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Abstract

We examine the impact of a cycle path on the trading of a copy-
able information good in a network experimentally. A cycle path
in a network allows a buyer to become a reseller who can compete
against existing sellers by replicating the good. A theoretical predic-
tion considers that the price of the information good, even with the
first transaction where there is not yet a reseller competing with the
original seller, will be lower in networks with a cycle path than oth-
erwise. However, our experiment reveals that the observed price for
the first transaction is significantly higher in networks with a cycle
path. An additional experiment that enhances competition also does
not support the theoretical prediction.
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1 Introduction

When information (such as images, videos, texts, computer programs, and
technological innovation) is consumed and benefits consumers, it is defined as
an information good. Unlike ordinary goods, information goods do not disap-
pear when consumed and can be copied easily. Given this copyable property,
every successful transaction of the information good creates a new seller and
thus may negatively affect any benefit to its originator. Indeed, noting that
information goods are typically exchanged bilaterally in networks[!][Polanski
(2007) and [Manea| (2021) show that when information goods are traded in
such a way, the distribution of benefit among the parties involved may greatly
differ depending on the network structure, namely, whether the network has
a cycle path.

A cycle path is a set of network links in which the start and end points are
on the same node. On the one hand, if there is no cycle path, the seller can
enjoy a greater benefit because the resale of information by the buyer does
not introduce competition between the buyer and the seller. On the other
hand, if a cycle path exists, the act of the buyer reselling the good results in
competition between the seller and the buyer. As a result, the seller’s benefit
will be much less (and that for the buyer much more) than without a cycle
path. Moreover, the benefit on the buyer side extends upstream, even to
the first transaction where no resale competitor to the originator yet exists,
because the market participants foresee price competition in the future.

In this paper, we verify these theoretical implications experimentally

through posing the following research questions:

1. Are prices lower in a network with a cycle path compared to one with-

'For example, when founded in 1999, Napster allowed users to transfer their digital
audio files bilaterally through its peer-to-peer system.



out?

2. Does the effect of competition with the latter transaction extend up-

stream to the first transaction?

To address these implications, we set up an experiment based on the theo-
retical analyses of |Polanskil (2007)) in which players trade information goods
in networks using a series of simultaneous move demand games as the trad-
ing protocol. We consider two simple networks, one with a cycle path and
the other without, comprising three players, and originally consisting of one
seller (i.e., the originator) and two buyers, and compare the behavior of the
players across the two networks.

Our main finding is that the prices observed in the network with a cycle
path are inconsistent with the theoretical prediction compared with those
observed in the network without a cycle path. Specifically, although com-
petition between the originator and the reseller lowers the observed prices
in the final transaction in the network with a cycle path, its magnitude is
much smaller than that predicted by the theoretical prediction. In addition,
and contrary to the theoretical prediction, the prices for the first transaction
tend to be higher in the network with a cycle path.

Moreover, we reveal that learning does not resolve the gap between the
theoretical prediction and the experimental results in the network with a
cycle path. Instead, it could widen the discrepancy in the prices of the first
transaction. This is because as participants gain experience by repeatedly
playing the game, the prices of the first transaction in the network with a
cycle path could rise further given the increasing willingness of buyers to
purchase the good, which is inconsistent with the theoretical prediction.

Potential reasons for the prices in the final transactions in the network

with a cycle path being much higher than the level predicted by the theory



include: (1) a lack of competition between the originator and the reseller, and
(2) the other-regarding preferences of the participants. Indeed, we provide
evidence that the last buyers are willing to pay higher prices to the originator
than to the reseller in the final transaction.

To test the effect of a lack of competition between the originator and the
reseller in the network with a cycle path, we conducted an additional experi-
ment employing a continuous double auction as the trading protocol instead
of a simultaneous move game. While the enhanced competition between the
originator and the reseller indeed substantially lowers the observed prices in
the final transaction in the network with a cycle path, they are still higher
than their theoretical prediction. Furthermore, because of the enhanced com-
petition between the two buyers in the first transaction, the observed prices
are similar between the networks with or without a cycle path, which is in-
consistent with the theoretical prediction. Individual characteristics, such as
cognitive ability, willingness to take risks, and patience, do not consistently
explain these results. However, the last buyer’s degree of altruism seems to

prevent prices in the final transaction from falling further.

1.1 Related literature

Many economic theories and experiments use graph theory to analyze vari-
ous economic phenomena. Kranton and Minehart| (2001), |Corominas-Bosch
(2004) and Judd and Kearns| (2008) identified linked buyer-seller trading
equilibria and their theoretical results showed that the outcome of transac-
tions is highly dependent on the shape of the network. |(Charness et al.| (2007)
experimentally tested the theory of |[Corominas-Bosch/ (2004) and found that
the results were close to the theoretical predictions, and further concluded

that social learning is taking place.



Allen and Gale (2000) and Acemoglu et al.| (2015) present a model of
financial contagion caused by liquidity shocks using the network structure
existing among banks. |Choi et al| (2017b) reproduced financial linkages on
this network in an experiment used to investigate which networks are prone
to contagion.

There is also a series of theoretical and experimental analyses of phenom-
ena occurring in large networks. |Choi et al,| (2022) experimentally tested
whether large networks form a correct consensus of guesses and opinions
based on the theoretical predictions of |Degroot| (1974)). Their study showed
that the ease of consensus formation and the correctness of consensus differ
depending on the shape of the network. (Choi et al. (2023) experimentally
investigate the relationship between the profits of intermediary and the ge-
ometry of large networks.

Our study contributes to the literature on information goods and the
network economy, for which there are many early theoretical studies con-
cerning the buying and selling of information goods. For example, Admati
and Pfleiderer| (1986} 1990) analyzed the trading of information in financial
markets, while Raith| (1996) presented a model in which information shar-
ing in an oligopolistic market arises in equilibrium. Elsewhere, Talor| (2004)
analyzed the customer information market for Amazon and other Internet
companies, and Bergemann et al.| (2018]) addressed information trading from
the viewpoint of mechanism design.

Many studies focused on the characteristic that information goods can
be copied have been related to copyright. For instance, [Liebowitz| (1985)
and Basen and Kirby| (2005) analyzed how the presence or absence of copy-
right affects social benefits and those of the original information supplier, and

Varian (2005) and others conducted copyright research focusing on the digiti-



zation of information. [Muto (1986), Takeyama| (1994)), and others conducted
research focusing on the externality of information, that is, the collapse of
monopoly as information spreads.

Polanski (2007) introduced graph theory to this body of work and created
a model in which information is traded through negotiations between players
linked in a network, revealing that information externalities depend on the
network structure. Later, [Manea (2021) extended the theory by Polanski
(2007) by defining the equilibrium that holds in more general situations. As
noted earlier, their key finding is that the distribution of gains is affected by
whether the buyer—seller network includes a cycle path. To the best of our
knowledge, this insight has not been tested experimentally.

Unlike existing experimental studies, our experiment deals with an infor-
mation good in the network economy. For instance, |Gale and Kariv (2009)
investigated the case in which assets were traded through a network and
found that the transaction prices converged to competitive prices. In their
network experiment, |(Choi et al.| (2017a)) investigated path competition and
concluded that the position of a node greatly affects the gain. See the survey
by (Choi et al| (2016) for other experimental studies. Unlike these studies,
however, our experiment focuses on the price competition in the trading of an
information good in a network with a cycle path. In this setting, a seller in-
evitably creates a resale competitor when selling the good given its replicable
property.

The remainder of the paper is organized as follows. Section [2| summarizes
the main theoretical results of the model to be tested in the experiment.
Section (3| discusses the experimental design and procedure. The results of
the main analyses are in Section [4, An additional experiment is described in

Section [] followed by its results in Section [6] Section [7] concludes.



2 Theory

In this section, we explain the theoretical results of the model to be verified

in the experiment according to [Polanski| (2007) and Manea (2021)).

2.1 Model

Figure (1] depicts the simplest three-node networks we use to assess the dif-
ference between a Tree (left) and a Cycle (right)P] Player 1 is connected to
Players 2 and 3 in both the Tree and Cycle. While Players 2 and 3 are not
connected with each other in the Tree, they are connected in the Cycle.

Player 1 is the originator of the information good and hence the sole seller
at the start of the game. Player 1 gains a payoff only by selling the good to
buyer players. Buyer players (i.e., Players 2 and 3) gain a payoff of 100 from
obtaining and consuming the good. Moreover, they can copy the information
good in the Cycle and sell it to the buyer player that does not yet possess
the good. If the resale transaction is successful, they earn additional resale
benefits. Therefore, competition between the originator and a reseller could
take place in the Cycle.

We assume, as in [Polanski| (2007, that at most one transaction occurs
per step between a connected seller and buyer. If there are multiple trading
possibilities, one link is randomly selected with equal probability. Players
at each end of the selected link then negotiate over the transaction price.
Namely, the seller and the buyer simultaneously submit their prices, and
the transaction is successful only when the buyer’s price is greater than or
equal to the seller’s price. The transaction price is the average of two prices
submitted. The game is terminated with a probability of 1 — ¢ when negoti-

ation fails. This ensures that the experiment concludes within a reasonable

2A “Tree” in our paper is a network conventionally called a “line.”
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Stage 1 - Only Player 1 owns the good.

Tree Cycle

Stage 2 - Two players own the good.

Tree Cycle

Figure 1: Two States in the Game



time. As a result, the equilibrium payoffs are subject to the continuation

probability 9.

2.2 Equilibrium Payoff

The equilibrium payoffs are defined by the state of the network at the time
of the transaction. In our three-person network model, these are described
by two states: “Stage 17 and “Stage 2.” Stage 1 is a state in which Player
1 is the only player owning the information (see the top panel of Figure [1)).
The game begins in this state. Stage 2 is a state in which one transaction
is completed from Stage 1. As a result, either Player 2 or 3 possess the
information in addition to Player 1. The bottom panel of Figure [1| displays
the case in which Players 1 and 2 possess the good, and which is known to
Player 3. If a further transaction is completed in this state, all players in the
network own the information, and the game ends. Therefore, the network is
always in a state of either Stage 1 or 2 during a game.

We denote the ex-post (i.e., after the link for the current negotiation is

n
st,ry

selected) expected payoff of the game by x the strategy for the buyer
and the seller by pf, ., and the transaction price pf,, where n = C, T (Cycle,
Tree), st = 1,2 (Stage 1, Stage 2), r = s,b (seller, buyer). As the Stage 1
payoffs are derived via backward induction from Stage 2 as shown below, the
Stage 1 payoffs include the Stage 2 expected payoffs.

The equilibrium payoffs are derived following the formulation of Polanski
(2007). That is, we assume that a Nash bargaining solution determines the
transaction price in which the market power of the seller is o and that of the
buyer is 1 —« where a € (0, 1) is an exogenous variable. The expected payoff

is defined by the state of the network, and the equilibrium expected payoff is

the value obtained by allocating the surplus generated from the transaction



to the threat point payoff according to the available market power. We also
assume that when a transaction produces a positive (negative) total surplus,
the probability of the success of the transaction is 1 (0). Furthermore, to
avoid multiple equilibria, we assume that the transaction surplus is positive
in each negotiation. We first derive the equilibrium for Cycle, starting from

Stage 2, and then the equilibrium for Tree.

2.2.1 Stage 2 Payoff in Cycle

Strategies for the seller and the buyer are p§, € [0,100], pS$, € [0,100]. Their

payoff functions are:

I PR g A o J100—p§ i pf > pf,
Los = , Lop =
$0x§,  otherwise 6x§, otherwise
C C
where p§ = %. In Stage 2 of the Cycle, the threat points in the ne-

gotiation are %51;58 for the seller and x5, for the buyer. This is because if
negotiation fails, while the buyer player becomes a buyer again in the follow-
ing negotiation for certain, the seller player is selected as the next seller only
with probability % We assume that the seller earns no gain if not selected
as the seller in the next negotiation and the buyer purchases the good from
the other seller playerﬂ If the transaction is completed, a total gain of 100
is divided between the two players.

Every strategy profile (pS,, pS,) satisfying p§ > %63:208, 100 — p§ > 92§,

and p§ = pS, = pS, is an equilibrium.ﬁ Therefore, for any a € (0,1), the

3Given the total surplus is positive, the next negotiation succeeds with probability 1.
The same argument applies below.

4 Although we omit them, similar conditions are required in deriving equilibrium Stage 1
in Cycle as well as Stages 1 and 2 in Tree.
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following equations hold.

