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Abstract

We prove a generalized, multi-factor version of the Uzawa steady-state growth the-
orem. The theorem implies that neoclassical growth models need at least three factors
of production to be consistent with empirical evidence on both the capital-labor elastic-
ity of substitution and the existence of capital-augmenting technical change. We also
build and calibrate a three-factor endogenous growth model with directed technical
change and show that it converges to a balanced growth path that is consistent with
the empirical evidence. Our results indicate that natural resources including land and
directed technical change play a central role in explaining balanced growth.
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1 Introduction

The neoclassical growth model was developed to explain a set of stylized macroeconomic

facts that can be classified under the umbrella of balanced growth (Solow, 1956, 1994).

As conventionally understood, the Uzawa (1961) steady state growth theorem says that on

the balanced growth path (BGP) of a neoclassical growth model, all technological change

must be labor-augmenting, unless the aggregate production function is Cobb-Douglas (Jones,

2005; Jones and Scrimgeour, 2008). This creates a significant problem for the neoclassical

growth model, because data from the United States strongly suggest that (i) there is capital-

augmenting technical change on the BGP and (ii) the aggregate production function is not

Cobb-Douglas (see, e.g., Antras et al., 2004; Oberfield and Raval, 2014; Grossman et al.,

2017).

The standard neoclassical growth model assumes that there are only two factors of pro-

duction, labor and reproducible capital. In reality, there are many other factors of produc-

tion, including various types of land, energy, and other natural resources. These factors do

not fit well in the notion of capital in the neoclassical growth model in that they cannot be

readily accumulated (or reproduced) through savings. In this paper, we examine whether

incorporating more factors of production makes it possible for neoclassical models to be

consistent with the empirical regularities mentioned above.

We start by proving a multi-factor version of the Uzawa (1961) steady state growth

theorem. When building macroeconomic models, researchers have incomplete knowledge of

how the aggregate production function evolves over time due to technological change. We

show that, if an economy has a BGP, the Uzawa theorem provides guidance on how to choose

a simple representation of the ever-changing production function. We call this the Uzawa

Representation. The Uzawa Representation gives the correct relationship between aggregate

inputs and aggregate output on the BGP, while capturing steady state technological change

through factor-augmenting terms on inputs other than reproducible capital. The Uzawa

Representation has the same derivatives and elasticity of substitution (EoS) as the true

production function, suggesting that it can be useful for some economic analyses. But, this

particular representation cannot match evidence on capital-augmenting technical change,

which is observed in the data. If we interpret this representation as the true production

function, the puzzle arises as discussed above. By distinguishing the true production function

and the Uzawa representation, however, our approach does not rule out the existence of other

representations that might have more accurate descriptions of technological change.

To identify other possible representations that are a better match with data, we prove
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a further generalized version of the Uzawa theorem. The generalized theorem demonstrates

that there are a continuum of representations with capital-augmenting technical change, as

long as reproducible capital has a unitary EoS with at least one other factor. From this

broader class of Factor-Augmenting Representations, it is possible to choose a representation

that matches the empirically observed speed of capital-augmenting technological progress.

In other words, the factor-augmenting representations can be simultaneously consistent with

balanced growth, a non-unitary EoS between capital and labor, and capital-augmenting

technical change. We also provide conditions under which these Factor-Augmenting Repre-

sentations have the same derivatives and EoS as the true production function. Thus, these

representations are more suitable for economic analyses than standard specifications that

are based on the neoclassical growth model.

To demonstrate the practical importance of theorems, we formulate and analyze a model

economy with three factors of production and endogenous directed technical change. We

provide a micro foundation for the model such that the resultant aggregate production func-

tion has the form of a Factor-Augmenting Representation that fits the Generalized Uzawa

theorem. The model exhibits a non-unitary EoS between capital and labor, but nonetheless

has a BGP with a positive rate of capital-augmenting technical change, a result that is not

possible with existing models.1 We also calibrate the model to U.S. data and numerically

show that the economy converges to the BGP from a wide range of initial conditions. The

global stability result has a particular theoretical importance, because it demonstrates that

the direction of technological change endogenously conforms to a required condition embed-

ded in the generalized Uzawa theorem. If technological change were exogenous, a knife-edge

condition would be required. In this sense, the model suggests that endogenous directed

technical change is essential in explaining balanced growth in neoclassical models.

Existing work on the Uzawa theorem tends to emphasize its restrictive nature, interpret-

ing the theorem as giving the only possible form of technological progress in the neoclassical

growth model. In contrast, our results should be useful in applied macroeconomic research.

The Generalized Uzawa theorem provides guidance on how to choose functional forms for the

aggregate production function and technical change that together are a good representation

of the true production function along the BGP. In particular, we provide representations

that, along the BGP, have the correct speeds of technological progress, levels of inputs and

output, first order derivatives and elasticities of substitution between factors of production.

Our results are relevant for a wide range of studies. Growth-, development-, and business-

1Grossman et al. (2017) is the sole exception, which we discuss in more detail below.
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cycle accounting analyses all highlight the need to distinguish between different types of tech-

nology when describing macroeconomic outcomes (e.g., Greenwood et al., 1997; Krusell et al.,

2000; Fisher, 2006; Caselli and Feyrer, 2007; Hsieh and Klenow, 2010). Our results allow

such analyses to be conducted with production functions that are simultaneously consistent

with balanced growth facts, capital-augmenting technical change, and the EoS between cap-

ital and labor. Previous approaches can only be consistent with two out of these three. This

is especially important for understanding the relationship between technology and inequal-

ity, because labor- and capital-augmenting technical change have different impacts on factor

shares when the EoS is different than one. For example, Karabarbounis and Neiman (2014)

suggest that capital augmenting technical change is responsible for the decline in the labor

share in many countries over the last several decades. On a separate note, we find that the

three factor model with endogenous and directed technical change converges slowly to the

steady state, when compared to standard neoclassical growth models. This is because of the

slow dynamics of technology and the existence of fixed factors of production. The transition

dynamics in the standard neoclassical model are too fast to explain patterns observed in

data (King and Rebelo, 1993; Banerjee and Moll, 2010). These slow dynamics may also have

important implications for transition dynamics following exogenous shocks (Leon-Ledesma

and Satchi, 2019).

Related Literature. This paper is related to a long literature on balanced growth and the

Uzawa steady state growth theorem. Although the theorem is well known, Uzawa (1961)

does not provide a clear statement or proof of the theorem. A simple and intuitive proof was

proposed by Schlicht (2006) and updated by Jones and Scrimgeour (2008), Acemoglu (2008),

Irmen (2016), and Grossman et al. (2017). With the exception of Acemoglu (2008), the lit-

erature has been concerned only with whether a particular production function can match

the level of output on the BGP. We contribute to this literature in several ways. First, we

extend the theorem to multiple factors of production. Second, we prove a generalized version

of theorem that stresses the difference between the true production function and represen-

tations of the production function. Third, we derive conditions under which representations

have the same first-order derivatives and EoS as the true production function.

As noted above, the existing literature has treated the Uzawa theorem as a restrictive

condition. As a result, many studies have tried to explain why the economy might endoge-

nously conform to the two-factor version of theorem. These studies frequently use models

with directed technical change. In particular, Acemoglu (2003) and Irmen and Tabaković
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(2017) provide models where capital-augmenting technical change disappears in the long

run, while Jones (2005) and Leon-Ledesma and Satchi (2019) specify models that are Cobb-

Douglas in the long-run. We build on these works by presenting an endogenous growth

model that converges to a BGP that is consistent with data on both the existence of capital-

augmenting technical change and the less-than-unitary EoS between capital and labor. Our

model specification builds on the work of Irmen (2017) and Irmen and Tabaković (2017).

To the best of our knowledge, Grossman et al. (2017) provide the only other attempt

to square the Uzawa steady state growth theorem with data on the EoS and the capital-

augmenting technical change. In their model, schooling is both labor-augmenting and

capital-dis-augmenting. In this setting, they show that there is a scope for additional capital-

augmenting technological change. Our results indicate that there is a wider scope for ways in

which the neoclassical growth model can be made to be consistent with the data on EoS and

capital-augmenting technical change. Indeed, their results can be understood as a particular

case of the two-factor Uzawa theorem (see subsection 5.2).

Our results also stress the importance of natural resources for understanding macroeco-

nomic outcomes. Historically, natural resources were only included in aggregate macroeco-

nomic analyses when the research question under study was explicitly about those natural

resources. For example, energy is generally only included in growth models when studying

the depletion of finite resources (e.g., Hotelling, 1931; Heal, 1976) or climate change (e.g.,

Golosov et al., 2014). Our results suggest a much broader importance of non-accumulable

factors: they must be incorporated into models of economic growth in order to recreate the

balanced growth facts that originally motivated aggregate growth modeling (Solow, 1956,

1994). As noted above, our results also indicate that directed technical change, as in Ace-

moglu (2002), is essential to explaining balanced growth. There is a growing literature that

combines directed technical change and natural resources to ask resource-related questions

(e.g., Acemoglu et al., 2012; André and Smulders, 2014; Hassler et al., forthcoming).2 Our

results suggests that these models could serve as the basis for a much wider set of analyses.

Roadmap. The remainder of the paper proceeds as follows. Section 2 discusses the evidence

motivating this study. Section 3 proves a multi-factor version of the Uzawa steady state

growth theorem. In Section 4, we generalize theorem, proving that neoclassical models can

have a positive rate of capital-augmenting on the BGP. Section 5 presents three applications

of these results, focusing on simple cases and existing literature. Section 6 introduces a

2See also, Smulders and De Nooij (2003), Di Maria and Valente (2008), and Lemoine (2020).
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full economic model with endogenous direction of technological change. Section 7 calibrates

the model to the U.S. economy and demonstrates that the model economy endogenously

converges to a BGP with positive capital-augmenting technical change. Section 8 discusses

the broader implications of our findings.

2 Empirical Motivation

The neoclassical growth model, first developed by Solow (1956) and Swan (1956), is the

central building block of much contemporary research in economic growth. Such models are

designed to explain a set of stylized facts, known as ‘balanced’ or ‘steady’ growth (Jones,

2016). The main stylized fact is that income per capita has grown at a constant rate over

long periods of time. Panel (a) in figure 1 presents U.S. data from 1950-2012, which clearly

demonstrate this pattern.3 It also demonstrates that other macroeconomics aggregates have

grown at similar rates to GDP, capturing the notion of balance.

To explain these facts, the neoclassical growth model focuses on an aggregate production

function that has constant returns to scale (CRS) in two factors, reproducible capital and

labor.4 The ability of the neoclassical growth model to provide a simple explanation for these

facts has led to its widespread adoption (Jones and Romer, 2010). The model, however, relies

on some strong assumptions, including those described by the Uzawa (1961) steady-state

growth theorem. As conventionally stated, the Uzawa theorem requires that on a BGP, all

technological progress must be labor-augmenting, unless the aggregate production function

is Cobb-Douglas.

Given the restrictive nature of these conditions for balanced growth, it is natural to

ask whether they are consistent with data. A long literature has estimated the elasticity

between capital and labor in a two-factor production function and rejected the Cobb-Douglas

specification. Most of papers in the literature argue that the elasticity is less than one. For

example, Oberfield and Raval (2014) estimate the macro elasticity of around 0.7 using firm-

level micro data, and Antras et al. (2004) estimates an elasticity of 0.6 directly from macro

time-series data.

Panel (b) of Figure 1 demonstrates that the relative price of investment goods has been

3See Papell and Prodan (2014), Jones (2016), and others for longer time series and data from other
countries.

4Intuitively, the key to explaining balanced growth is that capital is reproducible (i.e., it is accumulated
from saved output). Thus, capital ‘inherits’ the constant growth rate of output, implying that the capital-
output ratio will be constant in the long-run (Jones and Scrimgeour, 2008). Their joint growth rate is then
determined by population growth and technological progress.

6



 1

 10

 100

 1,000

 10,000

 100,000

1960 1970 1980 1990 2000 2010 2020

B
ill

io
ns

 o
f $

20
12

 (l
og

 sc
al

e)

C I K Y

(a) BGP

0

20

40

60

80

100

120

1960 1970 1980 1990 2000 2010 2020

Pr
ic

e 
In

de
x 

(1
96

0=
10

0)

All Non-Residential Equipment

(b) K-Augmenting Technology

Figure 1: Balanced Growth with capital-augmenting technical change. This figure presents some of the
main features of balanced growth in the United States. Panel (a) demonstrates that real output, investment,
consumption and the capital stock have grown at roughly constant rates over long periods of time. These
empirical patterns summarize the notion of balanced growth. Panel (b) demonstrates that the price of
investment goods, and equipment in particular, have been falling relative to the price of consumption goods
in the United States. This indicates capital-augmenting technical change has been occurring along the BGP.
See appendix B for details on data sources.

falling in the United States. This is a type of capital-augmenting technical change. Intu-

itively, in a setting with perfect competition, decreases in the relative price of capital goods

reflect improvement in the efficiency of the investment goods sector. As a result, one unit of

the final (consumption) good can be transformed into increasingly more units of effective cap-

ital goods. In standard neoclassical growth models, however, we typically choose to measure

the quantity of capital in the same units as output. The declining relative price of capital

goods, therefore, should imply that the efficiency of a given unit of capital has increased.5 A

long literature demonstrates that declining investment prices are a quantitatively important

source of growth in the United States (e.g., Greenwood et al., 1997; Krusell et al., 2000).6

As a result, there is broad consensus that capital-augmenting technical change has been

pervasive in the United States over at least the last half a century, even as the economy

5Depending on how we measure the amount of capital, the declining relative price of capital goods can
also be interpreted as investment-specific technological change (IST). Lemma 1 in Section 3 formalizes the
notion that these two types of technological change are equivalent to each other. This result is also discussed
by Grossman et al. (2017), who demonstrate this equivalence in a proof of the Uzawa steady-state growth
theorem.

6See He et al. (2008) and Maliar and Maliar (2011) for discussions of the Uzawa steady state growth
theorem in this context. Karabarbounis and Neiman (2014) show that declining investment prices are a
widespread phenomenon in cross-country data. They use this fact to estimate the EoS between capital and
labor and find a value that is greater than one.
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Factor Share Source

Natural Resources (incl. Land) 8% Caselli and Feyrer (2007)
Land 5% Valentinyi and Herrendorf (2008)
Energy 4% Golosov et al. (2014)

Table 1: This table presents some estimates of U.S. factor shares for inputs other than reproducible capital
and labor. Definitions and methodologies vary. Natural Resources in Caselli and Feyrer (2007) encompasses
land, energy, and other materials.

exhibited signs of balanced growth.

These findings create a puzzle. Given that the EoS between capital and labor is not equal

to one, the Uzawa theorem implies that any two-factor neoclassical growth model that is

consistent with balanced growth is necessarily at odds with evidence on capital-augmenting

technical change. Put differently, the standard neoclassical growth model cannot explain the

broader set of stylized growth facts that we observe in the United States.

In this paper, we examine production functions with additional factors of production,

beyond reproducible capital and labor. It obvious that other factors – such as land, energy,

and other natural resources – exist in the production process. Table 1 collects some evidence

on the importance of these factors in the United States.7 Broadly speaking, estimates sug-

gest that non-reproducible factors other than labor account for about 8-9% of total factor

payments. In particular, Caselli and Feyrer (2007) estimate the factor share of all natural

resources and find 8%. Meanwhile, work in climate economics investigates the factor share

of energy only, disregarding land. Golosov et al. (2014) summarize this evidence as pointing

to a 4% share for energy. Finally, Valentinyi and Herrendorf (2008) focus only on land and

find a share of 5%.

3 A Multi-factor Uzawa Theorem

In this section, we prove that the steady-state growth theorem by Uzawa (1961) (hereafter,

the Uzawa theorem) extends to multi-factor environments that explicitly consider inputs be-

yond labor and reproducible capital. As shown by Solow (1956), sustained economic growth

requires the shape of the production function to change over time, which economists usually

call technological change. Given the existence of a BGP, the Uzawa theorem provides a

convenient representation of the evolution of the production function. We stress the im-

7Estimating factor shares for inputs other than labor is notoriously difficult and often requires structural
assumptions. Our intention is not to endorse any particular estimate. Instead, we simply note that there is
ample evidence that factors other than labor and reproducible capital play a non-negligible role in production.
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portance of making a clear distinction between this representation and the true production

function, for which we often have limited information. In particular, we also prove a new set

of propositions that clarify the conditions under which the representation given by the Uzawa

theorem matches important properties of the true production function, implying that the

representation serves as a good approximation of the true production function in economic

analysis.

Neoclassical Growth Model

The Uzawa theorem depends on two assumptions: (a) the economy is described by a neo-

classical growth model, and (b) the model has a balanced growth path (BGP). We start with

a description of a neoclassical growth model, which is defined broadly to incorporate a wide

range of dynamic macroeconomic models. For readability and consistency with the following

sections, we consider a discrete time setting, where t = 0, 1, 2, . . ., but it is straightforward

to consider the continuous-time equivalents of the results.

Definition 1. A multi-factor neoclassical growth model is an economic environment

that satisfies:

1. Output, Yt, is produced from capital, Kt, and J ≥ 1 kinds of other inputs, {Xj,t}Jj=1 :8,9

Yt = F (Kt, X1,t, ..., XJ,t; t). (1)

In any t ≥ 0, it has constant returns to scale (CRS) in all inputs, Kt, X1,t, ..., XJ,t, and

each input has a positive and diminishing marginal product.

2. The amount of capital, Kt, evolves according to

Kt+1 = Yt − Ct −Rt + (1− δ)Kt, K0 > 0, (2)

where Ct > 0 is consumption, Rt ≥ 0 is expenditure other than capital investment

or consumption (e.g., R&D inputs), and δ ∈ [0, 1] is the depreciation rate. The term

Yt − Ct −Rt on the RHS represents physical capital investment.

8If we allow J = 0, the only constant-returns-to-scale production function is in the form of Yt = AK,tKt.
Although it cannot satisfy decreasing marginal products of its input (Kt), this AK functional form is also
subject to the Uzawa theorem, in the sense that AK,t must be constant on the BGP (i.e., there may not be
any technological change).

9We follow Uzawa (1961) and Jones and Scrimgeour (2008) by including t as an argument in F . Alter-
natively, We can write equation (1) as Yt = Ft(Kt, X1,t, ..., XJ,t) to highlight that Ft changes with t.
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There are a number of points to note regarding Definition 1. First, production function

F (·; t) in (1) depends on t, capturing technological progress. Importantly, we place no

restrictions on how the shape of F (·; t) changes over time. As discussed below, the Uzawa

theorem provides insight about how to approximate the time dependence of F (·; t) with

standard factor-augmenting terms.

Second, if J equals 1 and X1,t is interpreted as labor, Lt, then equation (1) reduces

to a familiar two-factor neoclassical production function, Yt = F (Kt, Lt; t). In addition, if

we assume Lt grows exogenously, Definition 1 essentially coincides with the definition of a

neoclassical growth model in Schlicht (2006) and Jones and Scrimgeour (2008), who provide

a simple statement and proof of the two-factor Uzawa theorem.

Third, we allow for the Rt term in (2). If we set Rt = 0, equation (2) is in line with

the previous definitions of the Uzawa theorem. This generalization is not essential for the

proof of the Uzawa Theorem, but it accommodates the possibility of endogenous growth,

which we examine in later sections. In production function (1), any technological change is

captured by the last t term. If we think technology can be affected by the R&D expenditure,

then such expenditure would be included in Rt in (2). Similarly, the evolution of factors

Xj,t, including population Lt, can be either exogenous or dependent on particular types of

expenditure, such as child-raising costs. Such costs are also included in Rt.

Fourth, the only reason why capital, Kt, is distinguished from other production factors

X1,t, ..., XJ,t is that we explicitly specify its accumulation process as in (2), which guarantees

that Kt can be accumulated linearly with the output. From theoretical viewpoint, Kt needs

not to be limited to physical capital.10 We will show that the Uzawa theorem holds regardless

of the evolution process for other inputs. The Xj,t’s can be either endogenous or exogenous.

Lastly, we measure the amount of capital by its value in terms of final output. Specifically,

equation (2) implicitly normalizes the unit of period t + 1 capital so that period t final

output can always be converted to the same units of period t + 1 capital. Note that this is

merely a choice of units, and therefore should not limit the applicability of our results. For

example, Greenwood et al. (1997) and Grossman et al. (2017) consider investment-specific

technological change, which enables more capital to be produced from a unit of final output.

The following Lemma shows that, by change of variables, Definition 1 can accommodate

such a case.

