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Abstract

This paper considers collective decision-making when individu-
als are partitioned into groups (e.g., states or parties) endowed with
voting weights. We study a game in which each group chooses an
internal rule that specifies the allocation of its weight to the alterna-
tives as a function of its members’ preferences. We show that under
quite general conditions, the game is a Prisoner’s Dilemma: while
the winner-take-all rule is a dominant strategy, the equilibrium is
Pareto dominated. We also show asymptotic Pareto dominance of
the proportional rule. Our numerical computation for the US Elec-

toral College verifies the sensibility of the asymptotic results.
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1 Introduction

A fundamental question about representative democracy is how social deci-
sions should reflect the opinions of individuals belonging to distinct groups,
such as states or parties. Typically, each group has a voting weight, in the
form of a number of representatives or a weighted vote assigned to a unique
representative. The groups allocate the weights to decision alternatives,
and the one that receives the most weight becomes the social decision. In
such cases, the quality of social decision-making depends not only on the
apportionment of weights among the groups, but also on the rules that al-
locate the groups’ weights to alternatives, based on the preferences of their
individual members. The present paper is concerned with how the weight
allocation rules affect individuals’ welfare.

Existing institutions use different weight allocation rules. On the one
hand, the winner-take-all rule devotes all the weight of a group to the
alternative preferred by the majority of its members. Most states in the
Untied States use this rule to allocate presidential electoral votes. A coun-
cil of national ministers, each with a weighted vote (e.g., the Council of
the European Union), is another example, provided the ministers can be
thought of as representing their countries’ majority interests. Party disci-
pline frequently observed in legislative voting may also be understood as
the winner-take-all rule used by parties.

On the other hand, the proportional rule allocates a group’s weight in
proportion to the number of members who prefer the respective alterna-
tives. In many parliamentary institutions at the national or international
level, each constituency (e.g., state or prefecture) elects a set of repre-
sentatives whose composition more or less proportionally reflects its resi-
dents’ preferences. Alternatively, when the representatives are viewed as
standing for parties rather than states or prefectures, the proportional rule
corresponds to a party’s rule that allows its representatives to vote for or
against proposals based on their own preferences, provided the composi-

tion of the party’s representatives proportionally reflects the opinions of all



party members.

The weight allocation rules are often exogenously given to all groups,
but there are also cases where each group chooses its own rule. For instance,
in national parliaments, how the representatives are elected from the re-
spective constituencies is stipulated by national law. By contrast, parties
often have control over how their representatives vote, by punishing those
who violate the party lines. As another example, the US Constitution stip-
ulates that it is up to each state to decide the way in which the presidential
electoral votes are allocated (Article II, Section 1, Clause 2).

If groups are allowed to choose their rules, it is possible that each group
has an incentive to allocate the weight so as to increase the influence of
its members’ opinions on social decisions, at the cost of the other groups’
influence. It is not clear whether such an incentive at the group level is
compatible with desirable properties of the overall preference aggregation,
such as efficiency. To address this issue, we need to model the choice of
rules as a non-cooperative game.

In this paper, we consider a model of social decision-making where
individuals are partitioned into groups endowed with voting weights. The
society makes a binary decision through two stages: first, all individuals
vote; then each group allocates its weight to the alternatives, based on the
number of votes they received from the group’s individual members. The
winner is the alternative with the most weight. A rule for a group is a
function that maps each possible vote result in the group to an allocation
of its weight to the alternatives. Examples are the winner-take-all and
proportional rules. A profile is a specification of rules for all groups. We
study the game in which the groups independently choose their rules, so as
to maximize their members’ expected welfare.

The main result of this paper is that the game is a n-player Prisoner’s
Dilemma (Theorem M). On the one hand, the winner-take-all rule is a
dominant strategy, i.e., it is an optimal strategy for each group regardless
of the rules chosen by the other groups. On the other hand, if each group
has less than a half of the total weight, then the winner-take-all profile is
Pareto dominated, i.e., some other profile makes every group better off. In
brief, no group has an incentive to deviate from the winner-take-all rule, but

every group will be better off if all groups jointly move to another profile.



The dilemma structure exists for any number of groups (> 2) and with little
restriction on the joint distribution of preferences. Individuals’ preferences
may be biased, and also correlated within and across groups, or not, which
would be true when the groups are parties with different but overlapping
political goals, or states that tend to support specific alternatives, e.g.,
blue, red or swing states in the US elections.

The observation that the winner-take-all rule is a dominant strategy
is consistent with the fact that it has been dominantly employed by the
states in the US Electoral College since 1830s in order to allocate presi-
dential electoral votes,” and also with the widely observed party discipline
in assemblies. Despite the various problems or limitations that have been
pointed out concerning the winner-take-all rule,? it is still used prevalently.

Our conventional knowledge that direct majority voting by all individ-
uals maximizes the wutilitarian welfare of the society is not sufficient to see
whether every group is better off under the proportional profile than the
winner-take-all profile. We provide a counterexample later (Example M):
a small group may be strictly better off under the winner-take-all profile
than the proportional profile. Indeed, this is an oft-used argument by the
small states in the US, on which their support for the winner-take-all rule
is based. The welfare criterion used in Theorem [ (ii) is Pareto dominance,
which is obviously stronger than the utilitarian welfare evaluation: there
exists a profile under which every group is better off than the winner-take-
all profile. Example 0 shows that it is not necessarily the proportional

profile. Then, what profile Pareto dominates the winner-take-all profile?

1One of the recent attempts of reform by a state took place in 2004, when a ballot
initiative for an amendment to the state constitution was raised in Colorado. The sug-
gested procedure is the proportional rule, in which the state electoral votes are allocated
proportionally to the state popular votes. The amendment did not pass, garnering only
34.1% approval.

2Some of the major arguments against the winner-take-all rule are the following.
First, the winner of the election may be inconsistent with that of the popular votes
(Mayl (M924R), Feix et all (2004)). Such a discrepancy has happened five times in the
history of the US presidential elections, including recently in 2000 and 2016. Second,
it may cause reduced dimensionality: (i) the parties have an incentive to concentrate
campaign resources only in the battleground states, and (ii) voters’ incentive to turn
out or to invest in information may be small and/or uneven across states, since the
probability of each voter to be pivotal is so small under the winner-take-all rule, and
even smaller in the non-swing states. Although campaign resource allocation and voter
turnout are important issues, they are beyond the scope of this paper.
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A full characterization of the Pareto set is provided in Lemma .

To further study welfare properties, we turn to an asymptotic and nor-
mative analysis of the model. We consider situations where the number
of groups is sufficiently large, and the preferences are independent across
groups and distributed symmetrically with respect to the alternatives. In
this case, we show that the proportional profile Pareto dominates every
other symmetric profile (i.e., one in which all groups use the same rule),
including the winner-take-all one. The assumptions on the preference dis-
tribution abstract from the fact that in reality, some groups tend to pre-
fer specific alternatives. Such an abstraction would be reasonable on the
grounds that normative judgment about rules should not favor particular
groups because of their characteristic preference biases. To see how many
groups are typically sufficient for the asymptotic result, we provide numer-
ical computations in a model based on the US Electoral College, using the
current apportionment of electoral votes. The numerical comparisons indi-
cate that the proportional profile does Pareto dominate the winner-take-all
profile in the model with fifty states and a federal district.

While the above result suggests that the proportional profile asymp-
totically performs well in terms of efficiency, it is silent about the equality
of individuals’ welfare. In fact, our model also provides some insight into
how rules affect the distribution of welfare. We examine an asymmetric
profile called the congressional district profile. This profile is inspired by
the Congressional District Method currently used by Maine and Nebraska,
in which two electoral votes are allocated by the winner-take-all rule and
the remaining ones are awarded to the winner of each district-wide popular
vote.! We show that the congressional district profile achieves a more equal
distribution of welfare than any symmetric profile by making individuals
in smaller groups better off.

A technical contribution of this paper is to develop an asymptotic

method for analyzing players’ expected welfare in weighted voting games.

3The idea of allocating a part of the votes by the winner-take-all rule and allowing
the rest to be awarded to potentially distinct candidates can be seen as a compromise
between the winner-take-all and the proportional rules. Symbolically, the two votes
allocated by the winner-take-all rule is the same number as the Senators in each state,
while the rest is equal to the number of the House representatives. The idea behind
such a mixture is in line with the logic supporting bicameralism, which is supposed to
provide checks and balances between the states and the federal governance.



One of the major challenges in analyzing such games is their discreteness.
By the nature of combinatorial problems, obtaining an analytical result
often requires a large number of classifications by cases, which may include
prohibitively tedious and complex tasks in order to obtain general insights.
We overcome this difficulty by considering asymptotic properties of games
in which there are a sufficiently large number of groups. This technique
allows us to obtain an explicit formula that captures the asymptotic be-
havior of the probability of success for each individual, which holds for a
wide class of distributions of weights among groups (the correlation lemma:

Lemma ).

1.1 Literature Review

The incentives for groups to use the winner-take-all rule have been studied
by several papers. Hummel (2011) and Beishart and Bovens (2008) analyze
models of the US presidential elections. Gelmanl (2003) and Eguid (20114, H)
give theoretical explanations as to why voters in an assembly form parties
or voting blocs to coordinate their votes. Their findings are coherent with
our observation that the winner-take-all rule is a dominant strategy.

