2 > 0. Now, fix θi for i ̸= 1, 2 so that they are sufficiently small in

absolute value. Then, according to (5), for (almost any) sufficiently small

ε > 0, DϕWTA(θ) = +1 if θ1 = 1 − ε and θ2 = −ε, while DϕWTA(θ) = −1 if

θ1 = ε and θ2 = −1 + ε. This contradicts the fact that DϕWTA(θ) depends

only on the signs of (θi)
n
i=1.

Together with Lemma 1, Theorem 1 shows that while the dominant

strategy for each group is the winner-take-all rule, the dominant-strategy

equilibrium is Pareto dominated by some generalized proportional profile.

This typical Prisoner’s Dilemma situation suggests to us that a Pareto effi-

cient outcome is not expected to be achieved under decentralized decision

making, and a coordination device is necessary in order to attain a Pareto

improvement.

If Assumption 2 fails and some group has more than half the total

weight, the winner-take-all profile is Pareto efficient.

Proposition 1. Under Assumption 1, if there exists a group i∗ such that

wi∗ >
1
2

∑n
j=1wj, then the winner-take-all profile ϕWTA is Pareto efficient.

Proof. Under ϕWTA, the social decision always coincides with group i∗’s ma-

jority preference. Thus ϕWTA is equivalent to the generalized proportional

profile with coefficients λi∗ > 0 and λi = 0 for all i ̸= i∗. The proposition

follows from the characterization of the Pareto set (Lemma 1).
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Intuitively, the winner-take-all profile gives dictatorial power to the

group with more than half the total weight, while any non-equivalent pro-

file creates a positive probability of social decision against that group’s will.

Hence Pareto improvement is impossible. One might further speculate that

Pareto efficiency of the winner-take-all profile will still hold as long as there

are groups with sufficiently large weights, even if no group’s weight exceeds

half the total weight. Theorem 1 disproves this possibility.

In contrast with the winner-take-all profile, the proportional profile is

Pareto efficient, regardless of the allocation of weights across the groups.

Proposition 2. Under Assumption 1, the proportional profile ϕPR is Pareto

efficient.

Proof. This follows from the characterization of the Pareto set (Lemma

1).

However, the proportional profile does not necessarily Pareto dominate

the winner-take-all profile, even when Assumption 2 holds. This is illus-

trated by the following example.

Example 1. Let us consider three groups with weights (w1, w2, w3) =

(49, 49, 2). The group-wide margins Θi are independent and uniformly dis-

tributed on [−1, 1]. On the one hand, under the winner-take-all profile

ϕWTA, all groups are perfectly symmetric, and a simple calculation shows

that the expected payoff is πi(ϕ
WTA) = 0.25 for all i = 1, 2, 3. On the

other hand, under the proportional profile ϕPR, group 3 is extremely un-

likely to affect the social decision, and π3(ϕ
PR) is close to 0 (approximately

0.014). Group 3 is better off under ϕWTA than ϕPR, and so ϕPR does not

Pareto dominate ϕWTA. By what profile is ϕWTA Pareto dominated? The

characterization lemma provides an answer. Consider the generalized pro-

portional profile ϕ̂ with coefficients λi = 1/wi. Then, the distribution of

the weight assigned to the alternative is exactly the same across groups,

and thus πi(ϕ̂) is the same for all i. By Pareto efficiency of the generalized

proportional profile, πi(ϕ̂) > 0.25 for all i.

Remark 3. An interesting extension of the model would be to assume

that each group chooses a rule through voting by its members. Does this
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extension lead to an equilibrium different from the winner-take-all profile?

The answer is relatively clear in the case of group-wide majority voting

between the winner-take-all rule and some other rule (e.g., the proportional

rule), as when a state in the US holds a referendum to switch from the

current winner-take-all rule to some proposed rule (see, e.g., Beisbart and

Bovens (2008)). In that case, a group’s choice of a rule depends on the prior

joint distribution of its members’ preferences, which we have not specified

so far. If the group is ex ante sufficiently homogeneous,7 the choice by

majority voting will coincide with the choice that maximizes the per capita

expected payoff, i.e., the winner-take-all rule. However, if the group is ex

ante sufficiently heterogeneous, group-wide majority voting may select the

other rule. The following example illustrates this point.

Suppose there are two groups with weights w1 = 4, w2 = 3.8 Each

group consists of two types of members, L and R. Type-L members are

more likely to prefer alternative −1 than +1, and type-R members are

more likely to prefer +1 than −1. The fraction of type-L members is 51%

in group 1, and 80% in group 2. In that sense, ex ante heterogeneity is

high in group 1 and low in group 2.

To define the types more precisely, suppose there are four random vari-

ables (Θ1L,Θ1R,Θ2L,Θ2R) in which Θit is the latent variable for the prefer-

ences of type-t members in group i, in the same sense as in Remark 1.9 The

latent variable ΘiL is uniformly distributed on [−1, 0], and ΘiR is uniformly

distributed on [0, 1]. In particular, each type-L (resp. type-R) member is

always more likely to prefer −1 than +1 (resp. +1 than −1). We also

7Ex ante homogeneity of a group does not necessarily mean that most of its members
tend to support the same alternative. What it means is that the members’ preferences
follow similar probability laws. For instance, conditionally independent and identically
distributed preferences in Remark 1 provide an example of perfect ex ante homogeneity.

8Here we use the case with n = 2 for ease of exposition. A similar example can be
constructed with a larger number of groups. We also note that while Assumption 2
excludes the case with n = 2, strategic dominance of the winner-take-all rule (i.e., part
(i) of Theorem 1) does not depend on that assumption.

9That is, conditional on the realization (θ1L, θ1R, θ2L, θ2R), all individual members’
preferences are independent and identically distributed, where the alternative Xim pre-
ferred by a type-t member m of group i has the following conditional distribution:{

P {Xim = +1|Θ1L = θ1L, · · · ,Θ2R = θ2R} = (1 + θit) /2,
P {Xim = −1|Θ1L = θ1L, · · · ,Θ2R = θ2R} = (1− θit) /2.
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assume that the four latent variables are independent. Given any profile

ϕ = (ϕ1, ϕ2), the (expected) payoff for each type-t member of group i is

πit(ϕ) = E(ΘitDϕ).
10

In other words, the probability of success for this member (i.e., the proba-

bility that the social decision will be his preferred alternative) is 1+πit(ϕ)
2

.

