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Abstract

We consider the problem of allocating multiple units of an object and collecting

payments. Each agent can receive multiple units, and his (consumption) bundle is a

pair consisting of the units he receives and his payment. An agent’s preference over

bundles may not be quasi-linear. A class of preferences is rich if it includes all quasi-

linear preferences with constant incremental valuations. We show that for an odd

number of units, if a class of preferences is rich and includes at least one preference

exhibiting both decreasing incremental valuations and either positive or negative

income effects, then no rule satisfies efficiency, individual rationality, no subsidy for

losers, and strategy-proofness. In contrast, for an even number of units, the existence

of a rule satisfying the four properties depends on the size of the income effects. We

further show that if a rich class of preferences includes only preferences that exhibit

nondecreasing incremental valuations, then the generalized Vickrey rule (Saitoh and

Serizawa, 2008; Sakai, 2008) is the only rule satisfying the four properties. Our

results suggest that (i) there a rule satisfying the four properties “almost” only when

preferences exhibit nondecreasing incremental valuations, and (ii) it depends not only

on the properties of preferences such as nondecreasing incremental valuations, but

also on other characteristics of the environment such as the number of units.
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1 Introduction

1.1 Purpose

The most important goal of many government auctions is to allocate public resources

efficiently. These resources often consist of identical objects. Important examples are spec-

trum license auctions in some countries such as the Germany 3G auction and procurement

auctions in some markets such as procurement of vaccines. In this paper, we focus on multi-

unit object allocation problems where the objects are identical. Each agent can receive

multiple units of the object, and his (consumption) bundle is a pair specifying the number of

units he receives and his payment. Each agent has a (possibly) non-quasi-linear preference

over bundles, which exhibits income effects or reflects non-linear borrowing costs.1

An allocation specifies a bundle for each agent. An (allocation) rule is a function from a

set of preference profiles (a domain) to the set of allocations. An allocation is efficient for a

given preference profile if no other allocation makes some agent better off without making

any agent worse off, or decreasing the owner’s revenue. A rule satisfies efficiency if it

chooses an efficient allocation for each preference profile. It satisfies individual rationality

if no agent is worse off than receiving nothing and making no payment. It satisfies no

subsidy for losers if the payment of an agent who receives no object is nonnegative. This

condition eliminates “fake” agents whose only interest is the participation subsidy. A rule

satisfies strategy-proofness if no agent ever benefits from misrepresenting his preference.

We regard these four properties as basic desiderata. Then, our goals are two-fold: (i) to

identify domains on which there is a rule satisfying our desiderata, and (ii) to characterize

the class of rules satisfying our desiderata when they exist.

1.2 Main results

A preference exhibits nonincreasing (resp. nondecreasing) incremental valuations if the

incremental willingness to buy at each bundle is at least as large as (resp. at least as

small as) the incremental willingness to sell at the bundle.2 A preference exhibits constant

incremental valuations if the incremental willingness to buy at each bundle coincides with

the incremental willingness to sell at the bundle. Because of non-quasi-linearity, both the

incremental willingness to buy and the incremental willingness to sell may vary depending

on the bundle that we start from. The domain with nonincreasing (resp. nondecreasing)

incremental valuations is the set of preference profiles at which the preference of each

agent exhibits nonincreasing (resp. nondecreasing) incremental valuations. The domain

with constant incremental valuations is the set of preference profiles at which the preference

of each agent exhibits constant incremental valuations.

If a rule satisfies efficiency, individual rationality, no subsidy for losers, and strategy-

proofness on a domain, then it also satisfies them on its subdomains. Thus, the smaller the

1Note that our setting is a private values model.
2A preference exhibiting decreasing or increasing incremental valuations can be defined analogously.
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domain, the weaker the implications of the four properties. Thus, the existence of a rule

satisfying the four properties becomes trivial on a small enough domain. To avoid such

cases, we require a class of preferences to include an essential and small class of prefer-

ences. The quasi-linear domain with constant incremental valuations is contained both in

the domains with nonincreasing and nondecreasing incremental valuations, and is single-

dimensional. Moreover, on the quasi-linear domain with constant incremental valuations,

the Vickrey rule satisfies the four properties (Vickrey, 1961; Holmström, 1979). We require

a domain to include the quasi-linear domain with constant incremental valuations. We

call the quasi-linear domain with constant incremental valuations a minimal domain. A

class of preferences is rich if it includes all quasi-linear preferences that exhibit constant

incremental valuations.

1.2.1 Nonincreasing incremental valuations

If a firm has a production technology that exhibits nonincreasing (resp. nondecreasing)

returns to scale, its preference exhibits nonincreasing (resp. nondecreasing) incremental

valuations. Nonincreasing returns to scale are a typical assumption in economic theory.

Moreover, most of the literature on multi-unit object allocation problems assumes decreas-

ing (or weaker nonincreasing) incremental valuations. Thus, we first investigate classes of

preferences that exhibit decreasing incremental valuations.

A preference exhibits positive (resp. negative) income effects if the incremental willing-

ness to buy increases (resp. decreases) as a payment decreases. Positive (resp. negative)

income effects mean that the object is a normal (resp. inferior) good.

Typically borrowing costs progressively increase as borrowing increases. This factor

causes preferences to exhibit positive income effects. The complements of the object also

cause positive income effects. The less payments are, the more cash is available to buy

the complements, which increases the demand for the object. For example, consider spec-

trum licenses for mobile phone. As more cash is available, mobile operators can afford to

invest more for their services, which affects the profits from the licenses. Low frequency

electromagnetic wave travels longer and enables mobile operators to save the cost of base

stations. In contrast, high frequency electromagnetic wave transmits more information,

and so is more suitable for latest services such as 5G services. Such features make mobile

operators prefer a low frequency license more as the payment for the license increases.

Accordingly, various factors cause income effects in different directions. Thus, we analyze

both of positive and negative income effects.

Our results for preferences with nonincreasing incremental valuations depends on the

number of units. Our first main result (Theorem 1) is as follows. For an odd number

of units, consider a class of preferences that is rich and includes at least one preference

exhibiting both decreasing incremental valuations and either positive or negative income

effects. Then, no rule satisfies efficiency, individual rationality, no subsidy for losers, and

strategy-proofness.

The larger a domain is, the more preference profiles at which the four properties have
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to be satisfied, and the more difficult it is to satisfy the properties. This means that the

implication of the properties gets stronger as a domain enlarges, and so an impossibility

theorem on any domain carries over to any larger domain. Thus, Theorem 1 is a striking

result as it shows adding at least one plausible preference to a small domain on which we

find a positive result leads us to a negative result.

For preferences with decreasing incremental valuations, several agents typically win the

object at an efficient allocation, and if an agent with a non-quasi-linear preference wins

the object, then he may benefit from misrepresenting his preference so as to win one more

or fewer unit, or it may be possible to Pareto improve the allocation by exchanging one

unit between him and another winner.

The inverse Vickrey rule plays a key role in the proof of Theorem 1. It applies the

inverse-demands of agents to the Vickrey rule (Vickrey, 1961) as their valuations. It is a

new variant of the possible extensions of the Vickrey rule for quasi-linear preferences with

nonincreasing incremental valuations to non-quasi-linear preferences with nonincreasing

incremental valuations, and is different from the generalized Vickry rule, which has been

studied in the literature (Saioh and Serizawa, 2008; Sakai, 2008; Malik and Mishra, 2021).

To illustrate the proof, consider the situation where there are two agents who have

the same preferences that exhibit decreasing incremental valuations and positive income

effects.3 We emphasize that the assumption of an odd number of units plays an important

role in the proof of Theorem 1. The main step of the proof is dedicated to showing that at

the preference profile, the outcome of a rule satisfying the four properties coincides with

that of the inverse Vickrey rule. If the number of units is odd, then the inverse Vickrey rule

cannot treat the agents in a completely equal way. Thus, it treats an agent unfavorably, and

when m is the number of units, an agent can receive m−1
2

units but the other agent receives
m+1
2

units. We show that under the inverse Vickrey rule, the agent who receives m−1
2

units

pays small payment compared to his inverse-demand of m−1
2

units. Then, positive income

effects implies that he demands one more unit at his outcome bundle, and benefits from

misrepresent his preference so as to win one more unit.4

We emphasize that the odd number of units is an indispensable assumption in Theo-

rem 1. For an even number of units, the result depends on the size of the income effects of

the preference added to the class of preferences.5 We identify some positive value, and show

that if the size of the income effects of a preference with decreasing incremental valuations

and either positive or negative income effects is no greater than the value, then on the

domain that contains our minimal domain and the preference, the inverse Vickrey rule sat-

isfies the four properties (Propositions 1 (i) and 4 (i)). In contrast, if the size of the income

effects is greater than the value, then no rule satisfies the properties (Propositions 1 (ii)

and 4 (ii)).

3Similar discussion applies to the case where agents have the preferences with negative income effects.
4Recall the definition of positive income effects that the incremental willingness to buy increases as a

payment decreases.
5The size of the income effects is the difference between the incremental willingness to buy at a pair of

payments.
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Since our minimal domain, that is, the quasi-linear domain with constant incremental

valuations, contains only limited variations of preferences, it is an interesting question

what if the variations of the minimal domain are expanded “slightly”. Thus, we further

investigate the class of rules satisfying the four properties by expanding the minimal domain

slightly. In particular, we ask whether there is a rule satisfying the four properties on

a domain that contains the expanded minimal domain and includes a non-quasi-linear

preference with decreasing incremental valuations.

To clarify the precise meaning of “slightly”, we introduce the following preferences.

Given a positive number ε > 0, a preference exhibits ε-nonincreasing incremental valua-

tions (resp. ε-nondecreasing incremental valuations) if it exhibits nonincreasing incremen-

tal valuations (resp. nondecreasing incremental valuations), and the absolute difference

between the incremental willingness to buy and the incremental willingness to sell at each

bundle is less than ε. The NI(ε)-minimal domain (resp. the ND(ε)-minimal domain)

is the quasi-linear domain with ε-nonincreaing incremental valuations (ε-nondecreasing

incremental valuations). When ε is sufficiently small, both the NI(ε)-minimal and the

ND(ε)-minimal domains are slight expansions of the minimal domain in that both the do-

mains include only quasi-linear preferences with almost constant incremental valuations.

Moreover, the Vickrey rule still satisfies the properties on the those domains (Vickrey, 1961;

Holmström, 1979). A class of preferences is NI( ε)-rich (resp. ND( ε)-rich) if it includes all

quasi-linear preferences with ε-nonincreasing incremental valuations (resp. ε-nondecreasing

incremental valuations).

We establish the following result. Let ε > 0, and consider a class of preferences that

is either NI(ε)-rich or ND(ε)-rich, and includes at least one preference that exhibits de-

creasing incremental valuations and either positive or negative income effects . Then, no

rule satisfies efficiency, individual rationality, no subsidy for losers, and strategy-proofness

(Proposition 2). The number ε > 0 can be arbitrarily small in Proposition 2. Note that

Proposition 2 does not depend on the number of units. Thus, in contrast to Propositions 1

and 4, it states that in the case of an even number of units, a minimal increase of the

variations of the domain leads to an impossibility theorem.

Although the conclusion of Proposition 2 is the same as that of Theorem 1, the intuition

for the proof of Proposition 2 is different. To explain the intuition, consider a preference

profile where agent 1 has a preference exhibiting decreasing incremental valuations and

positive income effects, and agent 2 has a quasi-linear preference exhibiting ε-nonincreasing

incremental valuations for a given ε > 0.6 As in the proof of Theorem 1, we show that at

the preference profile, the outcome of a rule satisfying the four properties coincides with

that of the inverse Vickrey rule. Then, if agent 1 wins m − 1 units, then his payment is

slightly lower than when agent 2 has a quasi-linear preference with constant incremental

valuations and agent 1 still winsm−1 units. Then, agent 1’s positive income effects implies

that agent 1’s incremental willingness to buy of m units at his bundle exceeds agent 2’s

6Similar discussions apply to the cases where agent 1 has a preference with negative income effects or
agent 2 has a quasi-linear preference with ε-nondecreasing incremental valuations. For the detalies of the
proof of Proposition 2, see Appendix B.4.
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incremental willingness to sell of 1 unit at his bundle. Thus, a Pareto improvement is

possible if agent 2 gives 1 unit to agent 1 in return for a compensation from agent 1. Note

that the above intuition of the proof of Proposition 2 does not depend on the number of

units unlike in the proof of Theorem 1.

1.2.2 Nondecreasing incremantal valuations

Nondecreasing returns to scale are also common in other industries. Such a technology

causes preferences to exhibit nondecreasing incremental valuations.7 Thus, we next con-

sider classes of preferences that exhibit nondecreasing incremental valuations. The gener-

alized Vickrey rule is a natural extension of the Vickrey rule (Saitoh and Serizawa 2008;

Sakai, 2008). Our second main result (Theorem 2) is: if a class of preferences is rich and

includes only preferences that exhibit nondecreasing incremental valuations, then the gen-

eralized Vickrey rule is the only rule satisfying efficiency, individual rationality, no subsidy

for losers, and strategy-proofness.

To see the intuition of the proof of Theorem 2, consider a bundling efficient allocation.

It is an allocation that bundles all the units into one package, and gives the package to a

single agent with the highest valuation of it. For preferences that exhibit nondecreasing

incremental valuations, a bundling efficient allocation is efficient. Thus, under an efficient

rule for preferences that exhibit nondecreasing incremental valuations, the situation is

close to the single-object environment, where the generalized Vickrey rule is the only rule

satisfying the four properties (Saitoh and Serizawa, 2008; Sakai, 2008). This contrasts

with the case of nonincreasing incremental valuations where several agents typically win

the object at an efficient allocation, and we obtain impossibility theorems (Theorem 1 and

Proposition 2).

Although nondecreasing incremental valuations together with efficiency make the situa-

tion close to the single-object environement, any domain of Theorem 2 includes preference

profiles at which a bundling efficient allocation is not a unique efficient allocation. This

complicates the proof of Theorem 2, and the result does not follow in a straightforward

extension of the arguments in the previous literature (Saitoh and Serizawa, 2008; Sakai,

2008). In Section 5, we will discuss this point in detail.

1.3 Related literature

Most papers on multi-unit object allocation problems with money assume quasi-linear

preferences with decreasing (or nonincreasing) incremental valuations (Perry and Reny,

2002, 2005; Ausubel, 2004; Milgrom, 2004; Krishna, 2009; Ausubel et al., 2014, etc).8 This

paper is different from this strand of research in covering not only preferences exhibiting

7For example, Baranov et al. (2017) argue that the vaccine industry is such an example because “new
entry into the vaccine market may require making significant investments in R&D, performing clinical
trials, obtaining regulatory approvals, and building production facilities” (Baranov et al., 2017).

8We also refer to Baranov et al. (2017), who remove the assumption of decreasing incremental valuations
while maintaining quasi-linearity in the procurement auction model.
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nonincreasing incremental valuations, but also those exhibiting nondecreasing incremental

valuations in a non-quasi-linear environment.

In the literature on heterogeneous objects allocation problems with money (Kelso and

Crawford, 1982; Gul and Stacchetti, 1999, 2000; Milgrom, 2000; Ausubel, 2006, etc.),

substitutability among the objects is the key to several positive results such as the exis-

tence of an equilibrium allocation (Kelso and Crawford, 1982), revenue monotonicity of

the Vickrey rule (Ausubel and Milgrom, 2002), etc. When preferences are quasi-linear

and objects are identical, substitutability reduces to nonincreasing incremental valuations

(Kelso and Crawford, 1982). Thus, our results (Theorems 1 and 2) are in contrast to the

above literature in suggesting that in multi-unit object allocation problems with money,

if preferences may not be quasi-linear, then the existence of a rule satisfying efficiency,

individual rationality, no subsidy for losers, and strategy-proofness is guaranteed “almost”

only when preferences exhibit nondecreasing incremental valuations.

The class of efficient and strategy-proof rules has been studied extensively. When

a class of preferences includes only quasi-linear preferences and is sufficiently rich, the

Vickrey rule is the only rule satisfying efficiency, individual rationality, no subsidy for

losers, and strategy-proofness (Holmström 1979; Chew and Serizawa, 2007).

There is a small but expanding literature on object allocation problems with money

that assume non-quasi-linear preferences. The papers in the literature mainly focuses

on characterizations of rules satisfying efficiency and strategy-proofness together with the

other desirable properties in various models. They are roughly classified into two categories:

papers on unit-demand agents and those on multi-demand agents as ours.9

The minimum price Warlasian rule (Demange and Gale, 1985) plays a central role in

in the first category. It is the only rule satisfying efficiency, individual rationality, no

subsidy for losers, and strategy-proofness both on the classical domain (Morimoto and

Serizawa, 2015) and on the common-tiered-object domain with positive income effects on

which objects are ranked according to the common tiers (Zhou and Serizawa, 2018).

In the single-object environment, the generalized Vickrey rule coincides with the mini-

mum price Walrasian rule, and is the only rule satisfying the four properties (Saitoh and

Serizawa, 2008; Sakai, 2008). As already discussed, when preferences exhibit nondecreasing

incremental valuations, it is efficient to bundle all the units into one package and to give

the package to a single agent with the highest valuation of it. Thus, efficient allocations

for preferences that exhibit nondecreasing incremental valuations are close to those in the

single-object environment. Then, our characterization theorem (Theorem 2) may seem to

be obtained as an application of the characterization for the single-object environment.

However, we emphasize that our result is not a trivial extension of theirs since several

9Precisely, there is the third category of the papers on object allocation problems with money that
assume non-quasi-linear preferences: the papers on hard budget constraint (Dobzinski et al., 2012; Lavi and
May, 2012, etc). Papers in the first two categories including this paper assume continuity of a preference,
and exclude any hard budget constraint. In contrast, papers in the third category assume quasi-linear
preferences with hard budget constraint, and exclude any income effect in the feasible consumption set.
Thus, the papers that belong to the third category are different from those in the first two categories.
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agents may receive the object in our environment.10

In contrast, the papers in the latter category typically obtain impossibility theorems.

In the heterogeneous objects model, if a class of preferences includes all unit-demand

preferences and includes at least one multi-demand preference, then no rule satisfies effi-

ciency, individual rationality, no subsidy for losers, and strategy-proofness (Kazumura and

Serizawa, 2016). We discuss in detail that the proof strategy of our impossibility theorem

(Theorem 1) is different from Kazumura and Serizawa (2016)’s in Section 6.3.

In the heterogeneous objects model, a preference is dichotomous if it divides the set

of packages of objects into the acceptable and the unacceptable sets, and packages in the

former set has the same positive value, but those in the latter set are valueless. On the

dichotomous domain, no rule satisfies efficiency, individual rationality, no subsidy, and

strategy-proofness (Malik and Mishra, 2021). In contrast, on the dichotomous domain

with nonnegative income effects, the generalized Vickrey rule is the only rule satisfying the

same four properties (Malik and Mishra, 2021). Since Malik and Mishra (2021) treat het-

erogeneous objects, their results does not imply our results, and vice versa. In Section 6.2,

we discuss in detail that our proof strategies are different from theirs.

All the above papers on non-quasi-linear preferences treat the different models from

ours. Thus, the results in the above papers can not be applied to multi-unit auctions such

as procurement auctions for vaccines and some spectrum auctions.11 This paper contributes

to the literature by treating the multi-unit object allocation problem with money, which

is common in many important real-life auctions, but are not covered by the above papers.

The unique paper in the literature that considers the multi-unit object allocation prob-

lem with money as ours is Baisa (2020). He shows that on the domain with decreasing

incremental valuations, positive income effects, and the single-crossing property, if prefer-

ences are of single-dimensional types, then there is a rule satisfying efficiency, individual

rationality, no subsidy for losers, and strategy-proofness. He also shows that on the same

domain, if preferences are of multi-dimensional types, then no rule satisfies the four prop-

erties. His results imply that for preferences exhibiting decreasing incremental valuations

and positive income effects, there is a rule satisfying the four properties only when prefer-

ences are of single-dimensional types. Both of his results neither imply nor are implied by

our results.

