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Abstract

In multi-object auction models with unitary demand agents, if agents’
utility functions satisfy quasi-linearity, the exact ascending auction of De-
mange et al. (1986), the sealed-bid Vickrey auction, as well as the ap-
proximate ascending auction of Demange et al. (1986) are fundamental to
the auction theory and known to identify the minimum price equilibrium
(MPE). In particular, these auctions exhibit elegant effi ciency and incentive-
compatibility. We exemplify that these auctions fail to identify the MPEs
and are substantially ineffi cient and manipulatable without assuming the
coincidence between price increment and valuation unit or without assum-
ing the quasi-linearity of utility functions. The implications of our negative
results for multi-object auction models with agents with multi-unit demand,
and matching with contracts models are discussed as well.
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1 Introduction

The most successful examples of auction theory are spectrum license auctions
organized by governments in OECD countries that auction off several licenses
simultaneously, often generating enormous revenues. As a case in point, in the
2000 British 3G spectrum license auctions, the revenue generated from selling five
licenses amounted to 2.5% of the UK’s GNP. These auctions play important roles
in the overall development of the mobile phone industry. In these auctions, it is
widely observed that winning bids involve copious sum of money and the price
increment is set suffi ciently large in advance (to have a reasonable stopping time)
(Klemperer, 2004). The huge winning bids end up violating the quasi-linearity
assumption on preferences, i.e., an agent’s benefit from the auctioned object can be
presented by her valuation of that object, independent of the associated payment.
The sizable increment leads to the violation of the coincidence assumption that
the price increment coincides with the valuation unit, which further restricts the
quasi-linearity of preferences. These two assumptions are common in auction
theory but remain undesirable in many real-life applications. This paper analyzes
the ramifications of the violations of both assumptions on the performance of
auctions that are of utmost significance in theory, but generally studied in the
quasi-linear settings.
In particular, we focus on auctions with government-concerned and socially

desirable properties, effi ciency and strategy-proofness. Effi ciency requires that
objects should be given to those who value them the most. However, agents’
preference information of objects is only privately known in many cases. Thus, it
is indispensable for the auction to directly or indirectly extract true information
from agents to attain effi ciency. Strategy-proofness requires agents to have no
incentive to manipulate information in the auction in the sense that revealing true
information is a dominant strategy for each agent.
We study the multi-object auction model where agents have unit demand, i.e.,

each agent gets at most one object, and also have the classical utility functions that
satisfy the standard monotonicity and continuity, taking the quasi-linear utility
functions as special cases. In such settings, there is a minimum price equilibrium
(MPE). The MPE mechanism, a direct mechanism to select an MPE allocation
for each utility profile, is the only mechanism that satisfies effi ciency, strategy-
proofness, individual rationality, and no subsidy when agents have either quasi-
linear utility functions (Holmstrom, 1979) or classical utility functions (Saitoh and
Serizawa, 2008; Morimoto and Serizawa, 2015). For this reason, any auction that
duplicates the outcome of the MPE mechanism is effi cient and is imbued with a
nice incentive property, thus eliciting particular attention by auction theorists.

1



There are three well-known auctions that find the MPEs in the quasi-linear
settings. The first one is proposed by Demange et al. (1986), the exact ascending
(EA) auction. The EA auction generates the MPE price by further imposing the
coincidence assumption. The second one is the sealed-bid Vickrey auction, whose
outcome coincides with the MPE (Leonard, 1983). Meanwhile, the third one is
provided by Demange et al. (1986), the approximate ascending (AA) auction. The
AA auction originates from the salary adjustment process in Crawford and Knoer
(1981) and Kelso and Crawford (1982). The AA auction generates a price that
then coordinate-wise approximates the MPE price. In these auctions, objects can
be heterogenous.1 As explicated later, these auctions are fundamental to auction
theory and provide the essential ideas of several auction designs in more general
environments.
In practice, variants of the aforementioned auctions are also utilized. For

example, the multi-unit demand variant of the EA auction runs in power purchase
in New Jersey, U.S.A. (Chapter 7, Milgrom, 2004). Facebook uses the sealed-bid
Vickrey auction to sell its online ads slots (Varian and Harris, 2014). It is also
noteworthy that the simultaneous ascending auction adopted by the U.S. Federal
Communications Commission (FCC) for selling spectrum licences is similar to the
multi-unit demand variant of the AA auction (Chapter 7, Milgrom, 2004).
We study the performance of three aforementioned auctions by dropping the

coincidence assumption and quasi-linearity assumption. In practice, the coinci-
dence assumption may be unsuitable for auctions with sizeable increments. The
willingness of an agent to pay is the primitive data independent of auctions, which
can take arbitrary values, whereas the price increment is set in advance. The
coincidence assumption is not realistic except for technical reasons. The quasi-
linear assumption is dubious for the aforementioned large-scale auction. Notably
the coincidence assumption is a further restriction in the quasi-linear setting, and
a violation of quasi-linearity assumption leads to a violation of the coincidence
assumption.
To evaluate the performance of three aforementioned auctions, in terms of their

associated (direct) mechanisms, apart from the standard notions of effi ciency, ap-
proximate effi ciency, strategy-proofness, and approximate strategy-proofness, we
formulate two additional concepts of absolute ineffi ciency and absolute manipu-
lability. These are the properties of the mechanism. The former states that it

1When applied to the case of homogenous objects, the sealed-bid Vickrey auction is sometimes
referred to as the Vickrey auction for k objects where k objects are assigned to the agents whose
values are among the kth highest and they just pay the (k+1)th highest valuation. On the other
hand, the EA auction is sometimes called the ascending auction for k objects where information
revelation of all bidders follows the same fashion as the ascending auction for one object.
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is impossible for the mechanism to achieve approximate effi ciency to any degree.
The latter states that it is impossible for the mechanism to achieve any degree of
approximate incentive compatibility.
When objects are homogenous, the three aforementioned auctions perform well

on the classical domain. The intuition is as follows. The key to determine the
MPE is an agent’s generalized valuation, a natural generalization of valuations for
quasi-linear preferences, defined as the maximum willingness to pay for the object
relative to the status of getting nothing and paying nothing. The MPE price is
the same across all the objects, which is equal to the (k+ 1)th-highest generalized
valuation if there are k objects to be auctioned and those objects are assigned to
agents whose generalized valuation is among the (k+1)th-highest generalized val-
uation. However, the generalized valuation does not include suffi cient information
to determine the MPE when objects are heterogenous and agents have classical
utility functions. Our main results stated below exhibit such abnormalities.

• In the quasi-linear settings, we consider a “perturbation”of the quasi-linear
domain with valuations that are mutiples of natural numbers, by allowing
rational numbers in the neighborhood of the natural numbers. This, in
turn, breaches the coincidence assumption. We demonstrate that the EA
auction always overshoots the MPE prices by an arbitrarily large distance
in the perturbed quasi-linear domain, leading to absolute ineffi ciency and
absolute manipulability of the mechanism associated with EA auction. If
such a perturbation allows the agents to have valuations that are multples
of irrational numbers, we further contend that it could be the case that the
EA auction always largely overshoots the MPE for any positive increment.
Furthermore, the continuous-time clock auction for selling one object can
not be extended to multi-object cases with classical utility functions.

• When agents have classical utility functions, the generalized sealed-bid Vick-
rey auction is defined by replacing the valuations in the formula of the Vick-
rey allocation with the generalized valuations. Both the price and the assign-
ment generated by this auction are different fromMPE price and assignment.
Its associated mechanism, the generalized Vickrey mechanism is absolutely
ineffi cient and absolutely manipulable.

• When agents have classical utility functions, the AA auction overshoots and
undershoots the MPE prices by an arbitrarily large distance if the increment
is fixed in advance. It never approximates the MPE and leads to absolute
manipulability of the mechanism associated with the AA auction. By con-
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trast, for a fixed classical utility profile, a decrease in increment makes the
outcome of AA auction approximate the MPE.

In the following, we contrast our negative results with the auction designs in
various settings. First, auctions that target MPEs in quasi-linear settings with
unitary demand agents, as proposed by Mishra and Parkes (2009) and Andersson
and Erlanson (2013), are premised on the coincidence assumption. Therefore, our
negative results of EA auctions can be carried over to their models without the
coincidence assumption by constructing similar examples.
Second, consider multi-object auction models with agents with multi-unit de-

mand quasi-linear utility functions. In such models, a Vickrey allocation is not
an MPE allocation; however the Vickrey mechanism remains strategy-proof and
effi cient. When agents have classical utility functions, our negative result of the
generalized sealed-bid Vickrey auction defined via generalized valuations can be
carried over.2

If the utility functions of agents further satisfy certain substitutable properties,
the MPE is well-defined, and the MPE mechanism is effi cient, albeit not strategy-
proof. Under the coincidence assumption, Gul and Stacchetti (2000), Ausubel
(2006), and Sun and Yang (2009) propose auctions that identify the MPEs. When
applying their auctions to our model, those auctions are essentially the same as the
EA auction; thus our negative results of the EA auction hold for their auctions.
Finally, we consider the matching with contracts models with transfers (Hat-

field and Milgrom, 2005). With regard to the one-to-one setting, if agents are
buyers and each object is owned by one seller whose utility hinges on only the
transfer, then those models coincide with ours, and their buyer-optimal outcomes
coincide with the MPEs. If transfers are discretized and both sellers and buyers
have strict preferences over contracts, the cumulative offer process of buyers coin-
cides with the AA auction and finds the buyer-sided optimal outcome (Echenique,
2012). Consequently, our negative results of the AA auction imply: The one-
sided optimal outcome with continuous transfers cannot be approximated by the
one-sided optimal outcome derived from discretized transfers and induced strict
preferences via variants of the cumulative offer process.3

Our paper is also related to the literature of effi cient and incentive compatible
auction designs when agents have classical utility functions. When objects are ho-
mogenous, Saitoh and Serizawa (2008) characterize the effi cient and strategy-proof
direct mechanisms. On the other hand, when objects are heterogenous, Morimoto

2A similar conclusion is reached by Malik and Mishra (2020).
3Such an insight holds even for the trading network model with continuous transfers, see,

Fleiner et al. (2019) and Schlegel (2022).
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and Serizawa (2015), Zhou and Serizawa (2018), Baisa (2020), Kazumura et al.
(2020), and Malik and Mishra (2021) characterize the effi cient, strategy-proof,
and fair direct mechanisms. Prices are continuous variables in all these auction
models. Hatfield et al. (2021) characterize the cumulative offers process that can
be regarded as the auctions with discretiezed payments. Apart from the analysis
of properties of direct mechanisms studied by those papers, their indirect imple-
mentations through various auction formats also bear significance for practical
purpose.
The novelty of this paper is to exemplify that the myriad well-known auctions

listed above are neither effi cient nor incentive-compatible even when applied to
simple non-quasi-linear settings where agents have unit demand. Our key message
is to note the challenges and inspire the development of novel analytical techniques
for the auction design by dropping the coincidence assumption along with the
quasi-linearity assumption.
The remainder of this paper is organized in the following manner: We define

the model and MPEs in Section 2. In Section 3, we expound on the notions for
effi ciency, ineffi ciency, strategy-proofness, and manipulability. In Section 4 we
define auctions for MPEs. We review the existing results of auctions for MPEs on
the quasi-linear domain in Section 5. In Section 6, we present our main findings
and study the performance of auctions in Section 5 by dropping the coincidence
assumption and quasi-linearity assumption. Finally, we conclude the study in
Section 7.

