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Abstract

We consider the problem of allocating multiple units of an indivisible object
among a set of agents and collecting payments. Each agent can receive multiple
units of the object, and has a (possibly) non-quasi-linear preference on the set of
(consumption) bundles. We assume that preferences exhibit both nonincreasing
marginal valuations and nonnegative income effects.

We propose a new property of fairness: no price envy. It extends the standard
no envy test (Foley, 1967) over bundles to prices (per-unit payments), and requires
no agent envy other agents’ prices to his own in the sense that if he has a chance
to receive some units at other agents’ prices, then he gets better off than his own
bundle.

First, we show that a rule satisfies no price envy and no subsidy for losers
if and only if it is an inverse uniform-price rule. Then, we identify the unique
maximal domain for no price envy, strategy-proofness, and no subsidy for losers:
the domain with partly constant marginal valuations. We further establish that on
the domain with partly constant marginal valuations, a rule satisfies no price envy,
strategy-proofness, and no subsidy for losers if and only if it is a minimum inverse
uniform-price rule.

Our maximal domain result implies that no rule satisfies no price envy, strategy-
proofness, and no subsidy for losers when agents have preferences with nonincreas-
ing marginal valuations. Given this negative observation, we look for a minimally
manipulable rule among the class of rules satisfying both no price envy and no sub-
sidy for losers in the case of preferences with nonincreasing marginal valuations.

We show that a rule is minimally manipulable among the class of rules satisfying no

*A prelimary version of the paper was presented at the 27th DC conference in virtual. The author
is grateful to the participants for helpful comments. He also acknowledges the research support from
Grant-in-Aid for JSPS fellows (19J29448) from Japan Society for the Promotion of Science.
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price envy and no subsidy for losers if and only if it is a minimum inverse uniform-
price rule. Our results provide a rationale for the use of the popular minimum

uniform-price rule in terms of fairness and non-manipulability.
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1 Introduction

1.1 Purposes

Auctions have been understood as the price discovery process by the interactions among
the biddes and the seller(s) (Milgrom, 2017; Teytelboym et al., 2021). One of the virtues
of the auctions held by the public sectors, such as spectrum auctions, car liscence auctions,
etc., is to find “fair” prices of objects that are not traded in markets. Indeed, one of the
announced goals in spectrum auctions in several countries is to find fair prices through

the auctions.!

However, the precise meaning of “fair prices” has been yet opaque, or
depended on the authors.? In this paper, we formulate a notion of fair prices as a property
of fairness, and investigate its implications.

Another important issue in real-life auctions is the existence of bidders whose prefer-
ences are not quasi-linear. The assumption of quasi-linear preferences make the analysis
simple and tractable, but it is applicable only to unrealistic situations where agents have
sufficiently large willingness to pay for the objects (no income effect), face linear borrow-
ing costs in financial markets (no budget constraint), etc. In many real-life situations, the
assumption of quasi-linear preferences does not seem plausible, and agents rather have
non-quasi-linear preferences. Thus, we take agents with non-quasi-linear preferences into
account.

The goals of this paper are two-fold: we attempt to (i) formulate fair prices as a prop-
erty of fairness, and to (ii) identify the class of rules satisfying our property of fair prices

together with the other desirable properties for agents with non-quasi-linear preferences.

'For example, the regulator in India (Department of Telecommunications) announced that one of the
goals of auctions to allocate the lights to use scarce spectrum bands is to “obtain a market determined
price of” spectrum bands “through a transparent process” (Government of India, 2021).

2For example, on the one hand Ausubel et al. (2014) write that “it (uniform priceing) is fair in the
sense that the same price is paid by everyone”, but on the other hand Burkett and Woodward (2020)
write that “the uniform price auction is fair, in the sense that bidders never pay less than other bidders
for the same number of units won”. These two papers use the term “fair” in slightly different ways.



1.2 Main results

We consider the problem of allocating multiple units of an object to the agents with
payments. Each agent can receive multiple units of the object, and has a (possibly)
non-quasi-linear prefereces over (consumption) bundles, where a bundle specifies the con-
sumption level of the object and the payments.

A preference exhibits nonincreasing (resp. constant) marginal valuations if the
marginal willingness to pay at each bundle is no greater than (resp. equal to) the marginal
willingness to sell at the bundle. A preference exhibits nonnegative income effects if the
demand of the object does not decrease when the payments decrease. In this paper, we
assume that preferences exhibit both nonincreasimg narginal valuations and nonnegative
income effects, both of which are standard assumptions in the literature.

An allocation is a profile of each agent’s bundle, and an (allocation) rule is a function
from the set of preference profiles to the set of allocations.

In this paper, we regard a price as a per-unit payment. Formally, a price faced by an
agent at a preference profile under a rule is defined as the agent’s per-unit payment for
the preference profile under the rule. Note that our definition of a price does not take
agents who receive no object (the losers) into account, and we choose to leave prices of
the losers undefined in this paper.?

Our property of fair prices incorporates prices into the no envy test (Foley, 1967).
Formally, we say that a rule satisfies no price envy if no agent prefers other agents’ prices
in the sense that if he has a chance to buy some units of the object at other agent’s prices,
then he can get better off than his own bundle.

First, we try to identify the class of rules satisfying no price envy together with the
other mild property. A rule satisfies no subsidy for losers if each loser does not receive
money. In many real-life auctions, bidders are often forbidden to receive money, and in
such situations no subsidy for losers is plausible. We can also interpret no subsidy for
losers as a desirable property since it excludes “dummy” agents who are interested only
in the participation subsidy.

A uniform-price rule is a rule defined for quasi-linear preferences such that for each
preference profile, (i) the object is allocated so as to maximize the sum of valuations,
and (ii) each agent pays the same price that is no less than the highest losing marginal
valuation, and is no greater than the lowest winning marginal valuation. In this paper, we
extend the uniform-price rule for quasi-linear preferences to non-quasi-linear preferences,
but there are several ways to extend it. An inverse uniform-price rule is a new variant of
such an extension, and it adopts the inverse-demand function of Shinozaki et al. (2020)

to the uniform-price rule instead of the quasi-linear valuations.* A minimum inverse

3In Section 5.1.1, we will discuss the difficulty of defining the prices of the losers in detail.
4Baisa (2016) introduces the indirect uniform-price auction mechanism where agents submit not their
preferences but bids in the same model as ours. Since our inverse uniform price rule is an allocation rule



uniform-price rule is an inverse uniform-price rule that chooses the highest losing marginal
valuation as its price.

Our first result is a characterization of the inverse uniform-price rule by means of no
price envy. We show that a rule satisfies no price envy together with no subsidy for losers
if and only if it is an inverse uniform-price rule (Theorem 1).

As already noted, no subsidy for losers is a fairly mild property, and trivially holds
in a natural model with nonnegative payments.® In such a model, our first result gives a
redefenition of the inverse uniform-price rule by the single tight property of fairness: no
price envy.

Next, we turn to the non-manipulability of rules. A rule is said to be manipulable by
an agent at a preference profile if he gets better off by misreporting his preference. A rule
is said to be strategy-proof if it is manipulable by no agent at each preference profile.

First, we search for domains that admit the existence of a rule satifying no price envy,
strategy-proofness, and no subsidy for losers. On the quasi-linear domain with constant
marginal valuations, the minimum (inverse) uniform-price rule satisfies the three desirable
properties. An interesting quastion is: How much can we extend a domain from the
quasi-linear domain with constant marginal valuations while guaranteeing the existence
of a rule satisfying no price envy, strategy-proofness, and no subsidy for losers? Thus, we
investigate a maximal domain for no price envy, strategy-proofness, and no subsidy for
losers that contains the quasi-linear domain with constant marginal valuations.%

A preference exhibits partly constant marginal valuations if the valuation at the status
quo bundle exhibits constant marginal valuations, where the status quo bundle includes
no object and no monetary transfer. Note that the domain with partly constant marginal
valuations contains the quasi-linear domain with constant marginal valuations. Then,
we show that the domain with partly constant marginal valuations is the unique maxi-
mal domain for no price envy, strategy-proofness, and no subsidy for losers containing the
quasi-linear domain with constant marginal valuations (Theorem 2). Moreover, we extab-
lish that the minimum inverse uniform-price rule is the only rule satisfying no price envy,
strategy-proofness, and no subsidy for losers on any domain that contains the quasi-linear
domain with constant marginal valuations and is contained by the domain with partly
constant marginal valuations (Theorem 3).

Although our maximal domain result highlights the importance of the assumption of
constant marginal valuations for a positive result, in many real-life situations it seems more

natural to assume that agents have preferences with nonincreasing marginal valuations

(or a direct mechanism), there seems no direct relationship between our rule and his mechanism.

For example, Chew and Serizawa (2007) consider the model with nonnegative payments.

6Several authors have investigated maximal domains that guarantee lists of desirable properties in
many models. See, for example, Ching and Serizawa (1998), Berga and Serizawa (2000), Ehlers (2002),
ete.



than assuming that they have preferences with constant marginal valuations.” Moreover,
nonincreasing marginal valuations are a standard assumption in the multi-unit object
allocation problem (Vickrey, 1961; Ausubel et al., 2014; Baisa, 2016, 2020, etc). Thus, it
is worthwhile to investigate the existence of a rule satisfying no price envy together with
the other desirable properties without relaxing the assumption of nonincreasing marginal
valuations.

Our maximal domain result (Theorem 2) implies that no rule satisfies no price envy,
strategy-proofness, and no subsidy for losers on the domain with nonincreasing marginal
valuations (Corollary 1), and so we have to give up one of the three properties if we keep
the assumption of the nonincreasing marginal valuations. Since no price envy is at the
heart of the paper, and no subsidy for losers is a mild condition that almost all natural
rules satisfy, we give up strategy-proofness instead of the other two properties. Then,
we search for rules satisfying both no price envy and no subsidy for losers that prevent
agents from misreporting their preferences as much as possible.

We adopt the manipulability measure of Pathak and Sénmez (2013) that they call
the “as intensely and strongly as manipulable” relation to the class of rules satisfying no
price envy and no subsidy for losers. We say that a rule is at least as manipulable as
another rule if for each preference profile and each agent, whenever he can manipulate the
latter rule, (i) the former rule is as well by him, and (ii) the gain from manipulation of
the former rule is at least as large as that of the latter rule. Further, a rule is minimally
manipulable among a given class of rules if (i) the rule is in the class, and (ii) each rule
in the class is at least as manipulable as the rule. Clearly, a minimally manipulable rule
is the best among a given class of rules in terms of non-manipulability, but it does not
necesarily exist in general.

We first show that for each pair of rules satisfying no price envy and no subsidy for
losers, a rule is at least as manipulable as another rule if and only if for each preference
profile, each agent weakly prefers the outcome of the latter rule to that of the former
rule (Proposition 3). Using this result, we establish that a rule is minimally manipulable
among the class of rules satisfying both no price envy and no subisidy for losers if and
only if it is a minimum inverse uniform-price rule (Theorem 4). Our results (Theorems 3
and 4) provide a rationale for the use of the minimum inverse unform-price rule in terms

of fairness and non-manipulability.

"For example, in auctions for collectibles such as arts and wine, it seems natural to assume that bidders
have preferences with nonincreasing marginal valuations. Also, if a firm in a procurement auction has
a technology that exhibits nonincreasing returns to scale, then it has a preference with nonincreasing
marginal valuations because nonincreasing returns in a procurement auction model to scale corresponds
to nonincreasing marginal valuations in our model.



1.3 Related literature
1.3.1 Object allocation problems

The literature on object allocation problems mainly focuses on efficiency (Holmstrom,
1979; Chew and Serizawa, 2007; Saitoh and Serizawa, 2008; Sakai, 2008; Morimoto and
Serizawa, 2015;. Baisa, 2020; Shinozaki et al., 2020). In contrast, other authors consider
the properties of fairness in the object allocation problems. Ohseto (2004, 2006) consider
the unit-demand identical objects model with quasi-linear preferences, and identify the
classes of Groves rules satisfying egalitarian-equivalence and envy-freeness, respectively.
Papai (2003) and Yengin (2012) identify the classes of Groves rules satisfying no envy and
egalitarian-equivalence, respectively, in the multi-demand heterogeneous objects model
with quasi-linear preferences. Sakai (2013) and Adachi (2014) characterize the generalized
Vickrey rule (Saitoh and Serizawa, 2008; Sakai, 2008) by means of properties of fairness
in the unit-demand identical object(s) model with non-quasi-linear preferences.

Our paper is different from the above papers in that we consider a property of fairess
in the multi-demand identical objects model (with non-quasi-linear preferences). To the
best of our knowledge, ours is the first paper that provides a characterization result by a

property of fairness in such a model (with or without quasi-linear preferences).

1.3.2 Uniform-price auctions

The uniform-price auction occupies a central position both in auction theory and in pre-
tical auction design. The literature on the uniform-price aucion mainly focuses on its
equilibrium properties in models with quasi-linear preferences (Vickrey, 1961, Noussair,
1995; Engelbrecht-Wiggans and Kahn, 1998; Ausubel et al., 2014; Burkett and Woodward,
2020). One of the most important results in this strand of research is the inefficiency the-
orem: any equilibrium in the minimum uniform-price auction does not achieve an efficient
allocation in general (Ausubel et al., 2014; Baisa, 2016). In a uniform-price auction, the
truth-telling does not constitute an equilibrium, but it does an approximate equilibrium
if there are many agents (Swinkers, 2001; Azevedo and Budish, 2019) or many objects
(Tajika and Kazumura, 2019).

This paper is different from the papers in the strand of research in that we do not
focus on the uniform-price auction a priori, but rather obtain it as a consequence of the
properties that we consider in this paper. As far as we know, ours is the first paper
that gives a characterization of the minimum uniform-price rule in terms of fairness and

non-manipulability.



1.3.3 Minimal manipulability

The method of comparing rules in terms of their manipulability has been adopted to
non-strategy-proof rules in many models such as the voting model (Kelly, 1988; Maus et
al., 2007), the matching with contracts model (Chen et al., 2016), the school choice model
(Pahak and Sénmez, 2013), the heterogeneous objects model with quasi-linear preferences
(Day and Milgrom, 2008; Andersson et al., 2014). Manipulability measures depend on the
authors, and ours extends one in Pathak and Sénmez (2013) for quasi-linear preferences
to non-quasi-linear preferences.

Day and Milgrom (2008) is a closely related paper to ours. They show that in the multi-
demand heterogeneous objects model with quasi-linear preferences, an agent-optimal core-
selecting rule is minimally manipulable according to their manipulability measure among
the class of core-selecting rules.® Note that an inverse uniform-price rule is core-selecting.
However, our results can not be obtained by their results and proof technique since their
argument crucially relies on a truncation of a preference which is not feasible in our
model.”