Compared to his results, our results contribute to the literature by covering a broad

class of environments where preferences exhibit nonincreasing or nondecreasing incremental

valuations, and does positive or negative income effects. Our results also contribute to the

literature by showing that there is a rule satisfying the four properties if and “almost” only

if preferences exhibit nondecreasing incremental valuations.12 Thus, the two results draw

10Section 5 discusses this point in detail.
11Other examples are car license auctions in Singapore, emission auctions, government bond auctions,

procurement auctions for electricity, etc.
12Baisa (2020) assumes that all preferences in a class of preferences exhibit decreasing incremental

valuations. Thus, not only the “if” part, but also the “almost only if” part does not follow from his results
because how the violation of nondecreasing incremental valuations of a preference affects the existence of
a rule satisfying the four properties is beyond the scope of his results.
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different insights into the existence of a rule satisfying the four properties, and our results

complement his. We give a detailed discussion on the relationship between his results and

ours in Section 6.1.

As long as preferences are quasi-linear, the existence of a rule satisfying the four prop-

erties does not depend on the characteristics of the environment such as the properties of

valuations, the number of objects, etc. The prior literature has suggested that in non-quasi-

linear environments, the existence of such a rule depends on the properties of preferences

such as (i) the singe-dimensional types (Baisa, 2020), (ii) the dichotomous property with

nonnegative income effects (Malik and Mishra, 2021), and (iii) the unit-demand property

(Kazumura and Serizawa, 2016). Our results add other properties of preferences that guar-

antee the existence of such a rule to the literature, that is, (i) nondecreasing incremental

valuations and (ii) the small size of the income effects.13 Moreover, our results also con-

tribute to the literature by suggesting that the existence of such a rule depends not only

on the properties of preferences, but also on other characteristics of the environment such

as the number of units.14

1.4 Organization

The remainder of the paper is organized as follows. Section 2 sets up the model. Section 3

introduces the generalized Vickrey rule and the inverse Vickrey rule. Section 4 provides

the results for nonincreasing incremental valuations. Section 5 provides the results for

nondecreasing incremental valuations. Section 6 discusses the relationship between our

results and the related results obtained by other authors, and explains the difficulty of our

proofs. Section 7 concludes. Most proofs are in Appendix, while missing ones can be found

in the supplementary material.

2 The model and definitions

There are n agents and m units of an object, where 2 ≤ n < ∞ and 2 ≤ m < ∞. We

denote the set of agents by N ≡ {1, . . ., n}. Let M ≡ {0, . . .,m}. Further, given m′ ∈ M ,

let M(m′) ≡ {0, . . .,m′}.
Each agent i ∈ N receives xi ∈ M units of the object. The amount of money paid by

agent i is denoted by ti ∈ R. For each agent i ∈ N , his consumption set is M × R, and
13Baisa and Essig and Aberg (2021) assume the maximal size of the nonnegative income effects, and

identify the worst case dead weight loss of the (indirect) Vickrey auction mechanism among all undominated
strategies, which depends on the maximal size of the income effects. Because their result is concerned with
the worst case efficiency loss among undominated strategies, it does not suggest that the existence of a
rule satisfying efficiency and strategy-proofness together with the other desirable properties depends on
the size of the income effects.

14Theorem 1 and Proposition 1 of Baisa (2020) also suggest that in the multi-unit object allocation
problem with money, if agents have preferences with decreasing incremental valuations and positive income
effects, then the existence of a rule satisfying the desirable properties of Vickrey rule depends on the number
of units. Because his impossibility theorem (Proposition 1 of Baisa (2020)) imposes an additional property
that he calls strong monotonicity together with the four properties, his results do not imply that the
existence of a rule satisfying the four properties depends on the number of units.
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his (consumption) bundle is a pair zi ≡ (xi, ti) ∈ M × R. Let 0 ≡ (0, 0).

2.1 Preferences

Each agent i ∈ N has a complete and transitive preference Ri over M × R. Let Pi and

Ii be the strict and indifference relations associated with Ri, respectively. Preferences are

privately known. Throughout this paper, we assume that a preference Ri satisfies the

following four properties.

Money monotonicity. For each xi ∈ M and each pair ti,t
′
i ∈ R with ti < t′i, we have

(xi, ti) Pi (xi, t
′
i).

Object monotonicity. For each pair xi, x
′
i ∈ M with xi > x′

i and each ti ∈ R, we have

(xi, ti) Pi (x
′
i, ti).

Possibility of compensation. For each zi ∈ M × R and each xi ∈ M , there is a pair

ti, t
′
i ∈ R such that (xi, ti) Ri zi and zi Ri (xi, t

′
i).

Continuity. For each zi ∈ M × R, the upper contour set at zi, {z′i ∈ M × R : z′i Ri zi},
and the lower contour set at zi, {z′i ∈ M × R : zi Ri z

′
i}, are both closed.

A typical class of preferences satisfying the above four properties is denoted by R. For

each i ∈ N , each Ri ∈ R, each zi ∈ M × R, and each xi ∈ M , the possibility of com-

pensation and continuity together imply that there is a payment Vi(xi, zi) ∈ R such that

(xi, Vi(xi, zi)) Ii zi.
15 By money monotonicity, such a payment is unique. We call Vi(xi, zi)

the valuation of xi at zi for Ri. We define the net valuation of xi at zi for Ri as

vi(xi, zi) ≡ Vi(xi, zi) − Vi(0, zi). Note that for each zi ∈ M × R, vi(0, zi) = 0. Moreover,

by Vi(0,0) = 0, for each xi ∈ M , we have vi(xi,0) = Vi(xi,0).

Remark 1. Let Ri ∈ R. (i) Let zi, z
′
i ∈ M × R be such that zi Ii z

′
i. For each xi ∈ M ,

Vi(xi, zi) = Vi(xi, z
′
i). (ii) Let zi ∈ M × R be such that zi Ii 0. For each xi ∈ M , vi(xi, zi) =

vi(xi,0). (iii) For each zi ≡ (xi, ti) ∈ M × R, ti = Vi(xi, zi).

A preference Ri is quasi-linear if for each pair (xi, ti), (x′
i, t

′
i) ∈ M × R and each

δ ∈ R, (xi, ti) Ii (x
′
i, t

′
i) implies (xi, ti + δ) Ii (x

′
i, t

′
i + δ). Let RQ denote the class of quasi-

linear preferences.

Remark 2. Let Ri ∈ RQ. (i) For each xi ∈ M , vi(xi, ·) is independent of zi, and we simply

write vi(xi) instead of vi(xi, zi). (ii) For each pair (xi, ti), (x
′
i, t

′
i) ∈ M × R, (xi, ti) Ri (x

′
i, t

′
i)

if and only if vi(xi)− ti ≥ vi(x
′
i)− t′i.

15For the formal proof of the existence of such a payment, see Lemma 1 of Kazumura and Serizawa
(2016).
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𝑥𝑖
′

𝑥𝑖
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𝑅𝑖

𝑡𝑖

𝑡𝑖
′′

𝟎

𝑉𝑖 0, 𝑧𝑖

𝑣𝑖 𝑥𝑖
′, 𝑧𝑖

𝑧𝑖 ≡ (𝑥𝑖 , 𝑡𝑖)

(𝑥𝑖
′′, 𝑡𝑖

′′)

𝑉𝑖 𝑥𝑖
′, 𝑧𝑖

Figure 1: An illustration of the consumption set and indifference curves.

Figure 1 illustrates the consumption set and an indifference curve of a preference

Ri ∈ R. Each horizontal line corresponds to some consumption level of the object. The

intersections of the horizontal lines and the vertical line are the points at which payments

are zero. Each point on a horizontal line indicates the amount of money that he pays (if it

is on the right side of the vertical line) or receives (if it is on the left side of the vertical line).

A solid line is an indifference curve of his preference Ri. By money monotonicity, a bundle

is more preferable as it goes to the left on a horizontal line. Thus, (x′′
i , t

′′
i ) Pi zi = (xi, ti).

2.2 Incremental valuations

In the multi-unit object allocation problem with money, the property of incremental val-

uations determines the characteristic of a preference. Given Ri ∈ R, zi ∈ M × R, and
xi ∈ M\{0}, the incremental valuation of xi at zi for Ri is vi(xi, zi)− vi(xi − 1, zi).

In words, the definition of nonincreasing (resp. nondecreasing) incremental valuations

is that for each bundle zi, the incremental valuation at zi for Ri is nonincreasing (resp.

nondecreasing) in the number of units, and that of constant incremental valuations is that

for each bundle zi, the incremental valuation at zi for Ri is constant in the number of units.

Our definitions of properties of incremental valuations are natural generalizations of the

corresponding definitions for quasi-linear preferences.

Formally, a preference Ri exhibits nonincreasing (resp. decreasing) incremental

valuations if for each zi ∈ M × R and each xi ∈ M\{0,m},

vi(xi + 1, zi)− vi(xi, zi) ≤ (resp. <) vi(xi, zi)− vi(xi − 1, zi).

A preference Ri exhibits nondecreasing (resp. increasing) incremental valuations if

for each zi ∈ M × R and each xi ∈ M\{0,m},

vi(xi + 1, zi)− vi(xi, zi) ≥ (resp. >) vi(xi, zi)− vi(xi − 1, zi).

11



A preference Ri exhibits constant incremental valuations if for each zi ∈ M × R and

each xi ∈ M\{0,m},

vi(xi + 1, zi)− vi(xi, zi) = vi(xi, zi)− vi(xi − 1, zi).

Let RNI , RND, and RC denote the classes of preferences that exhibit nonincreasing,

nondecreasing, and constant incremental valuations, respectively. Clearly, RNI ∩ RND =

RC . Further, let RD and RI denote the classes of preferences that exhibit decreasing and

increasing incremental valuations, respectively. Note that RD ⊊ RNI , RD ∩ RC = ∅,

RI ⊊ RND, RI ∩ RC = ∅, and RD ∩ RI = ∅.

The next remark states that for a preference that exhibits nondecreasing incremental

valuations, (i) the per-unit net valuation at each bundle is nondecreasing in the number of

units, and (ii) if the per-unit net valuation at a bundle is not constant in the number of

units, then it is strictly increasing.

Remark 3 (Nondecreasing per-unit net valuations). Let m′ ∈ M with m′ > 0. Let

Ri ∈ RND and zi ∈ M × R. (i) For each xi ∈ M(m′), xi

m′vi(m
′, zi) ≥ vi(xi, zi). (ii) If there

is xi ∈ M(m′)\{0,m′} such that xi

m′vi(m
′, zi) > vi(xi, zi), then for each x′

i ∈ M(m′)\{0,m′},
x′
i

m′vi(m
′, zi) > vi(x

′
i, zi).

Figure 2 below illustrates Remark 3 in the case where m′ = 3 and xi = 2.

Payment

1

0

𝑚′ = 3

𝑥𝑖 = 2

𝑧𝑖

𝑅𝑖

𝑥𝑖
𝑚
𝑣𝑖 𝑚, 𝑧𝑖

𝑣𝑖 𝑥𝑖 , 𝑧𝑖

Figure 2: An illustration of Remark 3.

Although Remark 3 is graphically apparent from Figure 2, its formal proof can be found

in the supplementary material.

In the classical pure exchange economy model, the convexity of a preference is a stan-

dard assumption. Recall that a preference is convex if the upper contour set at each bundle

is a convex set (Mas-Colell et al., 1995). Because of the indivisibility of the object, we can

not define a convex set in our model. However, a notion of convexity is extended to our

model in a natural way if we focus on only feasible allocations. Formally, a set L ⊆ M × R
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is convex if for each pair zi, z
′
i ∈ L and each δ ∈ [0, 1] with δzi + (1 − δ)z′i ∈ M × R, we

have δzi + (1 − δ)z′i ∈ L. A set L ⊆ M × R is strictly convex if for each distinct pair

zi, z
′
i ∈ L and each δ ∈ (0, 1) with δzi + (1− δ)z′i ∈ M × R, δzi + (1− δ)z′i belongs to the

interior of L.16

The next remark states that (i) our definition of nonincreasing incremental valuations

is equivalent to a convex preference, and (ii) nondecreasing incremental valuations are

equivalent to a concave preference which means that the lower contour set at each bundle

is a convex set.

Remark 4. Let Ri ∈ R.

(i) Ri ∈ RNI (resp. Ri ∈ RD) if and only if for each zi ∈ M × R, the upper contour set

at zi, {z′i ∈ M × R : z′i Ri zi}, is convex (resp. strictly convex).

(ii) Ri ∈ RND (resp. Ri ∈ RI) if and only if for each zi ∈ M × R, the lower contour set

at zi, {z′i ∈ M × R : zi Ri z
′
i}, is convex (resp. strictly convex).

2.3 Income effects

In this subsection, we introduce two classes of preferences which exhibit income effects.

Although our model does not take into account income explicitly, the zero payment

can be regarded as the initial income. Then, the increase of the income by δ > 0 induces

the shift of the origin of the consumption space to the right by δ. If we fix the origin of

the original consumption space, then this shift corresponds to the decrease of payments

of all the bundles by δ. Then positive (resp. nonnegative) income effect requires that the

increase of income (or equivalently, the decrease of a payment) by δ increase (resp. do not

decrease) the incremental valuation.

Formally, a preference Ri exhibits the positive (resp. nonnegative) income ef-

fect if for each pair (xi, ti), (x
′
i, t

′
i) ∈ M × R with xi > x′

i and ti > t′i, and each δ ∈ R++,

(xi, ti) Ii (x
′
i, t

′
i) implies (xi, ti − δ) Pi (x

′
i, t

′
i − δ) (resp. (xi, ti − δ) Ri (x

′
i, t

′
i − δ)).

Let R++ and R+ denote the classes of preferences that exhibit positive and nonnegative

income effects, respectively. Note that R++ ⊊ R+, R++ ∩ RQ = ∅, and RQ ⊊ R+.

Remark 5. Let Ri ∈ R++. (i) Let xi ∈ M\{m} and h+(·;xi) : R → R++ be such that

for each ti ∈ R, h+(ti;xi) = Vi(xi + 1, (xi, ti))− ti. Then h+(·;xi) is strictly decreasing in

ti. (ii) Let xi ∈ M\{0} and h−(·;xi) : R → R++ be such that for each ti ∈ R, h−(ti;xi) =

ti − Vi(xi − 1, (xi, ti)). Then h−(·;xi) is strictly decreasing in ti as well.

The proof of Remark 5 can be found in the supplementary material.

In contrast, negative (resp. nonpositive) income effect requires that the increase of

income by δ decrease (resp. do not increase) the incremental valuation. A preference Ri ex-

hibits the negative (resp. nonpositive) income effect if for each pair (xi, ti), (x
′
i, t

′
i) ∈ M × R

with xi > x′
i and ti > t′i, and each δ ∈ R++, (xi, ti) Ii (x

′
i, t

′
i) implies (x′

i, t
′
i−δ) Pi (xi, ti−δ)

(resp. (x′
i, t

′
i − δ) Ri (xi, ti − δ)).

16We endow M × R with a distance function d : (M × R)2 → R+ such that for each pair
(xi, ti), (x

′
i, t

′
i) ∈ M × R, d((xi, ti), (x

′
i, t

′
i)) = |xi − x′

i|+ |ti − t′i|.
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Let R−− and R− denote the classes of preferences that exhibit negative and nonpositive

income effects, respectively. Note that R−− ⊊ R−, R−− ∩ RQ = ∅, and RQ ⊊ R−. Note

also that R++ ∩ R−− = ∅ and R+ ∩ R− = RQ.

Remark 6. Let Ri ∈ R−−. (i) Let xi ∈ M\{m} and h+(·;xi) : R → R++ be such that

for each ti ∈ R, h+(ti;xi) = Vi(xi + 1, (xi, ti)) − ti. Then h+(·;xi) is strictly increasing in

ti. (ii) Let xi ∈ M\{0} and h−(·;xi) : R → R++ be such that for each ti ∈ R, h−(ti;xi) =

ti − Vi(xi − 1, (xi, ti)). Then h−(·;xi) is strictly increasing in ti as well.

The proof of Remark 6 is symmetric to that of Remark 5, and we omit it.

2.4 Allocations and rules

Let X ≡ {(x1, . . . , xn) ∈ Mn : 0 ≤
∑

i∈N xi ≤ m}. A (feasible) allocation is an n-tuple

z ≡ (z1, . . . , zn) ≡ ((x1, t1), . . . , (xn, tn)) ∈ (M × R)n such that (x1, . . . , xn) ∈ X. Let Z

denote the set of feasible allocations. We denote the object allocation and the payments

at z ∈ Z by x ≡ (x1, . . . , xn) and t ≡ (t1, . . . , tn), respectively. We write z ≡ (x, t) ∈ Z.

Given N ′ ⊆ N and m′ ∈ M , let

X(N ′,m′) ≡
{
x ∈ X : 0 ≤

∑
i∈N ′

xi ≤ m′ and xi = 0 for each i ∈ N\N ′
}

and Z(N ′,m′) ≡ {z ≡ (x, t) ∈ Z : x ∈ X(N ′,m′)}. These sets correspond to the sets of

feasible object allocations and feasible allocations in the reduced economy where the set of

agents is N ′ and there are m′ units of the object, respectively.

We call Rn a domain. The partial list of domains to appear in this paper is as follows:

• The quasi-linear domain: (RQ)n.

• The domain with nondecreasing incremental valuations: (RND)n.

• The domain with nonincreasing incremental valuations: (RNI)n.

• The domain with constant incremental valuations: (RC)n.

A preference profile is an n-tuple R ≡ (R1, . . . , Rn) ∈ Rn. Given R ∈ Rn and

N ′ ⊆ N , let RN ′ ≡ (Ri)i∈N ′ and R−N ′ ≡ (Ri)i∈N\N ′ . Specifically, for each distinct pair

i, j ∈ N , we may write R−i ≡ (Rk)k∈N\{i} and R−i,j ≡ (Rk)k∈N\{i,j}.

In this paper, we require a domain to be rich in the following sense. A class of preferences

R is rich if R ⊇ RC ∩ RQ. We call the domain (RC ∩ RQ)n a minimal domain.

Our notion of richness is natural because a number of classes of preferences of interest

are rich. Examples of a rich class of preferences includeRC ∩ RQ, RNI ∩ RQ, RND ∩ RQ,

RC ∩ R+, RNI ∩ R+, RND ∩ R+, RC ∩ R−, RNI ∩ R−, RND ∩ R−, etc.

An allocation rule, or simply a rule, on Rn is a function f : Rn → Z. With a slight

abuse of notation, we may write f ≡ (x, t), where x : Rn → X and t : Rn → Rn are the

object allocation and the payment rules associated with f , respectively. We denote agent
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i’s outcome bundle under a rule f at a preference profile R by fi(R) = (xi(R), ti(R)), where

xi(R) and ti(R) are the consumption level of the object and the payment made by agent

i, respectively.

We now introduce the properties of a rule. The efficiency condition takes the preference

of the owner of the object into account. We assume that he is only interested in his revenue.

An allocation z ≡ (x, t) ∈ Z is (Pareto-)efficient for a given preference profile R ∈ Rn

if there is no other allocation z′ ≡ (x′, t′) ∈ Z such that (i) z′i Ri zi for each i ∈ N , (ii)∑
i∈N t′i ≥

∑
i∈N ti, and (iii) some agent has the strict relation in (i) or the inequality in

(ii) is strict.

Note that if R ∈ (RQ)n, then an allocation z ≡ (x, t) ∈ Z is efficient for R if and only

if
∑

i∈N vi(xi) = maxx′∈X
∑

i∈N vi(x
′
i). Remark 7 below generalizes this property to a non-

quasi-linear preference profile. Since the (net) valuation depend on a bundle, an efficient

allocation for a non-quasi-linear preference profile should depend on the bundles, unlike an

efficient allocation for a quasi-linear preference profile.

Remark 7. Let R ∈ Rn and z ≡ (x, t) ∈ Z. Then z is efficient for R if and only if∑
i∈N vi(xi, zi) = maxx′∈X

∑
i∈N vi(x

′
i, zi).

By Remark 7, we obtain another characterization of an efficient allocation for a pref-

erence profile at which the preference of each agent exhibits nonincreasing incremental

valuations.

Remark 8. Let N ′ ⊆ N and m′ ∈ M . Let RN ′ ∈ (RNI)|N
′| and z ≡ (x, t) ∈ Z(N ′,m′).

Then
∑

i∈N ′ vi(xi, zi) = maxx′∈X(N ′,m′)

∑
i∈N ′ vi(x

′
i, zi) if and only if

∑
i∈N ′ xi = m′, and for

each pair i, j ∈ N ′ with xi < m′ and xj > 0, we have Vi(xi+1, zi)− ti ≤ tj−Vj(xj−1, zj).