2 The model and minimum price equilibrium

There is a finite set of agents N and a finite set of objects M . For the purpose
of this paper, we ignore the trivial analysis of |N | = 1 or |M | = 1 and assume
|N |, |M | ≥ 2.4 Not receiving an object is called receiving the null object, which is
denoted by 0. Let L ≡M ∪{0}. Each agent has unit demand: She either receives
an object or the null object.
Agents have preferences on the consumption set L × R.5 We abuse language

and identify a preference of agent i with her utility representation ui.

Definition 1: A utility function ui : L× R→ R is classical if:
4Here | · | is the cardinality of set ·.
5Following the convention, R is the set of reals, Q is the set of rational numbers, Z is the set

of integers, and N = {0, 1, · · · } is the set of natural numbers. Let R+, Q+, and N+ be the sets
of non-negative reals, non-negative rational numbers, and positive integers, respectively. For a
positive real d > 0, d ·Z = {· · · −d, 0, d, · · · } and d ·T where T ∈{Q,Q+,N,N+} can be similarly
defined.
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(i) For each l ∈ L, ui(l, ·) is continuous and strictly decreasing in R.
(ii) For each pair l, l′ ∈ L, each t ∈ R, there is t′ ∈ R such that ui(l, t) = ui(l

′, t′).

Let U be the set of classical utility functions and UN be the classical domain.
Let u ≡ (ui)i∈N ∈ UN be a profile of utility functions, i.e., the utility profile.
Definition 2: A utility function ui ∈ U is quasi-linear if there is a valuation
function vi : L→ R+ such that for each (l, pl) ∈ L× R, ui(l, pl) = vi(l)− pl.
Each quasi-linear utility function ui can be represented by a valuation function

vi. We assume, without loss of generality (w.l.o.g.), that for each i ∈ N , vi(0) = 0.
Let UQL be the set of quasi-linear utility functions and (UQL)N be the quasi-linear
domain. Notice that UQL  U .
For each agent i ∈ N , let xi ∈ L be her assigned object. An assignment

x ≡ (xi)i∈N ∈ LN is a list of individually assigned objects such that except for
the null object, no two agents obtain the same object, i.e., if xi 6= 0 and i 6= j,
xi 6= xj. Let X be the set of assignments.
For each l ∈ L, let pl ∈ R+ denote the price of object l and p = (pl)l∈L ∈ RL+ be

a price. Agent i′s demand set at price p is defined as Di(p) ≡ {l ∈ L : ui(l, pl) ≥
ui(l

′, pl′),∀l′ ∈ L}. An object in agent i′s demand set maximizes her welfare at the
given price. We assume, w.l.o.g., that the price of the null object always remains
zero and the reserve prices of all the objects are zero.

Definition 3: A pair (x, p) ∈ X × RL+ is a (Walrasian) equilibrium if:
(i) For each i ∈ N , xi ∈ Di(p).
(ii) For each l ∈M , if pl > 0, there is i ∈ N such that xi = l.

Definition 3(i) states that each agent receives an object in her demand set.
Definition 3(ii) specifies that an object with a positive price must be assigned.
Equivalently, the price of an unassigned object is its reserve price fixed at zero.
For each utility profile from the classical domain, there is an equilibrium. In

particular, the set of equilibrium prices is a complete lattice (Demange and Gale,
1985). Therefore, there is a minimum price equilibrium (MPE) whose price is
unique and coordinate-wise minimum among all equilibrium prices. For each
utility profile u ∈ UN , let pmin(u) be the associated MPE price. Notably, the
associated MPE price is unique for each given utility profile, but the correspond-
ing assignment may not be unique since indifference in preferences is allowed.
Moreover, each agent is welfare-equivalent across all the MPEs.
The equilibrium prices and the MPE price indeed can be characterized via the

interactions between demand and supply.

Definition 4: (i) A non-empty set of objects M ′ ⊆ M is overdemanded at price
p if |{i ∈ N : Di(p) ⊆M ′}| > |M ′|.
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(ii) A non-empty set of objects M ′ ⊆ M is (weakly) underdemanded at price p if
[∀x ∈M ′, px > 0]⇒ |{i ∈ N : Di(p) ∩M ′ 6= ∅}| (≤) < |M ′|.

The following characterizations of the equilibrium prices and MPE price hold.

Fact 1 (Mishra and Talman, 2010; Morimoto and Serizawa, 2015): Let u ∈ UN .
(i) A price p is an equilibrium price for u if and only if no set of objects is
overdemanded and no set of objects is underdemanded at p for u.
(ii) A price p is an MPE price for u if and only if no set of objects is overdemanded
and no set of objects is weakly underdemanded at p for u.

Fact 1(ii) introduces the following property of MPEs.

Fact 2 (Demand connectedness) (Morimoto and Serizawa, 2015): Let u ∈ UN
and (x, pmin) be an MPE for u. For each l ∈ M such that pmin

l > 0, there is a
sequence {ik}Λ

k=1 of Λ distinct agents such that
(i) xi1 = 0 or pmin

xi1
= 0,

(ii) xiΛ = l,
(iii) for each k ∈ {2, · · · , K − 1}, xik ∈M and pmin

xik
> 0, and

(iv) for each k ∈ {1, · · · , K − 1}, {xik , xik+1
} ⊆ Dik(p

min).

Fact 2 states that for each object with a positive price, it will be connected to
the object with zero price alternatively via agents’demands.
Facts 1 and 2 are vital in designing auctions that implement the MPEs on

the quasi-linear domain and understanding the strategy-proofness of the MPE
mechanisms (Mishra and Talman, 2010; Morimoto and Serizawa, 2015).
A weaker notion of equilibrium, the approximate equilibrium, called the “ε−equilibrium,”

is studied as well. The ε−equilibrium tackles the case where equilibrium prices
are restricted to be discrete, i.e., multiples of some grid say ε.
For some ε > 0, agent i’s ε−demand set at p ∈ RL+ is given by:

Dε
i (p) ≡ {l ∈ L : ui(l, pl) ≥ ui(0, 0), and ∀l′ ∈M,ui(l, pl) ≥ ui(l

′, pl′ + ε)}.

An object in Dε
i (p) approximately maximizes agent i’s welfare at price p. When

ε = 0, an ε−demand set is reduced to a demand set.

Definition 5: Let some ε > 0 be given. A pair (x, p) ∈ X × (ε · N)L is an
ε−equilibrium if:
(i) For each i ∈ N , xi ∈ Dε

i (p).
(ii) For each l ∈M , if pl > 0, there is i ∈ N such that xi = l.

Definition 5(i) is parallel to Definition 3(i) in the approximate sense and Defi-
nition 5(ii) is the same as Definition 3(ii).
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When prices are discrete, an equilibrium compatible with discrete prices may
not exist; refer to Example 1 below for more details. The ε−equilibrium is useful
in the auction model where ε is set to be the bid increment, as discussed later.

3 Notions of (in)effi ciency, and (non-)manipulability

An allocation z ≡ (xi, ti)i∈N ∈ (L × R)N such that (xi)i∈N ∈ X denotes a list of
individually assigned objects, paired with the associated transfers. Let Z be the
set of allocations. A (direct) mechanism f is defined as a function from UN to
Z that maps to each utility profile u an allocation z. For each agent i ∈ N , let
xi(u) be the object assigned and ti(u) represent the associated transfer specified
by mechanism f , and let fi(u) = (xi(u), ti(u)). Given a utility profile u ∈ UN ,
(f(·), u) forms a revelation game: agents report their utility functions and the
outcome of their reports is selected by f(·).
We now let D ⊆ U and define the (in)effi ciency and (non-)manipulability of

mechanisms on domain DN .
We first introduce effi ciency. Given an allocation z ∈ (L× R)N , let Rev(z) ≡∑
i∈N ti be the revenue generated by z. An allocation z ∈ Z is effi cient for u ∈ DN

if there is no z′ ∈ Z such that (i) for each i ∈ N , ui(z′i) ≥ ui(zi) with at least one
strict inequality, and (ii) Rev(z) ≤ Rev(z′).

Effi ciency: A mechanism f is effi cient on domain DN if for each u ∈ DN , f(u)

is effi cient for u.6

Due to practical considerations, achieving effi ciency is sometimes demanding.
Instead, approximate effi ciency is often taken into consideration. Given r ∈ R+,
an allocation z ∈ Z is r−effi cient for u ∈ DN if there is no z′ ∈ Z such that (i)
for each i ∈ N , ui(z′i) > ui(zi), and (ii) Rev(z) + r · |N | ≤ Rev(z′).7

r-effi ciency: Given r ∈ R+, a mechanism f is r−effi cient on domain DN if for
each u ∈ DN , f(u) is r−effi cient for u.

In the case of r = 0, r−effi ciency coincides with effi ciency. For a small r > 0,
r−effi ciency is “approximately effi cient.”

Absolute ineffi ciency: A mechanism f is absolutely ineffi cient on domain DN
if there is no r ∈ R+ such that f is r−effi cient on domain DN .

6A mechanism f on (UQL)N is effi cient if and only if for each u ∈ (UQL)N , x(u) ∈
arg max
x∈X

∑
i∈N vi(xi) (See Zhou and Serizawa (footnote 29, 2018) for a complete proof of this

statement).
7Our notion is in the spirit of the definition of the approximate core allocation in classical

general equilibrium theory, see, e.g., Hildenbrand et al. (1973).
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Absolute ineffi ciency specifies that it is impossible for a mechanism to achieve
approximate effi ciency to any degree.
Thereafter, we introduce the incentive notions. A mechanism f is manipulable

on domain DN if there are u ∈ DN , i ∈ N , and u′i ∈ D such that ui(fi(u′i, u−i)) >
ui(fi(u)). If a mechanism is immune to manipulability, it is strategy-proof.

Strategy-proofness: A mechanism f is strategy-proof on domain DN if it is not
manipulable on domain DN .

Strategy-proofness implies that in the revelation game (f(·), u), truthfully re-
porting her utility function is a dominant strategy for each agent.
Next, we define a weaker notion of strategy-proofness. Given r ∈ R+, “r-

manipulability”states that an agent benefits more than r frommisrepresenting her
utility function, with respect to the payment, paired with the assigned object under
truth telling. Given r ∈ R+, a mechanism f on domain DN is r-manipulable if
there are u ∈ DN , i ∈ N , and u′i ∈ D such that ui(fi(u′i, u−i)) > ui(xi(u), pi(u)−r).
If a mechanism is immune to r-manipulability, it is r-strategy-proof.

r−strategy-proofness:8 Given r ∈ R+, a mechanism f is r−strategy-proof on
domain DN if it is not r-manipulable on domain DN .

If r = 0, r−strategy-proofness coincides with strategy-proofness. For a small
r > 0, r−strategy-proofness is approximately strategy-proof: Each agent has only
a small incentive to manipulate.

Absolute manipulability: A mechanism f is absolutely manipulable on domain
DN if there is no r ∈ R+ such that f is r−strategy-proof on domain DN .

Absolute manipulability points out that it is impossible for a mechanism to
achieve approximate strategy-proofness to any degree.
An MPE mechanism is a function that maps to each utility profile an MPE

allocation9 for that profile. On the quasi-linear domain, the MPE mechanism is
equivalent to the Vickrey mechanism defined in Section 4 (Leonard, 1983). More
specifically, the MPE/Vickery mechanism is the unique mechanism satisfying effi -
ciency, strategy-proofness, individual rationality, as well as no subsidy (Holmstrom,
1979). This characterization of the MPE mechanism holds on the non-quasi-linear
domains (Morimoto and Serizawa, 2015; Zhou and Serizawa, 2018).