1 1
:1:20S ziéxgcs + (100 — 5533208 — (5$%) (1)
1
x5, =625, + (1 — a)(100 — 5593205 — 025)) (2)

Eqgs and represent the equilibrium conditions for the seller and the
buyer, respectively. Together with the total gain equation (2§, + 2§, = 100),

for any o € (0,1), the Stage 2 payoffs are derived as:

o 100(1 - ) o 100(1—a)(1 - 16)

= X
2s 1 1 ’ 2b 1 1

2.2.2 Stage 1 Payoff in the Cycle

Strategies for the seller and the buyer are p{, € [0,100], p§, € [0,100]. Their

payoff functions are:

o gt ifpG >pf ) 100 —pf 4 gaf if pf > pf
Tys = y Ly =
6x§, otherwise $0x§, + 025, otherwise
C plcs—i-p?b . . . . .
where py = ==5=t. If a negotiation fails in Stage 1, the buyer player will

be the buyer again in the next negotiation with probability % Otherwise,
the player will be the buyer in Stage 2 under the premise that the other
buyer purchases the good in the next negotiation and the game proceeds to
Stage 2. The seller certainly becomes the seller in the next negotiation. If
a negotiation is successful, in addition to the 100 generated by the resulting
transaction, either the seller or the buyer in this negotiation will become the
seller player in the next negotiation in Stage 2 and will earn z§,, which occurs

with probability % for each party.
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In an equilibrium, for any a € (0, 1), the following equations that repre-

sent the equilibrium condition for the seller (Eq. (3)) and the buyer (Eq. (4))

hold.
c c 1 ¢, 1¢ c leeo 1.4
xy, =07, + (100 + §x25 + 53”23 — 0y, — §5$1b — §5x2b) (3)
1 1 1 1 1 1
x% 25(5355, + 559&% + (1 — «)(100 + 5:6205 + 596203 - (51’% — édw% — 5(533%)

(4)

With the total gain equation (z§, + z§, = 100 + z§), for any a € (0,1),

Stage 1 payoffs become

e a1 —36)(100 + 28) — 360zl (1 —a)(1—0)(100 + z§,) + 2da§,
1s ™

, T
1-0+1ad o 1-0+lad
2.2.3 Stage 2 Payoff in a Tree

Let us now derive the equilibrium payoffs in a Tree. We start from Stage 2.
The strategies for the seller and the buyer are pI, € [0,100], p2, € [0,100]
and their payoff functions are:

py  ifpy = pi o J100—p3 if pg, > pi,

Tog = ) Top

dxL  otherwise Szl otherwise

T T
where pl = %. Note that, for the case of Stage 2 in the Tree, even if the
transaction fails, the same transaction will be repeated.

In an equilibrium, the following equations hold for any a € (0, 1).

w3, =0z + (100 — 63, — dad) (5)
xd, =0xd, + (1 — a)(100 — dzk, — d22,) (6)

12



Eqgs and @ represent the equilibrium conditions for the seller and the
buyer, respectively. With the total gain equation (zl, + z1, = 100), for any

a € (0,1), we obtain the following as the Stage 2 payoffs.

r3, =100, rd =100(1 — )

2.2.4 Stage 1 Payoff in a Tree

The strategies for the seller and the buyer are pi, € [0,100], p?, € [0,100],

and their payoff functions are:

o el el ifph e, | 100—pf if pf, > pi,
Tys = N
dxT, otherwise $0xd, + $0xf,  otherwise
T pier?b . . . . .
where p; = =52, Note that if a negotiation fails in Stage 1, the buyer

player in the current negotiation will become the buyer again in the next
negotiation with probability % Otherwise, the player will be the buyer in
Stage 2, premising that the other buyer purchases the good in the next
negotiation and the game proceeds to Stage 2. The seller player of the failed
negotiation becomes the seller again for certain in the next negotiation. If a
negotiation is successful, in addition to the 100 generated by this transaction,
the seller of the negotiation will be the seller in Stage 2 for certain and will
T

earn Ty,.

In an equilibrium, the following equations hold for any a € (0, 1).

1 1
xlTs zdxlTs + a(100 + xgs — 5xfs — §5x1Tb — 55:1:5,)) (7)

1 1 1 1
xfb zﬁéx{b + §5x2Tb + (1 — a)(100 4+ xgs — 5xfs — 56:}5% — 55@@) (8)

13



From the total gain equation (27, + 21, = 100 +z%,) and Egs (7)) and (§), for

any « € (0,1), the Stage 1 payoffs become

T a1 —36)(100 + 23,) — 360xd, . (1 —a)(1—0)(100 + z1,) + Ldad,
1s ™

=0+ Las L =0+ las

2.3 Equilibrium Price

The equilibrium price in each stage is computed using the abovementioned

expected payoffs. The analytical solutions are as follows:

e ~ 100a(1 — 20)+ (=5 + 36— 2ad)af, — Loax§,
C =

(9)

1—0+ %ozé
pT :100&(1 - %5) - (1 - (1/)(1 - 5)%%; B %&ngb (10)
1 1—6+41ad
100(1 — 9«
C
Py =71 1 5 (11)
1—16—1a0
P2 =100 (12)

Suppose that 6 = 0.9 (as in our experiment) and o = 0.5, i.e., the power of
negotiation is equal between the seller and the buyer.ﬂ Then, the equilibrium
prices are p{ ~ 31.36 and p! ~ 42.31 for Stage 1, and p§ =~ 15.38 and
pt = 50 for Stage 2. The Stage 2 equilibrium price in a Cycle is drastically
lower than in a Tree because of competition between the originator and the
resellerﬁ Moreover, the effect of competition on the price in a Cycle also
appears upstream in Stage 1, in which a reseller has not yet appeared in the

market. Our primary aim of the experiment is to verify these theoretical

°In the theoretical model, equilibrium occurs at any o between 0 and 1. |[Polanski
(2007)) uses an equilibrium where the gain is equally divided (o = 0.5) when buyers and
sellers trade bilaterally as a benchmark, which is also followed in this paper. Given the
theoretical price of Stage 2 of the Tree is 100, and as the experimental data (Figure
shows that the average price of Stage 2 is 49.26, which is not significantly different from
50, it is appropriate to set a=0.5.

9Polanskil (2007) and Maneal (2021) analyze the Cycle and Tree equilibria in the case
of § =1. When 6 =1, p{’ = p§ =0 and p! = pI' = 100a.
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predictions for prices.

3 Experimental Design and Procedure

We conducted six sessions of computer-based online experiments in October
2020["] We recruited 141 subjects from a subject pool at the Institute of Social
and Economic Research, Osaka University, managed by ORSEE (Greiner,
2015). The subject pool consists of undergraduate and graduate students
from various fields at the university. Our subjects were paid according to
their performance in the experiment. Each subject experienced 16 trials in
a session and one trial was selected randomly at the end of the experiment.
The points the subject earned in the selected trial were then converted into
Japanese yen (JPY) as a performance-based payment (at the rate of 40 JPY
per point). In addition to the performance-based payment, our subjects were
paid a participation fee of 500 JPY. The payments were made in the form of
an emailed Amazon gift card.

A session consists of two treatments, each consisting of eight consecu-
tive trials, regarding the network structure, and we denote the treatment
with a Tree structure as “Tree” and that with a Cycle structure as “Cycle.”
The experimental design is a within-subject design, whereby each subject
receives both treatments successively. However, the treatment order is coun-
terbalanced among the subjects to offset the possible order effects, with 66
subjects receiving Tree first and Cycle later. The remaining 75 subjects re-

ceived these treatments in reverse orderﬂ The number of subjects and the

"The experiment was programmed and conducted with o-Tree (Chen et all 2016),
and we used Zoom (https://zoom.us/) to welcome and communicate with participants.
After verifying their names in the waiting room, participants were given an anonymous
participation ID (sub01, sub02,...) when entering the meeting room. Their cameras as
well as microphones were off on Zoom during the experiment.

8 As the treatment order is counterbalanced among our subjects, the order effect should
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treatment order in each of the six sessions are presented in Table|l.1}in Online
Appendix [I|

Each treatment consists of eight consecutive trials, and a trial includes
several rounds of negotiations. After the subjects read the experimental
instructions and completed a few quizzes that assessed their comprehension
of the rules of the game, the experiments employed the following procedureﬂ

At the beginning of the first trial, the position of each subject in the net-
work is randomly determined after considering that there is an equal number
of participants in each of the three positions. This position is held constant
across all 16 trials.lﬂ At the start of a trial, a group of three players occu-
pying each of the three positions is randomly formed and play the game we
have described in the previous section.

Once a trial ends, the experiment proceeds to the next trial unless the
terminated trial is the final one. The members of the three-person game are

rematched when a new trial begins.

4 Results

We primarily focus on payoffs and prices. Other analyses regarding the rate
of successful transactions, the number of negotiations, and the bids and asks

are summarized in Online Appendix [[ and [[]]

not be a major concern. Nonetheless, we assess the magnitude of the order effects in the
Online Appendix The results indicate that the potential bias in our analysis arising
from the order effect is at most marginal.

9The experimental instructions and screenshots of the actual experiments (translated
from Japanese to English) can be downloaded from https://bit.1ly/3sY0vjJ (the file
name is instructionOriginal.pdf).

0The position of each subject in the network is kept unchanged through the entire
session, even across the two treatments, to ease the comprehension of the subjects in the
game. In addition, identical positions for the players in each session enable us to control for
individual heterogeneity in the statistical analysis in accordance with the within-subject
experimental design.

16
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Table 1: Mean Payoff of Players

Treatment  Originator Buyer
Pooled  First Buyer Last Buyer
Tree 101.560 49.220 47.702 50.738
(15.633) (9.588) (9.239) (9.704)
Cycle 78.588 60.706 68.753 52.659
(26.400) (20.761) (25.650) (8.694)

Note: Standard deviations in parentheses.

4.1 Payoffs

Table(l| presents the players’ payoff according to the roles they are assigned in
the game, that is, as originators or buyers. Buyers are further classified into
two distinct types. One is a class of buyers that reached a buying agreement
in Stage 1. We denote this type of buyer as “first buyer.” The other is the
class of buyers that finally bought the good in Stage 2. We refer to this other
type of buyer as “last buyer.”

As displayed in Table[l], the mean payoff of an originator in Tree is 101.56,
which is far larger than that of buyers in the treatment, which is 49.22.
Roughly speaking, an originator is expected to earn twice as much as a
buyer. Among the buyers, a first buyer almost earns the same as a last
buyer in Tree. The mean payoff of the former is 47.70, and that of the latter
is 50.74 (insignificant difference, p — value = 0.137)[1] The almost identical
share of the two buyers is a straightforward result of the theoretical prediction
in Tree, in which any buyer is equivalently required to buy the good from
the originator.

In Cycle, in which transactions between the first and last buyers can take

"Here and below, we report p-values after controlling for individual-level fixed effects
with cluster-robust standard errors in this subsection.
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place, originators earn less than in Tree. The mean payoff of an originator is
78.59, which is statistically significantly smaller than that in Tree (p—value <
0.01). Naturally, buyers earn more in the treatment as they obtain the
remainder, such that a buyer earns 60.71 on average. Among buyers, a first
buyer earns 68.75 on average, which is statistically significantly larger than
in Tree (p — value < 0.01). A last buyer earns 52.66 on average, which is
slightly, but statistically significantly, larger than in Tree (p—value = 0.015).
The payoff of a first buyer is significantly larger than that of a last buyer in
Cycle on average by 16.09 (p — value < 0.01). We further discuss the payoff
difference between buyers in Section [4.4]

Although the payoffs differ across the two treatments, it does not necessar-
ily imply that the players also behave differently across the two treatments.
Given a transaction between the first and last buyers is allowed in Cycle,
the payoff of the originator becomes smaller in Cycle than in Tree, even if
the pricing behavior of the originator (i.e., the values of the proposed asks)
remains unchanged, simply because the originator now has less chance of
selling as the first buyer has a chance to sell tooH In the following subsec-
tion, we focus our analysis on transaction prices, bids, and asks to address

any behavioral differences among our subjects across the two treatments.ﬁ

4.2 Prices in Stage 2

As discussed in Section [2.2] the model is solved through backward induction.

With that in mind, we first discuss the results of Stage 2, then proceed to

12In addition, the standard deviation of the originator’s payoff becomes larger in Cycle
than in Tree simply because they have only a stochastic chance to sell the good in the
treatment. Note that the standard deviations of the prices do not differ so much as shown
below.