In particular, by Remark 7, z is efficient for R if and only if
∑

i∈N xi = m, and for each

pair i, j ∈ N with xi < m and xj > 0, we have Vi(xi + 1, zi)− ti ≤ tj − Vj(xj − 1, zj).

The first property states that a rule should select an efficient allocation.

Efficiency. For each R ∈ Rn, f(R) is efficient for R.

The second property is a participation constraint. It states that a rule never selects

an allocation at which some agent is worse off than if he had received no object and paid

nothing.

Individual rationality. For each R ∈ Rn and each i ∈ N , fi(R) Ri 0.

The third and fouorth properties are both concerned with nonnegative payments.

No subsidy. For each R ∈ Rn and each i ∈ N , ti(R) ≥ 0.

No subsidy for losers. For each R ∈ Rn and each i ∈ N , if xi(R) = 0, then ti(R) ≥ 0.
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Clearly, no subsidy implies no subsidy for losers.

The last property is a dominant strategy incentive compatibility. It states that no agent

ever benefits from misrepresenting his preference.

Strategy-proofness. For eachR ∈ Rn, each i ∈ N , and eachR′
i ∈ R, fi(R) Ri fi(R

′
i, R−i).

3 The Vickrey rule and its extensions

In this section, we introduce the Vickrey rule for quasi-linear preferences (Vickrey, 1961)

and its extensions for non-quasi-linear preferences.

Given i ∈ N , R−i ∈ Rn−1, and xi ∈ M , define the maximum sum of net valuations at

0 for agents other than agent i, given that agent i has already obtained xi units, as

σi(R−i;xi) ≡ max
x∈X(N\{i},m−xi)

∑
j∈N\{i}

vj(xj,0).

Note that if R−i ∈ (RQ)n−1, then σi(R−i;xi) = maxx∈X(N\{i},m−xi)

∑
j∈N\{i} vj(xj).

3.1 The Vickrey rule

We first introduce the Vickrey rule for quasi-linear preferences. Given R ⊆ RQ, a rule

f ≡ (x, t) on Rn is a Vickrey rule if the following two conditions hold:

(i) for each R ∈ Rn,

x(R) ∈ arg max
x∈X

∑
i∈N

vi(xi),

(ii) for each R ∈ Rn and i ∈ N ,

ti(R) = σi(R−i; 0)− σi(R−i;xi(R)).

The condition (i) says that the object is allocated so as to maximize the sum of net

valuations, and the condition (ii) says that each agent must pay the externality that he

imposes on other agents.

3.2 The generalized Vickrey rule

We introduce an extension of the Vickrey rule to non-quasi-linear preferences introduced

by Saitoh and Serizawa (2008) and Sakai (2008).

Remark 2 (i) states that the net valuations are independent of a bundle for quasi-linear

preferences, and so we do not have to care about the bundles at which the net valuations

are evaluated in the definition of the Vickrey rule. However, the net valuations may vary

depending on a bundle for non-quasi-linear preferences, and we must specify the bundles

at which the net valuations are evaluated in order to extend the Vickrey rule to a non-
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quasi-linear domain. The generalized Vickrey rule chooses the net valuations at 0, and

apply those to the Vickrey rule.

A rule f ≡ (x, t) on Rn is a generalized Vickrey rule if the following two conditions

hold:

(i) for each R ∈ Rn,

x(R) ∈ arg max
x∈X

∑
i∈N

vi(xi,0),

(ii) for each R ∈ Rn and each i ∈ N ,

ti(R) = σi(R−i; 0)− σi(R−i;xi(R)).

Payment

Figure 3: An illustration of Example 1.

The next example illustrates the generalized Vickrey rule.

Example 1 (The generalized Vickrey rule, Figure 3). Assume n = 2 and m = 3. Let

R ⊇ RNI ∩ R+. Let f ≡ (x, t) be a generalized Vickrey rule on R2. Let R1 ∈ RD ∩ R++

be such that (i) v1(1,0) = 6, (ii) for each t1 ∈ [0, 6], v1(2, (1, t1))−v1(1, (1, t1)) = −1
3
t1+4,

and (iii) for each t1 ∈ [0, 8], v1(3, (2, t1)− v1(2, (2, t1)) = −1
4
t1 + 3. Let R2 ∈ RC ∩ RQ be

such that for each x2 ∈ M , v2(x2) = 2.5x2.

Note that v1(2,0) − v1(1,0) = 2 and v1(3,0) − v1(2,0) = 1. By the first condition (i)

of the generalized Vickrey rule, x(R) = (1, 2). Further, by the second condition (ii) of the

generalized Vickrey rule,

t1(R) = v2(3)− v2(2) = 2.5 and t2(R) = v1(3,0)− v1(1,0) = 3.

Thus, f1(R) = (1, 2.5) and f2(R) = (2, 3).

Remark 9. Let f ≡ (x, t) be a generalized Vickrey rule on Rn. Let R ∈ Rn and z ∈ Z

be such that for each i ∈ N , zi ≡ (xi(R), vi(xi(R),0)). Note that for each i ∈ N , by
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Vi(0,0) = 0, vi(xi(R),0) = Vi(xi(R),0). Thus, for each i ∈ N , zi Ii 0, and by Remark 1

(ii), vi(xi(R), zi) = vi(xi(R),0). Then by Remark 7, the first condition (i) of the generalized

Vickrey rule implies that z is efficient for R.

Note that Remark 9 simply states that for each preference profile R ∈ Rn, the allocation

(xi(R), vi(xi(R),0))i∈N is efficient, and it does not imply that the generalized Vickrey rule

satisfies efficiency.

3.3 The inverse Vickrey rule

In this subsection, we propose another extension of the Vickrey rule to non-quasi-linear

preferences that exhibit nonincreasing incremental valuations.

Given Ri ∈ R and xi ∈ M , the inverse-demand set at xi for Ri is defined as

P (xi;Ri) ≡ {p ∈ R+ : (xi, pxi) Ri (x
′
i, px

′
i) for each x′

i ∈ M}. The inverse-demand func-

tion for Ri is a function p(·;Ri) : M\{0} → R+ such that for each xi ∈ M\{0}, p(xi;Ri) =

supP (x;Ri).
17

The next remark states that if a quasi-linear preference Ri exhibits nonincreasing in-

cremental valuations, then the inverse-demand p(xi;Ri) of xi for Ri coincides with the

incremental valuation vi(xi)− vi(xi − 1) of xi for Ri.

Remark 10. Let Ri ∈ RNI ∩ RQ. For each xi ∈ M\{0}, p(xi;Ri) = vi(xi)− vi(xi − 1).

Given a preference Ri ∈ R let Rinv
i ∈ RQ be a quasi-linear preference such that for

each xi ∈ M\{0}, vinvi (xi) − vinvi (xi − 1) = p(xi;Ri). That is, the incremental valuation

of xi for the new preference Rinv
i is equal to the inverse-demand p(xi;Ri) of xi units for

the original preference Ri. Note that by Remark 10, if Ri ∈ RNI ∩ RQ, then Rinv
i = Ri.

Given R ∈ R and i ∈ N , let Rinv ≡ (Rinv
j )j∈N and Rinv

−i ≡ (Rinv
j )j∈N\{i}.

Now, we are ready to define another extension of the Vickrey rule to non-quasi-linear

preferences exhibiting nonincreasing incremental valuations. For each preference profile

R ∈ (RNI)n, the inverse Vickrey rule applies the transformed preference profile Rinv from

R to the Vickrey rule.

Given R ⊆ RNI , a rule f ≡ (x, t) on Rn is an inverse(-demand-based generalized)

Vickrey rule if for each R ∈ Rn, the following two conditions hold:

(i) for each R ∈ Rn,

x(R) ∈ arg max
x∈X

∑
i∈N

vinvi (xi),

(ii) for each R ∈ Rn and each i ∈ N ,

ti(R) = σi(R
inv
−i ; 0)− σi(R

inv
−i ;xi(R)).

17Note that for each Ri ∈ R, supP (0;Ri) = ∞. Thus. p(0;Ri) ≡ ∞. For each xi ∈ M\{0}, if
P (xi;Ri) = ∅, then set p(xi;Ri) ≡ vi(xi,0)− vi(xi − 1,0).
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By Remark 10, the inverse Vickrey rule coincides with the Vickrey rule onRn ⊆ (RNI ∩ RQ)n.18

However, the inverse Vickrey rule is different from the generalized Vickrey rule, and the

two rules typically produce the different outcomes for a preference profile R ∈ (RNI)n.

The next example illustrates this point.
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Figure 4: An illustration of Example 2.

Example 2 (The inverse Vickrey rule, Figure 4). Assume n = 2 and m = 3. Let

R be such that RNI ∩ R+ ⊆ R ⊆ RNI . Let f be a generalized Vickrey rule on R2. Let

(R1, R2) ∈ R2 be the same preference profile as in Example 1. Then, by Example 1,

f1(R) = (1, 2.5) and f2(R) = (2, 3). Let g ≡ (x, t) be an inverse Vickrey rule on R2.

Note that p(1;R1) = v1(1,0) = 6. Then, we compute p(2;R1). Solving v1(2, (1, t1)) −
v1(1, t1)) = t1 for t1, we have t1 = 3. Then, we show that p(2;R1) = 3.

First, we show that for each p ∈ P (2;R1), p ≤ 3. Let p ∈ P (2;R1). By contradiction,

suppose p > 3. Then,

V1(2, (1, p))− p = v1(2, (1, p))− v1(1, (1, p)) = −p

3
+ 4 < p,

where the first equality follows from Remark 1 (iii) and the inequality from p > 3. This

implies V1(2, (1, p)) < 2p. Thus, (1, p) P1 (2, 2p). However, this contradicts p ∈ P (2;R1).

Next, we show that 3 ∈ P (2;R1). Since t1 = 3 is the solution for the equation

v1(2, (1, t1))− v1(1, (1, t1)) = t1,

V1(2, (1, 3))− 3 = v1(2, (1, 3))− v1(1, (1, 3)) = 3,

or equivalently, V1(2, (1, 3)) = 6. Thus, (2, 6) I1 (1, 3). Moreover, by V1(1,0) = v1(1,0) =

18We can extend the definition of the inverse Vickrey to any domain Rn, but if Ri does not exhibit
nonincreasing incremental valuations for some i ∈ N , then it may not coincide with the Vickrey rule even
when R ∈ (RQ)n. In such a case, the inverse Vickrey rule can no longer be regarded as an extension of
the Vickrey rule. Thus, we choose to define the inverse Vickrey rule only on Rn ⊆ (RNI)n.
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6 > 3, we have (1, 3) P1 0. Finally,

V1(3, (2, 6))− 6 = v1(3, (2, 6))− v1(2, (2, 6)) =
3

2
< 3,

or equivalently, V1(3, (2, 6)) < 9. This implies (2, 6) P1 (3, 9).

Thus, we have established that for each x1 ∈ M , (2, 6) R1 (x1, 3x1), that is, 3 ∈ P (2;R1).
19

By p ≤ 3 for each p ∈ P (2;R1), p(2;R1) = 3.

Similarly, solving the equation v1(3, (2, t1)) − v1(2, (2, t1)) = t1
2
for t1, we get t1 = 4,

and we can show p(3;R1) = t1
2

= 2. Thus, vinv1 (1) = 6, vinv1 (2) − vinv1 (1) = 3, and

vinv1 (3) − vinv1 (2) = 2. By Remark 10, Rinv
2 = R2. Thus, by the definition of the inverse

Vickrey rule, x(R) = (2, 1), and

t1(R) = vinv2 (3)− vinv2 (1) = 5 and t2(R) = vinv1 (3)− vinv1 (2) = 2.

Then, g1(R) = (2, 5) and g(R) = (1, 2). Note that the outcome of the inverse Vickrey rule

for R is different from that of the generalized Vickrey rule for R.

4 Nonincreasing incremental valuations

The assumption of nonincreasing incremental valuations is standard in the literature on

multi-unit object allocation problems, and is equivalent to a convex preference. Moreover,

it is a natural assumption when firms have technologies that exhibit nonincreasing returns

to scale. Thus, we first investigate the existence of a rule satisfying efficiency, individual

rationality, no subsidy for losers, and strategy-proofness in such a standard situation.

4.1 An odd number of units

Our results depend on the number of units. First, we consider the case of an odd number

of units.

The following theorem states that for an odd number of units, if a rich class of preference

includes at least one preference that exhibits decreasing incremental valuations and either

positive or negative income effects, then no rule satisfies efficiency, individual rationality,

no subsidy for losers, and strategy-proofness.

Theorem 1. Assume m is odd. Let R0 ∈ RD ∩ (R++ ∪ R−−). Let R be rich and

R0 ∈ R. No rule on Rn satisfies efficiency, individual rationality, no subsidy for losers,

and strategy-proofness.

Note that the Vickrey rule satisfies the four properties on our minimal domain (RC ∩ RQ)n

(Vickrey, 1961; Holmström, 1979). Thus, Theorem 1 states that adding at least one prefer-

ence that exhibits decreasing incremental valuations and either positive or negative income

19By (1, 3) I1 (2, 6), we also have 3 ∈ P (1;R1).
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effects to our minimal domain on which there is a rule satisfying the four properties leads

to an impossibility theorem.

Intuitively, for preferences that exhibit decreasing incremental valuations, several agents

typically win the object at an efficient allocation, and if an agent with a non-quasi-linear

preference wins the object, then he may benefit from misrepresenting his preference so as

to win one more or fewer unit, or may be possible to Pareto improve the allocation by

exchanging one unit between him and another winner. Thus, it is difficult to guarantee

the existence of a rule satisfying the four properties in the case of decreasing incremental

valuations, and we have a negative result in Theorem 1.

To be more concrete, the inverse Vickrey rule plays an important role in the proof of

Theorem 1. In order to explain the intuition of the proof, consider the case of two agents

and the preference profile such that both the agents have the same preference that exhibits

decreasing incremental valuations and positive income effects. In the proof, we show that

at the preference profile, the outcome of a rule satisfying the four properties coincides with

that of the inverse Vickrey rule. Then, we show that under the inverse Vickrey rule, an

agent wins m−1
2

units, and he benefits from misrepresenting his preference so as to win one

more unit.20 The next example illustrates this point.

Payment

Figure 5: An illustration of Example 3.

Example 3 (Figure 5). Assume n = 2 andm = 3. LetR0 ∈ RD ∩ R++ be the preference

R1 defined in Example 1. Let R (⊆ RNI) be rich and R0 ∈ R. Let f be an inverse Vickrey

rule on Rn. Let R ∈ R2 be such that R = (R0, R0). Recall that in Example 2, we observed

that vinv0 (1) = 6, vinv0 (2) − vinv0 (1) = 3, and vinv0 (3) − vinv0 (2) = 2. Then, by the definition

20When both the agents have the preference that exhibits negative income effects, the outcome of a rule
satisfying the four properties does not necessarily coincide with that of the inverse Vickrey rule at the
preference profile, and the proof strategy for the case of positive income effects does not work. In such a
case, we solve the difficulty by identifying the range of the payments under a rule satisfying the properties.
Then, we show that an agent receives at least m+1

2 units, and he gets better off by misrepresenting his
preference so as to win one fewer unit. For the detailed discussion, see Appendix B.
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of the inverse Vickrey rule, either f(R) = ((1, 2), (2, 5)) or f(R) = ((2, 5), (1, 2)). Without

loss of generality, let f(R) = ((1, 2), (2, 5)).

Let R′
1 ∈ RC ∩ RQ be such that for each x1 ∈ M , v′1(x1) = 4x1. By Remark 10,

Rinv
1 = R1. Thus, by the definition of the inverse Vickrey rule, f1(R

′
1, R2) = (2, 5). Note

that t1(R) = 2 < 3 = minP (1;R1).
21 Thus, agent 1’s payment is smaller than his inverse

demands of m−1
2

= 1 unit. Then, by 2 < 3 and R1 ∈ R++, Remark 5 (i) implies

V1(2, (1, 2))− 2 > V1(2, (1, 3))− 3 = v1(2, (1, 3))− v1(1, (1, 3)) = 3,

or equivalently, V1(x1(R
′
1, R2), f1(R)) > 5 = t1(R

′
1, R2). This implies f1(R

′
1, R2) P1 f1(R).

Thus, agent 1 benefits from misrepresenting his preference so as to win one more unit.

4.2 An even number of units

In contrast to the case of an odd number of units, when m is even, the results depend on

the size of the income effects of a preference R0 ∈ RD ∩ (R++ ∪ R−−). Throughout the

subsection, we assume that m is even. In this subsection, we present the result only for

the case of positive income effects. The result for the case of negative income effects can

be found in Appendix C.

Given Ri ∈ R and (xi, ti) ∈ (M\{m}) × R, the willingness to buy at (xi, ti) for

Ri is WBi(xi, ti) ≡ Vi(xi + 1, (xi, ti))− ti. Given Ri ∈ R and (xi, ti) ∈ (M\{0}) × R, the
willingness to sell at (xi, ti) for Ri is WS(xi, ti) ≡ ti−Vi(xi−1, (xi, ti)). Given Ri ∈ R,

a pair ti, t
′
i ∈ R, and xi ∈ M\{m}, the size of income effects of xi between ti and t′i

for Ri is measured by WBi(xi, ti)−WBi(xi, t
′
i).

A preference Ri ∈ RNI ∩ R+ has the upper bound for the nonnegative income

effects if it satisfies the following inequality:

WBi(β, t
∗)−WBi(β, βp(β;Ri)) ≤ WSi(β, βp(β;Ri))−WBi(β, βp(β;Ri)), (UB)

where β ≡ m
2
and t∗ ≡

∑β−1
x=0 p(m− x;Ri).

Note that the bundle (β, t∗) is an outcome of the inverse Vickrey rule for the preference

profile (Ri, Ri) in the case of two agents. The RHS of (UB) is the difference between the

willingness to sell and the willingness to buy at the bundle (β, βp(β;Ri)) for Ri. Since

Ri exhibits nonincreasing incremental valuations, this difference is nonnegative. The LHS

of (UB) is the size of the income effects of β between t∗ and βp(β;Ri) for Ri. Thus, the

inequality (UB) requires that the size of the income effects of xi between t∗ and βp(β;Ri)

be bounded by the difference between the willingness to sell and the willingness to buy

at the bundle (β, βp(β;Ri)). We interpret it as the small size of the nonnegative income

effects.

21To see that 3 = minP (1;R1), note first that by footnote 19, 3 ∈ P (1;R1). Suppose by contradiction
that there is p ∈ P (1;R1) such that p < 3. Then, V1(2, (1, p))−p = v1(2, (1, p))−v1(1, (1, p)) = −p

3+4 > p.
This implies V1(2, (1, p)) > 2p. Thus, (2, 2p) P1 (1, p). This contradicts p ∈ P (1;R1). Thus, for each
p ∈ P (1;R1), p ≥ 3.
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Figure 6: The upper bound for the nonnegative income effects.

Figure 6 is an illustration of a preference that has the upper bound for the nonnegative

income effects. RHS (resp. LHS) in Figure 6 corresponds to the RHS (resp. the LHS) of

the inequality (UB).

The next proposition states that when m is even, (i) if n = 2, and R0 ∈ RD ∩ R++ has

the upper bound for the nonnegative income effects, then on the domain ((RC ∩ RQ) ∪ {R0})2,
the inverse Vickrey rule satisfies the four properties, and (ii) if R0 does not have the upper

bound for the nonnegative income effects, and a rich class of preferences includes R0, then

no rule satisfies the four properties.2223

Proposition 1. Assume m is even. Let R0 ∈ RD ∩ R++.

(i) Assume n = 2. Assume R0 has the upper bound for the nonnegative income effects. An

inverse Vickrey rule on ((RC ∩ RQ) ∪ {R0})2 satisfies efficiency, individual rationality,

no subsidy for losers, and strategy-proofness.

(ii) Assume R0 does not have the upper bound for the nonnegative income effects. Let R
be rich and R0 ∈ R. No rule on Rn satisfies efficiency, individual rationality, no subsidy

for losers, and strategy-proofness.

The proof of Proposition 1 can be found in the supplementary material.

Recall that we interpret the inequality (UB) as the small size of the nonnegative income

effects. Thus, Proposition 1 states that if the size of the positive income effects of a

preference added to RC ∩ RQ is sufficiently small (resp. large), then there exists (resp.

does not exist) a rule satisfying the four properties. Note that Proposition 1 implies that the

upper bound for the nonnegative income effects is necessary and sufficient for the existence

of a rule satisfying the four properties on ((RC ∩ RQ) ∪ {R0})2, where R0 ∈ RD ∩ R++.