Chen et al. (2016) is another related paper. They show that in the (many-to-many)
matching with contracts model, a rule is at least as manipulable as another rule according
to their manipulability measure if and only if for each preference profile, each agent weakly
prefers the outcome of the latter rule to that of the former rule. Note that Proposition 3
in this paper is parallel to their result. However, our results does not follow from their
results and technique since our manipulability measure is different from theirs (Example 3

in Section 5.2), and their argument crucially relies on the finiteness of the model.

1.3.4 Fair allocations

Finally, this paper also contributes to the literature on the theory of fair allocation by
proposing a new property of fairness.!'® It is worthwhile to note that no price envy is
closely related to opportunity fairness of Varian (1976) and no envy of opportunities of
Thomson (1994) since the prices naturally defines the opportunity set, but our property
is different from the other properties in that we do not take the losers’ opportunity sets
(the prices) into account. In Section 5.1.2, we will discuss the relationships between no
price envy and the other two properties of fairness of opportunities in detail.

Our no price envy is also closely related to envy-free pricing of Guruswami et al.

8 A rule is core-selecting if its outcome is in the core for each preference profile. A rule is agent-optimal
core-selecting rule if it is core-selecting, and there is no other core-selecting rule such that each agent
weakly prefers the outcome of the rule to that of the original rule, and some agent strictly prefers.

9To be precise, they consider a truncation of a preference relative to the payoff under the Vickrey
rule. In our model, an agent can not report such a truncated preference since it may violate our property
of preferences (object monotonicity), and hence their proof technique does not work.

0For the excellent survey of the theory of fair allocation, see Thomson (2011).
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(2005): given a common and linear price of the object, each agent receives a bundle that
is optimal at the given price. Note that in our model, envy-free pricing is equivalent
to opportunity fairness of Varian (1976), and the discussion in Section 5.1.2 about the
relationship between no price envy and opportunity fairness also applies to that between
no price envy and envy-free pricing. In particular, we emphasize that no price envy is
different from enwvy-free pricing in that we do not consider a common and liner price of
the object a priori, but rather regard a per-unit payment at an agent’s bundle as his
price. This will enable us to apply our model to a wider range of situations than a model

with common and linear price.

1.4 Organization

The remaining part of this paper is organized as follows. Section 2 introduces the model.
Section 3 introduces the inverse uniform-price rule. Section 4 provides the results. Sec-
tion 5 discusses the relationships between no price envy and other related properties of
fairness, and further discuss the relationships between our manipulability measure and
other measures. Section 6 concludes. Almost all proofs are relegated to Appendix, but

the others can be found in the supplementary material.

2 The model

There are n agents and m units of an identical object, where n > 2 and m > 2. Let
N ={1,...,n} denote the set of agents. Let M = {0,...,m}. Agent i € N receives
x; € M units of the object. Let t; € R denote the amount of money paid by agent 7. The
common consumption set is M x R, and a (consumption) bundle of agent i € N is
a pair z; = (z;,t;) € M x R. Let 0 = (0,0).

2.1 Preferences

Each agent i € N has a preference relation R; over the consumption set M x R. In what
follows, we assume that a preference R; is complete and transitive, and satisfies the next

properties.

Object monotonicity. For each pair z;, 2, € M with z; > x} and each t; € R, it holds

Money monotonicity. For each z; € M and each pair ¢;,t; € R with ¢; < ¢}, it holds



Possibility of compensation. For each z; € M x R and each z; € M, there is a pair
t;,t. € R such that (z;,t;) R; z; and z; R; (x;,t)).

Continuity. For each z; € M x R, the upper contour set at z;, {2, € M x R: zl R; 2},

and the lower contour set at z;, {2, € M x R: z; R; 2}}, are both closed.

All of the above properties are standard in the literature, and do not need detailed
explanations. A typical class of preferences satisfying the above four properties is denoted
by R.

Given a preference R; € R, a bundle z; € M x R, and z; € M, by the possibility
of compensation and the continuity, we can choose a payment t; such that (z;,¢;) I; z;.
Moreover, by money monotonicity, such a payment must be unique. Let V;(z;, z;) denote
the payment such that (x;, Vi(zy, 2;)) I; z;, and we call it the valuation of x; at z; for
R;. Further, given z; € M x R and z; € M, let v;(x;, z;) = Vi(xy, z;) — Vi(0, z;). We call
v; (24, z;) the net valuation of x; at z; for R;. Note that given z; € M X R, v;(z;,2;) > 0
for each z; € M.

The class of preferences that has been extensively studied in the literature is that of

quasi-linear preferences.

Definition 1. A preference R; is quasi-linear if for each pair (z;,t;), (2}, t})) € M x R
and each ¢ € R, (z;,¢;) I; (24, t;) implies (z;,¢; — 9) I; (x},t; — 9).

R 27 71

Let R? denote the class of quasi-linear preferences.
The next remark (i) states that under a quasi-linear preference, the net valuation
does not depend on a bundle, and (ii) provides a utility representation of a quasi-linear

preference.

Remark 1. Let R, € RC.

(i). Let 2,2, € M x R. Then, for each z; € M, v;(x;, 2z;) = vi(2;,2;). Thus, we simply
write v;(x;) instead of v;(z;, ;).

(ii). For each pair (x;,t;),(z},t)) € M x R, (x;,t;) R; («},t)) if and only if v;(z;) —
ti > vi(z)) —t.

Given a preference R; € R, abundle z; € M x R, and a consumption level z; € M\{m},
the marginal (net) valuation of x; at z; for Ry is vi(x; + 1, z;) — v;(x;, 2;). The next prop-
erties of marginal valuations play an important role in this paper. The first property is
a standard one in the literature on the multi-unit auctions, and means that the object
is substitutable for the agent as the margianal valuation of the object does not increase
in the number of units of the object. The second property means that the object is an
independent good for the agent as the marginal valuation of the object is independent of

the consumption level of the object.



Definition 2. (i). A preference R; exhibits the nonincreasing marginal valuations
if for each z; € M x R and each x; € M\{0,m},

vi(xi, Zi) — ’Ui(l'l' — 1, Zi) Z Ui(-ri + 1,21') — ?)i(l'i,Z,L').

(ii). A preference R; exhibits the constant marginal valuations if for each z; € M x R
and each z; € M\{0,m},

Ul'(flfi, Zi) — UZ‘((L’Z' — 1, Zz') = Ui(l’i + ]., ZZ') — ’Uz'(l'i, ZZ').

Let R and RY denote the classes of preferences that exhibit nonincreasing and
constant marginal valuations, respectively. Note that R¢ C RN,

In this paper, we will study a typical class of non-quasi-linear preferences that exhibit
income effects. Here, we introduce the notion of nonnegative income effects. Although
we do not introduce the income of an agent in our model explicitly, the zero payment
(t; = 0) can be regarded as the initial income of the agent. Then, each payment ¢; € R
can be regarded as the negative of the (relative) income. Thus, the increase of the income
is equivalent to the decrease of the payment. Then, the notion of the nonnegative income
effect states that if an agent’s income increases (or equivalently, if an agent’s payment
decreases), then he demands at least as many units of the object at the new income level

as at the original one.

Definition 3. A preference R; exhibits the nonnegative income effect if for each pair
x;, x, € M with x; > 2}, each pair t;,t; € Rwitht; > t;, and each § € Ry, (x;,t;) I; (), 1))
implies (x;,t; — 0) R; (x},t, —§).

Let R denote the class of preferences that exhibit nonnegative income effects. Note

that R? C R, i.e., any quasi-linear preference exhibits nonnegative income effects.

Remark 2. Let R, € R. For each x; € M\{m}, let h;(-;x;) : R — R, be such that
for each t; € R, h;(t;;z;) = Vi(z; + 1, (24, t;)) — t;. Then, R; € R™ if and only if for each

x; € M\{m}, h;(-; x;) is nondecreasing in t;.

Throughout the paper, we consider preferences that exhibit both nonincreasing marginal
valuations and nonnegative income effects. Thus, hereafter we assume that R C R N R*.

In order to emphasize our assumption on a class of preferences, we explicity record it.

Assumption. For each class of preferences R, we assume that R C RN N R*.

2.2 Allocations and rules

Let X = {(21,...,2,) € M" : >,y 2 = m} denote the set of (feasible) object alloca-

tions. Note that we assume each object is assigned to some agent. Given x € X, let

10



N*t(z) ={i € N : x; # 0} denote the set of agents who receive the object (winners) at
x.

A (feasible) allocation is an n-tuple z = (21,...,2,) = ((z1,t1), ..., (Tn,tn)) € (M x R)"
such that (x1,...,2,) € X. Let Z denote the set of allocations. We denote the object al-
location and the payments at z € Z by © = (z1,...,z,) and t = (t1,...,t,), respectively.
We may write z = (z,t) € Z.

A preference profile is an n-tuple R = (Ry,...,R,) € R". A set R" of preference
profiles is a domain. Given R € R" and i € N, let R_; = (R;)jen\{}-

Given z = (2;)ieny € (M x R)" and R € R", let mv*(R, z) denote the k-th highest
marginal valuation among the set of marginal valuations at z for R: {v;(x; + 1,2;) —
vi(zi,2) i € N, x; € M\{m}}. When z; = 0 for each ¢ € N, we may simply write
mv*(R) = mv*(R,z). Note that by Remark 1 (i), if R € (R9)", then mv*(R,z) =
mv*(R).

An allocation rule, or a rule for short, on R" is a function f : R" — Z. We may
write f = (z/,t/), where 2/ : R" — X and t/ : R® — R" are the object allocation and
the payment rules associated with f, respectively. The consumption bundle of agent i
under a rule f at a preference profile R is denoted by f;(R) = (z/(R), t/ (R)), where 2/ (R)

%

and t{ (R) are the consumption level of the object and the payment of agent i under the

rule f, respectively.

2.3 Properties of rules

Next, we introduce the properties of rules.
First, we introduce a standard property of fairness introduced by Foley (1967) as a

benchmark. It requires that no agent should envy other agents’ bundles to his own.
No envy. For each R € R" and each pair i,5 € N, f;(R) R; f;(R).

Then, we introduce a new fairness property that plays a central role in this paper.
Ftrst, we define a price faced by agent ¢ € N at a preference profile R € R™ under a rule
f. In this paper, we regard the per-unit payment as a price. Given a rule f, a preference
profile R € R", and i € N*(z/(R)), let p/(R) € R be a price of agent i for R under

f such that
/(R — t/(R)
Y ( ) = 7f .
z; (R)
That it, if agent ¢ receives the object, then his price is determined as the per unit payment.
Note that we define a price only for the winners since it is difficult to define the per-unit
payments (prices) of the losers in a natural way. We discuss such a difficulty in detail

in Section 5.1.1. Note also that in our definition of price, the prices may be different by

11



agent.

Now, we are ready to define our property of fairness of prices. The next property is an
extension of the no envy test (Foley, 1967) over bundles to prices, which requires that no
agent should prefer other agents’ prices in the sense that if he has a chance to buy some

units of the object at other agents’ prices, then he can get better off than his bundle.

No price envy. For each R € R" and each i € N, there is no j € N (z/(R)) such that
(xi,pf(R)xi) P; fi(R) for some x; € M.

The next remark states that no price envy is independent of (i.e., neither implies nor

is implied by) no envy.
Remark 3. In general, no price envy does not imply no envy, and vice versa.

In Section 5.1.2, we will compare no price envy to related properties introduced by
other authors in detail.
The third property requires that no agent should have an incentive to misreport his

preference.

Strategy-proofness. For each R € R", each i € N, and each R, € R, it holds that
fi(R) R; fi(R}, Ry).

Given a preference profile R € R" and ¢+ € N, a rule f on R" is manipulable at R
by i if there is R, € R such that f;(R}, R_;) P; fi(R). Note that f is strategy-proof if and
only if f is not manipulable at each preference profile by each agent.

The fourth property is concerned with the nonnegative payments, which requires that
an agent who receives no object (a loser) should not receive money. We regard this
condition as desirable since it excludes “dummy” agents interested only in participation

subsidy.
No subsidy for losers. For each R € R" and each i € N\N*(z/(R)), t/(R) > 0.

The last property states that a rule should select an allocation at which no agent gets
worth off than the status quo bundle 0.

Individual rationality. For each R € R" and each i € N, f;(R) R; 0.
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3 The inverse uniform-price rule

In this section, we define the new class of rules that we call the inverse uniform-price
rules.

First, we define the uniform-price rule for quasi-linear preferences as a benchmark.

Definition 4. A rule f on R" C (R¥)" is a uniform-price rule if it satisfies the fol-
lowing two conditions.
(i). For each R € R", z/(R) € arg max,_y vi(z;).

zeX
(ii). There is a function 7/ : R® — R, such that (ii-i) for each R € R", it holds

that 7/ (R) € [mv™"(R), mv™(R)], and (ii-ii) for each R € R" and each i € N, t/ (R) =
 (R)z! (R).

)

In words, the first condition (i) states that the object is allocated so as to maximize
the sum of net valuations, and the second condition (ii) states that there is a (common)
price function such that (ii-i) the price is set between the highest losing marginal valuation
and the lowest winning one, and (ii-ii) each agent pays the price for the object.

We introduce the subclass of the uniform-price rule for quasi-linear preferences. The

minimum uniform-price rule chooses the highest losing marginal valuation as the price.

Definition 5. A rule f on R" C (R?)" is a minimum uniform-price rule if it is a
uniform-price rule associated with a price function 7f : R® — R, such that for each
R € R", 7/ (R) = mv™L(R).

Next, we extend the uniform-price rule for quasi-linear preferences to non-quasi-linear
preferences. There are several possible ways to extend the uniform-price rule to non-quasi-
linear preferences, and one natural way to extend the uniform-price rule is to adopt the
net valuations at 0 to the uniform-price rule.!* In this paper, we introduce an alternative
extension of the uniform-price rule to non-quasi-linear preferences. To this end, we will
introduce the inverse-demand set of Shinozaki et al. (2020).

The next remark is a slight extension of Lemmas 9 and 11 of Shinozaki et al. (2020)
for a preference with decreasing marginal valuations and positive income effects to a
preference with nonincreasing marginal valuations and nonnegative income effects. The

proof of it can be found in the supplementary material.