Let us assume that the only rules available for each group are the

winner-take-all rule ϕWTA
i and the proportional rule ϕPR

i . Each group

chooses a rule by majority voting, where each member votes for the rule

that gives him a higher payoff. Since the type-L members are the majority

in both groups, group i’s majority preference over profiles is represented by

the payoff function πiL(ϕ). Thus the situation can be formally represented

as the following 2×2 game played by groups 1 and 2, where group i’s payoff

is the payoff πiL(ϕ) for a type-L member11 (not the per capita expected

payoff πi(ϕ)):

ϕWTA
2 ϕPR

2

ϕWTA
1 0.192, 0.020 0.192, 0.020
ϕPR
1 0.375, 0.479 0.386, 0.402

The equilibrium is (ϕPR
1 , ϕWTA

2 ). In contrast with Theorem 1, the pro-

portional rule is the dominant strategy for group 1 (or more precisely, voting

for the proportional rule is the dominant strategy for each type-L member

in group 1). The intuitive reason is as follows. If group 1 uses the winner-

take-all rule, then it will dictate the social decision, and hence the decision

will be alternative −1 or +1 with almost equal probabilities, since group 1

is almost evenly split into the two types. Alternatively, if group 1 adopts

the proportional rule, then the social decision will be more likely to be al-

ternative −1 (i.e., the alternative which the majority of group 1’s members

are more likely to support), since there are now chances that the decision

reflects the will of group 2 in which 80% are of type L. This explains why

10Assuming that the number of members of each type is sufficiently large in each
group, the group-wide margins in groups 1 and 2 are Θ1 = 0.51Θ1L + 0.49Θ1R and
Θ2 = 0.8Θ2L+0.2Θ2R, respectively. The definition of the social decision Dϕ is then the
same as before (equation (1)).

11We obtained the payoffs in the table by numerical computation.
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the winner-take-all rule is the dominant strategy for group 1. For the rel-

atively homogeneous group 2, on the other hand, the dominant strategy is

the winner-take-all rule.

This example highlights the importance of the internal decision proce-

dure employed within each group. In order to fully explain the incentives

of the group, it would be interesting to build a full-fledge model which

includes a detailed description of internal heterogeneity of the preference

distributions, but it is beyond the scope of the current paper.

4 Asymptotic and Computational Results

4.1 Asymptotic Analysis

We saw above that the game is a Prisoner’s Dilemma. In this section, we

provide further insights on the welfare properties, by focusing on the follow-

ing situations in which: (i) the number of groups is sufficiently large, and

(ii) the preferences of the members are distributed symmetrically. These

properties allows us to provide an asymptotic and normative analysis.

Often the difficulty of analysis arises from the discrete nature of the

problem. Since the social decision Dϕ is determined as a function of the

sum of the weights allocated to the alternatives across the groups, com-

puting the expected payoffs may require classification of a large number

of success configurations which increases exponentially as the number of

groups increases, rendering the analysis prohibitively costly. We overcome

this difficulty by studying asymptotic properties. In order to check the

sensibility of our analysis, we provide Monte Carlo simulation results later

in the section, using the example of the US Electoral College.

In order to study asymptotic properties, let us consider a sequence of

weights (wi)
∞
i=1, exogenously given as a fixed parameter.

Assumption 3. The sequence of weights (wi)
∞
i=1 satisfies the following

properties.

(i) w1, w2, · · · are in a finite interval [w, w̄] for some 0 ≤ w < w̄.
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(ii) As n→ ∞, the statistical distribution Gn induced by (wi)
n
i=1 weakly

converges to a distribution G with support [w, w̄].12

Assumption 3 guarantees that for large n, the statistical distribution

of weights Gn is sufficiently close to some well-behaved distribution G, on

which our asymptotic analysis is based.

Additionally, we impose an impartiality assumption for our normative

analysis:

Assumption 4. The variables (Θi)
∞
i=1 are drawn independently from a

common symmetric distribution F .

As in Felsenthal and Machover (1998), a normative analysis requires

impartiality, and a study of fundamental rules in the society, such as a con-

stitution, should be free from any dependence on the ex post realization

of the group characteristics. Assumption 4 allows our normative analysis

to abstract away the distributional details. Of course, a normative anal-

ysis is best complemented by a positive analysis which takes into account

the actual characteristics of the distributions (as in Beisbart and Bovens

(2008)).

Following the symmetry of the preferences, our analysis also focuses on

symmetric profiles, in which all groups use the same rule: ϕi = ϕ for all i.

With a slight abuse of notation, we write ϕ both for a single rule ϕ and for

the symmetric profile (ϕ, ϕ, · · · ), which should not create any confusion as

long as we refer to symmetric profiles. As for the alternatives, it is natural

to consider that the label should not matter when the group-wide vote

margin is translated into the weight allocation, given the symmetry of the

preferences.

Assumption 5. We assume that the rule is monotone and neutral, that

is, ϕ is a non-decreasing, odd function: ϕ(θi) = −ϕ(−θi).

Let πi(ϕ;n) denote the expected payoff for group i(≤ n) under profile

ϕ when the set of groups is {1, · · · , n} and each group j’s weight is wj, the

12The statistical distribution function Gn induced by (wi)
n
i=1 is defined by Gn(x) =

#{i ≤ n : wi ≤ x}/n for each x. Gn weakly converges to G if Gn(x) → G(x) at every
point x of continuity of G.
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jth component of the sequence of weights. The definition of πi(ϕ;n) is the

same as πi(ϕ) in the preceding sections; the new notation just clarifies its

dependence on the number of groups n.

The main welfare criterion employed in this section is the asymptotic

Pareto dominance.

Definition 2. For two symmetric profiles ϕ and ψ, we say that ϕ asymp-

totically Pareto dominates ψ if there exists N such that for all n > N and

all i = 1, · · · , n,
πi(ϕ;n) > πi(ψ;n).

4.2 Pareto Dominance

The following is the main result in our asymptotic analysis.

Theorem 2. Under Assumptions 1-5, the proportional profile asymptoti-

cally Pareto dominates all other symmetric profiles. In particular, it asymp-

totically Pareto dominates the dominant-strategy equilibrium of the game,

i.e., the symmetric winner-take-all profile.

We use the following lemma to prove Theorem 2. The proof of Lemma

2 is relegated to the Appendix. The proof of part (ii) uses a more general

result, Lemma 3, stated in the next subsection, whose proof also appears

in the Appendix.

Lemma 2. Under Assumptions 1-5, the following statements hold.

(i) For any symmetric profile ϕ,

πi(ϕ;n)

= 2

∫ 1

0

θiP

{
− wiϕ(θi) <

∑
j≤n, j ̸=i

wjϕ(Θj) ≤ wiϕ(θi)

}
dF (θi).

(ii) For any symmetric profile ϕ, as n→ ∞,

√
2πnπi(ϕ;n) → 2wi

√
E[Θ2]∫ w̄

w
w2dG(w)

Corr [Θ, ϕ(Θ)], 13

13Since Θ and ϕ(Θ) are symmetrically distributed, the correlation is given by
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uniformly in wi ∈ [w, w̄], where Θ is a random variable having the

same distribution F as Θi. The limit depends on the profile ϕ only

through the factor Corr[Θ, ϕ(Θ)].

Proof of Theorem 2.

The heart of the proof is in the correlation result shown in part (ii) of

Lemma 2. It follows that if ϕ(Θ) is more correlated with Θ than ψ(Θ) is,

then for each group i, there exists Ni such that if the number of groups (n)

is greater than Ni, group i (≤ n) will be better off under ϕ than ψ.

Note that the convergence in part (ii) of Lemma 2 is uniform in wi ∈
[w, w̄]. This implies that the convergence is uniform in i = 1, 2, · · · .14 Thus

there is N with the above property, without subscript i, which applies to

all groups i = 1, 2, · · · . Therefore, if ϕ(Θ) is more correlated with Θ than

ψ(Θ) is, then ϕ asymptotically Pareto dominates ψ.