8Our notion is in the spirit of limiting incentive compatibility of Robert and Postlewaite
(1976).

9An MPE allocation is an allocation compatible with the MPE where each agent gets an
object assigned by the MPE and pays its MPE price.
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4 Auctions for MPEs

We introduce three well-known auctions in this section. The first auction is the
exact ascending auction introduced by Demange et al. (1986). This dynamic
procedure finds an MPE price by recursively increasing the prices of objects in a
minimally overdemanded set identified at the current price. The minimal overde-
manded set is a particular type of overdemanded set such that none of its non-
empty proper subsets is overdemanded.10

Definition 6: The exact ascending (EA) auction is defined as follows:
Let d > 0 be the increment. Starting from reserve prices, each agent reports

her demand set at the current price. If there is a set of objects that are minimally
overdemanded, then the prices of those objects are increased by d; otherwise, stop
at the current price.

The assignment of the EA auction is not explicitly specified, but implicitly
given in Theorem 2 in Demange et al. (1986). Put succinctly, each agent is
assigned an object from her demand set at the termination price. Among all
these assignments, find the assignment such that objects with positive prices are
assigned.
The second auction is known as the sealed-bid Vickrey auction (Leonard,

1983).11 In this auction, the auctioneer asks each agent to report her maximum
willingness to pay for each object relative to the status of getting the null object
and paying nothing, which is formulated as follows, to facilitate our discussion
on both the quasi-linear domain and the classical domain. For each i ∈ N , each
ui ∈ U , and each l ∈ L, let Vi(l) ∈ R be the maximum willingness to pay for object
l, called the generalized valuation of object l, such that ui(l, Vi(l)) = ui(0, 0). In
the quasi-linear settings, the generalized valuation Vi(·) is simply the valuation
vi(·).
Definition 7: The generalized sealed-bid Vickrey auction is defined in the fol-
lowing manner: Each agent reports Vi(·). Then calculate (xV , pV ) ∈ X × RL as
follows:
(i) xV ∈ arg max

x∈X

∑
i∈N Vi(xi), and

(ii) pV0 = 0, if l ∈ M is unassigned, pVl = 0, and if l ∈ M is assigned to agent i,
pVl = max

x∈X

∑
j∈N\{i} Vj(xj)−

∑
j∈N\{i} Vj(x

V
j ).

10A non-empty set of objects M ′ ⊆ M is minimally overdemanded at p if (i)
|{i ∈ N : Di(p) ⊆M ′}| > |M ′| and (ii) there is no non-empty set M ′′  M ′ such that
|{i ∈ N : Di(p) ⊆M ′, Di(p) ∩M ′′ 6= ∅}| > |M ′′|.
11The closed-form expression of the sealed-bid Vickrey auction is essentially introduced by

Vickrey (1961), Clarke (1971), and Groves (1977).
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If u ∈ (UQL)N , i.e., for each i ∈ N , Vi(·) = vi(·), we simply call the generalized
sealed-bid Vickrey auction the sealed-bid Vickrey auction. For each utility profile
u ∈ UN , let pV (u) be the associated generalized sealed-bid Vickrey price. By
further assigning zero prices to unassigned objects, it extends the well-known
Vickrey payment. We do so just for the sake of convenience when comparing it to
the MPE price, see, e.g., Fact 5 and Proposition 5.
The third auction is also proposed by Demange (1986), known as the approx-

imate ascending auction. The following definition comes from Demange (1986).12

Definition 8: The approximate ascending (AA) auction is defined as follows: Let
d > 0 be the increment. Initially, all the agents are uncommitted and stand in a
queue. These uncommitted agents are called one by one to bid. When agent i is
called, she is presented with the following three options.
Option 1 is to bid on an unassigned object l. This option commits agent i to
object l at its reserve price.
Option 2 is to bid on an object l that is tentatively assigned to some other agent
j at price pl. This option increases the price of object l by d, commits agent i to
object l at price pl + d and drives agent j back into the queue of uncommitted
agents.
Option 3 is to drop out by bidding on the null object.
The auction terminates when all uncommitted agents drop out and each com-

mitted agent buys her assigned object at its current price.

We finally define the mechanisms associated with the aforementioned three
auctions on the domain DN ⊆ UN . An allocation is specified by some auction
in such a manner that each agent pays the price of her assigned object upon the
termination of the auction. The EA mechanism is a function that maps to each
utility profile from DN an allocation specified by the EA auction for that utility
profile. The generalized Vickrey mechanism is a function maps to each utility
profile from DN an allocation specified by the generalized sealed-bid auction for
that utility profile. If it is defined on the quasi-linear domain, it is called the
Vickrey mechanism. The AA mechanism is a function that maps to each utility
profile from DN an allocation specified by the AA auction for that utility profile.
12In Page 867 of Demange et al. (1986), they wrote“[...]If one wishes to structure this procedure

the auctioneer could call on the uncommitted bidders, say in alphabetical order, requiring them
to choose one of the three alternatives listed above[...]”Our formulation of the AA auction is
congruent with its original definition in Demange et al. (1986), but utilizes a more general way
of dealing with the uncommitted agents, taking the alphabetical order as a special case.
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5 Implementability of MPEs on the quasi-linear domain

In this section, we review the current results of the EA auction, the sealed-bid
auction, as well as the AA auction on the quasi-linear domain.13

To begin with, we review the results of the EA auction. Demange et al. (1986)
assume that agents’valuations are multiples of the increment d > 0, i.e., they focus
on the class of quasi-linear utility functions UQLdN ≡ {ui ∈ UQL : ∀l ∈ M, vi(l) ∈
d ·N} and the EA auction operates on domain (UQLdN )N . They obtain the following
results.

Fact 3 (Demange et al. 1986): Let d > 0 and u ∈ (UQLdN )N . Then, the EA auction
with increment d finds an MPE price for u in a finite number of rounds.

The EA mechanism has nice effi ciency and incentive properties.

Fact 4 (Leonard, 1983): Let d > 0. The EA mechanism with increment d on
(UQLdN )N coincides with the MPE mechanism on (UQLdN )N . It is effi cient and
strategy-proof.

The coincidence assumption is essential to establish Facts 3 and 4. We will
elaborate further on this point in Section 6.1.

Remark 1: Facts 3 and 4 can be established on the classical domain that satisfies
the “generalized coincidence assumption.”Given an increment d > 0, let Ud ≡
{ui ∈ U : ∀l, l′ ∈ L,∀k ∈ d · Z, ∃k′ ∈ d · Z s.t. ui(l, k) = ui(l

′, k′)} be the set
of classical utility functions that exhibits quasi-linearity over L × (d · Z). Then
Ud\UQL 6= ∅ and UQLdN  Ud.14 The generalized coincidence assumption says that
the domain is (Ud)N . Facts 3 and 4 hold on (Ud)N since their original proofs also
work on (Ud)N . A violation of the generalized coincidence assumption must lead
to a violation of the coincidence assumption.

Second, we overview the results of the sealed-bid Vickrey auction. The MPE
allocation coincides with the sealed-bid Vickrey allocation for each quasi-linear
utility profile (Leonard 1983). Thus, we have the following result.

Fact 5 (Leonard, 1983): Let u ∈ (UQL)N , (x∗, pmin(u)) be an MPE, and pV (u) be
the sealed-bid Vickrey price. Then,
(i) x∗ ∈ arg max

x∈X

∑
i∈N vi(xi).

13Facts 3 to 7 are established on the quasi-linear domain where each agent has non-negative
valuations of objects. It is not diffi cult to ascertain that Facts 3 to 7 hold even when agents have
negative valuations of some objects.
14It is not diffi cult to construct a utility function satisfying quasi-linearity only on L× (d ·Z),

but violating it on L× (R\(d · Z)).
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(ii) For each l ∈M , pmin
l (u) = pVl (u).

Therefore, on the quasi-linear domain, an MPE can be implemented via the
sealed-bid Vickrey auction and an equivalence exists between the MPE mechanism
and the Vickrey mechanism. The effi ciency and strategy-proofness of the Vickrey
mechanism on the quasi-linear domain comes from Holmstrom (1979). In Section
6.2, we demonstrate that none of these results hold on the classical domain.
Finally, we overview the results of AA auction. Some factors might affect

the AA auction’s outcome. First, it is possible to form the bidding queue in
myriad ways. The initial order when agents stand in a queue has |N |! variants.
Several possibilities open up when an agent is replaced and is driven back into
the queue of uncommitted agents, there are also several possibilities. That agent
could be placed first in the queue, second in the queue, or so forth. Moreover,
different agents may be treated differently as well. This implies that the number of
variants of queues of uncommitted agents is much greater than |N |!. Definitely, the
outcomes of the AA auction are predicated on how the bidding queue is formed.
Second, when an agent is called to bid, her demand set at the price that agent
faces may contain several objects, and the agent is supposed to bid on one of
them. Each uncommitted agent could bid arbitrarily on any object in her demand
set. Therefore, the outcome of the AA auction relies on agents’bidding choices
even if the utility profile is fixed. As shown below, the results of the AA auction
and the AA mechanism are robust to these factors.

Fact 6: Let u ∈ (UQL)N , d > 0, and the bidding queue q be arbitrarily given.
(i)15 (Roughtgarden, 2014) The AA auction with increment d and bidding queue
q finds a d−equilibrium in a finite number of rounds.
(ii) (Deviation bound) (Demange et al. 2016) Let p(u) be the price generated
by the AA auction in (i). For each l ∈M ,

∣∣pl(u)− pmin
l (u)

∣∣ ≤ d ·min{|M | , |N |}.

Fact 6(i) states that the outcome of AA auction is an approximate equilibrium
by setting ε = d, i.e., d−equilibrium. Fact 6(ii) is the most interesting property of
the AA auction. It mentions that for any quasi-linear utility profile, the deviation∣∣pl(u)− pmin

l (u)
∣∣ is bounded by d · min{|M | , |N |}, which is independent of the

bidding queues and agents’ choices from their demand sets. Thus, as d goes
to zero, the outcome of the AA auction converges to an MPE. Unlike Fact 3,
Fact 6 enables agents’valuations to be arbitrary non-negative reals and does not
necessitate the coincidence assumption.
The AA mechanism is neither effi cient nor strategy-proof, but it does man-

age to achieve some degrees of approximate effi ciency and approximate strategy-

15Step 1 in the proof of Proposition 9 gives an independent proof of Fact 6(i).
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proofnes.

Fact 7: Let d > 0, k = 2 · min{|M | , |N |}, and a bidding queue q be arbitrarily
given. The AA mechanism with the increment d and the bidding queue q on
(UQL)N is d−effi cient and k · d−strategy-proof.

Indeed, d−equilibrium is d−effi cient,16 which ensures the d−effi ciency of the
AA mechanism. The k · d−strategy-proofness of AA auction is shown by Rough-
garden (2014). Fact 7 implies that the AA auction works well on the quasi-linear
domain even in the absence of the coincidence assumption. Nevertheless, it fails
to work on the classical domain. We discuss this point in Section 6.2.

