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Abstract

In this experiment, we compare three implementations of the Winter demand
commitment bargaining mechanism: a one-period implementation, a two-period
implementation with low delay costs, and a two-period implementation with high
delay costs. Despite the different theoretical predictions, our results show that the
three different implementations result in similar outcomes in all our investigation
domains: namely, coalition formation, alignment with the Shapley value predic-
tion, and satisfaction of the axioms. Our results suggest that a lighter bargaining
implementation with only one period is often sufficient in providing allocations
that sustain the Shapley value as an appropriate cooperative solution concept, while
saving unnecessary time and resource costs.
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1 Introduction

The aim of the Nash program (Nash, 1953) is to provide a noncooperative founda-

tion of cooperative solution concepts. The Nash program has a long history, having

commenced with Nash, who designed a noncooperative game that sustained the Nash

solution of his cooperative bargaining problem as the equilibrium (Nash, 1950). Since

his seminal paper, the Nash program has continued to grow, with many theoretical and

experimental contributions (For an exhaustive literature review, we refer readers to Ser-

rano, 2005, 2008, 2014, 2021). To cite the first of the aforementioned surveys, and the

words of Nash himself, “The idea [of the Nash program] is both simple and important:

the relevance of a concept [...] is enhanced if one arrives at it from different points of

view” (Serrano, 2005, p. 220). In fact, “it is rather significant that this different ap-

proach yields the same solution. This indicates that the solution is appropriate for a

wider variety of situations” (Nash, 1953, p. 136).

Most papers that contribute to the Nash program are devoted to sustaining the nonco-

operative foundation of the Shapley value solution (Shapley, 1953) (see, among others,

Gul, 1989; Harsanyi, 1981; Hart and Moore, 1990; Krishna and Serrano, 1995; Winter,

1994; Hart and Mas-Colell, 1996; Perez-Castrillo and Wettstein, 2001). Because of its

intuitive and desirable properties, the Shapley value has been applied to a variety of

situations, such as cost or payoff sharing, voting power, fair division, as well as, most

recently, to many noneconomic contexts, including machine learning, artificial intelli-

gence models, and data analysis (e.g., in one unusual application, the Shapley value

solution was implemented to obtain information about gene expression resulting from

microarray games (Lucchetti et al., 2010)). As a result, the Shapley value is currently

the most widely used axiomatic cooperative solution concept, the appropriateness of
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which is validated by its many applications and an extensive literature listing its appeal-

ing theoretical properties.

In Chessa et al. (2022), we aimed to contribute to the Nash program in sustaining the

Shapley value by providing a comparison between the experimental results of a demand-

based mechanism (a simple one-period version of Winter (1994) model) versus an offer-

based (à la Hart and Mas-Colell (1996)) mechanism. Our analysis showed that the

Winter mechanism (namely, the Winter demand commitment bargaining mechanism)

better provides allocations that reflect players’ effective bargaining power and satisfy

the axioms that characterize the Shapley value. Conversely, the efficiency and frequency

of grand coalition formation are not very high. This finding suggests that the Shapley

value is indeed an appealing solution in all such situations in which some bargaining

agents interact by expressing their demands about the share that they wish to obtain

from cooperation. This is a key point when highlighting players’ effective bargaining

power.

However, real-world applications of demand-based bargaining processes may pro-

vide the players more time to reach an agreement than one period. Having more time

for agreeing is often costly (obviously in terms of time, but often also in terms of re-

sources), but whether it is more (or less) effective is an open question. Therefore, a

simple one-period version of the Winter model may not be suitable to capture all these

nuances of the problem. Thus, in this paper, our main research question is to investi-

gate the robustness of the performances of the Winter mechanism when departing from

its simplified version. In fact, we affirm that for a solution—in our case the Shapley

value—to be relevant, players must agree on it when interacting under different rules.

First, we compare the previously studied one-period (1p) implementation versus a two-

period (2p) implementation. In the one-period implementation, each player, one after
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another, becomes a proposer and makes a demand concerning the payoff that they are

willing to receive from a possible collaboration. If and when at some point a compatible

demand is introduced, which means that a coalition exists for which the total demands

do not exceed the worth of the coalition, this coalition forms, leaves the game, and the

bargaining continues with the rest of the players, until there is at least one player remain-

ing who needs to submit a demand. Players with unsatisfied demands at the end of the

first period obtain their individual value in the one-period version of the model. In the

two-period implementation, if some players are left with unsatisfied demands after the

first period, they have a second chance to cooperate because the bargaining procedure

repeats for a second time with this set of players by canceling their previous demands

and charging them a fixed delay cost. Second, we compare the performances of the Win-

ter mechanism in its two-period implementation when implementing low (2pL) versus

high (2pH) delay costs.

The theoretical prediction expects all three implementations to provide complete co-

operation in the first period and a power share close to the Shapley value (on average,

as the ex ante equilibrium). However, the theoretical ex post equilibrium payoff differs

between the different implementations, in particular in terms of the first-mover advan-

tage, which is expected to be smaller in 2p implementations than in 1p implementations.

However, as already observed by Fréchette et al. (2005), experiments often show that

actual bargaining behavior is sometimes not as sensitive to the different bargaining rules

as the theory suggests, and this is what happens in our case.