10It can be any combination of factors that can be accumulated linearly with the output. For example,
in the pre-industrial Malthusian economy where population was proportional to output (e.g., Galor, 2011;
Li et al., 2016), labor could be included in Kt, not in Xj,t.
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Lemma 1. Consider an economic environment where physical capital K̆t accumulates ac-

cording to

K̆t+1 = (Yt − Ct −Rt)qt+1 + (1− δ̆)K̆t, (3)

where qt > 0 is the investment-specific technology. The production function is given by

Yt = F̆ (K̆t, X1,t, ..., XJ,t; t), which has CRS and positive and diminishing returns to all inputs.

If the growth factor of investment-specific technological change gq = qt+1/qt is constant,11

this environment fits Definition 1 through a change of variables of Kt ≡ K̆t/qt and δ =

(δ̆ + gq − 1)/gq.

Proof. See Appendix A.2.

The change of variables effectively normalizes the unit of capital so that capital Kt ≡
K̆t/qt is always measured in terms of the previous period’s final goods. The depreciation

rate, δ, after this normalization should be higher than δ̆, because positive investment specific

technological change decreases the value of older capital. Thus, the new value of δ must ac-

commodate changes in both the numerator (physical depreciation) and denominator (falling

investment price) of Kt ≡ K̆t/qt. In the rest of the paper, we describe the economy in terms

of Definition 1, where any investment-specific technological change is included in the change

of the shape of the production function F (·; t).

Balanced Growth Path

Now, we turn to the second requirement of the Uzawa theorem, the BGP.

Definition 2. A balanced growth path (BGP) in a multi-factor neoclassical growth

model is a path along which all quantities, {Yt, Kt, X1,t, ..., XJ,t, Ct, Rt}, grow at constant

exponential rates for all t ≥ 0. On the BGP, we denote the growth factor of output by

g ≡ Yt/Yt−1, and the growth factors of any variable Zt ∈ {Kt, X1,t, ..., XJ,t, Ct, Rt} by gZ ≡
Zt/Zt−1. A non-degenerate balanced growth path is a BGP with gK > 1− δ.

From (2), condition gK > 1 − δ means that physical capital investment Yt − Ct − Rt

is strictly positive along the BGP. The rest of the paper focuses on this non-trivial case.

We call it a non-degenerate BGP and simply mention it as a BGP when there is no risk of

confusion. Note that, while a BGP requires variables to grow at constant rates, it does not

11We assume gq to be constant for simplicity. This condition is not necessary if we extend Definition 1
to allow the depreciation rate to change over time. As long as we focus on the BGP, the results will not be
affected.
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require them to grow at the same rate. Still, the following lemma confirms that capital and

consumption need to grow at the same speed as output to maintain a BGP.

Lemma 2. On any non-degenerate BGP in a multi-factor neoclassical growth model, the

capital-output ratio Kt/Yt and the consumption-output ratio Ct/Yt are constant and strictly

positive.

Proof. See Appendix A.3.

The proof utilizes the assumption of C0 > 0 from Definition 1. If R0 > 0, we can similarly

show that Rt/Yt is constant.

Uzawa Representation and Its Properties

Having defined the neoclassical growth model and the BGP, we are ready to present a multi-

factor version of the Uzawa Theorem.

Proposition 1. (A Multi-Factor Uzawa Theorem) Consider a non-degenerate BGP

in a multi-factor neoclassical growth model, and define ÃXj ,t ≡ (g/gXj)
t where j = 1, ..., J .

Then, on the BGP,

Yt = F̃ (Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t) holds for all t ≥ 0, (4)

where F̃ (·) ≡ F (·; 0).

Proof. From the definition of ÃXj ,t ≡ (g/gXj)
t, the growth factor of ÃXj ,tXj,t is g for all j.

The growth factor of Kt is also g from Lemma 2. Therefore, all the arguments in function

F̃ (·) are multiplied by g each period. This means that the RHS of (4) is multiplied by g each

period since F̃ (·) ≡ F (·; 0) has CRS. Note that in period 0, equation (4) holds true because

it is identical with (1). Therefore, (4) holds for all t ≥ 0, where both sides are multiplied by

g in every period.

It is important to understand what the theorem does and does not imply. Recall that

the neoclassical production function F (·; t) in (1) is a time-varying function that potentially

depends on t in complex ways. If the economy is on the BGP, the Uzawa theorem says that

there should be a simple representation of this dependence of function F (·; t) on t, which

holds at least along this particular BGP. We call this representation, which is given by (4),

the Uzawa representation. It consists of a time-invariant function F̃ (·) and exponentially

growing ÃXj ,t terms. At t = 0, equation (4) coincides with the true production function (1).
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The Uzawa representation illustrates how the production function evolves from there as t

changes.

However, caution is needed when interpreting F̃ (·) as a production function for beyond

t = 0, because Proposition 1 only guarantees that the value of F̃ (·) coincides with that of the

true production function F (·; t) exactly on a particular BGP. As is clear from the proof of

the proposition, function F̃ (·) contains no information about what will happen when inputs

deviate even slightly from the BGP. As a result, there is no guarantee that the derivatives

of function F̃ (·), even on the BGP, are equal to the derivatives of the production function

F (·; t), apart from time t = 0. Without further information, therefore, the Uzawa theorem

has little use in economic analysis.

In the following two propositions, we extend theorem by focusing on the conditions under

which the Uzawa representation has the ‘correct’ marginal properties. We start by looking

at first-order derivatives.

Proposition 2. (Derivatives of the Uzawa representation) Let FZ(·; t) denote the

partial derivative of function F (·; t) with respect to its argument Z ∈ {Kt, X1,t, ..., XJ,t}.12 If

the share of factor Z, i.e., sZ,t = FZ(·; t)Zt/Yt, is constant on a non-degenerate BGP of a

multi-factor neoclassical growth model, then the following holds on the BGP:

∂

∂Zt
F̃ (Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t) = FZ(Kt, X1,t, ..., XJ,t; t) for all t ≥ 0. (5)

Proof. See Appendix A.4.

If the factor shares are constant on the BGP, equation (5) says that F̃ (·) has the same

derivatives as the true production function F (·; t) on the BGP. We can also show that the

elasticity of substitution (EoS) between capital and other production factors in the Uzawa

representation F̃ (·) coincides with the EoS in the true production function F (·; t) on the

BGP, if the latter does not change over time.13 Let us first define the EoS when there are

more than two inputs.14

12Appendix A.1 discusses the details regarding notation for derivatives.
13To the best of our knowledge, Acemoglu (2008) is the only example of previous work considering first-

order properties implied by the Uzawa Theorem. He looks at first-order conditions in the two-factor case,
providing a special case of Proposition 2.

14When there are more than two production factors, there are various ways to define the elasticity of
technical substitution. See Stern (2011) for a concise taxonomy. The elasticity in (6) is calculated using the
inverse of the symmetric elasticity of complementarity (SEC), defined in Stern (2010), which has a desirable
property of symmetry between the two variables.
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Definition 3. The Elasticity of Substitution between capital Kt and input Xj in multi-

factor neoclassical production function F (K,X1, ..., XJ ; t) in (1) is defined by

σKXj ,t = − d ln(Kt/Xj,t)

d ln
(
FK(Kt, X1,t, ..., XJ,t; t)/FXj(Kt, X1,t, ..., XJ,t; t)

)∣∣∣∣∣
Yt,X−j,t:const

, (6)

where X−j,t ≡ {X1,t, ..., XJ,t}\Xj,t represents the inputs other than Kt and Xj,t.

Using this definition, we have the following result.

Proposition 3. (Elasticity of Substitution in the Uzawa Representation) Let σ̃KXj ,t

denote the EoS in the Uzawa representation, as in Definition 3. If the EoS of the true

production function, σKXj ,t for some j ∈ {1, ..., J}, is constant over time on the BGP, then

σ̃KXj ,t = σKXj ,t holds for all t ≥ 0 on the BGP.

Proof. See Appendix A.5.

Benefits and Limitations of the Uzawa Theorem

Propositions 1-3 demonstrate that the Uzawa representation F̃ (Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t)

captures key elements of the true production function and is potentially useful for economic

analysis. When developing a dynamic macroeconomic model, researchers need to take a

stand on how to represent technical change. In other words, they need to decide how the

shape of the production function will evolve over time. This is a challenging task that can

influence the results, especially in a quantitative setting.

Given the requirement that the model should have a BGP, the multi-factor Uzawa the-

orem provides guidance in choosing an effective representation of the evolution of the pro-

duction function. As shown in equation (1), the definition of the neoclassical growth model

allows the aggregate production function to evolve in any way. The Uzawa representation

captures this evolution only through factor-augmenting terms. Proposition 1 demonstrates

that the Uzawa representation matches the level of all the key variables on the BGP, recre-

ating an important set of stylized facts. Proposition 2 implies that the Uzawa representation

has the correct derivatives, and therefore factor shares, as long as factor shares are constant

on the BGP. Relatedly, Proposition 3 says that the Uzawa representation has the correct

EoS between capital and other variables, as long as that elasticity is constant. Thus, the

Uzawa representation can be useful as a local approximation of the true function around the

BGP.
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The Uzawa representation is based on function F̃ (·). In Propositions 1-3, we set F̃ (·) =

F (·; 0), which may suggest that the period-0 production function must be known to the

researcher. However, this assumption is made for the sake of clarity and is not necessary. The

following remarks state that we can apply propositions even when only the local properties

of the period-0 production function are known.

Remark 1. The proof of Proposition 1 holds as long as F̃ (·) is any CRS function that

matches the level of inputs and output in period 0 of the BGP; i.e., F̃ (K0, X1,0, ..., XJ,0) = Y0.

Remark 2. The proof of Proposition 2 only requires F̃ (·) to match the first derivative of

F (·; 0) in period 0 of the BGP, i.e., F̃Z(K0, X1,0, ..., XJ,0) = FZ(K0, X1,0, ..., XJ,0; 0), in ad-

dition to the condition in Remark 1.

Remark 3. The proof of Proposition 3 only requires the EoS of F̃ (·) evaluated in the period

0 of the BGP to match that of F (·; 0), in addition to the conditions in Remark 1.

Thus, when building models for macroeconomic research, economists can construct the

Uzawa representation that is consistent with BGP data, even if they do not know the whole

shape of period-0 true production function, F (.; 0). They can simply pick any CRS produc-

tion function (e.g., a CES production function) and calibrate it to match the level, derivatives

(or factor shares), and the EoS from the data at a particular point in time, which can be

regarded as time-0 BGP values. Then, Uzawa representation will continue to match these

moments on the BGP, as long as the factor shares and the EoS are stationary.

Correctly modeling the level of output, factor prices, factor shares, and EoS between

inputs is likely to be sufficient to answer many research questions in macroeconomics. In

this sense, the Uzawa theorem is a positive result, highlighting the usefulness — rather than

the limitations — of neoclassical growth models. Still, this particular representation may

miss other important properties of the true production function. One of such properties is

the direction of the technological change. The next section further generalizes the Uzawa

growth theorem to overcome this limitation.

4 A Generalized Uzawa Growth Theorem

By viewing the ÃXj ,t as the factor Xj,t-augmenting technology terms, Proposition 1 implies

that it is always possible to interpret the time variation of the true production function F (·; t)
on the BGP in terms of exponential augmentation of production factors. It is tempting to

conclude that there should be no technological change that enhances the productivity of
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capital on the BGP, because there is no ÃK,t term in (4). This reasoning is insufficient,

because Proposition 1 does not establish uniqueness. As a result, it does not rule out the

existence of better representations of the true production function.

In this section, we prove a further generalized version of the Uzawa theorem that allows

for representations with capital-augmenting technical change. We explore the possibility

that the true production function has more than one factor-augmenting representation and

identify a condition under which there will be a representation that matches the data on the

capital-augmenting technological change shown in Section 2. To satisfy this condition while

remaining consistent with empirical evidence, it is essential to include factors of production

beyond labor and reproducible capital in the aggregate production function.

Factor-Augmenting Technological Change and Factor Substitution

We start by defining a factor-augmenting representation. Note that we still do not know the

functional form of FAUG(·) below. Rather, the following definition sets out the goal of this

section.

Definition 4. A Factor-Augmenting Representation of the true production function

(1) is a combination of a time-invariant constant-returns-to-scale function FAUG(·) and the

growth factors of factor-augmenting technologies γK > 0 and γXj > 0, j ∈ {1, ..., J}, such

that the paths of output and inputs on a BGP satisfy

Yt = FAUG(AK,tKt, AX1,tX1,t, ..., AXJ ,tXJ,t) holds for all t ≥ 0, (7)

where AK,t = (γK)t and AXj ,t = (γXj)
t.

By comparing (4) with (7), it is clear that the Uzawa representation is a special case

of factor-augmenting representation. As we explain below, (4) assumes that all effective

factors grow at the same rate of g, while (7) permits different growth rates among different

effective factors. In other words, the Uzawa representation hypothesizes that there is no

factor substitution taking place when the economy grows along the BGP. The homothetic

expansion of every effective input is the simplest interpretation of a steadily growing economy,

but it does not necessarily constitute the best description of reality.

To see this, suppose that every effective input, including effective capital, grows at the

same speed as the output. Recall that physical capital is already growing at the same

speed as output on the BGP (Lemma 2). Then, there is no room for additional capital-

augmenting technological progress to further augment its effectiveness. As discussed in
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Section 2, however, there is clear evidence that the productivity of capital, measured in terms

of output as in our model, has steadily been increasing on the BGP. Thus, the interpretation

of the BGP as being a homothetic expansion of every input is at odds with a well-established

stylized fact.

Motivated by this contradiction, we now consider a broader range of possibilities in

which effective inputs grow at different constant rates. To have balanced growth with non-

homothetic expansion of production factors, it is necessary to further restrict the possible

functional forms of the factor-augmenting representation. Before moving to formal proposi-

tions, we provide a heuristic discussion that highlights the key intuition. Suppose that the

true production function can be represented in the factor-augmenting way (7) on the BGP

with the correct derivatives and EoS. Then, the growth rate of output can approximately be

written as follows:15

g ≡ Yt+1/Yt ≈ sk,tγKgK +
J∑
j=1

sXj ,tγXjgXj , (8)

where sk,t ≡ FK(Kt, X1,t, ..., XJ,t; t)Kt/Yt is the share of capital at time t and similarly for

sXj ,t.

Equation (8) says that the growth rate of the output is the weighted-average of the growth

rates of different effective factors, where the weights are factor shares. When the effective

factors grow at different speeds, γKgK and γXjgXj ’s are different. Specifically, let us assume

that effective capital grows faster than output due to K-augmenting technological change

(γKgK > g). Then there must be at least one effective factor that is growing slower than

output. Let us say that this factor is X1 (i.e.,γX1gX1 < g) and that all the other effective

factors are growing at the same rate as output. Then, dividing the factor augmenting

representation (7) by Yt gives

1 = FAUG

(
AK,tKt

Yt
,
AX1,tX1,t

Yt
, constants

)
. (9)

In this form, it is evident the growing effective capital-output ratio AK,tKt/Yt permits

production of unit output with the shrinking effective X1-output ratio AX1,tX1,t/Yt. In other

words, factor substitution is occurring.

Now, let us check if this on-going factor substitution is consistent with the definition of

15This decomposition is obtained by Taylor-expanding the RHS of (7) for t + 1 with respect to every
effective factor, around the period t values for the variables, and dividing the result by the RHS of (7) for
t. The Taylor expansion is exact when the variables in t and t + 1 are sufficiently close, or equivalently, in
continuous time.
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the BGP. On the BGP, output grows at a constant rate, g, which means that the RHS of (8)

must also be constant. Given γKgK > γX1gX1 , the RHS of (8) only remains constant when

the factor shares sk,t and sX1,t do not change over time. This happens if and only if the EoS

of FAUG(·) between K and X1, defined in Definition 3, is equal to one. To summarize, for

K-augmenting technological change to happen on the BGP in a factor-augmenting repre-

sentation, the functional form of FAUG(·) needs to have a unitary EoS between capital and

some other factor.16 In this case, it is possible to have balanced growth even when effective

capital grows faster than output.

Once we obtain a factor-augmenting representation, we hope to use it as an approximation

of the true production function. In particular, as in Proposition 3, the representation is

especially useful if the EoS of FAUG(·) matches that of the true production function. This

is only possible when the true production function F (·; t) has a unitary EoS between capital

and some other factor, because we already know that FAUG(·) must have a unitary EoS.

As discussed in section 2, there is a great deal of evidence suggesting that the EoS between

capital and labor is different than one. However, our definition of neoclassical growth model

allows for any number of inputs. Once we consider the realistic case with more than two

factors of production, it becomes more likely that at least one input has a unitary EoS with

capital.

A Steady-State Growth Theorem with K-augmenting Technical Change

Here, we formally construct a function that can be used as a basis for a factor-augmenting

representation. Consider factors of production other than capital, {X1,t, ..., XJ,t}, and sup-

pose that some of them are substitutable with capital, Kt, with unitary elasticity in the

period 0 production function, F (·; 0). Without loss of generality, we reorder these factors so

that the first j∗ ∈ {1, ..., J} of them can be substituted with capital with the unitary EoS.

If capital is substitutable with j∗ other factors with unit elasticity, we can interpret

them as if they are combined together in the Cobb-Douglas fashion to form an interme-

diate input. The intermediate input, which we call the capital composite, will then be

one argument in the final production function. Using the share of factors in period 0,

sK,0 ≡ FK(K0, X1,0, ..., XJ,0; 0)Kt/Yt and sXj ,0 ≡ FK(K0, X1,0, ..., XJ,0; 0)Xj,t/Yt, we define

16In the Uzawa representation, γKgK = γXj
gXj

holds for all j. Because the production function is

assumed to have CRS (which guarantees sK,t +
∑J
j=1 sXj ,g = 1), the RHS is always constant. Therefore, we

can use F (·; 0) as the Uzawa representation without checking its EoS properties (see Proposition 1) at the
cost that it cannot accommodate the possibility of K-augmenting technological change.
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period-0 relative shares within the capital composite:

α = sK,0/(sK,0 +

j∗∑
j=1

sXj ,0), ξj = sXj ,0/(sK,0 +

j∗∑
j=1

sXj ,0). (10)

Using these relative shares, we can represent the production function in a nested form:17

F (k, x1, ..., xJ) ≡ F̂

(
kα
∏j∗

j=1
x
ξj
j , xj∗+1, ..., xJ

)
. (11)

The first argument of the F̂ (·), m = kα
∏j∗

j=1 x
ξj
j , represents the capital composite, which

combines capital and the other j∗ factors that have a unitary EoS with capital. Capital com-

posite m is an argument in the outside function F̂ (·), along with other factors xj∗+1, ..., xJ .

The shape of the outside function F̂ (·) is defined using the period-0 production function

F (·; 0):18

F̂ (m,xj∗+1, ..., xJ) ≡ F

((∏j∗

j=1
X
ξj
j,0

)−1/α
m1/α, X1,0, ..., Xj∗,0, xj∗+1, ..., xJ ; 0

)
. (12)

The first argument of F̂ (·), m, collects the j∗ relevant inputs and combines them with capital

in the first argument. As a result, function F̂ (·) has j∗ fewer arguments than F (·; 0). Note

that the RHS of (12) includes the BGP values Xj,0, J = 1, . . . , j∗, which are treated as

constants. Changes in the xj,0 terms only matter through m.

As the following lemma shows, the nested representation, F (·) with F̂ (·), approximates

the true production function around the BGP in period 0.

17In this section, we use lowercase letters k, x1, ..., xJ to denote variables, while uppercase letters
Kt, X1,t, ..., XJ,t are the BGP values, unless otherwise noted.

18F (·; 0) needs to satisfy σKXj ,0 = 1 for j = 1, ..., j∗. Other than that, the following analysis only requires
the local properties of F (·; 0) are known to researchers. See Remarks 1-3 for a related discussions in the
context of the multi-factor Uzawa theorem.
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Lemma 3. (Nested representation of the production function at t = 0)

a. F (K0, X1,0, ..., XJ,0) = F (K0, X1,0, ..., XJ,0; 0).

b. For any Z ∈ {K,X1, ..., XJ}, FZ(K0, X1,0, ..., XJ,0) = FZ(K0, X1,0, ..., XJ,0; 0).

c. For any j = 1, ..., j∗, σKXj ,0 = σKXj ,0, where σKXj ,0 is the EoS of function F (k, x1, ..., xJ)

between k and xj, evaluated at the period-0 BGP.

d. Functions F̂ (m,xj∗+1, ..., xJ) and F (k, x1, ..., xJ) have constant returns to scale.

Proof. See Appendix A.6.

Properties a, b, and c respectively confirm that the nested representation F (·) matches

the period-0 true production function, F (·; 0), in terms of the level of inputs and output, the

first derivatives for any input, and the EoS between K and any other input Xj, when the

function is evaluated around the period-0 BGP.19 Property d confirms the CRS property.

Thanks to the CRS property, the nested representation can be used not only for period

0, but also for representing how the production function evolves from there along the BGP.