Since the perfect correlation Corr[Θ, ϕPR(Θ)] = 1 is attained by the

proportional rule, Theorem 2 follows.

The above results show that the winner-take-all rule is characterized

by its strategic dominance, while the proportional rule is characterized by

its asymptotic Pareto dominance. The following proposition provides a

complete Pareto order among all the linear combinations of the two rules.

Remember that we defined the mixed rules in Section 2 above. For

0 ≤ a ≤ 1, a fraction a of the weight is assigned to the winner of the

group-wide vote, while the rest, 1−a, is distributed proportionally to each

alternative:

ϕa(θi) = aϕWTA(θi) + (1− a)ϕPR(θi).

Proposition 3. Under Assumptions 1-4, mixed profile ϕa asymptotically

Pareto dominates mixed profile ϕa
′
for any 0 ≤ a < a′ ≤ 1. In particular,

Corr [Θ, ϕ(Θ)] = E[Θϕ(Θ)]/
√

E[Θ2]E[ϕ(Θ)2] unless ϕ(Θ) is almost surely zero. If ϕ(Θ)
is almost surely zero, then the correlation is zero.

14A more detailed explanation of this step is the following. By Lemma 2 (i),√
2πnπi(ϕ;n)) asymptotically behaves as 2

√
2πn

∫ 1

0
θP{−wiϕ(θ) <

∑
j≤n wjϕ(Θj) ≤

wiϕ(θ)}dF (θ), where whether the sum
∑

j≤n wjϕ(Θj) includes the ith term or not is

immaterial in the limit. The estimate of
√
2πnπi(ϕ;n) therefore has the form fn(wi),

where fn(x) := 2
√
2πn

∫ 1

0
θP{−xϕ(θ) <

∑
j≤n wjϕ(Θj) ≤ xϕ(θ)}dF (θ). Lemma 2 (ii)

implies that fn(x) converges uniformly in x ∈ [w, w̄], which in turn implies that the
convergence of

√
2πnπi(ϕ;n) ≈ fn(wi) is uniform in i = 1, 2, · · · .
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the proportional profile asymptotically Pareto dominates any mixed profile

ϕa for 0 < a < 1, which in turn asymptotically Pareto dominates the

winner-take-all profile. In other words, all mixed profiles can be ordered by

asymptotic Pareto dominance, from the proportional profile as the best, to

the winner-take-all profile as the worst.

Proof. In Appendix.

The winner-take-all rule is not only asymptotically Pareto inefficient,

but the worst among the symmetric mixed profiles. Is it worse than any

other symmetric profile? We provide an answer in Remark 4 below.

Remark 4. Theorem 2 leaves the natural question of whether the winner-

take-all profile is the worst among all symmetric profiles, in terms of asymp-

totic Pareto dominance. The answer is negative. To see this, note first that,

for the winner-take-all profile, the correlation in Lemma 2 is strictly posi-

tive: Corr[Θ, ϕWTA(Θ)] = E(|Θ|)/
√

E(Θ2) > 0. On the other hand, for the

symmetric profile ϕ0 in which the rule is defined by ϕ0(θ) = 0 for almost

all θ, the correlation is obviously zero. This rule assigns exactly half of

the weight to each alternative, regardless of the group-wide vote. Thus the

profile ϕ0 is the worst among all symmetric profiles, as the social decision is

made by a coin toss almost surely, yielding expected payoff 0 to all groups.

In the following, we exclude such a trivial profile from our consideration.

4.3 Congressional District Method

The analysis in the preceding subsection suggests that the proportional

profile is optimal in terms of Pareto efficiency. However, our model also

implies that this profile produces an unequal distribution of welfare; in

fact, this unequal nature pertains to all symmetric profiles. The Correlation

Lemma 2 (ii) shows that for these profiles, the expected payoff for a group is

asymptotically proportional to its weight, providing high expected payoffs

to the members in a group with a large weight.

In this subsection, we examine whether such inequality can be allevi-

ated without impairing efficiency by using an asymmetric profile, based

on the Congressional District Method, currently used in Maine and Ne-

braska. This profile allocates a fixed amount c of each group’s weight by
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the winner-take-all rule and the rest by the proportional rule:

wiϕ
CD(θi, wi) = cϕWTA(θi) + (wi − c)ϕPR(θi).

We consider the congressional district profile ϕCD in which the rule is used

by all groups. Note that this profile is not symmetric as it depends on wi,

but the way ϕCD depends on wi is the same for all groups. To ensure that

the profile is well-defined, we impose that its parameter c is below the lower

bound of weights: c ∈ [0, w].

Theorem 3. Under Assumptions 1-5, let us consider the congressional

district profile with parameter c ≤ w. For any symmetric profile ϕ, there

exists w∗ ∈ [w, w̄] with the following property: for any ε > 0, there is N

such that for all n > N and i = 1, · · · , n,

wi < w∗ − ε⇒ πi(ϕ
CD;n) > πi(ϕ;n),

wi > w∗ + ε⇒ πi(ϕ
CD;n) < πi(ϕ;n).

The proof of Theorem 3 uses the following lemma, which shows that the

correlation lemma holds for a class of profiles such that the weight allocation

rules have the following specific form of separability. Its proof and the Local

Limit Theorem used in the proof are relegated to the Appendix.

Assumption 6. Let ϕ = (ϕi)
∞
i=1 be a profile. There exist functions

h1, h2, h3 such that

wiϕi(θi, wi) = h1(wi)h2(θi) + h3(wi) sgn θi, for all i

where (i) h1 is bounded, (ii) h2 is an odd function such that the support

of the distribution of h2(Θi) contains 0, and (iii) h3 is continuous but not

constant.15

It is straightforward to show that Assumption 6 is satisfied for any sym-

metric profile as well as the congressional district profile. For a symmetric

profile ϕ, let h1(wi) = wi, h2(θi) = ϕ(θi) − r sgn θi, and h3(wi) = wir

15Under this form, ϕi(·, ·) is the same for all i so that we can omit subscript i whenever
there is no confusion.
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where r > 0 is any positive number in the support of the distribution of

ϕ(Θ).16 For the congressional district profile ϕCD, let h1(wi) = wi − c,

h2(θi) = θi − sgn θi, and h3(wi) = wi.

Lemma 3. Under Assumptions 1-5, let ϕ be a profile which satisfies As-

sumption 6. Then, as n→ ∞,

√
2πnπi(ϕ;n) →

2wiE[Θϕ(Θ, wi)]√∫ w̄
w
w2E[ϕ(Θ, w)2]dG(w)

,

uniformly in wi ∈ [w, w̄], where Θ is a random variable having the same

distribution F as Θi.

Proof of Theorem 3. By Lemma 3, the expected payoff for group i under

a symmetric profile ϕ tends to a linear function of wi. Let Aϕ be the

coefficient:

lim
n→∞

√
2πnπi(ϕ;n) =

2wiE[Θϕ(Θ)]√
E[ϕ(Θ)2]

∫ w̄
w
w2dG(w)

=: Aϕwi.

(6)

For the congressional district profile, remember the definition:

wjϕ
CD (θj, wj) = cϕWTA (θj) + (wj − c)ϕPR (θj)

= c sgn (θj) + (wj − c) θj.