Beisbarf_and Bovend (2008) and Gelmanl (2003) also contain compar-
isons of the winner-take-all and proportional profiles. Under the current
apportionment of electoral votes in the US, Beisbarf-and Bovens (2008) nu-
merically compares these profiles, in terms of inequality indices on citizens’
voting power and the mean majority deficit, on the basis of a priori and a
posteriori voting power measures. Gelman (2003) compares the case with
coalitions of equal sizes in which voters coordinate their votes to the case
without such coordination. Our analysis is based on Pareto dominance be-
tween profiles, and provides results which hold under general distribution
of groups’ weights or sizes. In that sense, Beisbart and Bovens’s positive
analysis is complementary to our normative analysis of properties of the
proportional profile.

De Mouzon_efall (2019) provides a welfare analysis of popular vote
interstate compacts, and shows that, for the regional compact, welfare of
the member states is single-peaked as a function of the number of the par-

ticipating states, while it is monotonically decreasing for the non-member



states. The second effect dominates in terms of the social welfare, unless a
large majority (approximately more than 2/m ~ 64%) of the states join the
compact, implying that a small- or middle-sized regional compact is wel-
fare detrimental. For the national compact, the total welfare is increasing,
as it turns out that even the non-members would mostly benefit from the
compact, implying that the social optimum is attained when a majority
joins the compact, i.e. the winner is determined by the national popular
vote. Their findings are coherent with ours: if the winner-take-all rule is
applied only to a subset of the groups, then the member states enjoy the
benefit at the expense of the welfare loss of the non-member states, and
the total welfare decreases. The social optimum is attained when the entire
nation uses the popular vote.

The winner-take-all rule has been a regular focus of the literature. The
history, objectives, problems, and reforms of the US Electoral College are
summarized, for example, in Edwards (2004) and Bugh (2010). One of the
most scrutinized problems of the Electoral College is its reduced dimen-
sionality. The incentive of the candidates to concentrate their campaign
resources in the swing and decisive states is modeled in Stromberg (2008),
which is coherent with the findings of the seminal paper in probabilistic
voting by [Lindbeck and "Weibull (I987). Stromberg (2008) also finds that
uneven resource allocation and unfavorable treatment of minority states
would be mitigated by implementing a national popular vote, which is
coherent with the classical findings by Brams and David (1974). Voters’
incentive to turn out is investigated by Karfal (2015), which finds that the
winner-take-all rule discourages turnout when the voting cost is heteroge-
neous.

Constitutional design of weighted voting is studied extensively in the
literature. Seminal contributions are found in the context of power mea-
surement: [Penrosd (T946), Shapley and Shubik (1954), Banzhaf (T968)
and Rad (1946). Excellent summaries of theory and applications of power
measurement are given by, above all, [Felsenfhal’and Machover (I'998) and
Larnelle_and Valenciand (2008). The tools and insights obtained in the
power measurement literature are often used in the apportionment prob-
lem: e.g., Barbera and Jackson (2006), Koriyama et all (2013), and Kurz

ef all (2017).



2 The Model

Let us consider a society which consists of n disjoint groups: i € {1,2,--- ,n}.
The society makes a collective decision between two alternatives, denoted
—1 and +1. For instance, the alternatives may represent presidential can-
didates in a two-party system, or the status quo and a proposal in a legis-
lature. Each group ¢ is endowed with a weight w; > 0.

Let ©; € [—1,1] be the random variable which represents the group-
wide margin, i.e., the fraction of members of i preferring alternative +1
minus the fraction of those preferring —1.2 For instance, ©; = —0.2 means
that 60% of members of group i prefer alternative —1 and the remaining
40% prefer +1. Since the model is concerned with the weight allocation
by each group which aggregates the preferences of its members, it is most
appropriate to suppose that the groups’ aggregation rules are fixed prior
to the realization of the preferences, and hence of the group-wide margins.
The following is the assumption on the joint distribution of the group-wide

margins.

Assumption 1. The joint distribution of group-wide margins (0;), is

absolutely continuous and has full support [—1, 1]™.

Assumption 0 permits a wide variety of joint distributions of individu-
als’” preferences, in which intra- and inter-group correlations and biases are
possible. First, the assumption imposes no restriction on preference cor-
relations within each group. Second, individuals’ preferences may also be
correlated across groups, since the group-wide margins (©;)"_; can be cor-
related. This allows us to capture situations where, for instance, residents
of different states or members of different parties have common interest on
some issues. Third, preferences may be biased toward a particular alterna-
tive, since ©; can be asymmetrically distributed. For instance, blue (resp.
red) states in the US might be described as groups whose group-wide mar-
gins have a distribution biased to the left (resp. right). In contrast, swing
states might be described as groups whose distributions are concentrated

around zero.

4Throughout the paper, we use capital ©; for representation of a random variable,
and small 8; for the realization.



The society decides between the alternatives through two stages: (i)
each individual votes for his preferred alternative; (ii) each group allocates
its weight to the two alternatives, based on the group-wide margin. The
winner is the alternative which receives a majority of the weight.

At the second stage, each group’s allocation of weight is determined as

a function of the group-wide margin.

Definition 1. A rule for group i is defined as a Borel-measurable® function:
¢ [-1,1] = [-1,1].

The value ¢;(6;) is the fraction of the weight w; allocated to alternative
+1 minus that allocated to —1, given that the group-wide margin is 6;.
That is, the rule allocates w;¢;(6;) more weight to alternative +1 than
alternative —1. For example, if w; = 50 and ¢;(0;) = —0.2, it means that
the rule allocates 20 (resp. 30) units of weight to the alternative +1 (resp.
—1).

Let

® = {¢;|Borel-measurable}

be the set of all admissible rules.

Examples of rules. Among all admissible rules, the following ones deserve

particular attention:
(i) Winner-take-all rule: ¢}¥™(6;) = sgn 0;.
(ii) Proportional rule: ¢Y®(6;) = 0;.
(iil) Mized rules: ¢¢(0;) = apy ™ (0;) + (1 — a)pPR(6;), 0 < a < 1.

The winner-take-all rule devotes all the weight of a group to the winning
alternative in the group. The proportional rule allocates the weight in
proportion to the vote shares of the respective alternatives in the group.
The mixed rule ¢* allocates the fixed ratio a of the weight by the winner-

take-all rule and the remaining 1 — a part by the proportional rule.

Borel-measurability is needed to ensure that each ¢;(0;) is a well-defined random
variable.



A profile ¢ = (¢;)!_; consists of rules specified for all groups. By sym-
metric profile, we mean that the same rule is used by all groups. For
instance, the above three rules naturally define the following symmetric
profiles: the winner-take-all profile ¢WVTA = (pVTA) | the proportional
profile 'R = (PR, and mized profiles ¢* = (¢, a € [0, 1].

The winning alternative is the one which obtains more weight from the
groups. In the case of a tie, we assume that both alternatives are chosen

with equal probability. To define it formally, let
Sp = Z w;$;(0;)
i=1

be the difference between the total weight allocated for alternatives +1 and

—1. The social decision Dy is

sgn S, if Sy #0
Dy = g oy o 7 (1)
+1 with equal probabilities if S, = 0.

The payoff of each individual is 1 or —1, depending on whether she
prefers the social decision or not. We define group i’s (expected) payoff as
the average expected payoff of its members. Since the average payoft of
group-¢ members is ©; or —0; depending on whether the social decision is

+1 or —1, the group’s expected payoftf is
Ti(p) = E<@iD¢)-

Since each group chooses a rule as a function of the group-wide margin,
maximizing 7;(¢) with respect to its own rule ¢; is equivalent to maximiz-
ing, for almost every 6; € [—1, 1], the conditional expected payoff given the

group-wide margin ©; = 6;:

i(¢]6:)

= 0,E(Dy|0; = 6;)

=0, P{Dy =+1|0;, =0,} —P{D, = —1|0; = 6,})

= 0;(P{w;ips(0;) + Sy_, > 0|0; = 0;} — P{w;p;(0;) + Sy_, < 0(©; = 6;}),
(2)

10



where S, , = Z#i w;;(6;).°

Remark 1. Our definition of group payoffs has the following interpretation
based on the members’ preferences. Let M; be the set of individuals in
group i, and X;,, € {—1, 1} be the preferred alternative of member m € M;
in group 7. Let us here redefine ©; as a latent variable that parametrizes the
distribution of the random preferences in group 7. Specifically, suppose X,
are independently and identically distributed conditional on the realization
(6;);_, with the following probabilities for all i = 1,--- ,n and m € M;:

P{Xim = +1101 =0, ,
P{sz = _1|@1 = 917"' )

Then, as the group size becomes large (|M;| — o0), the Law of Large Num-

bers implies that the group-wide margin ML Y ome v, Xim indeed converges
to ©; almost surely, which is consistent with our original definition of ©;

as the group-wide margin. Moreover,

P{Xim = Dy} = E[P{Xim = Dy|O}]
= E[P{X;n=1,Ds=1|0} +P{X;, = —1,D, = —1|0}]

= E P{D¢:1|@}lz@i+P{D¢:—1|@}1_2®i
- %(1+E[P{D¢:1’@}@1+P{D¢:_1’@}(_@i)])
= SO+E[OD,).

Therefore, 7; (¢) = E (0;Dy) is an affine transformation of the probability
that the preferred alternative of a member m in group ¢ coincides with
the social decision (X, = Dy), which is called success in the literature of
voting power measurement ([Laruelle and Valenciand (2008)). The objective
of the group, formulated as the maximization of 7;, is thus equivalent to
maximization of the probability of success.

