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1 Proofs of Remarks

In this section, we give the proofs of some remarks in the main text.

Remark 3 (Nondecreasing per-unit net valuations). Let m′ ∈ M with m′ > 0. Let

Ri ∈ RND and zi ∈ M × R. (i) For each xi ∈ M(m′), xi

m′vi(m
′, zi) ≥ vi(xi, zi). (ii) If there

is xi ∈ M(m′)\{0,m′} such that xi

m′vi(m
′, zi) > vi(xi, zi), then for each x′

i ∈ M(m′)\{0,m′},
x′
i

m′vi(m
′, zi) > vi(x

′
i, zi).

Proof. (i) Let xi ∈ M(m′). Then

m′vi(xi, zi) = m′
(xi−1∑

x=0

(vi(x+ 1, zi)− vi(x, zi))

)

≤ xi

(m′−1∑
x=0

(vi(x+ 1, zi)− vi(x, zi))

)
(by Ri ∈ RND)

= xivi(m
′, zi).

(ii) Suppose there is xi ∈ M(m′)\{0,m′} such that xi

m′vi(m
′, zi) > vi(xi, zi). Then there

is x ∈ M(m′)\{0,m′} such that vi(x + 1, zi) − vi(x, zi) > vi(x, zi) − vi(x − 1, zi). Let

x′
i ∈ M(m′)\{0,m′}. Then the inequality above holds strictly for x′

i.

Remark 5. Let Ri ∈ R++. (i) Let xi ∈ M\{m} and h+(·;xi) : R → R++ be such that

for each ti ∈ R, h+(ti;xi) = Vi(xi + 1, (xi, ti))− ti. Then h+(·;xi) is strictly decreasing in

ti. (ii) Let xi ∈ M\{0} and h−(·;xi) : R → R++ be such that for each ti ∈ R, h−(ti;xi) =

ti − Vi(xi − 1, (xi, ti)). Then h−(·;xi) is strictly decreasing in ti as well.

1



Proof. (i) Let ti, t
′
i ∈ R be such that t′i < ti. Note that (xi+1, Vi(xi+1, (xi, ti))) Ii (xi, ti).

Thus, by ti − t′i > 0, Ri ∈ R++ implies

(xi+1, Vi(xi+1, (xi, ti))−(ti−t′i)) Pi (xi, ti−(ti−t′i)) = (xi, t
′
i) Ii (xi+1, Vi(xi+1, (xi, t

′
i))).

Thus, Vi(xi+1, (xi, ti))− (ti− t′i) < Vi(xi+1, (xi, t
′
i)), or equivalently, we have h

+(ti;xi) =

Vi(xi + 1, (xi, ti))− ti < Vi(xi + 1, (xi, t
′
i))− t′i = h+(t′i;xi).

(ii) We can show (ii) in the symmetric way, and we omit the proof.

2 Proof of Proposition 3

In this section, we give the proof of Proposition 3.

Proposition 3. Let Ri ∈ RD satisfy the single-intersection condition. Then, for each

xi ∈ M\{m}, d(xi) = d(xi) = p(xi + 1;Ri).

Proof. By |T (xi)| = 1 for each xi ∈ M , d(xi) = d(xi) ≡ d(xi) for each xi ∈ M . Let

xi ∈ M\{m}. The proof has two steps.

Step 1. Let p ∈ P (xi + 1;Ri). We show that p ≤ d(xi). Suppose by contradiction that

p > d(xi). We consider the following two cases.

Case 1. xi > 0.

Now, we claim that pxi < Vi(xi,0). Suppose by contradiction that pxi ≥ Vi(xi,0).

Then,

Vi(xi + 1,0) <
xi + 1

xi

Vi(xi,0) ≤ p(xi + 1),

where the first inequality follows from Ri ∈ RD, and the second one from pxi ≥ Vi(xi,0).

Thus, 0 Pi (xi + 1, p(xi + 1)). However, this contradicts p ∈ P (xi + 1;Ri).

Thus, pxi < Vi(xi,0). By p > d(xi), pxi ∈ (t(xi), Vi(xi,0)). Thus, byRi ∈ RD, Lemma 8

implies

Vi(xi + 1, (xi, pxi))− pxi <
pxi

xi

= p,

or equivalently, Vi(xi+1, (xi, pxi)) < p(xi+1). This implies (xi, pxi) Pi (xi+1, p(xi+1)).

However, this contradicts p ∈ P (xi + 1;Ri).

Case 2. xi = 0.

Note that d(0) = Vi(1,0). Thus, by p > d(0), p > Vi(1,0). This implies 0 Pi (1, p).

However, this contradicts p ∈ P (1;Ri).

Step 2. We show that d(xi) ∈ P (xi + 1;Ri). Note that by Step 1, this implies d(xi) =

p(xi + 1;Ri).
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By d(xi) ∈ T (xi),

Vi(xi + 1, (xi, d(xi)xi))− d(xi)xi = d(xi), (1)

or equivalently,

Vi(xi + 1, (xi, d(xi)xi)) = d(xi)(xi + 1).

This implies (xi + 1, d(xi)(xi + 1)) Ii (xi, d(xi)xi).

Let x ∈ M be such that x > xi + 1. Then, by Ri ∈ RD and (1),

Vi(x, (xi, d(xi)(xi)))− d(xi)xi ≤ (x−xi)
(
Vi(xi+1, (xi, d(xi)xi))− d(xi)xi

)
= d(xi)(x−xi),

or equivalently,

Vi(x, (xi, d(xi)xi)) ≤ d(xi)x.

This implies (xi, d(xi)xi) Ri (x, d(xi)x).