We claim that the limit function is affine in wi:

lim
n→∞

√
2πnπi(ϕ

CD;n) = Bwi + C. (7)

To see that, let us apply Lemma 3 again:

lim
n→∞

√
2πnπi(ϕ

CD;n) = 2 ·
wiE

[
ΘϕCD (Θ, wi)

]√∫ w̄
w
w2E

[
ϕCD (Θ, w)2

]
dG(w)

= 2 · cE [|Θ|] + (wi − c)E [Θ2]√∫ w̄
w
w2E

[
ϕCD (Θ, w)2

]
dG(w)

.

16This is possible since ϕ(Θ) is symmetrically distributed, and since we exclude the
trivial case in which ϕ(Θ) = 0 almost surely.
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Since |θ| ≥ θ2 with a strict inequality for 0 < |θ| < 1, the full support

condition for Θ implies E [|Θ|] > E [Θ2], which induces that the intercept

C is positive. The coefficient of wi is:

B =
2E [Θ2]√∫ w̄

w
w2E

[
ϕCD (Θ, w)2

]
dG(w)

.

If Aϕ < B, combined with C > 0, the right-hand side of (7) is above that

of (6). Then, set w∗ = w̄. If Aϕ > B, again combined with C > 0, the two

limit functions (6) and (7) intersect only once at a positive value ŵ. Let

w∗ = max {w,min{ŵ, w̄}}.
Since the convergences (6) and (7) are uniform in wi, for any ε > 0

there is N with the property stated in Theorem 3.

Theorem 3 implies that the congressional district profile makes the

members of groups with small weights better off, compared with any sym-

metric profile. If the weight is an increasing function of the group size, it

means that the congressional district profile is favorable for the members

of small groups.

The intuitive reason why the congressional district profile is advanta-

geous for small groups is as follows. Under this profile, the ratio of weights

cast by the winner-take-all rule (i.e. c/wi) is higher for small groups than

large groups. The congressional district profile therefore resembles the sit-

uation where the rules used by the smaller groups are relatively close to

the winner-take-all rule, whereas those by the larger groups are close to

the proportional rule. The strategic dominance of the winner-take-all rule

suggests that this deviation is profitable for the small groups. We provide

a numerical result in the following subsection using an example of the US

Electoral College.

In addition to Theorem 3, we can also show that the congressional

district profile distributes payoffs more equally than any symmetric profile

does, in the sense of Lorenz dominance. A profile of per capita payoffs for

the groups, π = (π1, · · · , πn), is said to Lorenz dominate another profile

π′ = (π′
1, · · · , π′

n) if the share of payoffs acquired by any bottom fraction of
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groups is larger in the former profile than in the latter.17 Lorenz dominance,

whenever it occurs, agrees with equality comparisons by various inequality

indices including coefficient of variation, Gini coefficient, Atkinson index,

and Theil index (see Fields and Fei (1978) and Atkinson (1970)). To see

why the congressional district profile is more equal than any symmetric

profile, recall equations (6) and (7) in the proof of Theorem 3, which assert

that when the number of groups is large, the per capita payoff for group

i is approximately Aϕwi for the symmetric profile, and it is approximately

Bwi + C for the congressional district profile. The constant term C > 0

for the congressional district profile means equal additions to all groups’

payoffs, which result in a more equal distribution than when there is no

such term. More precisely, we can prove the following statement. The

proof is relegated to the Appendix.

Theorem 4. Under Assumptions 1-5, let us consider the payoff profile

under the congressional district profile: π
(
ϕCD;n

)
=

(
πi

(
ϕCD;n

))n
i=1

. Let

ϕ be any symmetric profile and π (ϕ;n) = (πi (ϕ;n))
n
i=1 the payoff profile

under ϕ. For sufficiently large n, π
(
ϕCD;n

)
Lorenz dominates π (ϕ;n).

4.4 Computational Results

The results in the previous subsection concern cases with a large number of

groups. The question remains as to whether the conclusions obtained there

are also valid for a finite number of groups. In this section, we study this

question by numerically analyzing a model of the US presidential election.

There are 50 states and one federal district. The weight wi for state i is

the number of electoral votes currently assigned to it. This number equals

the state’s total number of seats in the Senate and House of Representa-

tives. Thus, wi is two plus a number that is roughly proportional to the

state’s population. The first and second columns of Table 1 describe the

distribution of weights among the states.

17Formally, for each x ∈ [−1, 1], let Hπ(x) be the total population share of those
groups whose per capita welfare is not greater than x under the payoff profile π. Then
Hπ is a distribution function. The Lorenz curve of Hπ is the graph of the function∫H−1

π (p)

0
xdHπ(x)/

∫ 1

0
xdHπ(x), 0 ≤ p ≤ 1, where we define H−1

π (p) = sup{x : Hπ(x) ≤
p}. A payoff profile π Lorenz dominates another profile π′ if the Lorenz curve of Hπ lies
above that of Hπ′ .
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We assume IAC* (Impartial Anonymous Culture*): the statewide pop-

ular vote margins Θi are independent and uniformly distributed on [−1, 1],

first introduced by May (1948) and studied thoroughly by, for example,

De Mouzon et al. (2019). For any profile ϕ, we can compute the per capita

payoff for state i via the formula:

πi(ϕ) = 0.550
∫ 1

−1

· · ·
∫ 1

−1

θi1A(θ1, · · · , θ51)dθ1 · · · dθ51 (8)

where A =
{
(θ1, · · · , θ51)

∣∣∣∑51
j=1wjϕj(θj) > 0

}
.18

We consider four distinct profiles: ϕWTA, ϕPR, ϕa with a = 102/538, and

ϕCD with coefficient c = 2. As before, these are respectively the winner-

take-all profile, the proportional profile, a mixed profile, and a congressional

district profile. The parameter c = 2 of the congressional district profile is

the number currently used in Maine and Nebraska, namely, it corresponds

to two seats assigned to each state in the Senate. The parameter a =

102/538 of the mixed profile is chosen so that the proportion of electoral

votes allocated on the winner-take-all basis is the same for all states, and

the total number of electoral votes allocated in this way is the same as in

the congressional district profile.

We compute (8) under these four profiles by a Monte Carlo simula-

tion with 1010 iterations. The results are summarized in Tables 1 and 2.

Table 1 shows the per capita payoff (πi(ϕ)) under the respective profiles.

Table 2 shows the ratios of per capita payoff between different profiles

(πi(ϕ)/πi(ψ)). If the ratio is below 1, state i prefers ψ to ϕ.

It follows from Lemma 2 (ii) that as the number n of states increases, the

ratios πi
(
ϕWTA

)
/πi

(
ϕPR

)
and πi (ϕ

a) /πi
(
ϕPR

)
converge to the respective

correlations Corr[Θ, ϕWTA(Θ)] ≈ 0.866 and Corr[Θ, ϕa(Θ)] ≈ 0.989, where

the values are computed for Θ uniformly distributed on [−1, 1]. Table

2 indicates that for the present example with 50 states plus DC, these

ratios are indeed close to the respective correlations, which suggests that

convergence of the π-ratios is fairly quick. In particular, as expected by

Theorem 2, the proportional profile Pareto dominates the winner-take-all

profile in the present case. As suggested by Proposition 3, all states prefer

18It is easy to check that under the uniform distribution assumption, (8) is equivalent
to the expression in Lemma 2 (i).
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the mixed profile ϕa to the winner-take-all profile, and the proportional

profile to ϕa.