13The only exception is the payoff of last buyers. The difference in last buyers’ payoff
across the two treatments necessarily implies that the behaviors associated with the final
transactions differ.
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Figure 2: The Distribution of Observed Prices in Stage 2

those of Stage 1.

Figure [2| plots the distribution of observed prices in Stage 2 for Cycle
(top) and Tree (bottom). The average prices in Tree and Cycle are 49.26
and 47.34, respectively. While the mean price in Tree is not statistically
significantly different from the theoretical prediction (p — value = 0.549),
the mean price in Cycle is far greater (p — value < 0.01). Instead, the mean
price in Cycle is only slightly less than that in Tree, although the difference
is statistically significant (p — value < 0.0l.)ﬁ This result suggests that the
downward pressure in prices induced by competition, which manifests itself

as statistical significance, is weak.

Result 1: While the Stage 2 prices in Tree are consistent with the theoretical
prediction, those in Cycle are not, as the Stage 2 prices in Cycle are

only slightly smaller than those in Tree.

Does this discrepancy between the data and theoretical prediction in Cy-

cle resolve itself as our subjects accumulate experience? This is because our

M After controlling for session-level fixed effects with cluster-robust standard errors, see
Model 1 in the third column of Table
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subjects may have not yet learned the power of competition in the early trials
of the treatment, which they might learn in the later trials. To address this,
we estimate the following linear regression, which includes variables captur-
ing learning effects, by regressing the prices on four explanatory variables
(i.e., Cycle, Latter, Cycle x Latter, and a constant). Cycle is a dummy
variable that takes a value of 1 if the trial belongs to Cycle, otherwise 0.
Latter is a dummy variable that takes a value of 1 if the trial lies in the
latter half of each treatment (i.e., the 5th to 8th trials), otherwise 0, and this
captures the overall learning effects across the two treatments.

Cyclex Latter is the cross term of Cycle and Latter, which captures addi-
tional impacts on the learning effect specifically appearing in Cycle. The sta-
tistical significance of the variable suggests that learning effects differ across
the two treatments (i.e., the existence of a treatment-specific learning effect).
The learning effect in Tree is captured by the coefficient of the term Latter,
and that in Cycle by the sum of the coefficients of the terms Latter and
Cycle x Latter. We also report the results of a regression in which only two
regressors are included (i.e., C'ycle and a constant) to overview the treatment
effect over all trials.

The results of these regressions appear under Model 2 in the fourth col-
umn of Table 2] Our primary focus here is the value of the coefficient for
the cross term C'ycle x Latter, which captures the treatment-specific learn-
ing effect in Cycle. Its value of 0.656 is not significantly different from 0
(p — value = 0.394). This indicates that contrary to our earlier speculation,
price competition between the two sellers in Cycle does not lower prices more
in later trials by which time our subjects should have accumulated experi-
ence. Instead, the positive value of the point estimate, while not significant,

implies that the treatment-specific effect in Cycle could have resisted the
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Table 2: Regression Results for Price

Dependent Variable

Price
Stage 1 Stage 2
Model 1 Model 2 Model 1 Model 2
Cycle 1.512** 0.698 —1.921*  —2.221**
(0.501) (0.480) (0.532) (0.582)
Cycle x Latter - 1.627 - 0.656
(0.391) (0.703)
Latter - —0.971* - —2.257
(0.246) (1.136)
Const. 52.343**  52.829**  49.262**  50.373***
(1.321) (1.357) (1.150) (1.097)
Observations 695 695 623 623
R? 0.0069 0.0101 0.0108 0.0220

*p<0.1; **p<0.05; ***p<0.01. Cluster-robust standard errors (session level)
in parentheses.

overall tendency to lower the prices observed with the negative coefficient for
the term Latter (insignificant, p — value = 0.104). Indeed, the sum of the
coefficients of the terms Latter and C'ycle x Latter, that is, the magnitude of
the learning in Cycle, is —1.601, which is statistically marginally significant
(F-test, p — value = 0.065 < 0.1)[]

Result 2: The price competition in Stage 2 in Cycle does not facilitate sub-
ject learning in converging to the equilibrium implied by the theoretical

prediction.

Competition is a strong power that guides economies to equilibria. For
example, Roth et al| (1991)) report that prices converge to a competitive

equilibrium in their multiplayer market experiments. However, our results

15The marginal significance of the learning effect in Cycle is also confirmed, even if we
employ Cycle data only (p — value = 0.064 < 0.1).
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Figure 3: The Distribution of Observed Prices in Stage 1

for Stage 2 suggest that the effect of competition is quite limited. Although
competition between the two sellers lowers the prices in Cycle, the extent of
this is far below the level implied by the theoretical prediction. This limited
effect of competition is similar to that reported in experiments with Bertrand
price competition (Dufwenberg and Gneezy, 2000; Baye and Morgan, |2004)

and travelers’ dilemma (Capra et al., [1999) games.

4.3 Prices in Stage 1

As our empirical findings for the prices in Stage 2 deviate from the theoretical
implications for Cycle, those in Stage 1 could also deviate.

Figure |3| plots the distribution of the observed prices in Stage 1 prices
for Cycle (Top) and Tree (Bottom). The mean prices are 53.86 and 52.35 in
Cycle and Tree, respectively. In Tree, the mean Stage 1 price is larger than
that of Stage 2. Although the difference (3.08) is small, it is statistically

significant (p — value = 0.02)E]. The mean price is statistically significantly

16 After controlling for session-level fixed effects with cluster-robust standard errors, see
Model 1 in the first column in Table
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higher than the theoretically predicted level (p — value < 0.0l).ﬂ

In Cycle, the mean price in Stage 1 is 53.86, which is larger than that
in Stage 2 by 6.514 (p — value < 0.01) and is also far larger than the level
implied by the theoretical prediction (p —value < 0.01). This variation from
the theoretical prediction is larger than that in Tree by 17.78. Thus, like
the Stage 2 prices, we observe that the Stage 1 prices in Cycle deviate from

the theoretical prediction, and the deviation is far larger than that in Tree

(p — value < 0.01)F]

Result 3: The Stage 1 prices in Cycle deviate from the theoretical prediction
considerably more than in Tree. In addition, again in contrast to the
theoretical prediction, the Stage 1 prices in Cycle are larger than the

prices in Tree.

We now address whether the discrepancy between our experimental data
and the theoretical prediction in Cycle could be resolved by learning. As
for the abovementioned analysis of Stage 2, we undertake identical linear
regression analysis to address the existence of a learning effect in Stage 1. The
result is presented in Model 2 in the second column of Table[2l The coefficient
of Latter is significantly negatively different from 0 (p — value = 0.011),
indicating that prices fall as trials proceed in Tree. Moreover, the coefficient
of Cycle x Latter is also significant (p —value < 0.01), suggesting that there
exists a treatment-specific learning effect in Cycle. However, the sum of the
coefficients of the terms Latter and Cycle x Latter, which is only 0.656, is
not significantly different from 0 (F-test, p — value = 0.124). These results

jointly indicate that learning exists only in Tree and not in Cycle. Thus, as in

I"Here and below, we report p-values after controlling for session-level fixed effects with
cluster-robust standard errors in this subsection.

18We compared the deviation from the theory in Cycle and that in Tree based on the
regression coefficients in Model 1 in the first column in Table
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Stage 2, there is little possibility that the discrepancy between the theoretical

prediction and the data in Cycle is resolved by learning in Stage 1.

Result 4: We do not observe any learning effect in the prices in Stage 1 in

Cycle.

4.4 Forward-looking Behavior Given the Observed Stage 2

Prices

We have documented a gap between the theoretical prediction and the ex-
periment results in Cycle. Recall that, in theory, the Stage 1 price is low in
Cycle because buyers expect the competition between sellers to push down
the Stage 2 price; hence, the expected profit from reselling the good should
also fall. Therefore, if the price is high in Stage 1, the buyer prefers to let
the current negotiation pass, wishing to be the buyer in Stage 2.

However, the high Stage 1 price observed in the experiment could be
reasonable if subjects expect a high price in Stage 2. The larger the expected
reselling profit in Stage 2, the more willing buyers in Stage 1 are to buy the
good, which in turns raises the Stage 1 price. Here, we address the possibility
that the observed prices in Stage 1 is explained by reasonable profit-seeking
behavior of subjects foreseeing the prevailing high prices in Stage 2.

To assess the reasonable level of the Stage 1 price given the prevailing
Stage 2 price, as denoted by the “pseudo-equilibrium Stage 1 price,” we
plug the mean observed Stage 2 prices into Eq. . The derived pseudo-
equilibrium Stage 1 price is 64.55. The mean Stage 1 price (53.86) is lower
than its pseudo-equilibrium level by 10.69, which is within the extent that
can be explained by the risk-averse behavior of our subjects, as discussed in

Online Appendix [[TIl Thus, the observed prices in Stage 1 do not contradict
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Table 3: First Bids in Stage 2

Dependent Variable

First Bid
Originator 4.201**
(2.026)
Const. 45.935***
(1.859)
Observations 173
R? 0.0288

*p<0.1; **p<0.05; ***p<0.01.
Cluster-robust standard errors (subject
level) in parentheses.

our subjects pursuing a larger benefit by foreseeing future reselling prices in

Stage 2.

4.5 Fairness and Pricing

We observed that the Stage 2 price in Cycle is higher than the level predicted
by the theoretical prediction. One possible hypothesis behind the observation
is that final buyers might regard lower trading prices in Stage 2 as unfair,
believing that originators should not admit a price discount resulting from
the competition with a reseller.

To address whether this is the case, we examine whether the bids of last
buyers differ depending on the type of seller, that is, either originators or
resellers. Last buyers might accept higher prices if they make transactions
with originators rather than resellers. We regress the last buyers’ bids on
the dummy variable Originator, which takes a value of 1 if the trading part-
ner is the originator. Also, we employ the data in the latter trials where

we assume the subjects have learned the game better. The regression result
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is presented in Table 8] The coefficient for Originator is positively signifi-
cantly different from 0 (4.201, p — value = 0.041), indicating that last buyers
are willing to accept higher prices if the trading partner is the originator.ﬂ
However, we also confirm that the difference is only marginally significant
when we compare the bids in subject-level means (p — value = 0.080, em-
ploying subject-level bootstrapped standard errors). Accordingly, last buyers
might have a tendency to accept higher prices when the trading partner is

the originator, however, the statistical evidence is not strong.@

5 Additional Experiment

Observing that the experimental results are far from the theoretical predic-
tion, we conduct an additional experiment aiming to address the factors that
may bring the gap between the data and theoretical prediction. In the ad-
ditional experiment, we employ a continuous double auction as the trading
protocol to encourage competition. We assess whether price drops occur in
both stages by the encouraged competition to test whether the insufficient
competition in Stage 2 in our earlier experiment could have been the cause
of the deviation from the theoretical prediction. Below we refer to our first
experiment as Experiment 1 and this additional experiment as Experiment 2.

Besides the competition in Stage 2, personal traits of subjects, such as
lack of certain cognitive abilities or existence of other-regarding preferences,
might induce deviations from the theoretical prediction. To address this
possibility, we also collected information on the personal traits of subjects

after participants finished playing the trading games.

19Tf we look at all the trials, the result becomes weaker. The estimated coefficient of the
dummy variable is 2.744 with p — value = 0.097.

20Furthermore, this willingness to pay a higher price by last buyers does not result in
significantly higher prices when the last buyers trade with the originator than when they
trade with the resellers (p — values = 0.561).
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5.1 Experimental Design and Procedure

The additional experiment employs an open-book continuous double auc-
tion for the negotiation protocol. During each round of negotiation, buyers
(sellers) can submit bids (asks) at any time. While these bids and asks are
displayed and updated on the screen in real time, the identity of the players
that submit each of them is not. A transaction is established if a newly sub-
mitted bid (ask) is higher (lower) than or equal to the smallest ask (largest
bid) currently being posted in the market. The price of the transaction is de-
termined to the value of the smallest ask (highest bid) that has existed. The
round is terminated if a transaction is established, or the time limit exceeded.
The time limit is set to 45 seconds if the number of market participants in
the round is three, and 20 seconds if the number of the participants is two.@

A next round of negotiation starts if there still exists at least one buyer
that has not yet obtained the good, and random termination has not oc-
curred at the end of the previous round of negotiation (the trial is randomly
terminated with a 10% chance when each round of negotiation ends). Note
unlike Experiment 1 in which random termination could occur only when the
transaction fails, in Experiment 2 random termination could occur regardless
of the result of the transaction

In addition, after the main part of the experiment, we measure the fol-
lowing individual characteristics of participants: willingness to take risk, pa-
tience, altruism, positive and negative reciprocity, trust, math skills using the
Global Preference Survey (GPS) by |Falk et al.| (2018), and a few dimensions

of cognitive abilities. The measures based on GPS below are marked with

2IThese time limits are set based on our pilot experiments to limit the duration of the
experiment. Most of the transactions finished within these time limits.