Remark 4. Let R, € RN N R*.
(i) For each z; € M\{0,m}, there is a unique payment t*(z;) € (0, V;(x;,0)] such that
Vi + 1, (s, t* () — () = £,

.. t*(ml) t*($¢+1)
(ii) For each x; € M\{0,m — 1,m}, —/== > — ===

HNote that this extension is parallel to the way that the Vickrey rule (Vickrey, 1961) for quasi-linear
preferences is extended to the generalized Vickrey rule (Saitoh and Serizawa, 2008; Sakai, 2008) for
non-quasi-linear preferences.
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Given R; € R and z; € M, the inverse-demand set at x; for R; is defied as the set
P(z;; R) = {p € Ry : (x;,pxr;) R; (2}, px}) for each 2, € M}. Note that P(x;; R;) may
be an empty set for some R; € R and z; € M. Further, given R; € R, the inverse-
demand function is a function p(-; R;) : M — R, U {oo} such that for each z; € M,
p(zs; R;) = inf P(z;; R;), where inf @ = oo.

The next proposition generalizes Corollary 1 of Shinozaki et al. (2020) for a preference
with decreasing marginal valuations and positive income effects to a preference with non-
increasing marginal valuations and nonnegative income effects. It identifies the inverse-
demand function of a preference with nonincreasing marginal valuations and nonnegative
income effects. Since the proof of the next proposition is same as that of Shinozaki et al.
(2020), we omit it.

Proposition 1. Let R; € RN N R*. We have p(0; R;) = V;(1,0), p(m; R;) = 0, and
for each x; € M\{0,m}, p(z;; R;) = (@)

By Remark 4 and Proposition 1, given R; € R™ N RT, we can define a preference
Ri™ € RN N RQ such that for each x; € M\{m}, vi"™(z; + 1) — vI"(x;) = p(w;, R;).

i
Given R € (RM NR*)" and i € N, let R = (R™) ey and R™ = (RI™) e (i}-
The next remark states that (i) if a preference R; € RM N RT is quasi-linear, then
the transformed preference R from R; coincides with the original preference R;, and
that (ii) if a preference exhibits constant marginal valuations, then the net valuations of

the original preference at 0 coincide with those of the trnasformed preference.

Remark 5. Let R; € RN N R*.
(i). If R; € R? then, R™ = R,.
(ii). If R; € RC, then vI"(x;) = v;(x;,0) for each z; € M.

Now, we are ready to define the inverse uniform-price rule. It adopts the transformed

preference profile R from the original preference profile R to the uniform-price rule.

Definition 6. A rule f on R" is an inverse(-demand-based generalized) uniform-

price rule if it satisfies the following two conditions.
(i). For each R € R", z/(R) € arg maxy_, vi"(x;).
zeX

(ii). There is a function 7/ : R® — R, such that (ii-i) for each R € R", it holds
that 7/(R) € [mv™ T (R™), mv™(R™)], and (ii-ii) for each R € R™ and each i € N,
t{(R) = =/ (R)x{(R).

Note that by Remark 5 (i), the inverse uniform-price rule coincides with the uniform-
price rule on (RN N RY)™.

Finally, we introduce the two subclass of the inverse uniform-price rule.
Definition 7. A rule f on R" is a minimum inverse uniform-price rule if it is an

inverse uniform-price rule associated with a price function 7/ : R" — R, such that for
each R € R", 7f(R) = mv™ T (R™).
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4 Main results

In this section, we provide the main results of this paper.
Our first result states that the inverse uniform-price rule is the only rule satisfying no
price envy and no subsidy for losers on a domain contained in the domain with nonin-

creasing marginal valuations and nonnegative income effects.

Theorem 1. Let R C RN N R*. A rule f on R" satisfies no price envy and no subsidy

for losers if and only if it is an inverse uniform-price rule.

Note that Theorem 1 is free from richness of a domain, and it holds for each subdomain
of the domain (RN N RT)™.

Both the properties in Theorem 1 are indispensable in the sense that if we drop one
of these properties, then Theorem 1 does not hold. The following examples demonstrate
this fact on any domain R™ C (RN N R*)".

Example 1 (Dropping no price envy). Let f be a rule on R"™ such that for each
ReR" fi(R) = (m,0) and f;(R) = 0 for each i € N\{1}. Then, if satisfies no subsidy

for losers and strategy-proofness, but violates no price envy. Il

Example 2 (Dropping no subsidy for losers). Let f be a rule on R" such that for
each R € R" and each i € N, (i-i) z/(R) € {0,m}, (i-ii) if z;(R) = m, then it holds
that v;(m, (m,0)) > max;en iy v;(m, (m,0)), (ii-i) t/(R) = — max;en i} V;(m, (m,0)) if
2/ (R) = 0, and (ii-ii) t/(R) = 0 if 2/(R) = m. Then, it satisfies no price envy and

strategy-proofness, but violates no subsidy for losers. O

Since no subsidy for losers is a minimal condition on nonnegatice payments, Theorem 1
states that no price envy almost fully characterizes the inverse uniform-price rule. Indeed,
in many cases, it is reasonable to incorporate nonnegatieve payments in the model, and
no subsidy for losers trivially holds in such a model. Thus, in a model that incorporates

nonnegative payments, no price envy is a redefinition of the inverse uniform-price rule.

4.1 Maximal domain

Next, we turn to the non-manipulability of rules. In this subsection, we identify the
maximal domain for the existence of a rule satisfying no price envy, strategy-proofness,

and no subsidy for losers.

Definition 8. A domain R" is a maximal domain for a list of properties if (i) there is

a rule on R" satisfying the list of properties, and (ii) for each R’' 2 R, there is no rule on

(R/)™ satisfies the list of properties.!?

12Note that by our assumption, R, R’ C RN n RT.
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The next definition inntroduces a preference whose valuation at 0 exhibits constant

marginal valuations.

Definition 9. A preference R, € R™ N R* exhibits the partly constant marginal
valuations if v;(x; + 1,0) — v;(z;, 0) = v;(x;,0) — v;(x; — 1,0) for each z; € M\{0,m}.

Let RE denote the class of preferences that exhibits partly constant marginal valua-
tions. Clearly, REDRENRT. Thus, RC D RC N RO, Moreover, since we restrict our
attention to preferences with both nonincreasing marginal valuations and nonnegative
income effects, we must have R C RN N R+. Note that by Remark 5 (ii), R; € RC if
and only if R™ € RC.

The next proposition states that if we add one arbitrary preference that does not
exhibit partly constant marginal valuations to the quasi-linear domain with constant
marginal valuations, then no rule on the expanded domain satisfies no price envy, strategy-

proofness, and no subsidy for losers.

Proposition 2. Let Ry € (RN N RY)\R. Let R be such that R € RN N Rt and
R D (RY N R?) U{Ry}. Then. no rule on R" satisfies no price envy, strategy-proofness,

and no subsidy for losers.
As a result of Proposition 2, we obtain the following.

Corollary 1. Let R € {RM N RY, RN N R*}. Then, no rule on R™ satisfies no price

envy, strategy-proofness, and no subsidy for losers.

Proposition 2 furhter serves to obtain a maximal domain result for no price envy,
strategy-proofness, and no subsidy for losers. The next theorem stats that if a domain
includes all quasi-linear preferences with constant marginal valuations, then the domain
with partly constant marginal valuations is the unique maximal domain for no price envy,

strategy-proofness, and no subsidy for losers.

Theorem 2. Let R be such that RE N R C R C RN N R*. Then, R" is a mazimal
domain for no price envy, strategy-proofness, and no subsidy for losers if and only if

R = RC

Note that by Theorem 1, the minimum inverse uniform-price rule on (7@0)" satisfies
both no price envy and no subsidy for losers. Moreover, we show that it satisfies strategy-
proofness on (7@0)" Thus, there is a rule satisfying the three properties in Theorem 2 on
(7@0)” Then, we exploit Proposition 2 to show the maximal domain property of (7@0)”
and the uniqueness of the maximal domain.

Note also that the assumption that for any class of preferences R, R C RN N R*
is necessary for a maximal domain result (Theorem 2). Indeed, if we add one arbi-

trary preference with increasing marginal valuations to the domain (R® N R%)", then
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the generalized Vickrey rule satisfies no price envy, strategy-proofness, and no subsidy for
losers.t

The next result further states that on a domain that includes the quasi-linear domain
with constant marginal valuations and is contained by the domain with partly constant
marginal valuations, the minimum inverse uniform-price rule is the only rule satisfying

no price envy, strategy-proofness, and no subsidy for losers.

Theorem 3. Let R be such that R N RYL C R C RE. A rule on R" satisfies mo price
envy, strateqy-proofness, and no subsidy for losers if and only if it is a minimum inverse

uniform-price rule.

By using the same examples as in Theorem 1, we can show that both no price envy
and no subsidy for losers are indispensable for Theorem 3. Moreover, strategy-proofness
is also indispensable for Theorem 3 because inverse uniform-price rules which are different
from the minimum one satisfies both no price envy and no subsidy for losers, but violates

strategy-proofness.

4.2 Minimal manipulability

Although Theorem 2 states that the assumption of (partly) constaint marginal valuations
is not only suffienct but also necessary in a maxiaml domain sense for the existence of
a rule satisfying no price envy, strategy-proofness, and no subsidy for losers, in many
situations it is rather natural and plausible to assume that agents have preferences with
nonincreasing marginal valuations. However, Corollary 1 states that there is no such
a desirable rule when agents have preferences with nonincreasing marginal valuations.
Given an impossibility theorem for no price envy, strategy-proofness, and no subsidy for
losers (Corollary 1), we must give up one of the three properties. As already stated in
Section 1.2, we give up strategy-proofness instead of the other two properties in this paper.
In terms of non-manipulability, a (non-strategy-proof ) rule is more desirable than another
rule if it is less manipulable than the other rule. Thus, we investigate a rule that satisfies
no price envy and no subsidy for losers, and is minimally manipulable among the class
of rules satisfying both the properties.

Our manipulability measure extends Pathak and Sénmez (2013)’s one. They introduce
a manipulability measure that takes the gains from manipulations into account for quasi-
linear preferences, and a rule is said to be as intensively and strongly manipuble as another
rule g if (i) whenever the latter rule is manipulable at a preference profile by an agent, the
former rule is as well at the preference profile by him, and (ii) the gain from manipulation

of the former rule is greater than or equal to that of the latter rule.

13For the formal definition of the generalized Vickrey rule, see, for example, Shinozaki et al. (2020).
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Now, we formalize the above manipulability measure in our setting with non-quasi-
linear preferences. Given a rule f on R", R € R", i € N, and R, € R, the gain from

manipualtion R, at R by ¢ under f is defined as
GI(Ri; R) = Vi (R}, R-.). fi(R)) — t] (R}, R_.).

The next remark states that (i) the gain from manipulation is positive if and only if
the manipulation is successful, and (ii) if a preference is quasi-linear, our notion of gain

from manipulation coincides with that of Pathak and Sénmez (2013).

Remark 6. Let f be a rule on R". Let R € R", 7 € N, and R, € R.
(i). We have GY(R]; R) > 0 if and only if f;(R}, R_;) P; f;(R).
(ii). If R; € RY, then
Gy (Ri; R) = vi(] (R, Roo)) — t] (R, Ry) — (vila] (R)) — 8] (R)).
The next definition generalizes the “as intensely and strongly manipulability” relation

of Pathak and Sénmez (2013) for quasi-linear preferences to non-quasi-linear preferences.'*

Definition 10. A rule f on R" is at least as manipulable as another rule g on R" if for
each R € R", eachi € N, each R, € R, and eache € R, whenever ¢;(R,, R_;) P; g;(R),
there is R € R such that f;(R/, R_;) P, fi(R) and G!(R/;R) > GY(R; R) — ¢.

We will discuss the relation between our manipulabilty measure to ones proposed by
other authors in detail in Section 5.1.2.

The next proposition is a key building block of the main result of this subsection,
which states that under a class of rules satisfying both no price envy and no subsidy for
losers, a rule is at least as manipulable as another rule if and only if each agent weakly

prefers the bundle of the latter rule to that of the former rule for each preference profile.

Proposition 3. Let R be such that RN N R C R C RN N R*. Let f, g be a pair of
rules on R™ satisfying both no price envy and no subsidy for losers. Then, g is at least
as manipulable as f if and only if f;(R) R; gi(R) for each R € R"™ and each i € N.

Next, we investigate the minimally manipulable rule among the class of rules satisfying

no price envy and no subsidy for losers according to our manipulability measure.

Definition 11. A rule f on R"™ is minimally manipulable among the class of rules
if (i) f is in the class, and (ii) for each rule g on R" in the class, g is at lesat as manipulable

as f.

1 For simplicity of notation, we simply say that a rule f is at least as manipulable as another rule g
instead of that f is as intensely and strongly manipulable as g as in Pathak and Sénmez (2013). Clearly,
this will create no confusion in this paper.
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If a rule f on R" is strategy-proof, then it is minimally manipulable among any class
of rules on R™ to which the rule belongs since no agent can manipulate the rule f at
any R € R". Thus, strategy-proofness implies the minimal manipulability among a given
class of rules.

The next result is a main result of this subsection, which states that among the class
of rules satisfying no price envy and no subsidy for losers, the minimum inverse uniform-

price rule is the only minimally manipulable rule.

Theorem 4. Let R be such that RN NRY C R CRM NR+. A rule f on R" is
manimally manipulable among the class of rules on R™ satisfying no price envy and no

subsidy for losers if and only if it is a minimum inverse uniform-price rule.

Recall that Theorem 1 states that the class of rules satisfying no price envy and
no subsidy for losers coincides with that of the inverse uniform-price rules. Thus, as a

corollary of Theorems 1 and 4, we obtain the following.

Corollary 2. Let R be such that RN "R C R C RM NRY. A rule f on R" is
minimally manipulable among the class of inverse uniform-price rules on R"™ if and only

if it is a minimum tnverse uniform-price rule.

5 Discussion

In this section, we discuss some topics about no price envy and our manipulability mea-

sure.

5.1 No price envy
5.1.1 Prices for losers

In our formulation of no price envy, we do not take the prices of the losers into account.
Here, we show the difficulty of defining the prices of the losers by pursuing some possible
ways to formulate the prices.

One possible way to define the prices of the losers is to set them at zero. This formu-
lation seems plausible since such agents pay no money for the object. However, if we set
the prices of the losers at zero, then no price envy gets so strong that is incompatible with
a minimal requirement of no subsidy for losers since the winners must envy the losers’
prices, and is no longer an attractive property.

Instead, if we follow the interpretation of no price envy that agents choose an optimal
bundle given his price, it seems reasonable to think that a loser faces so high price that
his optimal choice at the price is to receive nothing. Now, we again confront the difficulty

of defining the “high” prices that the losers face in a natural way. In our view, there is
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no natural way to formulate the “high” prices of the losers which keeps no price envy
attractive.!®

Thus, instead of defining the prices of the losers, we choose not to define them.

5.1.2 Comparison to related properties

Here, we compare our no price envy to related properties introduced by other authors.