Let x ∈ M be such that x < xi. Then, xi > 0. By Ri ∈ RD and d(xi)xi = t(xi),

Lemma 12 implies

d(xi)xi − Vi(xi − 1, (xi, d(xi)xi)) >
d(xi)xi

xi

= d(xi).

Thus, by Ri ∈ RD,

d(xi)xi − Vi(x, (xi, d(xi)xi)) ≥ (xi − x)
(
d(xi)xi − Vi(xi − 1, (xi, d(xi)xi))

)
> d(xi)(xi − x),

or equivalently,

Vi(x, (xi, d(xi)xi)) < d(xi)x.

This implies (xi, d(xi)xi) Pi (x, d(xi)x).

Thus, we have established that for each x ∈ M , (xi, d(xi)xi) Ri (x, d(x)x). This implies

d(xi) ∈ P (xi + 1;Ri).

As a corollary of Proposition 3 and Lemmas 7 and 11, we obtain the following

Corollary 3. Let Ri ∈ RD satisfies the single-intersection condition. Then, Rinv
i ∈ RD ∩ RQ.

3 Proofs of Propositions 1 and 4

In this section, we provide the proofs of Propositions 1 and 4.

3.1 Preliminaries

In this subsection, we show some preliminary results.

Lemma 17. Assume m is even.
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(i) Let Ri ∈ RD ∩ R++. Then, it has the upper bound for the nonnegative income

effects if and only if we have Vi(β + 1, (β, t∗)) − t∗ ≤ d(β − 1;Ri), where β ≡ m
2

and

t∗ ≡
∑β−1

x=0 p(m− x;Ri).

(ii) Let Ri ∈ RD ∩ R−− satisfy the single-intersection condition. Then, it has the up-

per bound for the nonpositive income effects if and only if we have t∗−Vi(β−1, (β, t∗)) ≥ d(β;Ri),

where β ≡ m
2
and t∗ ≡

∑β−1
x=0 p(m− x;Ri).

Proof. (i) Note that the second terms of both the sides of the inequality in the upper

bound for the nonnegative income effects are the same. Thus, the upper bound for the

nonnegative income effects is equivalent to the following inequality:

WBi(β, t
∗) ≤ WSi(β, βp(β;Ri)).

By Remark 1 (iii), we have

WBi(β, t
∗) = Vi(β + 1, (β, t∗))− t∗.

By Ri ∈ RD ∩ R++ and Corollary 2, d(β − 1;Ri) = p(β;Ri). Then, we have

WSi(β, βp(β;Ri))

= βp(β;Ri)− Vi(β − 1, (β, βp(β;Ri))) (by Remark 1 (iii))

= βd(β − 1;Ri)− Vi(β − 1, (β, βd(β − 1;Ri))) (by p(β;Ri) = d(β − 1;Ri))

= d(β − 1;Ri). (by Remark 11)

Thus, Ri has the upper bound for the nonnegative income effects if and only if

Vi(β + 1, (β, t∗))− t∗ ≤ d(β − 1;Ri).

(ii) We can show (ii) in a similar way to (i), and omit the proof.

In order to prove Propositions 1 (i) and 4 (i), we show the following proposition. It states

that if a preference R0 ∈ RD satisfies the single-intersection condition, then the inverse

Vickrey rule (i) satisfies efficiency, individual rationality, and no subsidy for losers, and (ii)

satisfies strategy-proofness at any preference profileR ∈ ((RC ∩ RQ) ∪ {R0})2\{(R0, R0)}.

Proposition 6. Assume n = 2 and m is even. Let R0 ∈ RD satisfy the single-intersection

condition. Let R ≡ (RC ∩ RQ) ∪ {R0}. Let f ≡ (x, t) be an inverseVickrey rule on R2.

(i) f satisfies efficiency, individual rationality, and no subsidy for losers.

(ii) For each R ∈ R2, each i ∈ N and each R′
i ∈ R, if R ̸= (R0, R0), then fi(R) Ri fi(R

′
i, Rj).

Suppose n = 2 and m is even. Let f ≡ (x, t) be an inverse Vickrey rule on R2. By the

single-intersection condition, d(x;R0) = d(x;R0) ≡ d(x;R0) for each x ∈ M ∪ {−1}. In

what follows, we may omit R0.

First, we show the following lemma.
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Lemma 18. Let R ∈ R2 and i, j ∈ N be a pair such that Ri = R0 and Rj ∈ RC ∩ RQ.

Let vj > 0 be a constant incremental valuation associated with Rj. (i) If xi(R) > 0, then

ti(R)−Vi(xi(R)−1, fi(R)) ≥ vj. (ii) If xi(R) < m, then Vi(xi(R)+1, fi(R))− ti(R) ≤ vj.

Proof. By Corollary 3 and Remark 10, Rinv ∈ (RNI)n. Thus, by the definition of the inverse

Vickrey rule and Remark 8, p(xi(R) + 1;Ri) ≤ vj ≤ p(xi(R);Ri) and ti(R) = vjxi(R),

where p(m+ 1;Ri) ≡ 0. Then, by Proposition 3, vj ∈ [d(xi(R)), d(xi(R))− 1)].

(i) Suppose xi(R) = 1. Then vj ≤ d(xi(R) − 1) = Vi(1,0). Then, we have fi(R) =

(1, vj) Ri (1, Vi(1,0)) Ii 0. This implies Vi(0, fi(R)) ≤ 0. Thus, by ti(R) = vj, ti(R) −
Vi(0, fi(R)) ≥ vj.

