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1 Introduction

Whenever a facility is shared by different customers, departments, or other units of an

organization, the problem of how to allocate the costs or the payoffs among players

arises. Relevant examples of this situation include airports, transit systems, water dis-

tribution networks, inventory models, and scheduling. These contexts are well known

as cost or payoff allocation (or sharing) problems. Similar sharing problems arise in

the context of “co-opetition” (Brandenburger and Nalebuff, 1996) where competitors

cooperate to achieve a common goal. Usually, in such contexts, two approaches based

on game theoretical concepts may be adopted.

One approach is for the players to bargain among themselves to determine how

costs or payoffs should be shared. However, this implies a strategic interaction, which

may result in unnecessary additional costs if it is conducted in an unrestricted fashion

(see, e.g., the arguments by Roth and Verrecchia, 1979). Instead, many bargaining

procedures follow the tradition of setting up sequential, perfect information games based

on offers, that is, games in which, at each stage, one of the players becomes a proposer

of a cost (payoff) allocation, with a requirement for reaching unanimous agreement.

Such bargaining procedures represent negotiations in the style of the well-known two-

player bargaining over a pie in Rubinstein’s problem (Rubinstein, 1982), which is then

extended to the n-player case.

Alternatively, one can view the problem as a normative one, in which an external

player, a so-called regulator, designs a pricing (rewarding) scheme that maximizes some

measures of social welfare or that imposes axioms of equity or stability. Shubik (1962)

was among the original proponents of the Shapley value (Shapley, 1953) as a method

of joint-cost allocation. At present, this value continues to attract the greatest interest
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among the allocation schemes predicated on notions of cooperative game theory (see,

e.g., Littlechild and Owen, 1973; Schulz and Uhan, 2010; Timmer et al., 2013).

Bridging the gap between the strategic and cooperative approaches is recognized as

a fundamental issue of game theory. Attempted resolutions of this issue, well known

as the Nash program (Nash, 1953), have provided many different strategic bargaining

mechanisms that sustain the Shapley value at equilibrium (for example, among others,

Hart and Mas-Colell, 1996; Pérez-Castrillo and Wettstein, 2001). Such mechanisms fit

and unify the two approaches, allowing the players who face an allocation problem (in

our specific context) to bargain in a restricted way, and to converge to a stable solution

without the need for an intermediary.

Both the original normative implementation of the Shapley value by a regulator and

the playing of classical bargaining mechanisms based on offers that lead to the Shapley

value require one single agent, either the regulator or one of the players, to propose a

complete allocation. In many contexts, the centralization in the hands of a single player

is often desirable and encouraged. However, in some specific domains, this may repre-

sent an unrealistic assumption, for example, when players are customers of a facility and

do not necessarily know about other customers (Young, 1998), or when computing such

allocations requires data from each player, some of which may be private (McSherry

and Talwar, 2007).

An alternative but less common approach is to describe a bargaining mechanism

based on demands rather than offers. A demand-based mechanism was the basis of the

implementation by Nash (1953) of the cooperative bargaining solution by Nash (1950).

Other examples of mechanisms based on demands, though not common, include Young

(1998), who describes a demand revelation mechanism in which potential customers of

a public facility simply bid to be served. Bargaining mechanisms based on demands
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resemble oral auctions, in which each player, standing alone, reveals the charges he or

she is ready to pay to be served, or the payoff he or she is ready to accept for offering

collaboration, and waits for such a request to be met. In a demand-based mechanism,

acceptance of a proposal by the organization typically depends on objective feasibility

conditions rather than on subjective approval by its members.

In this paper, we aim to investigate the differences between demand- and offer-based

bargaining mechanisms by experimentally comparing the two well-known mechanisms

inducing the Shapley value as an ex ante equilibrium outcome of a noncooperative bar-

gaining procedure. We choose two mechanisms that are based on these opposing ap-

proaches (demand vs. offer) but that remain, in our opinion, similar in terms of the ease

with which they can be understood by the participants in a laboratory experiment.1 The

first mechanism is Winter’s demand commitment bargaining mechanism (Winter, 1994,

referred to as the Winter mechanism below). The second is the Hart and Mas-Colell

procedure (Hart and Mas-Colell, 1996, referred to as the H–MC mechanism below).