Varian (1976) introduces opportunity fairness in the exchange economy model, which
requires that each agent prefers his bundle to any bundle in other agents’ budget sets
whose price is determined as the exogenously given equilibrium price.'® Our no price envy
is different from opportunity fairness of Varian (1976) since the prices in our property is
determined endogenously by the rule, but the price in opportunity fairness exogenously
determined at the equilibrium price. In particular, opportunity fairness implies no price
envy, but the converse is not true.

Thomson (1994) generalizes opportunity fairness of Varian (1976), and introduces the
property of fairness that he calls no envy of opportunities. A rule f satisfies no envy of
opportunities if there is a a family of opportunity sets B such that for each R € R, the
following two conditions hold: (i) for each ¢ € N, there is a choice set B; € B of agent 1,
and (ii) for each pair 7, j € N, there is no z; € B; such that z; P, f;(R). Note that no
envy of opportunities is a fairly general property, and it subsumes opportunity fairness
of Varian (1976). However, no price envy neither implies nor is implied by no envy of

opportunities since no price envy does not take the losers’ prices into account.

5.2 Other manipulability measures

Here, we compare our manipulability measure to ones introduced by other authors.

Day and Milgrom (2008) consider the heterogeneous objects model with quasi-linear
preferences, and introduce the gain from manipulations that they call the incentive profile.
In our model, the incentive profile of a rule f on R™ at R € R" is defined as the profile
(e/(R))sen such that for each i € N,

e/(R) = sup G/(R}; R).

7
RLeER

We say that a rule f on R" is DM-at least as manipulable as'” another rule g on R™ if
for each R € R™ and each i € N, e/ (R) > £/(R).

15 An example of a “high” price of a loser i ¢ N*(zf(R)) for R under f is p/ (R) = p(R;;0), i.e., the
inverse-demand of 0 unit for R;. However, again no price envy becomes incompatible with no subsidy
for loses if we incorporate such losers’ prices to no price envy.

16Tn our model, a price p € R is an equilibrium price for R € R™ if there is z = (x,t) € Z such that
(i) for each i € N and each 2} € X, (z;,px;) R; (¢, px}), and (ii) for each i € N, ¢; = pz;.

1"Note that “DM” refers to Day and Milgrom (2008).
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Chen et al. (2016) consider the (many-to-many) matching with contracts model, and
compare stable rules according to their manipulability measure. Since the manipulability
measure in Chen et al. (2016) is for the finite model, we need to slightly modify their
measure so as to be comparable to our measure. To this end, we introduce a distance
function to the consumption set M x R. Let d : (M x R)? — R be a distance function
such that for each pair (z;,t;), (z},t}) € M x R

d((wi, ), (23, 1;)) = |wi — 3| + [t — 1.

According to the manipulability measure of Chen et al. (2016), a rule is at least as
manipulable as another rule if whenever an agent can manipulate the latter rule at a
preference profile and achieves a certain bundle, he can also manipulate the former rule
and achieve the same bundle as a result of the manipulation. Now, we slightly modify the
manipulability measure of Chen et al. (2016) to be able to handle the issue of tie-breaking,
and say that a rule is at least as manipulable as another rule if whenever an agent can
achieve a bundle as a result of the manipulation of the latter rule, he can achieve almost
the same bundle as a consequence of the manipulation of the former rule.

19 another rule

Formally, we say that a rule f on R" is C-at least as manipulable as
g on R"™ if for each R € R", each i € N, each R, € R, and each ¢ € R, , whenever

gi(Rl, R_;) P; gi(R), there is R! € R such that f;(R!, R_;) P; fi(R) and
d(fi(RY, R-;), gi(R;, R_;)) < e.

We define the minimal manipulabilities according to the manipulability measures in-

troduced by other authors.

Definition 12. (i). A rule f on R" is DM-minimally manipulable among the class
of rules if (i) f is in the class, and (ii) for each rule g on R™ in the class, g is DM-at
lesat as manipulable as f.

(ii). A rule f on R" is C-minimally manipulable among the class of rules if (i) f

is in the class, and (ii) for each rule g on R" in the class, g is C-at lesat as manipulable

as f.

The next remark states that our manipulability measure is equivalent to the one
introduced by Day and Milgrom (2008).

Remark 7. Let f, g be a pair of rules on R™. Then, the following statements are equiv-

alent.

8The following discussion is valid if we replace the distance function d with the Euclidean distance
function or any other equivalent distance function. Our choice of a distance function is only for simplicity
of the discussion.

9Note that “C” refers to Chen et al. (2016).
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(i). f is at least as manipulable as g.

(ii). fis DM-at least as manipulable as g.
Thus, we obtain the next result as a corollary of Theorem 4.

Corollary 3. Let R be such that RN N RC C R C RM NRY. A rule f on R" is
DM -minimally manipulable among the class of rules on R™ satisfying no price envy and

no subsidy for losers if and only if it is a minimum inverse uniform-price rule.

The next example shows that our manipulability measure is not equivalent to C-
manipulability measure over the class of rules satisfying both no price envy and no subsidy
for losers. This contrasts with Theorem 3 of Chen et al. (2016), which states that in
their matching with contracts model, C-manipulability measure is equivalent to DM-

manipulability measure.

Example 3. Let R be such that R N RY C R C R¥ N R*. Let R* € (RV N RY)"
be such that (i) vj(x; + 1) — vj(x;) = 100m for each x; € M\{m}, and (ii) for each
i € N\{1}, v (x;+1)—v}(x;) = 1 for each z; € M\{m}. Let R, € R® N R¥ be such that
vi(xy+1) —vj(z1) =5 for each z; € M\{m}. Then, mv™ ™ (R*) = mv™ (R}, R* ) = 1,
mu™(R*) = 100m, and mv™ (R}, R*|) = 5. Then, for each inverse uniform-price rule f on
R", it holds that zf(R*) = 29(R*) = z](R|, R*,) = m, =/ (R*),79(R*) € [1,100m] and
(R}, R*,) € [1,5].

Let f, g be a pair of inverse uniform-price rules on R" such that (i) 7/ (R*) = 79(R*) =
5, (ii) 7/ (R, R*,) = 3 and 79(R}, R*,) = 4, and (iii) for each R € R"\{R*, (R}, R*,)},
7/ (R) = m9(R) = mv™{(R™). Then, f;(R) R; g;(R) for each R € R™ and each i € N.
Thus, by Proposition 3, g is at least as manipulable as f.

Note that fi(R}, R*,) = (m,3m) P} (m,5m) = fi(R*). Let ¢ € R,, be such that
e < m. Let R € R besuch that g;(RY, R_1) P; g1(R) = (m,5m). Then, by the definition
of R} and t{(R{,R_1) >0, z{(R{,R_1) = m. Then, by the definition of 79, either
mI (R, R* ) =4 or m9(RY, R*|) = 1. Thus, we have

d(g1(RY, R",), f1(R}, B")) = [5m — 4m| =m > ¢.

Thus, g is not C-at least as manipulable as f, and the the equivalnece between our

manipulability measure and C-manipulability measure does not hold. O]

The next theorem, however, states that even though C-manipulability measure is not
equivalent to ours as the above example demonstrates, the minimum inverse uniform-price
rule is still the only minimally manipulable rule among the class of rules satisfying no
price envy and no subsidy for losers according to C-manipulability measure. The proof

of the next theorem can be found in the supplymentary material.
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Theorem 5. Let R be such that R¥ N R C R C R NR+. A rule f on R" is C-
minimally manipulable among the class of rules on R™ satisfying no price envy and no

subsidy for losers if and only if it is a minimum inverse uniform-price rule.

In the supplementary material, we further discuss the relationship between our ma-
nipulability measure and the one introduced by Pathak and Sénmez (2013) which does

not take gains from manipulations into account.

6 Conclusion

In this paper, we propose a new property of fairness: no-price-envy, and investigate its
implications in conjunction with the other desirable properties. We identify the unique
maximal domain for no price envy, strategy-proofness, and no subsidy for losers, and show
that on the domain the minimum inverse uniform-price rule is the unique rule satisfying
the three properties. Our maximal domain result implies that in the case of nonincreasing
marginal valuations, no rule satisfies no price envy, strategy-proofness, and no subsidy for
losers, but we show in such a case that the minimum inverse uniform-price rules is the
only minimally manipulable rule among the class of rules satisfying no-price-envy and no
subsidy for losers. These results provides a rationale for the use of the minimum uniform-
price rule that is one of the most popular auction rules in real-life auctions in terms of

fairness and non-manipulability.

Appendix

A Basic lemmas

In this section, we prove the basic lemmas that will be used to prove the results.
The next lemma states that if a rule satisfies no price envy, then it satisfies individual

rationality.

Lemma 1 (Individual rationality). Let f be a rule on R" satisfying no price envy.

Then, it satisfies individual rationality.

Proof. Let R € R™ and i € N. First, if xf(R) > 0, then no price envy implies that
fi(R) R;(0,p!(R)0) = 0. Second, if z/(R) = 0, then there is j € N\{i} such that
xf(R) > 0 by the feasibility. Then, no price envy implies that f;(R) R; (O,pf(R)O) =0,
as desired. O

The next lemma states that if a rule satisfies no price envy and no subsidy for losers,

then a loser makes no monetary transfer.
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Lemma 2 (Zero payment for losers). Let f be a rule on R™ satisfying no price envy
and no subsidy for losers. Let R € R™ andi € N. If 2/ (R) =0, then t!(R) = 0.

Proof. Suppose x{(R) = 0. By no subsidy for losers, tf( R) > 0. By Lemma 1, f sat-
isfies individual rationality. Then, it holds that (0,#/(R)) = f;(R) R; 0, which implies
t/(R) < 0. Thus, t/(R) = 0. O

The following lemma states that under a rule satisfying no price envy, winners face
the equal prices.

Lemma 3 (Equal prices for winners). Let f be a rule on R™ satisfying no price envy.
Let R € R" and i,j € N*(x/(R)). Then, p!(R) :pf(R).

Proof. Suppose by contradiction that pl( ) + p]( ). If p] (R) > pf (R), then it holds
that t{(R) > p/(R)z{(R). Then, (z](R), p] H(R)z!(R)) P; fi(R). However, this contra-
dicts no price em}y Instead, if p/ (R) < P; ’(R), then tf(R) > pj (R)xf(R) Then,we have

(2 (R),p! (R)x ( )) P; f;(R), which contradicts no price envy. O

The next lemma provides a characterization of an efficient allocation for preferences

with nonincreasing marginal valuations.

Lemma 4. Let R € (RN)". Let z = (x,t) € Z. Then, x € arg maxy_,_yv;(2}, z) if
r'eX
and only if for each pairi,j € N with x; # 0 and x; # m,

vi(Ti, i) — vz — 1, 25) > v(w + 1, 25) — v (w5, 25).

Proof. First, we show the “if” part. Suppose x € arg max) .\ vi(z},2). Let i,j € N
x'eX

be a pair such that z; # 0 and z; # m. By contradiction, suppose that
’UZ'(JIi, Zi) — UZ‘(SL’i — ]., Zi) < Uj(xj +1, Zj) — Uj(l’j, Zj). (1)
Note that by R;, R; € R, i # j. Let 2’ € X be such that =} = z; — 1, 2 =z;+1, and

x) = xy for each k € N\{i,j}. Then, by (1),

Z vp(xh, 2k) — Z vk, 2x) = v(x; + 1, 2;) —vi(zy, 2;) — (vi(2s, z1) —vi(x; — 1, %)) > 0,
keN kEN
or Y pen Vk(Th, 2k) > D pen Vk(Tk, 21). However, this contradicts z € arg max ), -y vi(zy, 21).
Next, we show the “only if” part. Suppose that for each pair i,5 € N W)l(th x; # 0 and
Tj 7 m,
vi(xi, zi) — v — 1, 2z) > vz + 1, 25) — v;(25, 25). (2)
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Let 2/ € X. Let N> ={ie N:z; >z}, N-={i e N:x; =z}},and N~={i € N :
x; < x}. Note that {N~, N=, N<} is a partition of N. Note also that for each i € N~
x; # 0, and for each i € N<, z; # m.

By the feasibility, > ..y #; =m = >, .y z;. Thus, we have

= z];(l’ — ;)

- ;< —el)+ 3 (=)
) Z(m - ) = Z (] — @) (3)
Then, o -

zj; vi(i, 2) — ZN vi(}, 2)
= EZN; (vi(3, 2:) fvi(iv& ) = Z;(vi(f& z;) — vi(2i, %))
= Ez: (@i — ) (vi(wi, zi) = v(;]i Lzi)) = D (=) (vils + 1, 20) = vil2i, 24)

o o (by R € (RY)")
> Z (s = ) (min (v, =) — vila — 1,2} ) - gvz(x; — ) (mas{vi(@; + 1,2) = vi(ai, %)}
> (ZfN (by (2) and (3))
or 3 ien Vil®i, 21) = D ien vil); 7). O

The next lemma gives both the lower and the upper bounds of the marginal valuations

at an efficient allocation.

Lemma 5. Let R € (RV)" and z = (x,t) € Z be such that x € arg maxy_,_y vi(a}, 2;).

r'eX
Let i1 € N.
(1). If x; # 0, then vi(x;, z;) — vi(x; — 1, 2;) > mu™(R, z).
(ii). If x; # m, then vi(x; + 1,2;) — vi(xs, 2:) < mv™T(R, 2).

Proof. First, we show (i). Suppose x; # 0. For each j € N, let M; = {2 € M\{m} :
2 > x;}. Then, for each j € N, [M;| = m — x;. Thus,

Z|Mj|:nm—Z:Uj:nm—m:(n—l)m,

JEN JEN
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where the second equality follows from the feasibility. Further, for each j € N, let
M; = {x; € M\{m} : vj(x; +1,2) — vj(x;, zi) < vy, 2i) — vi(a; — 1,zi)}.

By z; # 0 and R € (RM)", Lemma 4 implies that for each j € N, M; C M;. Thus,
|M;| < |Mj]| for each j € N. Moreover, by x; — 1 € M;, |[M;| < |M,|. Then,

(n—Lm=>_[M| < Y [M].

JEN JEN

This means that there are more than (n — 1)m marginal valuations at z that is no greater
than v;(z;, z;) — vi(z; — 1,2;) among all the nm marginal valuations at z. Thus, by
nm — (n — 1)m = m, we obtain v;(x;) — v;(x; — 1) > mv™(R, z).