Suppose instead xi(R) > 1. Note that vj ∈ [d(xi(R)), d(xi(R) − 1)]. Suppose vj =

d(xi(R)− 1). By (xi(R)− 1)vj ∈ T (xi(R)− 1),

Vi(xi(R), (xi(R)− 1, (xi(R)− 1)vj)) = xi(R)vj,

which implies fi(R) = (xi(R), xi(R)vj) Ii (xi(R)− 1, (xi(R)− 1)vj). This implies

(xi(R)− 1)vj = Vi(xi(R)− 1, fi(R)).

Thus, by ti(R) = vjxi(R),

ti(R)− Vi(xi(R)− 1, fi(R)) = vj.

Instead, if vj ∈ [d(xi(R)), d(xi(R)− 1)), then by Ri ∈ RD and Lemma 12 (i),

ti(R)− Vi(xi(R)− 1, fi(R)) >
ti(R)

xi(R)
= vj.

(ii) Suppose xi(R) = 0. By vj ≥ d(xi(R)) = Vi(1,0) and fi(R) = 0, we have Vi(1, fi(R))−
ti(R) ≤ vj.

Suppose 0 < xi(R) < m. First, we claim that vj ≤ Vi(xi(R),0)
xi(R)

. If xi(R) = 1, then

vj ≤ d(xi(R)− 1) = Vi(1,0). Instead, suppose xi(R) > 1. Then, by (xi(R)− 1)d(xi(R)−
1) ∈ T (xi(R)− 1),

Vi

(
xi(R), (xi(R)− 1, d(xi(R)− 1)(xi(R)− 1))

)
= d(xi(R)− 1)xi(R). (1)

Then,

(xi(R), vjxi(R)) Ri (xi(R), d(xi(R)− 1)xi(R)) Ii (xi(R)− 1, d(xi(R)− 1)(xi(R)− 1)) Pi 0,

where the first relation follows from vj ≤ d(xi(R) − 1), the second one from (1), and

the last one from Ri ∈ RD and Lemma 7. Thus, vjxi(R) < Vi(xi(R),0), or equivalently,

vj <
Vi(xi(R),0)

xi(R)
.

Thus, in either case, we obtain vj ≤ Vi(xi(R),0)
xi(R)

. By vj ≥ d(xi(R)), vj ∈ [d(xi(R)), Vi(xi(R),0)
xi(R)

].
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If vj = d(xi(R)), then by xi(R)vj ∈ T (xi(R)),

Vi(xi(R) + 1, fi(R))− ti(R) =
ti(R)

xi(R)
= vj.

Instead, if vj ∈ (d(xi(R)), Vi(xi(R),0)
xi(R)

], then by Ri ∈ RD and Lemma 8,

Vi(xi(R) + 1, fi(R))− ti(R) <
ti(R)

xi(R)
= vj,

as desired.

We now proceed to the proof of Proposition 6. Let β ≡ m
2
and t∗ ≡

∑β−1
x=0 p(m−x;R0).

Note that by Proposition 3, t∗ =
∑β

x=1 d(m− x). The proof has two parts.

Part 1. First, we show (i). Since no subsidy for losers is immediate from the definition

of the rule, we here show the other two properties.

Individual rationality. Let R ∈ R2 and i, j ∈ N be a distinct pair. If Ri ∈ RC ∩ RQ,

then by Remark 10, Rinv
i = Ri. Since fi(R) is an outcome of the Vickrey rule for Rinv,

fi(R) Ri 0 by individual rationality of the Vickrey rule. Thus, we assume Ri = R0. We

consider the following two cases.

Case 1. Rj = R0.

By Corollary 3, Rinv
0 ∈ RD. Thus, by the definition of the inverse Vickrey rule and

Remark 8, xi(R) = β and

ti(R) =
m∑

x=1

p(x;R0)−
β∑

x=1

p(x;R0) =
m∑

x=β+1

p(x;R0) =

β−1∑
x=0

p(m− x;R0) = t∗.

By t∗ =
∑β

x=1 d(m− x), ti(R) =
∑β

x=1 d(m− x). Then,

ti(R) =

β∑
x=1

d(m− x) ≤ βd(β) < Vi(β,0),

where the first inequality follows from R0 ∈ RD, β = m
2
, and Lemma 11, and the second

inequality follows from Ri = R0 ∈ RD and Lemma 7. Thus, fi(R) Pi 0.

Case 2. Rj ∈ RC ∩ RQ.

By Remark 10, Rinv
j = Rj. Thus, by the definition of the inverse Vickrey rule, ti(R) =

vjxi(R), where vj > 0 is a constant incremental valuation associated with Rj. If xi(R) > 0,
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then

ti(R)− Vi(0, fi(R)) =

xi(R)∑
x=1

(
Vi(x, fi(R))− Vi(x− 1, fi(R))

)
(by Remark 1 (iii))

≥ xi(R)
(
Vi(xi(R), fi(R))− Vi(xi(R)− 1, fi(R))

)
(by Ri ∈ RD)

≥ xi(R)vj (by Lemma 18 (i))

= ti(R),

or equivalently, Vi(0, fi(R)) ≤ 0. Thus, fi(R) Ri 0. In contrast, if xi(R) = 0, then we have

fi(R) = 0.

Efficiency. Let R ∈ R2. Since f(R) is an outcome of the Vickrey rule for Rinv, efficiency

of the Vickrey rule and Lemma 1 together imply x1(R) + x2(R) = m.

If R ∈ (RC ∩ RQ)2, then by Remark 10, R = Rinv. Thus, by efficiency of the Vickrey

rule, f(R) is efficient for R. Thus, we consider the following two cases.