Both procedures are described as sequential, perfect information games, where, at

each stage, a player becomes a proposer. In accordance with the theoretical presentation

of the two mechanisms, we illustrate the bargaining procedures to define a sharing of

payoffs rather than an allocation of costs.2 In the first mechanism, which is defined

for cooperative games with increasing returns to scale for cooperation (strictly convex

games), the proposer makes a demand for him- or herself concerning the payoff that

he or she is willing to receive from a possible collaboration. In the second mechanism,

which is defined for monotonic games (a much weaker assumption), the proposer makes

1A comparison between offer-based and demand-based mechanisms has been conducted experimen-
tally for voting games by Fréchette et al. (2005a), as well as empirically by, for example, Warwick and
Druckman (2001) and Ansolabehere et al. (2005), employing field data.

2It is straightforward to theoretically establish the equivalence between these two.
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a proposal to each of the other players concerning the payoff he or she is willing to offer

them.

Two main issues arise with most strategic bargaining models, as observed by Fréchette

et al. (2005a), in experimental analyses of some well-known legislative bargaining pro-

cesses. First, the equilibrium solution may require an unrealistic degree of rationality on

the part of the players, such that the experimental evidence is very far from the theoreti-

cal prediction. Second, partly related to the first point, while the theoretical predictions

are very sensitive to variations in the rules of the game, the observed bargaining behav-

iors in the experiment are not always so. In our case, although two mechanisms have

the same ex ante prediction (the Shapley value as expected payoffs), it is possible that

the degree to which the observed behavior deviates from the theoretical prediction, and

the reason for doing so, may differ greatly between the two.

Note that, it has been argued that the difference between a demand-based vs. an

offer-based mechanism is less relevant when considering two-player games, such as in

Rubinstein (1982)’s bargaining-over-a-pie game (see, Fréchette et al., 2005a). However,

it may become crucial when considering groups with at least three members. Notice

that, on one hand, in an offer-based mechanism, because proposers propose an allocation

by dividing the worth of the coalition, it is not difficult for a proposal to satisfy both

the feasibility and efficiency conditions. In demand-based mechanisms, on the other

hand, because each player separately makes his/her demand, coordination among them

to make the submitted set of demands as a whole to satisfy these two conditions becomes

more difficult as the group becomes larger.

Our analysis mainly focuses on (i) analyzing whether these mechanisms lead to

formation of the grand coalition and (ii) testing the convergence in expected value and,

as predicted by the theory, to the Shapley value.
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Our results show that the H–MC mechanism results in a higher frequency of grand

coalition formation and a higher efficiency than does the Winter mechanism. Con-

versely, the Winter mechanism better implements the Shapley value as the average pay-

off provided that the grand coalition is formed. Therefore, our results suggest that an

offer-based H–MC mechanism better induces players to cooperate and to agree on an

efficient outcome, whereas a demand-based Winter mechanism better implements allo-

cations that reflect players’ effective power provided the grand coalition is formed.

The remainder of the paper is organized as follows. Section 2 reviews existing

studies that are most relevant to our work. Section 3 presents the general definition and

the properties of a cooperative transferable utility (TU) game, as well as the Shapley

value. Section 4 presents the two mechanisms that we investigate, namely the Winter

and the H–MC mechanisms. Section 5 describes the setting of our experiment. The

results are presented in Section 6, and Section 7 concludes. Additional analyses that

supplement our results and provide new points for reflection are contained in the Online

Appendices I to VI.

2 Related work

Bridging the gap between the noncooperative models, in which the primitives are the

sets of possible actions of individual players, and the cooperative models, in which they

are the sets of possible joint actions of groups of players, has been recognized as a fun-

damental issue of game theory. The very first attempt at this so-called Nash program

dates back almost 70 years to Nash himself (Nash, 1953). His idea was to provide a

noncooperative foundation for cooperative solution concepts, and he began doing so

by proposing a noncooperative game that sustained the Nash solution of his two-player
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bargaining problem (Nash, 1950) as its equilibrium. Following this first attempt by

Nash, many alternative procedures for implementing solutions of two-player bargaining

problems or n-player pure bargaining problems3 have been proposed. Some mecha-

nisms intended to obtain the Nash solution, exactly or approximately, at equilibrium

(see, among others, Binmore et al., 1986; Trockel, 2002). Others aimed instead to ob-

tain the Kalai–Smorodinsky solution (Kalai and Smorodinsky, 1975), that is, the main

alternative solution to such problems (Moulin, 1984b; Trockel, 1999; Haake, 2000).