The ratios πi(ϕ
CD)/πi(ϕ

PR) in Table 2 are consistent with the result

in Theorem 3. Small states prefer the congressional district profile to the

proportional one.

In addition, the values of πi(ϕ
CD)/πi(ϕ

WTA) in the table show that the

winner-take-all profile is Pareto dominated by the congressional district

profile, and the welfare improvement by switching to the congressional

district profile is greater for small states than for large states in terms of

the ratio.
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Table 1: Estimated payoffs in the US presidential election, based on the
apportionment in 2016, via Monte Carlo simulation with 1010 iterations.
The estimated standard errors are in the range between 3.9 and 4.1×10−6.

electoral number π(ϕWTA) π(ϕPR) π(ϕa) π(ϕCD)
votes of states
3 8 0.0113 0.0133 0.0130 0.0167
4 5 0.0151 0.0177 0.0174 0.0209
5 3 0.0189 0.0221 0.0217 0.0251
6 6 0.0226 0.0266 0.0261 0.0293
7 3 0.0264 0.0310 0.0305 0.0335
8 2 0.0302 0.0354 0.0348 0.0377
9 3 0.0340 0.0399 0.0392 0.0419
10 4 0.0378 0.0443 0.0436 0.0461
11 4 0.0416 0.0488 0.0479 0.0503
12 1 0.0454 0.0532 0.0523 0.0545
13 1 0.0492 0.0577 0.0567 0.0587
14 1 0.0531 0.0622 0.0611 0.0630
15 1 0.0569 0.0666 0.0655 0.0672
16 2 0.0607 0.0711 0.0699 0.0715
18 1 0.0684 0.0801 0.0788 0.0800
20 2 0.0762 0.0891 0.0877 0.0885
29 2 0.1120 0.1303 0.1284 0.1275
38 1 0.1494 0.1729 0.1706 0.1677
55 1 0.2356 0.2614 0.2615 0.2507
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Table 2: Ratios between payoffs.

electoral number π(ϕWTA)
π(ϕPR)

π(ϕa)
π(ϕPR)

π(ϕCD)
π(ϕPR)

π(ϕCD)
π(ϕWTA)

votes of states
3 8 0.852 0.982 1.260 1.479
4 5 0.852 0.982 1.182 1.387
5 3 0.852 0.982 1.134 1.331
6 6 0.852 0.982 1.103 1.294
7 3 0.852 0.982 1.080 1.268
8 2 0.852 0.982 1.064 1.248
9 3 0.852 0.982 1.050 1.232
10 4 0.853 0.983 1.040 1.220
11 4 0.853 0.983 1.031 1.210
12 1 0.853 0.983 1.024 1.201
13 1 0.853 0.983 1.018 1.194
14 1 0.853 0.983 1.013 1.187
15 1 0.854 0.983 1.009 1.181
16 2 0.854 0.983 1.005 1.177
18 1 0.854 0.983 0.998 1.168
20 2 0.855 0.983 0.993 1.161
29 2 0.859 0.985 0.978 1.138
38 1 0.864 0.987 0.970 1.122
55 1 0.901 1.000 0.959 1.064
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5 Concluding Remarks

This paper shows that the decentralized choice of the weight allocation rule

in representative voting constitutes a Prisoner’s Dilemma: the winner-take-

all rule is a dominant strategy for each group, whereas the Nash equilibrium

is Pareto dominated. We also show that the proportional rule Pareto dom-

inates every other symmetric profile, when the number of the groups is

sufficiently large. Each group has an incentive to put its entire weight on

the alternative supported by the majority of its members in order to reflect

their preferences in the social decision, although it fails to efficiently ag-

gregate the preferences of all members in the society, if the winner-take-all

rule is employed by all groups.

Our model may provide explanations for the phenomena that we observe

in existing collective decision making. In the United States Electoral Col-

lege, the rule used by the states varied in early elections until it converged

by 1832 to the winner-take-all rule, which remains dominantly employed by

nearly all states since then. In many parliamentary voting situations, we

often observe parties and/or factions forcing their members to align their

votes in order to maximally reflect their preferences in the social decision,

although some members may disagree with the party’s alignment. The

voting outcome obtained by the winner-take-all rule may fail to efficiently

aggregate preferences, as observed in the discrepancy between the electoral

result and the national popular vote winner in the US presidential elec-

tions in 2000 and 2016. Party discipline or factional voting may also cause

welfare loss when each group pushes their votes maximally toward their

ideological goals, failing to reflect all members’ preferences in the social

decision.

The Winner-Take-All Dilemma tells us that the society should call for

some device different from each group’s unilateral effort, in order to obtain

a more socially preferable outcome. As we see in the failure of various

attempts to modify or abolish the winner-take-all rule, such as the ballot

initiative for an amendment to the State Constitution in Colorado in 2004,

each state has no incentive to unilaterally deviate from the equilibrium.

The National Popular Vote Interstate Compact is a well-suited example of

a coordination device (Koza et al. (2013)). As it comes into effect only
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when the number of electoral votes attains the majority, each state does

not suffer from the payoff loss by unilateral (or coalitional) deviation un-

til sufficient coordination is attained. The emergence of such an attempt

is coherent with the insights obtained in this paper that the game is a

Prisoner’s Dilemma, and a coordination device is necessary for a Pareto

improvement.

Our analysis is abstract in that we do not impose assumptions on the

preferences distribution based on the observed characteristics in the real

representative voting problems. Additionally, we impose an impartiality

assumption in our asymptotic analysis. Obviously, our normative analysis

would be best complemented by a positive analysis, which we leave for

future research.

We have assumed that social decisions are binary. There are situations

where this assumption may not fit. In the US presidential elections, third-

party or independent candidates can, and do, have a non-negligible impact

on the election outcome. It is not clear how the presence of such candidates

alters the comparison of rules to allocate electoral votes. When the model

is applied to legislative voting, the assumption of binary decision might

be justified on the grounds that choices are ultimately made between the

status quo and a proposal. However, such an argument abstracts away

the process that gives rise to the particular pair of alternatives (e.g., what

becomes the status quo, how much proposal power each party has, and so

on). Cases with more than two alternatives require further investigation.
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Strömberg, D. (2008): “How the Electoral College Influences Campaigns

and Policy: The Probability of Being Florida,” American Economic Re-

view, 98, 769–807.

35



Appendix

“The Winner-Take-All Dilemma”

Kazuya Kikuchi and Yukio Koriyama

A1 Proof of Lemma 1

Preliminaries. In this proof, we denote by ϕλ the generalized proportional

profile with coefficients λ ∈ [−1, 1]n \ {0}:

ϕλi (θi) = λiθi, i = 1, · · · , n,

which should not be confused with the notation ϕa for mixed profiles.

We write π(ϕ) = (πi(ϕ))
n
i=1 for the vector of payoffs. Let Π be the set

of all possible payoff vectors in game Γ:

Π = {π(ϕ) : ϕ is a profile}.