Case 1. R1 = R2 = R0.

By Corollary 3, Rinv
1 , Rinv

2 ∈ RD. Thus, by the definition of the inverse Vickrey rule and

Remark 8, f1(R) = f2(R) = (β, t∗). By f1(R) = f2(R) and Remark 1 (iii), R1 = R2 ∈ RD

implies Vi(xi(R) + 1, fi(R))− ti(R) < tj(R)− Vj(xj(R)− 1, fj(R)) for each pair i, j ∈ N .

Thus, by R ∈ (RNI)2, x1(R) + x2(R) = m, and Remark 8, f(R) is efficient for R.

Case 2. Ri = R0 and Rj ∈ RC ∩ RQ for some pair i, j ∈ N .

Without loss of generality, let i = 1 and j = 2. By the definition of the inverse Vickrey

rule, t1(R) = v2x1(R), where v2 > 0 is a constant incremental valuation associated with R2.

If x1(R) = 0, then by Lemma 18 (ii), v2 ≥ V1(1, f1(R)) − t1(R). If 0 < x1(R) < m,

then by Lemma 18 (i) and (ii),

V1(x1(R) + 1, f1(R))− t1(R) ≤ v2 ≤ t1(R)− V1(x1(R)− 1, f1(R)).

Finally, if xi(R) = m, then by Lemma 18 (i), t1(R)−V1(m−1, f1(R)) ≥ v2. In either case,

by R ∈ (RNI)2 and x1(R) + x2(R) = m, Remark 8 implies that f(R) is efficient for R.

Part 2. We show (ii). Let R ∈ R2, i, j ∈ N be a distinct pair, and R′
i ∈ R be such that

R ̸= (R0, R0). If Ri ∈ RC ∩ RQ, then by Remark 10, Ri = Rinv
i . Then, since f(R) and

f(R′
i, Rj) are the outcomes of the Vickrey rule for (Ri, R

inv
j ) and (R′inv

i , Rinv
j ), respectively,

strategy-proofness of the Vickrey rule gives fi(R) Ri fi(R
′
i, Rj). Thus, we assume Ri = R0.

By R ̸= (R0, R0), Rj ∈ RC ∩ RQ.

Let xi ≡ xi(R
′
i, R−i). We show fi(R) Ri (xi, ti(R

′
i, Rj)). By the definition of the inverse
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Vickrey rule, ti(R) = vjxi(R) and ti(R
′
i, Rj) = vjxi, where vj > 0 is a constant incremental

valuations associated with Rj. If xi > xi(R), then xi(R) < m. Then,

Vi(xi, fi(R))− ti(R)

=

xi−1∑
x=xi(R)

(
Vi(x+ 1, fi(R))− Vi(x, fi(R))

)
(by Remark 1 (iii))

≤ (xi − xi(R))
(
Vi(xi(R) + 1, fi(R))− Vi(xi(R), fi(R))

)
(by Ri ∈ RD)

≤ (xi − xi(R))vj (by Lemma 18 (ii))

= ti(R
′
i, Rj)− ti(R),

or equivalently, Vi(xi, fi(R)) ≤ ti(R
′
i, Rj). Thus, fi(R) Ri (xi, ti(R

′
i, Rj)).

The other case can be treated symmetrically, and we omit the proof. ■

3.2 Proof of Proposition 1

In this section, we provide the proof of Proposition 1.

Proposition 1. Assume m is even. Let R0 ∈ RD ∩ R++.

(i) Assume n = 2. Assume R0 has the upper bound for the nonnegative income effects. An

inverse Vickrey rule on ((RC ∩ RQ) ∪ {R0})2 satisfies efficiency, individual rationality,

no subsidy for losers, and strategy-proofness.

(ii) Assume R0 does not have the upper bound for the nonnegative income effects. Let R
be rich and R0 ∈ R. No rule on Rn satisfies efficiency, individual rationality, no subsidy

for losers, and strategy-proofness.

Supposem is even. ByR0 ∈ RD ∩ R++, Remark 12 implies d(xi;R0) = d(x;R0) ≡ d(x;R0)

for each x ∈ M . In the following, we may omit R0 in d(·;R0).

3.2.1 Proof of Proposition 1 (i)

Now, we complete the proof of Proposition 1 (i). Suppose n = 2 and R0 ∈ RD ∩ R++ has

the upper bound for the nonnegative income effects. Then, by Lemma 17 (i),

V0(β + 1, (β, t∗))− t∗ ≤ d(β − 1), (1)

where β ≡ m
2
and t∗ ≡

∑β−1
x=0 p(m− x;R0).

LetR ≡ (RC ∩ RQ) ∪ {R0}. Let f be an inverse Vickrey rule onR2. By Proposition 6,

it suffices to show that for each R ∈ R2, each i ∈ N , and each R′
i ∈ R, if R = (R0, R0),

then fi(R) Ri fi(R
′
i, R−i). Let R ≡ (R0, R0). Let i ∈ N and R′

i ∈ R. Let xi ≡ xi(R
′
i, R−i).

If xi = 0, then by Proposition 6 (i), fi(R) Ri 0 = fi(R
′
i, R−i). Thus, suppose xi > 0.

By Corollary 3 and Remark 12, Rinv ∈ (RD)2. Thus, by the definition of the inverse

Vickrey rule and Remark 8, fi(R) = (β, t∗) and ti(R
′
i, R−i) =

∑xi−1
x=0 p(m − x;R0). By
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Proposition 3 and Remark 12, ti(R) =
∑β

x=1 d(m − x) and ti(R
′
i, R−i) =

∑xi

x=1 d(m − x).