22Given Proposition 1 (i), one might expect that when n ≥ 3, the inverse Vickrey rule on
((RC ∩ RQ) ∪ {R0})n satisfies the four properties for some R0 ∈ RD ∩ R++. However, when n ≥ 3
and m = 6a− 2 for some a ∈ N with a ≥ 2, it violates strategy-proofness for each R0 ∈ RD ∩ R++. See
Example 9 in the supplementary material.

23In Proposition 1 (i), we can further show that the inverse Vickrey rule is the only rule satisfying the
four properties by applying Step 3 of the proof of Theorem 1.
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Recall the intuition for the proof of Theorem 1 that under the inverse Vickrey rule, an

agent with income effects benefits from misrepresenting his preference in the case of an odd

number of units. The intuition for the proof of Proposition 1 (i) is that when the number

of units is an even number, if the size of the positive income effects is small, then no agent

benefits from misrepresenting his preference, and the inverse Vickrey rule satisfies the four

properties. In contrast, the intuition for the proof of Proposition 1 (ii) is that if the size of

the income effects is sufficiently large, then an agent with positive income effects benefits

from misrepresenting his preference so as to win one more unit as in Theorem 1.

4.3 Expanding our minimal domain

In this section, to further explore the existence of a rule satisfying efficiency, individual

rationality, no subsidy for losers, and strategy-proofness, we expand our minimal domain.

Then, we ask whether there is a rule satisfying the four properties on a domain that con-

tains the expanded minimal domain and includes preferences with decreasing incremental

valuations and either positive or negative income effects.

To slightly expand our minimal domain, we introduce preferences which exhibit almost

constant incremental valuations. Given ε > 0, a preference Ri exhibits ε-nonincreasing

incremental valuations if for each zi ∈ M × R and each xi ∈ M\{0,m},

0 ≤ vi(xi, zi)− vi(xi − 1, zi)− (vi(xi + 1, zi)− vi(xi, zi)) < ε.

Given ε > 0, a preference Ri exhibits ε-nonincreasing incremental valuations if for

each zi ∈ M × R and each xi ∈ M\{0,m},

0 ≤ vi(xi + 1, zi)− vi(xi, zi)− (vi(xi, zi)− vi(xi − 1, zi)) < ε.

Given ε > 0, let RNI(ε) and RND(ε) denote the classes of ε-nonincreasing and ε-

nondecreasing incremental valuations, respectively. For each ε > 0, RNI(ε) ⊊ RNI and

RND(ε) ⊊ RND. For each ε > 0, it holds that RNI(ε) ∩ RND(ε) = RC . Moreover,

both RNI(ε) and RND(ε) converges to RC as ε goes to 0, that is,
∩

ε∈R++
RNI(ε) =∩

ε∈R++
RND(ε) = RC .

Given ε > 0, a class of preferencesR isNI(ε)-rich (resp. ND(ε)-rich) ifR ⊇ RNI(ε) ∩ RQ

(resp. R ⊇ RND(ε) ∩ RQ). We call the domain (RNI(ε) ∩ RQ)n (resp. (RND(ε) ∩ RQ)n)

the NI(ε)-minimal domain (resp. the ND(ε)-minimal domain).

The next proposition states that for each ε > 0, if a class of preference is either NI(ε)-

rich or ND(ε)-rich, and includes at least one preference that exhibits decreasing incremental

valuations and either positive or negative income effects, then no rule satisfies the four

properties on the domain regardless of the number of units.

Proposition 2. Let R0 ∈ RD ∩ (R++ ∪ R−−). Let ε ∈ R++. Let R be either NI(ε)-rich

or ND(ε)-rich, and R0 ∈ R. No rule on Rn satisfies efficiency, individual rationality, no

subsidy for losers, and strategy-proofness.
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In Proposition 2, we allow ε > 0 to be arbitrarily small. Thus, even when both the

NI(ε)-minimal and ND(ε)-minimal rich domains have almost the same variations of pref-

erences as our minimal domain (RC ∩ RQ)n, for any R0 ∈ RD ∩ (R++ ∪ R−−), both on

((RNI(ε) ∩ RQ) ∪ {R0})n and on ((RND(ε) ∩ RQ) ∪ {R0})n, no rule satisfies the four

properties. This means that the positive result in the case of an even number of units

(Proposition 1 (i)) is vulnerable to a minimal increase of the variations of preference.

We emphasize that for each ε > 0, both RNI(ε) ∩ RQ and RND(ε) ∩ RQ include only

quasi-linear preferences, that is, RNI(ε) ∩ RQ ⊆ RQ and RND(ε) ∩ RQ ⊆ RQ. Thus,

both on (RNI(ε) ∩ RQ)n and on (RND(ε) ∩ RQ)n, the Vickrey rule satisfies the four prop-

erties (Vickrey, 1961; Holmström, 1979). As with Theorem 1, Proposition 2 implies that

adding at least one non-quasi-linear preference with decreasing incremental valuations to

domains on which there is a rule satisfying the four properties leads to an impossibility

theorem.

As in the proof of Theorem 1, the inverse Vickrey rule plays a key role in the proof

of Proposition 2. In order to illustrate the proof of Proposition 2, for a given ε > 0, we

here focus on the case of two agents and an NI(ε)-rich class of preferences that includes a

preference exhibiting decreasing incremental valuations and positive income effects. Con-

sider a preference profile such that agent 1 has a preference that exhibits positive income

effects and agent 2 has a quasi-linear preference that exhibits ε-nonincreasing incremental

valuations. As in the proof of Theorem 1, we show in the proof that the outcome of a

rule satisfying the four properties coincides with that of the inverse Vickrey rule at the

preference profile. Then, we show the outcome of the rule is not efficient. This contrasts

with the proof of Theorem 1, where we show that an agent with non-quasi-linear prefer-

ence benefits from misrepresenting his preference. To illustrate this point, we consider the

following example.

Example 4. Let n = 2 and m = 2. Let R0 ∈ RD ∩ R++ be such that (i) v0(1,0) =

4, and (ii) for each t0 ∈ [0, 4], v0(2, (1, t0)) − v0(1, (1, t0)) = −1
2
t0 + 3.24 Let ε = 0.05.

Let R (⊆ RNI) be NI(ε)-rich and R0 ∈ R. Let f be an inverse Vickrey rule on Rn.

Let R2 ∈ RNI(ε) ∩ RQ be such that v2(1) = 2.01 and v2(2) − v2(1) = 1.97. Let R =

(R0, R2) ∈ R2. Note that p(1;R1) = v1(1,0) = 4. By solving the equation v1(2, (1, t1)) −
v1(1, (1, t1)) = t1 for t1, we get t1 = 2. Then, we can show p(2;R1) = 2 in the same way as

in Example 2. Thus, vinv1 (1) = 4 and vinv1 (2)− vinv1 (1) = 2. By Remark 10, Rinv
2 = R2. By

the definition of the inverse Vickrey rule, f(R) = ((1, 1.97), (1, 2)). Then,

v1(2, f1(R))− v1(1, f1(R))− v2(1) = (−0.985 + 3)− 2.01 = 2.015− 2.01 > 0.

Thus, by R ∈ (RNI)2, Remark 8 implies f(R) is not efficient for R.

In the above example, if a preference R2 exhibits constant incremental valuations, and

agent 1 wins m − 1 units under the inverse Vickrey rule, then agent 1’s payment is in

24Note that R0 has the upper bound for the nonnegative income effects. Thus, by Proposition 1 (i), the
inverse Vickrey rule satisfies the four properties on ((RC ∩ RQ) ∪ {R0})2.
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[2, 4], which is greater than his actual payment 1.97 in the above example. Thus, the

above example illustrates that the ε-nonincreasing incremental valuations make agent 1’s

payment relatively small, and then positive income effects enable us to Pareto improve the

outcome allocation of the inverse Vickrey rule. Although an outcome of a rule satisfying

the four properties does not necessarily coincide with that of the inverse Vickrey rule if

R0 ∈ RD ∩ R−− or R is ND(ε)-rich (note that the inverse Vickrey rule is defined only for

preferences with nonincreasing incremental valuations), in the proof of Proposition 2, we

show that the Pareto improvement is possible when agents have the preferences as in the

above example.

Corollary 1. Let R0 ∈ RD ∩ (R++ ∪ R−−).

(i) Let R be such that RNI ∩ RQ ⊆ R ⊆ RNI . No rule on (R ∪ {R0})n satisfies effi-

ciency, individual rationality, no subsidy for losers, and strategy-proofness.

(ii) Let R be such that RND ∩ RQ ⊆ R ⊆ RND. No rule on (R ∪ {R0})n satisfies effi-

ciency, individual rationality, no subsidy for losers, and strategy-proofness.

Corollary 1 (i) and (ii) do not follow from the existing results such as Baisa (2020).

Corollary 1 (i) implies that both on (RNI ∩ R+)n and on (RNI ∩ R−)n, no rule satisfies

the four properties. The impossibility on (RNI ∩ R+)n also follows from the result by

Baisa (2020), but that on (RNI ∩ R−)n is a new result.

Corollary 1 has some implications. As we argued in Section 1.3, both the assump-

tions of nonincreasing incremental valuations and quasi-linear preferences are standard in

the literature on multi-unit object allocation problems with money. Corollary 1 (i) im-

plies that if we investigate the existence of a rule satisfying the four properties without

quasi-linearity while keeping the assumption of nonincreasing incremental valuations, we

may immediately encounter an impossibility result. Thus, the assumption of quasi-linear

preferences is an important source of the existence of a rule satisfying the four proper-

ties. This may contrast with the results of Baisa (2020), which suggest that the deviation

from the assumption of the single-dimensional types leads to an impossibility result in a

non-quasi-linear environment with nonincreasing incremental valuations.25

The new entry into some industries such as vaccine and electricity industries requires a

huge invest in new plants and equipment, and so new entrants typically have technologies

that exhibit nondecreasing returns to scale. Thus, new entrants in such industries have

preferences with nondecreasing incremental valuations. We will show in the next section

that if agents have preferences with nondecreasing incremental valuations (with or without

quasi-linearity), then the generalized Vickrey rule satisfies the four properties (Theorem 2

in Section 5). In contrast to new entrants, incumbents have already paid the large initial

costs, and thus, may have technologies that exhibit decreasing returns to scale. Thus, it

may be reasonable to assume that incumbents have preferences with decreasing incremental

valuations. Corollary 1 (ii) suggests that in such an industry, if agents have non-quasi-

linear preferences, then the existence of a rule satisfying the four properties is guaranteed

only when there is no incumbent, that is, all the agents are new entrants.

25For the details of the results of Baisa (2020), see Section 6.1.
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5 Nondecreasing incremental valuations

In this section, we turn to the situation where agents have preferences that exhibits non-

decreasing incremental valuations. Note that nondecreasing incremental valuations corre-

spond to the technology of a firm that exhibits nondecreasing returns to scale, which is a

natural assumption in some industries of sufficiently large sunk costs.

The following theorem states that if a rich class of preferences includes only preferences

that exhibit nondecreasing incremental valuations, then the generalized Vickrey rule is the

only rule satisfying efficiency, individual rationality, no subsidy for losers, and strategy-

proofness.

Theorem 2. Let R be rich and R ⊆ RND. A rule on Rn satisfies efficiency, individual

rationality, no subsidy for losers, and strategy-proofness if and only if it is a generalized

Vickrey rule on Rn.

Since a domain in Theorem 2 might include non-quasi-linear preferences, the existence

of a rule satisfying the four properties is not trivial. Indeed, Theorem 2 is not an immediate

consequence of the existing results on the quasi-linear domain (Holmström, 1979; Chew

and Serizawa, 2007).

The independence of properties in Theorem 2 is demonstrated in the examples below.

In the examples, we fix a rich R ⊆ RND.

Example 5 (Dropping efficiency). Let f be the no-trade rule on Rn such that each

agent receives 0 for each preference profile. Then f satisfies all the properties in Theorem 2

other than efficiency.

Example 6 (Dropping individual rationality). Let f be the generalized Vickrey rule

with fixed and common entry fee e > 0 on Rn. Then f satisfies all the properties in

Theorem 2 other than individual rationality.

Example 7 (Dropping no subsidy for losers). Let f be the generalized Vickrey rule

with fixed and common participation subsidy s < 0 on Rn. Then f satisfies all the prop-

erties in Theorem 2 other than no subsidy for losers.

Example 8 (Dropping strategy-proofness). Let f ≡ (x, t) be the generalized pay-as-

bid rule on Rn such that for each preference profile R ∈ Rn, (i) the object is allocated

so as to maximize the sum of net valuations at 0, and (ii) each agent has to pay his net

valuation of xi(R) at 0. By Remark 9, f satisfies efficiency. Further, it satisfies individual

rationality and no subsidy for losers, but violates strategy-proofness.

The key intuition for Theorem 2 is that if preferences exhibit nondecreasing incremental

valuations, then a bundling efficient allocation at which an agent who has the highest net

valuation ofm receives all the units is efficient, and the situation is close to the single-object

environment.26 This contrasts with the case of decreasing incremental valuations where

26Let X ≡ X ∩ {0,m}n. An allocation z ≡ (x, t) ∈ Z is a bundling allocation if x ∈ X. Let Z denote
the set of feasible bundling allocations. Given R ∈ Rn, an allocation z ∈ Z is bundling efficient for R if
z ∈ Z, and there is no other bundling allocation z′ ∈ Z that Pareto dominates z for R.
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several agents typically win the object at an efficient allocation. Here, the nondecreasing

per-unit net valuations (Remark 3) play an important role as it make the above allocation

efficient, and we repeatedly exploit the property in our proof.

As we stated in Section 1.3, our characterization theorem (Theorem 2) cannot be ob-

tained simply by bundling all the units and applying the characterization of the generalized

Vickrey rule in the single-object environment (Saitoh and Serizawa, 2008; Sakai, 2008) al-

though a bundling efficient allocation is an efficient allocation. In what follows, we pursue

the implications of their results in the single-object environment, and discuss that they do

not lead us to a characterization of the class of rules satisfying the four properties, which

is one of our goals in this paper.

First, note that the results by Saitoh and Serizawa (2008) and Sakai (2008) in the

single-object environment imply that if a class of preferences is rich, then the bundling

second-price rule is the only rule satisfying bundling efficiency, individual rationality, no

subsidy for losers, and strategy-proofness (see the bottom arrow in Figure 7 below).27

Note also that when preferences exhibit nondecreasing incremental valuations, bundling

efficiency implies efficiency (see Lemma 13 in Appendix D). Thus, their results imply that

there is a rule satisfying our four properties.

However, the converse is not true, that is, efficiency does not necessarily imply bundling

efficiency. To illustrate this point, consider a preference profile such that two agents have

the same quasi-linear preference with constant incremental valuations, and their net valu-

ations of m are the highest. For such a preference profile, by the first condition (i) of the

generalized Vickrey rule, any object allocation maximizes the sum of valuations at 0 if the

two agents share all the units, and so the generalized Vickrey rule violates bundling effi-

ciency although it satisfies efficiency (by Theorem 2).28 Thus, the class of rules satisfying

bundling efficiency and the other three properties is a proper subset of the class of rules

satisfying our four properties (see the right ⊊ relation in Figure 7).

In summary, the results by Saitoh and Serizawa (2008) and Sakai (2008) can be used (i)

to show that there is a rule satisfying efficiency, individual rationality, no subsidy for losers,

and strategy-proofness, and (ii) to obtain a characterization of the class of rules satisfying

an ad hoc property of bundling efficiency and the other three properties. However, it does

not provide a characterization of the class of rules satisfying standard efficiency and the

other three properties. Thus, the proof of our characterization theorem inevitably treats

non-bundling efficient allocations and non-bundling generalized Vickrey rules, and requires

a different proof strategy from applying the characterization of the generalized Vickrey

rule in the single-object environment.

27A rule f ≡ (x, t) on Rn is a bundling second-price rule if for each R ∈ Rn, the following two conditions
hold: (i) x(R) ∈ arg max

x∈X

∑
i∈N vi(xi,0), and (ii) for each i ∈ N , ti(R) = maxj∈N\{i} vj(xi(R),0). A rule

f on Rn satisfies bundling efficiency if for each R ∈ Rn, f(R) is bundling efficient for R.
28Note that the generalized Vickrey rule violates bundling efficiency, that is, it produces a different

outcome from the bundling second-price rule, only when the preferences of the agents whose net valuations
of m at 0 are the highest exhibit constant incremental valuations at 0.

28



Bundling efficiency,

Strategy-proofness 

(+other properties)

⊊

Bundling efficiency

Individual rationality

No subsidy for loser

Strategy-proofness

Our result 

Previous results 
Bundling 

second-price rules

⊊

Generalized Vickrey rules

Efficiency

Individual rationality

No subsidy for loser

Strategy-proofness

Figure 7: Our result (Theorem 2) and the previous results by Saitoh and Serizawa (2008)
and Sakai (2008)

6 Discussion

6.1 Comparison to Baisa (2020)

We compare our results with the related results obtained by Baisa (2020). He considers the

multi-unit object allocation problem with money as in this paper, and obtains the results

for preferences exhibiting decreasing incremental valuations and positive income effects (or

nonnegative income effects). He parameterizes preferences by type.

6.1.1 Positive results

First, we compare our characterization theorem (Theorem 2) with his positive results. His

first two results (Theorems 1 and 2 of Baisa (2020)) are concerned with the existence

of a rule satisfying efficiency, individual rationality, no susbidy for losers, and strategy-

proofness. In Theorem 1 of Baisa (2020), he shows that for a case of two agents and an

arbitrary number of units, if preferences are of single-dimensional types, then on the domain

with decreasing incremental valuations, nonnegative income effects, and the single-crossing

property, there is a rule satisfying the four properties.29 He further shows that for a case

of an arbitrary number of agents and two units of the object, under the assumption of

single-dimensional types, there is a rule satisfying the four properties on the same domain

as in his Theorem 1 (Theorem 2 of Baisa (2020)). Note that the rules in his positive results

are equivalent neither to the generalized Vickrey rule nor to the inverse Vickrey rule.

Firstly and most importantly, his results are for preferences with decreasing incremental

valuations, but our result is for preferences with nondecreasing incremental valuations. This

29A class of preferences exhibits single-crossing property if the incremental valuation at each bundle is
increasing in a type.
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means that the two results apply to different environments. Secondly, his results impose

assumptions on the number of agents or units. Thirdly, they are for the case of preferences

of single-dimensional types. Our result is free from those assumptions. However, his results

involve technical discussions, such as a fixed-point argument, to show that the Vickrey rule

can be generalized in a quite novel way so that it satisfies the desirable properties. In

contrast, we characterize a natural generalization of the Vickrey rule by only elementary

argument. Clearly, our result neither implies nor is implied by his results.

6.1.2 Negative result

Baisa (2020) also shows that if a class of preferences admits multi-dimensional types, then

on the domain with decreasing incremental valuations, positive income effects, and the

single-crossing property, no rule satisfies efficiency, individual rationality, no subsidy for

losers, and strategy-proofness. (Theorem 3 of Baisa (2020)).30 This result is different from

ours (Theorem 1 and Proposition 2) in terms of domains. First, we emphasize that our

domains in Theorem 1 and Proposition 2 neither contain nor are contained by the domain

of his result. Thus, our results do not imply his result, and vice versa. Second, Baisa (2020)

focuses on preferences with positive income effects, but we consider not only preferences

with positive income effects, but also those with negative income effects.

6.1.3 Overall comparison

Baisa (2020) focuses on the case of decreasing incremental valuations and positive income

effects. In contrast, our results cover the case of decreasing incremental valuations or

nondecreasing incremental valuations, and that of positive or negative income effects. Thus,

in principle, our results cover a broader class of environment than his results. However,

none of his results follow from our results, and vice versa.

As a whole, the results of Baisa (2020) suggest that when preferences exhibit decreasing

incremental valuations and positive income effects, the existence of a rule satisfying the

four properties is guaranteed if and only if preferences are of single-dimensional types. In

contrast, our results suggest that when preferences exhibit (either positive or negative)

income effects, then the existence of such a rule is guaranteed if and “almost” only if

preferences exhibit nondecreasing incremental valuations. Thus, our results complement

the results of Baisa (2020) by drawing a different insight of the existence of a rule satisfying

the four properties.