Our results show that the three different implementations of the Winter mechanism

result in similar outcomes in all our investigation domains: namely, coalition formation,

alignment with the theoretical prediction, and satisfaction of the axioms. Moreover, we

observe comparable results when considering the outcome of the first period in a 2p im-
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plementation and the outcome of a game with a player who always has a zero marginal

contribution to any coalition, a game that does not fully satisfy the theoretical assump-

tions of the model. We interpret this finding as a robustness of the Winter mechanism in

sustaining the Shapley value. Moreover, these results support the implementation of the

Shapley value as an appealing cooperative solution concept in many real-world appli-

cations, both when the decisions must be made rapidly, or when the time for bargaining

is longer. Finally, we suggest that simpler and faster bargaining is often sufficient in

providing allocations that sustain the Shapley value because a second chance to reach

an agreement often proves to be ineffective in augmenting the chance of the players

reaching an agreement, or in bringing them closer to the predicted allocation.

The rest of the paper is organized as follows. Section 2 presents the general defi-

nition and the properties of a cooperative transferable utility (TU) game, as well as the

Shapley value and its axiomatizations. Section 3 presents the Winter mechanism and its

main theoretical results. Section 4 describes the setting of our experiment and presents

our hypotheses. The results are presented in Section 5. Section 6 concludes.

2 Theoretical model

2.1 Cooperative TU games and solutions

Let N = {1, . . . , n} be a finite set of players. Each subset S ⊆ N is called a coalition

and N is called the grand coalition. A cooperative TU game (from now on, we refer

to this simply as a cooperative game) consists of a couple (N, v), where N is the set of

players and v : 2N → R, with v(∅) = 0, is the characteristic function, which assigns to

each coalition S ⊆ N the worth v(S), that is, the worth that members of S can achieve
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by cooperation. If no ambiguity appears, we consider the set of players N to be fixed

and we write v instead of (N, v). We denote with GN the set of all games with player

set N .

Players i and j are symmetric in v ∈ GN , if v(S ∪ {i}) = v(S ∪ {j}) for all

S ⊆ N \ {i, j}. Player i is a null player in v ∈ GN if v(S) = v(S \ {i}) for all S ⊆ N .

A game v ∈ GN is said to be monotonic if v(S) ≤ v(T ) for each S ⊆ T ⊆ N ,

superadditive if v(S) + v(T ) ≤ v(S ∪ T ) whenever S ∩ T = ∅, with S, T ⊆ N and

convex if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), for each S, T ⊆ N (strictly convex if

the inequality holds strictly). Another equivalent definition for convexity can be stated

as v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ) for each S ⊆ T ⊆ N \ {i}. In (strictly)

convex games, cooperation becomes increasingly appealing, leading to the formation of

the grand coalition. We may observe that convexity⇒ superadditivity⇒monotonicity.

Given a game v ∈ GN , an allocation is an n-dimensional vector (x1, . . . , xn) ∈ RN

that assigns the amount xi ∈ R to player i. For each S ⊆ N , we assume that x(S) =∑
i∈S xi. The imputation set is defined by:

I(v) = {x ∈ Rn|x(N) = v(N) and xi ≥ v({i}) ∀i ∈ N},

that is, it contains all the allocations that are efficient (x(N) = v(N)) and individually

rational (xi ≥ v({i})∀i ∈ N ).

The core is the set of imputations that are also coalitionally rational, that is,

C(v) = {x ∈ I(v)|x(S) ≥ v(S) ∀S ⊆ N}.

An element of the core is stable in the sense that if such a vector is proposed as an
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allocation for the grand coalition, no coalition will have an incentive to split off and

cooperate on its own. Intuitively, the idea behind the core is analogous to that behind a

(strong) Nash equilibrium of a noncooperative game: an outcome is stable if no group

deviation is profitable. For the Nash equilibrium, the possible deviation is for a single

player, whereas in the core we speak about deviations of groups of players.

A solution is a function ψ : GN → RN that assigns an allocation ψ(v) to every game

v ∈ GN . The Shapley value is the most well-known solution concept, which is widely

applied in economic models, and is defined as:

φi(v) =
∑

S⊆N,i∈S

(|S| − 1)!(|N | − |S|)!
|N |!

(v(S)− v(S \ {i})) ∀i ∈ N.

The Shapley value assigns every player their expected marginal contribution to the coali-

tion of players that entered before them given that every order of entrance has equal

probability. This solution concept was defined as respecting some notion of fairness

(see Section 2.2 for more discussion about its properties), but it is not necessarily sta-

ble. However, if the game is superadditive, the Shapley value is an imputation and, if

the game is convex, it is the core barycenter (and then, in particular, it belongs to it).

In our analysis, we will consider an easier solution concept, the equal division solu-

tion, which distributes the worth v(N) equally between the players. It is defined as:

EDi(v) =
v(N)

n
∀i ∈ N.

Such a solution was investigated as an appealing solution for cooperating players

when not considering the worth of the coalitions (see, e.g., de Clippel and Rozen,

forthcoming).
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2.2 Axiomatizations of the theoretical game solutions

In the literature, we find various axiomatic characterizations of the Shapley value. The

first one is from Shapley (1953) and it involves efficiency, symmetry, additivity, and

the null player. The characterization by Young (1985) involves efficiency, symmetry,

and strong monotonicity, and the characterization by van den Brink (2002) involves

efficiency, the null player, and fairness. We list these axioms in Table 1 (for a solution

ψ : GN → RN ).