22An English translation of the instruction can be obtained from https://bit.ly/
3sY0vjJl The file name is DAInstruction(English_ver)HO.pdf.
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GPS at the beginning and are standardized within our participants. The
measures of cognitive ability include the score on the extended 6-question
version of the Cognitive Reflection Test (Frederick] [2005; Toplak et al., 2014,
called CRT), the fluid intelligence measured using the four questions chosen
from the matrix reasoning test included in the International Cognitive Abil-
ity Resource (Condon and Revelle, |2014], called matriz), and the ability to
backward induct measured using the Game of 21 (Dufwenberg et al., 2010).
While the measures from [Falk et al.| (2018)), CRT, and matrix are based on
nonincentivized tasks, participants earned an additional 500 JPY if they won
the Game of 21. In this game, a participant, who acts as the first mover, and
a computer take turns and choose an integer from {1,2, 3} each time they are
given the chance. The chosen number is sequentially added to the numbers
already chosen, starting from 0. The player that reaches 21 in their turn is
the winner. The computer chooses randomly each time, and the participant
is informed of this random choice. There is a clear winning strategy for the
participant, where they must choose an integer so that they reach 1, 5, 9, 13,
and 17 before reaching 21. Our measure of the ability to backward induct
(BI) is based on “the number of times a participant successfully reached a
winning number (the first time they had a chance to do so) divided by the
number of chances they faced” (Hanaki et al., 2022, p.4). In addition, we
implemented an attention check question in which participants are asked to
unselect their answer in a question like the risk-taking question for GPS.
We define a dummy variable passAC' that takes a value of 1 if participants
correctly answered the question.

We conducted six sessions of Experiment 2 in February and March 2023
(See Table in Online Appendix |V| for further details). We recruited

156 subjects from a subject pool at the Institute of Social and Economic
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Research, Osaka University. Each subject experiences eight trials in a ses-
sion, which consists of four consecutive trials of Tree treatment and Cycle
treatment, respectively (within-subject design)ﬂ The treatment order is
counterbalanced as the 78 subjects receive the Tree treatment first and the
remaining 78 subjects receive the Cycle treatment first. Just as in Exper-
iment 1, subjects’ roles are randomly determined at the beginning of the
experiment and fixed during the experiment. At the beginning of a new
trial, a new group of three players are randomly formed while respecting the

subjects’ roles.

6 Results of Experiment 2

We again focus on payoffs and prices. The results of additional analyses, such

as the frequency of successful trades and the number of trades are reported

in the Online Appendix [V]

6.1 Payoffs

The mean payoff of players is presented in Table 4] An originator earns a
larger payoff (104.92) than buyers (47.54) in Tree. Among the buyers, a
last buyer earns 56.13 on average, which is larger than a first buyer earns on
average (38.95) and is significantly different with p—value < 0.01@ In Cycle,

the mean payoff of an originator is 78.97 on average, which is statistically

2We could not repeat the trial for 16 times as in our Experiment 1 because it took
much longer to run the experiment with a continuous double auction than Experiment 1,
which was based on a simultaneous move game. One of the 8 trials is selected randomly at
the end of the experiment and participants are paid based on the points they obtained in
the chosen round at 40 JPY = 1 point, in addition to the 500 JPY participation fee. The
exchange rate between the point and JPY along with the participation fee are identical to
that for Experiment 1.

24The p-values in this subsection are after controlling for individual-level fixed effects
with subject-level cluster-robust standard errors.
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Table 4: Mean Payoff of Players in the Additional Experiment

Treatment  Originator Buyer
Pooled  First Buyer Last Buyer
Tree 104.920 47.540 38.948 56.133
(26.906) (18.588) (14.029) (18.651)
Cycle 78.972 60.514 50.698 70.330
(24.747) (21.923) (23.488) (14.780)

Note: Standard deviations in parentheses.

significantly smaller than in Tree (p — value < 0.01). And buyers earn
more (60.51). Among buyers, a first buyer earns 50.70 on average, which is
significantly larger than in Tree (p — value < 0.01). A last buyer earns 70.33
on average, which is significantly larger than in Tree (p — value < 0.01).
The higher payoffs of the last buyer in Cycle than in Tree indicate that the
continuous double auction has indeed enhanced competition between the two
sellers in Stage 2 of Cycle. Furthermore, unlike Experiment 1, a first buyer
earns less than a last buyer earns in Cycle (p — value < 0.01). First buyers
earning less than the last buyer in both Tree and Cycle indicates the two

buyers may be over-competing in Stage 1, as we will see later.

6.2 Price

The distribution of observed prices in Stage 2 for Cycle (top) and Tree (bot-
tom) is illustrated in Figure 4| accompanied by the levels predicted by the
theoretical prediction (0 for Cycle and 50 for Tree, see detailed discussion in
Online Appendix . The mean price in Cycle is 29.67, which is statistically

significantly smaller than that in Tree, which is 43.87 (p — value < 0.01).@

25Here and below, we report p-values based on the session-level cluster-robust standard
errors. See Column 3 in Table
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Figure 4: The Distribution of Prices in Stage 2 in the Additional Experiment

Competition induced by the continuous double auction lowers Stage 2 prices
considerably, although the prices in Cycle are still higher than what the the-
ory predicts (p —value < 0.01). Thus, we continue to observe a limited effect
of competition similar to those reported in Dufwenberg and Gneezy| (2000);
Baye and Morgan| (2004)).

The distribution of observed prices in Stage 1 is shown in Figure[5] Con-
trary to the case in Stage 2, the mean Stage 1 prices, 62.79 in Cycle and
61.96 in Tree, are very similar (p — value = 0.557, see Column 1 in Table [5)),
although the theoretical prediction suggests that the two values should be
considerably different (10 for Cycle and 55 for Tree). The mean Stage 1 price
in Cycle is statistically significantly higher than the level predicted by the
theoretical prediction (p — value < 0.01). The mean State 1 price in Tree is
also significantly higher than the theoretical prediction (p — value = 0.015).

While the mean Stage 1 prices are higher than the theoretical predictions
both in Tree and Cycle, for Cycle, it is even higher (p — value < 0.01) than

the “pseudo-equilibrium Stage 1 price” based on the mean Stage 2 prices,
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Figure 5: The Distribution of Prices in Stage 1 in Experiment 2

50.05.@] Recall that, in Experiment 1, the mean Stage 1 price in Cycle was
lower than the “pseudo-equilibrium Stage 1 price” (see Section , which
suggests that the enhanced competition between the two buyers induced
by the continuous double auction has resulted in too-high prices in Stage 1.
Retrospectively, after considering the widely observed overbidding in auctions
in the experimental literature (see, e.g., Kagel, [1995; Kagel and Levin} 2016)),

this may not be too surprising.

Result 5: While the enhanced competition between the two sellers induced
by the continuous double auction lowers the Stage 2 prices in Cycle,
it raises the Stage 1 prices in both Cycle and Tree. As a result, the

Stage 1 prices in Cycle are not significantly lower than those in Tree.

We also examine the learning effects. We perform an identical regres-

sion analysis as in Experiment 1 (Table [2). Table [5| provides the regression

26Note that the buyers must be indifferent between buying in two stages. Thus we
solve for price (p{ = 100 — z$}) such that z§, + §(1/2)2§, = 65, using 2§, = 29.67 and
c
x5, = 70.33.
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Table 5: Regression Results for Price in Experiment 2

Dependent Variable

Price
Stage 1 Stage 2
Model 1 Model 2 Model 1 Model 2
Cycle 0.827 —0.739 —14.196**  —11.777**
(1.317) (2.024) (3.227) (4.192)
Cycle x Latter - 3.096 - —4.929
(3.711) (2.477)
Latter - —2.306 - —0.48
(2.452) (2.425)
Const. 61.958***  63.129*** 43.867*** 44.107***
(1.897) (2.751) (3.077) (3.724)
Observations 389 389 329 329
R? 0.0008 0.0044 0.1535 0.1658

*p<0.1; **p<0.05; **p<0.01. Cluster-robust standard errors (session level) in
parentheses.

results *] The result for Stage 2 in Column 4 demonstrates that while the co-
efficient of Latter is insignificant (—0.480, p —value = 0.851), the sum of the
coefficients of Latter and Cycle x Latter is significantly negative (—5.409,
p — value < 0.01), implying that a further price drop occurs in Cycle as
subjects experience more trials. Given that the price level predicted by the
theoretical prediction is 0, this implies that learning reduces the deviation
from the theoretical prediction in Stage 2. Contrarily, in Stage 1 (Column
2), we do not identify any learning effect in both treatments. Not only is the
coefficient of Latter insignificant (—2.306, p — value = 0.390), but also the
sum of Latter and Cycle x Latter is insignificant (0.710, p — value = 0.685),

indicating that the price level remains unchanged, even after subjects gain

27 As the number of trials in each treatment is four in Experiment 2, Latter takes a value
of 1 if the trial lies in the third or fourth trial.
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experience in Stage 1.

The abovementioned results indicate that the enhanced competitive en-
vironment in Cycle brought about by the continuous double auction lowers
prices to a certain extent, and further price falls are expected toward the level
implied by the theoretical prediction in Stage 2. However, the Stage 1 price
remains unchanged contrary to the theoretical prediction and the situation
is not resolved with learning. Thus, we explore other factors that sustain the

deviation from the theoretical prediction in Stage 1.

6.3 Subject Personal Traits

Observing that the competitive environment in Stage 2 in Cycle does not
push the price down to the level predicted by the theoretical prediction and
does not account for the high price in Stage 1 in Cycle, we explore other
factors that prevent the price from falling. The personal traits of subjects,
such as lack of certain cognitive abilities or existence of other-regarding pref-
erences, might prevent the prices from falling. Table[|reports the descriptive
statistics of these personal traits. As noted above, GPS measures are stan-
dardized within our sample.

Let us start with Stage 2. In Section we found evidence that the
last buyers’ fairness considerations resulted in their higher willingness to pay
when the transactions were done with the originator rather than the reseller
in Experiment 1. We also found that this higher willingness to pay did not
result in higher prices. In Experiment 2, however, the last buyers cannot
tell whether the originator or the reseller is submitting the best asks. Thus,
they cannot act differently depending on which potential buyer is currently

submitting the best asks. As a result, the realized prices are not significantly
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Table 6: Personal Traits of Subjects

Variable Sample size Mean s.d.
CRT 156 5.180 1.205
matrix 156 1.974 1.016
BI 156 0.440 0.309
passAC 156 0.923 0.267
GPS _patience 153 —0.001  0.791
GPS _procrastination 155 0.000 0.984
GPS _risktaking 151 0.004 0.758
GPS_posrecip 153 0.005 0.804
GPS _regrecip 152 —0.002  0.824
GPS_altruism 150 0.003 0.853
GPS _trust 155 —0.000 0.984
GPS_subj_math _skills 156 —0.000 0.984

different between transactions with the originator and the reseller Y|

To address whether individual traits can explain the deviation from the
theoretical prediction, we regress the Stage 2 prices on the personal traits for
all players in the game (i.e., last buyer, first buyer, and originator). Table
displays the regression result, in which the first column includes the coeffi-
cients for the last buyer’s personal traits, the second column indicates that
for the first buyer, and the third indicates that for the originator.