The following proposition establishes that, with the nested representation F (·), there are

multiple ways to represent the technological change in factor-augmenting fashion.

Proposition 4. (A Generalized Uzawa Growth Theorem) Suppose that σKXj ,0 = 1

for j = 1, ..., j∗. On a non-degenerate BGP, let γK > 0 and γXj > 0, j ∈ {1, ..., j∗}, be any

combination that satisfies the technology condition

(γKg)α
∏j∗

j=1
(γXjgXj)

ξj = g. (13)

For j ∈ {j∗ + 1, ..., J}, let γXj = g/gXj . With γK and each γXj , define AK,t = (γK)t and

AXj ,t = (γXj)
t. Also, define function F (·) by (10) and (11). Then, on the BGP,

Yt = F (AK,tKt, AX1,tXj,t, ..., AXJ ,tXJ,t) for all t ≥ 0. (14)

Proof. See Appendix A.7.

Note that (14) constitutes a factor augmenting representation, as defined by Definition

4.20 Thus, Proposition 4 characterizes the set of factor-augmenting representations of the

19Namely, when {k, x1, ..., xJ} are at the period-0 BGP values {K0, X1,0, ..., XJ,0}.
20Recall that function F (·) has CRS from Lemma 3.
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true production function along the BGP. When there is no factor that is substitutable with

capital with unit elasticity at time 0 (i.e., j∗ = 0), then Proposition 4 becomes identical to

Proposition 1.21 However, given that there are many factors of production in reality, it seems

plausible that at least one of them is substitutable with capital with unit elasticity (j∗ ≥ 1).

In this case, there are several aspects of the proposition that warrant further discussion.

First, unlike Proposition 1, the generalized theorem implies that there is a continuum of

representations. Namely, factor-augmenting terms, γK and γXj for j = 1, ..., j∗, can be any

combination that satisfy condition (13). This enables applied researchers to pick the repre-

sentation that is most consistent with data on technical change. The Uzawa representation

is a special case of the factor-augmenting representation with γK = 0.

Second, condition (13) implies that the amount of effective capital composite,

Mt = (AK,tKt)
α
∏j∗

j=1
(AXj ,tXj,t)

ξj ,

must grow at the same speed of output, g. By taking logs, it can be expressed in a log-linear

form:

α log γK +
∑j∗

j=1
ξj log γXj = (1− α) log g −

∑j∗

j=1
ξj log gXj . (15)

When the growth rates of the factor-augmenting technologies are exogenous, this log-linear

condition is restrictive. In a model where the direction of technical change is endogenous,

however, this condition can be endogenously satisfied once the economy converges to the

BGP. We will examine this possibility in sections 6 and 7.

Third, similar to the original Uzawa Theorem (Proposition 1), equation (14) is not a

functional relationship. It only states that the level of inputs and outputs in this represen-

tation match those of the true production function on the BGP. The following propositions

establish that, under conditions similar to Propositions 2 and 3, the factor-augmenting rep-

resentation (14) gives the correct first derivatives and the correct EoS between capital and

other factors around the BGP.

Proposition 5. (Derivatives of the Factor-Augmenting Representation) Suppose

that σKXj ,0 = 1 for j = 1, ..., j∗. If the share of factor Zt ∈ {Kt, X1,t, ..., XJ,t}, i.e., sZ,t =

FZ(·; t)Zt/Yt, is constant on a non-degenerate BGP of a multi-factor neoclassical growth

21If j∗ = 0, condition α +
∑j∗

j=1 ξj = 1 in Lemma 3 implies α = 1. Then, condition (13) reduces to
γK = 1, which means AK,t = 1 for all t. Then, (14) becomes identical to (4).
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model, the following holds on the BGP:

∂

∂Zt
F (AK,tKt, AX1,tX1,t, ..., AXJ ,tXJ,t) = FZ(Kt, X1,t, ..., XJ,t; t) for all t ≥ 0. (16)

Proof. See Appendix A.8.

Proposition 6. (The EoS of the Factor-Augmenting Representation) Suppose that

σKXj ,0 = 1 for j = 1, ..., j∗ and let σKXj ,t denote the EoS in the factor-augmenting represen-

tation

F (AK,tKt, AX1,tX1,t, ..., AXJ ,tXJ,t). If the EoS of the true production function, σKXj ,t for

some j ∈ {1, ..., J}, is constant over time on the BGP, then σKXj ,t = σKXj ,t holds for all

t ≥ 0 on the BGP.

Proof. See Appendix A.9.

Summary and Comparison to Uzawa Theorem

It is informative to contrast the results in this section with those in Section 3. The Uzawa

theorem (Proposition 1) shows that if the economy exhibits balanced growth, as observed in

many countries, there always exists a representation of the evolution of the production func-

tion, F̃ (Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t). This simple representation, called the Uzawa Represen-

tation, explains the balanced growth by homothetic expansion of every effective production

factor. In other words, the Uzawa representation hypothesizes that no factor substitution is

taking place along the BGP.

While the Uzawa representation matches the behavior of the true, often unknown, pro-

duction function around the BGP (Propositions 2 and 3), it fails to explain one critical

aspect of growth. In the Uzawa representation, the productivity of capital does not improve,

because there is no ÃK term. Our generalized theorem in Proposition 4 clarifies that the

Uzawa theorem is only a single possibility out of a continuum of possible factor-augmenting

representations, as long as the production function allows factor substitution on the BGP

(which requires that at least one factor of production has a unitary EoS with capital).22

Every candidate representation can explain the observed quantities on the BGP, but they

differ in the rates of factor-augmenting technological progress among different production

factors. So, it is possible to choose a candidate representations that matches the rate of

capital-augmenting technological progress observed in data. Given the evidence of positive

22The Uzawa representation, where γK = 1 and γXj = g/gXj for all j, satisfies condition (15).

22



capital-augmenting technological change, the Uzawa representation will be ruled out as an

appropriate representation of technological change.

Propositions 5 and 6 guarantee that, if factor shares and the EoS are stationary, the

chosen factor-augmenting representation will have correct derivatives and EoS. Thus, the

representation constitutes a local approximation of the actual production function along the

BGP, similar to the Uzawa representation. Therefore, it should be at least as useful as the

Uzawa representation in any economic analysis. Indeed, the factor-augmenting representa-

tion will be more useful in many applications, especially when the questions at hand require

understanding the evolution of productivity. In the reminder of the paper, we explain the

use of new propositions in several concrete settings.

5 Three Simple Examples

So far, we have presented our results in as general a setting as possible. To incorporate these

results into neoclassical models suitable for economic analysis, it is necessary to specify the

production factors included in the production function. This section presents three examples

that explore the simplest way to make neoclassical models consistent with aggregate data

on the relative price of capital and the EoS between capital and labor. In subsection 5.1,

we explain why a standard neoclassical economy only with two factors cannot accomplish

this goal. Then, subsection 5.2 discusses the approach taken by Grossman et al. (2017) as

a special case of the 2-factor neoclassical environment. Finally, subsection 5.3 shows that

the conflict between data and neoclassical models can be resolved when including factors of

production beyond labor and reproducible capital. Throughout this section, we describe only

the production side of the economy and do not specify the source of technological change.

We develop a full macroeconomic model with endogenous technological change in Section 6.

5.1 Standard 2-Factor Neoclassical Growth Model

Suppose that the true production function uses only two kinds of inputs, capital, Kt, and

labor, Lt, i.e., Yt = F (Kt, Lt; t). The production function F (·; t) depends on time due to the

technological change. Then, Proposition 1 says that, on any BGP with positive investment,

technological change can always be represented as Yt = F̃ (Kt, AL,tLt). However, if these two

factors are substitutable with unit elasticity (σKL = 1), Proposition 4 shows there are other
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possible factor-augmenting representations of the same BGP:23

Yt = A(AK,tKt)
α(AL,tLt)

1−α,where A > 0 is a constant, (17)

which includes an Uzawa representation Yt = AKα
t (ÃL,tLt)

1−α as a special case. Given the

growth factors of output and labor on the BGP, condition (13) implies that any combination

of γK = AK,t+1/AK,t and γL = AL,t+1/AL,t is consistent with the BGP as long as they satisfy

γαK(γLgL)1−α = g1−α. By rewriting (17) as Yt = AtK
α
t L

1−α
t , where the TFP At is given

by At ≡ AAαK,tA
1−α
L,t , it is clear that various combinations of capital- and labor-augmenting

technological changes give the same rate of growth for TFP and, therefore, output.

This result confirms the widely understood version of the Uzawa theorem: on a BGP, all

technological progress must be labor-augmenting, unless the production function is Cobb-

Douglas. As we have seen in Section 2, this theoretical result is in contradiction with two

stylized facts: (i) the productivity of capital has been steadily increasing, and (ii) the EoS

between capital and labor is less than one, ruling out the Cobb-Douglas production function.

No standard two-factor production function can reconcile these two stylized facts on a BGP.

5.2 Inclusion of Schooling in a Two-Factor model

Grossman et al. (2017) propose a possible solution to this contradiction by including school-

ing, st ≥ 0, in a standard two-factor production function. Their result can be understood

intuitively in terms of our analytical framework. While they start their analysis from a

factor-augmenting representation, it is worthwhile to consider an underlying time-varying

true production function in the form of (1):24

Yt = F (Kt, Lt; t) = F s(D(st)
aKt, D(st)

−bLt; t), (18)

where a > 0, b > 0, D(·) ∈ [0, 1], and D′(·) < 0. With D(st) terms, the RHS of (18)

specifies the production function beyond the general form F (Kt, Lt; t). When schooling st

increases, the multiplier D(st)
a on Kt shrinks, raising the marginal product of capital. The

opposite holds for labor. In this way, Grossman et al. (2017) specified a certain type of

complementarity between schooling and capital.

23When there are two factors (J = 1) and they are substitutable with unit elasticity (j∗ = 1), equation

(14) in Proposition 4 implies that Yt = F̂
(
(AK,tKt)

α(AL,tLt)
1−α). Because function F̂ (·) has CRS and has

only one argument, we can write F̂ (x) = Ax for some A > 0, which gives (17).
24They considered not only factor-augmenting technological progress, but also investment-specific tech-

nological change. Definition 1 can include both cases as we have shown in Lemma 1.
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Note that st is not a production factor in the neoclassical sense, because the produc-

tion function has CRS only in capital and labor. Still, as the D(st) term changes over

time, it affects the amount of output produced from given Kt and Lt. This is a particular

form of technological change, and we can consider D(st) as being included in the t term

of F (Kt, Lt; t), as in the middle part of (18). Therefore, it falls within the definition of a

two-factor neoclassical growth model (i.e., Definition 1 with J = 1).

From Proposition 1, this production function has an Uzawa representation Yt = F̃ (Kt, ÃL,tLt)

with ÃL = (g/gL)t on a BGP, where both effective factors Kt and ÃL,tLt grow at the same

speed as output. The production function in Grossman et al. (2017) can be interpreted in

the following way, keeping the multiplier D(st) term in the expression:

Yt = F̃ (Kt, ÃL,tLt) = F̃ (AK,tD(st)
aKt, AL,tD(st)

−bLt). (19)

Comparing the arguments in the RHS to those in the middle, we immediately obtain AK,t =

D(st)
−a and AL,t = ÃL,tD(st)

b on the BGP. Because the multiplier D(st)
a shrinks as st

increases, the capital-augmenting technology AK,t must grow so as to exactly offset the

shrinking D(st)
a term. Conversely, the labor-augmenting term AL,t should grow slower than

that in the Uzawa representation ÃL,t because the multiplier D(st)
−b is also augmenting

labor.25 In this sense, there is no overall growth in capital productivity in the Grossman

et al. (2017) formulation.

Within the limits of the two-factor Uzawa theorem, Grossman et al. (2017) propose a

new interpretation of the production function, which provides the first possible solution

to the contradiction raised by the Uzawa theorem. In their formulation, it is important

that schooling enters the production function precisely in the form of (19), where the same

function D(st) appears both before capital and labor, with the powers of opposite signs.

In addition, the functional form of D(st) and the dynamic path st in equilibrium must be

specified such that D(st) shrinks exponentially over time.

Future empirical work could inform our understanding of long-run economic growth by

testing whether the formulation (18) is consistent with data. In this paper, we propose

a wider class of functions that are consistent with balanced growth. The next subsection

25From these observations, the main result of (Grossman et al., 2017, proposition 2) can easily be obtained
as follows. Taking the growth factor of the both sides of AK = D(st)

−a gives γK = g−aD . From this we

obtain a discrete time equivalent of their Proposition 2(ii): gD = γ
−1/a
K . Note that Grossman et al. (2017)

assumed Lt = D(st)Nt, which means gL = gDgN . Because effective labor AL,tD(st)
−bLt in (19) must grow

at the same rate as output, g = γLg
−b
D gL = γLg

1−b
D gN = γLγ

(b−1)/a
K gN , which is a discrete time equivalent

of their proposition 2(i).
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discusses a particularly simple example.

5.3 A Simple Three-Factor Model with Natural Resources

As shown in Section 2, a significant portion of GDP is paid to production factors that do

not fit well in the notion of Kt or Lt. Thus, it is natural to consider production functions

with more than two factors. Adding these additional factors makes it possible to reconcile

neoclassical models with the data. While labor cannot be substituted by capital with unitary

elasticity (σKL 6= 1), Proposition 4 only requires that there is a single production factor

satisfies this requirement. In this case, there exist factor-augmenting representations of the

production function that have capital-augmenting technological change (γK > 1).

Let us consider the simplest extension of the standard neoclassical production function,

Yt = Ft(Kt, Lt, Xt; t), where Xt = X0g
t
X for all t,X0 > 0, gX > 0. (20)

Here, we have a third production factor Xt, which is either growing (gX > 1), shrinking

(gX ∈ (0, 1)), or constant (gX = 1). One example of such a factor is land. In that case, gX

represents the growth factor of the available land space. If the total area of available land

asymptotes to an upper bound in the long run, then gX would be one on the BGP. Any kind

of natural resources, or a collection of natural resources (including land), can be a candidate

for Xt. If Xt is non-renewable, gX ∈ (0, 1) will likely hold, while a renewable energy source

(e.g., sunlight) could have gX = 1.

Among many candidates for the third production factor, we focus on those that have

a unitary EoS with capital: σKX = 1. For concreteness, we refer to this factor natural

resources. Then, Proposition 4 implies that, along a non-degenerate BGP, the technological

change can be represented in a factor-augmenting fashion:

Yt = F̂

((
AK,tKt

)α(
AX,tXt

)1−α
, AL,tLt

)
, α ∈ (0, 1), (21)

where the growth factor of technology variables must satisfy γL = g/gL and γαK(γXgX)1−α =

g1−α. As in (15), the latter condition can be written in a log-linear form:

log γK =
1− α
α

(log γL + log gL − log γX − log gX) . (22)

Thus, there must be a positive capital-augmenting technological change on a BGP (γK > 1),

as long as the economy is growing faster than the effective input of the third factor (g =
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γLgL > γXgX).

This finding raises an important question: even if there is a factor with σXjK = 1, will

the rates of technological change γK , γX , and γL be determined so as to satisfy the log-linear

condition (22)? If their values are exogenously given, then this is a knife-edge case. If growth

rates are endogenous, however, this need not pose any additional restrictions on the model.

In Section 6, we develop a growth model with endogenous and directed technical change,

where γK , γX , and γL are endogenously chosen. We will confirm that, on the BGP, condition

(22) is satisfied. In Section 7, we calibrate a version of the model to moments from the long-

term U.S. data and show that the BGP with positive capital-augmenting technical change

is both locally and globally stable. These two sections jointly demonstrate that regardless

of the initial state of technologies, condition (22) is always satisfied in the long run.

6 A Full Model with Directed Technological Change

So far, we have discussed the implications of the generalized Uzawa theorem focusing on the

production sector. In this section, we develop a complete endogenous growth model where the

direction of technological progress is determined by profit-maximizing firms. We show that

the log-linear technology condition (22) is endogenously satisfied on the BGP. We base this

section on a streamlined version of the model of tasks developed by Irmen (2017) and Irmen

and Tabaković (2017) and expand it to incorporate three production factors. There are two

benefits from our specification. First, we can analyze intentional R&D within a perfectly

competitive economy, which fills a gap between the standard neoclassical growth model

(perfectly competitive) and standard endogenous growth theory (imperfect competition).

Second, our model of tasks will be scale independent, which implies that the model has a

BGP even when the amount of labor is changing.

6.1 The Model

There are non-overlapping generations of representative firms, each of which exists for only

one period. A representative firm performs two types of tasks, M-tasks and N-tasks. The

number of M-tasks, as well as that of N-tasks, determines the amount of final output. The

M-tasks require effective capital AK,tKt and effective natural resource AX,tXt as inputs,

where AK,t and AX,t are the representative firm’s capital-augmenting and labor-augmenting
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technologies (explained in detail below). The number of M-tasks it can complete is given by

Mt = (AK,tKt

)α(
AX,tXt

)1−α
, α ∈ (0, 1). (23)

We refer to the RHS as the amount of the capital composite, which combines effective capital

and effective natural resources (including land) with unit elasticity. An N-task uses only

effective labor, AL,tLt, where AL,t is the labor-augmenting technology of the representative

firm. The number of N-tasks is simply

Nt = AL,tLt. (24)

By performing Mt and Nt tasks, the representative firm produces

Yt = F̂ (Mt, Nt) = F̂

((
AK,tKt

)α(
AX,tXt

)1−α
, AL,tLt

)
(25)

units of output, where F̂ (·) is a standard neoclassical production function that has CRS and

satisfies the Inada conditions.26

Now, we explain how the factor-augmenting technologies {AK,t, AX,t, AL,t} are deter-

mined. Technical knowledge can be kept within the firm for only one period, after which it

becomes public. Thus, the representative firm at time t can freely use the technology of the

period t − 1 firm, {AK,t−1, AX,t−1, AL,t−1}. In addition, the period t firm can improve each

of factor-augmenting technologies through R&D. We assume that tasks are differentiated

and require separate R&D investments.27 To enhance the capital-augmenting technology for

an M-task by a factor of γK,t ≡ AK,t/AK,t−1 ≥ 1, the firm need to invest iK(γK,t) units of

final goods. The firm faces similar choices when improving AX,t for each M-task, and also

when enhancing AL,t for each N-task. The R&D cost functions for natural resources and

labor-augmenting technologies are defined accordingly as iX(·) and iL(·).
It is reasonable to think that the marginal cost of improving the technology is small when

the size of innovation is small, but it becomes increasingly expensive when aiming for bigger

innovations.28 To capture this, we assume R&D cost functions iK(·), iX(·) and iL(·), have

26There are two ways to represent the production function in intensive forms: f(M/N) = F̂ (M/N, 1) and

h(N/M) = F̂ (1, N/M). We assume that both f(·) and h(·) satisfy the Inada conditions.
27From the symmetry of tasks within each group (M or N) and from the convexity of the R&D cost

functions as assumed in (26), it is always optimal to choose the same levels of AK,t, AX,t, and AL,t across
individual tasks. Therefore, we omit subscripts for technologies for individual tasks.

28This can be explained by congestion in R&D activities. When many researchers are devoted to im-
provements in the same task at the same time, some of them will end up inventing the same innovation. The
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the following properties:

iZ(γZ) > 0, i′Z(γZ) > 0, i′′Z(γZ) > 0 for all γZ ≥ 1,

iZ(1) = 0, i′Z(1) = 0, iZ(∞) =∞ for Z = K,X,L.
(26)

Note that the R&D costs must be incurred for each of the Mt and Nt tasks. This means

the total R&D cost for the representative firm is the sum of

RK,t = Mt · iK(AK,t/AK,t−1),

RX,t = Mt · iX(AX,t/AX,t−1),

RL,t = Nt · iL(AL,t/AL,t−1).

(27)

The objective of the representative firm is to maximize the single period profit net of

R&D costs, because it lives only for one period and its knowledge will become public next

period. By taking the output in each period as numéraire, the period profit is given by

πt = F̂ (Mt, Nt)−RK,t −RX,t −RL,t − rtKt − τtXt − wtLt, (28)

where rt, τt, and wt are interest rate, payment for a unit of natural resources (e.g., land

rent), and wage rate, respectively.

We keep the demand side of the economy as standard as possible. There is a representative

household. The size of the representative household (i.e., population) evolves according to29

Lt = L0g
t
L, L0 > 0, gL > 1− δ : given. (29)

As in the Ramsey-Cass-Koopman model, the period utility of the household is given by the

product of the number of household members and the per capita period felicity function:

ut = Ltu(Ct/Lt), (30)

where Ct/Lt > 0 is per capita consumption. We assume the felicity function u(·) takes the

risk of duplication become more prominent as R&D inputs increase, which makes the R&D cost function
iK(·) convex. See Horii and Iwaisako (2007) for a simple micro foundation.