6 Implementability of MPE on the classical domain

To emphasize the feature of our model with heterogenous objects, we discuss the
case of homogenous objects where agents have classical utility functions. Homo-
geneity implies that for each payment, an agent’s utility hinges only on whether
she is assigned an object or the null; for this reason, each object gives her the
same utility level. In such cases, the MPE price is the same across all the ob-
jects, represented by a single number, and the MPE assignment is determined by
the ranking of generalized valuations. Put differently, the MPE assigns objects
to agents whose generalized valuations are among |M | th-highest, and have them
pay a price equal to the (|M | + 1)th-highest generalized valuation, whereas the
remaining agents get the null and pay nothing.17 When it comes to homogeneous
objects, the MPE allocation is exactly the generalized sealed-bid Vickrey alloca-
tion and the generalized Vickrey mechanism is the MPE mechanism, which, in
turn, satisfies effi ciency and strategy-proofness (Saitoh and Serizawa, 2008).
However, when objects are heterogenous and agents have classical utility func-

tions, the information of the generalized valuation is insuffi cient to determine the
MPE. In such an environment, for each payment, an agent’s utility depends on

16We demonstrate that d−equilibrium is d−effi cient. By contradiction, suppose that there is a
d−equilibrium (x, p), which is not d−effi cient. Let z ∈ Z be the allocation compatible with (x, p),
i.e., for each i ∈ N , ti = pxi . Thus there is z

′ ∈ Z such that (i) for each i ∈ N , ui(z′i) > ui(zi), and
(ii)

∑
i∈N

ti +d · |N | ≤
∑
i∈N

t′i. By (ii), there is i ∈ N such that z′i = (x′i, t
′
i) and t

′
i ≥ px′i +d. If not,

i.e., for each i ∈ N , t′i < px′i +d, then
∑
i∈N

t′i <
∑
i∈N

px′i +d · |N | ≤
∑
x∈M

px+d · |N | =
∑
i∈N

ti+d · |N |,

contradicting (ii). Thus by (i), ui(x′i, px′i + d) ≥ ui(z′i) > ui( zi), contradicting xi ∈ Dd
i (p).

17To be precise, if |M | ≥ |N | or the (|M |+ 1)th−highest generalized valuation is non-positive,
the MPE price is zero. Otherwise, the MPE price is the (|M |+ 1)th−highest generalized valua-
tion.
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which object is assigned to her, and not merely on whether she is assigned an
object or the null. Moreover, an agent’s preference over object also depends on
payments. For example, at the payment t, an agent may prefer object a to b,
but at t′, e.g., t′ > t, the opposite may occur, i.e., the agent prefers b to a. No-
tably, such a complexity never occurs in the case of homogenous objects or in the
quasi-linear settings.
In the following, we demonstrate that the above complexity results in the poor

performance of the auctions studied in Section 5.

6.1 The exact ascending auction

Since the coincidence assumption requires the quasi-linearity, a violation of quasi-
linearity assumption leads to a violation of the coincidence assumption. We further
argue that if we arbitrarily select a utility profile from (U)N , in most cases, it does
not come from (Ud)N defined in Remark 1 and so the generalized coincidence
assumption, as well as the coincidence assumption, is violated. Let Ud∗ ≡ {ui ∈
U : ∀l, l′ ∈ L,∀k, k′ ∈ d · Z, ui(l, k) 6= ui(l

′, k′)} be the set of utility functions that
represents the strict preferences over L× (d ·Z). It is noteworthy that Ud∗ is indeed
open and dense in U , and so Ud ⊆ U�Ud∗ is non-generic in U . This implies that
if we arbitrarily select a utility profile from (U)N , in most cases it will come from
(Ud∗ )N , instead of (Ud)N , and so the argument holds.
In the following, we examine the performance of EA auction by dropping the

coincidence assumption, but still keep quasi-linearity. We show that the EA auc-
tion and EA mechanism perform poorly without the coincidence assumption.
First, we demonstrate that even a small “perturbation”of UQLdN may lead to

the break-down of the EA auction. We fix an increment d > 0. For agent i, let
UQLdQ+

≡ {ui ∈ UQL : ∀l ∈M, vi(l) ∈ d ·Q+}. Given δ > 0, let UQLdN (Q+, δ) ≡ {ui ∈
UQLdQ+

: ∃ui ∈ UQLdN such that ∀a ∈ M, |vi(a)− vi(a)| ≤ dδ}. It is easily seen that
UQLdN  UQLdN (Q+, δ) ⊆ UQLdQ+

, that all the three sets are countable, and that when

δ → 0, UQLdN (Q+, δ)→ UQLdN .
Example 1 shows that for an arbitrarily small δ > 0, the EA auction does not

work.

Example 1: Let d > 0, r > 0, 0 < δ < 1, and t ∈ N+ be such that (t− 1) · d > r.
Let M = {a, b} and N = {1, 2}. Let u ∈ UQLdN (Q+, δ) be represented by a
valuation profile (v1(·), v2(·)) such that:
(1) v1(a) = (t+ α1) · d and v1(b) = (t+ β1) · d.
(2) v2(a) = (t+ α2) · d and v2(b) = (t+ β2) · d.
(3) α1, α2, β1, β2 ∈ Q+, 0 < α1 < β1 < 1, 0 < α2 < β2 < 1, and β1−α1 < β2−α2.
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(4) β1 < δ and β2 < δ.18

We remark that the following analysis depends only on (1), (2), and (3), and that
(4) is just used to specify where (v1(·), v2(·)) comes from. There are several ways
to perturb valuation profiles in UQLdN to get (v1(·), v2(·)), by varying (4).
Note that

v1(0) = v2(0) = 0 <
(3)

(β1 − α1) · d =
(1)
v1(b)− v1(a) (∗)

<
(3)
v2(b)− v2(a) =

(2)
(β2 − α2) · d <

(3)
d.

The MPE (x, pmin(u)) is: x = (x1, x2) = (a, b) and pmin(u) = (pmin
0 , pmin

a , pmin
b ) =

(0, 0, (β1 − α1) · d).
We confirm that (x, pmin(u)) is an MPE. For agent 1,

v1(a)− pmin
a = v1(b)− pmin

b = (t+ α1) · d > 0 = v1(0)− pmin
0

and so x1 = a ∈ D1(pmin(u)) = {a, b}. For agent 2,

v2(b)− pmin
b = (t+β2−β1 +α1) · d >

(3)
(t+α2) · d = v2(a)− pmin

a > 0 = v2(0)− pmin
0

and so x2 = b ∈ D2(pmin(u)) = {b}. Thus Definition 3(i) holds and Definition 3(ii)
holds vacuously. Thus (x, pmin(u)) is an equilibrium.
We use Fact 1(ii) to show that (x, pmin(u)) is an MPE. Note that {i ∈ N :

Di(p
min(u)) ⊆ {a}} = ∅,

∣∣{i ∈ N : Di(p
min(u)) ⊆ {b}

∣∣ = |{2}| = 1 = |{b}|, and∣∣{i ∈ N : Di(p
min(u)) ⊆ {a, b}

∣∣ = 2 = |{a, b}|. Thus no set of objects is overde-
manded at pmin(u). Since pmin

b > 0,
∣∣{i ∈ N : Di(p

min(u)) ∩ {b} 6= ∅}
∣∣ = |{1, 2}| =

2 > 1 = |{b}|. Thus no set of object is weakly underdemanded, as desired. Since
x2 = b ∈ D1(pmin(u)) = {a, b} and x1 = a with pmin

a = 0, b is connected via agent
1’s demand set. Therefore, Fact 2 is also illustrated.
We now illustrate how the EA auction proceeds. The auction starts from round

0 with the initial price p0 = (0, 0, 0). At p0, by (∗), both agents prefer b to a and
0, i.e., D1(p0) = D2(p0) = {b}. Therefore, only b is minimally overdemanded
at p0 and so, its price p0

b is raised by d while the price of a remains unchanged.
Therefore, we proceed to round 1 with p1 = (0, 0, d). At p1, by (∗), both agents
prefer a to b and 0, i.e., D1(p1) = D2(p1) = {a}. Therefore, only a is minimally
overdemanded at p1 and so, its price p1

a is raised by d while the price of b does not
change. Therefore, we proceed to round 2 with p2 = (0, d, d) and so on.

18When δ is given, there is k ∈ N+ such that 10−k ≤ δ. For example, we can set α1 = 0.1/10k,
β1 = 0.5/10k, α2 = 0.2/10k, and β2 = 0.8/10k. Then (1) to (4) hold.
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At round 2t+1 with price p2t+1 = (0, t ·d, (t+1) ·d), by (∗), both agents prefer
a to b and 0, i.e., D1(p2t+1) = D2(p2t+1) = {a}. Therefore, only a is minimally
overdemanded at p2t+1 and so, its price p2t+1

a is raised by d while the price of b does
not change. The auction proceeds to round 2t+2 with p2t+2 = (0, (t+1)·d, (t+1)·d).
At price p2t+2, no agent is willing to obtain either a or b, and they prefer to drop
the auction, i.e., D1(p2t+2) = D2(p2t+2) = {0}. At price p2t+2, there are no sets of
objects that are minimally overdemanded. Therefore, the auction terminates at
p2t+2, with an allocation that each agent receives the null object and pays nothing.
In the above case, note that p2t+2

a − pmin
a = (t + 1) · d > r and p2t+2

b − pmin
b =

(t+ 1− (β1 − α1)) · d > t · d > r. 4

In Example 1, since r can be arbitrarily large, the EA auction may overshoot
the MPE price by a substantial margin. Example 1 can be easily generalized to
cases of more agents and objects. Proposition 1 summarizes this overshooting
result.

Proposition 1 (Substantial overshooting): For each d > 0, each arbitrarily
large r > 0, and each arbitrarily small δ > 0, there is u ∈ (UQLdN (Q+, δ))

N such
that the EA auction with increment d generates a price p with pl > pmin

l (u) + r

for each l ∈M .

It is easy to confirm that no equilibrium is compatible with discrete prices in
(d ·N)L in Example 1. One may wonder whether this nonexistence result is a key
factor that results in the large overshooting of the EA auction. Thus, we consider
approximate equilibria where the deviation is set to be the increment, i.e., ε = d.
The prices compatible with d−equilibria for the utility profile u in Example 1 are
such that p = (0, k · d, k · d) for k = 0, 1, . . . , t, or p′ = (0, k′ · d, (k′ + 1) · d) for
k′ = 0, 1, . . . , t−1. However, in Example 1, the outcome price is not among them,
and moreover, the outcome assignment is not a d−equilibrium assignment either.
Thus, the EA auction does not find a d−equilibrium.
In the following, we argue that the EA auction largely overshoot even the

d−equilibrium price that is “closest”to the MPE price. Formally, given a utility
profile u ∈ UN , a d−equilibrium price pA(u) is called a closest d−equilibrium price
to pmin(u) if there is no other d−equilibrium price p′ for that utility profile such
that for each l ∈ M ,

∣∣pAl (u)− pmin
l (u)

∣∣ ≥ ∣∣p′l − pmin
l (u)

∣∣ with at least one strict
inequality. The price pA(u) approximates pmin(u) among all 1−equilibrium prices.
In Example 1, if β1 − α1 < 0.5, p0 = (0, 0, 0) is a closest d−equilibrium price to
pmin(u) among all d−equilibrium prices.19 The insight of large overshooting from

19If β1 − α1 > 0.5, p1 = (0, 0, d) is a closest d−equilibrium price to pmin(u) among all
d−equilibrium prices. If β1 − α1 = 0.5, both p0 and p1 are closest d−equilibrium prices to
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Example 1 extends to a closest d−equilibrium price.

Proposition 2: For each d > 0, each arbitrarily large r > 0, and each arbitrarily
small δ > 0, there is u ∈ (UQLdN (Q+, δ))

N such that the EA auction with increment
d generates a price p with pl ≥ pAl (u) + r for each l ∈M .

Propositions 1 and 2 demonstrate that the EA auction completely breaks down
on (UQLdN (Q+, δ))

N even when δ is suffi ciently small. Notably, the smaller δ is, the
smaller UQLdN (Q+, δ)\UQLdN will be. Thus, the operation of EA auction to get the
MPE is rather demanding.