If xi = xi(R), then fi(R) = fi(R
′
i, R−i). Thus, suppose xi ̸= xi(R).

First, suppose xi > xi(R). Then,

ti(R
′
i, R−i)− ti(R) =

xi∑
x=1

d(m− x)−
β∑

x=1

d(m− x)

=

xi∑
x=β+1

d(m− x)

≥ (xi − β)d(m− β − 1) (by Lemmas 7 and 11)

= (xi − β)d(β − 1) (by 2β = m)

≥ (xi − β)
(
Vi(β + 1, fi(R))− ti(R)

)
(by (1))

≥ Vi(xi, fi(R))− ti(R), (by Ri ∈ RD)

or equivalently, ti(R
′
i, R−i) ≥ Vi(xi, fi(R)). This implies fi(R) Ri (xi, ti(R

′
i, R−i)).

Suppose instead xi < xi(R). Note that by β = xi(R) > xi > 0, β − 1 > 0. We have

ti(R) =

β∑
x=1

d(m− x) < βd(m− β − 1) = βd(β − 1),

where the inequality follows from Ri ∈ RD and Lemma 11, and the last equality from

2β = m. Thus, by Ri ∈ R++, Remark 5 (ii) implies

ti(R)− Vi(β − 1, fi(R)) > βd(β − 1)− Vi

(
β − 1, (β, βd(β − 1))

)
. (2)

Note that by 0 < β − 1 < m, (β − 1)d(β − 1) ∈ T (β − 1). Thus,

Vi

(
β, (β − 1, (β − 1)d(β − 1))

)
= βd(β − 1).

This implies (β, βd(β − 1)) Ii (β − 1, (β − 1)d(β − 1)). Thus, by Remark 1 (i) and (iii),

Vi

(
β − 1, (β, βd(β − 1))

)
= Vi

(
β − 1, (β − 1, (β − 1)d(β − 1))

)
= (β − 1)d(β − 1). (3)

By (2) and (3),

ti(R)− Vi(β − 1, fi(R)) > βd(β − 1)− (β − 1)d(β − 1) = d(β − 1). (4)
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Then,

ti(R)− ti(R
′
i, R−i) =

β∑
x=1

d(m− x)−
xi∑
x=1

d(m− x)

=

β∑
x=xi+1

d(m− x)

< (β − xi)d(m− β − 1) (by Lemma 11)

= (β − xi)d(β − 1) (by 2β = m)

< (β − xi)
(
ti(R)− Vi(β − 1, fi(R))

)
(by (4))

≤ ti(R)− Vi(xi, fi(R)), (by Ri ∈ RD)

or equivalently, Vi(xi, fi(R)) < ti(R
′
i, R−i). This implies fi(R) Pi (xi, ti(R

′
i, R−i)). ■

3.2.2 Proof of Proposition 1 (ii)

In this subsection, we provide the proof of Proposition 1 (ii). Suppose R0 ∈ RD ∩ R++

does not have the upper bound for the nonnegatinve income effects. By Lemma 17 (i),

V0(β + 1, (β, t∗))− t∗ > d(β − 1), (5)

where β ≡ m
2
and t∗ ≡

∑β−1
x=0 p(m− x;R0).

Suppose by contradiction that there is a rule f on ((RC ∩ RQ) ∪ {R0})n satisfying

efficiency, individual rationality, no subsidy for losers, and strategy-proofness. Note that

Steps 1 to 3 in the proof of Theorem 1 only depends on the assumption of decreasing

incremental valuations, and so the discussion is valid here as well. Thus, we hereafter take

over the results and the notations in Steps 1 to 3 in the proof of Theorem 1.

As in the proof of Theorem 1, let R2 ≡ R0. First, we show zf2 (R−2; β+1) P2 zf1 (R−2; β).

Note that by Proposition 3 and Remark 12, t∗ =
∑β

x=1 d(m − x). Thus, by Step 3 and

Lemma 2, zf2 (R−2; β) = (β, t∗). Also,

tf2(R−2; β + 1)− tf2(R−2; β) = d(m− β − 1) (by Step 3)

= d(β − 1) (by 2β = m)

< V2(β + 1, zf2 (R−2; β))− tf2(R−2; β). (by (5))

Thus, tf2(R−2; β + 1) < V2(β + 1, zf2 (R−2; β)). This implies zf2 (R−2; β + 1) P2 zf2 (R−2; β).

By the same argument as in the proof of Theorem 1, we can show that for each x2 ∈ M

with x2 < β, zf2 (R−2;x2+1) P2 zf2 (R−2;x2). Thus, for each x2 ∈ M with x2 ≤ β, we have

zf2 (R−2; β+1) P2 zf2 (R−2;x2). By Lemma 4, x2(R) ≥ β+1. Thus, by x1(R)+x2(R) ≤ m

and 2β = m,

x1(R) ≤ m− x2(R) ≤ m− β − 1 = β − 1.
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Since both agents 1 and 2 have the same preferences R0, a symmetric argument implies that

for for each x1 ∈ M with x1 ≤ β, zf1 (R−1;x1+1) P1 zf1 (R−1;x1). Thus, by x1(R) ≤ β− 1,

zf1 (R−1;x1(R) + 1) P1 zf1 (R−1;x1(R)) = f1(R).

However, this contradicts Lemma 4. ■

3.3 Proof of Proposition 4

In this section, we prove Proposition 4.

Proposition 4. Assume m is even. Let R0 ∈ RD ∩ R−− satisfy the single-intersection

condition.