Under the winner-take-all profile ¢"VT4

, ; is closely related to the clas-
sical voting power indices studied in the literature. If (6;);_, are indepen-

dently, identically and symmetrically distributed (thus each group’s pre-

6The last expression in () uses the assumption that ties are broken by tossing a fair
coin.
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ferred alternative is independently and equally distributed over {—1,+1},
called Impartial Culture), then m; corresponds to the Banzhaf-Penrose in-
dex (Banzhaf (I965), Penrosd (1946)) and P { X, = Dy} to the Rae index
(Raé ([946)), up to a multiplication by the constant E[|©,]]. If (©;)",
are perfectly correlated and symmetrically distributed (called Impartial
Anonymous Culture. See, for example, Le Brefon ef all (P016)), then m;
corresponds to the Shapley-Shubik index (Shapley and Shubik (1954)).

Remark 2. Our specification of group’s payoff may sound at first as if
it excludes the case where individuals have different preference intensities.
However, even for the cases in which each group is allowed to use not only
the ordinal, but also the cardinal information of its members’ preferences
(as in Barbera and Jacksonl (2006), Beisbarf ef all (2005), Beisbarf_and
Bovens (P00R), Beisharf _and Harfmann (2010)), our assumption comes
along with no loss of generality: it suffices to redefine ©; as the average

payoff difference between alternatives +1 and —1 over group 7’s members.

3 The Dilemma

We consider a non-cooperative game I' in which each group chooses a rule
to allocate its weight to the alternatives. Each group’s objective is to
maximize the average expected payoff of its members. Formally, the game I’
is defined as follows. The set of players is the set of groups: {1,--- ,n}. The
strategy space for group ¢ is the set of all rules: {all measurable functions
¢; + [-1,1] — [=1,1]}. The payoff of group i is its per capita expected
payoff: m;(¢).

Two rules ¢; and 1); are called equivalent if ¢;(©;) = 1;(0;) almost
surely. Two profiles ¢ and 9 are called equivalent if Dy = D, almost
surely.

A rule (or strategy) ¢; for group i dominates another rule ¥; if 7;(p;, ¢p—;) >
i (i, ¢—;) for any ¢_;, with strict inequality for at least one ¢_;. A rule ¢;
is a dominant strategy for group ¢ if it dominates every rule not equivalent
to ¢;. A profile ¢ Pareto dominates another profile ¢ if m;(¢) > m; (1) for
all 7, with strict inequality for at least one 7. If ¢ is not Pareto dominated

by any profile, it is called Pareto efficient.
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To show the main theorem, we need the following assumption on the

allocation of weights among the groups.

Assumption 2. Each group has less than half the total weight: w; <

LS wyforalli=1,-- ,n.
Theorem 1. Under Assumptions @ and B, game 1" is a Prisoner’s Dilemma:

(i) the winner-take-all rule ¢\' ™ is a dominant strategy for each group
i;

dWVTA s Pareto dominated.

(i1) the winner-take-all profile

We use the following lemma to prove the theorem. A generalized pro-

portional profile refers to a profile in which ¢;(0;) = \i0;, i = 1,--- ,n, for
some vector A € [0, 1]™ \ {0}.

Lemma 1. (Characterization of the Pareto set) Under Assumption O, a
profile ¢ is Pareto efficient if and only if it is equivalent to some generalized

proportional profile.

Proof of Theorem 0. Part (i). By (B), if §; > 0 (resp. 6; < 0), then the con-
ditional expected payoff 7;(¢|6;) is non-decreasing (resp. non-increasing)
in ¢;(0;) € [-1,1]. We thus have m;(¢)" ™ ¢_;10;) > (i, d_|0;) for any
(¢4, d_;) and 6;. Therefore

T A pi) > (i, D)

for any (¢;,¢_;). Now we show that for any subprofile ¢_; in which each
¢; - [-1,1] = [=1,1] (j # 1) is onto (e.g., ¢}, the strict inequality

mi( B 0i) > i, D) (4)

holds for any rule ¢; that is not equivalent to ¢" ™. To see this, note that
for such ¢_;, the full-support assumption on (©;)%_; implies that the condi-
tional distribution of Sy, given ©; = 0; has support [— ., w;, >, w;].
Since w; < 2, w; by Assumption B, formula (2) implies that if 6; > 0
(resp. 6; < 0), then m;(¢]0;) is strictly increasing (resp. decreasing) in
$i(0;) € [=1,1]. Thus 7 (¢}¥™A, ¢_4]0;) > 7;(¢s, d_i|0;) holds at any 6; for

13



which ¢VTA(0;) # ¢4(0;). Since ©; has full support, this implies that (H)
holds for any ¢; that is not equivalent to ¢}VTA.

Part (ii). By the characterization of the Pareto set (Lemma ), it
suffices to check that VT is not equivalent to any generalized proportional

»WTA is equivalent to a generalized

profile. Suppose, on the contrary, that
proportional profile with coefficients A € [0,1]" \ {0}. Then, since (6,)",

has full support,

D gwra(0) = sgn Zwi)\iﬁi at almost every 0 € [—1,1]". (5)
i=1

Since no group dictates the social decision, the coefficients \; are positive
for at least two groups. Without loss of generality, assume \; > 0 and
A2 > 0. Now, fix 0; for ¢ # 1,2 so that they are sufficiently small in
absolute value. Then, according to (H), for (almost any) sufficiently small
€ >0, Dgwra(0) = +1if 6, =1 — ¢ and 0y = —¢, while Dywra(0) = —1 if
¢, =€ and 6, = —1 4 ¢. This contradicts the fact that Dgwra(¢) depends
only on the signs of (6;)%;. O

Together with Lemma [, Theorem 0 shows that while the dominant
strategy for each group is the winner-take-all rule, the dominant-strategy
equilibrium is Pareto dominated by some generalized proportional profile.
This typical Prisoner’s Dilemma situation suggests to us that a Pareto effi-
cient outcome is not expected to be achieved under decentralized decision
making, and a coordination device is necessary in order to attain a Pareto
improvement.

If Assumption B fails and some group has more than half the total

weight, the winner-take-all profile is Pareto efficient.

Proposition 1. Under Assumption [, if there exists a group i* such that

Wix > %Z;’L:I w;, then the winner-take-all profile dWVTA s Pareto efficient.

Proof. Under ¢V the social decision always coincides with group 7*’s ma-

»WTA is equivalent to the generalized proportional

jority preference. Thus
profile with coefficients A\;» > 0 and A\; = 0 for all ¢ # ¢*. The proposition

follows from the characterization of the Pareto set (Lemma ). O
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Intuitively, the winner-take-all profile gives dictatorial power to the
group with more than half the total weight, while any non-equivalent pro-
file creates a positive probability of social decision against that group’s will.
Hence Pareto improvement is impossible. One might further speculate that
Pareto efficiency of the winner-take-all profile will still hold as long as there
are groups with sufficiently large weights, even if no group’s weight exceeds
half the total weight. Theorem [ disproves this possibility.

In contrast with the winner-take-all profile, the proportional profile is

Pareto efficient, regardless of the allocation of weights across the groups.

Proposition 2. Under Assumption(, the proportional profile ¢*® is Pareto
efficient.

Proof. This follows from the characterization of the Pareto set (Lemma
m). O

However, the proportional profile does not necessarily Pareto dominate
the winner-take-all profile, even when Assumption B holds. This is illus-

trated by the following example.

Example 1. Let us consider three groups with weights (wy,ws,ws) =
(49, 49,2). The group-wide margins ©; are independent and uniformly dis-
tributed on [—1,1]. On the one hand, under the winner-take-all profile
dWTA all groups are perfectly symmetric, and a simple calculation shows
that the expected payoff is m;(¢"VT™) = 0.25 for all i = 1,2,3. On the
other hand, under the proportional profile ¢*®, group 3 is extremely un-
likely to affect the social decision, and 73(¢P®) is close to 0 (approximately
0.014). Group 3 is better off under ¢"VT4 than ¢'®, and so ¢™® does not
Pareto dominate oW, By what profile is ¢V Pareto dominated? The
characterization lemma provides an answer. Consider the generalized pro-
portional profile gzg with coefficients \; = 1/w;. Then, the distribution of
the weight assigned to the alternative is exactly the same across groups,

~

and thus m;(¢) is the same for all i. By Pareto efficiency of the generalized

~

proportional profile, m;(¢) > 0.25 for all i. O

Remark 3. An interesting extension of the model would be to assume

that each group chooses a rule through voting by its members. Does this
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extension lead to an equilibrium different from the winner-take-all profile?
The answer is relatively clear in the case of group-wide majority voting
between the winner-take-all rule and some other rule (e.g., the proportional
rule), as when a state in the US holds a referendum to switch from the
current winner-take-all rule to some proposed rule (see, e.g., Beisbart_and
Bovens (2008)). In that case, a group’s choice of a rule depends on the prior
joint distribution of its members’ preferences, which we have not specified
so far. If the group is ex ante sufficiently homogeneous,? the choice by
majority voting will coincide with the choice that maximizes the per capita
expected payoff, i.e., the winner-take-all rule. However, if the group is ex
ante sufficiently heterogeneous, group-wide majority voting may select the
other rule. The following example illustrates this point.