Corollary 1: Let d > 0, an arbitrarily small δ > 0 be given, an arbitrarily
large r > 0 be given, and UQLdN (Q+, δ) ⊆ U ⊆ U . There is u ∈ U

N
such that

the EA auction with increment d generates a price p with pl ≥ pmin
l (u) + r and

pl ≥ pAl (u) + r for each l ∈M .

Proposition 1 perturbs UQLdN only by allowing agents’valuations to take positive
rational numbers in the neighborhood of natural numbers. It concludes that there
is no common increment such that for each u ∈ UQLdN (Q+, δ), the EA auction finds
the associated MPE price pmin(u). However, for each u ∈ UQLdN (Q+, δ), there is an
increment such that the EA auction finds the associated MPE price pmin(u).20

On the other hand, if we perturb UQLdN by allowing agents’valuations to take
positive irrational numbers in the neighborhood of natural numbers as well, we
can conclude a stronger result as in illustrated by Example 2 below: For some
valuation profile, regardless of increments the EA auction will always overshoot
the MPE price and a closest d−equilibrium price.
Given δ > 0, let UQLdN (R+, δ) ≡ {ui ∈ UQL : ∃ui ∈ UQLdN such that ∀a ∈

M, |vi(a)− vi(a)| ≤ dδ}. It is easily seen that UQLdN  UQLdN (R+, δ) ⊆ UQLd, and
that when δ → 0, UQLdN (R+, δ)→ UQLdN .

Example 2: Let d > 0, r > 0, 0 < δ < 1, and λ1, λ2, λ3 ∈ d · N+ be such
that r + 1 < λ1 < λ2 < λ3 be given. Let M = {a, b, c} and N = {1, 2, 3}. Let
u ∈ (UQLdN (R+, δ))

3 be represented by a valuation profile (v1(·), v2(·), v3(·)) such
that:

pmin(u) among all d−equilibrium prices. It can be easily verified that Proposition 2 holds even
when there are multiple closest d−equilibrium prices.
20To see this point, assume, w.l.o.g, that for each i ∈ N , there is an object l ∈ M such that

vi(l) > 0, and let M ′i be the collection of such objects. For each i ∈ N and each l ∈ M ′i , let
vi(l) ∈ d · Q+ be such that vi(l) = d · (pli/qli) where pli, qli ∈ N+ and pli/qli is irreducible, and let
di = d · (Πl∈M ′ 1

qil
). Then, if d′ = Πi∈Ndi is the increment in the auction, agents’valuations are

integer multiples of d′. For each u ∈ UQLdQ+ , an increment d′ defined as above guarantees that
the EA auction finds an MPE for u.
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(1) v1(a) = λ1, v1(b) = λ1 + α, and v1(c) = λ1 + β

(2) v2(a) = λ2, v2(b) = λ2 + α, and v2(c) = λ2 + γ

(3) v3(a) = λ3 − 1, v3(b) = λ3 + α, and v3(c) = λ3 + β.
(4) α, β, γ ∈ R+\Q+,

β
α
∈ R+\Q+ and α < γ < β < 1.

(5) β < dδ.21

Similarly to Example 1, we remark that the following analysis relies only on (1),
(2), (3), and (4), and that (5) is just used to specify where (v1(·), v2(·), v3(·)) comes
from, and one may verify that by varying (5), there are several ways to perturb
valuation profiles in UQLdN to get (v1(·), v2(·), v3(·)).
The MPE price for u specified above is pmin(u) = (pmin

0 , pmin
a , pmin

b , pmin
c ) =

(0, 0, α, β).
Let ml = 0 if l = a, ml = α if l = b, and ml = β if l = c. We show that for

each increment d > 0, the EA auction finds a price p ≡ (0, pa, pb, pc) such that
pl ≥ λ1 +ml for each l ∈M .
We proceed by contradiction. Suppose that for some increment d > 0, the EA

auction finds a price p such that there is a non-empty set M ′ ⊆M such that each
l ∈M ′, pl < λ1 +ml and for each l ∈M\M ′, pl ≥ λ1 +ml.
We begin by proving Claims 1 and 2 below.

Claim 1: (a) There is no set of objects that is overdemanded at (0, pa, pb, pc).
(b) For each i ∈ N , each l ∈M , vi(l)− (λ1 +ml) ≥ 0.
(c) For each i ∈ N , Di(p) ⊆M .

Part (a): If there is a set of objects that is overdemanded at (0, pa, pb, pc), then it
is easy to verify that set contains a minimally overdemanded set at (0, pa, pb, pc),
contradicting the termination of the EA auction.
Part (b): For agent 1, for each l ∈M , v1(l) = λ1 +ml. For agent 2, if l ∈ {a, b},
v2(l) − (λ1 + ml) = λ2 − λ1 > 0. If l = c, v2(c) − (λ1 + ml) = λ2 − λ1 + γ − β.
Since λ1, λ2 ∈ N+, λ2 > λ1, and (4), it holds λ2 − λ1 + γ − β ≥ 0 and so
v2(c)− (λ1 + ml) ≥ 0. For agent 3, if l ∈ {b, c}, v3(l)− (λ1 + ml) = λ3 − λ1 ≥ 0.
If l = a, v3(a)− (λ1 +ml) = λ3 − 1− λ1. Since λ1, λ3 ∈ N+ and λ3 > λ1, it holds
that λ3 − 1− λ1 ≥ 0 and so v3(a)− (λ1 +ml) ≥ 0. Thus, (b) holds.
Part (c): For each i ∈ N , each l ∈ Di(p), and each l′ ∈M ′,

vi(l)− pl ≥ vi(l
′)− pl′ >

l′∈M ′
vi(l

′)− (λ1 +ml′) ≥
Claim 1(b)

0,

so 0 /∈ Di(p) and Di(p) ⊆M .

Claim 2: (a) pb = pa + α, and (b) pc = pb + β − α.
21When δ is given, there is k ∈ N+ such that 10−k ≤ dδ. For example, we can set α =

(
√

5−
√

3)/10k+1, β = (
√

11−
√

3)/10k+1, and γ = (
√

7−
√

3)/10k+1. Then (1) to (4) hold.
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Part (a): Suppose that pb 6= pa + α. We consider two cases, i.e., pb > pa + α

(Case 1), or pb < pa + α (Case 2), and derive a contradiction in each case.
Case 1: pb > pa + α

For each i ∈ {1, 2},

vi(a)− pa =
(1)&(2)

vi(b)− α− pa >
Case 1

vi(b)− pb,

so b /∈ Di(p). Thus, by Claim 1(c), for each i ∈ {1, 2}, Di(p) ⊆ M\{b} = {a, c}.
If b /∈ D3(p), then by Claim 1(c) D3(p) ⊆ M\{b} = {a, c}, and so {a, c} is
overdemanded, contradicting Claim 1(a). Thus b ∈ D3(p). Since b ∈ D3(p) implies
v3(b)− pb ≥ v3(c)− pc, by (3), we have pc ≥ pb + β − α. Thus by pb > pa + α, we
have pc > pa + β. Therefore, for each i ∈ {1, 2},

vi(a)− pa ≥
(1),(2)&(4)

vi(c)− β − pa >
pc>pa+β

vi(c)− pc,

so c /∈ Di(p). Thus for each i ∈ {1, 2}, by Claim 1(c) and Di(p) ⊆ {a, c}, we have
D1(p) = D2(p) = {a}, contradicting Claim 1(a).
Case 2: pb < pa + α

For each i ∈ {1, 2},

vi(b)− pb =
(1)&(2)

vi(a) + α− pb >
Case 2

vi(a)− pa,

so a /∈ Di(p). Thus for each i ∈ {1, 2}, by Claim 1(c), Di(p) ⊆ M\{a} = {b, c}.
If a /∈ D3(p), then by Claim 1(c), D3(p) ⊆ M\{a} = {b, c}, and so {b, c} is
overdemanded, contradicting Claim 1(a). Thus a ∈ D3(p). Since a ∈ D3(p)

implies v3(a) − pa ≥ v3(c) − pc, by (3), we have pc ≥ pa + β + 1. Thus by
pb < pa + α, we have pc > pb − α + β + 1 > pb + β − α. Note that by (1),
v1(b) = v1(c) +α−β, and by (2) and γ < β, v2(b) = v2(c) +α−γ > v2(c) +α−β.
Thus, for each i ∈ {1, 2},

vi(b)− pb ≥ vi(c)− (β − α)− pb >
pc>pb+β−α

vi(c)− pc,

so c /∈ Di(p). Thus, for each i ∈ {1, 2}, by Claim 1(c) and Di(p) ⊆ {a, c}, we have
D1(p) = D2(p) = {a}, contradicting Claim 1(a).
Thus, pb = pa + α.

Part (b): Suppose that pc 6= pb+β−α. We consider two cases, i.e., pc > pb+β−α
(Case 1), or pc < pb + β − α (Case 2), and derive a contradiction in each case.
Case 1: pc > pb + β − α
For each i ∈ {1, 3},

vi(b)− pb =
(1)&(3)

vi(c) + α− β − pb >
Case 1

vi(c)− pc,
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so c /∈ Di(p). Thus, by Claim 1(c), for each i ∈ {1, 3}, Di(p) ⊆ M\{c} = {a, b}.
Note that

v2(b)− pb =
(2)
v2(c) + α− γ − pb >

β>γ
v2(c) + α− β − pb >

Case 1
v2(c)− pc

so c /∈ D2(p). Thus by Claim 1(c), D2(p) ⊆ M\{c} = {a, b}. Thus for each
i ∈ {1, 2, 3}, Di(p) ⊆ {a, b} and {a, b} is overdemanded, contradicting Claim 1(a).
Case 2: pc < pb + β − α
Note that by Claim 2(a), i.e., pb = pa + α, (1) implies v1(b)− pb = v1(a)− pa,

while (3) implies v3(b)−pb = v3(a) + 1−pa > v3(a)−pa. Thus for each i ∈ {1, 3},

vi(c)− pc =
(1)&(3)

vi(b)− α + β − pc >
Case 2

vi(b)− pb ≥ vi(a)− pa

so a, b /∈ Di(p). Thus for each i ∈ {1, 3}, by Claim 1(c), Di(p) = {c}. Thus
D1(p) = D3(p) = {c} and {c} is overdemanded, contradicting Claim 1(a).
Thus pc = pb + β − α. Thus Claim 2 holds.

Since the EA auction stops at (0, pa, pb, pc), there are ka, kb, kc ∈ N such that
pa = kad, pb = kbd, and pc = kcd. By Claim 2 and (4), we have pb − pa =

(kb − ka)d = α > 0 and pc − pb = (kc − kb)d = β − α > 0. Therefore,

kc − kb
kb − ka

=
pc − pb
pb − pa

=
β − α
α

.

Note that by (4), β−α
α
is an irrational number. However, by ka, kb, kc ∈ N, (kc −

kb)/(kb − ka) is a rational number. This is a contradiction.
Thus we conclude that for each increment d > 0, the EA auction finds a price

(0, pa, pb, pc) such that pa ≥ λ1, pb ≥ λ1 + α, and pc ≥ λ1 + β.
By (4) and λ1 > r + 1, for each l ∈M , pl > pmin

l (u) + r. 4

Example 2 can be easily generalized to cases of more agents and objects. Ex-
ample 2 also works to demonstrate that for any positive increment d, the EA
auction is always largely overshooting a closest d−equilibrium price, which can
be skipped to avoid the redundancy. Proposition 3 summarizes the insights of
Example 2.