Many different theoretical mechanisms have been designed with the aim of imple-

menting other cooperative solution concepts via a strategic interaction of the players for

more generic cases, that is, when there are more than two players or when the bargain-

ing problem is not pure. This is the case, for example, in the seminal work of Harsanyi

(1974), who reinterpreted the von Neumann–Morgenstern solution as an equilibrium of

a noncooperative bargaining mechanism, and of the many works sustaining the most fa-

mous axiomatic solution concept by Shapley (1953), the Shapley value. For a relevant

and extensive review of the theoretical literature on the Nash program, we refer readers

to the surveys by Serrano (2005, 2008, 2014, 2021).

In this section, we focus on the literature devoted to testing cooperative game theory

through experiments. To date, this literature has focused mainly on three different direc-

tions. The first direction provides a normative interpretation, as in De Clippel and Rozen

(2022), in which subjects designated as decision-makers express their view on what is

fair for others by recommending a payoff allocation. De Clippel and Rozen (2022)

show that the decision-maker’s choices can be described as a convex combination of the

Shapley value and the equal division solution.

3A pure bargaining problem is a cooperative game in which only the grand coalition N creates a
positive surplus with respect to what each player can achieve if he or she does not cooperate with anyone.
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The second direction investigates how an unstructured interaction affects the final

agreement. One example is the paper by Kalisch et al. (1954), in which groups of

players are asked to freely discuss the formation of coalitions and to reach an agree-

ment on how to split the related values. The authors identify many different factors that

influence the final outcome of such a procedure, including personality differences or

the geometrical arrangement of players around the table. Similarly, but with a greater

focus on voting games, Montero et al. (2008) propose an unstructured bargaining pro-

tocol in which participants propose and vote on how to distribute a fixed budget among

themselves. The paper provides experimental evidence of the so-called paradox of new

members, according to which enlargement of a voting body (i.e., the addition of a new

voter) can increase the voting power of an existing member. Guerci et al. (2014) study

the impact of variations in the experimental protocol of Montero et al. (2008) on the

formation of the so-called minimal winning coalitions, that is, coalitions for which each

player is crucial.

Most experimental works in the literature follow a third direction, studying the out-

come when a more formal (or structured) bargaining protocol is imposed. Our paper

broadens this last direction of research.

Formal bargaining protocols have been designed to tackle different aspects of the

cooperative inclination of the players under different settings. For example, Murnighan

and Roth (1977) investigate the effect of various communication/information conditions

on the final outcome in a specific game played by a monopolist and two weaker play-

ers. They show how the results over the entire set of conditions closely approximate

the Shapley value, although they often report a clear tendency for an equal split of the

pie. Similarly, Murnighan and Roth (1982) introduce bargaining models to investigate

the influence of information shared by subjects about the games (e.g., payoffs) on the
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final outcome. They show that the quality of the information has an impact on the final

outcome and that the Nash bargaining solution has a good predictive performance in

many cases. Bolton et al. (2003) investigate how the communication configuration af-

fects coalition negotiation and show how players with weaker alternatives would benefit

from a more constrained structure, especially if they can be the conduit of communica-

tion, whereas those endowed with stronger alternatives benefit from working within a

more public communication structure that promotes competitive bidding. Other works

focus more specifically on the coalition formation process, including Nash et al. (2012);

Shinoda and Funaki (2019); Abe et al. (2021). In the first paper, the authors propose

finitely repeated three-person coalition formation games, showing how efficiency re-

quires people’s willingness to accept the agency of others, such as political leaders. The

second paper is then presented as a follow-up, in which the authors maintain the same

value of the coalitions as in Nash et al. (2012), but design a different bargaining proto-

col. They report a rare formation of a grand coalition, which can be induced by some

external factors, such as the presence of a chat window. The third paper presents a com-

parison between two mechanisms that invite players to join a meeting simultaneously or

sequentially. The authors report that the sequential mechanism induces a higher social

surplus than the simultaneous mechanism. Moreover, players make choices consistent

with the subgame perfect Nash equilibrium (SPNE) in the sequential setting and choose

the dominant strategy in the simultaneous setting, when a dominant strategy exists.