Suppose there are two groups with weights w; = 4,w, = 3.F Each
group consists of two types of members, L and R. Type-L members are
more likely to prefer alternative —1 than 41, and type-R members are
more likely to prefer +1 than —1. The fraction of type-L members is 51%
in group 1, and 80% in group 2. In that sense, ex ante heterogeneity is
high in group 1 and low in group 2.

To define the types more precisely, suppose there are four random vari-
ables (011, O1g, O2r, O2g) in which O is the latent variable for the prefer-
ences of type-t members in group 4, in the same sense as in Remark 0.7 The
latent variable ©;;, is uniformly distributed on [—1, 0], and ©;g is uniformly
distributed on [0, 1]. In particular, each type-L (resp. type-R) member is
always more likely to prefer —1 than +1 (resp. +1 than —1). We also

"Ex ante homogeneity of a group does not necessarily mean that most of its members
tend to support the same alternative. What it means is that the members’ preferences
follow similar probability laws. For instance, conditionally independent and identically
distributed preferences in Remark 0 provide an example of perfect ex ante homogeneity.

8Here we use the case with n = 2 for ease of exposition. A similar example can be
constructed with a larger number of groups. We also note that while Assumption B
excludes the case with n = 2, strategic dominance of the winner-take-all rule (i.e., part
(i) of Theorem M) does not depend on that assumption.

9That is, conditional on the realization (01r,601r,021,02r), all individual members’
preferences are independent and identically distributed, where the alternative X, pre-
ferred by a type-t member m of group ¢ has the following conditional distribution:

P{Xim = +1|©1 = b1, - ,O2r = bar} = (1 +04) /2,
P{Xim = =101 =011, -+ ,O2r = Oor} = (1 — 0) /2.
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assume that the four latent variables are independent. Given any profile

¢ = (¢1, ¢2), the (expected) payoff for each type-t member of group i is
Ti(¢) = E(©iDy)."

In other words, the probability of success for this member (i.e., the proba-
bility that the social decision will be his preferred alternative) is 1+th(¢)
Let us assume that the only rules available for each group are the
winner-take-all rule ¢ and the proportional rule ¢'®. Each group
chooses a rule by majority voting, where each member votes for the rule
that gives him a higher payoff. Since the type-L members are the majority
in both groups, group i’s majority preference over profiles is represented by
the payoff function ;1 (¢). Thus the situation can be formally represented
as the following 2 x 2 game played by groups 1 and 2, where group ¢’s payoft

is the payoff m;1(¢) for a type-L member™ (not the per capita expected
payoff m;(¢)):

| oy 5

AVVTA 10.192, 0.020 0.192, 0.020
oV 1 0.375,0.479 0.386, 0.402

The equilibrium is (PR, ¢3¥T8). In contrast with Theorem O, the pro-
portional rule is the dominant strategy for group 1 (or more precisely, voting
for the proportional rule is the dominant strategy for each type-L member
in group 1). The intuitive reason is as follows. If group 1 uses the winner-
take-all rule, then it will dictate the social decision, and hence the decision
will be alternative —1 or +1 with almost equal probabilities, since group 1
is almost evenly split into the two types. Alternatively, if group 1 adopts
the proportional rule, then the social decision will be more likely to be al-
ternative —1 (i.e., the alternative which the majority of group 1’s members
are more likely to support), since there are now chances that the decision

reflects the will of group 2 in which 80% are of type L. This explains why

10 Assuming that the number of members of each type is sufficiently large in each
group, the group-wide margins in groups 1 and 2 are ©; = 0.510;;, + 0.490,r and
O9 = 0.8021, +0.202R, respectively. The definition of the social decision D, is then the
same as before (equation (I)).

1We obtained the payoffs in the table by numerical computation.
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the winner-take-all rule is the dominant strategy for group 1. For the rel-
atively homogeneous group 2, on the other hand, the dominant strategy is
the winner-take-all rule.

This example highlights the importance of the internal decision proce-
dure employed within each group. In order to fully explain the incentives
of the group, it would be interesting to build a full-fledge model which
includes a detailed description of internal heterogeneity of the preference

distributions, but it is beyond the scope of the current paper.

4 Asymptotic and Computational Results

4.1 Asymptotic Analysis

We saw above that the game is a Prisoner’s Dilemma. In this section, we
provide further insights on the welfare properties, by focusing on the follow-
ing situations in which: (i) the number of groups is sufficiently large, and
(ii) the preferences of the members are distributed symmetrically. These
properties allows us to provide an asymptotic and normative analysis.
Often the difficulty of analysis arises from the discrete nature of the
problem. Since the social decision Dy is determined as a function of the
sum of the weights allocated to the alternatives across the groups, com-
puting the expected payoffs may require classification of a large number
of success configurations which increases exponentially as the number of
groups increases, rendering the analysis prohibitively costly. We overcome
this difficulty by studying asymptotic properties. In order to check the
sensibility of our analysis, we provide Monte Carlo simulation results later

in the section, using the example of the US Electoral College.

In order to study asymptotic properties, let us consider a sequence of

weights (w;)$2,, exogenously given as a fixed parameter.

Assumption 3. The sequence of weights (w;)°, satisfies the following

properties.

(i) wy,ws, - are in a finite interval [w, w] for some 0 < w < w.
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(ii) As n — oo, the statistical distribution G,, induced by (w;)}_, weakly

converges to a distribution G' with support [w, w].™

Assumption B guarantees that for large n, the statistical distribution
of weights G,, is sufficiently close to some well-behaved distribution G, on
which our asymptotic analysis is based.

Additionally, we impose an impartiality assumption for our normative

analysis:

Assumption 4. The variables (0,)°, are drawn independently from a

common symmetric distribution F'.

As in [Felsenthal and Machover (1998), a normative analysis requires
impartiality, and a study of fundamental rules in the society, such as a con-
stitution, should be free from any dependence on the ex post realization
of the group characteristics. Assumption A allows our normative analysis
to abstract away the distributional details. Of course, a normative anal-
ysis is best complemented by a positive analysis which takes into account
the actual characteristics of the distributions (as in Beisbarf and Bovens
(200R)).

Following the symmetry of the preferences, our analysis also focuses on
symmetric profiles, in which all groups use the same rule: ¢; = ¢ for all 7.
With a slight abuse of notation, we write ¢ both for a single rule ¢ and for
the symmetric profile (¢, ¢,---), which should not create any confusion as
long as we refer to symmetric profiles. As for the alternatives, it is natural
to consider that the label should not matter when the group-wide vote
margin is translated into the weight allocation, given the symmetry of the

preferences.

Assumption 5. We assume that the rule is monotone and neutral, that

is, ¢ is a non-decreasing, odd function: ¢(6;) = —¢p(—0;).

Let m;(¢; n) denote the expected payoff for group i(< n) under profile
¢ when the set of groups is {1, --- ,n} and each group j’s weight is w;, the

12The statistical distribution function G,, induced by (w;)?_, is defined by G, (z) =
#{i <n:w; <x}/nfor each z. G, weakly converges to G if G, (z) — G(x) at every
point x of continuity of G.
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jth component of the sequence of weights. The definition of m;(¢; n) is the
same as 7;(¢) in the preceding sections; the new notation just clarifies its
dependence on the number of groups n.

The main welfare criterion employed in this section is the asymptotic

Pareto dominance.

Definition 2. For two symmetric profiles ¢ and v, we say that ¢ asymp-
totically Pareto dominates 1 if there exists N such that for all n > N and
alli=1,--- n,

mi(¢;n) > mi(;n).

4.2 Pareto Dominance
The following is the main result in our asymptotic analysis.

Theorem 2. Under Assumptions 0-A, the proportional profile asymptoti-
cally Pareto dominates all other symmetric profiles. In particular, it asymp-
totically Pareto dominates the dominant-strateqy equilibrium of the game,

i.€., the symmetric winner-take-all profile.

We use the following lemma to prove Theorem B. The proof of Lemma
B is relegated to the Appendix. The proof of part (ii) uses a more general
result, Lemma B, stated in the next subsection, whose proof also appears

in the Appendix.

Lemma 2. Under Assumptions O-A, the following statements hold.

(i) For any symmetric profile ¢,
mi(¢;mn)
1
_» / eip{ —wo) < Y we) §wi¢(9i)}dF(9i).
0

J<n, j#i
(ii) For any symmetric profile ¢, as n — oo,

E[©?]

V 27T7’L7T7;(§b; TL) — 2w; m

Corr [0, ¢(0)],™

13Since © and $(©) are symmetrically distributed, the correlation is given by
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uniformly in w; € [w,w], where © is a random variable having the
same distribution F' as ©;. The limit depends on the profile ¢ only
through the factor Corr[©, ¢p(O)].

Proof of Theorem B.

The heart of the proof is in the correlation result shown in part (ii) of
Lemma B. It follows that if ¢(©) is more correlated with © than ¢(©) is,
then for each group i, there exists N; such that if the number of groups (n)
is greater than IV;, group ¢ (< n) will be better off under ¢ than .

Note that the convergence in part (ii) of Lemma B is uniform in w; €
[w, w]. This implies that the convergence is uniform in i = 1,2, ---.™ Thus
there is NV with the above property, without subscript ¢, which applies to
all groups i = 1,2, --. Therefore, if ¢(©) is more correlated with © than
¥(O) is, then ¢ asymptotically Pareto dominates ).

Since the perfect correlation Corr[0,¢"?(©)] = 1 is attained by the

proportional rule, Theorem B follows. ]

The above results show that the winner-take-all rule is characterized
by its strategic dominance, while the proportional rule is characterized by
its asymptotic Pareto dominance. The following proposition provides a
complete Pareto order among all the linear combinations of the two rules.