Proposition 3: Let d > 0. For an arbitrarily large r > 0 and an arbitrarily small
δ > 0, there is u ∈ (UQLdN (R+, δ))

N such that for any positive increment, the EA
auction generates a price p with pl ≥ pmin

l (u) + r and pl ≥ pAl (u) + r for each
l ∈M .

Proposition 3 strengthens the results in Propositions 1 and 2, by further en-
larging the range of agents’valuations slightly.
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In the following, Example 1 is used to study the r−effi ciency and r−strategy-
proofness of the EA mechanism.

Example 3: Consider the economy in Example 1. We first consider the effi ciency
issue. Let z1 = (a, (t − 1) · d) and z2 = (b, (t − 1) · d). For each i ∈ {1, 2},
ui(zi) > ui(0, 0) = 0, and Rev(z) = (t + t − 2) · d > 2r > 0. Thus, the EA
mechanism fails to find an r−effi cient allocation for u.
Next, we consider the incentive issue. Let u′2 ∈ UQL be denoted by v′2(·) such

that v′2(a) = (t + β2) · d and v′2(b) = (t+ α2) · d. Then, agent 2 with u′2 demands
only object a at the initial price p0 = (0, 0, 0), i.e., D′2(p0) = {a} while as analyzed
in Example 1, D1(p0) = {b}. Since no set of objects is minimally overdemanded,
the EA auction concludes at p0, and agents 1 and 2 receive objects b and a with
no payment. Since t−1 > r > 0, it holds that u2(a, 0) = (t+α2) ·d > u2(0,−r) =

v2(0) + r = r. As a result, agent 2 benefits more than r from misreporting v′2(·)
when her true valuation function is v2(·). Therefore, the EA mechanism with
increment d is r−manipulable. 4

Example 3 can easily be generalized to cases of more agents and objects, which
indicates the following result.

Proposition 4: Let d > 0, an arbitrarily small δ > 0 be given, and UQLdN (Q+, δ) ⊆
U ⊆ UQL. The EA mechanism with increment d is absolutely ineffi cient and
absolutely manipulable on UN .

By Proposition 4, we have the following result.

Corollary 2: Let d > 0, an arbitrarily small δ > 0 be given, and UQLdN (Q+, δ) ⊆
U ⊆ U . The EA mechanism with increment d is absolutely ineffi cient and ab-
solutely manipulable on UN .

We end this section by discussing the predicament of extending the continuous-
time clock auction for one object with quasi-linear utility functions to our model
for heterogeneous objects with classical utility functions.

Continuous-time clock auction: The continuous-time clock auction, originated
from the Japanese simultaneous-bidding auction (Cassady, 1967), is a particular
type of the English auction for selling only one object. The price increases con-
tinuously at some rate kept by a clock, and agents drop out at some point. The
auction stops a price when all agents drop out except for one and the remaining
agent wins the object and pays that stopping price. This auction duplicates the
MPE mechanism for one object.
We begin by discussing its extension to multiple heterogenous objects. Let

M = {a, b} and N = {1, 2, 3}. Let u ∈ (UQL)3 be such that v1(a) = 3, v1(b) = 1,
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v2(a) = 1, v2(b) = 3, and v3(a) = v3(b) = 2. In such a case, the MPE (x, pmin(u))

is x = (x1, x2, x3) = (a, b, 0) and pmin(u) = (pmin
0 , pmin

a , pmin
b ) = (0, 2, 2).

One possible extension of the continuous-time clock auction is that each agent
chooses an object from her demand at the current price, and bids on it. The prices
of minimally overdemanded objects are increased continuously at the same rate.
At p0 = (0, 0, 0), D1(p0) = {a}, D2(p0) = {b}, and D3(p0) = {a, b}. Thus at p0,
agent 1 bids on a, agent 2 bids on b, and agent 3 bids on a or b. Whenever the price
of a (or b) is higher than b (or a), agents 3 demands and bids on b (or a). Therefore,
beginning from (0, 0, 0), if the price increases continuously, agents 3’s bid needs
to move between a and b continuously until the price reaches pmin(u) = (0, 2, 2).
Such a bidding behavior is physically impossible. Furthermore, the associated
price path to pmin(u) is not well-defined.
Another possible extension is that each agent reports her demand set at the

current price, and the prices of minimally overdemanded objects are increased
continuously at the same rate. Indeed, this is the continuous variant of the EA
auction. It works well on the quasi-linear domain.22 However, such an auction
is fraught with problems on the classical domain. Consider a classical utility
function u′3 ∈ U of agent 3 such that (i) u′3(0, 0) = u′3(a, 1) = u′3(b, 2), and (ii)
u′3(a, t) = u′3(b, 2t) for each t ∈ [0, 1]. Let u′ = (u1, u2, u

′
3). Then the MPE

price is pmin(u′) = (0, 1, 2). Note that for pa ∈ [0, 1], D3(p) = {a} if pb > 2pa,
D3(p) = {b} if pb < 2pa, D3(p) = {a, b} if pb = 2pa. Thus, starting from (0, 0, 0),
if the prices of minimally overdemanded objects increase continuously with the
same rate, agents 3 needs to move between {a, b} and {b} continuously, which is
physically impossible. Note that in such a case, the price path to pmin(u′) = (0, 1, 2)

is not well-defined either.
Morimoto and Serizawa (Proposition 1, 2015) show that if the price path gen-

erated by the aforementioned continuous variant of the EA auction is well-defined,
then such an auction converges to the MPE price with multiple objects in a finite
time on the classical domain. However, their result does not guarantee the exis-
tence of such a price path. Our discussion demonstrates that the price path of the
EA auction’s continuous variant may not be well-defined for some classical utility
profiles. In particular, it is both theoretically and practically impossible to use
such an auction on the classical domain as an alternative option to approximate
or duplicate the MPE mechanism.

22If the prices increase continuously along the path p(t) = (0, t, t) where t ∈ [0, 2], agents 1,
2 and 3 keep reporting D1(p(t)) = {a}, D2(p(t)) = {b}, and D3(p(t)) = {a, b}, respectively.
Finally, the price reaches pmin(u) = (0, 2, 2).
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6.2 The generalized sealed-bid Vickrey auction and ap-
proximate ascending auction

In contrast to the EA auction, the operations of the sealed-bid Vickrey auction
and the AA auction are not predicated on the coincidence assumption and work
well on the quasi-linear domain. However, in this section, we show that the nice
properties of those two auctions elucidated in Section 5 do not hold on the classical
domain.

6.2.1 The generalized sealed-bid Vickrey auction

Example 4 below highlights that both the assignments and prices are different
between the MPE and generalized sealed-bid Vickrey on the classical domain.

Example 4: Let M = {a, b} and N = {1, 2, 3}. Let r > 0 and u ∈ U3 be such
that:
(1) V1(a) = r and V1(b) = 2r.
(2) V2(a) = 20r, V2(b) = 10r, u2(a, r) = u2(b, 0), and u2(a, 3r) = u2(b, 2r).
(3) V3(a) = 10r, V3(b) = 30r, u3(a, 3r) = u3(b,−2r), and u3(a, 8r) = u3(b, 2r).
The generalized sealed-bid Vickrey outcome (xV , pV (u)) is xV = (xV1 , x

V
2 , x

V
3 ) =

(0, a, b) and pV (u) = (pV0 , p
V
a , p

V
b ) = (0, r, 2r). In this a case, the generalized sealed-

bid Vickrey assignment is unique.
We show how to calculate (xV , pV (u)). It is not hard to see that assigning

a to agent 2 and b to agent 3 while agent 1 gets the null object maximizes the
sum of generalized valuations V1(·) + V2(·) + V3(·), which is equal to 50r. Thus
xV satisfies Definition 7(i). In the absence of agent 2, assigning b to agent 3 and
assigning a to agent 1 maximizes the sum of generalized valuations V1(·) + V3(·),
which is equal to 31r. Therefore, by Definition 7(ii), agent 2 gets a and pays
V1(a)+V3(b)−(V1(xV1 )+V3(xV3 )) = r. Without agent 3, assigning a to agent 2 and
assigning b to agent 1 maximizes the sum of generalized valuations V1(·) + V2(·),
which is equal to 22r. Therefore, by Definition 7(ii), agent 2 gets a and pays
V1(b) + V2(a)− (V1(xV1 ) + V2(xV2 )) = 2r.
TheMPE (x, pmin(u)) is x = (x1, x2, x3) = (0, b, a) and pmin(u) = (pmin

0 , pmin
a , pmin

b ) =

(0, 3r, 2r). In this case, the MPE assignment is unique as well.
Thus, pmin(u) 6= pV (u) and x 6= xV . 4

Since Example 4 can be easily generalized to cases of more agents and objects,
we have Proposition 5.

Proposition 5: There is u ∈ UN such that (i) for each l ∈ M , pmin
l (u) 6= pVl (u),

and (ii) there is no intersection between the set of the MPE assignments and the
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set of the generalized sealed-bid Vickrey assignments for u.

We discuss the intuition behind Proposition 5 via Example 4. By its defin-
ition, the generalized sealed-bid Vickrey price is determined only by {Vi(·)}i∈N .
However, the information in {Vi(·)}i∈N is not suffi cient to determine equilibrium
prices. Indeed, at the generalized sealed-bid Vickrey price pV (u) = (0, r, 2r), since
ui(a, r) > ui(b, 2r) > ui(0, 0) for i = 2, 3, agents 2 and 3 both demand only a,
and so pV (u) is not an equilibrium price. Put differently, the determination of the
generalized sealed-bid Vickrey price and equilibrium price may require different
parts of preference information in {ui(·)}i∈N , which may not convey in {Vi(·)}i∈N .
Therefore, the different usage of preference information results in various out-
comes. Moreover the larger deviation of utility profiles from quasi-linearity may
lead to larger differences in such outcomes. Indeed, that the generalized sealed-
bid Vickrey price is not an equilibrium price; it is rather a robust property on
the classical domain although the generalized sealed-bid Vickrey prices could be
equilibrium prices for some utility profiles.23

In contrast to the classical domain, on the quasi-linear domain, since for each
agent i, vi(·) contains all the information of her preference ui(·), the generalized
sealed-bid Vickrey price is an equilibrium price as well. For instance, consider a
utility profile u′ ∈ (UQL)3 in Example 4 that for each i ∈ {1, 2, 3}, v′i(·) = Vi(·).
Then, pV (u′) = pV (u) = (0, r, 2r), and x′V = xV = (0, a, b). Since u′1(0, 0) =

u′1(a, r) = u′1(b, 2r), u′2(a, r) > u′2(b, 2r) > u′2(0, 0), and u′3(b, 2r) > u′2(a, r) >

u′2(0, 0), each agent demands her assignment at x′V . Thus, (x′V , pV (u′)) is an
equilibrium for u′.
Next, we show the ineffi ciency and manipulability of the generalized Vickrey

mechanism.

Example 5: Consider the economy in Example 4. Let z1 = (0,−0.5r), z2 =

(b,−0.5r), and z3 = (a, 7.5r). For each i ∈ {1, 2, 3}, ui(zi) > ui(x
V
i , p

V
xVi

), and

Rev(z) = 6.5r > pV0 + pVa + pVb + 3r = 6r. Thus (xV , pV ) is not r−effi cient for u.
Let u′3 ∈ U be such that V ′3(a) = 35r, V ′3(b) = 8r, and u′3(a, 10r) = u′3(b, 4r).