30To be precise, he shows that no rule satisfies efficiency, individual rationality, no deficit, and strategy-
proofness.. A rule f on Rn satisfies no deficit if for each R ∈ Rn, we have

∑
i∈N ti(R) ≥ 0. However, his

proof can be directly applied to the proof of the impossibility theorem stated in the body.

30



6.2 Comparison to Malik and Mishra (2021)

Malik and Mishra (2021) consider the heterogeneous objects model, and study dichoto-

mous preferences.31 Compared to Malik and Mishra (2021), this paper contributes to the

literature by treating the identical objects model, which applies to multi-unit auctions of

practical importance. Below, we compare our results and proof strategies with theirs in

detail.

6.2.1 Positive result

First, we compare our positive result (Theorem 2) with their positive result (Theorem 3

of Malik and Mishra (2021)). They show that on a domain that contains the quasi-

linear dichotomous domain and is contained by the dichotomous domain with nonnegative

income effects, the generalized Vickry rule is the only rule satisfying efficiency, individual

rationality, no subsidy, and strategy-proofness.32

The key condition for their positive result is the assumption of nonnegative income

effects. Indeed, the payments under the generalized Vickrey rule are quite small at some

preference profile in their setting, and if agents have preferences with negative income

effects, then the winners’ willingness to sell of the objects that they obtain becomes smaller

than the losers’ willingness to buy of the objects, and a Pareto improvement among the

winners and the losers is possible at an outcome of the generalized Vickrey rule. Thus,

if preferences exhibit negative income effects, then the generalized Vickrey rule violates

efficiency. Malik and Mishra (2021) observe that under the assumption of nonnegative

income effects, such a Pareto improvement is impossible, and the generalized Vickrey rule

satisfies efficiency together with the other desirable properties.

In contrast, the key intuition for our positive result is that preferences with nonde-

creasing incremental valuations (in particular, nondecreasing per-unit net valuations in

Remark 3) and the implication of efficiency make the situation close to the single-object

environment where we obtain a positive result (Saitoh and Serizawa, 2008; Sakai, 2008).

In particular, unlike in Malik and Mishra (2021), our positive result holds without the

assumption of nonnegative income effects. Thus, the proof strategy of our positive result

is different from theirs.

6.2.2 Negative result

Next, we compare our negative results (Theorem 1 and Proposition 2) with their negative

result (Theorem 4 of Malik and Mishra (2021)). They establish that if a class of preferences

includes all quasi-linear dichotomous preferences and at least one non-quasi-linear and non-

dichotomous preference (precisely, a heterogeneous demand preference with positive income

31A preference is dichotomous if the set of packages is divided into the acceptable set and the unaccept-
able set, and given a payment, each acceptable package has the same positive value, but each unacceptable
one is valueless

32Note that the GVCG mechanism in Malik and Mishra (2021) is equivalent to the generalized Vickrey
rule in this paper.
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effects and decreasing incremental valuations), then no rule satisfies efficiency, individual

rationality, no subsidy, and strategy-proofness. Note that our negative results and theirs

have the same formats: both the results add at least one preference to a domain where there

is a rule satisfying the desirable properties, and show that no rule satisfies the properties

on the expanded domain.

Here, we discuss that our proof strategy is different from theirs.

First, the domain of their result includes quasi-linear preferences together with a pref-

erence with positive income effects. In contrast, the domains of our results may include a

preference with negative income effects. Because of this difference, we cannot apply their

proof strategy directly to our results.

Second, the main step of their proof is to show that at some preference profile, the

outcome of a rule satisfying their four properties coincides with the outcome of a unique

natural extension of the rule satisfying the properties on their minimal domain to non-

quasi-linear domains: the generalized Vickrey rule. (see Step 1 of the proof of Theorem 4 of

Malik and Mishra (2021)).33 We cannot follow their proof strategy because on our minimal

domain (RC ∩ RQ)n, we have at least two natural extensions of the rule satisfying the

four properties to non-quasi-linear domains: the generalized Vickrey rule and the inverse

Vickrey rule. In our view, there is no reason why we expect that one of the two rules is

dominant in our model, and the outcome of a rule satisfying the four properties must be

equivalent to that of the rule. In the proof, we show that at some preference profile, the

outcome of a rule satisfying the four properties coincides not with that of the generalized

Vickrey rule, but with that of the inverse Vickrey rule.

6.3 Comparison to Kazumura and Serizawa (2016)

Kazumura and Serizawa (2016) consider the heterogeneous objects model as in Malik and

Mishra (2021), and establish that if the number of agents is greater than that of objects, and

a class of preferences includes all unit-demand preferences and at least one multi-demand

preference, then no rule satisfies efficiency, individual rationality, no subsidy, and strategy-

proofness. Since on the unit-demand domain, the minimum price Walrasian rule satisfies

the four properties (Demange and Gale, 1985; Morimoto and Serizawa, 2015), and they

show that adding at least one preference to the domain leads to an impossibility theorem,

their result has the same form as our negative results (Theorem 1 and Proposition 2). As

with Malik and Mishra (2021), the contribution of this paper compared with their result

is that our results apply to practically important environments to which their result does

not apply, that is, multi-unit auctions.

In their proof, unit-demand preferences that exhibit negative income effects play an

important role (see Step 1 of the proof of Theorem of Kazumura and Serizawa (2016) for

the construction of preferences). For a preference profile where one agent has the multi-

demand preference and other agents have preferences with negative income effects, they

33Note that in their setting with heterogeneous objects, it is not clear how we define the inverse Vickrey
rule.
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exploit negative income effects to show that the sum of the willingness to sell for the unit-

demand agents is less than the willingness to buy for the multi-demand agent, and a Pareto

improvement is possible (see Step 6 of the proof of their result).34 In contrast, our proof

makes use of the positive (resp. negative) income effects to show that an agent with a

preference exhibiting positive (resp. negative) income effects benefits from misrepresenting

his preference so that he wins one more (resp. fewer) unit. Thus, our proof strategy is

different from theirs.35

6.4 Minimal domains

The larger the domain of rules, the stronger the implications of the properties of rules on

the domain. Unless domains are rich enough, the implications of the properties are too

weak to yield meaningful conclusions. Indeed, since the beginning of mechanism design

theory and social choice theory, authors assume rich domains to establish characterization

or impossibility theorems (e.g., Arrow, 1951; Hurwicz 1972; Holmström, 1979; Moulin 1980,

etc.). However, if a domain is so large that it includes even non-natural preferences, the

conclusions from properties on the domain can be applied only to limited situations. This

motivates the concept of minimal domains. Many authors explicitly or implicitly assume

that domains include their respective minimal domains.

Kazumura and Serizawa (2016) and Malik and Mishra (2021) are such examples in

the literature on object allocation problems with money. The minimal domain of the

first corresponds to the unit-demand domain, and that of the second to the quasi-linear

dichotomous domain. In these papers, for a given package of objects, their respective

minimal domains include a preference such that the valuation of the package is sufficiently

large, but those for other packages are small. Then, the property of efficiency implies

that an agent who has such a preference should get the given package. In a similar way,

it is possible to construct a preference profile in their minimal domains such that the

implications of the properties pin down the object allocation (see, e.g., Claim 5 in the

proof of Theorem 4 of Malik and Mishra (2021)). In the proofs of both the papers, such a

construction of preference profiles plays an essential role.

Remember that our minimal domain includes only quasi-linear preferences with con-

stant incremental valuations.36 This weak requirement of our minimal domain makes it

possible to apply our results to various situations such as the case of nonincreasing incre-

mental valuations and that of nondecreasing incremental valuations. At the same time, it

also makes the property of efficiency unable to pin down the units an agent receives, and

only implies that an agent receives all the units or nothing. Thus, the proof technique

34Precisely, when n is the number of agents and m is the number of heterogeneous objects, each agent
i ∈ {2, . . .,m} has a preference with negative income effects, and each agent i ∈ {m + 1, . . ., n} has a
quasi-linear preference in their proof.

35The proof strategy of Proposition 2 is also different from their proof strategy because the proof of
Proposition 2 does not rely on preferences with negative income effects, and applies not only to preferences
with negative income effects, but also to those with positive income effects as illustrated in Example 4.

36Note that domains in Proposition 2 include a little bit more preferences.
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as in Kazumura and Serizawa (2016) and Malik and Mishra (2021) does not work in our

environment, and our proofs need to overcome such weak implications of properties. This

point makes our proofs challenging.

7 Conclusion

We have considered the multi-unit object allocation problem with money. The distin-

guishing feature of our model is to allow agents to have preferences that may not be

quasi-linear. Moreover, our results cover broad class of situations not only where pref-

erences exhibit nonincreasing incremental valuation, but also where preferences exhibit

nondecreasing incremental valuations. We have established that when preferences exhibit

nonincreasing incremental valuations, the existence of a rule satisfying efficiency, individ-

ual rationality, no subsidy for losers, and strategy-proofness depends both on the number

of units and on the size of the income effects. In contrast, when preferences exhibit non-

decreasing incremental valuations, the generalized Vickrey rule is the only rule satisfying

the four properties. Our results suggest that (i) the existence of a rule satisfying the four

properties is guaranteed “almost” only when preferences exhibit nondecreasing incremen-

tal valuations, and (ii) the existence of such a rule depends not only on the properties of

preferences such as nondecreasing incremental valuations and the size of the income effects,

but also other characteristics of the environment such as the number of units.

Appendix

A Preliminaries

In this section, we provide some basic lemmas that will be used to prove the results.

The proofs of all the lemmas in this section are trivial, and we omit those.

The following lemma immediately follows from efficiency and object monotonicity.

Lemma 1 (No remaining object). Let R ∈ Rn and z ≡ (x, t) ∈ Z be efficient for R.

Then
∑

i∈N xi = m.

The next lemma is immediate from individual rationality and no subsidy for losers.

Lemma 2 (Zero payment for losers). Let f ≡ (x, t) be a rule on Rn satisfying indi-

vidual rationality and no subsidy for losers. Let R ∈ Rn and i ∈ N . If xi(R) = 0, then

ti(R) = 0.

The following lemma gives implications of individual rationality.

Lemma 3. Let f ≡ (x, t) be a rule on Rn satisfying individual rationality. Let R ∈ Rn

and i ∈ N . We have (i) Vi(0, fi(R)) ≤ 0, (ii) ti(R) ≤ Vi(xi(R),0) = vi(xi(R),0), and (iii)

for each xi ∈ M , Vi(xi, fi(R)) ≤ Vi(xi,0) = vi(xi,0).
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Let f be a rule on Rn. Let i ∈ N . Given R−i ∈ Rn−1, agent i’s option set under f

for R−i is defined by

ofi (R−i) ≡ {zi ∈ M × R : ∃Ri ∈ R s.t. fi(Ri, R−i) = zi}.

Further, given R−i ∈ Rn−1, let M f
i (R−i) ≡ {xi ∈ M : ∃Ri ∈ R s.t. xi(Ri, R−i) = xi}.

Let f be a rule on Rn satisfying strategy-proofness. Let i ∈ N and R−i ∈ Rn−1. Given

xi ∈ M f
i (R−i), let t

f
i (R−i;xi) ∈ R be a payment such that (xi, t

f
i (R−i;xi)) ∈ ofi (R−i). By

strategy-proofness, such a payment is unique. Given xi ∈ M f
i (R−i), let z

f
i (R−i;xi) ≡ (xi, t

f
i (R−i;xi)).

Then agent i’s option set ofi (R−i) under f for R−i can be expressed as follows.

ofi (R−i) = {(xi, ti) ∈ M f
i (R−i) × R : ti = tfi (R−i;xi)} = {zfi (R−i;xi) : xi ∈ M f

i (R−i)}.

The following lemma is an immediate implication of strategy-proofness.

Lemma 4. Let f be a rule on Rn satisfying strategy-proofness. Then, for each R ∈ Rn,

each i ∈ N , and each xi ∈ M f
i (R−i), fi(R) Ri z

f
i (R−i;xi).

B Proofs of the impossibility theorems

In this section, we provide the proofs of Theorem 1 and Proposition 2.

B.1 Preliminaries

Given Ri ∈ R and xi ∈ M\{0,m}, let

T (xi;Ri) ≡
{
ti ∈ [0, Vi(xi,0)] : Vi(xi + 1, (xi, ti))− ti =

ti
xi

}
.

Thus, T (xi;Ri) is the set of payments in [0, Vi(xi,0)] at which the incremental valuation

Vi(xi + 1, (xi, ti)) − ti of xi + 1 at (xi, ti) for Ri coincides with the per-unit payment ti
xi
.

Hereafter, we omit Ri if there is no risk of confusion, and simply write T (xi) instead of

T (xi;Ri).

In this subsection, we investigate the properties of the set T (xi) for a preference

Ri ∈ RD. The discussion in Sections B.1 and B.2 only relies on the incremental valua-

tions being decreasing, and is valid for any Ri ∈ RD. In Sections B.3 and B.4, we require

positive or negative income effects to derive a contradiction.

The next remark gives an alternative definition of T (xi).

Remark 11. Let Ri ∈ R and xi ∈ M\{0,m}. Let ti ∈ [0, Vi(xi,0)]. Then, ti ∈ T (xi) if

and only if
xi + 1

xi

ti − Vi

(
xi,

(
xi + 1,

xi + 1

xi

ti

))
=

ti
xi

.

Lemma 5. Let Ri ∈ RD and xi ∈ M\{0,m}. Then, T (xi) ̸= ∅.
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Proof. Let hi : R → R be such that for each ti ∈ R, hi(ti) = Vi(xi+1, (xi, ti))− ti− ti
xi
. By

object monotonicity, (xi + 1, 0) Pi (xi, 0). Thus, Vi(xi + 1, (xi, 0)) > 0. Thus, hi(0) > 0.

Further,

Vi(xi + 1, (xi, Vi(xi,0)))− Vi(xi,0) = Vi(xi + 1,0)− Vi(xi,0) (by Remark 1 (i))

<
Vi(xi,0)

xi

. (by Ri ∈ RD)

Thus, h(Vi(xi,0)) < 0. By continuity of Ri, hi(·) is a continuous function.37 Thus, by

the intermediate value theorem, there is ti ∈ (0, Vi(xi,0)) such that hi(ti) = 0. Then,

ti ∈ T (xi).

Lemma 6. Let Ri ∈ RD and xi ∈ M\{0,m}. Then, maxT (xi) exists.

Proof. By Lemma 5, T (xi) is nonempty. Clearly, Vi(xi,0) is an upper bound of T (xi;Ri).

Thus, it suffices to show that T (xi) is a closed set.

Let (tn)n∈N be a convergent sequence in T (xi). Let t ∈ R be such that limn→∞ tn = t.

For each n ∈ N, tn ∈ [0, Vi(xi,0)]. Thus, t ∈ [0, Vi(xi,0)]. Moreover, for each n ∈ N, since
tn ∈ T (xi),

Vi(xi + 1, (xi, t
n))− tn =

tn

xi

.

By the continuity of the function Vi(xi+1, (xi, ·)), taking the limit of the both sides yields

Vi(xi + 1, (xi, t))− t =
t

xi

.

Thus, t ∈ T (xi).

Given Ri ∈ RD and xi ∈ M\{0,m}, let

t(xi;Ri) ≡ maxT (xi;Ri).

Moreover, let t(m;Ri) ≡ 0, t(0;Ri) ≡ Vi(1,0), and t(−1;Ri) ≡ ∞. We may omit Ri in

t(·;Ri) when it is clear.

Lemma 7. Let Ri ∈ RD and xi ∈ M\{0,m}. Then, t(xi) < Vi(xi,0).

Proof. By contradiction, suppose t(xi) ≥ Vi(xi,0). By t(xi) ∈ T (xi), t(xi) = Vi(xi,0).

Then,

Vi(xi,0)

xi

= Vi(xi + 1, (xi, Vi(xi,0)))− Vi(xi,0) (by t(xi) ∈ T (xi))

= Vi(xi + 1,0)− Vi(xi,0), (by Remark 1 (i))

which contradicts Ri ∈ RD.

37For the formal argument of this statement, see Lemma 1 of Kazumura and Serizawa (2016).
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The next lemma states that if a payment ti is greater than t(xi), then the incremental

valuation of xi + 1 at (xi, ti) is smaller than the per-unit payment at ti.

Lemma 8. Let Ri ∈ RD and xi ∈ M\{0,m}. For each ti ∈ (t(xi), Vi(xi,0)],

Vi(xi + 1, (xi, ti))− ti <
ti
xi

.

Proof. Let ti ∈ (t(xi), Vi(xi,0)]. By contradiction, suppose

Vi(xi + 1, (xi, ti))− ti ≥
ti
xi

. (1)

By ti > t(xi) = maxT (xi), ti ̸∈ T (xi). Thus, by (1),

Vi(xi + 1, (xi, ti))− ti >
ti
xi

.

By Remark 1 (i) and Ri ∈ RD,

Vi(xi + 1, (xi, Vi(xi,0)))− Vi(xi,0) = Vi(xi + 1,0)− Vi(xi,0) <
Vi(xi,0)

xi

.

Thus, as in the proof of Lemma 5, the intermediate value theorem implies that there is

t′i ∈ (ti, Vi(xi,0)) such that

Vi(xi + 1, (xi, t
′
i))− t′i =

t′i
xi

.

Thus, by t′i ∈ [0, Vi(xi,0)], t
′
i ∈ T (xi). However, by t′i > ti > t(xi), this contradicts the

definition of t(xi) that t(xi) = maxT (xi).

The next lemma states that the per-unit payment t(xi)
xi

is strictly decreasing in xi.

Lemma 9. Let Ri ∈ RD and xi ∈ M\{0,m}. Then, t(xi)
xi

> t(xi+1)
xi+1

.

Proof. By contradiction, suppose t(xi)
xi

≤ t(xi+1)
xi+1

. There are two cases.

Case 1. t(xi)
xi

< t(xi+1)
xi+1

.

We have

t(xi + 1)

xi + 1
= Vi(xi + 2, (xi + 1, t(xi + 1)))− t(xi + 1) (by t(xi + 1) ∈ T (xi + 1))

< t(xi + 1)− Vi(xi, (xi + 1, t(xi + 1))). (by Ri ∈ RD)

This implies

Vi(xi, (xi + 1, t(xi + 1))) < xi
t(xi + 1)

xi + 1
. (1)
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Thus,

Vi(xi, (xi + 1, t(xi + 1))) < xi
Vi(xi + 1,0)

xi + 1
< Vi(xi,0), (2)

where the first inequality follows from t(xi + 1) ∈ T (xi + 1), and the second one from

Ri ∈ RD.

By t(xi) ∈ T (xi) and
t(xi)
xi

< t(xi+1)
xi+1

,

Vi(xi + 1, (xi, t(xi))) =
xi + 1

xi

t(xi) < t(xi + 1).

This implies (xi, t(xi)) Pi (xi + 1, t(xi + 1)). Thus,

t(xi) < Vi(xi, (xi + 1, t(xi + 1))). (3)

Let ti ≡ Vi(xi, (xi + 1, t(xi + 1))). By (2) and (3), ti ∈ (t(xi), Vi(xi,0)). Moreover,

Vi(xi + 1, (xi, ti))

= Vi(xi + 1, (xi + 1, t(xi + 1))) (by (xi, ti) Ii (xi + 1, t(xi + 1)) and Remark 1 (i))

= t(xi + 1) (by Remark 1 (iii))

> (xi + 1)
ti
xi

. (by (1))

Thus,

Vi(xi + 1, (xi, ti))− ti >
ti
xi

.

However, this contradicts Lemma 8.

Case 2. t(xi)
xi

= t(xi+1)
xi+1

.

By t(xi) ∈ T (xi),

Vi(xi + 1, (xi, t(xi)))− t(xi) =
t(xi)

xi

.

Similarly, by t(xi + 1) ∈ T (xi + 1),

Vi(xi + 2, (xi + 1, t(xi + 1)))− t(xi + 1) =
t(xi + 1)

xi + 1
.