As shown, most cognitive abilities are not significantly related to the price.
The coefficient for GPS _procrastination of the last buyer is significantly
negative (—2.638, p — value = 0.013). Accordingly, the ability to resist a
tendency to procrastinate lowers the Stage 2 price towards the equilibrium
level. However, the mechanism behind it is unclear. Although the coefficient
for BI of the originator is negative, it is only marginally significant (—6.345

with p—value = 0.061). In addition, while GPS_risktaking of the first buyer

28p —wvalue = 0.497 based on regressing the Stage 2 price on the originator dummy (that
takes a value of 1 when the transaction is between the originator and the last buyer, and
0 otherwise) and a constant.
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Table 7: Regression Results for Subjects’ Personal Traits and Stage 2 Price
in Cycle

2nd stage price
Last buyer First Buyer Originator

CRT 1.322 -1.101 -1.245
(1.155) (0.549) (0.938)

matrix 1.840 -0.194 -0.881
(1.324) (2.039) (0.751)
BI -3.087 -2.965 -6.345%*
(4.255) (4.509) (2.631)

passAC 0.664 1.365 2.539
(4.519) (2.773) (1.918)

GPS _patience -4.805 -0.688 -0.996
(2.629) (2.314) (0.865)

GPS procrastination -2.638** 0.083 -0.722
(0.703) (0.820) (1.190)

GPS risktaking 1.830 -0.719* 0.286
(1.376) (0.330) (0.901)

GPS _posrecip -3.609** -1.170 -2.683
(1.396) (0.786) (2.381)

GPS regrecip 1.191 -1.543 -0.375
(1.930) (1.683) (0.782)

GPS altruism 5.650* 0.769 0.835
(2.229) (1.140) (0.966)

GPS_trust -1.128 0.140 -0.471
(1.889) (0.320) (1.815)

GPS_subj_math_skills -2.868 -0.686 0.946
(2.052) (1.445) (1.615)

Const. 35.432" (14.290)
Observations 139
R? 0.425

*p<0.1; **p<0.05; ***p<0.01.
Cluster-robust standard errors (session level) in parentheses.
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is negative, it is also only marginally significant (—0.719 with p — value =
0.081).

As for the impact of other-regarding preferences on the Stage 2 price,
the coefficient for GPS _altruism of the last buyer is positive (5.650) but
only marginally significant (p — value = 0.052). Thus, altruistic last buyers
may accept higher prices, which could be causing the deviations from the
theoretical prediction. Conversely, the coefficient for GPS_posrecip of the
last buyer is significantly negative (—3.609, p—value = 0.049), implying that
the last buyer’s positive reciprocity lowers the price. However, the argument
that it brings about the equilibrium behavior is not convincing.

Let us now turn to Stage 1 prices. Table [§ displays the regression re-
sults for Stage 1 prices. As shown, most cognitive abilities do not have
a significant influence on the price determination. Only the coefficient for
GPS _subj_math_skills of the originator is significantly different from 0, and
the value is positive (3.220, p —value < 0.01). Accordingly, the lack of math
skills of the originator lowers the Stage 1 price toward the equilibrium level.
However, an argument that a lack of cognitive skill is conducive for optimal
behavior is not convincing. Similarly, although the coefficient for matrix of
the last buyer is positively marginally significant (3.358, p — value = 0.053),
the lack of fluid intelligence leading to optimal behavior is unlikely. Accord-
ingly, although we found some evidence that certain measures of cognitive
ability are related to price determination, we could not identify the cause of
deviation from the theoretical prediction among them. Instead, high ability
in certain players increases the deviation from the theoretical prediction.

The effect of other-regarding preferences is also inconclusive. Among
these regressors, only the GPS_altruism of the originator is significantly

related to price. The coefficient is —5.069 (p — value = 0.028), which implies
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Table 8: Regression Results for Subjects’ Personal Traits and Stage 1 Price
in Cycle

1st stage price
Last buyer First Buyer Originator

CRT -1.531 -0.113 0.676
(2.039) (1.255) (1.092)

matrix 3.358* 1.670 1.068
(1.335) (1.980) (1.124)

BI -1.047 -1.293 -0.254
(5.948) (0.852) (5.783)

passAC -1.157 0.015 3.010
(2.442) (6.110) (7.302)

GPS _patience -0.185 0.828 -0.868
(1.776) (1.685) (1.360)

GPS procrastination 1.711 -1.326 -2.142
(1.776) (1.685) (1.360)

GPS_risktaking -2.004 1.126 2.622
(3.262) (0.744) (2.280)

GPS_posrecip 1.311 1.955 4.247
(2.192) (3.256) (3.279)

GPS regrecip 2.493 -0.238 1.430
(1.340) (1.450) (2.560)
GPS altruism -1.086 1.420 -5.069**
(1.324) (2.001) (1.653)

GPS_trust 0.417 -1.788 -1.469
(1.550) (2.439) (1.450)
GPS_subj_math_skills -0.797 -0.292 3.220™*
(2.784) (2.180) (0.781)

Const. 54.757** (18.530)
Observations 139
R? 0.315

*p<0.1; **p<0.05; ***p<0.01.
Cluster-robust standard errors (session level) in parentheses.
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that altruistic originators tend to accept lower Stage 1 prices. Although the
altruism of originators brings the price closer to the level implied by the
theoretical prediction, interpreting this to suggest altruism is leading to an
equilibrium outcome is not convincing.

Overall, we cannot identify any convincing obstacle to optimal behavior
in Stage 1 in Cycle among the cognitive abilities and other-regarding pref-
erences. Rather, contrary to our speculation, we find that a high cognitive
ability in a certain player increases the deviation from the theoretical pre-
diction, and the existence of other-regarding preferences in a certain player
reduces this deviation. Further and most importantly, we do not find any
significant effect of the ability for backward induction on the price. None of
the coefficients for BI in the regression result is significantly different from 0,
indicating that it does not play a substantial role in the price determination

in Stage 1, despite it being the critical premise of the theoretical prediction.

6.4 Risk-Taking Attitude and Patience

One concern is that the Stage 1 price remains high if the first buyer is less
willing to take risk than the last buyer. Among the two buyers, buyers
that are less risk-tolerant could accept a high price in Stage 1 and secure
a certain amount of payoff. Such behavior could be a potential cause of
the deviation from the theoretical prediction. If this is the case, the buyer
that demonstrates a greater willingness to take risk tends to be the buyer
in Stage 2 (i.e., the last buyer). Moreover, the difference in prices between
Stages 1 and 2 tends to be large if the difference in the risk-taking attitudes
between the two buyers is also large.

To examine whether this is the case, we perform the following two analy-

ses. First, we compare GPS_risktaking between the last buyer and the first
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Table 9: Risk-Taking Attitude and Price Differences Between the Two Stages

Dependent Variable
ST1.Price — ST2.Price

Diff. of GPS_risktaking —0.988
(1.160)
Const. 33.162***
(1.065)
Observations 168
R? 0.0028

*p<0.1; **p<0.05; ***p<0.01.
Cluster-robust standard errors (session level) in parentheses.

buyer. The result is that the two variables are not statistically significantly
different (p — value = 0.261, t-test allowing for unequal variances), implying
that the first buyer does not take less risks. Second, we regress the difference
in prices between Stage 1 and 2 on the difference of GPS _risktaking between
the buyers (last buyer’s price - first buyer’s price). Table |§] displays the re-
gression result. Contrary to speculation above, we do not find a significant
correlation between the two variables (p — value = 0.433). Accordingly, we
cannot confirm that the difference in risk-taking attitudes between the two
buyers accounts for the high Stage 1 prices.

We also examine whether a similar story holds for patience. Of the two
buyers, the less-patient buyer could accept a higher price in Stage 1. First,
we compare the GPS _patience of the two buyers, but do not identify a
significant difference between them (p — value = 0.224, t-test allowing for
unequal variances). Second, we regress the difference in the prices between
Stage 1 and 2 on the difference of GPS_patience between the two buyers.
Table displays the regression result. As shown, we do not reveal any

significant correlation between the two variables (p — value = 0.174). Thus,
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Table 10: Patience and Price Differences Between the Two Stages

Dependent Variable
ST1.Price — ST2.Price

Dift. of GPS patience 2.037
(1.286)
Const. 33.642%*
(1.059)
Observations 167
R? 0.0137

*p<0.1; **p<0.05; ***p<0.01.
Cluster-robust standard errors (session level) in parentheses.

we obtain no evidence that a difference in patience between the two buyers

accounts for the higher price in Stage 1.

Result 6: We do not observe clear and convincing relationships between
personal traits and experimental outcomes, except for the degree of

altruism being positively correlated with Stage 2 prices.

7 Conclusion

This study experimentally examines the trading of information goods within
networks. Information goods are copyable; hence, a buyer can become a
resale competitor to existing sellers once the good is purchased and if resale
channels are available in the network. We examine whether competition
through reselling lowers the prices of the good in line with the theoretical
prediction.

Our experimental treatment is the network structure that permits com-
petition through reselling. In one treatment, Cycle, the network includes a

cycle path, which secures a sales channel for the reseller. Thus, price com-
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petition between the originator and the reseller in the network could lower
prices. According to the theoretical prediction, the lowering effect in prices
even moves upstream to the first transaction where no resale competitor yet
exists, because the market participants foresee competition through reselling
in their future transactions. In the other treatment, Tree, there is no cycle
path in the network and the resale of the good is therefore not possible. The
originator can then enjoy monopoly power and post higher prices.

In Experiment 1, we find that the prices observed in Cycle are inconsistent
with the theoretical prediction compared with those observed in Tree. Specif-
ically, although competition between the originator and the reseller lowers
the observed prices in the final transaction more in Cycle than in Tree, the
extent of this is very small in magnitude compared with the theoretical pre-
diction. In addition, and again contrary to the theoretical prediction, the
prices in the first transaction tend to be higher in Cycle than in Tree.

Furthermore, learning does not resolve the discrepancy between the the-
oretical prediction and the data in Cycle as the Stage 1 prices carry signs
of further price increases according to the buyers’ bidding behavior. On the
contrary, in Tree, the bidding behavior suggests signs of further decreases in
prices toward the level implied by the theoretical prediction.

As discussed in Section the observed prices in Stage 1 of Cycle, al-
though inconsistent with their theoretical prediction, are consistent with par-
ticipants rationally responding to the prevailing high prices in Stage 2. Thus,
there is the possibility that Stage 1 prices could adjust toward their theoret-
ical level once Stage 2 prices fall.

Potential reasons for Stage 2 prices in Cycle remaining high include: (1)
a lack of competition between the originator and the reseller, and (2) the

participants’ other-regarding preferences. For the latter, we find evidence
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that the last buyers are willing to pay higher prices to the originator than
to the reseller in Stage 2. For the former, it is possible that the bargain-
ing protocol we employed in our Experiment 1, namely, the Nash demand
game, softened the competitive pressure in Stage 2 in Cycle. To test this
conjecture, we conduct an additional experiment (Experiment 2) by employ-
ing a continuous double auction as the bargaining protocol. As expected,
the enhanced competition between the two sellers in Stage 2 of Cycle lowers
prices substantially. However, the observed prices are still higher than the
theoretical prediction.

Furthermore, the enhanced competition between the two buyers in Stage 1
raises prices in both Tree and Cycle. In Cycle, it raises the prices even above
the “pseudo-equilibrium price” implied by the mean observed price in Stage 2.
As a result, the Stage 1 prices in Cycle are not significantly different from
those in Tree. This result is again inconsistent with the theoretical prediction.
Individual characteristics such as cognitive ability, willingness to take risks,
and patience do not consistently explain our results. As for other-regarding
preferences, we find evidence that the altruism of the last buyers seems to
keep Stage 2 prices high.

Of course, it is possible that two players are just insufficient for compe-
tition to overcome the effect of other-regarding preferences. For example, in
Dufwenberg and Gneezy| (2000), when the number of players is three or more,
participants quickly learn to compete more aggressively in a Bertrand com-
petition experiment. However, as we observed in Experiment 2, enhanced
competition can also result in overpricing during earlier stages. Therefore,
the overall impact of competition among more than two players on prices in
the early stages is not ex ante clear. Hence, conducting experiments with a

larger number of players would be a fruitful avenue for future research.
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Online Appendix

I Summary of the data

Table [T summarizes the sessions.

Table I.1: Sessions
Subject  First Treatment

October 1, 2020 (morning) 21 Cycle
October 1, 2020 (afternoon) 24 Tree
October 2, 2020 (morning) 24 Cycle
October 2, 2020 (afternoon) 18 Tree
October 14, 2020 (morning) 24 Tree
October 15, 2020 (morning) 30 Cycle

We briefly summarize the data by overviewing the sample size, share of
successful trials, and the frequency of negotiations. The data contains 752
trials of three-person games, which consist of 2,077 rounds of negotiations in
total. Of the 752 trials, 623 trials (82.8%) were successful in that both buyers
obtained the good. Among the remaining 129 trials, no buyer obtained the
good in 57 trials, and only one buyer obtained the good in 72 trials. We refer
to a trial as partially successful if at least one transaction is established.
Thus, the number of partially successful trials is 695 (92.4%).