23Fix r > 0 and u1 as shown in Example 4. Let U2(20r; 10r) ≡ {u2(·, ·) ∈ U : V2(a) = 20r,
V2(b) = 10r}, and U3(10r; 30r) ≡ {u3(·, ·) ∈ U : V3(a) = 10r, V3(b) = 30r}. Any pair (u2, u3) ∈
U2(20r; 10r) × U3(10r; 30r) of utility functions of agents 2 and 3, together with u1, have the
generalized sealed-bid Vickrey price pV = (0, r, 2r) and the associated assignment xV = (0, a, b).
However, for any utility profile u′ ∈ {u1} × U2(20r; 10r) × U3(10r; 30r) such that u′2(a, r) <

u′2(b, 2r) or u
′
3(b, 2r) < u′3(a, r), (xV , pV ) is not an equilibrium. Thus, for these utility profiles,

the generalized sealed-bid Vickrey outcome is not an equilibrium.
For any utility profile u′ ∈ {u1}×U2(20r; 10r)×U3(10r; 30r) such that u′2(a, r) ≥ u′2(b, 2r) and

u′3(b, 2r) ≥ u′3(a, r), (xV , pV ) is an equilibrium. Thus, for these utility profiles, the generalized
sealed-bid Vickrey outcome is an equilibrium.
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Agent 3 obtains (a, 12r) under the generalized sealed-bid Vickrey auction for the
utility profile (u1, u2, u

′
3). Since u′3(b, 2r) > u′3(b, 4r) = u′3(a, 10r) > u′3(a, 12r),

agent 3 benefits from reporting u3 when her true utility function is u′3. Thus, it
can be inferred that the generalized Vickrey mechanism is r−manipulable. 4

Since Example 5 can be easily generalized to cases of more agents and objects,
we have Proposition 6.

Proposition 6: The generalized Vickrey mechanism is absolutely ineffi cient and
absolutely manipulable on UN .

Morimoto and Serizawa (2015) characterize the MPE mechanism via effi ciency,
strategy-proofness, and some mild axioms on the classical domain with some mild
restriction. In their Section 6.2, an example is cited to show that the MPE mech-
anism is different from the generalized Vickrey mechanism, which, coupled with
their characterization of the MPE mechanism, indicates that the generalized Vick-
rey mechanism is neither effi cient nor strategy-proof. Proposition 5 is congruent
with their result, but Proposition 6 complements their result by arguing that
when the deviation of utility profiles from quasi-linearity is large, the generalized
Vickrey mechanism cannot achieve even approximate effi ciency and approximate
strategy-proofness to any degree.

6.2.2 The approximate ascending auction

Next, we study whether the AA auction works as predicted by Facts 6 and 7 when
agents have the classical utility functions.
In an economy with two objects and three agents, Example 6 below demon-

strates that the AA auction substantially undershoots the MPE price even if only
one agent has the classical utility function.

Example 6: Let M = {a, b} and N = {1, 2, 3}. The bidding queue is in the
order of agent 1, 2 and 3, without any specification about the manner in which
uncommitted agents are driven back into the queue in the auction. Let d > 0 be
the increment and r > 0 be a large number. Let t ∈ N+ be such that t · d > r and
u ∈ U3 be such that:
(1) Let u1 ∈ UQL be such that u1(a, pa) = td− pa and u1(b, pb) = 3td− pb.
(2) Let u2 ∈ U be such that

u2(a, 0) > u2(b, d) > u2(a, 0.5d) = u2(b, 2td) > 0 = u2(0, 0).24

24For example, u2 can take the form of u2(a, pa) = 20td− (4t− 1.8)pa and u2(b, pb) = (20t+

0.9)d− pb.

26



(3) Let u3 ∈ UQL be such that u3(a, pa) = 0.5d− pa and u3(b, pb) = 0.6d− pb.
TheMPE (x, pmin(u)) is x = (x1, x2, x3) = (b, a, 0) and pmin(u) = (pmin

0 , pmin
a , pmin

b ) =

(0, 0.5d, 2td).
We illustrate how the AA auction proceeds. AA auction begins from the

initial price p̂0 = (0, 0, 0). At p̂0, agent 1 bids first. Agent 1 only demands
b at p0 since u1(b, 0) = 3td > u1(a, 0) = td > u1(0, 0) = v1(0) = 0. Thus
D1(p0) = {b}, she bids on b and is tentatively assigned (b, 0). The market price
generated in round 0 is p0 = (0, 0, 0) and auction proceeds to round 1. Then agent
2 is called. By the definition of the AA auction, if agent 2 bids b, the price of b
that she faces is updated, i.e., p̂1

b = p0
b + d = d while the price of a that she faces

remains the same, i.e., p̂1
a = p0

a = 0. Agent 2 only demands a at p̂1 = (0, 0, d)

since u2(a, 0) > u2(b, d) > u2(0, 0). Thus D2(p̂1) = {a}, agent 2 bids on a and
is tentatively assigned (a, 0). Then, the market price generated in round 1 is
p1 = (0, 0, 0) and the auction proceeds to round 2. Then agent 3 is called. If agent
3 bids a or b, the prices of a and b that she faces are updated, i.e., p̂2

a = p1
a +d = d

and p̂2
b = p1

b + d = d. Since agent 3 only demands the null object at p̂2 = (0, d, d),
i.e., D3(p̂2) = {0}, agent 3 drops out. Since there is no uncommitted agent in
the queue, the auction terminates at round 2 with an unchanged market price
p2 = p1 = (0, 0, 0) and agents 1, 2, and 3 get (b, 0), (a, 0) and (0, 0), respectively.
Notice that p2

b = 0 and pmin
b − p2

b = 2td > r. Thus, the AA auction generates zero
revenue and pb is smaller than pmin

b by an arbitrarily large amount r. 4

Next, we use Example 7 to demonstrate that the AA auction may substantially
overshoot the MPE price.

Example 7: Let M = {a, b} and N = {1, 2, 3}. The biding queue is such that
the initial order of agents is 1, 2 and 3, and when driven back, the uncommitted
agent is placed last in the queue. Let d > 0 be the increment and r > 0 be a
large number. Let t ∈ N+ be such that t = 3k for some odd number k ∈ N+ and
(t− 2) · d > r. Let u = (u1, u2, u3) ∈ UQL × U × U satisfy the following:

u1(a, pa) = −pa, and u1(b, pb) = (t+ 0.1)d− pb,
u2(b, (t− 0.3)d) > u2(a, 0) and

u2(a, 0.5d) = u2(b, (t+ 0.1)d) > u2(0, 0) = u2(a, (t− 0.5)d) = u2(b, (t+ 0.5)d),

u3(b, (t− 0.4)d) > u3(a, 0) > u3(0,−r) and
u3(a, 0.6d) = u3(b, td) > u3(0, 0) = u3(a, (t− 0.4)d) = u3(b, (t+ 0.4)d).

TheMPE (x, pmin(u)) is x = (x1, x2, x3) = (0, b, a) and pmin(u) = (pmin
0 , pmin

a , pmin
b ) =

(0, 0.5d, (t+ 0.1)d).
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We illustrate how the AA auction proceeds. AA auction begins from the initial
price p̂0 = (0, 0, 0). At p̂0, agent 1 bids first. Since agent 1 only demands b at p̂0,
i.e., D1(p̂0) = {b}, she bids on b and is tentatively assigned (b, 0). The market
price generated in round 0 is p0 = (0, 0, 0) and auction proceeds to round 1. Then
agent 2 is called. By the definition of the AA auction, if agent 2 bids b, the price
of b that she faces is updated, i.e., p̂1

b = p0
b + d = d while the price of a that

she faces remains unchanged, i.e., p̂1
a = p0

a = 0. Since agent 2 only demands b
at p̂1 = (0, 0, d), i.e., D2(p̂1) = {b}, agent 2 bids on b and is tentatively assigned
(b, d). Then, agent 1 is placed last in the queue behind agent 3. Then, the market
price generated in round 1 is p1 = (0, 0, d) and the auction proceeds to round 2.
Then agent 3 is called. By the definition of the AA auction, if agent 3 bids b, the
price of b that she faces is updated, i.e., p̂2

b = p1
b + d = 2d while the price of a

that she faces remains the same, i.e., p̂2
a = p1

a = 0. Since agent 3 only demands b
at p̂2 = (0, 0, 2d), i.e., D3(p̂2) = {b}, agent 3 bids on b and is tentatively assigned
(b, 2d). Then, agent 2 is placed last in the queue behind agent 1. Then, the market
price generated in round 2 is p2 = (0, 0, 2d) and the auction proceeds to round 3.
Then agent 1 is called and so on.
Since u1(b, (t−1)d) > u1(a, 0), u2(b, (t−0.3)d) > u2(a, 0), and u3(b, (t−0.4)d) >

u3(a, 0), three agents will just compete for b, which makes the auction proceed to
round t − 1. The market price generated in round t − 1 is pt−1 = (0, 0, (t − 1)d)

and since t = 3k for some odd number k ∈ N+, agent 3 gets (b, (t − 1)d); in the
queue, agent 2 is behind agent 1. In round t, agent 1 is called. If agent 1 bids b,
the price of b that she faces is updated, i.e., p̂tb = pt−1

b + d = td while the price
of a that she faces remains unchanged, i.e., p̂ta = pt−1

a = 0. Since agent 1 only
demands b at p̂t = (0, 0, td), i.e., D1(p̂t) = {b}, agent 1 bids on b and is tentatively
assigned (b, td). Then, agent 3 is placed last in the queue behind agent 2. Then,
the market price generated in round t is pt = (0, 0, td) and the auction proceeds
to round t+ 1.
In round t + 1, agent 2 is called. If agent 2 bids b, the price of b that she

faces is updated, i.e., p̂t+1
b = ptb + d = (t + 1)d while the price of a that she

faces remains unchanged, i.e., p̂t+1
a = pta = 0. Since agent 2 only demands a at

p̂t+1 = (0, 0, (t + 1)d), i.e., D2(p̂t+1) = {a}, agent 2 bids on a and is tentatively
assigned (a, 0). The market price generated in round t+ 1 is pt+1 = (0, 0, td) and
the auction then proceeds to round t+ 2. Agent 3 is called. If agent 3 bids b, the
price of b that she faces is updated, i.e., p̂t+2

b = pt+1
b + d = (t+ 1)d and if she bids

a, the price of a that she faces is updated either, i.e., p̂t+2
a = pt+1

a + d = d. Since
agent 3 only demands a at p̂t+2 = (0, d, (t + 1)d), i.e., D3(p̂t+2) = {a}, agent 3
bids on a and is tentatively assigned (a, d). Then, agent 2 is placed in the queue.
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Agents 2 and 3 will recursively bid on a.
The market price generated by round 2t is (0, (t − 1)d, td). Since t is an odd

number, agent 2 is tentatively assigned (a, (t − 1)d) while agent 1 is tentatively
assigned (b, td). Agent 3 is in the queue. The auction proceeds to round 2t + 1

and agent 3 is called. If agent 3 bids b, the price of b that she faces is updated,
i.e., p̂2t+1

b = p2t
b + d = (t + 1)d and if she bids a, the price of a that she faces is

updated either, i.e., p̂2t+1
a = p2t

a + d = td. Since agent 3 only demands the null
object at p̂2t+1 = (0, td, (t + 1)d), i.e., D3(p̂2t+1) = {0}, agent 3 drops out. The
auction terminates at round 2t+ 1 and the market price generated in round 2t+ 1

is p2t+1 = (0, (t − 1)d, td) where agent 1 is assigned (b, td), agent 2 is assigned
(a, (t− 1)d), and agent 3 drops out.
Note that pa − pmin

a = (t− 1.5)d > r can be arbitrarily large. 4
Examples 6 and 7 can be easily generalized to cases with more agents and

objects and with an arbitrary bidding queue. Thus, we have Proposition 7.