Table 1: The axioms

Axioms

Efficiency for every v in GN ,
∑
i∈N ψi(v) = v(N)

Symmetry if i and j are symmetric players in game v ∈ GN , then ψi(v) = ψj(v)
Additivity for all v, w ∈ GN , ψ(v + w) = ψ(v) + ψ(w)
Homogeneity for all v ∈ GN and a ∈ R, ψ(av) = aψ(v)
Null player if i is a null player in game v ∈ GN , then ψi(v) = 0
Strong monotonicity if i ∈ N is such that v(S ∪ {i})− v(S) ≤ w(S ∪ {i})− w(S)

for each S ⊆ N , then ψi(v) ≤ ψi(w)
Fairness if i, j are symmetric in w ∈ GN , then ψi(v + w)− ψi(v) = ψj(v + w)− ψj(v)

for all v ∈ GN

3 The Winter mechanism

3.1 Description of the Winter mechanism

In our experiments, we implemented the bargaining model based on sequential demands

for strictly convex cooperative games presented by Winter (1994). In this model, players

in turn announce their demands publicly, indicating “I am willing to join any coalition

yielding me a payoff of ...” and wait for these demands to be met by other players.
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The bargaining starts with a randomly chosen player from N , say player i. This player

announces their demand di publicly and then points to a second player who must give

their demand. The game proceeds by having each player introduce a demand and then

point at a new player to take a turn. If and when at some point a compatible demand

is introduced, which means that a coalition S exists for which the total demand for

players in S does not exceed v(S), then the first player with such a demand selects a

compatible coalition S. The players in S receive their demands and leave the game. The

bargaining then continues with the rest of the players using the same rule on v restricted

on N \ S. In a one-period implementation, players with unsatisfied demands at the end

of the first period receive their individual value. However, in a T-period implementation

with T > 1, T finite, if some players are left with unsatisfied demands after the first

period, the bargaining procedure repeats for a second time with the set of these players

by canceling their previous demands and charging them a fixed delay cost, and so on,

until the T periods are over.

We present a formal description of the Winter mechanism with T periods (T ≥ 1, T

finite) as defined by Winter (1994). A decision point position m at period t is given by

the vector (St,m1 , St,m2 , dSt,m2
, j), where:

0 ≤ t ≤ T is the current period of the bargaining,

St,m1 ⊆ N is the set of players remaining in the game,

St,m2 ⊂ St,m1 is the set of players who have submitted demands that are not yet

met,

dSt,m2
= (di)i∈St,m2

is the vector of demands submitted by players in St,m2 , (0 ≤

di ≤ maxS⊆N v(S)), and
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j ∈ St,m1 \ St,m2 is the player taking the decision by introducing a demand dj .

This player’s demand dj is said to be compatible if there exists some S ⊆ St,m2

with v(S ∪ {j})−
∑

i∈S di ≥ dj . Otherwise, dj is not compatible.

With j’s decision, the game proceeds now in the following way:

1) If dj is compatible, then j specifies a compatible coalition S, each player i ∈

S ∪{j} is paid di− tc (where c is the delay cost per period), and nature randomly

chooses a player k 6= j from St,m1 \ St,m2 . The new position is now given by

(t, St,m+1
1 , St,m+1

2 , dSt,m+1
2

, k), with St,m+1
1 = St,m1 \ (S ∪ {j}) and St,m+1

2 =

St,m2 \ (S ∪ {j}) (we remain at time t and we increment the position from m to

m+ 1).

2) If dj is noncompatible, then two cases are distinguished:

2a) if St,m2 = St,m1 \ {j} (j is the last player to give their demand in the current

period), then a new player k is chosen randomly from St,m1 and the new posi-

tion is given by (St+1,1
1 , ∅, k) (we increment the period from t to t + 1 and we

recommence back at period m = 1);

2b) if St,m2 ⊂ St,m1 \ {j}, then j specifies a new player k 6= j in St,m1 \ St,m2 and

the new position is (St,m+1
1 , St,m+1

2 , dSt,m+1
2

, k), with St,m+1
1 = St,m1 and St,m+1

2 =

St,m2 ∪ {j} (we remain at time t and we increment the position from m to m+1).

The game starts with the randomly chosen player j ∈ N . Then, the initial position

is set to be (N, ∅, d∅, j). It terminates either when there are no more players in the game

(see point 1 above), or when t = T and St,m1 ∪ {j} = St,m2 . In the second case, each

i ∈ St,m1 ∪ {j} is paid v({i})− Tc.
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3.2 Ex ante and ex post equilibria of the Winter mechanism

The main result of Winter (1994) is stated by the following theorem.

Theorem 1 (Winter (1994)). Let v be a strictly convex game. The demand commitment

game has a unique subgame perfect equilibrium, which assigns equal probabilities at

indifferences. At this equilibrium, the grand coalition forms at the end of the first period.

As c1 approaches zero, the equilibrium payoffs approach the Shapley value of the game

v.

Theorem 1 states that for both the one-period and the T-period implementations, the

Winter mechanism has a unique subgame perfect equilibrium in which the grand coali-

tion forms in the first period and the ex ante expected equilibrium payoff coincides with

the Shapley value. The proof of this result is based on a backward induction analysis.

In particular, the expected subgame equilibrium payoff at each period is given by the

average of the payoffs obtained as ex post equilibria over all the possible orders of the

remaining players for the remainder of the game, where different orders are assumed to

have equal probabilities 1/n!2. Different orders are assumed to have equal probabilities

as, by the definition of the mechanism, the first player at each period is drawn with equal

probabilities. Then, each player chooses the next bidder by assigning equal probabilities

to all potential successors because the player’s equilibrium payoff depends only on the

set of the successors and not their actual order.