Remember that we defined the mixed rules in Section B above. For
0 < a < 1, a fraction a of the weight is assigned to the winner of the
group-wide vote, while the rest, 1 — a, is distributed proportionally to each

alternative:

¢*(0;) = ap™V " (6;) + (1 — a)d"™(6:).

Proposition 3. Under Assumptions O, mized profile ¢ asymptotically

Pareto dominates mized profile ¢* for any 0 < a < a’ < 1. In particular,

Corr [0, ¢(0)] = E[0¢(0)]//E[O?|E[¢(O)?] unless ¢(O) is almost surely zero. If ¢p(O)
is almost surely zero, then the correlation is zero.

4A more detailed explanation of this step is the following. By Lemma B (i),
V2mnmi(¢;n)) asymptotically behaves as 2v/2mn fol OP{—w;p(0) < >, w;d(0;) <
w;$(0)}dF(0), where whether the sum >, w;¢(6);) includes the ith term or not is

immaterial in the limit. The estimate of v/2mnm;(¢;n) therefore has the form f, (w;),

where f,(z) := 2v/2mn fol OP{—2¢(0) < >, w;j9(O;) < 2¢(0)}dF (). Lemma B (ii)
implies that f,(z) converges uniformly in = € [w,w], which in turn implies that the
convergence of v/2mnm;(¢;n) ~ fp(w;) is uniform in ¢ =1,2,---.
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the proportional profile asymptotically Pareto dominates any mized profile
o* for 0 < a < 1, which in turn asymptotically Pareto dominates the
winner-take-all profile. In other words, all mized profiles can be ordered by
asymptotic Pareto dominance, from the proportional profile as the best, to

the winner-take-all profile as the worst.

Proof. In Appendix. n

The winner-take-all rule is not only asymptotically Pareto inefficient,
but the worst among the symmetric mixed profiles. Is it worse than any

other symmetric profile? We provide an answer in Remark @ below.

Remark 4. Theorem B leaves the natural question of whether the winner-
take-all profile is the worst among all symmetric profiles, in terms of asymp-
totic Pareto dominance. The answer is negative. To see this, note first that,
for the winner-take-all profile, the correlation in Lemma B is strictly posi-
tive: Corr[0, $VT™(0)] = E(|0|)//E(62) > 0. On the other hand, for the
symmetric profile ¢° in which the rule is defined by ¢°(f) = 0 for almost
all @, the correlation is obviously zero. This rule assigns exactly half of
the weight to each alternative, regardless of the group-wide vote. Thus the
profile ¢° is the worst among all symmetric profiles, as the social decision is
made by a coin toss almost surely, yielding expected payoft 0 to all groups.

In the following, we exclude such a trivial profile from our consideration.

4.3 Congressional District Method

The analysis in the preceding subsection suggests that the proportional
profile is optimal in terms of Pareto efficiency. However, our model also
implies that this profile produces an unequal distribution of welfare; in
fact, this unequal nature pertains to all symmetric profiles. The Correlation
Lemma B (ii) shows that for these profiles, the expected payoff for a group is
asymptotically proportional to its weight, providing high expected payoffs
to the members in a group with a large weight.

In this subsection, we examine whether such inequality can be allevi-
ated without impairing efficiency by using an asymmetric profile, based
on the Congressional District Method, currently used in Maine and Ne-

braska. This profile allocates a fixed amount ¢ of each group’s weight by
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the winner-take-all rule and the rest by the proportional rule:
w; P (0, w;) = VA O;) + (w; — )T ().

We consider the congressional district profile ¢“P in which the rule is used
by all groups. Note that this profile is not symmetric as it depends on w;,
but the way ¢°P depends on wj is the same for all groups. To ensure that
the profile is well-defined, we impose that its parameter c is below the lower

bound of weights: ¢ € [0, w].

Theorem 3. Under Assumptions 0-d, let us consider the congressional
district profile with parameter ¢ < w. For any symmetric profile ¢, there
erists w* € |w,w] with the following property: for any ¢ > 0, there is N
such that for alln > N andi=1,--- n,

w; < w'—e = m(quD;n) > mi(¢5n),

w; > w* + e = m(0P;n) < mi(p;n).

The proof of Theorem B uses the following lemma, which shows that the
correlation lemma holds for a class of profiles such that the weight allocation
rules have the following specific form of separability. Its proof and the Local

Limit Theorem used in the proof are relegated to the Appendix.

Assumption 6. Let ¢ = (¢;);~, be a profile. There exist functions
hi1, ho, hg such that

wngz(éz, U)Z) = hl (wz)hg(é’z) + h3(wz) Sgn ‘97;, for all 7

where (i) h; is bounded, (ii) hy is an odd function such that the support
of the distribution of hs(6;) contains 0, and (iii) hs is continuous but not

constant.™

It is straightforward to show that Assumption B is satisfied for any sym-

metric profile as well as the congressional district profile. For a symmetric
profile ¢, let hy(w;) = w;, he(60;) = ¢(0;) — rsgnb;, and hy(w;) = w;r

15Under this form, ¢;(-,-) is the same for all i so that we can omit subscript i whenever
there is no confusion.
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where r > 0 is any positive number in the support of the distribution of
#(©).™ For the congressional district profile ¢“P, let hy(w;) = w; — ¢,
hg(el) = 01 — Sgn 01', and h,g('wl) = W;.

Lemma 3. Under Assumptions O-d, let ¢ be a profile which satisfies As-

sumption @. Then, as n — oo,

2wE[O(O, w;)]
Vi w?E[6(6, w)dG (w)

V2mnmi(¢;n) —

uniformly in w; € [w,w|, where © is a random variable having the same
distribution F as ©;.

Proof of Theorem @. By Lemma B, the expected payoff for group ¢ under
a symmetric profile ¢ tends to a linear function of w;. Let A? be the

coeflicient:

lim (i) = — 2UEOH(O)]
o VEB(0)2] [ w?dG(w) -

=: A%w;.
For the congressional district profile, remember the definition:

w; o™ (O, w;) = o™ () + (w; — ) 7 (6))
= csgn(0;)+ (w; —c)b;.

We claim that the limit function is affine in wj:

lim v27mnm;(¢“P;n) = Bw; + C. (7)

n—oo

To see that, let us apply Lemma B again:

lim \/%ﬂ'i(gbCD; n) = . _ wiE [@¢CD (®> wz)]
o \/ [ w?E [¢°P (0, w)*] dG(w)

B[O+ (wi—c)E [©7] |
\/];D w?E [¢CP (6,w)’] dG/(w)

6This is possible since ¢(©) is symmetrically distributed, and since we exclude the
trivial case in which ¢(©) = 0 almost surely.

2
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Since [f| > 6% with a strict inequality for 0 < |f| < 1, the full support
condition for © implies E[|©|] > E[6?], which induces that the intercept
C' is positive. The coefficient of w; is:

2F [67]
Vi w?E [6°P (0, w)%] dG(w)

B =

If A < B, combined with C > 0, the right-hand side of (@) is above that
of (B). Then, set w* = w. If A® > B, again combined with C' > 0, the two
limit functions (B) and (@) intersect only once at a positive value w. Let
w* = max {w, min{w, w}}.

Since the convergences (B) and (@) are uniform in w;, for any ¢ > 0

there is N with the property stated in Theorem B. O

Theorem B implies that the congressional district profile makes the
members of groups with small weights better off, compared with any sym-
metric profile. If the weight is an increasing function of the group size, it
means that the congressional district profile is favorable for the members
of small groups.

The intuitive reason why the congressional district profile is advanta-
geous for small groups is as follows. Under this profile, the ratio of weights
cast by the winner-take-all rule (i.e. ¢/w;) is higher for small groups than
large groups. The congressional district profile therefore resembles the sit-
uation where the rules used by the smaller groups are relatively close to
the winner-take-all rule, whereas those by the larger groups are close to
the proportional rule. The strategic dominance of the winner-take-all rule
suggests that this deviation is profitable for the small groups. We provide
a numerical result in the following subsection using an example of the US

Electoral College.

In addition to Theorem B, we can also show that the congressional
district profile distributes payoffs more equally than any symmetric profile
does, in the sense of Lorenz dominance. A profile of per capita payoffs for
the groups, m = (my,- -+ ,m,), is said to Lorenz dominate another profile

' = (ny,---,m,) if the share of payoffs acquired by any bottom fraction of
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groups is larger in the former profile than in the latter.™ Lorenz dominance,
whenever it occurs, agrees with equality comparisons by various inequality
indices including coefficient of variation, Gini coefficient, Atkinson index,
and Theil index (see Fields_and Fei (I978) and [Afkinson (1970)). To see
why the congressional district profile is more equal than any symmetric
profile, recall equations (B) and (@) in the proof of Theorem B, which assert
that when the number of groups is large, the per capita payoff for group
i is approximately A®w; for the symmetric profile, and it is approximately
Bw; 4+ C for the congressional district profile. The constant term C' > 0
for the congressional district profile means equal additions to all groups’
payoffs, which result in a more equal distribution than when there is no
such term. More precisely, we can prove the following statement. The

proof is relegated to the Appendix.

Theorem 4. Under Assumptions O-d, let us consider the payoff profile
under the congressional district profile: w (gbCD;n) = (7@- (¢CD;n))?:1. Let
¢ be any symmetric profile and 7 (¢;n) = (m; (¢;n))._, the payoff profile
under ¢. For sufficiently large n, 7 (ngCD; n) Lorenz dominates m (¢;n).