29We assume gL > 1 − δ so as to avoid the possibility of a degenerate BGP, where physical capital
investment becomes zero or even negative in the long run. (See Definition 2). Note that, as long as δ > 0,
condition gL > 1− δ allows declining population. However, population should not fall faster than the speed
of capital depreciation.
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CRRA form. Then, the intertemporal objective function of the household can be written as

U =
∞∑
t=0

Ltβ
t (Ct/Lt)

1−θ − 1

1− θ
, (31)

where θ > 0 is the degree of the relative risk aversion (i.e., the inverse of the intertemporal

elasticity of substitution) and β ∈ (0, 1) is the discount factor.30

The representative household owns capital, Kt, and natural resources, Xt, in addition

to labor, Lt. The household also owns the representative firm and receives the profit, πt,

although in equilibrium profits will be zero due to perfect competition. For simplicity, we

assume that the supply of natural resources is exogenous:31

Xt = X0g
t
X , X0, gX > 0 : given. (32)

As in the case of population, its available quantity can be either constant gX = 1, shrinking

gX ∈ (0, 1), or growing gX > 1. Physical capital accumulates through the savings of the

household:

Kt+1 = (rt + 1− δ)Kt + τtXt + wtLt + πt − Ct, K0 > 0 : given, (33)

where (rt + 1− δ)Kt + τtXt + wtLt + πt represents the household’s income. The household

is subject to the no-Ponzi game condition. Specifically, the present value of its asset holding

as T →∞ should not be negative:

lim
T→∞

(
T∏
t=1

(rt + 1− δ)

)−1
KT+1 ≥ 0. (34)

This completes the description of the model economy.

Before proceeding to the analysis of the model, we demonstrate that it conforms to our

definition of the multi-factor neoclassical growth model, given by (1) and (2) in Definition

1. First, the aggregate production function (25) has exactly the same form as (21), which

30While we tentatively assume β ∈ (0, 1), it needs to be significantly smaller than 1 since otherwise U will
become infinite in a representative household model with growing population and per capita consumption.
The actual upper bound for β will be derived in Proposition 8.

31As we have shown in Table 1, among the estimated 8% factor share of natural resources, a majority
(5%) is from land. Since the supply of land is mostly constant, we assume Xt is exogenous in this baseline
scenario. Our theory is also applicable to the case where Xt is depleted or expanded endogenously (See
robustness scenario f in Section 7.1). Note that, although Xt is exogenous, its effective amount AX,tXt as a
production factor can be enhanced endogenously, through R&D for AX .
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belongs to the definition of the multi-factor neoclassical production function (1). In fact,

Proposition 4 guarantees that, if the EoS between Kt and Xt is unity and the economy has

a BGP in equilibrium, then the aggregate production function can always be represented in

the form of (25) at least along the BGP. Our microeconomic setting gives an example of such

an economy. Second, by substituting (28) into (33), we obtain the evolution of capital in the

same form as (2), where the total R&D expenditure is defined as Rt = RK,t + RX,t + RL,t.

The difference between Definition 1 and the current model is that we now have a complete

description of the economy, including how the speed and direction of technological change

are determined. We are now ready to explore whether this economy can generate a BGP in

equilibrium, paying special attention to whether there is a BGP with a strictly positive rate

of capital-augmenting technological progress.

6.2 R&D by Firms and the Direction of Technological Progress

We start by examining the behavior of the representative firm in the economy described

above, focusing on the role of R&D. The representative firm maximizes profit (28) subject

to the production and R&D functions (23)–(27) with respect to {Kt, Xt, Lt, AK,t, AX,t, AL,t},
taking as given prices, {rt, τt, wt}, and lagged technology levels, {AK,t−1, AX,t−1, AL,t−1}.
For convenience, we define µt ≡ Mt/Nt, which is the relative task intensity in final good

production. It also represents the ratio of effective capital composite to effective labor

µt =
(
AK,tKt

)α(
AX,tXt

)1−α
/AL,tLt. Then, because F̂ (·) in (25) is a CRS function, we can

write it in intensive form, F̂ (Mt, Nt)/Nt = F̂ (µt, 1) ≡ f(µt), F̂M(Mt, Nt) = f ′(µt), and

F̂N(Mt, Nt) = f(µt)− µtf ′(µt).32

Using this notation, we can conveniently express the first order conditions for factor

demand. The firm demands capital, natural resources, and labor so as to satisfy33,34

rt = (αMt/Kt) (f ′(µt)− iK(γK,t)− iX(γX,t)) , (35)

32F̂M (·) and F̂N (·) represent the partial derivatives of function F̂ (·) with respect to its first and second
arguments, respectively.

33The RHS of (35) represents the (net) marginal product of Kt in producing output Yt. It is given by
the product of two parts. The first part, αM/K, is the marginal product of Kt in increasing the number of
M-tasks performed in the firm. The second part is the net marginal product of Mt in producing the final
output. Note that, in the second part, the innovation cost for an M-task, iK(γK,t) + iX(γX,t), is subtracted
from the “gross” marginal product of Mt, f

′(µt). When the firm performs more M-tasks, it chooses to pay
R&D costs to increase AK,t and AX,t in these tasks so as to keep up with other M-tasks. Similarly, in (36),
(1− α)M/X is the marginal product of Xt in performing more M-tasks.

34By substituting (35), (36), and (37) into (28), it can be confirmed that the firm achieves zero profit,
πt = 0. This is due to the CRS property of the firm’s problem.
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τt = ((1− α)Mt/Xt) (f ′(µt)− iK(γK,t)− iX(γX,t)) , (36)

wt = AL,t(f(µt)− µtf ′(µt)− iL(γL,t)). (37)

Now, we turn to R&D, starting with the condition for improving the labor-augmenting

technology AL,t. The representative firm chooses AL,t, or equivalently the speed of techno-

logical progress γL,t ≡ AL,t/AL,t−1 ≥ 1, according to first order condition ∂πt/∂AL,t = 0.

Simplifying this condition yields:35

R&D for N-tasks: γL,ti
′
L(γL,t) + iL(γL,t) = f(µt)− µtf ′(µt). (38)

As we formally prove in Proposition 7 below, condition (38) has a unique solution for

γL,t as a function of µt = Mt/Nt, and it is strictly increasing in µt. Intuitively, when the

firm is performing relatively few N-tasks (i.e., when µt ≡ Mt/Nt is higher), the benefit of

increasing AL,t to perform another N-task is larger, and therefore it is optimal to improve

the labor-augmenting technology AL,t at a faster pace (i.e., γL,t should be higher).

Next, we examine the R&D investments for K- and X-augmenting technologies. As in

the case of labor-augmenting technology, γK,t ≡ AK,t/AK,t−1 and γX,t = AX,t/AX,t−1 need to

satisfy the first order conditions, ∂πt/∂AK,t = 0 and ∂πt/∂AX,t = 0. Combining these two

equations, we obtain two intuitive conditions that determine the allocation of relative R&D

effort between K- and X-augmenting technologies, as well as the condition that specifies the

optimal combined amount of R&D for M-tasks:36

R&D allocation:
γK,ti

′
K(γK,t)

γX,ti′X(γX,t)
=

α

1− α
, (39)

Combined R&D: (γK,ti
′
K(γK,t) + iK(γK,t)) + (γX,ti

′
X(γX,t) + iX(γX,t)) = f ′(µt). (40)

35The firm’s private benefit from improving technology AL,t is the ability to perform a larger number

of N-tasks, which increases the final output Yt = F̂ (Mt, Nt). The RHS of (38) shows the marginal benefit,

F̂N (Mt, Nt) = f(µt) − µtf ′(µt). The LHS corresponds to the marginal cost of performing a larger number
of N-tasks through augmenting labor efficiency AL,t (given labor employment Lt). This can be broken into
two components. First, by intensifying the R&D efforts in existing N-tasks to raise labor efficiency, the
representative firm can decrease labor inputs by just enough to perform one additional N-task. The cost
associated with this activity is given by the first term γL,ti

′
L(γL,t), which we call the intensive marginal R&D

cost. The saved labor is then used to perform a new N-task, which means the representative firm needs to
invest in R&D for one more N-task, which costs iL(γL,t). This extensive marginal R&D cost is represented
by the second term in the LHS.

36The first order condition for AK,t yields (γK,t/α)i′K(γK,t) + iK(γK,t) + iX(γX,t) = f ′(µt), whereas that
for AX,t gives (γX,t/1− α)i′X(γX,t)+iK(γK,t)+iX(γX,t) = f ′(µt). Condition (39) is obtained by subtracting
the second equation from the first. Condition (40) is from adding α times the first equation and (1 − α)
times the second equation.
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X-augmenting technologies. γK ≡
AK,t/AK,t−1 and γX ≡ AX,t/AX,t−1
are determined by the intersection of
the R&D allocation and combined R&D
conditions.
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(b) When µt increases from µ1 to µ2, the equilib-
rium direction of technological change moves from
the solid arrow to the dashed arrow, closer to the
γL axis. The set of all these equilibrium points
gives the EIPF curve. The bottom (γK , γX) plane
corresponds to panel (a).

Figure 2: Determination of the direction of the technological change and the Equilibrium
Innovation Possibility Frontier (EIPF) Curve

Condition (39) gives the optimal allocation of R&D investment between K- and X-

augmenting technologies. Observe that γK,ti
′
K(γK,t) and γX,ti

′
X(γX,t) on the LHS are strictly

increasing in γKt and γX,t, respectively. Therefore, this condition can be expressed as an

upward sloping curve in the (γK,t, γX,t) space, as depicted in Figure 2(a).37 Condition (40)

specifies the optimal combined size of R&D investments.38 Since the LHS is increasing

increasing both in γKt and γX,t, the locus of (γK,t, γX,t) that satisfies this condition is depicted

37As the RHS of condition (39) shows, the allocation should depend on the relative contribution of capital
and natural resources in performing M-tasks. When capital’s relative contribution is higher (i.e., when α
is higher), more resources should be allocated to R&D for the capital-augmenting technology. In addition,
the slope and convexity of the R&D cost function also affects the optimal allocation. For example, if it
is relatively difficult to improve the efficiency of natural resources, i.e., if the marginal R&D cost i′X(γX,t)
increases more rapidly with its argument than i′K(γK,t), then it is optimal not to improve AX,t as fast as
AK,t.

38Capital and natural resources are used in M-tasks, and therefore improving K- and X-augmenting
technologies will enable the firm to perform more M-tasks. This marginal benefit is represented by the RHS
of (40), f ′(µt) = F̂M (Mt, Nt). The LHS is the marginal cost of R&D, which has two parts, γK,ti

′
K(γK,t) +

iK(γK,t) and γX,ti
′
X(γX,t) + iX(γX,t), because both K- and X-augmenting technologies receive some R&D

according to the allocation condition (39). In each of the two parts, the first term represents the intensive
marginal R&D cost, whereas the second term is the extensive marginal R&D cost, as in condition (38).
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by the downward-sloping curve. The intersection of the R&D allocation condition and the

combined R&D condition gives the optimal rates of innovation for K- and X-augmenting

technologies. Combined with γL,t given by (38), we have the direction of technological change

in equilibrium.

We can also study how the direction of technological change moves endogenously, focusing

on µt, the ratio of effective capital composite to effective labor. The following proposition

summarizes the result.

Proposition 7. (Direction of Technological Change)

In the endogenous growth model defined in Section 6.1, the growth factors of each of the

factor augmenting technologies are function of µt = Mt/Nt, denoted by γ̂K(µt), γ̂X(µt), and

γ̂L(µt). These functions satisfy:

(a) γ̂′K(µt) < 0 for all µt > 0, γ̂K(0) =∞, and γ̂K(∞) = 1.

(b) γ̂′X(µt) < 0 for all µt > 0, γ̂X(0) =∞, and γ̂X(∞) = 1.

(c) γ̂′L(µt) > 0 for all µt > 0, γ̂L(0) = 1, and γ̂L(∞) =∞.

Proof. See Appendix A.10.

Figure 2(b) illustrates the direction of the technological change in the 3-dimensional

space. The γK-γX plane depicted at the bottom of the figure is the same as in panel (a).

For a given value of µt, the intersection gives the value of γ̂K(µ) and γ̂X(µ). In addition, the

vertical distance between this point and equilibrium point shows the size of L-augmenting

innovation, γ̂L(µ)−1. As µt increases, the combined R&D locus shifts inward,39 which lowers

γK,t and γX,t. At the same time γL,t increases because γ̂′L(µt) > 0. This way, the direction

of the technological change moves from the solid arrow to the dashed arrow in Figure 2(b).

The dependence of the direction on µt can be interpreted in terms of relative scarcity of

effective factors. Proposition 7 says that the direction of technological progress is chosen so

that it enhances effective factors which are in relatively short supply. In other words, firms

are ‘induced’ to do more innovation that enhances the relatively scarce effective production

factors.40

The thick downward-sloping curve in Figure 2(b) depicts the locus of all equilibrium

points that correspond to various values of µt. This is the equilibrium innovation possibility

frontier (EIPF). Depending on the equilibrium value of µt, the direction of technological

39The shift occurs because the RHS of (40) is decreasing in µt.
40This notion of induced innovation was first introduced by Hicks (1932). See Acemoglu (2002) for more

discussion.
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change is captured by some point on this curve.41 To see how µt is determined in each

period, we now consider the equilibrium dynamics.

6.3 Equilibrium Dynamics

The equilibrium path of this economy is given by the sequence of output, consumption,

production factors, technologies, and R&D investments, {Yt,Ct,Kt,Xt,Lt,AK,t,AX,t,AL,t,RK,t,

RX,t,RX,t}∞t=0, which satisfy the representative firm’s optimization problem, the representa-

tive consumer’s utility maximization problem, and the market clearing conditions for output

and production factors. The economy is endowed with K0, X0 and L0 at time 0, as well as

the initial levels of publicly available technologies, AK,−1, AX,−1, and AL,−1.

While the equilibrium involves many variables, we can analytically characterize its dy-

namic path in terms of only three: relative task intensity µt = Mt/Nt, the amount of capital

per effective labor kt ≡ Kt/AL,tLt, and consumption per effective worker ct ≡ Ct/AL,tLt.

In Appendix A.11, we derive the dynamics these three variables in detail with intuitive

explanations. The following summarizes the result.

First, the dynamics of relative task intensity µt can be written as

µt+1 = G

(
g1−αX

gL

(
v(µt)− ct

kt
+ 1− δ

)α
µt

)
≡ ψµ(µt, kt, ct), (41)

where v(µt) ≡ f(µt)−µt(iK(γ̂K(µt))+iX(γ̂X(µt)))−iL(γ̂L(µt)) is the net output per effective

labor, and G(·) is the inverse function of Γ(µ) = γ̂L(µ)µ/γ̂K(µ)αγ̂X(µ)1−α.42 Intuitively,

the relative task intensity Mt+1/Nt+1 is determined in two steps. The relative supply of

production factors determines the relative numbers of task that the representative firm can

perform, given the previous period’s technology levels. This is the argument of function G(·)
in (41). The firm can also increase Mt and Nt by factor-augmenting R&D, which affects the

equilibrium µt+1. The latter effect is captured by G(·).
41In this model, not only the direction within the EIPF, but also the EIPF itself is determined endoge-

nously form the firm’s profit condition. In most models of direction of technological change, it is assumed
that innovation requires a certain type of exogenously given resource (e.g., scientists). In these cases, the
innovation possibility frontier is derived from the resource constraint. To the contrary, in our model, the
total amount of R&D input (Rt) is determined in equilibrium through profit maximization, and hence the
frontier is called the ‘equilibrium’ innovation possibility frontier. Any innovation beyond this frontier is not
profitable, although it might be materialistically feasible.

42In appendix A.11, we confirm G(·) is well defined and strictly increasing.
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Second, the dynamics of capital per effective worker, kt, are

kt+1 =
1

gLγ̂L(ψµ(µt, kt, ct))
(v(µt)− ct + (1− δ)kt) ≡ ψk(µt, kt, ct), (42)

where ψµ(µt, kt, ct) is µt+1 from (41).43 The expression (v(µt)− ct + (1− δ)kt) is the sum of

the net saving and the un-depreciated part of existing capital, per effective labor in period

t. It must be divided by gLγ̂L(µt+1), because of the growth of effective labor between period

t and t+ 1.

Third, the Euler equation for the consumer optimization gives the dynamics for ct:

ct+1 =
β1/θct

γ̂L(ψµ(µt, kt, ct))

(
αψµ(µt, kt, ct)

ψk(µt, kt, ct)

(
f ′(ψµ(µt, kt, ct))− iK(γ̂K(ψµ(µt, kt, ct)))

−iX(γ̂X(ψµ(µt, kt, ct)))
)

+ 1− δ

)1/θ

≡ ψc(µt, kt, ct).

(43)

The seemingly complex expression inside (· · · )1/θ is simply rt+1 +1−δ, expressed in terms of

period t variables. Equations (41), (42), and (43) constitute the equilibrium mapping from

{µt, kt, ct} to {µt+1, kt+1, ct+1} for all t ≥ 0.

In appendix A.11, we explain starting levels of µ0 and k0 are given by initial factor

endowments and initial technology levels. In addition, transversality condition and the non-

Ponzi game condition jointly require

lim
T→∞

(βgL)T

(
T∏
t=0

γ̂L(µt)

)1−θ

γ̂L(µT+1)c
−θ
T kT+1 = 0. (44)

These three boundary conditions, µ0, k0, and (44), pin down the equilibrium path of {µt, kt, ct}.
The next subsection will examine the property of the equilibrium path, focusing on the BGP.

6.4 The Balanced Growth Path

Now, we are ready to characterize the BGP of this economy. We will show that the direction

of technological progress is endogenously chosen so that in equilibrium there is a unique

BGP with a positive rate of capital-augmenting technical change.

Lemma 4. Define a BGP as an equilibrium path where the growth factors of {Yt, Kt, Xt,

43This expressions shows that the RHS is a function of only period t variables.
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Lt, Ct, Rt, Mt, Nt} are all constant.44 Then, on any BGP, the values of µt, kt and ct must

be constant.

Proof. See Appendix A.12.

We denote the BGP values of µt, kt and ct by µ∗, k∗ and c∗, respectively. Their values

are obtained by substituting µt+1 = µt = µ∗, kt+1 = kt = k∗ and ct+1 = ct = c∗ into (41),

(42), and (43).

First, from (41) and (42), the BGP value of µt ≡Mt/Nt will satisfy

1 =
(gX γ̂X(µ∗))1−α (γ̂K(µ∗))α

(gLγ̂L(µ∗))1−α.
≡ Φ(µ∗). (45)

Proposition 7 implies Φ′(µ∗) < 0 with Φ(0) = ∞ and Φ(∞) = 0. Therefore, there exists a

unique value of µ∗ > 0 that satisfies Φ(µ∗) = 1, and hence condition (45). An intuitive way

to interpret (45) is to multiply the both of its sides by (gLγ̂L(µ∗))α.

(gX γ̂X(µ∗))1−α (γ̂K(µ∗)gLγ̂L(µ∗))α = gLγ̂L(µ∗) (= g∗). (46)

The LHS represents the growth factor of Mt on the BGP, while the RHS is that for Nt.

Therefore, this condition means that the relative factor intensity µ∗ = Mt/Nt is determined

so that Mt and Nt grow at the same speed. This condition singles out a point on the

Equilibrium Innovation Possibility Frontier (recall Figure 2), which determines the direction

of technological change on the BGP. Note that, due to the CRS property of production

function Yt = F̂ (Mt, Nt), the value of equation (46) also represents the economic growth

factor g∗ ≡ Yt+1/Yt.

Second, from the Euler equation (43), the BGP value of kt = Kt/(AtLt) is

k∗ =
βαµ∗(f ′(µ∗)− iK(γ̂K(µ∗))− iX(γ̂X(µ∗)))

γ̂L(µ∗)θ − β(1− δ)
. (47)

Intuitively, the capital-effective labor ratio on the BGP is determined from the interest rate

r∗ that yields constant consumption per effective labor on the BGP.45 Third, from (42) and

44Here, we slightly extend Definition 2 by requiring constancy of the growth factors of Mt and Nt, i.e.,
the numbers of tasks performed in the economy.

45Using (35), condition (47) is shown to be equivalent to r∗ + 1− δ = β−1γ̂L(µ∗)θ. Here, the RHS is the
marginal rate of intertemporal substitution given that consumption per effective labor is constant (which
must be true on the BGP).
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gLγ̂L(µ∗) = g∗ in (46), the BGP value of c∗ = Ct/AL,tLt must satisfy

c∗ = v(µ∗)− (g∗ − 1 + δ)k∗. (48)

These three equations describe the unique BGP in this economy. The following proposition

shows that the BGP uniquely exists when the discount factor is sufficiently smaller than 1.