For any X ⊂ Rn, let Pareto (X) be the Pareto frontier of X, i.e., the set

of points x ∈ X for which there exists no y ∈ X such that yi ≥ xi for all i,

with strict inequality for at least one i. Let coX denote the closed convex

hull of X.

We will refer to the following maximization problem parametrized by

vector q ∈ R+ \ {0} as Problem Mq:

Problem Mq: max
x∈coΠ

q · x.

Note that the maximization is not directly with respect to profile ϕ.

Moreover, Π may be non-closed or non-convex. Thus, there may be a

solution x ∈ coΠ that is not the payoff vector of any profile ϕ, although

we will later disprove this possibility.

We divide the proof of Lemma 1 into several claims. Claims 2.1-2.4

concern properties of the solutions to Problem Mq. Claim 2.5 describes

the relation between Problem Mq and Pareto efficiency. Finally, Claim 2.6

completes the proof.

Claim 2.1. A solution of Problem Mq is x = π(ϕλ
q
), where λqi = cqi/wi,
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i = 1, · · · , n.19

Proof of Claim 2.1. Recall that the payoff is given by

πi(ϕ) = E (Θi sgnSϕ) . (9)

Thus, for any profile ϕ,

q · π(ϕ) = E [(q ·Θ) (sgnSϕ)] ≤ E(|q ·Θ|). (10)

That is, q · x ≤ E(|q · Θ|) for any x ∈ Π. The linearity of the objective

function q·x implies that q·x ≤ E(|q·Θ|) for all x ∈ coΠ. If ϕ = ϕλ
q
, then Sϕ

has the same sign as q·Θ. Thus for x = π(ϕλ
q
), we have q·x = E(|q·Θ|).

Claim 2.2. Let v(q) := max
x∈coΠ

q · x be the maximum value of Problem Mq.

Then

v(q) = E(|q ·Θ|).

Proof of Claim 2.2. This follows from the proof of Claim 2.1, in which we

showed that q · x ≤ E(|q · Θ|) for all x ∈ coΠ and the upper bound is

attained by x = π(ϕλ
q
).

Claim 2.3. A profile ϕ satisfies q ·π(ϕ) = v(q) if and only if ϕ is equivalent

to ϕλ
q
.

Proof of Claim 2.3. Since q ̸= 0 and Θ is absolutely continuous, we have

q ·Θ ̸= 0 almost surely. Thus, (10) holds with equality if and only if

sgnSϕ = sgn (q ·Θ) almost surely.

Since cq ·Θ = Sϕλq , this holds if and only if ϕ is equivalent to ϕλ
q
.

Claim 2.4. x = π(ϕλ
q
) is the unique solution of Problem Mq.

Proof of Claim 2.4. We use the absolute continuity of Θ to show that the

value function v(q) = E(|q · Θ|) is differentiable, with gradient ∇v(q) =

19c > 0 is a constant such that cqi/wi ≤ 1 for all i.
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π(ϕλ
q
). Then the uniqueness follows by the Duality Theorem (Mas-Colell

et al. (1995, Proposition 3.F.1)).

To show that v(q) is differentiable, it suffices to show that as vector

ε ∈ Rn approaches 0,

v(q + ε)− v(q)− π(ϕλ
q

) · ε = o(∥ε∥). (11)

Using (9) and Claim 2.2, we can rewrite the left-hand side of (11) as:

v(q + ε)− v(q)− π(ϕλ
q

) · ε

= E [{(q + ε) ·Θ} × sgn {(q + ε) ·Θ}]

− E [(q ·Θ)× sgn (q ·Θ)]

− E [(ε ·Θ)× sgn (q ·Θ)]

= E[{(q + ε) ·Θ} × {sgn ((q + ε) ·Θ)− sgn (q ·Θ)}].

This expression has the following bound:

|v(q + ε)− v(q)− π(ϕλ
q

) · ε| ≤ 2E
(
|(q + ε) ·Θ| 1{sgn ((q+ε)·Θ) ̸=sgn (q·Θ)}

)
.

The expectation on the right-hand side is∫
A+

q,ε

{(q + ε) · θ}h(θ)dθ −
∫
A−

q,ε

{(q + ε) · θ}h(θ)dθ, (12)

where h is the joint density of Θ and

A+
q,ε = {θ ∈ [−1, 1]n : (q + ε) · θ ≥ 0 ≥ q · θ},

A−
q,ε = {θ ∈ [−1, 1]n : (q + ε) · θ ≤ 0 ≤ q · θ}.

We show that for ε sufficiently close to 0, (q + ε) · θ ≤
√
n∥ε∥ for

all θ ∈ A+
q,ε. To do this, we fix a sufficiently small ε so that for each

e ∈ {−1, 1}n (i.e., each vertex of the hypercube [−1, 1]n), either both q · e
and (q + ε) · e are non-negative or both are non-positive.20 Now, consider

the following linear-programming problem (Lq,ε):

20For each vertex e ∈ {−1, 1}n there is δe > 0 such that if ∥ε∥ < δe then either both
q · e and (q+ ε) · e are non-negative or both are non-positive. Thus, it suffices to choose
ε so that ∥ε∥ < min{δe : e ∈ {−1, 1}n}.
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Problem Lq,ε: max
θ∈A+

q,ε

(q + ε) · θ.

Let θ∗ be a solution of Problem Lq,ε that is a vertex of A+
q,ε. Then θ∗

belongs to at least one of the following sets:

Hq+ε = {θ : (q + ε) · θ = 0},

Hq = {θ : q · θ = 0},

{−1, 1}n.

We claim that θ∗ ∈ Hq. First, we have θ∗ /∈ Hq+ε, since otherwise

θ∗ minimizes the objective function (q + ε) · θ subject to θ ∈ A+
q,ε, while

the n-dimensional polytope A+
q,ε contains points that attain larger values

of the function. Now, suppose θ∗ ∈ {−1, 1}n \ Hq. The fact that θ∗ ∈
{−1, 1}n ∩ A+

q,ε ∩ Hc
q ∩ Hc

q+ε implies that θ∗ is a vertex of the hypercube

[−1, 1]n such that q · θ∗ < 0 < (q+ ε) · θ∗. This contradicts the fact that for
any vertex e of the hypercube, either both (q+ε)·e and q·e are non-negative
or both are non-positive. Therefore θ∗ ∈ Hq.

We have shown that q · θ∗ = 0. This implies that for any θ ∈ A+
q,ε,

(q + ε) · θ ≤ (q + ε) · θ∗ = ε · θ∗ ≤ ∥θ∗∥∥ε∥ ≤
√
n∥ε∥. It similarly follows

that −(q + ε) · θ ≤
√
n∥ε∥ for any θ ∈ A−

q,ε. Therefore, (12) is bounded by
√
n∥ε∥

∫
A+

q,ε∪A−
q,ε
h(θ)dθ. Noting that the integral

∫
A+

q,ε∪A−
q,ε
h(θ)dθ vanishes

as ε→ 0, we obtain (11).

Claim 2.5. Let x ∈ coΠ. Then, x ∈ Pareto (coΠ) if and only if there

exists q ∈ Rn
+ \ {0} such that x is the unique solution of Problem Mq, i.e.,

x = π(ϕλ
q
).