Thus, by t(xi)
xi

= t(xi+1)
xi+1

,

Vi(xi + 1, (xi, t(xi)))− t(xi) = Vi(xi + 2, (xi + 1, t(xi + 1)))− t(xi + 1). (4)

Further, by t(xi) ∈ T (xi) and
t(xi)
xi

= t(xi+1)
xi+1

,

Vi(xi + 1, (xi, t(xi))) =
xi + 1

xi

t(xi) = t(xi + 1). (5)
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Then,

t(xi + 1)− Vi(xi, (xi + 1, t(xi + 1)))

= Vi(xi + 1, (xi, t(xi)))− Vi

(
xi,

(
xi + 1, Vi(xi + 1, (xi, t(xi)))

))
(by (5))

= Vi(xi + 1, (xi, t(xi)))− Vi(xi, (xi, t(xi))) (by Remark 1 (i))

= Vi(xi + 1, (xi, t(xi)))− t(xi) (by Remark 1 (iii))

= Vi(xi + 2, (xi + 1, t(xi + 1)))− t(xi + 1), (by (4))

which contradicts the assumption that Ri ∈ RD.

By Lemma 9, the closed interval [xi
t(xi+1)
xi+1

, t(xi)] is well-defined.

Lemma 10. Let Ri ∈ RD and xi ∈ M\{0,m}. Then, min
(
T (xi) ∩ [xi

t(xi+1)
xi+1

, t(xi)]
)
ex-

ists.

Proof. By Lemma 9, xi
t(xi+1)
xi+1

< t(xi). By t(xi) ∈ T (xi), T (xi) ∩ [xi
t(xi+1)
xi+1

, t(xi)] ̸= ∅.

Clearly, xi
t(xi+1)
xi+1

is a lower bound of T (xi) ∩ [xi
t(xi+1)
xi+1

, t(xi)]. Thus, it suffices to show

that the set is closed.

As shown in the proof of Lemma 6, T (xi) is closed. Thus, since the closed interval

[xi
t(xi+1)
xi+1

, t(xi)] is a closed set, T (xi) ∩ [xi
t(xi+1)
xi+1

, t(xi)] is also a closed set.

Given Ri ∈ RD and xi ∈ M\{0,m}, let

t(xi;Ri) ≡ min

(
T (xi;Ri) ∩

[
xi
t(xi + 1;Ri)

xi + 1
, t(xi;Ri)

])
.

Moreover, let t(m;Ri) ≡ 0, t(0;Ri) ≡ Vi(1,0), and t(−1;Ri) ≡ ∞. Again, we may omit Ri

in t(·;Ri) when there is no risk of confusion. Clearly, for each xi ∈ M ∪ {−1}, t(xi) ≤ t(xi).

The next lemma states that the per-unit payment t(xi)
xi

is greater than t(xi+1)
xi+1

.

Lemma 11. Let Ri ∈ RD and xi ∈ M\{0,m}. Then, t(xi) > xi
t(xi+1)
xi+1

.

Proof. First, suppose xi < m − 1. By t(xi) ∈ [xi
t(xi+1)
xi+1

, t(xi)], t(xi) ≥ xi
t(xi+1)
xi+1

. By con-

tradiction, suppose t(xi) = xi
t(xi+1)
xi+1

. Then, in the same way as in Case 2 of the proof of

Lemma 9, we can show

Vi(xi + 2, (xi, t(xi + 1)))− t(xi + 1) = t(xi + 1)− Vi(xi, (xi + 1, t(xi + 1))),

which contradicts the assumption that Ri ∈ RD.

Next, suppose xi = m − 1. By t(m − 1) ∈ T (m − 1), t(m − 1) ≥ 0 = (m − 1) t(m)
m

.

By contradiction, suppose that t(m − 1) = 0. Then, by object monotonicity, (m, 0) =

(m, t(m− 1)) Pi (m− 1, t(m− 1)). This implies

Vi(m, (m− 1, t(m− 1))) > 0 = (m− 1)
t(m)

m
.
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However, this contradicts t(m− 1) ∈ T (m− 1).

By Lemma 11, for each xi ∈ M\{0, 1}, the interval [t(xi), xi
t(xi−1)
xi−1

) is well-defined.

Lemma 12. Let Ri ∈ RD and xi ∈ M\{0}.
(i) If xi > 1, then for each ti ∈ [t(xi), xi

t(xi−1)
xi−1

),

ti − Vi(xi − 1, (xi, ti)) >
ti
xi

.

(ii) If xi = 1, then for each ti ∈ [t(1), t(0)),

ti − Vi(xi − 1, (xi, ti)) >
ti
xi

.

Proof. The proof has two parts.

Part 1. First, we show (i). Suppose xi > 1. Let ti ∈ [t(xi), xi
t(xi−1)
xi−1

). By contradiction,

suppose

ti − Vi(xi − 1, (xi, ti)) ≤
ti
xi

.

First, we claim that

ti − Vi(xi − 1, (xi, ti)) <
ti
xi

. (1)

By contradiction, suppose

ti − Vi(xi − 1, (xi, ti)) =
ti
xi

. (2)

Let t(xi − 1) ≡ (xi − 1) ti
xi
. Then,

xi

xi − 1
t(xi − 1)− Vi

(
xi − 1,

(
xi,

xi

xi − 1
t(xi − 1)

))
=

t(xi − 1)

xi − 1
.

By ti <
xi

xi−1
t(xi − 1),

t(xi − 1) < t(xi − 1) ≤ t(xi − 1) < Vi(xi − 1,0),

where the last inequality follows from Lemma 7. Thus, by Remark 11, t(xi−1) ∈ T (xi−1).

By t(xi − 1) ∈ T (xi − 1),

Vi(xi, (xi − 1, t(xi − 1))) = xi
t(xi − 1)

xi − 1
.

Thus, by ti < xi
t(xi−1)
xi−1

,

ti < Vi(xi, (xi − 1, t(xi − 1))). (3)

Let t(xi) ≡ Vi(xi, (xi − 1, t(xi − 1))). Then, by Remark 1 (i),

(xi, t(xi)) Ii (xi − 1, t(xi − 1)). (4)
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Then, by (2),

t(xi − 1) = Vi(xi − 1, (xi, ti)) (by (2))

< Vi(xi − 1, (xi, t(xi))) (by (3))

= Vi(xi − 1, (xi − 1, t(xi − 1))) (by (4) and Remark 1 (i))

= t(xi − 1). (by Remark 1 (iii))

By t(xi − 1) ≤ t(xi − 1), t(xi − 1) < t(xi − 1). Moreover, by ti ≥ t(xi),

t(xi − 1) = (xi − 1)
ti
xi

≥ (xi − 1)
t(xi)

xi

.

Thus, we obtain t(xi − 1) ∈ [(xi − 1) t(xi)
xi

, t(xi − 1)]. By t(xi − 1) ∈ T (xi − 1), we have

t(xi − 1) ∈ T (xi − 1) ∩ [(xi − 1) t(xi)
xi

, t(xi − 1)]. However, by t(xi − 1) < t(xi − 1), this

contradicts the definition of t(xi−1) that t(xi−1) = minT (xi−1) ∩ [(xi−1) t(xi)
xi

, t(xi−1)].

Thus, we obtain (1). This implies

(xi − 1)
ti
xi

< Vi(xi − 1, (xi, ti)).

Thus, (
xi − 1, (xi − 1)

ti
xi

)
Pi (xi − 1, Vi(xi − 1, (xi, ti))) Ii (xi, ti).

This implies

Vi

(
xi,

(
xi − 1, (xi − 1)

ti
xi

))
< ti. (5)

By Ri ∈ RD and t(xi) ∈ T (xi),

t(xi)− Vi(xi − 1, (xi, t(xi))) > Vi(xi + 1, (xi, t(xi)))− t(xi) =
t(xi)

xi

,

or equivalently,

(xi − 1)
t(xi)

xi

> Vi(xi − 1, (xi, t(xi))).

This implies

(xi, t(xi)) Ii

(
xi − 1, Vi(xi − 1, (xi, t(xi)))

)
Pi

(
xi − 1, (xi − 1)

t(xi)

xi

)
.

Thus,

t(xi) < Vi

(
xi,

(
xi − 1, (xi − 1)

t(xi)

xi

))
,

or equivalently,

Vi

(
xi,

(
xi − 1, (xi − 1)

t(xi)

xi

))
−(xi − 1)

t(xi)

xi

>
t(xi)

xi

. (6)
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Let hi : R → R be such that for each t ∈ R, hi(t) = Vi(xi, (xi − 1, t)) − t
xi−1

. By the

continuity of Ri, hi is continuous. Thus, by (5) and (6), the intermediate value theorem

implies that there is t′i ∈ ((xi − 1) t(xi)
xi

, (xi − 1) ti
xi
) such that

Vi(xi, (xi − 1, t′i))− t′i =
t′i

xi − 1
.

By ti < xi
t(xi−1)
xi−1

and Lemma 7, t′i < Vi(xi − 1,0). Thus, t′i ∈ T (xi − 1). By t′i < (xi − 1) ti
xi

and ti < xi
t(xi−1)
xi−1

, we have t′i < t(xi − 1). By t(xi − 1) ≤ t(xi − 1), t′i < t(xi − 1). Thus,

by t′i > (xi − 1) t(xi)
xi

, we have t′i ∈ [(xi − 1) t(xi)
xi

, t(xi − 1)]. By t′i ∈ T (xi − 1), we get

t′i ∈ T (xi − 1) ∩ [(xi − 1) t(xi)
xi

, t(xi − 1)]. However, by t′i < t(xi − 1), this contradicts the

definition of t(xi − 1) that t(xi − 1) = min
(
T (xi − 1) ∩ [(xi − 1) t(xi)

xi
, t(xi − 1)]

)
.

Part 2. Next, we show (ii). Suppose xi = 1. Let ti ∈ [t(xi), t(xi − 1)). Then, by

ti < t(0) = Vi(1,0), (1, ti) Pi 0. This implies Vi(0, (1, ti)) < 0. Thus,ti − Vi(0, (1, ti)) > ti,

as desired.

Given Ri ∈ RD and xi ∈ M\{0}, let d(xi;Ri) ≡ t(xi)
xi

and d(xi) ≡ t(xi)
xi

. Further, let

d(0;Ri) = d(0;Ri) ≡ Vi(1,0) and d(−1;Ri) = d(−1;Ri) ≡ − ∞. We may omit Ri if it

is obvious from the context. Then, for each xi ∈ M ∪ {−1}, d(xi) ≤ d(xi). Moreover, by

Lemmas 7 and 11, for each xi ∈ M , d(xi) < d(xi − 1).

Here, we provide an interpretation of d(xi) and d(xi) for some class of preferences. To

do so, we introduce the notion of single-intersection condition on a preference. In words, it

states that for each xi ∈ M\{0,m}, the incremental valuation Vi(xi+1, (xi, ti))−ti and the

per-unit payment ti
xi

coincides only at once in [0, Vi(xi,0)]. Formally, a preference Ri ∈ R
satisfies the single-intersection condition if for each xi ∈ M\{0,m}, |T (xi)| = 1.

Remark 12. Let Ri ∈ RNI ∩ R+. Then, it satisfies the single-intersection condition.

Note that some preference Ri ∈ RNI ∩ R−− that exhibits nonincreasing incremental

valuations and negative income effects violates the single-crossing condition.

The next proposition gives an interpretation of d(xi) and d(xi). It states that if a

preference Ri ∈ RD satisfies the single-intersection condition, then both d(xi) and d(xi)

are equivalent to the inverse-demand p(xi + 1;Ri) of xi + 1 units.

Proposition 3. Let Ri ∈ RD satisfy the single-intersection condition. Then, for each

xi ∈ M\{m}, d(xi) = d(xi) = p(xi + 1;Ri).

The proof of Proposition 3 can be found in the supplementary material.

The single-intersection condition is indispensable for Proposition 3. Indeed, we can find

a preference Ri ∈ RD such that for some xi ∈ M\{0,m}, |T (xi)| ≥ 2, and neither d(xi)

nor d(xi) coincides with p(xi + 1;Ri).

By Proposition 3 and Remark 12, we obtain the following.

Corollary 2. Let Ri ∈ RD ∩ R+. For each xi ∈ M\{m}, d(xi) = d(xi) = p(xi + 1;Ri).
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B.2 Proof of Theorem 1 and Proposition 2

We are now in a position to prove Theorem 1 and Proposition 2. Both the proofs have

many parts in common, and we do not distinguish them for a while. Before providing the

proofs, we invoke the following fact.

Fact 1. (Holmström, 1979) Let R be such that R ∩ RQ is convex.38 Let f be a rule

on Rn satisfying efficiency, individual rationality, no subsidy for losers, and strategy-

proofness. Then, for each i ∈ N , each R−i ∈ (R ∩ RQ)n−1, and each xi ∈ M f
i (R−i),

tfi (R−i;xi) = σi(R−i; 0)− σi(R−i;xi).

For each ε > 0, RC ∩ RQ, RNI(ε) ∩ RQ, and RND(ε) ∩ RQ are all convex. This

allows us to use Fact 1 in the subsequent proof.

Let R0 ∈ RD ∩ (R++ ∪ R−−) and ε ∈ R++. Let

R ∈
{
(RC ∩ RQ) ∪ {R0}, (RNI(ε) ∩ RQ) ∪ {R0}, (RND(ε) ∩ RQ) ∪ {R0}

}
.

Suppose that there is a rule f on Rn satisfying efficiency, individual rationality, no subsidy

for losers, and strategy-proofness.39

Step 1. In what follows, for each xi ∈ M ∪ {−1}, we simply write d(xi) and d(xi) instead

of d(xi;R0) and d(xi;R0), respectively. For each x ∈ M\{m}, let

R(x) ≡
{
Ri ∈ RC ∩ RQ : vi(x

′ + 1)− vi(x
′) ∈ (d(x), d(x− 1) for each x′ ∈ M\{m}

}
.

By Lemma 11, we can choose δ > 0 such that δ < d(m − 1), and it is sufficiently small

positive number compared to R0.
40 Let

R(m) ≡
{
Ri ∈ RC ∩ RQ : vi(x+ 1)− vi(x) ∈ (δ, d(m− 1)) for each x ∈ M\{m}

}
.

Note that
∪

x∈M R(x) ⊊ RC ∩ RQ ⊊ R.

Let R1 ≡ R0. For each i ∈ N\{1, 2}, let Ri ∈ RC ∩ RQ be such that for each xi ∈ M ,

vi(xi) = δxi. Since δ is sufficiently small compared to R1, efficiency implies that for each

R2 ∈ R and each i ∈ N\{1, 2}, xi(R) = 0. For each R2 ∈
∪

x∈MR(x) with the constant

incremental valuation v2, since v2 > δ and R−1 ∈ (RNI)n−1, Remark 8 implies that for

38A class of preferences R ⊆ RQ is convex if for each pair Ri, R
′
i with valuations functions vi(·), v′i(·)

and each λ ∈ [0, 1], a preference Rλ
i with valuation function vλi (·) = λvi(·) + (1− λ)v′i(·) is in R.

39Note that an impossibility theorem on a domain implies the impossibility theorem on any superdomain.
Thus, to show Theorem 1, we only have to show the impossibility on ((RC ∩ RQ) ∪ {R0})n. The parallel
discussion applies to Proposition 2.

40For example, let δ > 0 be such that

δ < min{V0(m,0)− V0(m− 1,0), V0(m, (m− 1, 0)), d(m− 1)}.

Then the subsequent discussion is valid for such δ > 0.
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each x1 ∈ M , σ1(R−1;x1) = (m−x1)v2. Thus, for each R2 ∈
∪

x∈MR(x) with the constant

incremental valuation v2 and each x1 ∈ M f
1 (R−1), Fact 1 gives

tf1(R−1;x1) = v2x1. (1)

Step 2. Let x1 ∈ M and Rx1
2 ∈ R(x1). Let R

x1 ≡ (R1, R
x1
2 , R−1,2). We show x1(R

x1) = x1

and x2(R
x1) = m− x1. Since, for each i ∈ N\{1, 2}, xi(R) = 0, by Lemma 1 we only have

to show x1(R
x1) = x1. Let v

x1
2 be the constant incremental valuation associated with Rx1

2 .

Case 1. 1 ≤ x1 ≤ m.

We show x1(R
x1) = x1. Suppose by contradiction that xi(R

x1) ̸= x1.

Suppose first x1(R
x1) > x1. Then, by efficiency and Rx1 ∈ (RNI)n, Remark 8 implies

t1(R
x1)− V1(x1(R

x1)− 1, f1(R
x1)) ≥ vx1

2 .

By x1(R
x1) > x1 and R1 ∈ RD, we have

t1(R
x1)− V1(x1, f1(R

x1)) ≥ (x1(R
x1)− x1)v

x1
2 .

Then, by (1),

V1(x1, f1(R
x1)) ≤ x1v

x1
2 .

This implies f1(R
x1) R1 (x1, x1v

x1
2 ).

By x1 < x1(R
x1), x1 < m. Thus, by x1 ≥ 1, x1 ∈ M\{0,m}. ByRx1

2 ∈ R(x1), Lemma 8

implies

V1(x1 + 1, (x1, x1v
x1
2 ))− x1v

x1
2 <

x1v
x1
2

x1

= vx1
2 .

By x1(R
x1) > x1 and R1 ∈ RD,

V1(x1(R
x1), (x1, x1v

x1
2 ))− x1v

x1
2 < (x1(R

x1)− x1)v
x1
2 = t1(R

x1)− x1v
x1
2 ,

where the equality follows from (1). This implies

V1(x1(R
x1), (x1, x1v

x1
2 )) < t1(R

x1).

Thus, (x1, x1v
x1
2 ) P1 f1(R

x1). However, this contradicts f1(R
x1) R1 (x1, x1v

x1
2 ).

Suppose instead x1(R
x1) < x1. By efficiency and R1 ∈ RD, Remark 8 implies

V1(x1(R
x1) + 1, f1(R

x1))− t1(R
x1) ≤ vx1

2 .
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By x1 > x1(R
x1), R1 ∈ RD implies

V1(x1, f1(R
x1))− t1(R

x1) ≤ (x1 − x1(R
x1))vx1

2 = x1v
x1
2 − t1(R

x1),

where the equality follows from (1). Thus,

V1(x1, f1(R
x1)) ≤ x1v

x1
2 ,

which implies f1(R
x1) R1 (x1, v

x1
2 x1).

By x1 > x1(R
x1), x1 > 0. Thus, by R1 ∈ RD and Rx1

2 ∈ R(x1), Lemma 12 implies

vx1
2 x1 − V1(x1 − 1, (x1, x1v

x1
2 )) >

x1v
x1
2

x1

= vx1
2 .

By x1 > x1(R
x1), R1 ∈ RD gives

vx1
2 x1 − V1(x1(R

x1), (x1, x1v
x1
2 )) > (x1 − x1(R

x1))vx1
2 = vx1

2 x1 − t1(R
x1),

where the equality follows from (1). Thus,

t1(R
x1) > V1(x1(R

x1), (x1, x1v
x1
2 )).

This implies (x1, x1v
x1
2 ) P1 f1(R

x1). However, this contradicts f1(R
x1) R1 (x1, x1v

x1
2 ).

Case 2. x1 = 0.

We show x1(R
0) = 0. Suppose by contradiction that x1(R

0) > 0. Then,

V1(x1(R
0),0) ≤ x1(R

0)V1(1,0) < x1(R
0)v02, (2)

where the first inequality follows from R1 ∈ RD, and the second one from R0
2 ∈ R(0).

Then, by (2) and (1),

0 I1 (x1(R
0), V1(x1(R

0),0)) P1 (x1(R
0), x1(R

0)v02) = f1(R
0).

However, this contradicts individual rationality.

Step 3. Note that Step 2 implies that for each x2 ∈ M and each Rm−x2
2 ∈ R(m − x2),

x2(R
m−x2
2 , R−2) = x2. Thus, M f

2 (R−2) = M , and the domain of the function tf2(R−2; ·) is
M . In this step, we show that for each x2 ∈ M\{m},

d(m− x2 − 1)≤ tf2(R−2;x2 + 1)− tf2(R−2;x2) ≤ d(m− x2 − 1).
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Let x2 ∈ M\{m}. Suppose by contradiction that

tf2(R−2;x2 + 1)− tf2(R−2;x2) ̸∈ [d(m− x2 − 1), d(m− x2 − 1)].

There are two cases.

Case 1. tf2(R−2;x2 + 1)− tf2(R−2;x2) < d(m− x2 − 1).