4.4 Computational Results

The results in the previous subsection concern cases with a large number of
groups. The question remains as to whether the conclusions obtained there
are also valid for a finite number of groups. In this section, we study this
question by numerically analyzing a model of the US presidential election.

There are 50 states and one federal district. The weight w; for state 7 is
the number of electoral votes currently assigned to it. This number equals
the state’s total number of seats in the Senate and House of Representa-
tives. Thus, w; is two plus a number that is roughly proportional to the
state’s population. The first and second columns of Table [ describe the

distribution of weights among the states.

"Formally, for each x € [~1,1], let H,(x) be the total population share of those
groups whose per capita welfare is not greater than x under the payoff profile 7. Then
H, is a distribution function. The Lorenz curve of H, is the graph of the function
fOH"l(p) ﬂcdH7r(3L‘)/fo1 xdH,(z), 0 < p < 1, where we define H_1(p) = sup{z : H,(z) <
p}. A payoff profile m Lorenz dominates another profile 7’ if the Lorenz curve of H, lies
above that of H,/.
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We assume TAC* (Impartial Anonymous Culture*): the statewide pop-
ular vote margins ©; are independent and uniformly distributed on [—1, 1],
first introduced by May (194R) and studied thoroughly by, for example,
De Monzon ef all (2019). For any profile ¢, we can compute the per capita

payoff for state ¢ via the formula:

1 1
mi(p) = 0-550/ / 0;14(01,- - ,051)db; - - - dbs (8)
—1 1

where A = {(91, L 05) ‘2;’?1:1 w;6;(0) > o}.EEE

We consider four distinct profiles: ¢W™, PR ¢ with a = 102/538, and
»“P with coefficient ¢ = 2. As before, these are respectively the winner-
take-all profile, the proportional profile, a mixed profile, and a congressional
district profile. The parameter ¢ = 2 of the congressional district profile is
the number currently used in Maine and Nebraska, namely, it corresponds
to two seats assigned to each state in the Senate. The parameter a =
102/538 of the mixed profile is chosen so that the proportion of electoral
votes allocated on the winner-take-all basis is the same for all states, and
the total number of electoral votes allocated in this way is the same as in
the congressional district profile.

We compute (B) under these four profiles by a Monte Carlo simula-
tion with 100 iterations. The results are summarized in Tables 0 and B.
Table M shows the per capita payoff (m;(¢)) under the respective profiles.
Table B shows the ratios of per capita payoff between different profiles
(mi(¢)/mi()). If the ratio is below 1, state i prefers ¢ to ¢.

It follows from Lemma B (ii) that as the number n of states increases, the
ratios m; (ngTA) /T (ngR) and m; (¢) /m; (ngR) converge to the respective
correlations Corr[0, pVTA(0)] &~ 0.866 and Corr[©, ¢*(0)] ~ 0.989, where
the values are computed for © uniformly distributed on [—1,1]. Table
B indicates that for the present example with 50 states plus DC, these
ratios are indeed close to the respective correlations, which suggests that
convergence of the m-ratios is fairly quick. In particular, as expected by
Theorem B, the proportional profile Pareto dominates the winner-take-all

profile in the present case. As suggested by Proposition B, all states prefer

181t is easy to check that under the uniform distribution assumption, (8) is equivalent
to the expression in Lemma B (i).
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the mixed profile ¢* to the winner-take-all profile, and the proportional
profile to ¢®.

The ratios m;(¢°P)/m;(¢'R) in Table B are consistent with the result
in Theorem B. Small states prefer the congressional district profile to the
proportional one.

In addition, the values of 7;(¢“P)/mi(¢W™) in the table show that the
winner-take-all profile is Pareto dominated by the congressional district
profile, and the welfare improvement by switching to the congressional
district profile is greater for small states than for large states in terms of

the ratio.
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Table 1: Estimated payoffs in the US presidential election, based on the
apportionment in 2016, via Monte Carlo simulation with 10'° iterations.
The estimated standard errors are in the range between 3.9 and 4.1 x 1075,

electoral number 7(AW ) 7(PR) 7w(9?) w(¢°P)

votes of states

3 8 0.0113 0.0133 0.0130 0.0167
4 5 0.0151 0.0177 0.0174 0.0209
5 3 0.0189 0.0221 0.0217 0.0251
6 6 0.0226 0.0266 0.0261 0.0293
7 3 0.0264 0.0310 0.0305 0.0335
8 2 0.0302 0.0354 0.0348 0.0377
9 3 0.0340 0.0399 0.0392 0.0419
10 4 0.0378 0.0443 0.0436 0.0461
11 4 0.0416 0.0488 0.0479 0.0503
12 1 0.0454 0.0532 0.0523 0.0545
13 1 0.0492 0.0577 0.0567 0.0587
14 1 0.0531 0.0622 0.0611 0.0630
15 1 0.0569 0.0666 0.0655 0.0672
16 2 0.0607 0.0711  0.0699 0.0715
18 1 0.0684 0.0801 0.0788 0.0800
20 2 0.0762 0.0891 0.0877 0.0885
29 2 0.1120 0.1303 0.1284 0.1275
38 1 0.1494 0.1729 0.1706 0.1677
55 1 0.2356 0.2614 0.2615 0.2507
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Table 2: Ratios between payoffs.

electoral number W;?(ZZE) WTEE;Q) :Eigg; W’Zfbﬁﬁ)
votes of states

3 8 0.852 0.982 1.260 1.479
4 5 0.852 0.982 1.182 1.387
5 3 0.852 0.982 1.134 1.331
6 6 0.852 0.982 1.103 1.294
7 3 0.852 0.982 1.080 1.268
8 2 0.852 0.982 1.064 1.248
9 3 0.852 0.982 1.050 1.232
10 4 0.853 0.983 1.040 1.220
11 4 0.853 0.983 1.031 1.210
12 1 0.853 0.983 1.024 1.201
13 1 0.853 0.983 1.018 1.194
14 1 0.853 0.983 1.013 1.187
15 1 0.854 0.983 1.009 1.181
16 2 0.854 0.983 1.005 1.177
18 1 0.854 0.983 0.998 1.168
20 2 0.855 0.983 0.993 1.161
29 2 0.859 0985 0978 1.138
38 1 0.864 0.987 0970 1.122
55 1 0.901 1.000 0.959 1.064
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5 Concluding Remarks

This paper shows that the decentralized choice of the weight allocation rule
in representative voting constitutes a Prisoner’s Dilemma: the winner-take-
all rule is a dominant strategy for each group, whereas the Nash equilibrium
is Pareto dominated. We also show that the proportional rule Pareto dom-
inates every other symmetric profile, when the number of the groups is
sufficiently large. Each group has an incentive to put its entire weight on
the alternative supported by the majority of its members in order to reflect
their preferences in the social decision, although it fails to efficiently ag-
gregate the preferences of all members in the society, if the winner-take-all
rule is employed by all groups.

Our model may provide explanations for the phenomena that we observe
in existing collective decision making. In the United States Electoral Col-
lege, the rule used by the states varied in early elections until it converged
by 1832 to the winner-take-all rule, which remains dominantly employed by
nearly all states since then. In many parliamentary voting situations, we
often observe parties and/or factions forcing their members to align their
votes in order to maximally reflect their preferences in the social decision,
although some members may disagree with the party’s alignment. The
voting outcome obtained by the winner-take-all rule may fail to efficiently
aggregate preferences, as observed in the discrepancy between the electoral
result and the national popular vote winner in the US presidential elec-
tions in 2000 and 2016. Party discipline or factional voting may also cause
welfare loss when each group pushes their votes maximally toward their
ideological goals, failing to reflect all members’ preferences in the social
decision.

The Winner-Take-All Dilemma tells us that the society should call for
some device different from each group’s unilateral effort, in order to obtain
a more socially preferable outcome. As we see in the failure of various
attempts to modify or abolish the winner-take-all rule, such as the ballot
initiative for an amendment to the State Constitution in Colorado in 2004,
each state has no incentive to unilaterally deviate from the equilibrium.
The National Popular Vote Interstate Compact is a well-suited example of

a coordination device (Koza ef all (2013)). As it comes into effect only
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when the number of electoral votes attains the majority, each state does
not suffer from the payoff loss by unilateral (or coalitional) deviation un-
til sufficient coordination is attained. The emergence of such an attempt
is coherent with the insights obtained in this paper that the game is a
Prisoner’s Dilemma, and a coordination device is necessary for a Pareto
improvement.

Our analysis is abstract in that we do not impose assumptions on the
preferences distribution based on the observed characteristics in the real
representative voting problems. Additionally, we impose an impartiality
assumption in our asymptotic analysis. Obviously, our normative analysis
would be best complemented by a positive analysis, which we leave for
future research.

We have assumed that social decisions are binary. There are situations
where this assumption may not fit. In the US presidential elections, third-
party or independent candidates can, and do, have a non-negligible impact
on the election outcome. It is not clear how the presence of such candidates
alters the comparison of rules to allocate electoral votes. When the model
is applied to legislative voting, the assumption of binary decision might
be justified on the grounds that choices are ultimately made between the
status quo and a proposal. However, such an argument abstracts away
the process that gives rise to the particular pair of alternatives (e.g., what
becomes the status quo, how much proposal power each party has, and so

on). Cases with more than two alternatives require further investigation.
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Appendix

“The Winner-Take-All Dilemma”
Kazuya Kikuchi and Yukio Koriyama

Al Proof of Lemma 0

Preliminaries. In this proof, we denote by ¢* the generalized proportional
profile with coefficients A € [—1,1]™ \ {0}:

qsf\(gZ) = )\2017 1= ]-7 R
which should not be confused with the notation ¢ for mixed profiles.