Proof Claim 2.5. For any x ∈ Rn, let D(x) = {x+a : a ∈ Rn
+ \{0}} be the

(convex) set of all points that dominate x. Note that x ∈ Pareto (coΠ) if

and only if D(x)∩coΠ = ∅. To prove Claim 2.5, suppose x ∈ Pareto (coΠ).

Then there exists a hyperplane with some normal vector q ∈ Rn
+ \ {0}

that separates coΠ and D(x).21 Clearly this hyperplane contains x, which

means that x is the solution of Problem Mq. Conversely, suppose x is

the unique solution of Problem Mq. Then the supporting hyperplane of

21Here, separation is in the weak sense that the hyperplane may contain boundary
points of the two sets.
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coΠ with normal vector q separates coΠ and D(x). The uniqueness of the

solution implies that the hyperplane intersects coΠ only at x. This implies

that D(x) ∩ coΠ = ∅.

Claim 2.6. A profile ϕ satisfies π(ϕ) ∈ Pareto (Π) if and only if there

exists λ ∈ Rn
+ \ {0} such that ϕ is equivalent to ϕλ. That is, Lemma 1

holds.

Proof of Claim 2.6. By Claim 2.5,

Pareto (coΠ) = Pareto (Π) = {π(ϕλq) : q ∈ Rn
+ \ {0}}.

By Claim 2.3, π(ϕ) belongs to this set if and only if ϕ is equivalent to ϕλ
q

for some q ∈ Rn
+ \ {0}. This condition is the same as saying that ϕ is

equivalent to ϕλ for some λ ∈ Rn
+ \ {0}.

A2 Proof of Part (i) of Lemma 2

We prove the statement for group 1. Let π1(ϕ;n|θ1) be the conditional

expected payoff for group 1 given that the group-wide margin is Θ1 = θ1,

which by (2) is:

π1(ϕ;n|θ1) = θ1(P{w1ϕ(θ1) + Sϕ−1 > 0} − P{w1ϕ(θ1) + Sϕ−1 < 0}).

Since Sϕ−1 is symmetrically distributed, the second probability can be writ-

ten as P{−w1ϕ(θ1) + Sϕ−1 > 0}. Thus, for θ1 ∈ [0, 1], the above expression

equals

π1(ϕ;n|θ1) = θ1P{−w1ϕ(θ1) < Sϕ−1 ≤ w1ϕ(θ1)}.

By symmetry, twice the integral of this expression over θ1 ∈ [0, 1] (instead

of [−1, 1]) equals the unconditional expected payoff π1(ϕ;n), which proves

part (i) of Lemma 2.

A3 Local Limit Theorem

We quote a version of the Local Limit Theorem shown in Mineka and

Silverman (1970). We will use it in the proof of part (ii) of Lemma 2.
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LLT. (Mineka and Silverman (1970, Theorem 1)) Let (Xi) be a sequence

of independent random variables with mean 0 and variances 0 < σ2
i < ∞.

Write Fi for the distribution of Xi. Write also Sn =
∑n

i=1Xi and s
2
n =∑n

i=1 σ
2
i . Suppose the sequence (Xi) satisfies the following conditions:

(α) There exists x̄ > 0 and c > 0 such that for all i,

1

σ2
i

∫
|x|<x̄

x2dFi(x) > c.

(β) Define the set

A(t, ε) = {x : |x| < x̄ and |xt−πm| > ε for all integer m with |m| < x̄}.

Then, for some bounded sequence (ai) such that infi P{|Xi − ai| <
δ} > 0 for all δ > 0, and for any t ̸= 0, there exists ε > 0 such that

1

log sn

n∑
i=1

P{Xi − ai ∈ A(t, ε)} → ∞.

(γ) (Lindeberg’s condition.) For any ε > 0,

1

s2n

n∑
i=1

∫
|x|/sn>ε

x2dFi(x) → 0.

Under conditions (α)-(γ), if s2n → ∞, we have√
2πs2nP{Sn ∈ (a, b]} → b− a.22 (13)

22The original conclusion of Theorem 1 in Mineka and Silverman (1970) is stated in
terms of the open interval (a, b). Applying the theorem to (a, b + c) and (b, b + c) and
then taking the difference gives the result for (a, b]. In addition, the original statement
allows for cases where s2n does not go to infinity, and also mentions uniform convergence.
These considerations are not necessary for our purpose, so we omit them.
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A4 Proof of Lemma 3

Preliminaries. We prove the lemma for group 1. In the proof, we use the

notation of LLT. Let

Xi := wiϕ(Θi, wi), i = 1, 2, · · · ,

and Sn :=
∑n

i=1Xi. ThenXi has mean 0 and variance σ2
i := w2

iE[ϕ(Θ, wi)2],
and so the partial sum of variances is s2n :=

∑n
i=1w

2
iE[ϕ(Θ, wi)2], where Θ

represents a random variable that has the same distribution F as Θi.

Define the event

Ωn(θ1, w1) =

{
−w1ϕ(θ1, w1) <

n∑
i=2

Xi ≤ w1ϕ(θ1, w1)

}
.

We divide the proof into several claims. Claims 5.1-5.3 show that the

sequence (Xi) defined above satisfies the conditions of the Local Limit

Theorem (LLT) in Section A4. Claim 5.4 applies LLT to complete the

proof of Lemma 3.

Claim 5.1. s2n
n
→

∫ w̄
w
w2E[ϕ(Θ, w)2]dG(w).

Proof of Claim 5.1. This holds since sequence (σ2
i ) is bounded and the sta-

tistical distribution Gn induced by (wi)
n
i=1 converges weakly to G.

Claim 5.2. Conditions (α) and (γ) in LLT hold.

Proof of Claim 5.2. This immediately follows from the fact that sequence

(Xi) is bounded and s2n → ∞. In particular, it is enough to define x̄ to be

any finite number greater than w̄.

Claim 5.3. Condition (β) in LLT holds.

Proof of Claim 5.3. Recall that ϕ has the form

wiϕ(θi, wi) = h1(wi)h2(θi) + h3(wi) sgn θi.

Let ai = h3(wi). We first check that the sequence (ai) satisfies the

requirements in condition (β). First, (ai) is bounded since h3 is bounded.
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Now, for any i and any δ > 0,

P{|Xi − ai| < δ} ≥ P{|Xi − ai| < δ and Θi > 0}

≥ P {|wiϕ(Θi, wi)− h3(wi) sgnΘi| < δ and Θi > 0}

= P{|h1(wi)h2(Θi)| < δ and Θi > 0}.

Letting h̄1 > 0 be an upper bound of |h1| and Θ a random variable dis-

tributed as Θi, the last expression has the following lower bound indepen-

dent of i:

P{|h2(Θ)| < δ/h̄1 and Θ > 0} > 0,

which is positive by the assumptions on h2 and on the distribution of Θ.

Next we check the limit condition in (β). Recall that A(t, ε) is the union

of intervals (
πm+ ε

|t|
,
π(m+ 1)− ε

|t|

)
, m = 0,±1,±2, · · · ,

restricted to (−x̄, x̄), where we can choose x̄ to be any number greater than

w̄. To prove the limit condition in (β), it therefore suffices to verify that

one such interval contains Xi−ai with probability bounded away from zero,

for all groups i in some sufficiently large subset of groups. To do this, note

that if Θi < 0, then Xi−ai = h1(wi)h2(Θi)−2h3(wi). The assumptions on

h2 and on the distribution of Θ imply that for any η > 0, there exists a set

Oη ⊂ [−1, 0] with P{Θ ∈ Oη} > 0 such that if Θ ∈ Oη then |h2(Θ)| ≤ η.