Let Rm−x2
2 ∈ R(m− x2) be such that

tf2(R−2;x2 + 1)− tf2(R−2;x2) < vm−x2
2 < d(m− x2 − 1),

where vm−x2
2 is a constant incremental valuation associated with Rm−x2

2 . By Step 2, we

have x2(R
m−x2) = x2. By vm−x2

2 > tf2(R−2;x2 + 1)− tf2(R−2;x2),

(x2 + 1)vm−x2
2 − tf2(R−2;x2 + 1) > x2v

m−x2
2 − tf2(R−2;x2).

Thus, zf2 (R−2;x2 + 1) Pm−x2
2 zf2 (R−2;x2) = f2(R

m−x2), which contradicts Lemma 4.

Case 2. tf2(R−2;x2 + 1)− tf2(R−2;x2) > d(m− x2 − 1).

Let Rm−x2−1
2 ∈ R(m− x2 − 1) be such that

d(m− x2 − 1) < vm−x2−1
2 < tf2(R−2;x2 + 1)− tf2(R−2;x2),

where vm−x2−1
2 is a constant incremental valuation associated with Rm−x2−1

2 . By Step 2,

we have x2(R
m−x2−1) = x2 + 1. By vm−x2−1

2 < tf2(R−2;x2 + 1)− tf2(R−2;x2),

x2v
m−x2−1
2 − tf2(R−2;x2) > (x2 + 1)vm−x2−1

2 − tf2(R−2;x2 + 1).

Thus, zf2 (R−2;x2) P
m−x2−1
2 zf2 (R−2;x2 + 1) = f2(R

m−x2−1), which contradicts Lemma 4.

B.3 Proof of Theorem 1

We complete the proof of Theorem 1. Suppose m is odd and R = (RC ∩ RQ) ∪ {R0}.
Let R2 ≡ R0. Let α ≡ m−1

2
. Note that as m is odd, α ∈ M . There are two cases.

Case 1. R0 ∈ R++.

By R0 ∈ RD ∩ R++, Remark 12 implies that for each x ∈ M , d(x) = d(x) ≡ d(x). Let

x2 ∈ M be such that 0 < x2 ≤ α. We show that zf2 (R−2;x2 + 1) P2 zf2 (R−2;x2). We have

tf2(R−2;x2) =

x2−1∑
x=0

d(m− x− 1) ≤ x2d(m− x2) < x2d(x2) = t(x2),
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where the first equality follows from Step 3 and Lemma 2, the first inequality follows

from R1 ∈ RD and Lemma 11, the second inequality comes from R1 ∈ RD, x2 ≤ α, and

Lemma 11, and the last equality follows from 0 < x2 < m. Thus, by R2 ∈ R++ and

Remark 5 (i),

V2(x2 + 1, zf2 (R−2;x2))− tf2(R−2;x2) > V2(x2 + 1, (x2, t(x2)))− t(x2). (3)

We also have

tf2(R−2;x2 + 1)− tf2(R−2;x2) = d(m− x2 − 1) (by Step 3)

≤ d(x2) (by Lemma 11)

=
t(x2)

x2

= V2(x2 + 1, (x2, t(x2)))− t(x2). (by t(x2) ∈ T (x2))

This, together with (3), implies

V2(x2 + 1, zf2 (R−2;x2))− tf2(R−2;x2) > tf2(R−2;x2 + 1)− tf2(R−2;x2),

or equivalently, V2(x2+1, zf2 (R−2;x2)) > tf2(R−2;x2+1). Thus, zf2 (R−2;x2+1) P2 zf2 (R−2;x2).

We then show that zf2 (R−2; 1) P2 zf2 (R−2; 0). We have

tf2(R−2; 1) = d(m− 1) <
V2(m− 1,0)

m− 1
< V2(1,0),

where the equality follows from Step 3 and Lemma 2, the first inequality from R2 ∈ RD

and Lemma 7, and the last one from R2 ∈ RD. Thus, zf2 (R−2; 1) P2 0 = zf2 (R−2; 0).

We have established that for each x2 ∈ M with x2 < α + 1,

zf2 (R−2;x2 + 1) P2 zf2 (R−2;x2).

By Lemma 4, x2(R) ≥ α + 1. Thus,

x1(R) ≤ m− x2(R) ≤ m− α− 1 = α.

Since both agents 1 and 2 have the same preferences R0, the name of agents does not

matter in the above discussion. Thus, a symmetric argument implies that for each x1 ∈ M

with x1 < α + 1,

zf1 (R−1;x1 + 1) P1 zf1 (R−1;x1).

In particular, by x1(R) ≤ α, we have

zf1 (R−1;x1(R) + 1) P1 zf1 (R−1;x1(R)) = f1(R).

However, this contradicts Lemma 4.
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Case 2. R0 ∈ R−−.

We show that zf2 (R−2;α) P2 zf2 (R−2;α+1). We divide the argument into two subcases.

Case 2-1. tf2(R−2;α + 1) ≥ (α + 1)d(α).

We have

tf2(R−2;α) ≤
α−1∑
x=0

d(m− x− 1) ≤ αd(m− α) < αd(α),

where the first inequality follows from Step 3 and Lemma 2, the second one from R2 ∈ RD

and Lemma 11, and the last one from R2 ∈ RD, 2α < m, and Lemma 11. Note that by

0 < α < m, αd(α) = t(α). Thus, tf2(R−2;α) < t(α). This implies

zf2 (R−2;α) P2 (α, t(α)). (4)

By t(α) ∈ T (α),

V2(α + 1, (α, t(α))) = (α + 1)d(α).

This implies

(α, t(α)) I2 (α + 1, (α + 1)d(α)). (5)

Further, by tf2(R−2;α + 1) ≥ (α + 1)d(α),

(α + 1, (α + 1)d(α)) R2 zf2 (R−2;α + 1). (6)

Combining (4), (5), and (6), we get

zf2 (R−2;α) P2 zf2 (R−2;α + 1),

as desired.

Case 2-2. tf2(R−2;α + 1) < (α + 1)d(α).

By t(α) ∈ T (α),

V2(α + 1, (α, t(α))) = (α + 1)d(α).

This implies (α + 1, (α + 1)d(α)) I2 (α, t(α)). Thus, by Remark 1 (i) and (iii),

V2(α, (α + 1, (α + 1)d(α))) = V2(α, (α, t(α))) = t(α). (7)
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We have

tf2(R−2;α + 1)− V2(α, z
f
2 (R−2;α + 1))

< (α + 1)d(α)− V2(α, (α + 1, (α + 1)d(α))) (by Remark 6 (ii))

= (α + 1)d(α)− t(α) (by (7))

= d(α)

= d(m− α− 1) (by 2α = m− 1)

≤ tf2(R−2;α + 1)− tf2(R−2;α), (by Step 3)

or equivalently,

V2(α, z
f
2 (R−2;α + 1)) > tf2(R−2;α).

This implies zf2 (R−2;α) P2 zf2 (R−2;α + 1).

Then, we show for each x2 ∈ M with α < x2 < m, zf2 (R−2;x2) P2 zf2 (R−2;x2 +1). Let

x2 ∈ M be such that α < x2 < m. By contradiction, suppose zf2 (R−2;x2+1) R2 zf2 (R−2;x2).

This implies

tf2(R−2;x2 + 1)− V2(x2, z
f
2 (R−2;x2 + 1)) ≥ tf2(R−2;x2 + 1)− tf2(R−2;x2). (8)

We have

tf2(R−2;x2 + 1)− V2(α, z
f
2 (R−2;x2 + 1))

> (x2 + 1− α)
(
tf2(R−2;x2 + 1)− V2(x2; z

f
2 (R−2;x2 + 1))

)
(by R2 ∈ RD)

≥ (x2 + 1− α)(tf2(R−2;x2 + 1)− tf2(R−2;x2)) (by (8))

≥ tf2(R−2;x2 + 1)− tf2(R−2;x2) + (x2 − α)d(m− x2 − 1) (by Step 3)

> tf2(R−2;x2 + 1)− tf2(R−2;x2) +

x2−1∑
x=α

d(m− x− 1) (by Lemma 11)

≥ tf2(R−2;x2 + 1)− tf2(R−2;α), (by Step 3)

or equivalently,

V2(α, z
f
2 (R−2;x2 + 1)) < tf2(R−2;α).

This implies zf2 (R−2;x2 + 1) P2 zf2 (R−2;α).

By zf2 (R−2;α + 1) P2 zf2 (R−2;α),

V2(α + 1, zf2 (R−2;α))− tf2(R−2;α) < tf2(R−2;α + 1)− tf2(R−2;α). (9)
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Then,

V2(x2 + 1, zf2 (R−2;α))− tf2(R−2;α)

< (x2 + 1− α)
(
V2(α + 1, zf2 (R−2;α))− tf2(R−2;α)

)
(by R2 ∈ RD)

≤ tf2(R−2;α + 1)− tf2(R−2;α) + (x2 − α)d(m− α− 1) (by Step 3)

< tf2(R−2;α + 1)− tf2(R−2;α) +

x2∑
x=α+1

d(m− x− 1) (by Lemmas 7 and 11)

≤ tf2(R−2;x2 + 1)− tf2(R−2;α), (by Step 3)

or equivalently,

V2(x2 + 1, zf2 (R−2;α)) < tf2(R−2;x2 + 1).

Thus, zf2 (R−2;α) P2 zf2 (R−2;x2 + 1), which contradicts zf2 (R−2;x2 + 1) P2 zf2 (R−2;α).

We have established that for each x2 ∈ M with α ≤ x2 < m,

zf2 (R−2;x2) P2 zf2 (R−2;x2 + 1).

Thus, by Lemma 4, x2(R) ≤ α. By xi(R) = 0 for each i ∈ N\{1, 2}, Lemma 1 implies

x1(R) = m− x2(R) ≥ m− α = α + 1.

By a symmetric argument, we can show that for each x1 ∈ M with α ≤ x1 < m,

zf1 (R−1;x1) P1 zf1 (R−1;x1 + 1).

Thus, by x1(R) ≥ α + 1,

zf1 (R−1;x1(R)− 1) P1 zf1 (R−1;x1(R)) = f1(R),

which contradicts Lemma 4. ■

B.4 Proof of Proposition 2

Next, we complete the proof of Proposition 2. We divide the argument into two cases.

Case 1. R0 ∈ R++

By R0 ∈ RD ∩ R++, Remark 12 implies d(x) = d(x) ≡ d(x) for each x ∈ M . Suppose

that R = (RNI(ε) ∩ RQ) ∪ {R0}. The proof of the other case is similar, and we relegate

it to the supplementary material.
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Recall that δ < d(m− 1). Let 0 < ε1 < min{(m− 1)ε, d(m−1)−δ
2

}. Then

d(m− 1) = V1(m, (m− 1, t(m− 1)))− t(m− 1) (by t(m− 1) ∈ T (m− 1))

< V1(m, (m− 1, t(m− 1)− ε1))− (t(m− 1)− ε1)

Thus,

ε2 ≡ V1(m, (m− 1, t(m− 1)− ε1))− (t(m− 1)− ε1)− d(m− 1) > 0.

Let ε3 > 0 be such that ε1 +mε3 < ε and

ε3 < min
{d(m− 1)− δ

2
, ε2

}
.

Let R2 ∈ RNI ∩ RQ be such that v2(1) = d(m− 1) + ε3, and for each x2 ∈ M\{0,m},

v2(x2 + 1)− v2(x2) = d(m− 1)− ε1 + ε3
m− 1

.

Note that by ε1 + mε3 < ε, R2 ∈ RNI(ε) ∩ RQ. By δ < d(m − 1), v2(1) > δ. Fur-

ther, by ε1, ε3 < d(m−1)−δ
2

, v2(x2 + 1) − v2(x2) > δ for each x2 ∈ M\{0,m}. Thus, by

R−1 ∈ (RNI)n−1, Remark 8 implies σ1(R−1;x1) = v2(m − x1) for each x1 ∈ M . Then by

Fact 1, for each x1 ∈ M f
1 (R−1),

tf1(R−1;x1) = v2(m)− v2(m− x1). (10)

By Step 3 and Lemma 2, tf2(R−2; 1) = d(m − 1). Thus, v2(1) − tf2(R−2; 1) = (d(m −
1) + ε3)− d(m− 1) = ε3 > 0. For each x2 ∈ M\{0, 1},

v2(x2)− v2(1) = (x2 − 1)
(
d(m− 1)− ε1 + ε3

m− 1

)
< (x2 − 1)d(m− 1) (by ε1, ε3 > 0)

<

x2∑
x=2

d(m− x) (by Lemma 11)

=

x2∑
x=2

(tf2(R−2;x)− tf2(R−2;x− 1)) (by Step 3)

= tf2(R−2;x2)− tf2(R−2; 1),

or equivalently, v2(1) − tf2(R−2; 1) > v2(x2) − tf2(R−2;x2). Hence, for each x2 ∈ M\{1},
zf2 (R−2; 1) P2 zf2 (R−2;x2). By Lemma 4, we obtain f2(R) = zf2 (R−2; 1). By xi(R) = 0 for

each i ∈ N\{1, 2}, Lemma 1 implies x1(R) = m− 1. By (10), t1(R) = t(m− 1)− (ε1+ ε3).
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Therefore,

V1(x1(R) + 1, f1(R))− t1(R)− (v2(x2(R))− v2(x2(R)− 1))

= V1(m, (m− 1, t(m− 1)− (ε1 + ε3)))− (t(m− 1)− (ε1 + ε3))− (d(m− 1) + ε3)

> V1(m, (m− 1, t(m− 1)− ε1))− (t(m− 1)− ε1)− (d(m− 1) + ε3)

= ε2 − ε3

> 0,

where the first inequality follows from R1 ∈ R++, ε3 > 0, and Remark 5 (i), the second

equality follows from the definition of ε2, and the second inequality follows from ε3 < ε2.

By R ∈ (RNI)n and Remark 8, this contradicts efficiency.

Case 2. R0 ∈ R−−.

Suppose R = (RND(ε) ∩ RQ) ∪ {R0}. Again, the the proof of the other case is similar,

and we relegate it to the supplementary material.

By Lemmas 7 and 11, d(m− 2) > d(m− 1). Let ε1 > 0 be such that ε1 < min{d(m−
2)− d(m− 1), ε}. Then,

d(m− 1) = V1(m, (m− 1, t(m− 1)))− t(m− 1) (by t(m− 1) ∈ T (m− 1))

< V1(m, (m− 1, t(m− 1) + ε1))− (t(m− 1) + ε1) (by Remark 6 (i))

Thus,

ε2 ≡ V1(m, (m− 1, t(m− 1) + ε1))− (t(m− 1) + ε1)− d(m− 1) > 0.

Let ε3 > 0 be such that mε3 < ε1 and

ε3 < min{d(m− 2)− d(m− 1)− ε1, ε2}. (11)

Let R2 ∈ RND ∩ RQ be such that v2(1) = d(m− 1)+ ε3, and for each x2 ∈ M\{0,m},

v2(x2 + 1)− v2(x2) = d(m− 1) +
ε1 + ε3
m− 1

.

By mε3 < ε1 < ε, R2 ∈ RND(ε) ∩ RQ. By δ < d(m− 1), v2(x2 +1)− v2(x2) > δ for each

x2 ∈ M\{m}. Thus, for each x1 ∈ M , σ1(R−1;x1) = v2(m − x1). By Fact 1, for each

x1 ∈ M f
1 (R−1),

tf1(R−1;x1) = v2(m)− v2(m− x1). (12)

We have

v2(1)− tf2(R−2; 1) ≥ d(m− 1) + ε3 − d(m− 1) = ε3 > 0,
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where the first inequality follows from Step 3 and Lemma 2. Further, for each x2 ∈ M\{0, 1},

v2(x2)− v2(1) = (x2 − 1)
(
d(m− 1) +

ε1 + ε3
m− 1

)
< (x2 − 1)(d(m− 1) + d(m− 2)− d(m− 1)) (by (11))

= (x2 − 1)d(m− 2)

≤
x2−1∑
x=1

d(m− x− 1) (by Lemmas 7 and 11)

≤
x2−1∑
x=1

(tf2(R−2;x2 + 1)− tf2(R−2;x2)) (by Step 3)

= tf2(R−2;x2)− tf2(R−2; 1),

or equivalently, v2(1) − tf2(R−2; 1) > v2(x2) − tf2(R−2; 1). Thus, for each x2 ∈ M\{1},
we have zf2 (R−2; 1) P2 zf2 (R−2;x2). By Lemma 4, x2(R) = 1. By xi(R) = 0 for each

i ∈ N\{1, 2}, x1(R) = m− 1 by Lemma 1. By (12), t1(R) = t(m− 1) + ε1 + ε3. Then,

V1(x1(R) + 1, f1(R))− t1(R)− (v2(x2(R))− v2(x2(R)− 1))

= V1(m, (m− 1, t(m− 1) + ε1 + ε3))− (t(m− 1) + ε1 + ε3)− (d(m− 1) + ε3)

> v1(m− 1, (t(m− 1) + ε1))− (t(m− 1) + ε1)− (d(m− 1) + ε3) (by Remark 6 (i))

= ε2 − ε3 (by ε3 < ε2)

> 0,

which contradicts efficiency by Remark 7. ■

C Even number of units and negative income effects

In this section, we provide the result for the case of an even number of units and negative

income effects. Throughout the section, assume that m is even.

First, we introduce the condition that is an analogue of the upper bound for nonnegative

income effects.. A preference Ri ∈ RNI ∩ R− has the upper bound for the nonpositive

income effects if it satisfies

WBi(β, βp(β + 1;Ri))−WBi(β, t
∗) ≤ WSi(β, t

∗)−WBi(β, t
∗),

where β ≡ m
2
and t∗ ≡

∑β−1
x=0 p(m− x;Ri).

The RHS of the above inequality is the difference between the willingness to sell and

the willingness to buy at the outcome bundle of the inverse Vickrey rule for the preference

profile (Ri, Ri). By Ri ∈ RNI , it is nonnegative. The LHS is the size of the income effect of

β between βp(β + 1;Ri) and t∗. Similarly to the upper bound for the nonnegative income

effects, we interpret the upper bound for the nonpositive income effects as the small size

of the nonpositive income effects.
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The next proposition states that under the single-intersection condition, (i) when n = 2

and m is even, if R0 ∈ RD ∩ R−− has the upper bound for the nonpositive income effects,

then on ((RC ∩ RQ) ∪ {R0})2, the inverse Vickrey rule satisfies the four properties, and

(ii) if R0 ∈ RD ∩ R−− does not have the upper bound for the nonpositive income effects,

R is rich, and R0 ∈ R, then no rule on Rn satisfies the four properties.41

Proposition 4. Assume m is even, Let R0 ∈ RD ∩ R−− satisfy the single-intersection

condition.

(i) Assume n = 2. Assume R0 has the upper bound for the nonpositive income effects. An

inverse Vickrey rule on ((RC ∩ RQ) ∪ {R0})2 satisfies efficiency, individual rationality,

no subsidy for losers, and strategy-proofness.

(ii) Assume R0 does not have the upper bound for the nonpositive income effects. Let R
be rich and R0 ∈ R. No rule on Rn satisfies efficiency, individual rationality, no subsidy

for losers, and strategy-proofness.

The proof of Proposition 4 can be found in the supplementary material.

The assumption of the single-intersection condition is indispensable for Proposition 4.

Indeed, without the single-intersection condition, the upper bound for the nonpositive

income effects is no longer a necessary and sufficient condition for the existence of a rule

satisfying the four properties on ((RC ∩ RQ) ∪ {R0})2, where R0 ∈ RD ∩ R−−. Further,

even if there is a rule satisfying the four properties on ((RC ∩ RQ) ∪ {R0})2 for some

R0 ∈ RD ∩ R−− that violates the single-intersection condition, it does not necessarily

coincide with the inverse Vickrey rule.42

41As with Proposition 1 (i), by applying Step 3 of the proof of Theorem 1, we can show that the inverse
Vickrey rule is the only rule satisfying the four properties in Proposition 4 (i). See also footnote 23.

42Without the single-intersection condition, we obtain a necessary and sufficient condition for the exis-
tence of a rule satisfying the four properties on ((RC ∩ RQ) ∪ {R0})2, but is complicated in general. To
be more precise, the next conditions is a necessary and sufficient condition of a preference R0 ∈ RD ∩ R−−

for the existence of a rule satisfying the four properties on ((RC ∩ RQ) ∪ {R0})2: For each i ∈ {1, 2},
there is a sequence (πi(x))x∈M\{0} satisfying the following properties.