(i) Assume n = 2. Assume R0 has the upper bound for the nonpositive income effects. An

inverse Vickrey rule on ((RC ∩ RQ) ∪ {R0})2 satisfies efficiency, individual rationality,

no subsidy for losers, and strategy-proofness.

(ii) Assume R0 does not have the upper bound for the nonpositive income effects. Let R
be rich and R0 ∈ R. No rule on Rn satisfies efficiency, individual rationality, no subsidy

for losers, and strategy-proofness.

Suppose m is even, and R0 satisfies the single-intersection condition. Then, d(x;R0) =

d(x;R0) ≡ d(x;R0) for each x ∈ M . In the following, we may omit R0 in d(·;R0).

3.3.1 Proof of Proposition 4 (i)

In this subsection, we prove Proposition 4 (i). Suppose n = 2, and R0 ∈ RD ∩ R−− has

the upper bound for the nonpositive income effects. By Lemma 17 (ii),

t∗ − V0(β − 1, (β, t∗)) ≥ d(β), (1)

where β ≡ m
2
and t∗ ≡

∑β−1
x=0 p(m− x;R0).

LetR ≡ (RC ∩ RQ) ∪ {R0}. Let f be an inverse Vickrey rule onR2. By Proposition 6,

it suffices to show that for each R ∈ R2, each i ∈ N , and each R′
i ∈ R with R = (R0, R0),

fi(R) Ri fi(R
′
i, R−i). Let R ≡ (R0, R0), i ∈ N , and R′

i ∈ R. Further, let xi ≡ xi(R
′
i, R−i).

If xi = 0, then by Proposition 6 (i), fi(R) Ri 0 = fi(R
′
i, R−i). Thus, suppose xi > 0.

By Corollary 3, Rinv
0 ∈ RD. Thus, by the definition of the inverse Vickrey rule and

Remark 8, fi(R) = (β, t∗) and ti(R
′
i, Rj) =

∑xi−1
x=0 p(m− x;R0). By Proposition 3, ti(R) =∑β

x=1 d(m− x) and ti(R
′
i, R−i) =

∑xi

x=1 d(m− x). If xi = xi(R), then fi(R) = fi(R
′
i, R−i).

Thus, suppose xi ̸= xi(R).
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Suppose xi < xi(R). Then,

ti(R)− ti(R
′
i, R−i) =

β∑
x=1

d(m− x)−
xi∑
x=1

d(m− x)

=

β∑
x=xi+1

d(m− x)

≤ (β − xi)d(m− β) (by Lemma 11)

= (β − xi)d(β) (by 2β = m)

≤ (β − xi)
(
ti(R)− Vi(β − 1, fi(R))

)
(by (1))

≤ ti(R)− Vi(xi, fi(R)), (by Ri ∈ RD)

or equivalently, ti(R
′
i, R−i) ≥ Vi(xi, fi(R)). This implies fi(R) Ri (xi, ti(R

′
i, R−i)).

Next, suppose xi > xi(R). Then,

ti(R) =

β∑
x=1

d(m− x) ≤ βd(m− β) = βd(β),

where the inequality follows from R0 ∈ RD and Lemma 11, and the second equality from

2β = m. Thus, by Ri ∈ R−−, Remark 6 (i) implies

Vi(β + 1, fi(R))− ti(R) ≤ Vi(β + 1, (β, βd(β)))− βd(β) = d(β), (2)

where the equality follows from βd(β) ∈ T (β). Then,

ti(R
′
i, R−i)− ti(R) =

xi∑
x=1

d(m− x)−
β∑

x=1

d(m− x)

=

xi∑
x=β+1

d(m− x)

> (xi − β)d(m− β) (by Lemmas 7 and 11)

= (xi − β)d(β) (by 2β = m)

≥ (xi − β)
(
Vi(β + 1, fi(R))− ti(R)

)
(by (2))

≥ Vi(xi, fi(R))− ti(R), (by Ri ∈ RD)

or equivalently, ti(R
′
i, R−i) > Vi(xi, fi(R)). Thus, fi(R) Pi (xi, ti(R

′
i, R−i)). ■
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3.3.2 Proof of the Proposition 4 (ii)

In this subsection, we prove Proposition 4 (ii). Suppose R0 ∈ RD ∩ R−− does not have

the upper bound for the nonpositive income effects. Then, by Lemma 17 (ii),

t∗ − V0(β − 1, (β, t∗)) < d(β), (3)

where β ≡ m
2
and t∗ ≡

∑β−1
x=0 p(m− x;R0).

Suppose by contradiction that there is a rule f on ((RC ∩ RQ) ∪ {R0})n satisfying

efficiency, individual rationality, no subsidy for losers, and strategy-proofness. By the

same reason as in the proof of Proposition 1 (ii), we can take over the results and the

notations in Steps 1 to 3 in the proof of Theorem 1.

Let R2 ≡ R0. First, we show zf2 (R−2; β) P2 zf1 (R−2; β − 1). By Proposition 3, t∗ =∑β
x=1 d(m− x). Thus, by Step 3 and Lemma 2, zf2 (R−2; β) = (β, t∗). Then,

tf2(R−2; β)− tf2(R−2; β − 1) = d(m− β) (by Step 3)

= d(β) (by 2β = m)

> tf2(R−2; β)− V2(β − 1, zf2 (R−2; β)). (by (3))

Thus, tf2(R−2; β − 1) < V2(β − 1, zf2 (R−2; β)). This implies zf2 (R−2; β − 1) P2 zf2 (R−2; β).