Then, we show (ii). Suppose z; # m. For each j € N, let M; = {z, € M\{0} :
2, < xj}. Then, |M;| = x; for each j € N. Thus, by the feasibility,

Z|MJ| :ij =m.

jEN jEN
For each j € N, let
M; = {:v; € M\{0} : v;(2f, zj) —vj(x) — 1, 25) > v +1,2) — v,(xz,zz)}

By x; # m and R € (RM)", Lemma 4 implies M; C M, for each j € N. Moreover, by
{l’i + 1} U Mj g Mi, Mz g Mz ThUS,

m=> M| < Y [M,].

jEN jEN
This implies that v;(z; + 1, z;) — vi(z;, 2;) < mv™ (R, 2). O

The next lemma is a slight generalization of Lemma 10 of Shinozaki et al. (2020).

Since the proof is same as that of Shinozaki et al. (2020), we omit it.

Lemma 6. Let R; € RN N R* and x; € M\{0,m}. For each t; € Ry, t; < t*(x;) if
and only if Vi(x; + 1, (x;,t;)) — t; > gtc_l

B Proof of Theorem 1

In this section, we provide the proof of Theorem 1. Throughout the section, let R € RN N R*.
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B.1 “If’ part

Let f be an inverse uniform-price rule on R".
It is obvious that f satisfies no subsidy for losers. Thus, we here show that f satisfies

no price envy. The proof is in four steps.

STEP 1. Let R€ R™ and i € N. Let j € N*(z(R)) and x; € M. Then,

pf(R): " ): ' =7/ (R).

STEP 2. Let z; € M be such that ; < z! (R). We show (z;+1, 7/ (R)(x;41)) R; (x;, 7/ (R)x;).
We have

wl(R) < mo™(R™) < o (@] (R)) — o] (] (R) = 1) < 0] (2, +1) — " (a:), (1)

[ i % i )

where the second inequality follows from Lemma 5 (ii), and the last one from R € RN,

Suppose x; = 0. Then,
ﬂ-f(R> < U?m}(l) = p(O;Ri) = Vi(lv 0)7

where the inequality follows from (1), and the second equality from Proposition 1. This
implies

Suppose next x; > 0. Then,

. . (2,
W (B) < o™+ 1) = " () = plas B) = T,

where the inequality follows from (1), and the second equality from Proposition 1. This
implies 7/ (R)z; < t*(x;). This, together with Lemma 6, implies
Rz
Vil + 1, (w7 (R)) — 7f (Ryms > D% fppy.

€

or Vi(x; + 1, (w;, 7 (R)x;)) > m/(R)(x; +1). This implies
(z; + 1,7/ (R)(x; + 1)) Ry (x5, 7/ (R)x;),
as desired.
STEP 3. Let z; € M be such that z; > x{(R) We show (2;—1, 7/ (R)(2;—1)) R; (x5, 7/ (R)x;).
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Note that

wl(R) = mo™ H(R™) 2 o™ («] (R) + 1) — o™ (&](R)) = 0" () — v]" (2, — 1), (2)

7 K3 (2 K3 K3

where the second inequality follows from Lemma 5 (ii), and the last one from R € RN,
Note that by z; > ! (R), z; > 1.
Suppose x; = 1. Then,

)

! (R) = vj"(1) = p(0; R;) = Vi(1,0),

where the inequaliy follows from (2), and the last equality from Proposition 1. Thus, we
obtain

(0,77 (R)0) = 0 R; (1,7/(R)).
Suppose x; > 1. We have

w(R) > o™ (2;) = o™ (2; = 1) = p(z; = ; R;) = (xx_ 1 >’

where the inequality follows from (2), and the last inequality from Proposition 1. This
gives 7/ (R)(z; — 1) > t*(z; — 1). Thus, by Lemma 6,

Vil o~ L (R = 1)~ (R~ 1) < O sy
or Vi(x;, (x; — 1,7/ (R)(z; — 1))) < 7/(R)z;. This implies
(z; — 1,77 (R)(z; — 1)) Ry (w5, 7 (R)z;).
STEP 4. First, if o;(R) = x;, then f;(R) = (x;, 7/ (R)x;). Thus, fi(R) R; (x;, 7/ (R)x;).
Next, if 2; < x;(R), then Step 2 gives
fi(R) = (x(R), 7' 2;(R)) R; --- Ry (i, 7/ (R)xy).
Finally, if z; > x;(R), then Step 3 gives

fi(R) = (zy(R), 7 zi(R)) R; -+ R (s, m (R),),

as desired. [ |
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B.2 “Only if” part

We do the proof of the “only if” part in six steps.

STEP 1. Let f be a rule on R" satisfying both no price envy and no subsidy for losers.
We define a price function 7/ : R"® — R of the rule f. Let R € R". By the feasibility,
N*(z/(R)) # @. By Lemma 3, for each pair i, j € N*(z/(R)), p/ (R) = pf(R). Thus, we
can define a function 7/ : R" — R such that for each R € R", n/(R) = p!/(R) for each
i € NT(x(R)).

STEP 2. Let R € R™ and i € N be such that z/(R) # 0. In this step, we show that
7/ (R) < v (2;(R)) — vi"(z;(R) — 1). By contradiction, suppose
o (R) > v (wi(R)) — vi" (2:(R) — 1). (1)
Note that by =/ (R) # 0, =/ (R) > 1.
Suppose first a:f (R) = 1. Then, by Proposition 1,
o™ (] (R)) = o™ (x] (R) = 1) = p(0; R;) = Vi(1,0). (2)

Thus, by (1),
7/ (R) > Vi(1,0).

This implies
f

where the equality follows from z; (R) = 1. However, this contradicts Lemma 1.

Next, suppose :L‘f(R) > 1. By Proposition 1,

%

_ t(=l(R) - 1)
2 m -1

)

o™ (] (R)) — o™ (« (R) = 1) = p(«] (R) — L; R)

(2

This, together with (1), implies

iy o PG =)
(R) > =5

)

9

or 7/ (R) (2! (R) — 1) > t*(2! (R) —1). Thus, by Lemma 6,

7

Vil (), (2l (B) =17 (R) (] (R)=1))) —! (R) (! (R)-1) <

1 K3 7 7

29



or

Vi(w! (R), (2! (R) = 1,7/ (R) (@] (R) = 1)) < ' (R)z!(R).

(2 1

This implies

(] (R) — 1,7/ (R)(«](R) — 1)) P, (z{(R), 7/ (R)=!(R)) = fi(R),

(2 3 3

which contradicts no price envy.

STEP 3. Let R € R" and i € N be such that z/(R) # m, In this step, we show that
m(R) > v (2! (R) + 1) — vi"* (2! (R)). Suppose to the contrary that

7

©/(R) < v"(a](R) + 1) — v (2] (R)). (3)

7 3 (2

Suppose z! (R) = 0. By Proposition 1,

%

v (@] (R) + 1) — o™ (2] (R)) = p(0; R;) = V4(1,0). (4)

2

Then, by (3),
' (R) < Vi(1,0). (5)

By Lemma 2, f;(R) = 0. Thus, by (5),
(1,7/(R)) P, 0 = fi(R),

which contradicts no price envy.

Suppose instead xfc(R) > 0. Then, by Proposition 1,

ﬁwﬂm+w%wﬂmpmmmmﬁ“gg”
Thus, by (3), »
m(R) < %.
This implies 7/ (R)z! (R) < t*(«/(R)). By Lemma 6,
t%ﬂ@+h@@hﬂ@d@@ﬂﬂ&ﬂ@>I%%%@—Hw%

which implies

Vi(wf(R) + 1, (o] (B), 7/ (R)a! (R))) > =/ (R)(a! (R) +1).
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Thus, we have

(] (R) + 1,7/ (R)(«] (R) + 1)) P, (] (R),n/ (R)a(R)) = fi(R).

K3 (2

However, this contradicts no price envy.

STEP 4. Let R € R™. Let i € N be such that 2/ (R) # 0. We show that v**(z! (R)) —
virt(zl(R) — 1) > mao™(R™).

1 (2

For each j € N, let

M; = {a; € M\fm} : o (2; + 1) — 0" (2;) < o™ (2] (R)) - o™ (2] (R) — 1) }.

K3 7 K3 (2

Now, we claim that >,y [M;| > (n —1)m.
First, suppose there is j € N such that xf(R) = m. By 2/(R) # 0, it must hold that
2/ (R) = m. Then, for each j € N\{i}, z;(R) = 0. Thus, by Steps 2 and 3, for each

(2

j € N\{i},

vj””(l) < 7/ (R) < v™(m) — o™ (m —1).

Thus, for each j € N\{i}, by R/™ € R,
M; = M\{m}.

By m —1 e M;, M; # &. Thus,

SIMI > YT My = (n—Dm.

JEN JEN\{i}
Second, suppose a:j(R) # m for each j € N. By Step 2 and 3,
V(@ (R) + 1) — o™ (2! (R) < 7l (R) < o™ (a! (R)) — of™ (2! (R) — 1)
Thus, by R™ € (RN~ for each j € N\{i}, it holds that
{zI(R),...,m -1} C M;.

Then, |M;| > m — :Uf(R) for each j € N\{i}. Moreover, by Ri"> € RN,

{e/(R)—1,...,m —1} C M,.
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Thus, [M;] > m — 2! (R) + 1. Then,

ZU\/[J] znm—Z:Ef(R)—l—l:(n—l)m—i-l > (n—1)m,

JEN JEN

where the equality follows from the feasibility.
Thus, we have established ),y [M;[ > (n—1)m. This means that there are more than
(n—1)m marginal valuations for R which is no greater than v/ (2! (R))—vi™ (2! (R)—1).

By nm — (n — 1)m = m, we get

™ (2 (R)) — vi™ (2! (R) — 1) > mu™(R™).

K3 (2 K3 (2

STEP 5. Let R € R" and i € N be such that z/(R) # m. We show that vi™(z! (R) +
1) — v’-'m’(xf(R)) < mu™TH(R™).

(2 2

For each 7 € N, let

M; = {a; € M0} 2 0 (@) () — v (@ (R) — 1) 2 v/™(@! (R) + 1) — vi™'(a! (R)) ).
Note that N*(2/(R)) # @ by the feasibility. For each j € N*(2/(R)), by Steps 2 and

37

V(@ (R) — o™ (@I (R) — 1) > 7/ (R) > of™ (2] (R) + 1) — o™ (! (R)).

J J J J ¢ ?

Thus, for each j € N*(z/(R)), by R™ € RN,
{0,....2](R) — 1} € M,

This implies that |M;| > :Uf(R) for each j € N*(z/(R)). Note that z/(R) € M;. If
i € N*(z/(R)), then |M;| > =/ (R) + 1. Thus,

Sl Y > Y B t1=mt1>m,

JEN JENT(z/ (R)) JENT(z/(R))

where the equality follows from the feasibility. Instead, ifi ¢ N*(z/(R)), then by M; # &,

Z|M]| > Z | M| > Z x;(R):m,

JEN JENT(z/(R)) JENT(z/(R))

where the equality follows from the feasibility.
Thus, we have established Zje N

marginal valuations for R which are no less than v (zf (R) + 1) — v (z/ (R)). Thus,

|M;| > m. This means that there are more than m
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we obtain
o (e (R) + 1) = o™ (& (R)) < ™ (R™)

STEP 6. In this step, we show that f is an inverse uniform-price rule on R™ whose price
function is 77, and complete the proof.

First, we show that f satisfies the first condition (i) of the inverse uniform-price rule.
Let R € R". Let i,j € N be such that z/(R) # 0 and x{(R} # m. Then, by Steps 4
and 5,

Vi (2 (R)) —ui™ (x (R)—1) = ma™(R™) > ma™ (R™) > (] (R)+1)—v™ (=] (R)).

) % % 7 J J

Thus, by Lemma 4, it holds that

2/ (R) € arg maxz Vi (;).

z€X N

Second, we show that f satifies the second condition (ii) of the inverse uniform-
price rule. By the feasibility, there must exist a pair i,j € N such that z/(R) # 0 and
:c;(R) # m. By Steps 2 and 4,

™ (R) < v (! (R)) — vi™ (2] (R) — 1) < mu™(R™).

(2 3 (2 (3

Moreover, by Steps 3 and 5,

o (R) > o™ (x](R) + 1) — o™ (] (R)) > mo™ T (R™).

Thus, we obtain 7/ (R) € [mv™ (R™), mv™(R™)].
Let R € R" and i € N. If i € N*(2/(R)), then by 7/ (R) = p!(R), we get
tH(R) = o/ (R)z! (R).

)

Moreover, if i ¢ N*(z/(R)), then by Lemma 2,

t/(R) = 0=r/(R)z!(R),

i

as desired. [ |

C Proof of Proposition 2

In this section, we prove Proposition 2. Let Ry € (RN N R*)\R Then. R & RC.
Let R be such that R € RM N R and R D (R N R¥) U {Ro}.
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Suppose that threre is a rule f on R" satistying no price envy, strategy-proofness, and
no subsidy for losers. Then, by R C R¥ N R*, Theorem 1 implies that f is an inverse

uniform-price rule on R".

STEP 1. In this step, we construct a preference profile. Let Ry = Ry. By Ri" € RN\ R,
there is x; € M\{0,m} such that

Vi (1) — 0" (2 — 1) > 0" (2 + 1) — 0" (21).
Let Ay € R, be a positive number such that
V(2 + 1) — 0" (2y) < Ay < 0 (2y) — 0" (2 — 1). (1)

Let Ry € RY N RY be such that vy(z3) = Asxs for each x5 € M.
Let ¢ € Ry, be such that for each x| € M\{m},

e < u"(2h +1) — 0" (2). (2)

Then, ¢ < Ay. For each i € N\{1,2}, let R; € R® N R? be such that v;(z;) = ex; for
each z; € M.

STEP 2. In this step, we show that 23 (R) = m — ;.
First, we show that 27 (R) = 0 for each i € N\{1,2}. Let i € N\{1,2}. Suppose by

contradiction that =/ (R) # 0. Then, 2/ (R) # m. Then, by (2),

vi(al (R)) — vi(al (R) — 1) = e < o™ (2{(R) + 1) — o™ (2{(R)).

7 7

By Lemma 4, this contradicts the first condition (i) of the inverse uniform-price rule.
Next, we show that 27 (R) = 21 Suppose not.
First, suppose 27 (R) > x;. Then, 3 (R) # m. We have

o™ (2] (R)) = v} (2] (R) = 1) < o{" (21 4+1) =" (1) < Ag = va(wj(R) +1) = va(w (R)),

where the first inequality follows from Ri" € R™! and the second one from (1). However,
by Lemma 4, this contradicts the first condition (i) of the inverse uniform-price rule.