The likelihood that a trial is finished successfully is almost identical across

Table 1.2: Share of Successful Trials

Treatment Share of Successful Trials Share of Partially Successful Trials

(whole transactions) (Stage 1 transaction)
Tree 0.822 0.931
Cycle 0.835 0.918




Table I.3: Number of Negotiations per Trial

Treatment Mean St. Dev. Pctl(25) Median Pctl(75) Pctl(95) Max

Tree 3.579 2.062 2 3 4 7 14
Cycle 3.092 1.581 2 3 4 6 14

Note: Limited to trials in which whole transactions are established among the three players.

the two treatments. As displayed in Table [[.2] the percentage of trials in
which two whole transactions are successfully established for all three play-
ers is 82.2% and 83.5% in Tree and Cycle, respectively. The two values do not
differ statistically significantly (p — value = 0.159 in Online Appendix .
Similarly, the percentage of trials in which at least one transaction is done is
93.1% in Tree, which does not differ significantly from that in Cycle, which
is 91.8% (p — value = 0.343 in Online Appendix [[.2). These results sug-
gest that we do not need to be concerned with the unevenness of sample
failure across the two treatments due to sudden failure amid ongoing negoti-
ations. A detailed discussion and statistical analysis are presented in Online
Appendix [[.2]

Table presents summary statistics of the number of negotiations per
trial for each treatment. The average number of negotiations in Tree is
3.579, while that in Cycle is 3.092, which is statistically significantly different
(p — value < 0.01, see Online Appendix [[.3).

For the percentiles displayed in Table [[.3] there is little difference up to
the 75th percentile. Half of the trials are concluded within three negotiations,
and 75% finish within four negotiations. A slightly larger number of trials
appear after the 75th percentile in Tree.

We might expect that the speed of learning about the optimal plays of the



game could differ between the two treatments. Because Cycle has more com-
plicated game rules, subjects require more time to learn the optimal plays.
As a result, the dynamics of the number of negotiations could differ across
the treatments. Our analyses, reported in Online Appendix [[.3] confirm that
the number of negotiations decrease as our subjects gain experience in Cycle.
In Online Appendix [[.3) we also compare the numbers of negotiations across

Stages 1 and 2, but we do not find a significant difference.

I.1 Order Effect

As the treatments are reverse ordered among our subjects by dividing them
roughly in half, the order effects should offset each other at the aggregate
level. However, fully documenting the order effects in our data would be
meaningful. In addition, there may be some concern that the remaining
unevenness of the numbers of subjects between the reverse-ordered sessions
(66 subjects starting from Tree, and 75 from Cycle) could be a source of
potential bias, even though the difference in the number of subjects is small.
To address this, we regress the prices on four explanatory variables:
TreeFirst, Cycle, CyclexTreeFirst, and a constant. TreeFirst is a dummy
variable that takes a value of 1 if the subject is assigned to the session that
starts with Tree, otherwise 0. This variable captures the existence of an
overall order effect. Cycle is a dummy variable that takes a value of 1 if
the trial belongs to Cycle, otherwise 0. T'reeF'irst x Cycle is the cross term
of TreeFirst and C'ycle, whose significance would indicate the presence of
distinct order effects across the two treatments. We also report the results
of a regression including only two regressors: TreeFirst and a constant.
The results of the regressions are presented in Table [[.4] with the results

for Stage 1 prices in the first and second columns and those for Stage 2 in



Table 1.4: Order Effect in Prices

Dependent Variable

Price
Stage 1 Stage 2
Model 1 Model 2 Model 1 Model 2
TreeFirst —-3.136 —2.339 —2.736 —2.569
(2.945) (2.661) (1.888) (2.264)
TreeFirst x Cycle - —1.617* - —0.311
(0.784) (1.061)
Cycle - 2.276%* - —1.766*
(0.358) (0.737)
Const. 54.551***  53.426**  49.532***  50.418***
(1.424) (1.248) (0.845) (1.099)
Observations 695 695 623 623
R? 0.0297 0.0387 0.0217 0.0324

*p<0.1; **p<0.05; ***p<0.01.
Cluster-robust standard errors (session level) in parentheses.

the third and fourth columns. Although the coefficient for the cross term
Cycle x TreeFirst is marginally significant (p — value = 0.094 < 0.1), any
coefficients associated with the term TreeFirst do not significantly differ
from 0 in both Stages 1 and 2 for both Models 1 and 2 with a significance
level of 0.05. Thus, the data suggests some order effects may exist; however,

the evidence for this suggestion is not statistically meaningful.

1.2 Likelihood of Successful Trials

This subsection documents the statistical comparison of the likelihood of
successful trials across the two treatments. Here we examine the treatment
effects and the associated learning effects.

To do this, we perform the following linear regression analysis. We regress

the dummy variable for a successful trial on the four explanatory variables



(i.e., Cycle, Latter, Cycle x Latter, and a constant). Cycle is a dummy
variable that takes a value of 1 if the trial belongs to Cycle, otherwise 0.
Latter is a dummy variable that takes a value of 1 if the trial lies in the latter
half of each treatment (i.e., 5th to 8th trials), otherwise 0. This captures the
overall learning effects across the treatments (unless a negatively significant
treatment-specific learning effect exists in Cycle). Cycle x Latter is the cross
term of C'ycle and Latter, and this captures any additional impact on the
learning effect specifically appearing in Cycle. The statistical significance of
the variable indicates that the learning effects differ across the treatments
(i.e., the existence of treatment-specific learning effects). The learning effect
in Tree is captured by the coefficient of the term Latter, and that in Cycle by
the sum of the coefficients of the terms Latter and Cycle x Latter. We also
report the result of a regression in which only two regressors are included
(i.e., Cycle and a constant) to gauge the treatment effect over all trials.

The regression results are presented in Table[[.5] The results for the whole
transaction are presented in the first and second columns. The coefficient of
Cycle in Model 1 in the first column does not statistically significantly differ
from 0 (p — value = 0.159), indicating that the likelihood of success does
not differ across the two treatments on average over all trials. Moreover,
the coefficient of C'ycle x Latter in Model 2 in the second column does not
differ statistically significantly from 0 (p — value = 0.195), indicating that a
treatment-specific learning effect does not exist. Indeed, the results of the
insignificant coefficient of Latter (p—value = 0.569) and the insignificant sum
of the coefficients of Latter and Cycle x Latter (F-test, p — value = 0.269)
imply that there exists no learning effect in both treatments.

The results for the first transaction basis are also similar as presented in

the third and fourth columns. The coefficient of C'ycle in Model 1 in the third



Table 1.5: Likelihood of Successful Trials

Dependent Variable

Success
Whole transactions  Stage 1 transaction

Model 1 Model 2 Model 1  Model 2

Cycle 0.013 —0.011 —0.013 —0.016
(0.008) (0.016) (0.013) (0.021)

Cycle x Latter - 0.048 - 0.005
(0.032) (0.035)

Latter - —0.027 - 0.000
(0.044) (0.017)
Const. 0.822***  (0.835***  0.931™*  (0.931***
(0.024) (0.020) (0.009) (0.014)

Observations 752 752 752 752
R? 0.0003 0.0013 0.0006 0.0007

*p<0.1; **p<0.05; ***p<0.01.
Cluster-robust standard errors (session level) in parentheses.

column does not statistically significantly differ from 0 (p — value = 0.343).
The coefficient of Cycle x Latter in Model 2 in the fourth column does not
differ statistically significantly from 0 (p — value = 0.885). The coefficient
for Latter is also not significant (p — value = 1.000), nor is the sum of the
coefficients Latter and Cycle x Latter (F-test, p — value = 0.877).

These results suggest that the likelihood of a successful trial does not differ
between the two treatments. In addition, we do not identify any treatment-
specific learning effect, or any learning effects themselves in both treatments.
Thus, we do not need to be unduly concerned about uneven sample dropouts
across the two treatments resulting from sudden ceases in ongoing negotia-

tions.



1.3 Number of Negotiations

As discussed above, we do not find any significant difference in the likeli-
hood of successful trials across the two treatments, which eliminates any
concern about uneven sample dropouts across the two treatments. However,
it might be useful to also analyze the numbers of negotiations. Like the case
of the likelihood of successful trials, we examine the treatment effects and
the associated learning effects.

We perform a linear regression analysis like the analysis for the likelihood
of successful trials in Online Appendix [[.2] where we regress the number of
negotiations in the trial on the four explanatory variables, Cycle, Latter,
Cycle x Latter, and a constant. We also report the results of a regression
including only two regressors, C'ycle and a constant.

Table displays the regression results. As shown in the first and third
columns, the coefficients for Cycle differ statistically significantly from 0
on the negative side, indicating that the overall number of negotiations is
smaller in Cycle (p — value < 0.01 for both), as first suggested in Table
in Section [l

For the learning effects, the results for the whole transaction basis dis-
played in the second column suggest a learning effect in Tree as the coefficient
for Latter is marginally significantly different from 0 (0.414, p — value =
0.096 < 0.1). However, the existence of a learning effect in Cycle is less
clear as the sum of the coefficients for Latter and Cycle x Latter is near
0 (F-test, p — value = 0.657), which implies less possibility that a learning
effect exists in Cycle. Indeed, the coefficient for Cycle x Latter is signifi-
cantly negative (—0.473, p — value = 0.037 < 0.05). Similarly for the first
transaction basis, we identify a significant treatment-specific learning effect

as the coefficient for Cycle x Latter in the fourth column has a significant



Table 1.6: Number of Negotiations

Dependent Variable

Number of Negotiations

Whole transactions Stage 1 transaction
Model 1 Model 2 Model 1 Model 2
Cycle —0.487* —0.253 —0.255™* —0.094
(0.101) (0.132) (0.061) (0.077)
Cycle x Latter - —0.473* - —0.321*
(0.168) (0.095)
Latter - 0.414* - 0.155
(0.202) (0.103)
Const. 3.579** 3.376%* 1.783** 1.707*
(0.114) (0.092) (0.062) (0.070)
Observations 623 623 623 623
R? 0.0173 0.0237 0.0146 0.0204

*p<0.1; **p<0.05; ***p<0.01.
Cluster-robust standard errors (session level) in parentheses.
Limited to trials with whole transactions among the three players.

negative value (—0.321, p — value = 0.020 < 0.05). However, the coefficient
for Latter is not significant (p — value = 0.193), along with the sum of the
coefficients for Latter and Cycle x Latter (p — value = 0.246), suggesting
the presence of learning effects themselves is unclear.

Moreover, we also examine the number of negotiations across the two
stages (first vs. second), which could be different in Cycle in which the ne-
gotiation structure changes drastically across the two stages. We regress the
number of negotiations in each stage of each trial on the four explanatory
variables, SecondST, Latter, SecondST x Latter, and a constant. SecondST
is a dummy variable that takes a value of 1 if the corresponding negotiations
are attempted in Stage 2. Thus, the cross term of SecondST and Latter cap-

tures a stage-specific learning effect. We also report the result of a regression



Table I.7: Comparison of the Number of Negotiations across Stages

Dependent Variable

Number of Negotiations

Tree Cycle
Model 1 Model 2 Model 1 Model 2
SecondST 0.129 —0.038 0.035 —0.103
(0.093) (0.077) (0.095) (0.075)
SecondST x Latter - 0.104 - 0.273
(0.176) (0.159)
Latter - 0.155 - —0.166**
(0.103) (0.052)
Const. 1.783*** 1.707** 1.529*** 1.613***
(0.062) (0.070) (0.056) (0.061)
Observations 618 618 628 628
R? 0.0000 0.0069 0.0003 0.0046

*p<0.1; **p<0.05; ***p<0.01.
Cluster-robust standard errors (session level) in parentheses.
Limited to trials with whole transactions among the three players.

including only two regressors, SecondST and a constant.

The regression results are presented in Table [[.7 It is a straightforward
result that none of the regressors associated with the term SecondST are
significantly different in Tree (the first and second columns). However, this
also holds even in Cycle, in that the coefficient of SecondST in the third
column is not significant (p — value = 0.727) nor are the coefficients for the
cross term SecondST x Latter (p — value = 0.146) and SecondST (p —
value = 0.227). These results suggest that the numbers of negotiations do
not change significantly across the stages, despite the considerable difference

in negotiation structure in Cycle.