By the same argument as in the proof of Theorem 1, we can show that for each x2 ∈ M

with β ≤ x2 < m, zf2 (R−2;x2) P2 zf2 (R−2;x2 +1). Thus, zf2 (R−2; β − 1) P2 zf2 (R−2;x2) for

each x2 ∈ M with x2 ≥ β. By Lemma 4, x2(R) ≤ β − 1. By Lemma 1 and xi(R) = 0 for

each i ∈ N\{1, 2}, x1(R) = m− x2(R). Thus, by x2(R) ≤ β − 1 and 2β = m,

x1(R) = m− x2(R) ≥ m− β + 1 = β + 1.

By a symmetric argument, we can show that for each for each x1 ∈ M with x1 ≥ β,

zf1 (R−1;x1 − 1) P1 zf1 (R−1;x1). By x1(R) ≥ β + 1,

zf1 (R−1;x1(R)− 1) P1 zf1 (R−1;x1(R)) = f1(R),

which contradicts Lemma 4. ■

4 Remaining parts of the proof of Proposition 2

In this section, we prove the remaining parts of Proposition 2. We divide the argument

into two cases.

Case 1. R0 ∈ R++.

In Shinozaki et al. (2022), we have already considered the case whereR = (RNI(ε) ∩ RQ) ∪ {R0}.
Thus, suppose R = (RND(ε) ∩ RQ) ∪ {R0}.
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By R0 ∈ RD, Lemma 11 implies d(m − 1) < d(m − 2). Let ε1 > 0 be such that

ε1 < min{d(m− 2)− d(m− 1), ε}. We have

d(m− 1) = md(m− 1)− V1(m− 1, (m,md(m− 1))) (by Remark 11)

> md(m− 1) + ε1 − V1(m− 1, (m,md(m− 1) + ε1)). (by Remark 5 (ii))

Then,

ε2 ≡ d(m− 1)− (md(m− 1) + ε1) + V1(m− 1,md(m− 1) + ε1)) > 0.

Note that δ < d(m−1). Let ε3 > 0 be such that ε1+mε3 < ε, ε3 < min{d(m−1)−δ, ε2},
and

ε1 + ε3 < d(m− 2)− d(m− 1). (1)

Let R2 ∈ RND ∩ RQ be such that v2(1) = d(m− 1)− ε3, and for each x2 ∈ M\{0,m},

v2(x2 + 1)− v2(x2) = d(m− 1) +
ε1 + ε3
m− 1

.

By ε1+mε3 < ε, we have R2 ∈ RND(ε) ∩ RQ. By ε3 < d(m−1)−δ, v2(1) > δ. Moreover,

v2(x2 + 1) − v2(x2) > δ for each x2 ∈ M\{0,m}. Thus, for each x1 ∈ M , σ1(R−1;x1) =

v2(m− x1). By Fact 1, for each x1 ∈ M f
1 (R−1),

tf1(R−1;x1) = v2(m)− v2(m− x1). (2)

By Step 3 and Lemma 2, tf2(R−2; 1) = d(m− 1). Thus, v2(1)− tf2(R−2; 1) = d(m− 1)−
ε3 − d(m− 1) = −ε3 < 0. Further, for each x2 ∈ M\{0, 1},

v2(x2)− v2(1) = (x2 − 1)
(
d(m− 1) +

ε1 + ε3
m− 1

)
< (x2 − 1)(d(m− 1) + d(m− 2)− d(m− 1)) (by (1))

= (x2 − 1)d(m− 2)

≤
x2−1∑
x=1

d(m− x− 1) (by Lemma 11)

=

x2−1∑
x=1

(tf2(R−2;x+ 1)− tf2(R−2;x)) (by Step 3)

= tf2(R−2;x2)− tf2(R−2; 1),

or equivalently, v2(1) − tf1(R−2; 1) > v2(x2) − tf2(R−2;x2). Thus, by Lemma 2, for each

x2 ∈ M\{0}, zf2 (R−2; 0) = 0 P2 zf2 (R−2;x2). By Lemma 4, x2(R) = 0. Since xi(R) = 0 for

each i ∈ N\{1, 2}, Lemma 1 implies x1(R) = m. Let x ∈ X be such that x1 = m− 1 and
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x2 = 1. Then,

v2(x2)− v2(x2(R))− (t1(R)− V1(x1, f1(R)))

= d(m− 1)− ε3 − (md(m− 1) + ε1) + V1(m− 1, (m,md(m− 1) + ε1)) (by (2))

= ε2 − ε3

> 0. (by ε3 < ε2)

By Remark 7, this contradicts efficiency.

Case 2. R0 ∈ RD ∩ R−−.

We have already considered the case where R = (RND(ε) ∩ RQ) ∪ {R0} in Shinozaki

et al. (2022). Thus, suppose R = (RNI(ε) ∩ RQ) ∪ {R0}.
Note that δ < d(m− 1). Let ε1 > 0 be such that ε1 < min{d(m− 1)− δ, ε}. Then,

d(m− 1) = md(m− 1)− V1(m− 1, (m,md(m− 1))) (by Remark 11)

> md(m− 1)− ε1 − V1(m− 1, (m,md(m− 1)− ε1)). (by Remark 6 (ii))

Thus,

ε2 ≡ d(m− 1)− (md(m− 1)− ε1) + V1(m− 1, (m,md(m− 1)− ε1)) > 0.

Let ε3 > 0 be such that mε3 < ε1 and ε1 + ε3 < d(m− 1)− δ.

Let R2 ∈ RNI ∩ RQ be such that v2(1) = d(m− 1)− ε3, and for each x2 ∈ M\{0,m},

v2(x2 + 1)− v2(x2) = d(m− 1)− ε1 + ε3
m− 1

.