Second, suppose ] (R) < x1. Then, by ! (R) = 0 for each i € N\{1,2}, the feasibility
implies 23 (R) # 0. We have

vp(23(R)) = va(a) (R) = 1) = Az < 0" (1) =0} (21— 1) < 0" (2] (R) +1) — 07" (] (R)),
where the first inequality follows from (1), and the second one from R™ € RN, This
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contradicts the first condition (i) of the inverse uniform-price rule by Lemma 4.
Thus, 2 (R) = z1, and for each i € N\{1,2}, 2/(R) = 0. By the feasibility, we have

23(R) =m —x(R) = m — 1.
STEP 3. By (1), (2), and R™™ € RN mo™ (R™) = i (1) —vi™ (2,—1), my™T@1 (R™) =
Vi (x14+1)—0i"(z1), and for each x € M\{0}, mv™T*(R"™) = Ay. Thus, by x; € M\{0,m},
mu™(R™) = mv™ T (R™) = Ay. Then, fo(R) = (m — x1, Ay(m — x1)) by Step 2.
Let A, € R, be such that
Vi (y + 1) — 0" (1) < Al < As. (3)
Let R, € RY N RY be such that v}(zy) = Abxs for each x5 € M. Then, by (1) and (3),
V(2 + 1) — 0" () < Ay < 0 () — 0" (2 — 1). (4)
Then, in the same way as in Step 2, we can show that zf (R}, R_,) = m — z1. By (2),
(4), and R™ € RN mo™(R,, R™) = mv™T(RY, R™) = A,. Thus, 7/ (R}, R_5) = A).
Then, fQ(R/2’ R—Q) = (m - Iy, A/2(m - .171)) HOWQVGI‘, by ('?))a

fo(Ry, R_g) = (m — w1, Ay(m — 21)) Py (m — x1, Ag(m — 1)) = fa(R),

which contradicts strategy-proofness. [ |

D Proof of Theorem 2

In this section, we prove Theorem 2. Let R be such that R N RY C R C RN n R+,

D.1 “If” part

First, we show the “if” part. Suppose R = RE.

We first show that there is a rule on R" satisfying no price envy, strateqy-proofness,
and no subsidy for losers. Let f be a minimum inverse uniform-price rule on R™. Then,
by R € RM N R*, Theorem 1 implies that f satisfies both no price envy and no subsidy
for losers. Thus, it suffices to show that it satisfies strategy-proofness.

Let R€ R", i € N, and R, € R. We consider the following two cases.

CASE 1. z/(R) # 0.
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If 2/ (R}, R_;) # 0, then by Lemma 5 (i) and R, (R/™ Rin) e (RC)",

H(R) = mv™H(R™) = max v"™(1) = mo™ (R, R™Y).
l(R) = mu™ (™) = e (1) = mu™ (R, R
Thus, fi(R;, R-;) = (x{(R;, R,i),p{(R)w{(R;, R_;)). By no price envy, we get fi(R) R; fi(R;, R—;).
Instead, if 2/ (R}, R_;) = 0, then by Lemma 1, we get f;(R) R; 0 = fi(R], R_;).

Cask 2. z/(R) = 0.

If #/ (R}, R_;) # 0, then

V"™ (1) < mu™TH(R™) < max v™(1) < mu™ (R, R™Y), (1)
JeN\{i}

where the first inequality follows from Lemma 5 (ii), the second one from the feasibility,

Lemma 5 (i), and R™ € (RY)", and the last one from Lemma 5 (i) and (R, R™) € (RY)™.

By R; € RC, vi"(1) = v;(1,0) = v;(z;+1,0)—vs(x;, 0) for each x; € M with z; < z! (R}, R_;).

Thus, by (1),

vi@! (R, R-),0) < f (R, R_)mv™ ' (R{™, R™) = t] (R}, R;).

This implies 0 R; f;(R., R—;). Thus, by Lemma 1, f;(R) R; f;(R}, R_;).
Instead, if 2/ (R/, R_;) = 0, then f;(R) = 0 = f;(R},R_;).

Next, let R’ be such that R 2 Rand R’ € R N R*. By R’ € R, thereis Ry € R’
such that Ry € R. Note that by R C RM N R*, Ry € RN NnR*. By R 2 RY N RY,
R’ D R NR2. Thus, we have R D (RC N R?) U {Ry} for Ry € (RN N RT)\RC,
and Proposition 2 implies that there is no rule on (R')" satifying no price envy, strategy-

proofness, and individual rationality.

D.2 “Only if” part

Next, we prove the “only if” part. Suppose by contradiction that R is a maximal domain
for no price envy, strategy-proofness, and no subsidy for losers, but R # RE.

IfR C 7%0, then by R # 7@0, R C RE. However, this contradicts that R"™ is a max-
imal domain for no price envy, strategy-proofness, and no subsidy for losers since the
minimum inverse uniform-price rule on (7@0)” satisfies the three properties.

Thus, R € RC. Then, there is Ry € R such that Ry ¢ R¢. By R C RN N RY,
Ry € RM N R*. Thus, by R D (R N R¥) U {Ry}, Proposition 2 implies no rue on
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R™ satisfies no price envy, strategy-proofness, and no subsidy for losers. However, this
contradicts that R is a maximal domain for no price envy, strategy-proofness, and no

subsidy for losers. |

E Proof of Theorem 3

In this section, we prove Theorem 3. Let R be such that R N R C R C RE. By the
proof of the “if” part of Theorem 2, the minimum inverse uniform-price rule satisfies no
price envy, strateqy-proofness, and no subsidy for losers on R™. Thus, we here show the
“only if” part.

We begin with the following two lemmas.

Lemma 7. Let f,g be a pair of inverse uniform-price rules on R™. Let R € R"™ and
i € N be such that my™+t(R™) < mv™(R™). Let R, € RY N RY be such that for each
x; € M\{m},

mo™ T (R™) < vl(z; + 1) — vi(a;) < mu™(R™).

Then, (i) 2Y(R,,R_;) = =/ (R), and (i) if 0 < z/(R) < m, then 79(R}, R_;) = v}(z; +
1) — vi(z;) for each xz; € M\{m}.

Proof. First, we show (i). By contradiction, suppose z/(R!, R_;) # x!(R). We consider

7

the following two cases.
Case 1. 2/(R},R_;) < z!(R)
By the feasibility, there is j € N\{i} such that 25(R;, R_;) > :Ej(R) Then,

o (2 (R, R)) = o™ (2§ (R}, R—) = 1)

J J

inv/ . f inv(, . f inv
< v (@ (R) +1) — v (25 (R)) (by Rim € RNT)
< mu™tH(R™) (by Lemma 5 (ii))
< vi(f(R}, R_i) + 1) — vj(=}(R;, R-)), (by the def. of R!)

which contradicts Lemma 4.

CASE 2. 2Y(R), R_;) > ! (R)
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Then, there is j € N\{i} such that z}(R;, R_;) < :Uf(R) Then,

B Ro) + 1) — o @SB R)

J

> U;nv<x§(R)) _ U;;m(x;,‘(g) —1) (by Rim e RNT)
> mo™(R™) (by Lemma 5 (i))
> vj(xf (R, Ry)) — vi(af (R}, R—) — 1), (by the def. of R))

which contradicts Lemma 4.

Next, we show (ii). Suppose 0 < z/(R) < m. By (i) and =/ (R) # 0, z/(R], R_;) # 0.
Thus, by Lemma 5 (i),

Vi@ (R}, R-y)) — vi(af (R}, Rei) — 1) = mo™ (R}, RZY). (1)
Similarly, by (i) and 2/ (R) # m, 29(R!, R_;) # m. Thus, by Lemma 5 (ii),
vi(@f (R}, Rei) + 1) — vi(a (Rf, R—y)) < mo™ (R, RTY). (2)

By mo™(R,, R™) > my™+Y(R), R™), (1), (2), and R, € R, we obtain that for each
x; € M\{m},

mv™ (R}, R™) = mv™ T (R, R™) = vj(z; + 1) — v}(z;).

Thus, 79(R;, R_;) = vi(x; + 1) — vi(x;) for each z; € M\{m}. O

Lemma 8. Let f, g be a pair of inverse uniform-price rules on R™. Let R € R™ andi € N
be such that z! (R) = m. Let R, € RN N RQ be such that v)(z;+1)—v)(z;) > mu™ (R™)
for each x; € M\{m}. Then, (i) (R}, R_;) =m and (i) m9(R}, R_;) < vi(m)—vl(m —
1).

Proof. First, we show (i). Suppose by contradiction that x(R;, R_;) # m. Then, by
the feasibility, there is j € N\{i} such that z(R;, R_;) # 0. Note that by ! (R) = m,

:cf(R) = 0. Then, we have

my™ T (R™) > Uj'm(l) (by Lemma 5 (ii))
> v;"”(xg(RQ, R.)) — vj«”v(x?(R;, R_)—1) (by R;jnv e RN
> mu™ (R}, R™) (by Lemma 5 (1))
> mo™ (R, R™)
> vi(2{(R;, R_;) + 1) — vj(z)(R;, R_;)) (by Lemma 5 (ii))

> mvm—‘rl (Rinv)’
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a contradiction.
Then, we show (ii). By (i), (R}, R—;) = m. Thus, by Lemma 5 (i),
(R}, R—;) < vj(m) — vi(m — 1),

as desired. O

Now, we turn to the proof of the “only if” part of Theorem 3. Let f be a rule on R"
satisfying no price envy, strategy-proofness, no subsidy for losers. Note that by Theo-
rem 1, f is an inverse uniform-price rule. By contradiction, suppose f is not a minimum
inverse uniform-price rule. Then, there is R € R" such that 7/(R) # mv™ 1 (R™). Let
e € R, besuch that ¢ < 7/(R™) —mo™(R™). By the feasibility, there is i € N such
that #/ (R) # 0. Let R, € RE N R2 be such that v/(z;) = (x/(R) —¢)x; for each z; € M.

We consider the following two cases.
Cask 1. z/(R) # m.

Since f is an inverse uniform-price rule, 7/ (R) < mv™(R™). Thus, for each z; € M\{m},
mu™ T (R™) < vl + 1) — vi(z;) < mu™(R™),

where the first inequality follows from ¢ < 7/ (R)—mv™ ! (R™). By Lemma 7, =/ (R], R_;) =
2/ (R) and 7/ (R], R_;) = 7/(R) — ¢. Then, by =/ (R}, R_;) = 2/ (R) # 0,

(2

t/(R,,R_;) = o (R}, R_))x] (R, R_;) < o' (R)z](R) = t{(R).

(2

Thus, by z/(R], R_;) = = (R), fi(R,, R_;) P, fi(R). However, this contradicts strategy-

proofness.
CASE 2. 2/ (R) = m.
By ¢ < 7/(R) — mv™*Y(R™), for each x; € M\{m},
vj(z; + 1) — vi(z;) > mu™TH(R™).
Thus, by Lemma 8, z/ (R, R_;) = !/ (R) = m and
(R}, R_;) < ' (R) — e < 7/(R).
These imply #(Rj, R—;) < t;(R). Thus, by «f(R,R_;) = =!(R), fi(R},R~) P; fi(R),
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which contradicts strategy-proofness. [

F Proofs of Theorem 4 and Proposition 3

In this section, we prove Theorem 4 and Proposition 3. Throughout the section, let R be
such that RN N Re C R C RN N RT.

F.1 Preliminaries

First, we provide lemmas that will be used to prove Theorem 4 and Proposition 3.
The next lemma states that if an agent can manipulate an inverse uniform-price rule,

then he must receive some units of the object as a result of the manipulation.

Lemma 9. Let f be an inverse uniform-price rule on R". Let R € R", i € N, and
R, € R be such that f;(R,,R_;) P, fi(R). Then, z!(R],R_;) # 0.

Proof. By contradiction, suppose z! (R!, R_;) = 0. By the second condition (ii) of the
inverse uniform-price rule, f;(R;, R_;) = 0. By Theorem 1, f satisfies no price envy.

Thus, by Lemma 1,
fi(R) R; 0= fi(R}, R—y),
which contradicts f;(R;, R—;) P; fi(R). O

The next two lemmas state that for a given preference profile such that an agent
receives some but not all units of the object under an inverse uniform-price, there is a
quasi-linear preference that produces the same consumption level under another inverse

uniform-price rule as the original rule.

Lemma 10. Let f,g be a pair of inverse uniform-price rules on R"™. Let R € R"™ and
i € N be such that 0 < ! (R) < m and mv™'(R"™) = my™(R™). Let R, € RN N RY
be such that

vi(af (R) +1) = vi(«] (R)) < mv™ ! (R™) < wj(a] (R)) — vi(«](R) - 1).

Then, (i) «{(R;, R_;) = ! (R) and (ii) v}(x] (R)+1)—vi(x] (R)) < 79(R}, R_;) < vj(x!(R))—
vl(zl (R) = 1).

K3 3

Proof. We first show (i). Suppose by contradiction that x?(R!, R_;) # «!(R). We need

to consider the following two cases.

Case 1. 2Y(R!, R_;) < z!(R)
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By the feasibility, there is j € N\{i} such that x§(R}, R_;) > x;(R) Then,

v (] (R}, R-)) — o™ (¢ (R}, R—;) — 1)
< of(af (R) + 1) — v (] (R)) (by R € RNT)
< mo™ T (R™) (by Lemma 5 (ii))
= mv™(R™)
< vj(w] (R)) = vj(=] (R) = 1) (by the def. of R})
< Vi(xf(Rl, Ry) + 1) — vl(v{ (R}, R-,)), (by R € RNT)

which contradicts Lemma 4.
CasE 2. 2Y(R!, R_;) > z!(R)
Note that there is j € N\{i} such that z7(R}, R_;) < :1:{ (R) by the feasibility. Then,

ol (@(R}, Ri) + 1) — v (23(R), R))

J J

> o™ (2](R)) — v («](R) — 1) (by Ri"v € RNT)
> mu™(R™) (by Lemma 5 (i))
— mvm+1 (Rmv)

> vj(x] (R) + 1) = v(x! (R)) (by the def. of R!)
> vi(af (R}, R-)) — vi(z (R}, R—i) — 1), (by R, € RNT)

which contradicts Lemma 4.
Next, we show (ii). By (i) and «/ (R) # 0, z/(R}, R_;) # 0. Thus, by Lemma 5 (i),
vi(@d (R}, R—)) — vi(af (R}, R) — 1) = mo™ (R}, RTY) > n?(Rj, R-). (1)
By (i) and z/(R) # m, 2/(R}, R_;) # m. Thus, by Lemma 5 (ii),
V(R B) + 1) — (e (R R)) < mo™ (R, R < n0(RLRL). ()

Combining (1) and (2), we obtain the desired inequality. O

Lemma 11. Let f,g be a pair of inverse uniform-price rules on R"™. Let R € R"™ and
i € N be such that 0 < x(R) < m. Lete € R,,. Then, there is R, € RNT N R? such
that (i) 29(R,, R_;) = «!(R) and (i) [t/(R,,R_;) — t/(R)| < e.

Proof. We consider the following two cases.