(i) For each x ∈ M\{0}, πi(x) ∈ [d(x− 1), d(x− 1)].
(ii) We have

t∗ − V0(β − 1, (β, t∗)) ≤ πi(β + 1),

where β ≡ m
2 and t∗ ≡

∑β−1
x=0 πi(m− x).

(iii) For each d ∈ R+ with d ∈ (d(x), d(x)) for some x ∈ M\{0,m}, there is x′ ∈ M\{0} such that

πi(x
′) ≤ d ≤ dx′ − V0(x

′ − 1, (x′, dx′)),

and if x′ < m, then
V0(x

′ + 1, (x′, dx′))− dx′ ≤ d ≤ πi(x
′ + 1).

Note that if R0 satisfies the single-intersection condition, then (iii) is vacuously true, and (ii) is equivalent
to the upper bound for the nonpositive income effects.
Under the above conditions, given i ∈ {1, 2} and a preference Ri ∈ (RC ∩ RQ) ∪ {R0}, let

R̂i ∈ RNI ∩ RQ be a quasi-linear preference with nonincreasing incremental valuations such that if
Ri ̸= R0, then R̂i = Ri, and if Ri = R0, then for each xi ∈ M\{0}, v̂i(xi)− v̂i(xi−1) = πi(xi), where πi(·)
is the sequence satisfying the the above conditions. Then, the following rule f on ((RC ∩ RQ) ∪ {R0})2
is the only rule satisfying the four properties: for each R ∈ R2, if (I) Ri = R0 and Rj ̸= R0 for some
pair i, j ∈ N and vj ∈ (d(x), d(x)) for some x ∈ M\{0,m}, where vj is the constant incremental valuation

associated with Rj , then fi(R) = (x′, vjx
′) and fj(R) = (m−x′,

∑m−x′−1
y=0 πi(m−y)) for some x′ ∈ M\{0}
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D Proof of the characterization theorem

In this section, we provide the proof of Theorem 2.

D.1 Preliminary

We first show some preliminary results related to nondecreasing incremental valuations.

The following lemma says that bundling is one way to allocate the object efficiently.

Lemma 13 (Optimality of bundling). Let N ′ ⊆ N and m′ ∈ M be such that m′ > 0.

Then for each RN ′ ∈ (RND)|N
′| and each z ∈ Z(N ′,m′), we have maxi∈N ′ vi(m

′, zi) =

maxx∈X(N ′,m′)

∑
j∈N ′ vj(xj, zj).

Proof. For each x ∈ X(N ′,m′),

max
i∈N ′

vi(m
′, zi) ≥

∑
j∈N ′

xj

m′ max
i∈N ′

vi(m
′, zi) ≥

∑
j∈N ′

xj

m′vj(m
′, zi) ≥

∑
j∈N ′

vj(xj, zj),

where the first inequality follows from x ∈ X(N ′,m′), and the last one fromRN ′ ∈ (RND)|N
′|

and Remark 3 (i).

The next lemma states that under an efficient allocation (resp. the outcome of the

generalized Vickrey rule), if an agent’s net valuation of m at his bundle (resp. 0) is not

the highest one, then he can receive no object.

Lemma 14. Let R ∈ (RND)n and i ∈ N . (i) Let z ≡ (x, t) ∈ Z be efficient for R. If

vi(m, zi) < maxj∈N vj(m, zj), then xi = 0. (ii) Let g(R) ≡ (x(R), t(R)) be an outcome of

the generalized Vickrey rule for R. If vi(m,0) < maxj∈N vj(m,0), then xi(R) = 0.

Proof. (i) Suppose vi(m, zi) < maxj∈N vj(m, zj) and xi > 0. Then,

max
j∈N

vj(m, zj) =
∑
k∈N

xk

m
max
j∈N

vj(m, zj) >
∑
k∈N

xk

m
vk(m, zk) ≥

∑
k∈N

vk(xk, zk),

where the equality follows from Lemma 1, the first inequality follows from xi > 0 and

maxj∈N vj(m, zj) > vi(m, zi), and the second one follows from R ∈ (RND)n and Remark 3

(i). By Remark 7, this contradicts efficiency.

(ii) Next, let g(R) ≡ (x(R), t(R)) be an outcome of the generalized Vickrey rule for

R. By Remark 9, z ≡ (zj)j∈N ≡ (xj(R), vj(xj(R),0))j∈N = (xj(R), Vj(xj(R),0))j∈N is

efficient for R. For each j ∈ N , by zj Ij 0, Remark 1 (ii) gives vj(m, zj) = vj(m,0).

Thus, we can show Lemma 14 (ii) in the same way as Lemma 14 (i) by using the efficient

satisfying the inequalities in (iii) of the above condition and
∑−1

y=0 πi(m−y) ≡ 0, and (II) otherwise, f(R)

is an outcome of the Vickrey rule for R̂. If R0 satisfies the single-intersection condition, then R̂i = Rinv
0

and the case (I) does not occur. Thus, in such a case, the rule f coincides with the inverse Vickrey rule.
The proof of the above facts are available upon request.
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allocation z for R.

Given x ∈ X, let N+(x) ≡ {i ∈ N : xi > 0}.
Note that Lemma 14 implies that if there are at least two agents who receive the object

under an efficient allocation (resp. the outcome of the generalized Vickrey rule), then their

net valuations of m at their bundles (resp. 0) must coincide. The following lemma further

says that in such a case, the indifference curves of agents who receive the object through

the bundles are flat.

Lemma 15 (Flat indifference curves). Let R ∈ (RND)n. (i) Let z ≡ (x, t) ∈ Z be

efficient for R. If |N+(x)| ≥ 2, then for each i ∈ N+(x) and each x′
i ∈ M , we have

vi(x
′
i, zi) =

x′
i

m
vi(m, zi). (ii) Let g(R) ≡ (x(R), t(R)) be an outcome of the generalized

Vickrey rule for R. If |N+(x(R))| ≥ 2, then for each i ∈ N+(x(R)) and each xi ∈ M , we

have vi(xi,0) =
xi

m
vi(m,0).

Proof. (i) Suppose there is x′
i ∈ X\{0,m} such that

x′
i

m
vi(m, zi) ̸= vi(x

′
i, zi). By Ri ∈ RND

and Remark 3 (i),
x′
i

m
vi(m, zi) > vi(x

′
i, zi). By |N+(x)| ≥ 2 and i ∈ N+(x), xi ∈ M\{0,m}.

Thus, by Ri ∈ RND, Remark 3 (ii) gives xi

m
vi(m, zi) > vi(xi, zi). Then

vi(m, zi) =
∑
j∈N

xj

m
vi(m,xi) =

∑
j∈N

xj

m
vj(m, zj) >

∑
j∈N

vj(xj, zj),

where the first equality follows from Lemma 1, the second one, from R ∈ (RND)n and

Lemma 14 (i), and the inequality follows from xi ∈ M\{0,m}, xi

m
vi(m, zi) > vi(xi, zi),

R−i ∈ (RND)n−1, and Remark 3 (i). By Remark 7, this contradicts efficiency.

(ii) We can show Lemma 15 (ii) similarly to Lemma 15 (i), but by using Lemma 14 (ii)

instead of Lemma 14 (i) and the efficient allocation (xj(R), vj(xj(R),0))j∈N for R instead

of z.

The following proposition identifies the form of the payments under the generalized

Vickrey rule for preferences with nondecreasing incremental valuations.

Proposition 5 (The generalized Vickrey rule payments). Let R ⊆ RND. Let g ≡ (x, t)

be a generalized Vickrey rule on Rn. Let R ∈ (RND)n. Then for each i ∈ N , ti(R) =
xi(R)
m

maxj∈N\{i} vj(m,0). Moreover, if |N+(x(R))| ≥ 2, then ti(R) = vi(xi(R),0) for each

i ∈ N .

Proof. By the definition of the generalized Vickrey rule, for each i ∈ N , if xi(R) = 0, then

ti(R) = 0. Thus, we only have to consider an agent i ∈ N+(x(R)).

First, suppose |N+(x(R))| = 1. Note that by |N+(x(R))| = 1 and Remark 9, Lemma 1

implies xi(R) = m. ByR−i ∈ (RND)n−1 and Lemma 13, ti(R) = σi(R−i; 0) = maxj∈N\{i} vj(m,0).

Suppose instead |N+(x(R))| ≥ 2. For each j ∈ N+(x(R)), each xj ∈ M , and each

k ∈ N ,

vj(xj,0) =
xj

m
vj(m,0) ≥ xj

m
vk(m,0) ≥ vk(xj,0), (1)
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where the equality follows from R ∈ (RND)n and Lemma 15 (ii), the first inequality follows

from R ∈ (RND)n and Lemma 14 (ii), and the second one comes from Rk ∈ RND and

Remark 3 (i). By |N+(x(R))| ≥ 2, there is j ∈ N+(x(R))\{i}. By (1), for each xi ∈ M ,

vi(xi,0) = vj(xi,0) = max
k∈N\{i}

vk(xi,0). (2)

Then

ti(R) = σi(R−i; 0)− σi(R−i;xi(R))

= max
k∈N\{i}

vk(m,0)− max
k∈N\{i}

vk(m− xi(R),0) (by Lemma 13)

= vi(m,0)− vi(m− xi(R),0) (by (2))

=
xi(R)

m
vi(m,0) (by Lemma 15 (ii))

=
xi(R)

m
max

k∈N\{i}
vk(m,0). (by (2))

Further, by R ∈ (RND)n and Lemma 15 (ii), ti(R) = xi(R)
m

vi(m,0) = vi(xi(R),0).

D.2 Proof of the “if” part

Let R be a class of preferences such that RC ∩ RQ ⊆ R ⊆ RND and g ≡ (x, t) be a

generalized Vickrey rule on Rn. Since individual rationality and no subsidy for losers are

immediate from the definition of the generalized Vickrey rule, we omit the proofs.

Efficiency. Let R ∈ Rn. We show g(R) is efficient for R.

Suppose |N+(x(R))| = 1. By Remark 9 and Lemma 1, xi(R) = m for i ∈ N+(x(R)).

By R ⊆ RND, Proposition 5 gives gi(R) = (m,maxj∈N\{i} vj(m,0)) and gj(R) = 0 for each

j ∈ N\{i}. Thus, ti(R) = maxj∈N\{i} vj(m, gj(R)). By Remark 1 (iii) and Lemma 3 (i),

vi(m, gi(R)) = max
j∈N\{i}

vj(m, gj(R))− Vi(0, gi(R)) ≥ max
j∈N\{i}

vj(m, gj(R)). (1)

For each x ∈ X,

vi(m, gi(R)) ≥
∑
j∈N

xj

m
vi(m, gi(R)) ≥

∑
j∈N

xj

m
vj(m, gj(R)) ≥

∑
j∈N

vj(xj, gj(R)),

where the second inequality follows from (1), and the last one follows from R ∈ (RND)n

and Remark 3 (i). By Remark 7, g(R) is efficient for R.

Suppose instead |N+(x(R))| ≥ 2. ByR ⊆ RND and Proposition 5, ti(R) = vi(xi(R),0)

for each i ∈ N . Thus, Remark 9 implies that g(R) is efficient for R.

Strategy-proofness. Let R ∈ Rn, i ∈ N , and R′
i ∈ R. By R ⊆ RND, Proposition 5

implies gi(R
′
i, R−i) = (xi,

xi

m
maxj∈N\{i} vj(m,0)), where xi ≡ xi(R

′
i, R−i). We show that
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gi(R) Ri (xi,
xi

m
maxj∈N\{i} vj(m,0)).

Suppose first xi(R) = m. Let si ≡ Vi(0, gi(R)). By Lemma 3 (i), si ≤ 0. Then

Vi(xi, gi(R)) = vi(xi, gi(R)) + si ≤
xi

m

(
vi(m, gi(R)) + si

)
=

xi

m
max

j∈N\{i}
vj(m,0),

where the inequality follows fromRi ∈ RND, Remark 3 (i), and si ≤ 0, and the last equality

follows from Remark 1 (iii), R ⊆ RND, and Proposition 5.

Next, suppose xi(R) < m. By Lemma 1, there is j ∈ N+(x(R))\{i}. By R ∈ (RND)n

and Lemma 14 (ii), vj(m,0) = maxk∈N vk(m,0). Then

vi(m,0) ≤ vj(m,0) = max
k∈N\{i}

vk(m,0). (2)

We have

Vi(xi, gi(R)) ≤ vi(xi,0) ≤
xi

m
vi(m,0) ≤ xi

m
max

k∈N\{i}
vk(m,0),

where the first inequality follows from Lemma 3 (iii), the second one follows from Ri ∈ RND

and Remark 3 (i), and the last one, from (2).

In either case, we obtain gi(R) Ri (xi,
xi

m
maxj∈N\{i} vj(m,0)). ■

D.3 Proof of the “only if” part

In this section, we provide the proof of the “only if” part. Throughout the subsection, we

fix a class of preferences R such that RC ∩ RQ ⊆ R ⊆ RND and a rule f on Rn satisfying

efficiency, individual rationality, no subsidy for losers, and strategy-proofness.

We first set up the following lemma.

Lemma 16. Let R ∈ Rn and i ∈ N . If vi(m,0) < maxj∈N vj(m,0), then xi(R) = 0.

Proof. The proof is in two steps.

Step 1. LetR ∈ Rn and i ∈ N be such thatRi ∈ RC ∩ RQ and vi(m) < maxj∈N vj(m,0).

We show xi(R) = 0. Suppose by contradiction that xi(R) > 0.

Let j ∈ arg max
k∈N

vk(m,0). We show xj(R) > 0. Suppose xj(R) = 0. By Lemma 2,

fj(R) = 0. By vi(m) < Vj(m,0) and R ∈ (RND)n, Lemma 14 (i) implies xi(R) = 0, a

contradiction. Thus, xj(R) > 0.

Next, we show tj(R) ≥ vi(xj(R)). Suppose tj(R) < vi(xj(R)). Let R′
j ∈ RC ∩ RQ

be such that tj(R) < v′j(xj(R)) < vi(xj(R)). By R′
j ∈ RC , v′j(xj(R)) < vi(xj(R)), and

Ri ∈ RC ,

v′j(m) =
m

xj(R)
v′j(xj(R)) <

m

xj(R)
vi(xj(R)) = vi(m).

ByR ∈ (RND)n, Lemmas 2 and 14 (i) together imply fj(R
′
j, R−j) = 0. By tj(R) < v′j(xj(R)),

fj(R) P ′
j 0 = fj(R

′
j, R−j), contradicting strategy-proofness. Thus, tj(R) ≥ vi(xj(R)).
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Note that by individual rationality, fj(R) Rj 0. If fj(R) Ij 0, then by Remark 1 (ii),

vj(m, fj(R)) = vj(m,0) > vi(m).

Instead, if fj(R) Pj 0, then Vj(0, fj(R)) < 0, and so

vj(m, fj(R)) =
m

xj(R)

(
tj(R)− Vj(0, fj(R))

)
>

m

xj(R)
vi(xj(R)) = vi(m),

where the first equality follows from R ∈ (RND)n, Lemma 15 (i), and Remark 1 (iii), the

inequality follows from tj(R) ≥ vi(xj(R)) and Vj(0, fj(R)) < 0, and the last equality fol-

lows from Ri ∈ RC . In either case, by R ∈ (RND)n, Lemma 14 (i) implies xi(R) = 0. But

this contradicts xi(R) > 0.

Step 2. Let R ∈ Rn and i ∈ N be such that vi(m,0) < maxj∈N vj(m,0). Suppose

xi(R) > 0. Let R′
i ∈ RC ∩ RQ be such that vi(m,0) < v′i(m) < maxj∈N vj(m,0). By

Step 1, xi(R
′
i, R−i) = 0. By Lemma 2, fi(R

′
i, R−i) = 0. Then,

ti(R) ≤ vi(xi(R),0) ≤ xi(R)

m
vi(m,0) <

xi(R)

m
v′i(m) = v′i(xi(R)),

where the first inequality follows from Lemma 3 (ii), the second one follows from Ri ∈ RND

and Remark 3 (i), the third one follows from vi(m,0) < v′i(m) and xi(R) > 0, and the

equality follows from R′
i ∈ RC . Thus, fi(R) P ′

i 0 = fi(R
′
i, R−i), contradicting strategy-

proofness.

We now show that f is a generalized Vickrey rule on Rn.

Step 1. We first show that the payments under f coincide with those of the generalized

Vickrey rule. Let R ∈ Rn and i ∈ N . Note that by R ⊆ RND and Proposition 5, we only

have to show that ti(R) = xi(R)
m

maxj∈N\{i} vj(m,0). Suppose not. By Lemma 2, we must

have xi(R) > 0. We divide the argument into two cases.

Case 1. ti(R) > xi(R)
m

maxj∈N\{i} vj(m,0).

We have

vi(m,0) ≥ m

xi(R)
vi(xi(R),0) ≥ m

xi(R)
ti(R) > max

j∈N\{i}
vj(m,0),

where the first inequality follows from Ri ∈ RND and Remark 3 (i), the second one fol-

lows from Lemma 3 (ii), and the last one comes from ti(R) > xi(R)
m

maxj∈N\{i} vj(m,0).

Thus, by Lemma 16, xj(R) = 0 for each j ∈ N\{i}. By Lemma 1, xi(R) = m. Thus,

by ti(R) > xi(R)
m

maxj∈N\{i} vj(m,0), ti(R) > maxj∈N\{i} vj(m,0). Let R′
i ∈ RC ∩ RQ be

such that maxj∈N\{i} vj(m,0) < v′i(m) < ti(R). Again, by Lemmas 1 and 16, xi(R
′
i, R−i) =
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m. Thus, by Lemma 3 (ii), ti(R
′
i, R−i) ≤ v′i(m) < ti(R), which implies fi(R

′
i, R−i) Pi fi(R).

However, this contradicts strategy-proofness.

Case 2. ti(R) < xi(R)
m

maxj∈N\{i} vj(m,0).

Let R′
i ∈ RC ∩ RQ be such that ti(R) < v′i(xi(R)) < xi(R)

m
maxj∈N\{i} vj(m,0). By

R′
i ∈ RC and v′i(xi(R)) < xi(R)

m
maxj∈N\{i} vj(m,0),

v′i(m) =
m

xi(R)
v′i(xi(R)) < max

j∈N\{i}
vj(m,0).

Thus, Lemmas 2 and 16 together imply fi(R
′
i, R−i) = 0. However, by ti(R) < v′i(xi(R)),

fi(R) P ′
i 0 = fi(R

′
i, R−i), contradicting strategy-proofness.

Step 2. Let R ∈ Rn. We show
∑

i∈N vi(xi(R),0) = maxx∈X
∑

i∈N vi(xi,0).

Suppose |N+(x(R))| = 1. Let i ∈ N+(x(R)). By |N+(x(R))| = 1 and Lemma 1,

xi(R) = m. Thus, xj(R) = 0 for each j ∈ N\{i}. Then∑
j∈N

vj(xj(R),0) = vi(m,0) = max
j∈N

vj(m,0) = max
x∈X

∑
j∈N

vj(xj,0),

where the second equality follows from Lemma 16, and the last one comes fromR ∈ (RND)n

and Lemma 13.

Next, suppose |N+(x(R))| ≥ 2. We show fi(R) Ii 0 for each i ∈ N . By individual

rationality, fi(R) Ri 0 for each i ∈ N . Suppose there is i ∈ N such that fi(R) Pi 0. Then

ti(R) < Vi(xi(R),0) = vi(xi(R),0). Thus, by Ri ∈ RND, Remark 3 (i), and Step 1,

xi(R)

m
vi(m,0) ≥ vi(xi(R),0) > ti(R) =

xi(R)

m
max

j∈N\{i}
vj(m,0).

This implies vi(m,0) > maxj∈N\{i} vj(m,0). By Lemma 16, xj(R) = 0 for each j ∈ N\{i}.
But this contradicts |N+(x(R))| ≥ 2.

Thus, fi(R) Ii 0 for each i ∈ N . By Remark 1 (ii), vi(xi, fi(R)) = vi(xi,0) for each

i ∈ N and xi ∈ M . Thus, we have∑
i∈N

vi(xi(R),0) =
∑
i∈N

vi(xi(R), fi(R)) = max
x∈X

∑
i∈N

vi(xi, fi(R)) = max
x∈X

∑
i∈N

vi(xi,0),

where the second equality follows from Remark 7 and efficiency. ■
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