II Bid and Ask

We obtained little evidence of subjects learning to play according to the
theoretical prediction based on our analysis of prices. However, as prices are
determined jointly by bids and asks, this may mask the effect of learning.

We thus turn our attention to bids and asks separately.

II.1 First Bids and Asks in Stage 1

We particularly focus on the bids and asks proposed in the first negotiations
of each trial because they carry uncontaminated information. The first bids
and asks are proposed before the player observes any behavior of the other
players in the tria]@. Thus, they are considered to directly reflect the player’s
initial prospects for the prices in the trial’Y| Here we focus our analysis on
the first bids and asks in Stage 1.

Figure plots the dynamics of the first bids and asks in each of the
treatments. Although the first asks present similar dynamics in the two
treatments, the first bids exhibit distinct patterns across these same two
treatments. As the trial proceeds, the bids tend to become lower in Tree,
whereas they tend to become higher in Cycle.

We perform the following linear regression analysis to test this observa-
tion. We regress the first bids and asks on the same four explanatory variables
as our earlier regression for prices (i.e., C'ycle, Latter, Cycle x Latter, and
a constant). Now the regression model is a fixed-effects model in which the
subject-level individual heterogeneity is controlled for by individual fixed ef-

fects. In addition, we employ cluster-robust (subject-level) standard errors

29Recall that players are randomly rematched into groups of three at the beginning of
each trial, but while maintaining their roles.

300ne concern is that first bids and asks also reflect the individual heterogeneity of
players, such as negotiation style. For this reason, we control for individual differences in
the following regression analysis.
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Figure I1.1: Dynamics of the First Bids and Asks

for the hypothesis tests. As before, we also report the result of a regression
including only two regressors: C'ycle and a constant.

Table [[I.8] presents the regression results for the first bids and asks in
Stage 1. The first column in Table indicates that the first bids in Tree are
larger than in Cycle by 2.302 (p—value = 0.024). The second column displays
the regression result to address the presence of learning effects. The value of
the coefficient of Latter is —3.289, which is significantly different from 0 (p—
value < 0.01), indicating that the first bids in Tree have a strong downward
trend as observed in Figure For Cycle, the value of the coefficient of the
cross term Cycle x Latter is 4.227, which is significantly different from 0 (p—
value < 0.01). This indicates the presence of a treatment-specific learning
effect. The sum of the coefficients of C'ycle x Latter and Latter, which
captures the magnitude of the learning effect in Cycle, is 0.938, suggesting

the possibility of an upward trend in first bids in Cycle. Although this

11



Table I1.8: First Bids and Asks in Stage 1

Dependent Variable

First Bids First Asks
Model 1 Model 2 Model 1 Model 2
Cycle 2.302** 0.188 0.436 —0.027
(1.006) (1.545) (0.916)  (1.541)
Cycle x Latter - 4.227* - 0.926
(1.525) (1.878)
Latter - —3.289*** - —1.080
(1.083) (1.499)
Const. 50.297**  51.942***  52.859***  53.399***
(0.503) (0.826) (0.458) (0.951)
Observations 752 752 752 752
R? 0.0121 0.0209 0.0003 0.0011

*p<0.1; **p<0.05; ***p<0.01. Cluster-robust standard errors (subject level)
in parentheses.

value is not statistically significant using pooled data of the two treatments
(F-test, p — value = 0.3319), using the data only in Cycle, we confirm a
statistically significant positive upward trend in Cycle, as shown in Figure|l[].1
(p — value = 0.038, Table . The first bids exhibit treatment-specific
learning in opposite directions across the two treatments.

Unlike the first bids, we do not observe any treatment-specific learning
for the first asks. The third column in Table [L8 indicates that the overall
level of the first asks does not differ significantly across the two treatments
(p — value = 0.636). Moreover, in the fourth column, neither the coefficient
of the cross term C'ycle x Latter nor the term Cycle is significant (p—value =
0.624 and 0.986, respectively). These results jointly imply that the behavior
of sellers does not differ across the two treatments.

As we observe distinct treatment-specific learning effects in the first bids

but not the first asks, we expect that the likelihood of success in the first trials

12



Table I1.9: Supplemental Regression Results for the First Bids in Stage 1

Dependent Variable

First Bid
Tree Cycle
Latter —3.639*** 1.636**
(1.074) (0.775)
Const. 51.851*** 52.047***
(0.537) (0.388)
Observations 376 376
R? 0.0124 0.0084

*p<0.1; **p<0.05; ***p<0.01.

Fixed-effect models for controlling subject-
level individual heterogeneity.

Cluster-robust standard errors (subject level)
in parentheses.

evolves differently across the two treatments as the trials progress. That is,
the first negotiations should more likely succeed in Cycle than in Tree in
later trials. To see this, we plot the dynamics of the likelihood of the success
of negotiations in the first trials in Figure [1.2] As expected, this likelihood
displays an upward (downward) trend in Cycle (Tree).

To examine the difference, we perform the following linear regression anal-
ysis. We regress a dummy variable reflecting the success of the first trials on
the same four explanatory variables to the earlier regression analysis of prices
(i.e., Cycle, Latter, Cycle x Latter, and a constant). Table presents
the regression results. In the second column, we observe a treatment-specific
learning effect as the coefficient of the cross term C'ycle x Latter is 0.191 and
is significant (p—value = 0.023). According to these results, the first negotia-
tions in Cycle are more likely to be successful in later trials by approximately
19% than in Tree.

The abovementioned findings consistently suggest that buyers become

13
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Figure I1.2: Share of Successful Negotiations in the First Trials

more willing to buy in the latter trials in Stage 1 in Cycle. It then becomes
difficult that prices in Stage 1 in Cycle will be lower as learning progresses.
Thus, and once again, we conclude that learning does not help to achieve
equilibrium in Stage 1 in Cycle, at least in the eight trials in our experiments.
Instead, it tends to widen the gap from the equilibria.

One straightforward explanation for the results in Cycle is that first buy-
ers could earn large profits in Stage 2 because, unlike the theoretical predic-
tion, the prices are high in Stage 2. Expecting positive profits in Stage 2,
buyers then compete to purchase the good in Stage 1. As the expected
returns in Stage 2 are learned gradually, a learning effect then appears in
Stage 1.

A puzzle is why the sellers in Cycle do not exploit their advantage in
competition and become more eager to earn profits in Stage 1. As discussed,

the first asks do not differ across the two treatments, nor do they seem

14



Table I1.10: Likelihood of Success in the First Negotiations

Dependent Variable

Success

Model 1  Model 2
Cycle 0.064** —0.032
(0.024) (0.029)
Cycle x Latter - 0.191**
(0.059)
Latter - —0.096*
(0.043)
Const. 0.527***  0.574***
(0.029) (0.036)

Observations 752 752
R? 0.0041 0.0134

*p<0.1; **p<0.05; ***p<0.01. Cluster-robust
standard errors (session level) in parentheses.

to respond to the upward trend in first bids. It might be the case in our
experiments that those who are competing only become urged, though the

reason behind it is unclear.

II.2 First Bids and Asks in Stage 2

We find that the buyers in Stage 1 in Cycle become more willing to buy the
good. Naturally, the next question would be whether the sellers competing
in Stage 2 learn to be more aggressive. More specifically, we hypothesize that
the first asks proposed by the sellers in Stage 2 in Cycle are lower than those
in Tree. Here, the “first ask” in Stage 2 is defined as the ask proposed in the
round immediately following establishment of the Stage 1 transaction.

To test our hypothesis, we perform linear regression analysis of the first

asks and the first bids in Stage 2. The regression models are identical to those

15



Table I1.11: First Bids and Asks in Stage 2

Dependent Variable

First Bids First Asks
Model 1 Model 2 Model 1 Model 2
Cycle 0.018 —1.166 —3.969*** —4.422%*
(1.060)  (1.200) (1.211) (1.635)
Cycle x Latter - 2.391 - 0.915
(1.462) (1.836)
Latter - —1.858* - —0.441
(0.954) (1.505)
Const. 48.066***  48.989*** 50.144*** 50.362***
(0.526) (0.794) (0.601) (1.023)
Observations 695 695 695 695
R? 0.0000 0.0043 0.0193 0.0190

*p<0.1; **p<0.05; ***p<0.01. Cluster-robust standard errors (subject level)
in parentheses.

used for Stage 1 (i.e., identical variable definition, fixed-effect models for
controlling subject-level heterogeneity, and cluster-robust standard errors).
The results are presented in Table[[T.11} Consistent with the abovementioned
hypothesis, the first asks in Cycle are significantly lower than those in Tree.
The results in the third column show that the value of the coefficient of
Cycle is —3.969, which is significant (p — value < 0.01).@ This result echoes
our earlier findings for Stage 2 prices that prices tend to be lower in Cycle,
although the magnitude of this is not sufficient to satisfy the theoretical
prediction.

However, unlike the case of the first bids in Stage 1, we do not reveal
learning effects for the first asks in Stage 2. The fourth column of Table

shows that the coefficient of the term Latter is not significantly different from

31The difference in the first asks in Stage 2 could also result from differences in asking
behavior between originators and resellers. However, we show below that this is not the
case.
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0 (p — value = 0.770). The coefficient of the cross term Cycle x Latter is
also not significant (p — value = 0.619), nor is the sum of the coefficients of
Cycle x Latter and Latter (F-test, p — value = 0.630). These results jointly
suggest that there is no learning effect in either treatment in the first asks
in Stage 2. One reason for the difference in this to the first bids in Stage 1
is that optimal trading in Stage 1 might require more cognitive ability. To
make an appropriate offer in Stage 1, players need to foresee the expected
profit they could obtain in Stage 2, unlike the transactions in Stage 2. It is
then possible that the buyers in Cycle learn the prices determined in Stage 2
as the trials progress and gradually adapt their bids in Stage 1.

In addition, like the first asks in Stage 1, we do not observe any significant
difference in the first bids across the two treatments in Stage 2. As shown
in the first column of Table [[.T1] the coefficient for C'ycle is not significant
(p — value = 0.987). Moreover, in the second column, the coefficient for the
cross term Cycle x Latter as well as the coefficient for the term Cycle are
also not significant (p — value = 0.105 and 0.333, respectively). These results
jointly suggest that the behavior of buyers in Stage 2 is similar across the
two treatments. This aligns with our earlier speculation that those that are
competing only feel some urge to complete, although the reason behind it

remains puzzling.

11.2.1 First Asks in Stage 2

We observe that the first asks in Stage 2 differ significantly across the two
experimental treatments. We could then consider the possibility that this
difference arises because of the distinct roles of the sellers initially assigned
in the experiment, either as an originator or as a buyer. This is because in

Tree, the originator is the only seller even in Stage 2, while the first buyer
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Figure I1.3: First Asks in the Second Stages

could become a reseller in Stage 2 in Cycle.

To assess any behavioral differences between the two types of sellers in
the first asks in Stage 2, we plot the dynamics of the mean value of these
differences across trials in Figure [[I.3] As displayed, the asks of originators
are smaller than those of resellers in the early trials; they then converge to
an almost identical level.

However, we do not statistically confirm a significant difference between
them even in the early trials. Table[[T.12]presents regression results to address
the difference of the Stage 2 first asks between the two sellers. In Model 1 (see
the first column), the coefficient for Originator is not significantly different
from 0 (p — value = 0.343), indicating that the overall mean does not differ
between the two types of sellers. Even for the early trials, the coefficient for
Originator in Model 2 (see the second column), which captures the difference

in the early trials in the regression model specification, is only marginally
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Table 11.12: First Asks in Stage 2

Dependent Variable

First Ask
Model 1 Model 2
Originator —1.858 —4.184*
(0.195)  (2.218)
Originator x Latter - 4.626**
(1.916)
Latter - —2.723*
(1.570)
Const. 47.494%*  48.886***
(1.039) (1.307)
Observations 345 345
R? 0.0071 0.0186

*p<0.1; **p<0.05; ***p<0.01.

Cluster-robust standard errors (subject level) in paren-
theses.

significant (p — value = 0.062).
Accordingly, while the first asks could differ in the early trials, any differ-

ence is not sufficient to be statistically significant. Moreover, this difference,

if any, soon disappears as the trials proceed.
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III Case for Risk-averse Players

As in Section [4.4] the observed Stage 1 price is lower than the pseudo-
equilibrium Stage 1 price by 10.69. Here we show that this difference can be
explained by the players’ risk aversion.

To address this, we modify Eq. to consider risk-averse players maxi-

mizing their expected utilities over final payoffs.