Regarding the ex post equilibrium payoff, in the one-period implementation, given

a specific ordering of the players, each player demands the marginal contribution to the
1In the formulation of this theorem, it is assumed for simplicity that the delay cost c is equal to the

smallest money unit, but the result continues to hold when the delay cost is equal to some integer multiple
of the smallest money unit. As stated by Winter (1994), the existence of a smallest money unit is both
motivated by the necessity of reducing players’ sets of actions to finite sets and of making the exact
implementation of the theoretical model possible by experiments.

2n is then replaced by the number of players still bargaining at that period.
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set of their successors3. In the two-period implementation, instead, at equilibrium the

first player to make a demand asks their Shapley value plus the delay cost times the

number of remaining players, whereas the other players ask their Shapley value minus

one delay cost. That is, the first player in the first period leaves the other players the

possibility of demanding their expected payoff (received in the second period) during

the first period of the game.4

We observe that the different implementations of the Winter mechanism theoreti-

cally present a first-mover advantage. We stress that these theoretical results hold under

some specific assumptions, in addition to the already mentioned strict convexity of the

game. In particular, the delay cost must not be too large5.

4 The experimental setting

4.1 The games

For our analysis, we considered the four four-player games shown in Table 2 together

with corresponding Shapley values. The equal division payoff vector is equal toED(vk) =

(25, 25, 25, 25) when k = 1, 2, and ED(vk) = (50, 50, 50, 50) when k = 3, 4.

The games were chosen to be capable of testing the axioms that we presented in

Section 2.2. In Table 3, we detail with which game we aim to test each axiom. Note

3As the mechanism is defined in a discrete version, the first player demands a smallest unit less in
order to leave an extra smallest unit more for the last player and to break his/her indifference between
accepting formation of the grand coalition and receiving their individual value. However, this extra money
unit becomes negligible as it approaches zero.

4The ex post equilibrium of the T-period implementation with T > 2 resembles the case where T = 2.
5We refer to the original paper by Winter (1994) for the detailed description of the assumptions under

which such results hold. As already mentioned, the delay cost must not be too large. Moreover, the results
about the ex ante and the ex post equilibria hold for a discrete version of the mechanism, and when the
smallest money unit approaches zero.
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that games 1, 3, and 4 are strictly convex, and game 2 is at least convex. As a conse-

quence, all four games are monotonic. Even if the Winter mechanism is well defined

for any cooperative game, Theorem 1 is not generally true for convex games that are

not strict, such as is the case for game 2. The decision to implement a game that is

not strictly convex was driven by the wish to test the null player axiom. However, the

presence of this null player raises some issues concerning the theoretical prediction of

the equilibrium outcome on such a game. For instance, in 2p implementation with a

null player, the delay cost is always too high whatever its size, and the null player who

makes their demand not as the first mover would always prefer to ask zero and leave the

game rather than paying the delay cost and incurring a negative payoff. For this reason,

in the following, and when analyzing game 2, we will allow the configuration {1} and

{2, 3, 4} to be equivalent to the grand coalition. With game 2 being at least convex, we

have the opportunity to test the robustness of the Winter mechanism when relaxing the

hypothesis of strict convexity, regardless of the theoretical prediction.

Table 3: The axioms and the four games

Axioms Games

Efficiency all games
Symmetry games 1 and 4

(symmetry of players 2 and 3)
Additivity games 1, 2, and 3

(game 3 is defined as the sum of games 1 and 2)
Homogeneity games 1 and 4

(game 4 is defined as twice game 1)
Null player game 2

(player 2 is a null player)
Strong monotonicity all games

(the marginal contributions of player 1 are always higher in game 1 than in game 2,
and also higher in game 4 than in game 3)

Fairness games 1, 2, and 3
(game 3 is defined as the sum of games 1 and 2)
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We implemented the Winter mechanism with one period (1p) and two periods and

with low and high delay costs (2pL and 2pH, respectively). Low delay costs are equal

to 0.5 for games 1 and 2, and to 1 for games 3 and 4. High delay costs are equal to 2.5

for games 1 and 2, and to 5 for games 3 and 4.

4.2 The procedure

The experiment was conducted at the Institute of Social and Economic Research (ISER),

Osaka University, between January and August 2019.6 A total of 264 students, who

had never participated in similar experiments before, were recruited as experimental

subjects. There were 96 subjects for 1p treatment, and 84 each for the 2pL and 2pH

treatments7. The experiment was computerized with z-Tree (Fischbacher, 2007) and

participants were recruited using ORSEE (Greiner, 2015).

To control for potential ordering effects, each participant played all four games twice

in one of the following four orders : 1234, 2143, 3412, and 4321. Between each game

play session (called a round), players were randomly rematched into groups of four

players, and participants were randomly assigned a new role within the newly created

group. At the end of the experiment, two rounds (one from the first four rounds and

another from the last four rounds) were randomly selected for payments. Participants

received cash rewards based on the points they earned in these two selected rounds with

an exchange rate of 20 JPY = 1 points in addition to a 1,500 and 1,900 JPY participation

fee for the 1p and 2p implementations, respectively. The experiment lasted on average

100 minutes for the 1p implementation and 130 minutes for the2p implementations,

6All data are available on reasonable request.
7The difference in the number of participants between the two mechanisms is a result of variations in

the show-up rate among experimental sessions. The data of the 1p treatment is the same as the one used
in Chessa et al. (2022).
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including the instruction (∼ 15 min), comprehension quiz (∼ 5 min), and payment8.