We write 7(¢) = (m;i(¢))r, for the vector of payoffs. Let II be the set

of all possible payoff vectors in game I":

II = {n(¢) : ¢ is a profile}.

For any X C R™, let Pareto (X) be the Pareto frontier of X, i.e., the set
of points x € X for which there exists no y € X such that y; > x; for all 7,
with strict inequality for at least one i. Let co X denote the closed convex
hull of X.

We will refer to the following maximization problem parametrized by
vector ¢ € Ry \ {0} as Problem M,:

Problem M,: max q-x.
zecoll

Note that the maximization is not directly with respect to profile ¢.
Moreover, II may be non-closed or non-convex. Thus, there may be a
solution x € coll that is not the payoff vector of any profile ¢, although
we will later disprove this possibility.

We divide the proof of Lemma [ into several claims. Claims 2Z1-24
concern properties of the solutions to Problem M,. Claim P23 describes
the relation between Problem M, and Pareto efficiency. Finally, Claim 276

completes the proof.

Claim 2.1. A solution of Problem M, is x = n(¢*"), where A} = cq;/w;,



i=1,-.. nDo
Proof of Claim Z7. Recall that the payoft is given by

Thus, for any profile ¢,

q-m(¢) =E[(g-0©) (sgnSy)] < E(|q - Of). (10)

That is, ¢ - < E(|g - ©|) for any x € II. The linearity of the objective
function ¢-z implies that ¢-x < E(|¢-O|) for all z € coll. If ¢ = ¢, then S,
has the same sign as ¢-©. Thus for x = 7(¢""), we have ¢-z = E(|¢-6]). O

Claim 2.2. Let v(q) := max ¢ - & be the maximum value of Problem M,.
TreCco
Then
v(q) =E(lg- ©]).

Proof of Claim 2Z22. This follows from the proof of Claim P71, in which we
showed that ¢ - < E(|g - ©]) for all z € coll and the upper bound is
attained by x = 7(¢"). O

Claim 2.3. A profile ¢ satisfies q-m(¢p) = v(q) if and only if ¢ is equivalent
to .

Proof of Claim 2Z3. Since ¢ # 0 and O is absolutely continuous, we have
q - O # 0 almost surely. Thus, (I0) holds with equality if and only if

sgn Sy = sgn (q - ©) almost surely.

Since cq - © = Syxa, this holds if and only if ¢ is equivalent to . m
Claim 2.4. z = 7(¢"") is the unique solution of Problem M,,.

Proof of Claim [2-4. We use the absolute continuity of © to show that the
value function v(q) = E(|q - ©|) is differentiable, with gradient Vu(q) =

19¢ > 0 is a constant such that cq;Jw; <1 for all i.
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m(¢*"). Then the uniqueness follows by the Duality Theorem (Mas-Colell
ef_all (1995, Proposition 3.F.1)).
To show that v(q) is differentiable, it suffices to show that as vector

¢ € R™ approaches 0,

v(g+e) —v(g) — (") - e = o([e]])- (11)
Using () and Claim P72, we can rewrite the left-hand side of () as:
v(g+e) —v(g) —7(¢") - e
=E[{(¢+¢) -0} xsgn{(q+e)- O}
—E[(¢-0) xsgn(qg-O)]
—E[(e-0) xsgn(q-O)]
=E[{(¢+¢) -0} x {sgn((¢+¢)-O)—sgn(q-O)}.

This expression has the following bound:
[v(g +€) = v(q) — 7(¢™") -] < 2E (|(q + €) - O] Lisgn ((g+e)@)5n (401} -

The expectation on the right-hand side is

| Aaro-omew- [ (aro omoas,  (2)
Af. A .
where h is the joint density of © and

A;EZ{HE[—LH”(q—|—5>9202q9}’
A;EI{QE[—LH”(q—|—g>@§0§q9}

We show that for e sufficiently close to 0, (¢ +¢) -0 < /n|le| for
all 0 € AJ_. To do this, we fix a sufficiently small ¢ so that for each
e € {—1,1}" (i.e., each vertex of the hypercube [—1,1]"), either both ¢ - e
and (q + €) - e are non-negative or both are non-positive.® Now, consider

the following linear-programming problem (L, .):

20For each vertex e € {—1,1}" there is 6, > 0 such that if ||e]| < . then either both
q-e and (q+¢) - e are non-negative or both are non-positive. Thus, it suffices to choose
¢ so that ||e]| < min{d. : e € {—1,1}"}.



Problem L,.: max(q¢+¢)-6.
0c A,
Let 6* be a solution of Problem L, that is a vertex of AF_. Then 6*

belongs to at least one of the following sets:

Hye =107 (g+2)-0=0},
Hy={0:q-0=0},
{—1,1}".

We claim that 6* € H,. First, we have 6* ¢ H, ., since otherwise
0* minimizes the objective function (¢ + ¢) - 6 subject to 6 € A_, while

the n-dimensional polytope A,‘;a contains points that attain larger values
of the function. Now, suppose 6* € {—1,1}" \ H,. The fact that 0* €
{=L1}" N Af_ N H; N HS, . implies that 6* is a vertex of the hypercube
[—1,1]™ such that ¢-6* < 0 < (¢+¢€)-0*. This contradicts the fact that for
any vertex e of the hypercube, either both (¢+¢)-e and ¢-e are non-negative
or both are non-positive. Therefore 0* € H,.

We have shown that ¢ - * = 0. This implies that for any § € A,
(g4+¢e)-0<(qg+¢e)-0*=c¢c-0* <0l < +/nle|. It similarly follows
that —(¢ +¢) -0 < y/n|l|| for any 0 € A, _. Therefore, (IZ) is bounded by
Vvnllell fActsuA;E h(#)df. Noting that the integral fA;r,suA;,s h(60)df vanishes

as € — 0, we obtain ([T). O

Claim 2.5. Let © € coll. Then, x € Pareto (coll) if and only if there
exists ¢ € R}y \ {0} such that x is the unique solution of Problem Mg, i.e.,

z = m(9").

Proof Claim 2Z3. For any x € R", let D(z) = {z+a:a € R\ {0}} be the
(convex) set of all points that dominate z. Note that x € Pareto (coIl) if
and only if D(xz)NcoIl = (. To prove Claim 23, suppose x € Pareto (coIT).
Then there exists a hyperplane with some normal vector ¢ € R% \ {0}
that separates coIl and D(z).2 Clearly this hyperplane contains x, which
means that z is the solution of Problem M,. Conversely, suppose x is

the unique solution of Problem M,. Then the supporting hyperplane of

21Here, separation is in the weak sense that the hyperplane may contain boundary
points of the two sets.



co IT with normal vector ¢ separates co Il and D(z). The uniqueness of the
solution implies that the hyperplane intersects co Il only at x. This implies
that D(z) Ncoll = 0. O

Claim 2.6. A profile ¢ satisfies w(¢) € Pareto (II) if and only if there
exists A € R\ {0} such that ¢ is equivalent to ¢*. That is, Lemma O
holds.

Proof of Claim 2. By Claim 3,
Pareto (coIl) = Pareto (IT) = {m(¢"") : ¢ € R" \ {0}}.

By Claim 223, m(¢) belongs to this set if and only if ¢ is equivalent to ¢**
for some ¢ € R} \ {0}. This condition is the same as saying that ¢ is
equivalent to ¢* for some A € R \ {0}. O

A2 Proof of Part (i) of Lemma

We prove the statement for group 1. Let mi(¢;n|6) be the conditional
expected payoff for group 1 given that the group-wide margin is @ = 6y,
which by (2) is:

mi(@;n|6h) = 01(P{wid(01) + Sy_, > 0} — P{wip(61) + Sy_, < 0}).

Since S, _, is symmetrically distributed, the second probability can be writ-
ten as P{—wy¢(61) + S, , > 0}. Thus, for #; € [0, 1], the above expression
equals

7Tl(¢; n\el) = 01P{-U)1¢<91) < S¢_1 < w1¢(91)}

By symmetry, twice the integral of this expression over ¢; € [0, 1] (instead
of [=1,1]) equals the unconditional expected payoff 7 (¢; n), which proves
part (i) of Lemma B. O

A3 Local Limit Theorem

We quote a version of the Local Limit Theorem shown in Mineka and

Silvermanl (I970). We will use it in the proof of part (ii) of Lemma B.



LLT. (Mineka and Silverman (1970, Theorem 1)) Let (X;) be a sequence
of independent random variables with mean 0 and variances 0 < 02 < co.
Write F; for the distribution of X;. Write also S, = Z?:l X; and 2 =
Sor of. Suppose the sequence (X;) satisfies the following conditions:

(a) There exists & > 0 and ¢ > 0 such that for all i,

1
—2/ 2?*dFy(z) > c.
0; J|z|<z
(B) Define the set
A(t,e) ={x: |z| <z and |xt—mm| > ¢ for all integer m with |m| < z}.