Formal bargaining protocols are mostly based on the implementation of allocations,

which are shown to converge to some specific well-known solutions. This is the case,

for example, in Nash (1953) and Harsanyi (1974), which we have referred to above, or

in the case of the bargaining mechanism proposed by Raiffa (1953) to implement the

Raiffa solution (as opposed to the Nash solution) to the Nash cooperative bargaining
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problem. Several experiments have been conducted, with the final goal of testing Nash

axioms, or of comparing Nash and Raiffa solutions (see, e.g., Nydegger and Owen,

1975; Rapoport et al., 1977). In addition, there is a large literature devoted to studying

the class of bidding mechanisms. Bidding mechanisms are introduced by Demange

(1984) and Moulin (1984a), and Moulin and Jackson (1992) study them in economic

environments. They are developed by Pérez-Castrillo and Wettstein (2001) and Ju and

Wettstein (2009) to implement solution concepts in the framework of cooperative TU

games.

In particular, many different theoretical mechanisms have been designed specifically

with the aim of implementing the best-known cooperative solution, the Shapley value

(see Shapley, 1953). Because this solution is applied in many economic problems,

supporting it through strategic explanation is considered to be particularly important.

See among others, Harsanyi (1981), Gul (1989), Hart and Moore (1990), Winter (1994),

and Hart and Mas-Colell (1996).4

Despite the large body of existing literature, the Nash program “is not ready for

retirement yet”, but is, on the contrary, “still full of energy” and “waiting for good pa-

pers to be written” (Serrano, 2021). In this paper, we aim to contribute to this research

agenda by providing new insights gained from a controlled laboratory experiment. In

particular, we propose an experimental comparison of two mechanisms. The first mech-

anism is the one-period version developed by Winter (1994) (this simplified version was

also previously used by Bennett and van Damme (1991) to treat Apex games, a type of

weighted majority games). The second mechanism is by Hart and Mas-Colell (1996), in

the specific case in which a proposer whose proposal is rejected leaves the game with a

4Krishna and Serrano (1995) deepen the study of the set of subgame perfect equilibria associated with
the bargaining mechanism proposed by Hart and Mas-Colell (1996).

10



probability 1. Our work is similar to Fréchette et al. (2005a), who experimentally com-

pare an offer-based model of Baron and Ferejohn (1989) with a demand-based model

of Morelli (1999) in weighted majority voting games. Earlier experimental studies of

the Baron–Ferejohn model include Fréchette et al. (2003, 2005c), and Fréchette et al.

(2005b) provide an experimental study of demand bargaining.5 However, Fréchette

et al. (2005a) present the first work to directly compare the two within an experimental

framework. Their results show that proposers have some first-mover advantage in both

the demand and offer games, but their power does not differ nearly as much between the

two mechanisms as theory predicts.

3 Theoretical model

3.1 Cooperative TU games and solutions

Let N = {1, . . . , n} be a finite set of players. Each subset S ⊆ N is called a coalition,

and N is called the grand coalition. A cooperative TU game (from now on, cooperative

game) consists of a couple (N, v), where N is the set of players and v : 2N → R is the

characteristic function, which assigns to each coalition S ⊆ N the worth v(S), with

the normalization condition v(∅) = 0. The worth of a coalition represents the value

that members of S can achieve by agreeing to cooperate. To simplify the notation if no

ambiguity appears, we consider the set of players N as fixed and we write v instead of

(N, v). We use GN to denote the set of all games with player set N .

A game v ∈ GN is said to be

• monotonic if v(S) ≤ v(T ) for each S ⊆ T ⊆ N ,

5Fiorina and Plott (1978) propose multiple experiments on committee decision-making under majority
rules to test a wide range of solution concepts of noncooperative games.
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• superadditive if v(S) + v(T ) ≤ v(S ∪ T ) whenever S ∩ T = ∅, with S, T ⊆ N ,

• convex if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), for each S, T ⊆ N , and strictly

convex if the inequality holds strictly.

We observe that convexity ⇒ superadditivity ⇒ monotonicity. In (strictly) convex

games, cooperation becomes increasingly appealing, and a so-called “snowball effect”

is expected, leading to the formation of the grand coalition. Another equivalent defini-

tion for convexity can be stated as v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ), for each

S ⊆ T ⊆ N \ {i}.

Given a game v ∈ GN , an allocation is an n-dimensional vector (x1, . . . , xn) ∈ RN ,

assigning to player i the amount xi ∈ R. For each S ⊆ N , we assume that x(S) =∑
i∈S xi. The imputation set is defined by:

I(v) = {x ∈ Rn|x(N) = v(N) and xi ≥ v({i}) ∀i ∈ N},

that is, it contains all the allocations that are efficient (x(N) = v(N)) and individually

rational (xi ≥ v({i})∀i ∈ N ).