The average payments were 2,650 JPY, 3,110 JPY, and 2,960 JPY for the 1p, 2pL, and

2pH implementations, respectively.

5 Results

5.1 Grand coalition formation and efficiency

First, we investigate whether the three implementations succeeded in making the players

reach an agreement and form a grand coalition. In Figure 1, we present the results about

the grand coalition formation for the 1p, 2pL, and 2pH implementations and for the four

games9.

As game 2 is not strictly convex with the presence of the null player 1, we allow

the partition {{1}, {2, 3, 4}} as a realization of the grand coalition, as this coalition

structure does not affect the total value that must be shared between the players10.

We may observe that, at best, the grand coalition formed slightly more (and often,

much less) than 50% of the times for the four games, with no significant difference

between the implementations. We may conclude that all three implementations of the

Winter mechanism equally failed in enhancing complete cooperation. We observe that

8Participants received a copy of instruction slides, and prerecorded instruction movies were played.
See Appendix A for the English translations of the instruction slides and the comprehension quiz.

9The figure is created based on the estimated coefficients of the following linear regressions: gci =
β11pi + β22pLi + β32pHi + µi, where gci is a dummy variable that takes the value of 1 if the grand
coalition is formed, and 0 otherwise, in group i; 1pi, 2pLi, and 2pH are dummy variables that take a
value of 1 if the 1p, 2pL, and 2pH implementations, respectively, are used, and 0 otherwise. The standard
errors are corrected for within-session clustering effects. The statistical tests are based on the Wald test
for the equality of the estimated coefficients of the two treatment dummies.

10Remember that the Winter mechanism is theoretically defined for strictly convex games. In this
game, Player 1 always has a zero marginal contribution and, as such, can be left out of any coalition at no
cost for them or the other players.
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Figure 1: Proportion of times the grand coalition formed
(a) Game 1 (b) Game 2, allow (2,3,4)

1p 2pL 2pH
0

0.2
0.4
0.6
0.8

1 n.s. n.s.
n.s.

1p 2pL 2pH
0

0.2
0.4
0.6
0.8

1 n.s. n.s.
n.s.

(c) Game 3 (d) Game 4

1p 2pL 2pH
0

0.2
0.4
0.6
0.8

1 n.s. n.s.
n.s.

1p 2pL 2pH
0

0.2
0.4
0.6
0.8

1 n.s. n.s.
n.s.

Note: The error bars show the one standard error range. The symbol *** indicates the proportion of times that the grand coalition

formation was significantly different at the 1 % significance level (Wald test).

even when players were given a second chance in a 2p implementation, they did not

manage to perform better in terms of grand coalition formation. In particular, Figure 2

illustrates the number of players whose demands were not met in the first loop. Surpris-

ingly, their number is not higher (and, in some cases, is even significantly smaller) in the

2pL and 2pH implementations when compared with the 1p implementation. We may

recall that the theoretical predictions expect the grand coalition to form in the first loop

for the three implementations. However, one may expect players to demand more in the

first loop of a 2p implementation because of the second chance of forming a coalition if

their request is not met on the first try.

As a direct consequence of the failure to form the grand coalition, we report a failure

in achieving full efficiency, with again no significant difference between the implemen-

tations, regardless of the presence of some delay costs in 2pL and 2pH (see Figure 3)11.

11The figure is created based on the estimated coefficients of the following linear regressions: Effi =
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Figure 2: Average number of players whose demands were not met in the first loop

(a) Game 1 (b) Game 2
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Note: The error bars show the one standard error range. The symbols ***, **, and * denote significance at the 1%, 5%, and 10%

significance levels, respectively (Wald test).

Figure 3: Verification of the efficiency axiom
(a) Game 1 (b) Game 2
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Note: Error bars show the one standard error range. The symbols *** and ** indicate the proportion of time that verification of the

efficiency axiom was significantly different at the 1% and 5% significance levels, respectively (Wald test).

β11pi+β22pLi+β32pHi+µi where Effi ≡
∑

i πi

v(N) is the efficiency measure for group i; and 1pi, 2pL,
and 2pH are dummy variables that take a value of 1 for the 1p, 2pL, and 2pH treatment, respectively, and
0 otherwise. The standard errors are corrected for within-session clustering effects. The statistical tests
are based on the Wald test for the equality of the estimated coefficients of two treatment dummies.
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Efficiency is computed as the fraction of the sum of the payoffs obtained by the four

players compared with the worth of the grand coalition of the considered game (100 for

games 1 and 2 and 200 for games 3 and 4).

Therefore, we conclude that:

Result 1. The Winter mechanism in its 1p, 2pL, and 2pH implementations provides

mediocre results in terms of both coalition formation and efficiency.

5.2 Payoff shares: ex ante theoretical prediction

According to the ex ante theoretical prediction, the Winter mechanism in all three im-

plementations is expected to provide approximately the Shapley value on average over

the different orders of the players. We let π1p(vk) denote a vector of payoffs obtained

by the players by implementing 1p in game k, with k = 1, 2, 3, 4. Analogously, we use

π2pL(vk) to denote a vector of payoffs obtained by the players by implementing 2pL,

and π2pH(vk) to denote a vector of payoffs obtained by the players by implementing

2pH. Figure 4 shows the mean of the payoffs in the four games and for the three imple-

mentations, with the horizontal lines indicating the Shapley value for each game12.