Proposition 8. There exists a value of β > 0 such that whenever β ∈ (0, β), there exists a

unique BGP that satisfies µ∗ > 0, k∗ > 0, c∗ > 0, and the terminal condition (44).46

Proof. See Appendix A.13. The exact expression for the upper bound β is given by (A.51).

The most important implication from this model is that the technology condition (22) in

Section 5.3 is now an endogenous outcome. Specifically, BGP condition (45) is equivalent to

(22), except that the speed of technological progress is endogenously determined by profit-

maximizing producers. This difference has important implications for the plausibility of

capital-augmenting technological progress on the BGP. As discussed in Section 5.3, if the

the rates of innovation for the three factor-augmenting technologies are exogenously given,

and then (22) becomes a knife-edge condition. In contrast, this section has shown that,

once we consider endogenous technical change, this condition is necessarily satisfied when

the economy is on the BGP, which exists if discount factor β is sufficiently less than one.

Thus, if we can show that the model economy converges to the BGP, then condition (22) is

naturally satisfied in the long run. We do so in the next section.

7 Numerical Analysis and Stability

In this section, we investigate the local and global stability of the three-factor endogenous

growth model. Our primary objective is to show that the model economy converges to a BGP

with capital-augmenting technical change, where log-linear relationship (22) is endogenously

46There are two reasons why the existence of the BGP requires an upper bound for β (or, equivalently
a lower bound for ρ = (1 − β)/β). First, on the BGP, the amount of consumption for the household
Ct = AL,tLtc

∗ increases over time, causing the instantaneous utility to grow. Therefore, if β is too close to
one, the intertemporal utility U in (31) becomes infinity, which means that the household’s problem is not
well defined. Second, as effective labor AL,tLt grows, the household accumulates more capital Kt so as to
prevent the dilution of capital per effective labor, k∗. However, when β is too large (i.e., when the discount
rate ρ is too small), the BGP requires a too low real interest rate, or a too high level of k∗, to the extent that
preventing the dilution is impossible even when all net output is invested in Kt. We rule out these extreme
cases by assuming an upper bound for β.
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satisfied. We also illustrate how having multiple technologies (including K-augmenting tech-

nology) affects the transition dynamics. To accomplish these goals, we present a series of

numerical examples for which we can check stability computationally. Whenever possible, we

ensure that our numerical examples are consistent with macroeconomic data characterizing

the BGP of the United States. We stress, however, that this is not a complete calibration,

and the results would be insufficient for a precise quantitative analysis.

7.1 Calibration

Functional Forms

We assume that the aggregate production function takes a CES form: F̂ (Mt, Nt) = (ηM
ε−1
ε

t +

N
ε−1
ε

t )
ε

1−ε , where ε > 0 and η ∈ (0, 1). Output in the economy (25) can be written as

Yt =
{
η
(
(AK,tKt)

α (AX,tXt)
1−α) ε−1

ε + (1− η)(AL,tLt)
ε−1
ε

} ε
1−ε

. (49)

Next, we assume power function for R&D costs47

iZ(γZ) = ζZ
(
γZ − 1

)λ
, ζZ > 0, λ > 1, Z = K,X,L. (50)

We allow R&D cost parameter ζZ to differ across types of technology. We normalize ζK to

1, and calibrate ζX and ζL. The degree of convexity, λ, is assumed to be the same across the

three types of technology.

With these functional form assumptions, our model has 11 parameters, {ε, η, α, λ, ζL, ζX ,
β, θ, δ, gL, gX}. To calibrate the model, we also need to determine the period length, measured

in years, denoted by χ. The period length in our model has important economic meaning,

because it represents the duration for which a firm can monopolize the benefit from its R&D

investments. Including χ, we have 12 parameters.

Exogenous Parameters

We set five parameters exogenously. Their values are given in Table 2. In the CES production

function (49), we take ε = 0.7 as the baseline value. This is a common estimate for the

EoS between labor and reproducible capital (e.g., Antras et al., 2004; Oberfield and Raval,

2014). The mapping between these estimates and a structural parameter in our model is not

47Note that function (50) satisfies condition (26).
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Parameter Baseline Alternate Description Explanation / Source
ε 0.7 0.9, 1.2 EoS b/w M and N Oberfield and Raval (2014)
λ 2.0 1.5, 2.25 R&D Cost convexity Quadratic
θ 1.0 0.5, 2 Inverse of IES Log Preferences

g
1/χ
L 1.01 Population growth BEA 1960-2020 average

g
1/χ
X 1.0 0.99 Growth of X Fixed Supply of Land

Table 2: Exogenous Parameters

Target Moment (in annual values) Value Model Variable Source
Capital output ratio 2.9 K/(Y/χ) BEA 1960-2020 average
Labor share of income 63% κL ≡ wL/Y BEA 1960-2020 average
Share of R&D payments in GDP 2.7% κR ≡ RK+RX+RL

Y
BEA 1960-2020 average

Consumption of fixed capital in GDP 14% δK/Y BEA 1960-2020 average

Growth rate of income per capita 1.9% γ
1/χ
L − 1 BEA 1960-2020 average

Decline in the relative price of capital 0.66% γ
1/χ
K − 1 BEA 1960-2020 average

Return on investment 4% (1 + r − δ)1/χ − 1 McGrattan et al. (2003)

Table 3: Target Moments for Calibration

exact and we show robustness with ε = 0.9 and ε = 1.2.48 In the baseline calibration, we

assume the R&D cost function is quadratic (λ = 2) and also check robustness with λ = 1.5

and λ = 2.25. Quadratic cost is a common assumption, and it is consistent with existing

empirical work in endogenous growth (Acemoglu et al., 2018; Akcigit and Kerr, 2018). As

for utility function (31), we take log preferences (θ = 1) as the baseline and also consider

cases where the intertemporal EoS is higher or lower than 1 (θ = 0.5 and 2). Population

growth is set to the 1960-2020 average in the U.S. (1% per year). When one period in the

model corresponds to χ years, this means g
1/χ
L = 1.01. We do not have a good data for the

growth rate of factor X, which we interpret as natural resources, including land. Given that

land is a major factor of production,49 we take gX = 1 as a benchmark (i.e., constant X).

We also consider the case where natural resources are depleted 1% per year (g
1/χ
X = 0.99).

Data

We calibrate the remaining parameters so that the model variables on the BGP match data

from the U.S. Table 3 reports the target moments and model variables in annualized values

48Karabarbounis and Neiman (2014) and Piketty (2014) estimate the EoS between reproducible capital
and labor and find an elasticity that is greater than one.

49As shown in Table 1, the factor share of land is estimated to be around 5%, while the share of all natural
resources (including land) is 8%.
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Parameter Calibrated Annualized Description

χ 3.94 Period Length (years)
β 0.923 0.980 Discount Factor
δ 0.190 5.21% Depreciation Rate
α 0.767 Capital Share within K-X composite
η 0.685 CES Distribution parameter
ζX 0.279 Cost parameter for AX R&D
ζL 20.8 Cost parameter for AL R&D

Table 4: Calibrated Parameters for Baseline Scenario

(e.g,. aggregate output per year is Y/χ, where one period in the model is χ years). For

the capital-output ratio (2.9), labor share of income (63%), R&D share of income (2.7%),

consumption of fixed capital as a share of GDP (14%), and real GDP per capita growth

(1.9%), we use data from the Bureau of Economic Analysis (BEA) to calculate the arithmetic

averages of the annual levels in the 1960-2020 period. To measure the growth rate of capital-

augmenting technology, we calculate the annual decline in the relative price of all capital

goods from 1960-2020 (0.66%). Finally, we set the rate of return on investment (r∗−δ) equal

to the return on bonds (4%) from McGrattan and Prescott (2003).

Calibration Results

There are seven remaining parameters to calibrate, {δ, β, α, η, ζL, ζX , χ}, which we identify

with the seven moments in Table 3. We do so in two steps. First, we use equilibrium

conditions to derive four analytical relationships among these parameters. This leaves us

with three undetermined parameters, {ζL, η, χ}. In the second step, we numerically pin them

down so that the target moments in Table 3 match the corresponding model variables on

the BGP. The details of the calibration procedure are presented in Appendix A.14.

Table 4 presents the results of the two-step calibration procedure with the baseline as-

sumptions. Period length χ is 3.94 years, which is time it takes for a firm’s R&D outcome

to be overtaken by a new innovation. Discount factor β is 0.923 (β
1
χ = 0.98/year). The

depreciation rate δ is 0.19 per period, which is about 5% per year. The share parameter α

is 0.76. As reported in Table 5, this number implies that capital share in the GDP is 26.3%,

whereas the natural resource share (including land) is 8%. Although these shares were not

targeted in the calibration, they are consistent with the values reported in Table 1.
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Variable Value Description

κK 26.3% Capital Share
κX 8.0% Natural Resource Share (incl. Land)

γ
1/χ
X − 1 0.72% Tech. Change in AX per year

Table 5: Untargeted Variables in Calibrated Model

(a) (b) (c) (d) (e) (f) (g)

Param- Base- λ λ ε ε θ θ g
1/χ
X

eters line =1.5 =2.25 =0.9 =1.2 =0.5 =2 =0.99

χ 3.94 2.92 4.20 3.94 3.94 3.94 3.94 3.72
β1/χ 0.98 0.98 0.98 0.98 0.98 0.97 0.998 0.98
δ1/χ 5.21% 5.07% 5.25% 5.21% 5.21% 5.21% 5.21% 5.18%
α 0.77 0.76 0.77 0.77 0.77 0.77 0.77 0.77
η 0.69 0.38 0.79 0.41 0.27 0.69 0.69 0.70
ζL 20.82 1.88 61.74 10.05 7.64 20.82 20.82 25.69
ζX 0.28 0.29 0.28 0.28 0.28 0.28 0.28 0.11

κK 26.3% 26.1% 26.4% 26.3% 26.3% 26.3% 26.3% 26.2%
κX 8.00% 8.25% 7.93% 8.00% 8.00% 8.00% 8.00% 8.05%

γ
1/χ
X − 1 0.72% 0.80% 0.69% 0.72% 0.72% 0.72% 0.72% 1.75%

Table 6: Calibrated Parameters for the Robustness Scenarios

Robustness

Changing the free parameters, we present calibration results with λ ∈ {1.5, 2.25}, θ ∈
{0.5, 2}, and ε ∈ {0.9, 1.2}. We also calibrated the model under the assumption that natural

resources X are depleted by 1% per year; i.e., g
1/χ
X = 0.99. In each case, we change one

parameter from the baseline value and then re-calibrate the model. In all cases, we find the

set of parameters with which the model matches all the target moments in Table 3. The

results are reported in Table 6 as scenarios (a)–(g).

7.2 Local Stability

Using parameters calibrated for the baseline setting and alternative scenarios, we can now

examine the local stability of the model. Recall that the dynamic system is characterized

by three variables {µt, kt, ct}, which evolve according to equations (41), (42) and (43). Also,

note that the initial values of µ0 and k0 are pre-determined, whereas c0 should be chosen

endogenously so that the system satisfies the transversality condition (44). In this system,
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Eigenvalues BGP-
Scenario Stable Unstable Stability

Baseline 0.602 0.970 1.672 Saddle/Determinate
(a) λ = 1.5 0.667 0.957 1.479 Saddle/Determinate
(b) λ = 2.25 0.587 0.971 1.722 Saddle/Determinate
(c) ε = .9 0.633 0.971 1.610 Saddle/Determinate
(d) ε = 1.2 0.664 0.974 1.550 Saddle/Determinate
(e) θ = 0.5 0.496 0.969 2.034 Saddle/Determinate
(f) θ = 2 0.692 0.971 1.454 Saddle/Determinate
(g) gX = 0.99 0.620 0.964 1.629 Saddle/Determinate

Table 7: Eigenvalues and Local Stability of the Calibrated Model

the BGP is saddle-stable and determinate if the Jacobian matrix evaluated at the BGP has

two stable eigenvalues with absolute values less than one and one unstable eigenvalue with

absolute value greater than one.

Table 7 summarizes the results of the local stability analysis. In all cases, we find that

the BGP is saddle-stable and determinate: when state variables are near the BGP, they will

converge to the BGP along the unique saddle path. In Subsection 6.4, we demonstrate that

one of the conditions for balanced growth, (45), is equivalent to the technology condition

(22). Therefore, the saddle stability of the BGP implies that the technology condition is

endogenously satisfied as the economy converges to the BGP.

On this equilibrium path converging to the BGP, firms choose the intensities of three types

of R&D, γK , γX , and γL, and hence the direction of the technological change, to maximize

profits. The capital-augmenting technology AK is still growing on the BGP, because firms

always benefit from improving AK . This naturally explains the observed long-term decline

in the relative price of capital, which theoretically corresponds to the capital-augmenting

technological change.

The saddle stability is confirmed in all seven alternative scenarios. It demonstrates

that our explanation of capital-augmenting technological change is robust to changes in

parameters, although we still need to maintain the assumption that there is a production

factor X (e.g. natural resources or land) that can be substituted with conventional capital

K with unit elasticity. It is particularly interesting to note that we find stability even when

the EoS between labor and the capital-composite, ε, is greater than one (scenario d). Most

directed technical change growth models require a low elasticity to be stable, especially

when allowing for the possibility of capital-augmenting technical change (e.g., Acemoglu,
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Figure 3: Global Stability of the Calibrated Model (Baseline Setting).

2003; Grossman et al., 2017).50

7.3 Transition Dynamics and Global Stability

Local stability only examines convergence within the neighborhood of the BGP. In this

subsection, we go one step further and demonstrate that convergence to the BGP occurs

even when the initial states are far away. We call this property global stability. With

three factors of production, this is not a trivial exercise, because the transitional dynamics

may take various patterns depending on the initial combination of µ0 and k0.
51 They are

determined by initial stock of production factors K0, X0 and L0, as well as initial technology

levels AK,−1, AX,−1, AL,−1. Depending on the initial state of technology or resources, µ0 and

k0 will take a wide range of combinations.

To cover various possibilities, we consider a large rectangular area in µ-k plane surround-

ing the BGP: namely, µt ∈ [0.2µ∗, 2µ∗] and kt ∈ [0.2k∗, 2k∗]. We choose 36 points on the

50An exception is the model by Irmen and Tabaković (2017), which has an elasticity greater than one.
As explained above, their model has capital-augmenting technical change on the transition path, but not on
the steady state.

51Values of µ0 and k0 are respectively defined in equations (A.42) and (A.43) in Appendix A.11. In
typical macro models with two factors of production, the dynamics can be written in terms of kt and ct,
where kt is the only state variable. In this case, the transition dynamics only have two possible patterns,
depending on whether k0 is higher or lower than the steady-state value. In either case, kt typically converges
monotonically to the steady state.
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border of rectangular area and calculate the transition dynamics from each of them. We use

a forward shooting method to determine the value of c0 that eventually satisfies the transver-

sality condition (44) as t → ∞. The equilibrium path from each starting point is depicted

in Figure 3, where the parameters are from baseline calibration in Section 7.1. Because the

graph is three-dimensional, we depicted the same graph from two angles. We also provide

the projection of the paths to the bottom µ-k plane in darker colors.

From each of 36 starting pair of µ0 and k0, we always find a unique level of c0 such that

the path from {µ0, k0, c0} leads to the BGP (i.e., {µ∗, k∗, c∗}). If c0 is higher the resource

constraint is eventually violated (kt becomes negative), and if c0 is lower the TVC is violated

(ct converges to zero). This means that convergence to the BGP is the only possible long-

term outcome in equilibrium. These findings suggest that, as long as the initial µ0 and k0

is on or within the border of the rectangle, the economy necessarily converges to the BGP.

Since the rectangle is reasonably large, we call it global stability.

There are couple of properties worth observing from the figure. First, the convergence is

not monotonic. To illustrate this, let us focus on the path that starts form the upper right

corner in Figure 3(a), as indicated by a thick arrow (µ0 = 2µ∗ and k0 = 0.2k∗).52 Although

initial level of µ0 is double the steady-state level, µt initially increases further, going out of

the rectangular area. This phenomenon can be interpreted as follows. At the initial state, the

capital composite is abundant even though the reproducible capital is scarce. This happens

when natural resources are so abundant that it more than offsets the capital scarcity. In this

setting, the consumption of reproducible capital (i.e., the depreciation of Kt) is small, and

savings from ample production leads to more accumulation Kt, which increases the capital

composite further. This process continues until the level of kt come close to the steady

state level. This is the first stage of convergence. In the second stage, the ratio of capital

composite to effective labor µt gradually falls to the steady state level. This is because a

high µt means that effective labor is relatively scarce, and the firms have more incentives to

improve AL through R&D, rather than AK or AX . This tendency continues until µt reaches

µ∗. Once µt comes to µ∗, firms have incentives to improve all types of technologies in a

‘balanced’ way such that the ratio of capital composite to effective labor does not change

further. This illustrates how firms, in the long run, choose the direction of technological

change that satisfies the BGP condition (45), or equivalently the technology condition (22).

The figure also shows that, even though the stable manifold53 is two-dimensional, the

52In the color PDF version of the article, the path that we now focus is depicted in purple.
53The stable manifold is the set of points in the (µ, k, c) space that converges to the BGP. In Figure 3,

all converging paths are on the (same) stable manifold.
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equilibrium paths first converges to a common one-dimensional arm (or curve), and then

converges to the BGP along the arm. This is because the system has two stable eigenvalues

with significantly different magnitudes. In the baseline calibration, stable eigenvalues are

0.602 and 0.970. Given that one period χ is 3.94 years, those eigenvalues means the speed of

convergence is 12% and 0.7% per year, respectively. As we discussed in the above example

(the path starting from the upper-right corner, indicated by a thick arrow), the convergence

to the BGP typically goes through two stages, and each stage corresponds to a different

eigenvalue. The initial adjustment towards the common arm is driven mainly by capital

accumulation. It is relatively fast: the distance from the common arm declines 12% every

year. However, the second stage, along the common arm, is very slow. In the baseline

example, the convergence speed is only 0.7% per year, which means it takes about 90 years

to halve the distance. This adjustment takes much longer than capital accumulation because

it is driven by the difference in the speed of technological change among AK , AX , and AL.

Note that these numbers are just for illustration, because the eigenvalues depend on the

free parameters, as shown in Table 7. Still, this result suggests that, without considering

endogenous technical change for various production factors (including capital-augmenting

technological change), neoclassical growth models may overestimate the speed of convergence

to the steady state by large margins.

8 Conclusions and Future Research

The relative price of investment has been falling in the U.S. for long periods of time, indicat-

ing the existence of capital-augmenting technological change on the balanced growth path.

Due to the Uzawa steady state theorem, however, this fact had to be ignored in macroeco-

nomic models that incorporate empirically relevant value for the elasticity of substitution

between labor and capital.

This paper shows that this limitation can be overcome once we take the realistic step

of adding more factors of production. For example, Caselli and Feyrer (2007) estimate

that, among capital share of 26%, only 18% is reproducible capital (i.e., the factor that can

be accumulated by savings). The other 8% cannot fall within the category of L or K in

neoclassical growth models. We have shown that once we explicitly introduce other factors

than L and K into the model, such as natural resources and land, we do not need to ignore

capital-augmenting technological change either, as long as there is at least one production

factor that has a unitary elasticity of substitution with reproducible capital.
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For a model with multiple factor-augmenting technologies to have a BGP, the growth rates

of these technologies need to satisfy a log-linear condition. In an endogenous growth model

where technologies are improved by profit-maximizing R&D, we show that the condition is

naturally satisfied as an long-term outcome of the equilibrium path, regardless of the initial

conditions.

Implications for macroeconomic research

The generalized Uzawa growth theorem is not a mere theoretical curiosity. In standard

macroeconomic models, the counter-factual notion that there is a single type of technology

has implicitly placed severe restrictions on our ability to describe the economy. The literature

on growth accounting, for example, emphasizes the role of investment specific technical

change. Without utilizing our results, such analyses must focus on the Cobb-Douglas case

(e.g., Greenwood et al., 1997) or be inconsistent with balanced growth (e.g., Krusell et al.,

2000).54 The same is true of business-cycle- and development accounting analyses (e.g.,

Fisher, 2006; DiCecio, 2009; Hsieh and Klenow, 2010; Schoellman, 2011).

In addition to improving descriptions of the economy, our results may also be useful for

modeling medium-run transition dynamics. Standard models capture transition dynamics

purely through capital accumulation, but directed technical change introduces another di-

mension of adjustment. Our numerical example (Subsection 7.3) suggests that adjustments

among technologies are significantly slower than capital accumulation. This result implies

that shocks have highly persistent effects when they have disproportionate effects on differ-

ent effective production factors, because technological adjustment will be required for the

economy to be back to the BGP (see also, Leon-Ledesma and Satchi, 2019). Existing stud-

ies suggest that the transition dynamics in standard neoclassical models are too rapid to

match data (e.g., King and Rebelo, 1993; Banerjee and Moll, 2010). Our results indicate

that adding natural resources and directed technical change can allow researchers to build

models that match BGP data, while generating slower transition dynamics.