Therefore,

Θi ∈ Oη ⇒ Xi − ai ∈ Twi,η,

where

Twi,η := [−2h3(wi)− ηh1(wi), −2h3(wi) + ηh1(wi)].

Since h1 is bounded, we can make Twi,η an arbitrarily small interval around

−2h3(wi) by letting η > 0 sufficiently small. Moreover, since h3 is contin-

uous and not a constant, we can find a sufficiently small interval [v, v̄] ⊂
[w, w̄] with v < v̄ such that if wi ∈ [v, v̄], then −2h3(wi) is between, and

bounded away from, πm|t| and π(m+1)
|t| for some integerm. Fix such an interval

[v, v̄] and define

I := {i : wi ∈ [v, v̄]}.
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Then, for sufficiently small η > 0 and ε > 0, we have Twi,η ⊂ A(t, ε) for all

i ∈ I. Fixing such η > 0 and ε > 0, it follows that

Θi ∈ Oη and i ∈ I ⇒ Xi − ai ∈ A(t, ε).

This implies that

P{Xi − ai ∈ A(t, ε)} ≥ P{Θ ∈ Oη} =: p > 0 for all i ∈ I,

and hence

1

log sn

n∑
i=1

P{Xi − ai ∈ A(t, ε)} ≥ n

log sn
· ♯{i ∈ I : i ≤ n}

n
· p.

As n→ ∞, the first factor on the right-hand side tends to ∞ since sn has

an asymptotic order of
√
n. The second factor tends to G(v̄) − G(v) > 0,

which is positive since G has full support on [w, w̄]. Therefore the left-hand

side tends to ∞.

Claim 5.4. As n→ ∞, uniformly in w1 ∈ [w, w̄],

2

∫ 1

0

θ1
√
2πnP{Ωn(θ1, w1)}dF (θ1) →

2w1E[Θϕ(Θ, w1)]√∫ w̄
w
w2E[ϕ(Θ, w)2]dG(w)

. (14)

By part (i) of Lemma 2,23 the left-hand side of (14) is
√
2πnπi(ϕ;n), and

therefore Lemma 3 holds.

Proof of Claim 5.4. By Claims 5.2 and 5.3, we may apply LLT to obtain√
2πs2nP{Ωn(θ1, w1)} → 2w1ϕ(θ1, w1).

By Claim 5.1, this means that

√
2πnθ1P{Ωn(θ1, w1)} → 2w1θ1ϕ(θ1, w1)√∫ w̄

w
w2E[ϕ(Θ, w)2]dG(w)

. (15)

Letting θ1 = 1 maximizes the left-hand side of (15) with the maximum

23It is easy to check that part (i) of Lemma 2 holds for rules ϕ(·, wi) that depend on
weight wi as well.
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value
√
2πnP{Ωn(1, w1)}. This maximum value itself converges to a finite

limit. Hence the expression
√
2πnθ1P{Ωn(θ1, w1)} is uniformly bounded

for all n and θ1 ∈ [0, 1]. By the Bounded Convergence Theorem,

2

∫ 1

0

θ1
√
2πnP{Ωn(θ1, w1)}dF (θ1) → 2 ·

2w1

∫ 1

0
θ1ϕ(θ1, w1)dF (θ1)√∫ w̄

w
w2E[ϕ(Θ, w)2]dG(w)

.

Since F is symmetric and ϕ is odd, this limit is exactly the one in (14).

To check the uniform convergence, note that for each n, the inte-

gral on the left-hand side of (14) is non-decreasing in w1, since event

Ωn(θ1, w1) weakly expands as w1 increases.24 We have shown that this

integral converges pointwise to a limit that is proportional to the factor

w1E[Θϕ(Θ, w1)], which is continuous in w1.
25 Therefore, the convergence

in (14) is uniform in w1 ∈ [w, w̄].26

A5 Proof of Part (ii) of Lemma 2

This follows immediately from Lemma 3, by noting that if ϕ is a symmetric

profile, each group’s rule can be written as ϕ(θj, wj) = ϕ(θj).

A6 Proof of Proposition 2

By part (ii) of Lemma 2, we must show that Corr [Θ, ϕa(Θ)] is decreas-

ing in a ∈ [0, 1]. By simple calculation,

E(Θ2) · Corr [Θ, ϕa(Θ)]2 =
aE(|Θ|) + (1− a)E(Θ2)

a2 + 2a(1− a)E(|Θ|) + (1− a)2E(Θ2)
.

24Let θ1 ∈ [0, 1]. If ϕ is a symmetric profile, i.e. if ϕ(θ1, w1) = ϕ(θ1), then w1ϕ(θ1) is
non-decreasing in w1. If ϕ = ϕCD, then w1ϕ

CD(θ1, w1) = c sgn(θ1) + (w1 − c)θ1, which
is non-decreasing in w1 again. Thus event Ωn(θ1, w1) weakly expands as w1 increases.

25If ϕ is a symmetric profile, this factor is linear in wi. If ϕ = ϕCD, the factor equals
cE(|Θ|) + (wi − c)E(Θ2), which is affine in wi.

26It is known that if (fn) is a sequence of non-decreasing functions on a fixed finite
interval and fn converges pointwise to a continuous function, then the convergence is
uniform. See Buchanan and Hildebrandt (1908).

10



The derivative of this expression with respect to a has the same sign as{
d
da
(aE(|Θ|) + (1− a)E(Θ2))2

}(
a2 + 2a(1− a)E(|Θ|) + (1− a)2E(Θ2)

)
−

(
aE(|Θ|) + (1− a)E(Θ2)

)2{
d
da
(a2 + 2a(1− a)E(|Θ|) + (1− a)2E(Θ2))

}
= a(aE(|Θ|) + (1− a)E(Θ2))(E(|Θ|)2 − E(Θ2)).

This is negative for any a ∈ (0, 1], since E(|Θ|)2 ≤ E(Θ2) in general, and the

full-support assumption implies that this holds with strict inequality.

A7 Proof of Theorem 4

Clearly, Lorenz dominance is invariant to linear transformations of pay-

offs. Thus, it suffices to prove that for large enough n, the payoff pro-

file
√
2πnπ(ϕCD;n) Lorenz dominates the payoff profile

√
2πnπ(ϕ;n). By

equations (6) and (7) in the proof of Theorem 3, as n→ ∞ these amounts

converge to Bwi + C and Aϕwi, respectively. A result by Moyes (1994,

Proposition 2.3) implies that if f and g are continuous, nondecreasing,

and positive-valued functions such that f(wi)/g(wi) is decreasing in wi,

then the distribution of f(wi) Lorenz dominates that of g(wi). The ratio

(Bwi+C)/(A
ϕwi) is decreasing in wi, and so the claimed Lorenz dominance

holds in the limit as n→ ∞. Recalling that the convergences are uniform,

the dominance holds for sufficiently large n.
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