As we may observe in Figure 4, as a consequence of the players often failing to

form the grand coalition and the resulting lack of efficiency, the average realized pay-

off vectors are significantly different from the Shapley value. Therefore, we focus on

investigating whether the proportion of the power share, in lieu of the absolute payoffs,

converges to the Shapley value, by considering the normalized (to the worth of the grand

coalition) payoff vectors. Then, in this and in the following sections, we consider the

12The error bars are based on the standard errors that are corrected for within-session clustering effects.
These standard errors are obtained by running the system of linear regressions described in Section 5.4.
The statistical tests are based on these regressions.
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Figure 4: Mean of the payoffs for the three mechanisms, where the horizontal lines
indicate the Shapley values
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate the average normalized payoff being

significantly different from the Shapley value at the 1%, 5%, and 10% significance levels, respectively (Wald test).

normalized vectors of payoffs with components π̃i
m(vk) =

πmi (vk)∑
j∈N π1p

j (vk)
× vk(N) for

each i = 1, 2, 3, 4 and for each m ∈ {1p, 2pL, 2pH} (remember that the worth of the

grand coalition is equal to 100 for games 1 and 2, and 200 for games 3 and 4).

Figure 5 shows the mean of the normalized payoffs in the four games, with the

horizontal lines indicating the Shapley values for each game.

The three implementations perform well in implementing, on average, the Shapley

value share. Moreover, we do not report any superiority of one of the three implemen-
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Figure 5: Mean of the normalized payoffs for the three mechanisms, with the horizontal
lines indicating the Shapley values
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate the average normalized payoff being

significantly different from the Shapley value at the 1%, 5%, and 10% significance levels, respectively (Wald test).

tations. Thus, we have the following result.

Result 2. The Winter mechanism in its 1p, 2pL, and 2pH implementations provides good

and comparable results in terms of implementation of the Shapley value power share.
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Figure 6: Mean of the distances of the normalized payoff vectors from the subgame
perfect Nash equilibriums and the equal division solutions

(a) Game 1 (b) Game 2
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate that the distance of the normalized

payoff vectors from the Shapley value or from the equal division solution was significantly different at the 1%, 5%, and 10%

significance levels, respectively (Wald test).

5.3 Payoff shares: Ex post theoretical prediction and first-mover

advantage

The ex post theoretical prediction of the Winter mechanism is dependent on the order-

ing in which the players make their demands. In particular, a first-mover advantage is

predicted. Furthermore, a higher first-mover advantage is expected in the 1p implemen-

tation, followed by the 2pH and then, finally, by the 2pL implementation. As a result, the

distances between the Shapley value and the ex post theoretical predictions are largest

in the 1p implementation, followed by the 2pH, and then the 2pL implementations.

Figure 6 shows the mean of the Euclidean distances of the normalized payoff vec-

tors from the Shapley value, as well as from the equal division solution, for the four

games. Such distances are computed as Dis2mφ =
√∑

i(π̃i − φi(v))2 and Dis2ED =
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√∑
i(π̃i − EDi)2, where φi(v) denotes the Shapley value for player i in game v13.

Contrary to the ex post theoretical predictions, we may observe that the distance

of the realized normalized payoffs to the Shapley value in the three implementations

are not significantly different in three out of four games. Only in Game 2 was Dis2φ

significantly larger in 2pH compared with 1p and 2pL. We also observe that the three

implementations perform similarly in terms of distance to the equal division solution

in three out of four games. The only exception is, again, Game 2, in which both 1p

and 2pL are significantly closer to the equal division solution than 2pH. Therefore, we

conclude that:

Result 3. The Winter mechanism in its three implementations provides similar results

in terms of the distance between the realized normalized payoffs and the Shapley value

as well as the equal division solution.

Figure 7 shows the proportion of times first-mover advantage appears, that is, when

the first mover obtains a higher normalized payoff than their Shapley value. The three

implementations perform in a similar way, and they do not show any first-mover advan-

tage effect (notice that the first mover takes, on average, more than predicted by their

Shapley value half of the time, and, consequently, less than predicted the other half of

the times). Figure 8 details these results for each single player and Figure 9 presents the

mean of the amount demanded as first mover. Again, we may observe that the three im-

plementations perform in a similar way, regardless of the differences of the theoretical

prediction. We can now state the following result.

13The figure is created based on the estimated coefficients of the following linear regressions: Disi =
β11pi+β22pLi+β32pHi+µi, where Disi is the relevant distance measure for groups i. 1pi, 2pLi, and
2pH are dummy variables that take a value of 1 if the 1p, 2pL, or 2pH treatments are used, respectively,
and 0 otherwise. The standard errors are corrected for within-session clustering effects. The statistical
tests are based on the Wald test for the equality of the estimated coefficients of the two treatment dummies.
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Figure 7: Proportion of times first-mover advantage is verified according to the normal-
ized payoff vectors
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Note: The error bars show the one standard error range. The symbols ***, **, and * denote significance at the 1%, 5%, and 10%

significance levels, respectively (Wald test).

Result 4. The Winter mechanism in its 1p, 2pL, and 2pH implementations does not

show any first-mover advantage effect.