41



CASE 1. mv™ T (R™) < mv™(R™).
We further divide the argument into two cases.
CASE 1-1. mv™{(R™) < 7/ (R).
Let ¢’ € R, be such that
2! (R)e' < min{e, 7/ (R) — mv™"(R™)}.

Let R, € R® N R be such that v)(x;) = (7/(R) — &')x; for each x; € M. Then, by
e < 7/ (R) — mv™(R™), for each x; € M\{m},

vi(z; + 1) — vj(z;) > mu™THR™).
Moreover, by /(R) < mv™(R™), for each z; € M\{m},
vi(z; + 1) — vj(z) < mu™(R™).

Thus, by 0 < 2/ (R) < m, Lemma 7 implies that ?(R!, R_;) = 2/ (R) and 79(R!, R_;) =
7/ (R) — €. Then,

#2(R;, R—;) — t/(R)| = ! (R)|x/(R) — &' = 7/ (R)| = 2] (R)¢' < e,

7 %

where the first equality follows from 2/ (R!, R_;) = 2! (R), and the inequality from =/ (R)e’ < e.

CASE 1-2. mv™H(R™) = 7/ (R).
Let ¢’ € R, be such that
2! (R)e' < min{mv™(R™) — mv™(R™), ¢}

2

Let R, € RY N R? be such that v(z;) = (7/(R) +¢&')x; for each x; € M. Then, for each
x; € M\{m}, by ¢ > 0,

vi(z; + 1) — vi(z;) > mo™ T (R™),
and by ¢/ < mv™(R™) — mv™ T (R™) and 7/ (R) = mv™ (R,

Vi(z; + 1) — vi(z) < mu™(R™).
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Thus, as in Case 1-1, by 0 < z/(R) < m, Lemma 7 implies z/(R!, R_;) = z!(R) and
(R, R_;) = p/(R) + ¢. Then, by #(R,R_;) = z/(R) and 2/ (R)e’ < ¢, we obtain
(R, R_;) — t/ (R)| < ¢ in the same way as in Case 1-1.

CASE 2. mv™H(R™) = my™(R™).
Let ¢’ € R, be such that

z/(R)e < min{mv™(R™),e}.

(2

Let R, € RN N R¥ be such that for each x; € M\{m}, vl(z;+1) —v}(z;) = mv™(R"™)+
¢ if z; < 2/ (R), and v}(x; + 1) — vi(z;) = mu™(R™) — & if z; > z/(R). Then, by
mvm(Rim)) — mvm+1 (Rinv)’

vi(z] (R) +1) — vj(x] (R)) < mv™ " (R™) < vj(«](R)) —vi(a](R) - 1).

Thus, by Lemma 10, 27(R}, R_;) = 2/ (R) and
—¢ <md(R,R_;)) —n(R) < €.

Thus, by 29(R}, R_;) = = (R) and 2/ (R)e' < e,

)

t/(R}, R_;) — t{(R)| = «{(R)|7*(R}, R_;) — 7/ (R)| = z](R)¢’ < e,

as desired. 0

The next lemma states that for a preference profile such that an agent receives all the
units under an inverse uniform-price rule, there is a quasi-linear preference that produces

the same consumption level under another inverse uniform-price rule as the original rule.

Lemma 12. Let f,g be a pair of inverse uniform-price rules on R"™. Let R € R" and
i € N be such that ! (R) = m. Let e € Ry,. Then, there is R, € RN N R? such that
(i) ={ (R}, R_;) = m, and (ii) t{(R}, R_;) — t/(R) < e.

Proof. Note that 7/ (R) > mv™+1(R™). We consider the following two cases.

CASE 1. mv™tH(R™) = n/(R).

Let ¢ € Ry, be such that me’ <m. Let R; € R N R? be such that for each
x; € M\{m},

mu™ T (R™) < vl(x; + 1) — v)(z;) < mu™THR™) + €.
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Then, by Lemma 8, z¢(R}, R_;) = m and 79(R;, R_;) < vi(m) — vi(m —1). We have
' (R) + & > vi(m) —vi(m — 1) > mv™(R}, R™) > 79(R}, R_;), (1)
where the first inequality follows from mv™ ™ (R™) = 7/ (R). Then, we have
t(R, Ri) — t](R) = m(n*(R}, R—;) =« (R)) < me’ <,

where the equality follows from z9(R!, R_;) = ! (R) = m, and the first inequality from

) |
CASE 2. my™tH(R™) < 7/ (R).
Let R, € RY N RY be such that for each z; € M\{m},
mu™ TN (R™) < vl(x; + 1) — v)(z;) < 7/ (R).
Then, by Lemma 8, (R}, R_;) = m and 79(R;, R_;) < v}(m) — vi(m — 1). Thus,
(R, R_;) < vj(m) —vi(m —1) < 7/ (R).

By «{(R}, R_;) = ]

(R) = m, this implies
(R, R_;) < t/(R) < t/(R) +e,

or (R, R_;) —t/(R) < e. O

The next lemma states that each agent weakly prefers an outcome of an inverse
uniform-price rule than that of another rule if and only if the price of former rule is
no greater than that of the latter rule.

Lemma 13. Let f,g be a pair of inverse uniform-price rules on R™. Let R € R"™ and
i € N. Then, f;(R) R; g:(R) if and only if 7/ (R) < 79(R).

Proof. First, we show the “if” part. Suppose 7/(R) < 79(R). By Lemma 3, n/(R) =
p;-c(R) for each j € N*(z/(R)). By Theorem 1, f satisfies no price envy. Thus,

fi(R) R; («](R), 7 (R)a{(R)) Ri gi(R),

)

where the last relation follows from 7/ (R) < 79(R).
Next, we show the “only if” part. Suppose by contradiction that f;(R) R; g;(R) but
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7/ (R) > 79(R). Then, by no price envy of g,

g9/(R) R; (z!(R),m*(R)z!(R)) P; fi(R),

7

where the second relation follows from 79(R) < 7/(R). However, this contradicts that
fi(R) R; g:(R). =

Finally, the next lemma states the the set of gains of manipulation is bounded above

at each preference profile.

Lemma 14. Let f be an inverse uniform-price rule on R™. Let R € R™ and i € N.
Then, supp cr G/ (R} R) < co.

Proof. We show that the set G = {G/(R/;R) : R, € R} is bounded above. Then, the
continuity of the real numbers implies that there is supgcr G/(R;R). Let R, € R be
such that f;(R) R; fi(R., R_;). Then, GI(R}; R) < 0. Instead, let R, € R be such that
f(RLR_)) P, fi(R). Then, G/ (R, R_;) > 0. By «/(R., R_;) > mu™(R/™, R") > 0,

t/(R,R_;) = o (R}, R_;)z{ (R}, R_;) > 0.
Then,

max Vi(z;, fi(R)) > Vi(z! (R}, R-,), f(R)) — t] (R}, R_;) = G!(Rj; R),

z, €M

where the inequality follows from /(R!,R_;) > 0. Then, by G/(R/;R) > 0, we have
max,, e Vi(xi, fi(R)) > 0. Thus, max{0, max,,cy V;(z;, fi(R))} is an upper bound of the
set G. [

F.2 Proof of Proposition 3

Now, we turn to the proof of Proposition 3.
Let f,g be a pair of rules on R" satistying no price envy and no subsidy for losers.

Then, by Theorem 1, f and g are both inverse uniform-price rules on R".

F.2.1 The “if” part

First, we show the “if” part. Suppose that f;(R) R; ¢;(R). Then, we show that g is at least
as manipulable as f. Let R € R", i € N, and R} € R be such that f;(R,, R_;) P; fi(R).
Let ¢ € Ry,

Note that by f;(R) R; g;(R), for each z; € M,

Vilwi, fi(R)) < Vi(zi, gi(R)). (1)
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By fi(R!,R_;) P; fi(R), Lemma 9 implies 2/ (R, R_;) # 0. Then, we divide the argument

into two cases.
Cask 1. 2/ (R, R_;) # m.

By 0 < 2/ (R}, R_;) < m, Lemma 11 implies that there is R/ € RN N R? such that
2d(R!,R_;) = «/ (R}, R_;) and

t(R!,R_;) —t/(R,,R_,)| < e. (2)
Then, we have

GI(R{; R) — G (R R)
= Vi(a! (R, B), i(R)) = #(RY, R) — (Vi (R, B, filR)) — ] (R, R))
(by 2{(R}, R—) = =] (B;, R—))
> t/(R},R_) — t{(R, R_) (by (1))
> —e, (by (2))

or GY(R";R) > GI(Rl; R) —e.
CASE 2. z/ (R, R_;) = m.

By z!(R),R_;) = m, Lemma 12 implies that there is R’ € RN 0 R such that
xf(Rilv R—z) = ZE{<R;, R—z) = m and

t/(R}, R_;) =t/ (R, R_;) < e. (3)
Then, we have
G(R}; R) = Vi(m, gi(R)) — t](R}, R—3) > Vi(m, fi(R)) —t] (Rl,R—;) = = G/(Ri; R) — ¢,
where the inequality follows from (1) and (3).

F.2.2 The “only if” part

We show the “only if” part. Suppose by contradiction that g is at least as manipulable
as f, but there are R € R"™ and ¢ € N such that ¢g;(R) P; f;(R). Then, by Lemma 13,
m(R) < n/(R). The proof has three steps.

STEP 1. We here show that zf(R) # 0. Suppose x¢(R) = 0. Then, t/(R) = 0 by the
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definition of the inverse uniform-price rule. Thus, ¢;(R) = 0, and by ¢;(R) R; fi(R),
0 P, f;(R). However, this contradicts individual rationality of f, which follows from no

price envy of f by Lemma 1.

STEP 2. Now, we claim that there is R, € R such that f;(R}, R_;) P; fi(R). By g;(R) P; fi(R),
t!(R) < Vi(24(R), f;(R)). Thus, we can choose ¢ € R, such that

e < Vi(#{(R), fi(R)) — t](R). (4)

By Step 1, 2¢(R) # 0. Thus, by Lemmas 11 and 12, there is R, € RN N R¥ such that
2/ (R, R_;) = 29(R) and t!/ (R, R_;) — tY(R) < &. Then,

(R, Re) < 8(R) + & < V(! (R}, R), fi(R)),
where the second inequality follows from (4) and z/(R), R_;) = zY(R). This implies

fi( R, R=) P fi(R).

STEP 3. Now, we will derive a contradiction, and complete the proof. We consider the
following two cases.

CAsE 1. For each R/ € R, GY(R!; R) < 0.

By Step 2, G/(R};R) > 0. Let ¢ € Ry, be such that ¢ < G/(R!; R). Then, for cach
R! € R,
GY(R!;R) <0 < G/(R;R) —«.

This, together with Step 2, yileds a contadiction that g is at least as manipulable as f.
CASE 2. There is R! € R such that GY(R}; R) > 0.

Then, supprer G7 (RY; R) > 0. Moreover, by g;(R) F; fi(R), Vi(zi, gi(R)) < Vi(ws, fi(R))
for each x; € M. Then, we can choose € € R, , such that

2e < min{ min V;(z;, g;(R)) — Vi(z;, fi(R)), sup GY(R}; R)} (5)

zeM RIeR
By Lemma 14, for § > 0, there is R} € R such that

GY(R!;R) > sup GY(R:iR) — <.
RiER 2

(6)
By (5) and (6), GY(R}; R) > 0. Thus, g;(R!, R_;) P; g;(R), and by Lemma 9, z¢(R, R_;) # 0.
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By Lemmas 11 and 12, for £ > 0, there is R; € R N R? such that (R, R_;) =
#Y(R!, R_;) and

t/(Ri,R_;) —t{(R/,R_;) < (7)

N ™

Then, for each R; € R,

GY(Ri;R) < sup GY(R;; R)

RieR
< GI(RI:R) + 5 (by (6))
= Vi(l’{(ﬁia R_;),gi(R)) — t](R{, R_;) + g (by 7(R}, R-;) = x{(_Ri, R_;))
< Vi(a! (Ri, R-0), gi(R)) — t](Ri, R-;) + ¢ (by (7))
< Vi(a!(R;, R_y), fi(R)) =t (Ri,R_;) — ¢ (by (5))
= G{(R‘; R) —e.
However, by Step 2, this contradicts that ¢ is at least as manipulable as f. [ |

F.3 Proof of Theorem 4

Theorem 4 directly follows from Proposition 3 and Lemma 13. |
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non-quasi-linear preferences”
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In this supplementary metrial, we provide the proofs and discussions omitted in the
main text (Shinozaki, 2022).

1 Proof of Theorem 5

In this section, we prove Theorem 5.

Theorem 5. Let R be such that R N R C R C R NR+. A rule f on R" is C-
manimally manipulable among the class of rules on R™ satisfying no price envy and no

subsidy for losers if and only if it is a minimum inverse uniform-price rule.

Let R be such that RN N R C R C RN N R*.

First, we give the lemmas that will be used to prove Theorem 5.

The next lemma states that if an agent can manipulate a minimum inverse uniform-
price rule, then his consumption level must be no greater than the original level as a

consequence of the manipulation.

Lemma 15. Let f be a minimum inverse uniform-price rule on R"™. Let R € R", 1 € N,
and R, € R be such that f;(R,,R_;) P, fi(R). Then, z!(R],R_;) < z!(R).
Proof. Suppose by contradiction that =/ (R], R_;) > z!(R). By z;(R}, R_;) > x;(R) and
the feasibility, there is j € N\{i} such that z;(R}, R_;) < z;(R). We have

mu™ (R R > 0" (25(R;, R_;) + 1) — v (2;(R;, R—;)) (by Lemma 5 (ii))

> v (2(R)) — v (z;(R) — 1) (by Rry™ € RY)
> mu™(R™) (by Lemma 5 (i))
2 mvm—i-l(Rinv)'

*Graduate School of Economics, Osaka University. Email: vge017sh@student.econ.osaka-u.ac.jp
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Thus, we obtain

7/ (R}

79

R_) = mo™ (R RY) > m™ 7 (R™) = o (R). 1)

Note that p;-c (R) = 7/(R). Note also that by Theorem 1, f satisfies no price envy.
Then,

fi(R) R; (x;(R}, R_;), @ (R)zi(R}, R_;)) R; (xi(R}, R_;),w' (R}, R_;)x;(R}, R_;)) = fi( R}, R_;),

where the first relation follows from no price envy, and the second one from (1). O

The next lemma further states that if an agent is successful in manipulating a min-
imum inverse uniform-price rule, then he can not receive all the units as a result of the

manipulation.

Lemma 16. Let f be a minimum inverse uniform-price rule on R™. Let R € R", 1 € N,
and R, € R be such that fi(R,, R_;) P; f;(R). Then, x! (R}, R_;) # m.