Proposition 7: Let d > 0 be the increment and a bidding queue be arbitrarily
given in the AA auction. Then, for an arbitrarily large r > 0, the following results
hold.
(i) (Substantial undershooting) For each a ∈ M , there is u ∈ UN such that
AA auction generates price p = (0, . . . , 0) with pa < pmin

a − r.
(ii) (Substantial overshooting) For each a ∈M , there is u′ ∈ UN such that the
AA auction generates price p with pa > pmin

a + r.

As seen in the case of the sealed-bid Vickrey auction, when the deviation of
utility profiles from quasi-linearity is large, the outcome of the AA auction may
not even approximate the MPE. Notably, by Proposition 7(i), it is possible for the
AA auction to generate zero revenue even if some agent has a very high willingness
to pay for some object.
In the following, let pd(u; q) be the price generated by the AA auction with

increment d and a bidding queue q for u ∈ UN . By Proposition 7, we have the
following result.

Corollary 3: There are no increment d > 0 and no bidding queue q such that for
each u ∈ UN and each l ∈M ,

∣∣pdl (u; q)− pmin
l (u)

∣∣ ≤ d ·min{|M | , |N |}.
Corollary 3 implies there is no increment across all the classical utility profiles

such that the AA auction neither substantially overshoots nor undershoots the
MPE price. In other words, Fact 6(ii) does not hold on the classical domain.
Finally, we study the incentive of AA auction.

Example 8: Consider the economy in Example 7 with an replacement of agent 3’s
utility function. Let u′3 ∈ UQL be such that v′3(a) = 1.5d and v′3(b) = 2d. Rounds
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0 and 1 are the same in Example 7. Recall that the market price generated in
round 1 is p1 = (0, 0, d) where agent 2 is tentatively assigned b and 1 stands behind
3 in the queue of uncommitted agents. The auction then proceeds to round 2 and
agent 3 is called. If agent 3 bids b, the price of b that she faces is updated, i.e.,
p̂2
b = p1

b + d = 2d whereas the price of a that she faces remains unchanged, i.e.,
p̂2
a = p1

a = 0. Since v′3(a) − p̂2
a = 1.5d > v′3(b) − p̂2

b = v′3(0) = 0, agent 3 only
demands a at p̂2 = (0, 0, 2d), i.e., D3(p̂2) = {a} so she bids a and is tentatively
assigned (a, 0). The market price generated in round 2 is p2 = (0, 0, d). The
auction proceeds to round 3 and agent 1 is called. If agent 1 bids b, the price of
b that she faces is also updated, i.e., p̂3

b = p2
b + d = 2d and if she bids a, the price

of a that she faces is updated either, i.e., p̂3
a = p2

a + d = d. Since agent 1 only
demands b at p̂3 = (0, d, 2d), i.e., D1(p̂3) = {b}, agent 1 bids b and is tentatively
assigned (b, 2d). Then, agent 2 is driven to the queue.
In the later round of the auction, agents 1 and 2 will compete for b. The market

price generated by round t + 1 is (0, 0, td) where agent 2 is tentatively assigned
(b, td), agent 3 is tentatively assigned (a, 0), and agent 1 is in the queue. The
auction proceeds to round t+ 2 and agent 1 is called. If agent 1 bids b, the price
of b that she faces is updated as well, i.e., p̂t+2

b = pt+1
b +d = (t+1)d and if she bids

a, the price of a that she faces is updated as well, i.e., p̂t+2
a = pt+1

a + d = d. Since
agent 1 only demands the null object at p̂t+2 = (0, d, (t+1)d), i.e., D1(p̂t+2) = {0},
she drops out. The auction terminates at price (0, 0, td) where agent 1 drops out,
agent 2 gets (b, t), and agent 3 gets (a, 0).
Recall that in Example 7, agent 3 obtains (0, 0) for (u1, u2, u3). Since r > 0,

and u3(a, 0) > u3(0,−r) > u3(0, 0), when agent 3’s true utility function is u3, she
has the incentive to misreport u′3. 4

The insight of Example 8 can be extended to show the following result.

Proposition 8: For each d > 0, the AA mechanism with increment d and with
an arbitrary bidding queue q is absolutely manipulable on UN .

Proposition 8 demonstrates that k · d−strategy-proofness of Fact 7 does not
hold on the classical domain. However, even if the AA auction may substantially
undershoot or overshoot on the classical domain, it can still find an approximate
equilibrium, i.e., d−equilibrium.25 In other words, the AA mechanism still could
achieve some degree of approximate effi ciency. One may consider this point to be
a merit of the AA auction in comparison to the EA auction.
In both Propositions 7 and 8, the increment is given regardless of utility profiles

and the properties of AA auction and mechanisms are derived when agents have

25The statement is implied by Step 1 in the proof of Proposition 9.
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the flexibility to alter heir utility functions. In the following, we show that in case
of a fixed classical utility profile, if the increment is suffi ciently small, the outcome
price of an AA auction will be suffi ciently close to the MPE price.

Proposition 9: Let u ∈ UN be given. Let {dn} be a decreasing sequence such
that for each n ∈ N+, dn > 0 and limn→∞ dn = 0. Let pdn be the price generated
by the AA auction with increment dn and with an arbitrary bidding queue. Then,
limn→∞ p

dn = pmin(u).

The proof of Proposition 9 is relegated to Appendix A. Proposition 9 implies
that when a utility profile is fixed, the AA auction works well in approximating
the MPE mechanism for a suffi ciently small increment. Even when agents have
classical utility functions, the AA auction is still a good candidate to obtain the
MPE if we carefully choose the increment, so practitioners should limit themselves
to auctions of this form and its variant such as the cumulative offer procedure
mentioned in the introduction.

7 Conclusion

In this paper, we study multi-object auction models with unitary demand agents
whose utility functions may not be quasi-linear. We contend that the exact as-
cending auction of Demange et al. (1986), the sealed-bid Vickrey auction, and the
approximate ascending auction of Demange et al. (1986) finding the minimum
price equilibrium in the quasi-linear settings, cannot identify or even approximate
the MPEs and fail to be effi cient and incentive-compatible. Our results allude
to the challenges of effi cient and incentive-compatible auction design when agents
have utility functions without assuming quasi-linearity, and inspire development
of novel analytical techniques in the future research.

Appendix A: Proof of Proposition 9

Let (xdn , pdn) be the outcome generated by the AA auction with increment dn
and with an arbitrarily given bidding queue. The proof comprises five steps.
Step 1: For each dn > 0, (xdn , pdn) is a dn−equilibrium.
Consider an agent i who drops out. Agent i bids 0 when she faces a price lower

than or equal to (0, (pdnl + dn)l∈M). Thus, 0 ∈ Ddn
i (pdn). Consider an agent i who

obtains xdni ∈M . She bids on xdni when the price of xdni that she faces is pdn
xdni

and

the price of any other object l ∈M that she faces is less than or equal to pdnl +dn.
Thus, xdni ∈ Ddn

i (pdn). Thus, Definition 5(i) holds.
In the AA auction, whenever an object is bided on by some agent, it will keep

getting assigned till the end. Thus, Definition 5(ii) holds.
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Step 2: There is a convergent subsequence {pd′n} in {pdn} whose assignments
remain the same.
For each l ∈ M and each n ∈ N+, 0 ≤ pdnl ≤ maxi∈N Vi(l) + 2dn. Thus, {pdn}

contains a convergent subsequence {pd′′n}. Since agents and objects are both finite,
{pd′′n} contains a subsequence {pd′n} whose assignments remain the same.
Step 3: (x, p) ≡ limn→∞(xd

′
n , pd

′
n) is an equilibrium.

By Step 2, for each n ∈ N+, x = xd
′
n . By Definition 5(ii), Definition 3(ii)

holds. Thus, we show Definition 3(i). For each n ∈ N+ and each i ∈ N , by
Step 2, xi ∈ Ddn

i (pdn) and moreover xi ∈ Ddn
i (pdn) implies that for each y ∈ M ,

ui(xi, p
dn
xi

) ≥ ui(y, p
dn
y + dn) and ui(xi, pdnxi ) ≥ ui(0, 0). Thus, for each y ∈ M ,

limn→∞ p
d′n = p implies ui(xi, pxi) ≥ ui(0, 0) and ui(xi, pxi) ≥ ui(y, py). Thus

xi ∈ Di(p).
Step 4: Let (x, p) be the equilibrium at Step 3. Then p = pmin.
Suppose p 6= pmin. Since (x, p) is an equilibrium, by Fact 1, there is a

weakly underdemanded set M ′ ⊆ M at p, that is, for each l ∈ M ′, pl > 0

and |{i ∈ N : Di(p) ∩M ′ 6= ∅}| = |M ′|. Let N ′ ≡ {i ∈ N ′ : xi ∈ M ′}. Then,
N ′ = {i ∈ N : Di(p) ∩ M ′ 6= ∅} and for each i ∈ N\N ′ and each l ∈ M ′,
ui(xi, pxi) > ui(l, pl). Thus, since for each l ∈ M ′, pl > 0, Definition 1(i) implies
that there is δ > 0 such that for each l ∈M ′, pl − δ > 0, and for each i ∈ N\N ′,

ui(xi, pxi + δ) > ui(l, pl − 2δ). (a)

and since limn→∞ d
′
n = 0 and limn→∞ p

d′n = p, for some d′′n ∈ {d′n},
(b) pd

′′
n
xi ≤ pxi + d

′′
n and d

′′
n ≤ δ, and

(c) pd
′′
n
l ≥ pl − δ > 0 for each l ∈M ′.
Thus for each i ∈ N\N ′ and each l ∈M ′,

ui(xi, p
d′′n
xi

) ≥
(b)
ui(xi, pxi + d

′′

n)

≥
(b)
ui(xi, pxi + δ) >

(a)
ui(l, pl − 2δ) ≥

(c)
ui(l, p

d′′n
l − δ) ≥

(b)
ui(l, p

d′′n
l − d′′n).

Thus, no agent in N\N ′ bids an objects in M ′ when the price of l ∈ M ′ reaches
p
d′′n
l − d

′′
n. In contrast, by (c), l is assigned to some i ∈ N ′ at price pd

′′
n
l − d′′n.

Thus, by |N ′| = |M ′|, the price of any object l ∈ M ′ cannot be increased to pd
′′
n
l ,

contradicting that pd
′′
n is the outcome price of auction with increment d′′n.

Step 5: limn→∞ p
dn = pmin(u).

Recall that a bounded sequence converges if and only if any of its convergent
subsequence has the same limit. Hence, we prove that any convergent subsequence
in {pdn} has the same limit. Let {pd′n} and {pd′′n} be two convergent subsequences
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in {pdn} such that limn→∞ p
d′n = p′ and limn→∞ p

d′′n = p′′. In the following, we
show p′ = p′′. Then Step 5 holds, as desired.
Analogous to Step 2, there is a subsequence of {pd′n} converging to p′ whose

assignments remain unchanged, say x′. By Step 3, (x′, p′) is an equilibrium and
moreover, by Step 4, p′ = pmin. Similarly, there is a subsequence of {pd′′n} converg-
ing to p′′ whose assignments remains unchanged, say x′′. By Step 3, (x′′, p′′) is an
equilibrium and moreover, by Step 4, p′′ = pmin. Since the MPE price is unique,
p′ = p′′.
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