The core is the set of imputations that are also coalitionally rational, that is,

C(v) = {x ∈ I(v)|x(S) ≥ v(S) ∀S ⊆ N}.

An element of the core is stable in the sense that if such a vector is proposed as an

allocation for the grand coalition, no coalition will have an incentive to split off and

cooperate on its own. Intuitively, the idea behind the core is analogous to that behind

a (strong) Nash equilibrium of a noncooperative game, namely an outcome is stable if

no deviation is profitable. For the Nash equilibrium, the possible deviation concerns a
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single player, whereas in the core, deviations of groups of players are relevant.

A solution is a function ψ : GN → RN that assigns an allocation ψ(v) to every game

v ∈ GN . The Shapley value is the best-known solution concept, which is widely applied

in economic models, and is defined as:

φi(v) =
∑

S⊆N,i∈S

(|S| − 1)!(|N | − |S|)!
|N |!

(v(S)− v(S \ {i})) ∀i ∈ N.

The Shapley value assigns to every player his or her expected marginal contribution to

the coalition of players that enter the game before this player, given that every order

of entrance has equal probability. This solution concept has been defined as respecting

some notion of fairness, but it is not necessarily stable. However, if the game is super-

additive, the Shapley value is an imputation, and if the game is convex, it belongs to the

core (in particular, it is its barycenter).

Players i and j are symmetric in v ∈ GN , if v(S ∪ {i}) = v(S ∪ {j}) for all

S ⊆ N \ {i, j}. Player i is a null player in v ∈ GN if v(S) = v(S \ {i}) for all S ⊆ N .

In the literature, we find various axiomatic characterizations of cooperative solutions

and, in particular, of the Shapley value (Shapley, 1953; Young, 1985; van den Brink,

2002). Given a solution ψ : GN → RN , we list here the four axioms that are used in the

characterization by Shapley (1953), and later be used in analyzing our data.6

Axiom 1 (Efficiency): for every v in GN ,
∑

i∈N ψi(v) = v(N).

Axiom 2 (Symmetry): if i and j are symmetric players in game v ∈ GN , then

ψi(v) = ψj(v).

Axiom 3 (Additivity): for all v, w ∈ GN , ψ(v + w) = ψ(v) + ψ(w).

6See Online Appendix IV for other axioms that have been proposed to characterize the Shapley value.
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Axiom 4 (Null player property): if i is a null player in game v ∈ GN , then

ψi(v) = 0.

4 Two mechanisms

In this section, we present the demand-based Winter mechanism (Section 4.1) and the

offer-based H–MC mechanism (Section 4.2) in more detail. Section 4.3 compares the

equilibrium predictions of the two mechanisms with a simple example.

4.1 The Winter mechanism

Winter (1994) presented a bargaining model based on sequential demands for strictly

convex cooperative games. As noted, in such games, cooperation becomes increasingly

appealing and a “snowball effect” is expected, leading to the formation of the grand

coalition. Moreover, in convex games, the Shapley value is a central point in the core,

which is always nonempty.

In this model, players announce their demands publicly in turns. That is, the players

effectively state “I am willing to join any coalition that yields me...” and wait for these

demands to be met by other players. The bargaining starts with a randomly chosen

player from N , say player i. This player publicly announces his or her demand di and

then points to a second player, who has to state his or her demand. Then, the game

proceeds by having each player introduce a demand then point at a new player to take a

turn. If or when, at some point, a compatible demand is introduced, which means that

there exists a coalition S for which the total demand for players in S does not exceed

v(S), then the first player with such a demand selects a compatible coalition S. The

players in S receive their demands and leave the game, and the bargaining continues
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with the rest of the players using the same rule on v restricted on N \ S.

Here, we present the one-period Winter mechanism we consider in our experiment

more formally. This is a simplified version of the more general mechanism in Winter

(1994), which allows for more periods and includes a discount factor. A decision point

position at time t of the one-period demand commitment game is given by the vector

(St1, S
t
2, dSt2 , j), where:

St1 ⊆ N is the set of players remaining in the game,

St2 ⊂ St1 is the set of players who have submitted demands that are not yet met,

dSt2 = (di)i∈St2 is the vector of demands submitted by players in St2, (0 ≤ di ≤

maxS⊆N v(S)), and

j ∈ St1 \ St2 is the player taking the decision by introducing a demand dj . His

or her demand dj is said to be compatible if there exists some S ⊆ St2 with

v(S ∪ {j})−
∑

i∈S di ≥ dj . Otherwise, dj is not compatible.