Proof. By contradiction, suppose x{(Rg, R_;) = m. By Lemma 15 and f;(R,, R_;) P; fi(R),

! (Rj, R)m = t] (R}, R_;) < t{(R) = =/ (R)m,
or
mo™ (R, RYY) = 7 (R}, R—y) < n/(R) = mu™ ™ (R™). (1)

However, by «/(R) = 2/ (R}, R_;) = m, Lemma 5 (i) implies

V" (m) — 0" (m — 1) > mu™(R™) and v["™ (m) — v} (m — 1) > mv™(R/™, R™).

7 7 ) 7

Thus, by R™ € (RN N RO,

mu™TH(R™) = max v"™(1) = mo™ T (RI™ R™Y).
() = a0 (1) = ™ (RO, )

This contradicts (1). O
Finally, the next lemma states that if the prices of a pair of inverse uniform-price rules

are different at a preference profile, then each agent must receive the same number of

units under the two rules.

Lemma 17. Let f,g be a pair of inverse uniform-price rules on R™. Let R € R". If
7 (R) # n9(R), then x!(R) = 29(R) for eachi € N.

%



Proof. We will prove a contrapositive. Suppose there is i € N such that x{ (R) # 2(R).
Without loss of generality, assume 27 (R) > 27(R). Then,

7

mu™ T (R™) > o™ (2 (R) + 1) — o™ (] (R)) (by Lemma 5 (ii))
> o™ (x] (R)) — v («] (R) = 1) (by Ri" € RNT)
> mu™(R™), (by Lemma 5 (i))

Thus, by mv™(R™) > mv™t(R™), we obtain mv™(R™) = mv™(R™). Thus, we
get
ﬂ'f(R) — mvm+l<Rinv) — mvm(Rinv) — Wg(R),

as desired. O

1.1 The “if” part

First, we prove the “if” part of Theorem 5. Let f be a minimum inverse uniform-price rule
on R". Note that by Theorem 1, f satisfies both no price envy and no subsidy for losers.
Let g be a rule on R" satisfying no price envy and no subsidy for losers. By Theorem 1,
g is an inverse uniform-price rule on R". We show that g is C-at least as manipulable as
f. Let R e R", i € N,and R} € R be such that f;(R,, R_;) P; fi(R). Let ¢ € R, .
By fi(R,R-;) P; fi(R), t/(R}, R=) < Vi(x] (R}, R_,), fi(R)). Let & € Ry be such
that
e < min{Vi(x{(R;,R,i),fi(R)) - tf(R;,R,i),e}. (1)

By fi(R!, R_;) P, fi(R), Lemmas 7 and 16 together imply 0 < 2/ (R!, R_;) < m. Thus,
by Lemma 11, there is R € RN N R? such that 2/(R!, R_;) = 2! (R}, R_;) and

it (R}, R_;) — t{(R;, R_))| < €. (2)

Now, we show that g;(R!, R_;) P; gi(R). Note that 7/(R) = mv™}(R"™) < 19(R).
Thus, by Lemma 13, f;(R) R; ¢;(R). This implies



Then,

Vi(a (R, R-i), g:(R)) — ] (Ri, R)
)

> Vi(z!(R,Ry), f{(R)) — t{(R!, R_;) (by (3))
> Vi(«d(R}, R_3), fi(R)) — t]{ (R}, R_;) — ' (by (2))
= Vi(«/ (R}, R_:), fi(R)) — t] (R}, R_;) — &'

>0, (by (1))

or Vi(z (R” R_;),9:(R)) > t!(R!, R_;). This implies ¢;(R}, R_;) P; g:(R).
By «/ (R, R_;) = Y(R", R_;), (1), and (2), we also have

d(gi(RY, R-), fi(R}, R—)) = |t{(R{, R—) — t] (R}, R_;)] < &' < e.

Thus, g is C-at least as manipulable as f. [ |

1.2 The “only” part

Then, we prove the “only if” part. Suppose by contradiction that f is not a minimum
inverse uniform-price rule on R", but is a C-minimally manipulable rule on the class of
rules on R" satisfying no price envy and no subsidy for losers. Then, f satisfies both no
price envy and no subsidy for losers. Thus, by Theorem 1, f is an inverse uniform-price
rule. Since f is not a minimum inverse uniform-price rule, there is R € R" such that
7/ (R) > mv™FH(RM™).
Let g be a minimum inverse uniform-price on R". By the feasibility, thereisi € NT(z/(R)).

Then, by 79(R) = mv™ ' (R"™) < 7/ (R), Lemma 17 implies 2¢(R) = 2! (R). We consider

the following two cases.
CASE 1. 2! (R) # m.

Let ¢ € R4, be such that
2¢ < min{7/(R) — 7?(R), 1}.

Let R, € RY N RY be such that v}(x;) = (7/(R)—¢)xz; for each z; € M. By n/(R) < mv™(R™)
and e < 7/ (R) — mv™*(R™), for each x; € M\{m},

mu™ T (R™) < vi(x; + 1) — vj(z;) < mu™(R™).

Then, by 0 < z/ (R) < m, Lemma 10 implies that 2/ (R!, R_;) = 2/ (R) and n/ (R}, R_;) =
7/ (R) — e. Then, n/(R},R_;) < n/(R). Thus, by z/(R,R_;) = z!(R), we obtain

)

4



fi(Ry, Ri) B fi(R).
Let R/ € R be such that ¢;(R!, R_;) P; g:(R). Suppose z¢(R" R_;) # ! (R}, R_;).
Then,
dgi(RY, Ri), [y, Bi)) = [ (RY, Boi) = o (R, R)| 2 1> e

Instead, suppose /(R?, R_;) = 2! (R), R_;). Then, by z!(R], R_;) = 2/ (R) = 27(R) and
G:(RI R P, gi(R), #4(RLR_.) < #2(R). By #%(R) # 0, x9(RY, R_.) < 79(R). Then, by

e < 7/(R) — m(R),
(R, R_;) < n/(R) —e =7/ (R}, R_)). (4)

Then,

d(gi(Rg,7 R—i)u fZ(R;7 R—l))

= [t/(R}, R_;) —t] (R’- R.,)| (by 2¢(R}, R_;) = x] (R}, R_))

= 2/ (R}, R_;)(n! (R, R_;) — 7(R}, R_;)) (by (4))
{ (R;, R_;)(x! (R}, R_;) — =*(R)) (by (R}, R_;) < 7(R))

= o/(R; ><7rf<R> —(R) —¢)

> 2/ (R, R_;)e (by 2¢ < 7/ (R) — m9(R))

> e (by = (R}, R_;) = =/ (R) # 0)

Thus, in either case, g is not C-at least as manipulable as f, which contradicts that f is
C-minimally manipulable among the class of rules satisfying no price envy and no subsidy

for losers.
Cask 2. z/(R) = m.
By 2¢(R) = 2/ (R) = m and 79(R) < 7/(R),

t/(R) = mn?(R) < mn!(R) =t/ (R).

Let € € R, be such that ¢ < tf(R) — tY(R). By 2¢(R) = m, Lemma 12 implies that
there is R, € RN' N R such that =/ (R}, R_;) = m and ¢/ (R}, R_;) — tY(R) < e. Then,

tH(Ri, R-) < t{(R) +¢ < t](R),
where the second inequality follows from & < ¢/ (R)—t?(R). Thus, by =/ (R) = =/ (R}, R_;) =

m, we obtain fi(R;, R_;) F; fi(R).
Let R € R besuch that g;(R!, R_;) P; g;(R). By Lemma 16, z{ (R}, R_;) # m. Then,



fore =1,
d(gi(R}, R-), fi( Ri, R-3)) > |af(RY, R-) — o] (R, R;)| > 1 =&,

Thus, ¢ is not C- at least as manipulable as f, a contradiction. [

2 Proof of Remark 4

In this section, we prove Remark 4

Remark 4. Let R, € RN N R™.
(i) For each x; € M\{0,m}, there is a unique payment t*(z;) € (0, V;(x;,0)] such that
Vi(zi + 1, (2, " (1)) — t(2:) = —t*g(fi)-

.o t*(iﬂl) t*({ti—Q—l)
(ii) For each x; € M\{0,m — 1,m}, — == > — ===

. The proof basically follows the proof of Lemmas 8 and 10 of Shinozaki et al. (2020),
but the proof here slightly generalize that of Shinozaki et al. (2020) in that we consider a
preference that exhibits both nonincreasing marginal valuations and nonnegative income
effects, while Shinozaki et al. (2020) consider a preference that exhibits both decreasing
marginal valuations and positive income effects.

Let R; € RN N RT.

First, we prove (i). Let x; € M\{0,m}. Let h: R — R be such that h(t;) = V;(z; +
L, (x,t)) — t; — :f:_, for each t; € R. By object monotonicity, (z; + 1,0) P; (z;,0). This
implies V;(z; + 1, (z;,0)) > 0. Thus, we obtain

h(0) = Vi(a; + 1, (2:,0)) > 0. (1)

Further, we have

h(Vi(z;,0)) = V(a: +1, (a: Vi(s, 0)))4@(% 0) — @
= Vi(z; +1,0) — Vi(;,0) — @
= v;(x; +1,0) — v;(z;,0) — Ui(xxifo)
=0 | 2)

where the second equality follows from (z;, Vi(x;,0)) I; 0, the third one from the definition
of the net valuation, and the inequality from R; € R,

Note that by Remark 2, h*(t;; x;) = Vi(x; + 1, (x;,t;)) — t; is a nonincreasing function
on R. Thus, h(-) is strictly decreasing. Let t; € R, be such that #; > V;(z;,0). Then,



by (2),
h(t;) < h(Vi(x;,0)) < 0. (3)

By continuity of R;, h*(:;x;) is continuous on [0,#;]. Thus, h(-) is continuous on [0, ;]
as well. Then, by (1) and (3), the intermediate value theorem implies that there is a
payment ¢f(x;) € (0,t;) such that h(t;(z;)) = 0. This implies

Vil + 1, (o0 £1(22))) — () = 202,

)
Since h(-) is strictly decreasing, such a payment ¢(z;) must be unique. Moreover, by
h(tf(x;)) = 0 and (2), we have tf(x;) < V;(x;,0) since h(-) is strictly decreasing.
Next, we prove (ii). Let z; € M\{0,m —1,m}. Suppose by way of contradiction that
*(x4 z;+1) *
tg><x; Let = Vi(w; + 1, (23, t*(2,))).
First, we claim that ¢ < t*(z;+1). By Remark 4 (i), V;(z;+1, (z;, t*(z;))) = ZE2 % ().

Thus, by t*(;") < t*fcf;l), we obtain

%:vm+1u“(m»:%+ﬂwm<fm+n. (4)

X

Second, we claim that V;(x;+2, (z;4+1,1))—t < Vi(x;+2, (x;+1,t*(z;+1))) —t*(z;+1).
Note that by the definition of ¢, (x; + 1,¢) I; (24, t*(x;)). This implies

Vi@, (2 + 1,8)) = Vi, (23, 7 (%)) = (). (5)
Then,
Vi(ws +2, (x; + 1,8)) =t <t — Vi(xy, (z; + 1,1)) (by R; € RNT)
=1 —t"(x;) (by (5))
= t*f”) (by Remark 4 (i))
= Vilwi +2, (2 + Lit" (2 + 1)) — (2 + 1), (6)

where the last equality follow from Remark 4 (i).
We derive a contradiction to Remark 2 by (4) and (6). |



3 Manipulability measure without gains from manip-

ulations

In Section 6.2 of Shinozaki (2022), we compare our manipulability measure to other
measures that take gains from manipulations into account. In this section, we compare it
to a measure that does not take gains from manipulations into account. There are several
such manipulability measures, and we comapre ours to the one introduced by Pathak and
Sonmez (2013).

According to the “strongly as manipulable as” relation of Pathak and Sonmez (2013),
a rule is at least as manipulable as another rule if for each preference profile and each
agent, whenever he can manipulate the latter rule, he can also manipulate the former
rule. Formally, we say that a rule on R" is said to be weakly at least as manipulable
as another rule g on R™ if for each R € R™ each ¢« € N, and each R, € R, whenever
g:(R;, R_;) P; g;(R), there is R € R such that f;(R/, R_;) P; fi(R). Clearly, if a rule f
on R" is at least as manipulable as another rule g on R", then f is weakly at least as

manipulable as g.

Definition 12. A rule f on R" is weakly minimally manipulable among the class
of rules if (i) f is in the class, and (ii) for each rule g on R™ in the class, g is weakly at

lesat as manipulable as f.

Given a rule f on R" and 7 € N, let
M/ ={ReR":3R € Rst. f;{(R,,R_;) P fi(R)}

denote the set of preference profiles at which agent ¢ can manipulate the rule f.

Remark 8. (i). A rule f on R" is weakly at least as manipulable as another rule g on
R™ if and only if for each i € N, MY C /\/l{

(ii). A rule f on R" is weakly minimally manipulable among a given class of rules on R"
if and only if (ii-i) f is in the class, and (ii-ii) for each rule g on R" in the class and each
i€ N, M/ € M.

Note that if a rule is minimally manipulable among a given class of rules, then it is
also weakly minimally manipubale among the class. Thus, by Theorem 4, we obtain the

following.

Corollary 4. Let R be such that R" N R C R C R¥ N RY. Then, a minimum
wmverse uniform-price rule on R™ is weakly minimally manipulable among the class of

rules on R™ satisfying both no price envy and no subsidy for losers.



The next example demonstrates that the converse of Corollary 4 does not hold, i.e.,
the minimum inverse uniform-price rule is not the only weakly minimally manipulable

rule among the class of rules satisfying both no price envy and no subsidy for losers.

Example 4. Let R be such that R¥ N R C R C RN N R*. Let f and f be minimum
and maximum inverse uniform-price rules on R, respectively.! Let R* € (R™ N RY)" be
such that (i) v (z1) = 4, for each x; € M, (ii) v5(1) = 3.5 and v} (z3) = 3.5+0.01(z2—1)
for each x5 € M\{0, 1}, and (iii) v/ (x;) = 0.01x; for each i € N\{1,2} and each z; € M.
Let g be a rule on R™ such that for each R € R, if R # R*, then g(R) = f(R), and if
R = R*, then g(R) = f(R). Then, by 79(R*) = 4 > 3.5 = n/(R*), g is not a minimum
inverse uniform-price rule.

Note that R* € M? N M, and for each i € N\{1}, R* & MY U M/. Note also that
for each i € N and each R € R"\{R*}, by g;(R) = fi(R), R € MY if and only if R € M/.
Thus, M = ./\/l{ for each 7 € N. Since f is weakly minimally manipulable among the
class of rules on R" satisfying both no price envy and no subsidy for losers, g is as
well. O
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