1 1
5u(100 - ) + 5u(100 - S +p8) =

1.1 1 1
56{§u(100 —p9) + §u(100 — % + )} + 5csu(loo —p9)+

1 1 1 1
(1- Oé)[gu(pf) + §u(plc +p§) + 5u(100 — p) + 5u(100 — Py +pS)—

1 1 1.1 1 1
5{5%(pf)+5%(pf+p§)}—55{§U(100—pf)+§U(100—p?+pzc)}—§5U(100—p§)]

(I11.1)

where u(-) is the utility function of the players.

Let us specify the utility function with a standard, constant relative risk
aversion utility function with the coefficient of relative risk aversion 7 (i.e.,
u(z) = 1%yxl_V). Substituting the values for the observed prices into p{ and
pS, we obtain 4 = 5.11. This value of 7 is within the scope of reasonable

degrees of risk aversion in existing studies (e.g.,|Abdulkadri and Langemeier,

2000).
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IV Theoretical Analyses of Experiment 2

Here we present the theoretical predictions for Experiment 2.

IV.1 Stage 2 in Cycle

There are two sellers, Player 1 and the player who won the good at Stage 1,
who are denoted as s; and ss, respectively.
The strategies for the sellers and the buyer are p§, € [0, 100], p%, € [0, 100]

(i € [1,2]). Their payoff functions are

(

100 — p§ if p§, > pS,, and ps, < pS. (5 # 1)
o JU100=pE} iR = g and p = p, (5 #0)
2s; —
0z, if pi, < min{ps; , phs }(j # 9)
0 if pg, < phy, < P, (5 #9)

\

o J100—p if pl > min{pg,, ph., }
Lop =
0x3, if pg, < min{ps,,, pS., }
The Bertrand competition among sellers determines the price to satisfy

Py = xg“;l = 0. Thus, z9,, = T2, = 0, 25, = 100, and p§ = 0.

IV.2 Stage 1 in Cycle

There are two buyers, Players 2 and 3, who are denoted as b; and by, re-

spectively. The strategies for the seller and the buyers are p§. € [0,100],
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pS,, € [0,100] (i € [1,2]). Their payoff functions are:

C L 1s.0 - c .C c
py + 50x5, if max{pf, ,ph,} > Pl

c _
Ils -
ox§, if max{p$, ,p%,} <,
)
100 — pf + 3075, if pG, > pf, and pG, > pf, (7 # 1)
o 31100 — pf + 3028} + 30z, if pf. > pf and pf, = G, (7 # 1)
Ty, =
05, if pG, < pf, < PG,
\537%1_ if max{p%i,p%j} < pf.

The Bertrand competition among buyers determines the price to satisfy
af, = 0x§, = 1000. Thus, zf, = 100(1 — §), 2§, = x§, = 1004, and

p¢ =100(1 — 9).

IV.3 Stage 2 in Tree

The strategies for the seller and the buyer are pl. € [0,100], pl, € [0,100].
Their payoff functions are:
p;  ifpy >,

1’25 =

ozl otherwise

100 — p3  if pd, > pi,
T _
Top =

dxl otherwise
%
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T T
where pI' = %. Every strategy (pi,,pl,) satisfying 100 — p2 > d6x2,,

ps > 6xl is an equilibrium. Their equilibrium payoffs are, for any a € (0, 1)

xQTS :51'2TS + {100 — (&ng + 5:1:2TS)}

xl =62k, + (1 — a){100 — (622, + 021}

Thus, z2, = 100«, 22, = 100(1 — «), p? = 100a.

IV.4 Stage 1 in Tree

There are two buyers, Players 2 and 3, who are denoted as b; and by, re-
spectively. The strategies for the seller and the buyers arep!, € [0,100],

Py, € [0,100] (i € [1,2]). Their payoff functions are:

pl + ozl if max{p{, ,pf,,} > pi;

xl =
1s —
53:{5 if maX{pﬂﬁp’:lrbz} < p,{s
4
100 — pf if piy, > pis and pi,, > pf, (j # 9)
o | 2{100 = p{} + o3, if ply, > pi, and pf, =pj, (j # )

Lip, =

03, if piy, < pis < phy, (5 #9)

5xﬂi if max{pr{bl, pTlFbQ} < pt,

The Bertrand competition among buyers determines the price to satisfy
xf, = 0xy = 6100(1 — o). Thus, z{, = 100{(1 = 0) + a(l + 0)}, z1, =
Ty, = 6100(1 — ), pI' = 100{1 — (1 — a)d}.
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IV.5 Equilibrium Price

The equilibrium prices are as follows:

p{ =100(1 — 6)

(IV.1)
(IV.2)
(IV.3)

(IV.4)

In our benchmark case (6 = 0.9 and a = 0.5), p{ = 10, pI' =55, p§ = 0 and

ps = 50.

24



V  Summary of the Experiment 2 data

Table reports the sessions of Experiment 2

Table V.1: Sessions for Additional Experiment (Experiment 2)

Subject  First Treatment

February 27, 2023 (morning) 27 Tree
February 27, 2023 (afternoon) 27 Cycle
February 28, 2023 (morning) 24 Cycle
February 28, 2023 (afternoon) 27 Tree
March 2, 2023 (morning) 24 Tree
March 2, 2023 (afternoon) 27 Cycle

In this section, we present further details of the data, which contains 414
trials of three-person games?] which consists of 1,188 rounds of negotiations

in total.

V.1 Likelihood of successful trials

Among the 414 trials, 329 trials (79.5%) were successful for whole transac-
tions, and 389 trials (94.0%) were successful for at least Stage 1 transac-
tions. The likelihood of successful trials across the two treatments is pre-
sented in Table The percentage of successful trials in Tree and Cycle is

72.8% and 86.1%, respectively. The two values are insignificantly different

32Two trials are excluded from data analysis as at least one subject in both trials
disconnected due to Internet trouble.

Table V.2: Share of Successful Trials for Experiment 2

Treatment Share of Successful Trials Share of Partially Successful Trials

(whole transactions) (Stage 1 transaction)
Tree 0.728 0.918
Cycle 0.861 0.962
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Table V.3: Likelihood of Successful Trials for Experiment 2

Dependent Variable

Success
Whole transactions  Stage 1 transaction

Model 1 Model 2 Model 1  Model 2

Cycle 0.132 0.140 0.044 0.050
(0.074) (0.089) (0.037) (0.028)
Cycle x Latter - —0.015 - —0.011
(0.049) (0.035)

Latter - —0.014 - 0.011
(0.048) (0.041)
Const. 0.728*  0.735***  0.917"*  0.912***
(0.059) (0.074) (0.029) (0.032)

Observations 414 414 414 414
R? 0.0269 0.0277 0.0086 0.0088

*p<0.1; **p<0.05; ***p<0.01.
Cluster-robust standard errors (session level) in parentheses.

(p — value = 0.135 in Column 1 in Table . Similarly, the percentage of
partially successful trials is 91.8%, which does not differ significantly from
96.2% in Cycle (p — value = 0.291 in Column 3 in Table [V.3). We also ex-
amine learning effects with the identical analysis employed in Experiment 1
(Table ; however, we do not confirm any learning effect as presented
in Columns 2 and 4 in Table Both coefficients of Latter are not sig-
nificantly different from 0 (p — value = 0.780 for whole transactions and
p — value = 0.793 for Stage 1 transactions) as well as the sums of the coef-
ficients of Latter and Cycle x Latter (F-test, p — value = 0.519 for whole

transactions, and F-test, p — value = 1.000 for Stage 1 transactions).
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Table V.4: Number of Negotiations per Trial for Experiment 2

Treatment Mean St. Dev. Pctl(25) Median Pctl(75) Pctl(95) Max

Tree 3.620 2.081 2 3 4 7 20
Cycle 2.581 1.189 2 2 3 5 12

Note: Limited to trials in which whole transactions are established among the three players.

V.2 Number of negotiations

The number of negotiations per trial for each treatment is presented in Ta-
ble[V.4 The average number of negotiations in Tree is 3.620, whereas that in
Cycle is 2.581. These are statistically significantly different (p—value = 0.018
in Table[V.5]). As observed in Table[V.4] the number of negotiations tends to
be larger in Tree. We also examine learning effects with the identical anal-
ysis as performed in Table however, we do not confirm any statistically
meaningful learning effect in the results presented in Table In Tree, both
coefficients of Latter are not significantly different from 0 (p —value = 0.267
for whole transactions in Column 2 and p — value = 0.166 for Stage 1 trans-
action in Column 4). In Cycle, we find only marginally significant learning
effects in the sums of the coefficients of Latter and Cycle x Latter for both
of whole transactions and Stage 1 transactions (p — value = 0.084 in Column
2 and p — value = 0.060 in Column 4).

Across stages, the number of negotiations is larger in Stage 2 than that in
Stage 1 in Tree as indicated by the significant positive coefficient of SecondST
(0.86, p — value < 0.01) in Column 1 in Table where we performed
identical analysis as that in Table Contrarily, the number could be
smaller in Stage 2 than in Stage 1 in Cycle, although the difference is only

marginally significant (p — value = 0.054 in Column 3). As for learning
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Table V.5: Number of Negotiations for Experiment 2

Dependent Variable

Number of Negotiations
Whole transactions Stage 1 transaction

Model 1 Model 2 Model 1  Model 2

Cycle —1.039**  —0.916** 0.073 0.039
(0.298) (0.246) (0.191) (0.173)
Cycle x Latter - —0.242 - 0.072
(0.303) (0.147)

Latter - 0.44 - 0.2
(0.352) (0.123)
Const. 3.62*** 3.4 1.38*** 1.28%**
(0.224) (0.163) (0.096) (0.101)

Observations 329 329 329 329
R? 0.0894 0.0986 0.0015 0.0181

*p<0.1; **p<0.05; ***p<0.01.
Cluster-robust standard errors (session level) in parentheses.
Limited to trials with whole transactions among the three players.

effects, we do not observe any significant learning effect in Tree (p — value =
0.166 for the coefficient of Latter, and F-test, p — value = 0.464 for the sum
of the coefficients of Latter and SecondST x Latter in Column 2). In the
result of Cycle presented in Column 4, we do not find significant learning
effect in the sum of the coefficients of Latter and SecondST x Latter (F-
test, p — value = 0.393), however, we find only marginally significant effect

in Latter (p — value = 0.060).

V.3 Order Effect

As the treatment order is counterbalanced among our subjects by dividing
them in exactly half, the order effects should not appear at the aggregate

level. However, documenting the order effects in our data would be mean-
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Table V.6: Comparison of the Number of Negotiations across Stages for
Experiment 2

Dependent Variable

Number of Negotiations

Tree Cycle
Model 1 Model 2 Model 1  Model 2
SecondST 0.86*** 0.84*** —0.324* —0.154
(0.087) (0.096) (0.129) (0.084)
SecondST x Latter - 0.04 - —0.346*
(0.299) (0.171)
Latter - 0.2 - 0.272*
(0.123) (0.112)
Const. 1.38*** 1.28%* 1.453*** 1.32%**
(0.096) (0.101) (0.131) (0.100)
Observations 300 300 358 358
R? 0.0751 0.0801 0.0362 0.0499

*p<0.1; **p<0.05; ***p<0.01.
Cluster-robust standard errors (session level) in parentheses.
Limited to trials with whole transactions among the three players.

ingful. We perform an identical regression analysis as that in Experiment 1
(Table and the results are presented in Table None of the coeffi-
cients associated with TreeFirst are statistically significant. Although the
coefficient of TreeFirst x Latter in Column 4 is a large negative value, it
is only marginally significant (F-test, p — value = 0.073). Thus, while or-
der effects might exist in our data, they do not appear to be statistically

meaningful.
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Table V.7: Order Effect in Prices for Experiment 2

Dependent Variable

Price
Stage 1 Stage 2
Model 1 Model 2 Model 1 Model 2
TreeFirst —3.481 —2.244 3.015 7.153
(2.623) (3.771) (2.153) (4.716)
TreeFirst x Cycle - —2.356 - —-9.6127
(2.431) (4.236)
Cycle - 1.906 - —&.887***
(2.183) (0.439)
Const. 64.146***  63.133***  34.548"*  39.766***
(2.094) (3.174) (0.594) (0.939)
Observations 389 389 329 329
R? 0.0148 0.0172 0.0070 0.1735

*p<0.1; **p<0.05; ***p<0.01.
Cluster-robust standard errors (session level) in parentheses.
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