Models of economic growth with capital-augmenting technical change are also useful for

understanding the relationship between technological progress and inequality (e.g., Karabar-

bounis and Neiman, 2014; Acemoglu and Restrepo, 2016; Hémous and Olsen, forthcoming).

An important question in this literature is how to best model the impact of technology on

labor market outcomes (Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2018). There

54See, He et al. (2008) and Maliar and Maliar (2011) for discussions of how to make these models consistent
with balanced growth.
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is a consensus in the literature that capital- and labor-augmenting technical change have dif-

ferent impacts on the labor share of income. Thus, including both types of technical change

greatly increases the usefulness of these models in studying impacts of new technologies on

workers.

Estimating σKXj

To utilize the generalized Uzawa Growth theorem, we need some factor, Xj, that has a

unit-elastic EoS with reproducible capital. An obvious next step for future research would

be to determine whether such a factor exists. In our illustrative growth model, we assumed

that this third factor was an amalgamation of all factors not included in reproducible capital

or labor. Proposition 4, however, only requires that at least one factor of production has

this property. Thus, it is necessary to test many different factors to see if they satisfy this

property. The obvious candidates would be land, energy, and natural materials, but it could

also be any subcategory of these types of inputs. Given the vast array of choices and the

limited restrictions created by theory, there is a reasonable possibility that such a factor

exists.

What if there is no Xj with σKXj = 1?

Despite the wide range of factors used in production, it is still a open question whether

there exist a production factor that has unit-elastic substitution with reproducible capital.

If future research determines there is no such factor, the generalized Uzawa Growth theorem

again implies that the speed of capital-augmenting technological change must be exactly

zero on any BGP.

This result does not fit the data on the falling relative price of investment. In this

case, it is necessary to question whether the assumptions of the theorem hold in reality. A

remarkable property of the Uzawa theorem is that it depends on very few assumptions: (1)

the economy can be expressed by a neoclassical growth model, and (2) there is a BGP. The

NIPA data strongly suggests the existence of the BGP. Therefore, we can narrow down the

concern to the assumption in the neoclassical growth model, as given in Definition 1.

The definition consists of two parts, aggregate production function Yt = F (Kt, X1,t, ..., XJ,t; t)

and resource constraint Kt+1 = Yt−Ct−Rt + (1− δ)Kt. In the Uzawa theorem, the latter is

only utilized in Lemma 2, which showed that the K/Y ratio must be constant in the BGP.

The result of this lemma is clearly visible in the NIPA data depicted by Figure 1, where

Y and K grows at the same rate, confirming the statement that “capital inherits the trend
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of output” (Jones and Scrimgeour, 2008). Therefore, as long as an economic analysis uses

aggregate output Y and aggregated capital K, as defined in NIPA, this resource constraint

seems to do no additional harm.55

The remaining suspect, then, is the aggregate production function Yt = F (Kt, X1,t, ..., XJ,t; t).

It assumes that there is a mapping from aggregated factor inputs to the aggregate output.

While the vast majority of all macroeconomic models use some form of aggregate production

function, it is not a weak assumption. For example, Figure 1 shows that the movement of

the relative price of capital depends on the type of capital (e.g., equipment and structure).

Even within the equipment category, the relative prices of different capital goods change

dramatically over time. The same can be said for the left hand side of the production func-

tion, i.e., aggregated output Yt. The aggregate production function implicitly assumes that

capital and output can be aggregated and that there are stable relationships between these

aggregates. If there is no Xj with σKXj = 1, it might suggest that aggregation created the

problem. Exploring disaggregated models seems important in this respect.
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A Proofs of Propositions and Lemmas

A.1 Notation for derivatives

Throughout this paper, FK(·; t) denotes the partial derivative of function F (·; t) with respect

to its first argument, whereas FXj(·; t) denotes the partial derivative of F (·; t) with respect

to its 1 + jth argument. The same applies to other functions, such as F̃ (·).
Following the convention in economics, ∂

∂Kt
and ∂

∂Xj,t
represent the partial derivatives

with respect to variables Kt and Xj,t, respectively. For example, if F̃ (·) is the production

function, ∂
∂Xj,t

F̃ (·) gives the marginal product of factor Xj,t.

Note that these two definitions are different when the argument of function is not a single

variable. For example, using the chain rule, we have

∂

∂Xj,t

F̃ (Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t) = ÃXj ,tF̃Xj(Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t). (A.1)

A.2 Proof of Lemma 1

Note that δ = (δ̆ + gq − 1)/gq means 1 − δ̆ = (1 − δ)qt+1/qt. Dividing equation (3) by qt+1

and using the above result, we have Kt+1 = K̆t+1/qt+1 = (Yt − Ct − Rt) + (1− δ̆)K̆t/qt+1 =

(Yt − Ct −Rt) + (1− δ)Kt, which coincides with (2).

Production function F̆ (K̆t, X1,t, ..., XJ,t; t) = F̆ (qt−1Kt, X1,t, ..., XJ,t; t) is a CRS function

of Kt, X1,t, ..., XJ,t and depends on time both through the shape of F̆ (·; t) and through the

growth of qt. Therefore, we can define function F (Kt, X1,t, ..., XJ,t; t) ≡ F̆ (qt−1Kt, X1,t, ..., XJ,t; t),

where dependence of F (·; t) on t includes the effect from qt−1. From the assumptions on F̆ (·),
function F (·; t) obviously satisfies the required marginal product properties in (1).
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A.3 Proof of Lemma 2

Using the notation in Definition 2, equation (2) can be written as K0g
t+1
K = Y0g

t − C0g
t
C −

R0g
t
R + (1− δ)K0g

t
K . Dividing all terms by gt and rearranging them gives

Y0 = C0(gC/g)t +R0(gR/g)t +K0(gK + δ − 1)(gK/g)t. (A.2)

Because all three terms on the right hand side (RHS) of (A.2) are non-negative exponential

functions of t, every one of them needs to be constant for the sum of all the terms to

become constant (Y0). For the first term C0(gC/g)t to be constant, gC = g must hold

since C0 > 0 from Definition 1. This means Ct/Yt = C0/Y0 > 0. For the third term

(gK + δ − 1)(gK/g)t to be constant, gK = g must hold since K0 > 0 and gK > 1 − δ. This

implies Kt/Yt = K0/Y0 > 0. If R0 > 0, gR = R must hold since otherwise the second term

cannot be constant.

A.4 Proof of Proposition 2

Because the production function in period 0 is F (·; 0) ≡ F̃ (·), we can write the share of

factor Z in period 0 as

sZ,0 = F̃Z(K0, X1,0, ..., XJ,0)
Z0

Y0
, (A.3)

where F̃Z(·) represents the derivative of function F̃ (·) with respect to its argument (see

Appendix Section A.1). Note that, since function F̃ (·) has constant returns to scale, its

partial derivative function F̃Z(·) must be homogeneous of degree 0 (See Theorem M.B.1 in

Mas-Colell et al., 1995). Therefore, the value of F̃Z(·) will be unchanged when all of its

arguments are multiplied by the same factor gt = Yt/Y0 = Kt/K0 = ÃXj ,tXj,t/Xj,0. (Here

we used gK = g from Lemma 2.) Applying this for (A.3) gives

sZ,0 = F̃Z(Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t)
Z0

Y0
.

In addition, because the effective amount of production factors and the output grow at the

same speed, Z0/Y0 = ÃZ,tZt/Yt holds on the BGP. (In the case of Zt = Kt, we define

ÃK,t ≡ 1.) Therefore,

sZ,0 = F̃Z(Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t)ÃZ,t
Zt
Yt

=
∂F̃ (Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t)

∂Zt

Zt
Yt
, (A.4)
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where the validity of the second equality is guaranteed by the chain rule.56 Recall that we

assumed that the share is constant over time, which means

sZ,0 = sZ,t = FZ(Kt, X1,t, ..., XJ,t; t)
Zt
Yt
. (A.5)

By comparing (A.4) and (A.5), we obtain (5).

A.5 Proof of Proposition 3

As in Definition 3, the EoS between Kt and Xj, j ∈ {1, ..., J}, in the Uzawa Representation

F̃ (Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t) is defined as

σ̃KXj ,t = − d ln(Kt/Xj,t)

d ln

(
F̃K(Kt,ÃX1,t

X1,t,...,ÃXJ,tXJ,t)

ÃXj,tF̃Xj (Kt,ÃX1,t
X1,t,...,ÃXJ,tXJ,t)

)
∣∣∣∣∣∣∣∣
Yt,X−j,t:const

. (A.6)

We used (A.1) for calculating the marginal product of Xj in the denominator. Note that, in

addition to output Yt and other production factors X−j,t, we keep technologies ÃX1,t, ..., ÃXJ ,t

fixed when calculating the EoS.

In this proof, we evaluate the value of (A.6) on the BGP. This means Yt and X−j,t are

their BGP values, but we still need to consider (infinitesimally) small perturbations of Kt

and Xj,t from these BGP values. To make this distinction, let Yt, Kt, X1,t, ..., XJ,t denote the

specific BGP values, and k and xj the variables to be perturbed. Then, (A.6) can be written

as57

σ̃KXj ,t = − d ln(k/xj)

d ln

(
F̃K(k,ÃX1,t

X1,t,...,ÃXj,txj ,...,ÃXJ,tXJ,t)

ÃXj,tF̃Xj (k,ÃX1,t
X1,t,...,ÃXj,txj ,...,ÃXJ,tXJ,t)

)
∣∣∣∣∣∣∣∣
F̃ (k,ÃX1,t

X1,t,...,ÃXj,txj ,...,ÃXJ,tXJ,t)=Yt

k=Kt,xj=Xj,t

.

(A.7)

Condition F̃ (k, ÃX1,tX1,t, ..., ÃXj ,txj, ..., ÃXJ ,tXJ,t) = Yt says that k and xj need to move

to ensure that this equality is satisfied. The other conditions k = Kt, xj = Xj,t say that,

after the differentiation is complete, the EoS is evaluated at the BGP values.

Now, consider a change of variables: k′ = g−tk and x′j = g−tÃXj ,txj. Then, k in (A.7) is

56See Appendix A.1.
57We omit condition “X−j,t: const” because we already made it clear that Xj,t’s are the BGP values, not

variables.
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replaced by k = gtk′ and xj is by (gt/ÃXj ,t)x
′
j. Specifically, k/xj in the numerator becomes

ÃXj ,tk
′/x′j. In the denominator,

F̃K(k, ÃX1,tX1,t, ..., ÃXj ,txj, ..., ÃXJ ,tXJ,t) = F̃K(gtk′, gtX1,0, ..., g
tx′j, ..., g

tXJ,0)

= F̃K(k′, X1,0, ..., x
′
j, ..., XJ,0),

where we used the definition of ÃXj ,t ≡ gtXj,0/Xj,t and the homogeneity of degree 0 property

of the F̃K(·) function.58 Similarly,

F̃Xj(k, ÃX1,tX1,t, ..., ÃXj ,txj, ..., ÃXJ ,tXJ,t) = F̃Xj(k
′, X1,0, ..., x

′
j, ..., XJ,0).

Note that, using the CRS property of F̃ (·), condition F̃ (k, ÃX1,tX1,t, ..., ÃXj ,txj, ..., ÃXJ ,tXJ,t) =

Yt can be simplified as

F̃ (gtk′, gtX1,0, ..., g
tx′j, ..., g

tXJ,0) = gtF̃ (k′, X1,0, ..., x
′
j, ..., XJ,0) = Yt.

Since Yt = gtY0, the condition reduces to F̃ (k′, X1,0, ..., x
′
j, ..., XJ,0) = Y0. The point of

evaluation, k = Kt, becomes gtk′ = Kt, or k′ = g−tKt = K0. Similarly, xj = Xj,t becomes

x′j = g−tÃXj ,tXj,t = Xj,0. Therefore, (A.7) can be expressed in terms of k′ and x′j as follows:

σ̃KXj ,t = −
d ln(ÃXj ,tk

′/x′j)

d ln

(
F̃K(k′,X1,0,...,x′j ,...,XJ,0)

ÃXj,tF̃Xj (k
′,X1,0,...,x′j ,...,XJ,0)

)
∣∣∣∣∣∣∣∣F̃ (k′,X1,0,...,x′j ,...,XJ,0)=Y0
k′=K0,x′j=Xj,0

. (A.8)

Recall that we keep technology ÃXj ,t fixed when calculating the EoS. We can eliminate

ÃXj ,t from the numerator from d ln(ÃXj ,tk
′/x′j) = d(ln(k′/x′j) + ln ÃXj ,t) = d ln(k′/x′j). In

the same way, ÃXj ,t in the denominator can also be eliminated (or replaced by AXj ,0 ≡ 1).

Finally, using F̃ (·) ≡ F (·; 0), (A.8) can be written as

σ̃KXj ,t = −
d ln(k′/x′j)

d ln
(
FK(k′,X1,0,...,x′j ,...,XJ,0;0)

FXj (k
′,X1,0,...,x′j ,...,XJ,0;0)

)
∣∣∣∣∣∣∣F (k′,X1,0,...,x′j ,...,XJ,0;0)=Y0
k′=K0,x′j=Xj,0

. (A.9)

Then, comparing with Definition 3, it turns out that the RHS of (A.9) exactly matches

the definition of σKXj ,0, evaluated at the period-0 BGP. Since it is assumed that σKXj ,t does

58For the homogeneity of degree 0 property, see the proof of Proposition 2 in appendix A.4.
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not change over time, we have σ̃KXj ,t = σKXj ,0 = σKXj ,t.

A.6 Proof of Lemma 3

Proof of part a

By substituting K0, X1,0, ..., XJ,0 into (11) and then using (12),

F (K0, X1,0, ..., XJ,0) = F̂

(
Kα

0

∏j∗

j=1
X
ξj
j,0, Xj∗+1,0, ..., XJ,0

)
= F

((∏j∗

j=1
X
ξj
j,0

)−1/α(
Kα

0

∏j∗

j=1
X
ξj
j,0

)1/α

, X1,0, ..., XJ,0; 0

)
= F (K0, X1,0, ..., XJ,0; 0) .

Proof of part b

Let M0 = Kα
0

∏j∗

j=1X
ξj
j,0 denote the amount of capital composite m in period 0, and F̂M(·)

denote the derivative of function F̂ (·) with respect to its first argument. By differentiating

both sides of (12) by m with the chain rule and substituting the period-0 BGP values for

k, xj∗+1, ..., xJ ,

F̂M (M0, Xj∗+1,0, ..., XJ,0) = FK(K0, X1,0, ..., XJ,0; 0)

(∏j∗

j=1
X
ξj
j,0

)−1/α
1

α
M

(1−α)/α
0

= FK(K0, X1,0, ..., XJ,0; 0)
K0

αM0

,

(A.10)

where the last equality follows from the definition of M0 = Kα
0

∏j∗

j=1X
ξj
j,0. Now, consider the

case of Z = K. By differentiating both sides of (11) by k with the chain rule and substituting

the period-0 BGP values,

FK(K0, X1,0, ..., XJ,0) = F̂M (M0, Xj∗+1,0, ..., XJ,0)αM0/K0

= FK(K0, X1,0, ..., XJ,0; 0),

where the last equality is from (A.10). Similarly, for the case of Z = Xj, where j ∈ {1, ..., j∗},

FXj(K0, X1,0, ..., XJ,0) = F̂M (M0, Xj∗+1,0, ..., XJ,0) ξjM0/Xj,0

= FK(K0, X1,0, ..., XJ,0; 0)
ξj
α

K0

Xj,0

.
(A.11)
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Note that, from the definitions of α and ξj in (10), ξj/α = sXj ,0/sK,0. Therefore, (A.11)

becomes

FK(K0, X1,0, ..., XJ,0; 0)
FXj(K0, X1,0, ..., XJ,0; 0)Xj,0

FK(K0, X1,0, ..., XJ,0; 0)K0

K0

Xj,0

= FXj(K0, X1,0, ..., XJ,0; 0).

Finally, consider the case of Z = Xj, where j ∈ {j∗ + 1, ..., J}. Similarly to the proof of

part a, we can confirm that F (K0, X1,0, ..., Xj∗,0, xj∗+1, ...xJ) = F (K0, X1,0, ..., Xj∗,0, xj∗+1, ..., xJ ; 0)

for any xj∗+1, ..., xJ . This means that they are identical functions of xj∗+1, ..., xJ , and have

the same derivatives with respect to these variables. Therefore, for j ∈ {j∗ + 1, ..., J}, we

have FXj(K0, X1,0, ..., XJ,0) = FXj(K0, X1,0, ..., XJ,0; 0).

Proof of part c

The EoS for function F (·) between capital and factor j, evaluated at the period-0 BGP, is

defined as

σKXj ,0 = − d ln(k/xj)

d ln

(
FK(k,X1,0,...,xj ,...,XJ,0)

FXj (k,X1,0,...,xj ,...,XJ,0)

)
∣∣∣∣∣∣∣∣
F (k,X1,0,...,xj ,...,XJ,0)=Y0
k=K0,xj=Xj,0

, (A.12)

where k and xj are variables to be perturbed and Y0, K0, X1,0, ..., XJ,0 are the period-0 BGP

values.

Let us first examine σKXj ,0 for the case of j ∈ {1, ..., j∗}. In this case, factorsXj∗+1,0, ..., XJ,0

are fixed at the BGP values. Using (11), function F (k,X1,0, ..., xj, ..., XJ,0) can be written

as F̂ (m,Xj∗+1,0, ..., XJ,0), where m is the amount of capital composite, defined as m =

kαx
ξj
j

∏
j′∈{1,...,j∗}\j X

ξj′

j′,0. Using the chain rule, its derivative with respect to k becomes

FK(k,X1,0, ..., xj, ..., XJ,0) =
∂

∂k
F̂ (m,Xj∗+1,0, ..., XJ,0)

= F̂M(m,Xj∗+1,0, ..., XJ,0)
∂m

∂k

= F̂M(m,Xj∗+1,0, ..., XJ,0)α
m

k
.

Similarly, FXj(k,X1,0, ..., xj, ..., XJ,0) = F̂M(m,Xj∗+1,0, ..., XJ,0)ξj
m
xj

. Substituting these into

(A.12) gives

σKXj ,0 = − d ln(k/xj)

d ln
(
α
ξj

xj
k

)
∣∣∣∣∣∣
F (k,X1,0,...,xj ,...,XJ,0)=Y0
k=K0,xj=Xj,0

. (A.13)
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Since α and ξj are constant parameters, the denominator can be simplified as d ln ((α/ξj)(xj/k)) =

d (ln(α/ξj) + ln(xj/k)) = d ln(xj/k). Using this, (A.13) gives σKXj ,0 = 1. Recall that

σKXj ,0 = 1 because j ∈ {1, ..., j∗}. Therefore, σKXj ,0 = σKXj ,0 holds.

Next, we examine σKXj ,0 for the case of j ∈ {j∗ + 1, ..., J}. In this case, equations (11)

and (12) imply

F (k,X1,0, ..., xj, ..., XJ,0) = F (k,X1,0, ..., xj, ..., XJ,0; 0),

for any k > 0 and xj > 0. Therefore, the EoS of function F (k,X1,0, ..., xj, ..., XJ,0) between

k and xj is identical with that of function F (k,X1,0, ..., xj, ..., XJ,0; 0). This means σKXj ,0 =

σKXj ,0.

Proof of part d

Let us first consider the CRS property of function F̂ (m,xj∗+1, ..., xJ). We multiply every

argument by an arbitrary factor of λ > 0. From (12),

F̂ (λm, λxj∗+1, ..., λxJ)

= F

(
λ1/α

(∏j∗

j=1
X
ξj
j,0

)−1/α
m1/α, X1,0, ..., Xj∗,0, λxj∗+1, ..., λxJ ; 0

)

= λF

(
λ(1−α)/α

(∏j∗

j=1
X
ξj
j,0

)−1/α
m1/α,

X1,0

λ
, ...,

Xj∗,0

λ
, xj∗+1, ..., xJ ; 0

)
,

(A.14)

where the last equality comes from the CRS property of the period-0 true production function

F (·; 0). (All the arguments are divided by λ.) Our objective it to show that the last line of

(A.14) coincides with λF̂ (m,xj∗+1, ..., xJ). Using (12), this desired condition can be written

as

F

((∏j∗

j=1
X
ξj
j,0

)−1/α
m1/α, X1,0, ..., Xj∗,0, xj∗+1, ..., xJ ; 0

)

= F

(
λ(1−α)/α

(∏j∗

j=1
X
ξj
j,0

)−1/α
m1/α,

X1,0

λ
, ...,

Xj∗,0

λ
, xj∗+1, ..., xJ ; 0

)
.