5.4 Testing for the axioms

To test for axioms (see Section 2.2), we propose two different approaches. The first

approach investigates verification of the axioms based on the effective average nor-

malized outcomes of each game. The second approach investigates whether different

mechanisms perform differently in terms of decomposition of the Shapley distance à la

Aguiar et al. (2021).
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Figure 8: Frequency of the first mover demanding more than the Shapley value
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Note: The error bars show the one standard error range. The symbols ** and * indicate significant differences between treatments

at the 5% and 10% significance levels, respectively (Wald test).

5.4.1 Verification of the axioms using the average normalized payoffs

To test symmetry, additivity, homogeneity, strong monotonicity, and fairness, we per-

form a set of ordinary least squares (OLS) regressions for the following system of equa-

tions, with the average normalized payoffs π̃i as the dependent variables, g1, g2, g3, and
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Figure 9: Mean of the amount demanded as the first mover
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Note: The error bars show the one standard error range. The symbol ** indicates significant differences between treatments at the

5% significance level (Wald test).

g4 as the independent variables, and without a constant:

π̃1 = a1g1 + a2g2 + a3g3 + a4g4 + u1

π̃2 = b1g1 + b2g2 + b3g3 + b4g4 + u2

π̃3 = c1g1 + c2g2 + c3g3 + c4g4 + u3

π̃4 = d1g1 + d2g2 + d3g3 + d4g4 + u4

(1)

where gi is a dummy variable that takes a value of 1 if the game i is played, and 0 other-

wise. Various axioms are tested based on the estimated coefficients of these regressions.
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Symmetry requires that b1 = c1 and b4 = c4. Additivity and homogeneity require that

x3 = x1 + x2 and x4 = 2x1 for x ∈ {a, b, c, d}, respectively. The null player property

requires that a2 = 0, and strong monotonicity requires that a1 > a2 and a4 > a3. Fi-

nally, fairness requires that b3 − b2 = c3 − c2. In Table 6 in Appendix B, we present the

results of Wald test of the verification of these axioms, together with the null hypothesis

(H0).

Symmetry (according to which H0 should not be rejected) is fully confirmed by the

1p and the 2pL implementations. However, it is confirmed only for game 4 (half of the

times) by the 2pH implementation. Additivity and homogeneity (according to whichH0

should not be rejected) are almost always confirmed by the three implementations. The

null player property (according to which H0 should not be rejected) is confirmed in 1p

and 2pL but not in 2pH. In fact, there is no variation in the normalized payoff for player

1 in game 2 under 1p, and it is zero in all groups. The failure to satisfy the null player

property under 2pH is mainly due to the large delay cost in 2pH. Strong monotonicity

(according to which H0 should be rejected) is confirmed by the three implementations.

Fairness (according to which H0 should not be rejected) is rejected by the 1p and the

2pH implementations but confirmed by the 2pL implementation. Table 4 summarizes

whether each axiom is satisfied on average (+) or not (-) for the three implementations.

To conclude this first approach for testing for axioms, we can state the following:

Result 5. The Winter mechanism in the 1p, 2pL and 2pH implementations provides

good and comparable results in terms of satisfaction of the axioms.
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Table 4: Winter mechanisms, axioms

Axiom 1p 2pL 2pH

Efficiency – – –
Symmetry + + –
Additivity + + +

Homogeneity + + +
Null player property + + –
Strong monotonicity + + +

Fairness – + –

5.4.2 Shapley distance (Aguiar et al., 2021)

To strengthen our results on verification of the axioms, we implement the approach

proposed by Aguiar et al. (2021) by computing the Shapley distance, which measures

the distance of an arbitrary vector of payoffs to the Shapley value, and decomposes it

into the failure of the symmetry, efficiency, and marginality axioms. In the following,

we slightly adapt the original procedure by Aguiar et al. (2021) to test the axiomatization

by Shapley (1953) based on efficiency, symmetry, additivity, and the null player because

our games were selected to test these axioms. Here, we present a formal description of

our procedure.

Given a (nonnormalized) vector of payoffs obtained by the players π = (π1, π2, π3, π4):

Step 1. Find a vector of payoffs satisfying symmetry that is closest to π.

For symmetric players (players 2 and 3 in games 1 and 4, respectively), we must

take the sum of their payoffs and this sum must be equally shared among them.

For nonsymmetric players, we keep the same payoffs. At the end of this step, we

obtain a new vector of payoffs denoted by πsym = (πsym1 , πsym2 , πsym3 , andπsym4 ).

Step 2. Find a vector of payoffs satisfying efficiency that is closest to πsym.
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For each player i = 1, 2, 3, 4, compute the new payoff πsym,eff = πsym+[v(N)−∑
j∈N πj]/n. At the end of this step, we obtain a new vector of payoffs denoted

by πsym,eff = (πsym,eff1 , πsym,eff2 , πsym,eff3 , andπsym,eff4 ).

Step 3. Find a vector of payoffs satisfying the null player property that is closest to

πsym,eff .

If player i is a null player (player 2 in game 2), then their new payoff must be

equal to zero, that is, πsym,eff,nulli = 0. Otherwise, for the other players j, the

payoffs of the null players in Step 2 must be equally shared among them, that is,

πsym,eff,nullj = πsym,effj +
∑

i∈Nf π
sym,eff
i /(n− | N f |), where N f is the set of

null players. At the end of this step, we obtain a new vector of payoffs denoted

by πsym,eff,null = (πsym,eff,null1 , πsym,eff,null2 , πsym,eff,null3 , πsym,eff,null4 ).

Step 4. Compute the Shapley distance and its components.