By mε3 < ε1, R2 ∈ RNI(ε) ∩ RQ. By ε1 + ε3 < d(m− 1)− δ, v2(x2 + 1)− v2(x2) > δ for

each x2 ∈ M\{m}. Thus, for each x1 ∈ M , σ1(R−2;x1) = v2(m− x1). By Fact 1, for each

x1 ∈ M f
1 (R−1),

tf1(R−1;x1) = v2(m)− v2(m− x1). (3)
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For each x2 ∈ M\{0},

v2(x2) = x2d(m− 1)− ε3 − (x2 − 1)
ε1 + ε3
m− 1

< x2d(m− 1) (by ε1, ε3 > 0)

≤ d(m− 1) + (x2 − 1)d(m− 1) (by d(m− 1) ≤ d(m− 1))

≤
x2−1∑
x=0

d(m− x− 1) (by Lemmas 7 and 11)

≤
x2−1∑
x=0

(tf2(R−2;x+ 1)− tf2(R−2;x)) (by Step 3)

= tf2(R−2;x2)− tf2(R−2; 0),

or equivalently, v2(0)− tf2(R−2; 0) > v2(x2)− tf2(R−2;x2). Thus, by Lemma 4, x2(R) = 0.

By xi(R) = 0 for each i ∈ N\{1, 2}, Lemma 1 gives x1(R) = m. By (3), t1(R) = md(m−
1)− ε1 − 2ε3. Then,

v2(x2(R) + 1)− v2(x2(R))− (t1(R)− V1(x1(R)− 1, f1(R)))

= d(m− 1)− ε3 − (md(m− 1)− ε1 − 2ε3) + V1(m− 1, (m,md(m− 1)− ε1 − 2ε3))

> d(m− 1)− ε3 − (md(m− 1)− ε1) + V1(m− 1, (m,md(m− 1)− ε1))

(by Remark 6 (ii))

= ε2 − ε3

> 0. (by ε3 < ε2)

By R ∈ (RNI)n and Remark 8, this contradicts efficiency. ■

5 Even number of units and more than two agents

In this section, we give an example which demonstrates that when n ≥ 3 and m = 6a− 2

for some a ∈ N with a ≥ 2, for any R0 ∈ RD ∩ R++, the inverse Vickrey rule violates

strategy-proofness on Rn ≡ ((RC ∩ RQ) ∪ {R0})n.1

Example 9. Let n ≥ 3 andm = 6a−2, where a ∈ N and a ≥ 2. Let R0 ∈ RD ∩ R++. By

R0 ∈ RD ∩ R++, Remark 12 implies that d(x;R0) = d(x;R0) ≡ d(x;R0) for each x ∈ M .

Hereafter, we may omit R0 in d(·;R0).

Let R ≡ (RC ∩ RQ) ∪ {R0}. Let f ≡ (x, t) be an inverse Vickrey rule on Rn. For

each i ∈ {1, 2, 3}, let Ri = R0. By R0 ∈ RD ∩ R++, Lemma 11 and Corollary 2 imply

p(m;R0) = d(m − 1) > 0. Thus, we can choose δ > 0 such that δ < p(m;R0). For each

j ∈ N\{1, 2, 3}, let Rj ∈ RC ∩ RQ be such that for each xj ∈ M , vj(xj) = δxj.

Note that by Corollary 3 and Remark 12, Rinv
0 ∈ RD. Thus, by the definition of the

1Parallel discussion applies to any preference R0 ∈ RD ∩ R−− satisfying the single-intersection condi-
tion.
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inverse Vickrey rule, Rinv ∈ (RNI)n, δ < p(m;R0), and Remark 8, xi(R) = xj(R) = 2a−1

and xk(R) = 2a for some distinct triple i, j, k ∈ {1, 2, 3}, xl(R) = 0 for each l ∈ N\{1, 2, 3},

ti(R) = tj(R) = p(2a;R0) + 2
3a−1∑

x=2a+1

p(x;R0), tk(R) = 2
3a−1∑
x=2a

p(x;R0),

and tl(R) = 0 for each l ∈ N\{1, 2, 3}. Without loss of generality, let i = 1, j = 2, and

k = 3.

ByR0 ∈ RD, Lemma 11 implies d(2a−2) < d(2a−1). Thus, we can chooseR′
1 ∈ RC ∩ RQ

such that d(2a−2) < v′1 < d(2a−1), where v′1 is a constant incremental valuation associated

with R′
1. By R0 ∈ RD ∩ R++, Corollary 2 implies p(2a − 1;R0) < v′1 < p(2a;R0). Thus,

by the definition of the inverse Vickrey rule, Rinv ∈ (RNI)n, and Remark 8, f1(R
′
1, R−1) =

(2a, 2
∑3a−1

x=2a+1 p(x;R0)).

We have

t1(R) = d(2a− 1) + 2
3a−2∑
x=2a

d(x) < (2a− 1)d(2a− 1).

where the equality follows from R0 ∈ RD ∩ R++ and Corollary 2, and the inequality from

R0 ∈ RD and Lemma 11. Thus,

V1(2a, f1(R))− t1(R)

> V1(2a, (2a− 1, (2a− 1)d(2a− 1))− (2a− 1)d(2a− 1) (by Remark 5 (i))

= d(2a− 1) (by (2a− 1)d(2a− 1) ∈ T (2a− 1))

= p(2a;R0) (by Corollary 2)

= t1(R
′
1, R−1)− t1(R),

or equivalently, V1(2a, f1(R)) > t1(R
′
1, R−1). This implies f1(R

′
1, R−1) P1 f1(R). Thus, f

violates strategy-proofness.
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