(A.15)

In the following, we establish this equality by focusing on the isoquants of function F (·; 0).

Recall that we defined j∗ such that the period-0 true production function F (k, x1, x2, . . . , xJ ; 0)

satisfies σKXj = 1 for j = 1, ..., j∗. For concreteness, let us focus on capital k and x1.

From Definition 3, σKX1 = 1 means that equation d ln(FK/FX1)/d ln(k/x1) = −1 holds
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when the output and other inputs are kept constant.59 In other words, this differen-

tial equation is satisfied on the isoquant curve in the k-x1 space. Integrating equation

d ln(FK/FX1)/d ln(k/x1) = −1 gives ln(FK/FX1) = − ln(k/x1) + ξ̃1, where ξ̃1 is a constant

of integration. Taking the exponential of the both sides gives

FK/FX1 = (exp ξ̃1)(x1/k). (A.16)

From the definition of the isoquant curve, the amount of output must be constant: dY =

FKdk + FX1dx1 = 0. Rearranging and using (A.16), we have the slope of the isoquant

curve as dx1/dk = −FK/FX1 = −(exp ξ̃1)(x1/k). Integrating this differential equation by

separation of variables gives ln k = −(1/ exp ξ̃1) lnx1 + ỹ1, where ỹ1 is another constant of

integration.60 By taking the exponential,

k = (exp ỹ1)x
−1/ exp ξ̃1
1 . (A.17)

Equation (A.17) defines an isoquant curve with two parameters, ỹ1 and ξ̃1. The value ξ̃1

can be pinned down by the factor share. Using (A.16), the relative share between k and x1

is written as kFK/x1FX1 = exp ξ̃1. The result does not depend on k or x1, which means that

the relative share is constant on the isoquant curve. Also, notice that the value of ξ̃1 must

be the same across all isoquant curves, since otherwise they intersect with each other, which

is impossible by the definition of the isoquant curve. From (10), we know that the relative

share in period 0 is α/ξ1. Using these, the isoquant curve (A.17) can be written as

k = (exp ỹ1)x
−ξ1/α
1 . (A.18)

The remaining parameter ỹ1 specifies the location of the isoquant curve. Now, consider

a particular isoquant curve that goes through k =
(∏j∗

j=1X
ξj
j,0

)−1/α
m1/α and x1 = X1,0,

which means exp ỹ1 =
(∏j∗

j=1X
ξj
j,0

)−1/α
m1/αX

ξ1/α
1,0 . From (A.18), we can confirm that this

isoquant curve also goes through k′ = λξ1/α
(∏j∗

j=1X
ξj
j,0

)−1/α
m1/α and x′1 = X1,0/λ.61 Since

59To minimize notation we omit the arguments of the functions FK(k, x1, ..., xJ ; 0) and
FX1

(k, x1, ..., xJ ; 0).
60This integration can be done by separation of variables. Rearranging the equation dx1/dk =

−(exp ξ̃1)(x1/k), we have (1/k)dk = −(1/ exp ξ̃1)(1/x1)dx1. Integrating both sides of this equation sep-

arately gives
∫

(1/k)dk = −(1/ exp ξ̃1)
∫

(1/x1)dx1. Since
∫

(1/k)dk = ln k + constant and
∫

(1/x1)dx =
lnx1 + constant, we obtain the result in the text.

61This can be confirmed by substituting k′ and x′1 into (A.18). It yields the same exp ỹ1 as in the previous
sentence.
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the output is the same on an isoquant curve, we have

F

((∏j∗

j=1
X
ξj
j,0

)−1/α
m1/α, X1,0, ..., Xj∗,0, xj∗+1, ..., xJ ; 0

)

= F

(
λξ1/α

(∏j∗

j=1
X
ξj
j,0

)−1/α
m1/α,

X1,0

λ
, ..., Xj∗,0, xj∗+1, ..., xJ ; 0

)
.

(A.19)

By repeating this operation for j = 2, ..., j∗ and using
∑j∗

j=1 ξj = 1− α from (10), we obtain

(A.15). This establishes the CRS property of function F (m,xj∗+1, ..., xJ).

Next, we prove the CRS property of function F (k, x1, ..., xJ). From (11),

F (λk, λx1, ..., λxJ) = F̂

(
(λk)α

∏j∗

j=1
(λxj)

ξj , λxj∗+1,0, ..., λxJ,0

)
= F̂

(
λkα

∏j∗

j=1
x
ξj
j , λxj∗+1,0, ..., λxJ,0

)
= λF̂

(
kα
∏j∗

j=1
x
ξj
j , xj∗+1,0, ..., xJ,0

)
= λF (k, x1, ..., xJ).

The second equality utilizes α +
∑j∗

j=1 ξj = 1 from (10), whereas the third equality is from

the CRS property of function F̂ (·).

A.7 Proof of Proposition 4

Using (11), the RHS of equation (14) can be written as

F̂

(
(AK,tKt)

α
∏j∗

j=1
(AXj ,tXj,t)

ξj , AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t

)
. (A.20)

The first argument of function F̂ (·) represent the effective amount of capital composite

on the BGP. It is multiplied by g each period from condition (13). Also, all the other

arguments of F̂ (·) are multiplied by g each period because it is assumed that γXj = g/gXj

for j ∈ {j∗+ 1, ..., J}. Since F̂ (·) has CRS from property d of Lemma 3, (A.20) is multiplied

by g each period.

Also, the LHS of (14), Yt, is multiplied by g every period by the definition of the BGP.

In period 0, (14) holds from property a of Lemma 3. Therefore, (14) holds for all t ≥ 0.
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A.8 Proof of Proposition 5

The proof relies on Lemma 3, but otherwise it proceeds similarly to the proof for Proposition

2. Let us first consider the case of Zt = Kt. Using property b of Lemma 3 and (11), the

share of factor K in period 0 can be written as (11),

sK,0 = FK(K0, X1,0, ..., XJ,0; 0)
K0

Y0

= FK(K0, X1,0, ..., XJ,0)
K0

Y0

=
∂

∂K0

F̂

(
Kα

0

∏j∗

j=1
X
ξj
j,0, Xj∗+1,0, ..., XJ,0

)
K0

Y0
. (A.21)

Let F̂M(·) be the derivative of function F̂ (·) with respect to its first argument. Note that, in

(A.21), the first argument is the capital composite in period 0, M0 = Kα
0

∏j∗

j=1X
ξj
j,0. Using

the chain rule, (A.21) becomes

sK,0 = F̂M (M0, Xj∗+1,0, ..., XJ,0)
dM0

dK0

K0

Y0
= F̂M (M0, Xj∗+1,0, ..., XJ,0)

αM0

Y0
, (A.22)

where the second equality follows from dM0/dK0 = αM0/K0.

Recall that F̂ (·) has CRS from Lemma 3, and therefore its derivative F̂M(·) is a ho-

mogeneous function of degree 0. Let Mt = (AK,tKt)
α
∏j∗

j=1(AXj ,tXj,t) denote the effec-

tive amount of capital composite in period t. From condition (13), Mt grows by a fac-

tor of g every period. The same applies to the effective amounts of factors not in the

capital composite: AXJ ,tXj,t for j = j∗ + 1, ..., J. Therefore, when we consider function

F̂M
(
Mt, AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t

)
, every argument is multiplied by g every period, which

does not change the value of FM(·) over time due to homogeneity of degree 0. Therefore,

(A.22) can be written as

sK,0 = F̂M
(
Mt, AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t

) αM0

Y0
. (A.23)

Note that, because Mt and Yt grow at the same speed, the last term can be transformed as

αM0/Y0 = αMt/Yt = (αMt/Kt)(Kt/Yt). In addition, αMt/Kt in the latter expression rep-

resents dMt/dKt, which can be confirmed by differentiating Mt = (AK,tKt)
α
∏j∗

j=1(AXj ,tXj,t)
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by Kt. Therefore, (A.23) becomes

sK,0 = F̂M
(
Mt, AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t

) dMt

dKt

Kt

Yt

=
∂

∂Kt

F̂

(
(AK,tKt)

α
∏j∗

j=1
(AXj ,tXj,t), AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t

)
Kt

Yt

=
∂

∂Kt

FK (AK,tKt, AX1,tX1,t, ..., AXJ ,tXJ,t)
Kt

Yt
,

(A.24)

where the second equality uses the chain rule, and the third is from the definition of function

F (·) in (11). Note that the share of capital is the same in period t and 0, which implies

sK,0 = sK,t = FK(Kt, X1,t, ..., XJ,t; t)
Kt

Yt
. (A.25)

By comparing (A.24) with (A.25), we obtain (16) for the case of Zt = Kt. The proof of the

proposition for the case of Zt = Xj,t, j ∈ {1, ..., j∗} proceeds exactly the same way as above,

with only the modification that Kt is replaced by Xj,t and α by ξj.

Finally, the case of Zt = Xj,t, j ∈ {j∗ + 1, ..., J}, can be confirmed in a similar way as in

Proposition 2, because the value of AXj ,t is the same as ÃXj ,t in the Uzawa theorem. In par-

ticular, we use F̂ (Mt, AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t) instead of F̃ (Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t),

and define F̂Xj(·), j ∈ {j∗, ..., J}, as the derivative of function F̂ (·) with respect to its

(j − j∗ + 1)th argument.62 Except for these slight modifications, the proof proceeds exactly

as in Appendix A.4.

A.9 Proof of Proposition 6

Similarly to Definition 3, the EoS σKXj ,t on the BGP is defined as

σKXj ,t = − d ln(k/xj)

d ln

(
AK,tFK(AK,tk,AX1,t

X1,t,...,AXj,txj ,...,AXJ,tXJ,t)

AXj,tFXj (AK,tk,AX1,t
X1,t,...,AXj,txj ,...,AXJ,tXJ,t)

)
∣∣∣∣∣∣∣∣
F (AK,tk,AX1,t

X1,t,...,AXj,txj ,...,AXJ,tXJ,t)=Yt

k=Kt,xj=Xj,t

.

(A.26)

where Yt, Kt, X1,t, ..., XJ,t indicate the BGP values, and k and xj are the variables to be

perturbed.63

62F̂Xj
(·) needs to be defined this way because j∗ arguments are eliminated from function F̂ (·) in definition

(12). Also, note that similarly to function F̃ (·), function F̂ (·) has a CRS property from Lemma 3.
63In definition (A.26), condition F (AK,tk,AX1,tX1,t, ..., AXj ,txj , ..., AXJ ,tXJ,t) = Yt means that k and xj

are perturbed so that output Yt is unchanged from the BGP value. Condition k = Kt, xj = Xj,t says that
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Let us first consider the case of j ∈ {1, ..., j∗}. In this case, factorsXj∗+1,t, ..., XJ,t are fixed

at the BGP values. Now, we simplify the denominator of (A.26), particularly focusing on

the fraction inside ln(·). Using (11), function F (AK,tk,AX1,tX1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t) can

be written as F̂ (m,AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t), where m is the effective amount of capital

composite, m = (AK,tk)α(AXj ,txj)
ξj
∏

j′∈{1,...,j∗}\j(AXj′ ,tXj′,0)
ξj′ . Note that dm/dk = αm/k.

Using these properties and the chain rule, we have

AK,tFK(AK,tk,AX1,tX1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)

=
∂

∂k
F (AK,tk,AX1,tX1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)

=
∂

∂k
F̂ (m,AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t)

= F̂M(m,AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t)α
m

k
.

(A.27)

Similarly,

AXj ,tFXj(AK,tk,AX1,tX1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)

= F̂M(m,AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t)ξj
m

xj
.

(A.28)

Substituting (A.27) and (A.28) into (A.26) gives

σKXj ,t = − d ln(k/xj)

d ln
(
α
ξj

xj
k

)
∣∣∣∣∣∣
F (AK,tk,AX1,t

X1,t,...,AXj,txj ,...,AXJ,tXJ,t)=Yt

k=Kt,xj=Xj,t

. (A.29)

Since α and ξj are constant parameters, the denominator can be simplified as d ln ((α/ξj)(xj/k)) =

d (ln(α/ξj) + ln(xj/k)) = d ln(xj/k). Using this, (A.29) gives σKXj ,t = 1. Recall that

σKXj ,0 = 1 because j ∈ {1, ..., j∗}, and that σKXj ,t does not change over time on the BGP.

Therefore, σKXj ,t = σKXj ,0 = 1 = σKXj ,t holds.

Next, we examine σKXj ,t for the case of j ∈ {j∗ + 1, ..., J}. Similarly to the proof of

Proposition 3, consider a change of variables: k′ = g−tk and x′j = g−tAXj ,txj. Then, k in

(A.26) is replaced by k = gtk′ and xj is replaced by (gt/AXj ,t)x
′
j. In the numerator, k/xj

becomes AXj ,tk
′/x′j. In the denominator, by the same operations as in (A.27), AK,tFK(·)

the EoS is evaluated at the BGP values. It is also important to keep in mind the notation for derivatives:
AK,tFK(AK,tk,AX1,tX1,t, ..., AXj ,txj , ..., AXJ ,tXJ,t) is the partial derivative of F (·) with respect to k, which
corresponds to FK(·; t) in Definition 3.

A-12



can be written as

F̂M(m,AXj∗+1,tXj∗+1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)α
m

k
, (A.30)

where m = (AK,tk)α
∏j∗

j′=1(AXj′ ,tXj′,0)
ξj′ . The definition of m does not include xj because

j ∈ {j∗+ 1, ..., J} means that xj is not a part of capital composite. Instead, AXj ,txj appears

in (A.30) as the (j − j∗ + 1)th argument of the F̂ (·) function. Using xj = (gt/AXj ,t)x
′
j,

AXj ,txj can be written as gtx′j. Since Mt = (AK,tKt)
α
∏j∗

j=1(AXj ,tXj,t) grows by a factor of g

every period, the capital composite m can also be written as

m =
(
gtk′/Kt

)α
Mt = (k′/K0)

α
gtM0 = gtm′,

where m′ = (k′)α
∏j∗

j′=1(AX′j ,0Xj′,0). Other effective factors also grow by a factor of g:

AXj′ ,tXj′,t = gtXj′,0 for j′ ∈ {j∗ + 1, ..., J}\j. Using these, (A.30) becomes

F̂M(gtm′, gtXj∗+1,0, ..., g
tx′j, ..., g

tXJ,0)α
gtm′

gtk′

= F̂M(m′, Xj∗+1,0, ..., x
′
j, ..., XJ,0)α

m′

k′

=
∂

∂k′
F̂ (m′, Xj∗+1,0, ..., x

′
j, ..., XJ,0)

= FK(k′, X1,0, ..., x
′
j, ..., XJ,0),

where the first equality is from the homogeneity of degree 0 property of the F̂M(·) function,

the second equality is from the chain rule and dm′/dk′ = αm′/k′, and the last equality is

from the definition of F (·) in (11).

Likewise, AXj ,tFXj(·) in the denominator of (A.26) can be expressed in terms of k′ and
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x′j as

∂

∂xj
F (AK,tk,AX1,t,tX1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)

=
∂

∂xj
F̂ (m,AXj∗+1,tXj∗+1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)

= F̂Xj(m,AXj∗+1,tXj∗+1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)
dAXj ,txj

dxj

= F̂Xj(g
tm′, gtXj∗+1,0, ..., g

tx′j, ..., g
tXJ,0)AXj ,t

= F̂Xj(m
′, Xj∗+1,0, ..., x

′
j, ..., XJ,0)AXj ,t

=
∂

∂x′j
F̂ (m′, Xj∗+1,0, ..., x

′
j, ..., XJ,0)AXj ,t

= AXj ,tFXj(k
′, X1,0, ..., x

′
j, ..., XJ,0).

The definition in (A.26) evaluates F̄ (·) and its arguments at their BGP values.64 We also

need to re-write these conditions in terms of their period-0 values. Note that

F (AK,tk,AX1,tX1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)

= F̂ (m,AXj∗+1,tXj∗+1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)

= F̂ (gtm′, gtXj∗+1,0, ..., g
tx′j, ..., g

tXJ,0)AXj ,t

= gtF̂ (m′, Xj∗+1,0, ..., x
′
j, ..., XJ,0)AXj ,t

= gtF (k′, X1,0, ..., x
′
j, ..., XJ,0).

Therefore, condition F (AK,tk,AX1,tX1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t) = Yt can be substituted by

F (k′, X1,0, ..., x
′
j, ..., XJ,0) = Y0.

The point of evaluation, k = Kt, becomes gtk′ = Kt, or k′ = g−tKt = K0. Similarly,

xj = Xj,t becomes x′j = g−tAXj ,tXj,t = Xj,0. Using all these results, (A.26) can be expressed

in terms of k′ and x′j as follows:

σKXj ,t = −
d ln(AXj ,tk

′/x′j)

d ln

(
FK(k′,X1,0,...,x′j ,...,XJ,0)

AXj,tFXj (k
′,X1,0,...,x′j ,...,XJ,0)

)
∣∣∣∣∣∣∣∣F (k′,X1,0,...,x′j ,...,XJ,0)=Y0
k′=K0,x′j=Xj,0

. (A.31)

64I.e., the conditions that are written to the right of “|”.
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We can eliminate constant AXj ,t from the numerator because d ln(AXj ,tk
′/x′j) =

d(ln(k′/x′j) + lnAXj ,t) = d ln(k′/x′j). In the same way, AXj ,t in the denominator can also be

eliminated. Also, recall that AK,0 = AXj ,0 = 1. Then, comparing (A.31) with (A.26), it turns

out that the RHS of (A.31) coincides with σKXj ,0. From Lemma 3, σKXj ,0 = σKXj ,0 holds

in period 0. In addition, it is assumed that σKXj ,0 does not change over time. Therefore,

σKXj ,t = σKXj ,0 = σKXj ,0 = σKXj ,t.

A.10 Proof of Proposition 7

Proof of (c), as well as existence and uniqueness of γ̂L(µt)

As explained in the main text, the representative firm chooses γL,t so as to satisfy

R&D for N-tasks: γL,ti
′
L(γL,t) + iL(γL,t) = f(µt)− µtf ′(µt). (38)

Let us denote the LHS of (38) by ΨL(γL,t) because it depends only on γL,t. Then, Ψ′L(γL,t) =

γL,ti
′′
L(γL,t) + 2i′L(γL,t) > 0 for all γL,t > 1 from iL(γL,t) > 0 and i′L(γL,t) > 0 in (26).

When γL,t = 1, the properties of iL(·) imply ΨL(1) = i′L(1) + iL(1) = 0. Also, ΨL(∞) ≡
limγL,t→∞ΨL(γL,t) = ∞ from iL(∞) = ∞ and γL,ti

′
L(γL,t) > 0.65 Then, since ΨL(·) is

differentiable and strictly increasing, we can define its inverse function Ψ
(−1)
L (·), which is

also differentiable and strictly increasing with Ψ
(−1)
L (0) = 1 and Ψ

(−1)
L (∞) = ∞. Using this

function, condition (38) can be solved for γL,t:

γL,t = Ψ
(−1)
L (f(µt)− µtf ′(µt)) ≡ γ̂L(µt). (A.32)

Note that f(µt) − µtf
′(µt) represents the marginal product of Nt in the production

function, i.e., F̂N(µt, 1). We can express the production function Yt = F̂ (Mt, Nt) in

an intensive form with respect to Nt/Mt ≡ νt, instead of µt = Mt/Nt. Namely, out-

put per Mt can be expressed as Yt/Mt = F̂ (Mt, Nt)/Mt = F̂ (1, νt) ≡ h(νt). Since

F̂ (·) is CRS, its first derivative F̂N(·) is homogeneous of degree 0. Using this prop-

erty, h′(ν) = FN(1, Nt/Mt) = FN(Mt/Nt, 1) = FN(µt, 1) = f(µt) − µtf
′(µt). From

the definition of the production function F̂ (·), its alternate intensive form, h(νt), sat-

isfies the Inada conditions. Therefore, limµt→0 f(µt) − µtf
′(µt) = limνt→∞ h

′(νt) = 0,

and limµt→∞ f(µt) − µtf
′(µt) = limνt→0 h

′(νt) = ∞. Substituting these into (A.32) gives

65Similarly to the main text, we employ an abuse of notation by writing iL(∞) to represent
limγL→∞ iL(γL). We will employ similar abbreviations as long as they cause no confusion.
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γL(0) = Ψ
(−1)
L (0) = 1 and γL(∞) = Ψ

(−1)
L (∞) =∞.

Finally, we show γ′L(µt) > 0. The derivative of f(µt) − µtf
′(µt) with respect to µt is

−µtf ′′(µt). It is positive for all µt > 0 since the production function satisfies the Inada

conditions, which include f ′′(µt) < 0. Since Ψ
(−1)
L

′
(·) > 0, this means γ′L(µt) > 0.