Then, for some bounded sequence (a;) such that inf; P{|X; — a;| <
0} >0 for all § > 0, and for any t # 0, there exists € > 0 such that

L Z]P){XZ —a; € A(t,i—f)} — OQ.
1

log s, P

(v) (Lindeberg’s condition.) For any e > 0,

i / 2*dFy(z) — 0.

1
<2
n =1 v |x|/sn>e

Under conditions (a)-(v), if s2 — oo, we have

V271s2P{S, € (a,b]} = b—a? (13)

22The original conclusion of Theorem 1 in Mineka and Silverman (I970) is stated in
terms of the open interval (a,b). Applying the theorem to (a,b+ ¢) and (b,b + ¢) and
then taking the difference gives the result for (a,b]. In addition, the original statement
allows for cases where s2 does not go to infinity, and also mentions uniform convergence.
These considerations are not necessary for our purpose, so we omit them.



A4 Proof of Lemma

Preliminaries. We prove the lemma for group 1. In the proof, we use the
notation of LLT. Let

X’i = wz¢(®zawz)a 1= ]-a27 )

and S, := > | X;. Then X; has mean 0 and variance o? := w?E[¢(O, w;)?],

and so the partial sum of variances is s2 := Y "' | w?E[¢(O, w;)?], where ©

represents a random variable that has the same distribution F' as ©;.
Define the event

(b1, w1) = {—w1¢(91,w1) < ZXi < w1¢(91,w1)} :
=2

We divide the proof into several claims. Claims bBIF6=3 show that the
sequence (X;) defined above satisfies the conditions of the Local Limit
Theorem (LLT) in Section A4. Claim B4 applies LLT to complete the

proof of Lemma B.

Claim 5.1. % — [7 w’E[¢(0, w)*]dG(w).

n

Proof of Claim B. This holds since sequence (¢?) is bounded and the sta-
tistical distribution G,, induced by (w;)? ; converges weakly to G. O

Claim 5.2. Conditions («) and (v) in LLT hold.

Proof of Claim B2. This immediately follows from the fact that sequence
(X;) is bounded and s? — oco. In particular, it is enough to define Z to be

any finite number greater than w. O
Claim 5.3. Condition (B) in LLT holds.
Proof of Claim B23. Recall that ¢ has the form

w;ip (0, wi) = ha(wi)ha(0;) + ha(w;) sgn 6;.

Let a; = hs(w;). We first check that the sequence (a;) satisfies the

requirements in condition (). First, (a;) is bounded since hg is bounded.



Now, for any ¢ and any § > 0,

> P{|w;¢(0;, w;) — hs(w;) sgn ©;| < ¢ and ©; > 0}
= P{|h1(w;)h2(0;)| < 6 and ©; > 0}.

Letting h; > 0 be an upper bound of |hi| and © a random variable dis-
tributed as ©;, the last expression has the following lower bound indepen-
dent of i:

P{|h2(©)| < §/hy and © > 0} > 0,

which is positive by the assumptions on hy and on the distribution of ©.
Next we check the limit condition in (3). Recall that A(t,¢) is the union

of intervals

(7rm—|—€ mm+1)—¢

, ),m:O,il,iQ,---,
7 il

restricted to (—z, ), where we can choose Z to be any number greater than
w. To prove the limit condition in (f), it therefore suffices to verify that
one such interval contains X; —a; with probability bounded away from zero,
for all groups ¢ in some sufficiently large subset of groups. To do this, note
that if ©; < 0, then X; —a; = hq(w;)ha(©;) — 2h3(w;). The assumptions on
hs and on the distribution of © imply that for any n > 0, there exists a set
0, C [-1,0] with P{© € O,} > 0 such that if © € O, then |hy(O)] < 7.
Therefore,
0, € 0, = X; —a; € Ty, 4,

where
Twim = [—th(wi) — nhi(w;), —2hg(w;) + 77h1(wi)]-

Since h, is bounded, we can make T, , an arbitrarily small interval around
—2hg(w;) by letting n > 0 sufficiently small. Moreover, since hg is contin-
uous and not a constant, we can find a sufficiently small interval [v, 0] C

[w, w]| with v < © such that if w; € [v, 9], then —2hg(w;) is between, and

w(m+1)
[¢]

bounded away from, % and

for some integer m. Fix such an interval
[v, 9] and define
I:={i:w €[v,0]}.



Then, for sufficiently small » > 0 and € > 0, we have T, , C A(t, ) for all
1 € 1. Fixing such n > 0 and ¢ > 0, it follows that

©,€0y,andiel = X, —a; € At,e).
This implies that

P{X;, —a, € A(t,e)} >P{© € O,} = p>0foralliecl,

and hence
1 Z":P{X c At} > n  #{iel:i<n}
i — Q4 )5 Z ’ "
log s, — log s, n b

As n — oo, the first factor on the right-hand side tends to oo since s, has
an asymptotic order of \/n. The second factor tends to G(v) — G(v) > 0,
which is positive since G has full support on [w, w]. Therefore the left-hand

side tends to oo. Il
Claim 5.4. Asn — oo, uniformly in w; € [w, w],

2w E[O9(0,wn)]
VI w?E[6(6, w)dG (w)

(14)

) / BB, (01, ) JE(0) —

By part (i) of Lemma B2 the left-hand side of (I4) is V/2mnm;(¢;n), and
therefore Lemma B holds.

Proof of Claim b4. By Claims b2 and b33, we may apply LLT to obtain
\/ ZWS%P{QH(QD wl)} — 2w1¢(91, U)l).

By Claim BT, this means that

1} o ] 2w1019(61, w1) '
Vi w?El6(0,w)?)dG(w)

V 27m6’1P{Qn(01, w1 (15)

Letting #; = 1 maximizes the left-hand side of (IH) with the maximum

21t is easy to check that part (i) of Lemma B holds for rules ¢(-,w;) that depend on
weight w; as well.



value v2mnP{Q,,(1,w;)}. This maximum value itself converges to a finite
limit. Hence the expression /2mn#;P{Q,(61,w;)} is uniformly bounded
for all n and 6, € [0, 1]. By the Bounded Convergence Theorem,

' 2’[01 fol 91¢(91, wl)dF(Ql)
Vi w?E[6(6, w)dG (w)

2/1 01V 2mnP{Q, (61, w1 ) }dF(6;) — 2

Since F' is symmetric and ¢ is odd, this limit is exactly the one in (I4).
To check the uniform convergence, note that for each n, the inte-
gral on the left-hand side of (Id) is non-decreasing in w;, since event
0, (01, w;) weakly expands as w; increases.” We have shown that this
integral converges pointwise to a limit that is proportional to the factor
w1 E[O©¢(O, w)], which is continuous in w;.# Therefore, the convergence

in (&) is uniform in w; € [w, w].”® O

A5 Proof of Part (ii) of Lemma

This follows immediately from Lemma B, by noting that if ¢ is a symmetric

profile, each group’s rule can be written as ¢(6;, w;) = ¢(6;). O

A6 Proof of Proposition 2

By part (ii) of Lemma B, we must show that Corr [©, ¢*(0)] is decreas-

ing in a € [0, 1]. By simple calculation,

2 aran2 _ aE(|0]) + (1 — a)E(©?)
E(67) - Corr [0, ¢"(O)] = 757 2a(1 — a)E(|O]) + (1 — a)2E(©2)’

MLet 0; € [0,1]. If ¢ is a symmetric profile, i.e. if ¢(61,w1) = ¢(01), then wy¢(6,) is
non-decreasing in wy. If ¢ = ¢°P, then wi¢P (01, w;) = esgn(fy) + (w; — ¢)fy, which
is non-decreasing in w; again. Thus event €, (01, w;) weakly expands as w; increases.

25Tf ¢ is a symmetric profile, this factor is linear in w;. If ¢ = ¢°P, the factor equals
cE(|8]) + (w; — ¢)E(©?), which is affine in w;.

26Tt is known that if (f,,) is a sequence of non-decreasing functions on a fixed finite
interval and f, converges pointwise to a continuous function, then the convergence is
uniform. See Buchanan and Hildebrandfl (T90R).
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The derivative of this expression with respect to a has the same sign as

{L(@E(I0]) + (1 - a)E(©%)*} (a? + 20(1 — @)E(1O]) + (1 - 0)*E(6?))
<aE 0]) + (1 - @E(@?))?{%(a? +2a(1 — a)E(10]) + (1 — a)Z]E(@Q))}
= a(aE(|0]) + (1 — a)E(©7))(E(|0])* — E(6?%)).

This is negative for any a € (0, 1], since E(|0|)? < E(©?) in general, and the
full-support assumption implies that this holds with strict inequality. [J

A7 Proof of Theorem @

Clearly, Lorenz dominance is invariant to linear transformations of pay-
offs. Thus, it suffices to prove that for large enough n, the payoff pro-
file v2mnm(¢“P;n) Lorenz dominates the payoff profile v/2mnw(¢;n). By
equations (B) and (@) in the proof of Theorem B, as n — oo these amounts
converge to Bw; + C and A%w;, respectively. A result by Moyes (1994,
Proposition 2.3) implies that if f and ¢ are continuous, nondecreasing,
and positive-valued functions such that f(w;)/g(w;) is decreasing in w;,
then the distribution of f(w;) Lorenz dominates that of g(w;). The ratio
(Bw;+C)/(A%uw;) is decreasing in w;, and so the claimed Lorenz dominance
holds in the limit as n — co. Recalling that the convergences are uniform,

the dominance holds for sufficiently large n. m
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