Following Theorem 3 in Aguiar et al. (2021), a vector of payoffs π = (π1, π2, π3, π4)

obtained when implementing game v can be decomposed as follows: π = φ(v) +

esym+eeff+enull+eadd and eφ = esym+eeff+enull+eadd is the Shapley “error”

with:

esymi = πi − πsymi for all i,

eeffi = πsymi − πsym,effi for all i,

enulli = πsym,effi if player i is a null player and enullj = −
∑

i∈Nf π
sym,eff
i /(n− |

N f |) for the other players j,

eaddi = πsym,eff,nulli − φi(v) for all i.
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Given this decomposition, the Shapley distance is given by:

||eφ||2 = ||esym||2 + ||eeff ||2 + ||enull||2 + ||eadd||2 + 2 < eadd, enull >

where < ·, · > is the scalar product and for any vector y ∈ Rn, ||y||2 =< y, y >=∑
i∈N y

2
i

14.

To test for differences between the treatments, we run the following OLS regression

by pooling the data from all four games:

||ek||2g = β11pg + β22pLg + β32pHg + U (2)

The dependent variable is the components of the Shapley distance corresponding to the

four axioms as well as the Shapley distance itself (||ek||2g with k ∈ {sym, eff, null, add, φ})

for group g and the independent variables are 1pg, 2pLg, and 2pHg, which take a value

of 1 if the corresponding treatment is used, and 0 otherwise. The standard errors are

corrected for within-session clustering effects. The results are reported in Table 5.

It can be observed from Table 5 that in all three treatments, the main reasons for

the deviation from the Shapley value are failures of efficiency and additivity. ||eeff ||2

accounts for 59.5%, 62.9%, and 65.1% of the Shapley distance (||eφ||2) in 1p, 2pL,

and 2pH, respectively, and the corresponding values for ||eadd||2 are 31.5%, 28.8%, and

27.8%, respectively. The null player property is largely respected and thus ||enull||2 is

an order of magnitude smaller compared with the other components, accounting for,

14Unlike the original decomposition by Aguiar et al. (2021), which ensures orthogonal components, in
our decomposition, in general, vectors enull and eadd are not orthogonal, so that < eadd, enull > is not
equal to zero. However, in our data, 2 < eadd, enull > are very small (on average, they are -0.08, -0.08,
and -0.09 in 1p, 2pL, and 2pH, respectively, based on the estimation results reported below) compared
with other components.
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||esym||2 ||eeff ||2 ||enull||2 ||eadd||2 ||eφ||2

1p 85.18 606.81 7.28 321.49 1020.68
(18.54) (99.06) (1.83) (16.94) (70.60)

2pL 71.48 613.24 9.89 280.67 975.2
(11.29) (84.04) (2.58) (8.13) (82.14)

2pH 72.15 730.06 8.26 311.69 1122.07
(9.18) (72.82) (0.71) (25.88) (45.34)

No. Obs 528 528 528 528 528
R2 0.148 0.292 0.102 0.407 0.462

p-value∗ 0.802 0.491 0.719 0.108 0.252
Standard errors are in parentheses.
* p-values for testing H0 : 1p = 2pL = 2pH (based on the Wald test)

Table 5: Result of Shapley distance decomposition. Based on pooling the data of all
groups and all games

at most, 1% of the Shapley distance. We also observe that there are no statistically

significant differences in terms of the size of each of the components across the three

treatments.

6 Conclusions

In this paper, we provide an experimental comparison of three different implementations

of the Winter demand commitment bargaining mechanism: that is, 1p, 2pL, and 2pH

implementations. These three implementations predict the same ex ante outcomes but

differ in terms of ex post outcomes. However, our experiment shows that the three differ-

ent implementations provide comparable results for both ex ante and ex post outcomes.

No significant difference appeared in any of our investigation domains: that is, coalition

formation, alignment with the theoretical prediction, and satisfaction of axioms.

An example that we borrow from Winter (1994) on bargaining over the formation

of a government may help in presenting the implications of our results. Bargaining over
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government formation is a process that naturally resembles the demand commitment

model with more than one period. Parliamentary negotiations are usually based on

demands rather than proposals. These demands are often not compatible in the first

period, and at least a second round of requests is implemented to find an agreement. A

second round may be costly in terms of time and it can make the bargaining process

unnecessarily slow and cumbersome. However, lengthening the bargaining process is

often considered essential and crucial for parties to match and for a coalition to form.

Surprisingly, our experimental results suggest that this may not always be the case,

that is, that extending the bargaining process is not always necessary and crucial for

a coalition. In fact, our three implementations resulted in similar outcomes in all our

investigation domains. The key message of our paper is that a mechanism designer

should implement the lightest possible mechanism for bargaining whenever possible

because refinements may turn out to be not only costly to implement, but ineffective

in terms of quality of the performances. In fact, players converge to similar outcomes

(e.g., total or partial cooperation) without taking advantage of any second chances, and

regardless of the different theoretical predictions, as the differences are not matched

behaviorally.
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A Translated instructions and comprehension quiz

An English translation of the instruction materials as well as the quiz (shown on the

screen) can be downloaded from

• https://www.dropbox.com/s/galeo3todbah7iw/Winter_1_loop_

handout.pdf?dl=0 for the Winter one-period implementation,

• https://www.dropbox.com/s/kig2i59ncbw9vjw/Winter_2_loop_

handout.pdf?dl=0 for the Winter two-period implementation.

B Verification of axioms
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