Proof of (a) and (b), as well as existence and uniqueness of γ̂K(µK) and γ̂X(µX)

The representative firm chooses γK,t and γX,t according to the following two conditions:

R&D allocation:
γK,ti

′
K(γK,t)

γX,ti′X(γX,t)
=

α

1− α
, α ∈ (0, 1), (39)

Combined R&D: (γK,ti
′
K(γK,t) + iK(γK,t)) + (γX,ti

′
X(γX,t) + iX(γX,t)) = f ′(µt). (40)

Let us define ΩK(γK,t) ≡ γK,ti
′
K(γK,t) and similarly ΩX(γX,t) ≡ γX,ti

′
K(γX,t). Then, from

properties in (26), we can confirm Ω′K(γK,t) > 0 for γK,t > 1, ΩK(1) = 0 and ΩK(∞) =

∞. Similar conditions hold also for ΩX(·). Then, since ΩX(·) is differentiable and strictly

increasing, we can define its inverse function Ω
(−1)
X (·), which is also differentiable and strictly

increasing with Ω
(−1)
X (0) = 1 and Ω

(−1)
X (∞) =∞. Using this inverse function, condition (39)

can be solved for γX,t as

γX,t = Ω
(−1)
X

(
α

1− α
ΩK(γK,t)

)
≡ Ω(γK,t). (A.33)

Now let us focus on condition (40). Let us define ΨK(γK,t) ≡ γK,ti
′
K(γK,t) + iK(γK,t) and

likewise ΨX(γX,t) ≡ γX,ti
′
K(γX,t) + iK(γX,t). Using these and (A.33), the LHS of condition

(40) can be expressed as a function only of γK,t:

ΨK(γK,t) + ΨX(Ω(γK,t)) ≡ Ψ(γK,t).

Note that the properties of ΩK(·) and Ω
(−1)
X (·) imply that Ω(γK,t) > 0 for all γK,t > 1,

Ω(0) = 0 and Ω(∞) =∞. Also, in the same way that we derived the properties of ΨL(γL,t)

earlier in this proof, we can confirm ΨK(γK,t) > 0 for all γK,t > 1, ΨK(1) = 0, ΨK(∞) =∞,

and similar properties for ΨX(γX,t). From these, we have Ψ(γK,t) > 0 for all γK,t > 1,

Ψ(1) = 0, Ψ(∞) =∞. On the RHS of (40), f ′(µt) satisfies the usual Inada conditions. The
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results we have obtained so far can be summarized as

γK,t 1 · · · ∞
Ψ′(γK,t) +

Ψ(γK,t) 0 ↗ ∞

µt 0 · · · ∞
f ′′(µt) −
f ′(µt) ∞ ↘ 0

The tables above implies that condition (40), Ψ(γK,t) = f ′(µt), gives a 1 to 1 correspondence

between µt ∈ (0,∞) and γK,t ∈ (1,∞) that satisfies property (a): γ̂′K(µt) < 0 for all µt > 0,

γ̂K(0) =∞, and γ̂K(∞) = 1.

Given γ̂K(µt), equation (A.33) uniquely determines γX,t = Ω(γ̂K(µt)) ≡ γ̂X(µt). From the

properties of Ω(·) and γ̂K(·) above, we can confirm that property (b) is satisfied: γ̂′X(µt) < 0

for all µt > 0, γ̂X(0) =∞, and γ̂X(∞) = 1.

A.11 Derivation of Equilibrium Dynamics

In this section, we derive the equilibrium dynamics of the endogenous growth model in

Section 6. To do so, it is convenient to define the net aggregate output in the economy as

Vt = F̂ (Mt, Nt) − RK,t − RX,t − RL,t, which is aggregate output minus total R&D costs in

the economy.

The net output per effective labor can be written as a function of µt:

Vt/Nt = f(µt)− µt(iK(γ̂K(µt)) + iX(γ̂X(µt)))− iL(γ̂L(µt)) ≡ v(µt). (A.34)

Then, substituting profits (28) into the budget constraint (33), we can express the growth

of aggregate capital supply in terms of µt, kt and ct:

Kt+1

Kt

=
Vt + (1− δ)Kt − Ct

Kt

=
v(µt)− ct

kt
+ 1− δ. (A.35)

Dynamics for µt+1. The growth factor of µt+1 is defined by µt+1/µt =

(Mt+1/Mt)/(Nt+1/Nt). By using (23), (24), (29), (32) and (A.35), its value in equilibrium

can be written as

µt+1

µt
=

(gX γ̂X(µt+1))
1−α

gLγ̂L(µt+1)

(
γ̂K(µt+1)

(
v(µt)− ct

kt
+ 1− δ

))α
, (A.36)

where γ̂K(µt), γ̂X(µt), and γ̂L(µt) are the rates of technological progress defined in Proposi-

tion 7. While equation (A.36) gives a relationship between the period-t variables {µt, kt, ct}
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and µt+1, it is not easy to understand how µt+1 is determined since both sides of the equation

depend on µt+1.

To interpret it intuitively, let us decompose the dynamic relationship in (A.36) into two

steps. First, we define the pre-R&D relative factor intensity by

µpre
t+1 ≡

(
AK,tKt+1

)α(
AX,tXt+1

)1−α
AL,tLt+1

=
g1−αX

gL

(
v(µt)− ct

kt
+ 1− δ

)α
µt, (A.37)

where the last equality is from (29), (32), (A.35) and the definition of µt. It is the value

of µt+1 before technologies are improved from their period-t state. Second, µpre
t+1 and the

post-R&D value of µt+1 are related by the growth of technological levels γ̂K(µt), γ̂X(µt), and

γ̂L(µt) as follows:

µpre
t+1 =

γ̂L(µt+1)

γ̂K(µt+1)αγ̂X(µt+1)1−α
µt+1 ≡ Γ(µt+1). (A.38)

Note that Proposition 7 implies that function Γ(µt+1) is a strictly increasing differentiable

function with limµ→0 Γ(µ) = 0 and limµ→∞ Γ(µ) = ∞. Therefore, its inverse function is

well-defined for all µpre
t+1 > 0, and is a strictly increasing differentiable function. We write

this inverse function by µt+1 = G(µpre
t+1). Combined with (A.37), the dynamic relationship

(A.36) can be written as (41).

Dynamics for kt+1. From (29) and (A.35), the growth factor of kt ≡ Kt/AL,tLt is given by

kt+1

kt
=

1

gLγ̂L(µt+1)

(
v(µt)− ct

kt
+ 1− δ

)
. (A.39)

While µt+1 is present in the RHS, we can replace it with (41) so that the RHS depends only

on the variables in period t, which gives (42).

Dynamics for ct+1. The representative household maximizes the intertemporal utility

function (31) subject to the budget constraint (33) and the no-Ponzi game condition (34).

From (31), ∂U/∂Ct = βt(Ct/Lt)
−θ. Therefore, the Euler equation for this problem is

(Ct/Lt)
−θ = (rt+1 + 1− δ)β(Ct+1/Lt+1)

−θ, which simplifies to

C−θt = (rt+1 + 1− δ)βgθLC−θt+1. (A.40)

By substituting the market interest rate (35) into the Euler equation (A.40) and then ap-

plying it to the definition ct ≡ Ct/AL,tLt, we obtain the growth factor of consumption per
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effective labor:

ct+1

ct
=

β1/θ

γ̂L(µt+1)

(
αµt+1

kt+1

(f ′(µt+1)− iK(γ̂K(µt+1))− iX(γ̂X(µt+1))) + 1− δ
)1/θ

. (A.41)

By replacing the period-(t+ 1) variables in the RHS by (41) and (42), we can rewrite equation

(A.41) as (43).

Boundary Conditions. To obtain the equilibrium path of {µt, kt, ct}∞t=0, we need three

boundary conditions. First, since K0, X0, L0, AK,−1,AX,−1, and AL,−1 are given, we can

construct µpre
0 , the pre-R&D relative task intensity for period 0. Using it with the inverse

function of Γ from (A.38), we have the initial value of µt:

µ0 = G

(
(AK,−1K0)

α(AX,−1X0)
1−α

AL,−1L0

)
. (A.42)

Second, using µ0, the initial value of kt is readily obtained by

k0 =
K0

γ̂L(µ0)AL,−1L0

. (A.43)

Finally, the initial value of ct must be chosen so as to satisfy the no-Ponzi game condition

(34) and the transversality condition

lim
T→∞

βT
(
CT
LT

)−θ
KT+1 ≤ 0. (A.44)

In the remainder of this section, we establish that conditions (34) and (A.44) jointly

mean (44). The Euler equation (A.40) implies that rt + 1− δ = (Ct−1/Lt−1)
−θ/β(Ct/Lt)

−θ.

Through repeated multiplication,

T∏
t=1

(rt + 1− δ) =
(C0/L0)

−θ

βT (CT/LT )−θ
.

Using this, the no-Ponzi game condition (34) becomes

(
C0

L0

)θ
lim
T→∞

βT
(
CT
LT

)−θ
KT+1 ≥ 0. (A.45)

Since C0/L0 > 0, we can divide the both sides of (A.45) by (C0/L0)
θ to eliminate this term.

Then, it turns out that (A.45) has exactly the same form as the transversality condition
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(A.44), except that the direction of the inequality is opposite. By combining (A.44) and

(A.45), therefore, we have a unified terminal condition

lim
T→∞

βT
(
CT
LT

)−θ
KT+1 = 0. (A.46)

Using ct ≡ Ct/ (AL,tLt) and kt ≡ Kt/ (AL,tLt), the expression on the LHS can be written as

βT
(
CT
LT

)−θ
KT+1 = βT (AL,T cT )−θ AL,T+1LT+1kT+1

= βT (AL,T cT )−θ AL,T γ̂L(µT+1)L0g
T+1
L kT+1

= L0gL(βgL)TA1−θ
L,T c

−θ
T γ̂L(µT+1)kT+1

= L0gLAL,−1(βgL)T

(
T∏
t=0

γ̂L(µt)

)1−θ

c−θT γ̂L(µT+1)kT+1.

By substituting the last expression into (A.46) and then dividing both sides by L0gLAL,−1 >

0, we obtain (44).66

A.12 Proof of Lemma 4

Consider a BGP. We will show in turn that µt, kt and ct must be constant. First, from the

definition of a BGP, Nt+1/Nt = (AL,t+1Lt+1)/(AL,tLt) = γ̂L(µt+1)gL is constant. To keep

the RHS of the latter equation constant, µt must also be constant, since γ̂L(·) is a strictly

increasing function from Proposition 7.

Second, since growth factors of Ct and Nt are constant, the growth factor of ct =

Ct/AtLt = Ct/Nt is also constant. This, in turn, means that the LHS of the Euler equation

(A.41) is constant. Then, for the RHS of (A.41) to be constant, kt must be constant, since

we already know that µt is constant as shown above.

Third, the growth factor of kt = Kt/AtLt = Kt/Nt is constant on the BGP, which means

the LHS of (A.39) is constant. For its RHS to be constant, given that µt and kt are already

shown to be constant, ct also needs to be constant.

66Initial population L0 and initial level of technology AL,−1 > 0 are exogenously given (see Subsection
6.3). Population growth factor gL > 0 is also exogenous.
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A.13 Proof of Proposition 8

Proof of µ∗ > 0

In the text, we have already shown that there exists a unique µ∗ > 0 such that Φ(µ∗) = 1

holds, since Proposition 7 implies Φ′(µ∗) < 0 with Φ(0) = ∞ and Φ(∞) = 0. Therefore,

there exists a unique value of µ∗ > 0.

Proof of k∗ > 0

The value of k∗ is explicitly given by equation (47), shown again here:

k∗ =
βαµ∗(f ′(µ∗)− iK(γ̂K(µ∗))− iX(γ̂X(µ∗)))

γ̂L(µ∗)θ − β(1− δ)
. (47)

We now show that both the numerator and the denominator of the RHS are positive. Note

that the combined R&D condition (40) is satisfied on the BGP. By rearranging terms, it

gives

f ′(µ∗)− iK(γ̂K(µ∗))− iX(γ̂X(µ∗)) = γ̂K(µ∗)i′K(γ̂K(µ∗)) + γ̂X(µ∗)i′X(γ̂X(µ∗)) > 0, (A.47)

where the inequality follows from Proposition 7 and (26). Given β ∈ (0, 1), α ∈ (0, 1), and

µ∗ > 0, this means that the numerator of (47) is strictly positive. Now, note that γ̂L(µ∗) > 1

from Proposition 7. Combined with θ > 0, β ∈ (0, 1) and δ ∈ [0, 1], it turns out that the

denominator of (47) is also strictly positive.

Proof of c∗ > 0

The value of c∗ is given by

c∗ = v(µ∗)− (g∗ − 1 + δ)k∗. (48)

We first show v(µ∗) > 0. Combining the R&D conditions (38) and (40), we have

γL,ti
′
L(γL,t) + iL(γL,t) + µt ((γK,ti

′
K(γK,t) + iK(γK,t)) + (γX,ti

′
X(γX,t) + iX(γX,t))) = f(µt).

Rearranging and then evaluating this condition at µt = µ∗ gives

v(µ∗) = f(µ∗)− iL(γ̂L(µ∗))− µ∗ (iK(γ̂K(µ∗))− iX(γ̂X(µ∗)))

= γ̂L(µ∗)i′L(γ̂L(µ∗)) + µ∗ (γ̂K(µ∗)i′K(γ̂K(µ∗)) + γ̂X(µ∗)i′X(γ̂X(µ∗))) > 0,
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where the inequality follows from µ∗ > 0 and (26).

Note that g∗ = γ̂L(µ∗)gL is greater than 1 − δ because γ̂L(µ∗) > 1 and gL > 1 − δ from

(29). Therefore, (g∗ − 1 + δ) in (48) is positive. From this, c∗ > 0 is equivalent to

k∗ <
v(µ∗)

g∗ − 1 + δ
.

Using (47), we can rewrite this condition in terms of β:

β < γ̂L(µ∗)θ
(
αµ∗

v(µ∗)
(f ′(µ∗)− iK(γ̂K(µ∗))− iX(γ̂X(µ∗))) (g∗ − 1 + δ) + 1− δ

)−1
≡ β1.

(A.48)

Note that β1 > 0 from (A.47) and g∗ > 1− δ > 0. Observe also that β1 does not depend on

β itself since µ∗ is determined entirely by the production side (see equation 45). Therefore,

if β > 0 is sufficiently small, condition (A.48) holds and c∗ > 0.

Terminal Condition

On the BGP, the terminal condition (44) becomes

lim
T→∞

(
βgLγ̂L(µ∗)1−θ

)T
γ̂L(µ∗)(c∗)−θk∗ = 0. (A.49)

Given that γ̂L(µ∗) > 1, c∗ > 0 and c∗ > 0, this condition is equivalent to

β <
1

gLγ̂L(µ∗)1−θ
≡ β2. (A.50)

Note that β2 > 0 and that it does not depend on β since µ∗ is determined entirely by the

production side of the model. Therefore, if β > 0 is sufficiently small, condition (A.50) holds

and the terminal condition (44) is satisfied.

Combining conditions (A.48) and (A.50), we have confirmed the unique existence of BGP

with µ∗ > 0, k∗ > 0, c∗ > 0, and the terminal condition (44) whenever

β < β ≡ min{β1, β2}, (A.51)

where β > 0 is a constant that does not depend on β.
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A.14 Calibration Procedure

There are seven parameters to calibrate, {δ, β, α, η, ζL, ζX , χ}, which we identify with the

seven moments in Table 3. We do so in two steps.

Step 1: Analytical calibration. Given period length χ, exogenous parameters, and mo-

ments, we analytically derive the values of four parameters {δ, β, α, η}. The depreciation

rate is determined by data on the consumption of fixed capital and the capital-output ratio:

δ =
δK/Y

K/Y
=

0.14

2.9
χ ≡ δ(χ). (A.52)

Evaluating the Euler equation (A.40) on the BGP gives the discount factor β:67

β =
γθL

1 + r − δ
=

(1.019χ)1.0

1.04χ
≡ β(χ). (A.53)

Similarly, the first order conditions of the representative firm, (35) and (36), gives the share

parameter α:

α =
κK

κK + κX
=

(r − δ)(K/Y ) + δK/Y

1− κL − κR
=

(1.04χ − 1)(2.9χ) + 0.14

1− 0.63− 0.027
≡ α(χ), (A.54)

where we used the identity κK + κX + κL + κR = 1.

Next, BGP relationship (45), which is equivalent to the technology condition (22), gives

the growth rate for the unobserved endogenous variable γX :

γX = γ
− α

1−α
K

gLγL
gX

=

(
(1.066)−

α(χ)
1−α(χ)

(1.01)(1.019)

1.0

)χ
≡ γX(χ). (A.55)

Using (A.55) and the R&D allocation condition (39), the R&D cost parameter ζX can be

derived as follows.

ζX =
1− α
α
· ζKγK(γK − 1)λ−1

γX(γX − 1)λ−1
=

1− α(χ)

α(χ)
· (1(1.0066)(0.0066)2.0−1)

χ

γX(χ)(γX(χ)− 1)2.0−1
≡ ζX(χ). (A.56)

Step 2: Minimization. Among the 12 parameters of the model, five of them are given by

Table 2, and four are given as functions of χ, in (A.52), (A.53), (A.54) and (A.56). This

leaves us with three remaining parameters, {ζL, η, χ}. We calibrate them so as to minimize

67Equation (A.53) assumes that parameter θ takes the baseline value of 1.0. When doing robustness
checks with θ = 0.8 and 1.2, the numbers in this equation are adjusted accordingly. The same applies for
(A.54)-(A.57) when using alternative parameter values or calibration targets.
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the squared sum of percent difference (error) between the target moments in Table 3 and

the corresponding model variables on the BGP.

Let us define the squared sum of percent error as68

SSE =

(
K/(Y/χ)− 2.9

2.9

)2

+

(
κL − 0.63

0.63

)2

+

(
κR − 0.027

0.027

)2

+

(
γ
1/χ
L − 1− 0.019

0.019

)2

+

(
γ
1/χ
K − 1− 0.0066

0.0066

)2

.

(A.57)

In (A.57), endogenous variables K/Y , κL, κR, γL and γX represent their respective BGP

values, when the model is solved given all 12 parameters. Using exogenous parameters and

the results of analytical calibration, we determine the remaining three parameters as the

solution to the following minimization problem:

{ζL, η, χ} = argmin
ζL,η,χ

SSE s.t.

{ε, λ, θ, gL, gX} : given by Table 2,

δ = δ(χ), β = β(χ), α = α(χ), ζX = ζX(χ).

(A.58)

We have done this minimization numerically utilizing ‘FindMinimum’ function of Mathe-

matica. The minimized value of SSE is virtually zero (precisely, of order of 10−22), implying

that we obtained the set of parameters that fits all the moments in Table 3.

Robustness Scenarios. To check the robustness of the result, we repeat the analytical

calibration (A.52)-(A.56) with modified values for the exogenous parameters. In all robust-

ness scenarios, the modified version of minimization problem (A.58) yields almost zero. This

means that the model can match all the target moments in those scenarios.

B Data Sources

All data are originally from the Bureau of Economic Analysis (BEA) and retrieved

from FRED, Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org. We

reference series by their codes in FRED. Panel a of Figure 1 shows annual val-

ues of Real GDP (GDPCA), real investment (GPDICA), and real personal consump-

68Among seven moments in Table 3, we use five moments to define the squared sum of errors. The other
two moments, consumption of fixed capital in GDP and return on investments, always match the data given
that other moments are correct, since we impose relationship (A.52) and (A.53). In numerical calibration,
we confirmed that these two moments matches the data exactly.
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tion expenditures (PCECCA). The real capital stock is calculated as the net stock

of fixed assets at current cost (K1TTOTL1ES000) divided by the GDP price deflator

(A191RD3A086NBEA). Panel b of Figure 1 shows three different price deflators for gross

private investment– all (A006RD3A086NBEA), non-residential (A008RD3A086NBEA), and

equipment (Y033RD3A086NBEA) – relative to the price deflator for personal consump-

tion expenditures (DPCERD3A086NBEA). 1950 values are normalized to 100. In ad-

dition to the variables listed above, the calibration utilizes data on nominal con-

sumption of fixed capital (GDICONSPA), labor compensation, and R&D expenditure

(Y694RC1A027NBEA) all relative to nominal GDP (GDPA) in Table 3, as well as popula-

tion (B230RC0A052NBEA) in Table 2. Labor compensation is calculated as compensation

of employees (A033RC1A027NBEA) plus proprietors’ income with inventory valuation and

capital consumption adjustments (A041RC1A027NBEA).
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