With j’s decision, the game proceeds in the following way:

1) If dj is compatible, then j specifies a compatible coalition S, each player i ∈

S ∪ {j} is paid di, and a player k 6= j is randomly chosen from St1 \ St2. The new

position is now given by (St+1
1 , St+1

2 , dSt+1
2
, k), with St+1

1 = St1 \ (S ∪ {j}) and

St+1
2 = St2 \ (S ∪ {j}).

2) If dj is noncompatible, then two cases are distinguished:

2a) if St2 = St1 \ {j} (j is the last player to make a demand), then each player

i ∈ St1 (j included) gets his or her individual payoff v({i}), and the game ends;
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2b) if St2 ⊂ St1 \ {j}, then j specifies a new player k 6= j in St1 \ St2 and the new

position is (St+1
1 , St+1

2 , dSt+1
2
, k), with St+1

1 = St1 and St+1
2 = St2 ∪ {j}.

The game starts with a randomly chosen player j ∈ N . Then, the initial position is

set to be (N, ∅, d∅, j). It terminates either when there are no more players in the game

(see point 1 above), or when St1 ∪ {j} = St2 (see point 2a above).

As shown by Winter for the more generic case, this mechanism has a unique sub-

game perfect equilibrium, which assigns equal probabilities according to the principle

of indifference. At this equilibrium, the grand coalition forms and the a priori expected

equilibrium payoff coincides with the Shapley value. Moreover, given a specific or-

dering of the players, the a posteriori equilibrium payoff of each player depends on the

order of players only through the set of the player’s successors but it is not influenced by

the way that these players are ordered, as each player demands a marginal contribution

to the set of successors.

4.2 The Hart and Mas-Colell mechanism

Hart and Mas-Colell (1996) proposed a bargaining procedure for monotonic cooperative

games. This is a much weaker assumption compared with the strict convexity required

by the Winter mechanism. Thus, the H–MC procedure is applicable for a larger set of

cooperative games.

In this mechanism, the bargaining starts with a randomly chosen proposer making

an offer to the other players, with the meaning “If you agree to form a coalition with

me, I will give you...”. Then the other players, who act sequentially, may either accept

or reject the proposal. The requirement for agreement is unanimity. The key modeling

issue is the specification of what happens if there is no agreement and, as a consequence,
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the game moves to the next stage. The more general mechanism by Hart and Mas-Colell

(1996) allows for a proposer, even after a rejection, to remain in the game and join the

other to next stage with a given probability. In our experiment, we consider the special

case in which such a probability is zero, and then, if the proposal is rejected, the proposer

leaves the game with his or her individual value and the bargaining continues among the

rest of the players, with a new player randomly chosen as a new proposer7.

We present a more formal description of the H–MC mechanism. A decision point

position at time t is simply given by the vector (St, j), where:

St ⊆ N is the set of players remaining in the game,

j ∈ St is the player making an offer to the remaining players (ti)i∈St\{j} such

that
∑

i∈St\{j} ti ≤ v(St).

With j’s proposal, the game proceeds now in the following way:

1) If all i ∈ St \ {j}, who decide sequentially, accept the proposal one after

the other, then players in St \ {j} are paid (ti)i∈St\{j}, player j is paid v(St) −∑
i∈St\{j} ti, and the game ends;

2) If at least one player i ∈ St \ {j} refuses the offer, then two cases are distin-

guished:

2a) if |St| = 2 (only one more player is left, together with j), then they both

receive their individual value v({i}) for each i ∈ St, and the game ends;

2b) if |St| > 2, then player i is removed from the game, he or she receives his or

her individual payoff v({i}), a new proposer k ∈ St+1 = St \ {j} is randomly

7A first simplified version of the mechanism by Hart and Mas-Colell had already appeared in Mas-
Colell (1988).
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selected, and the new position is (St+1, k).

The game starts with a randomly chosen player j ∈ N . Then, the initial position is

set to be (N, j). It terminates either when there are no more players in the game (see

point 2a above), or when the proposal is unanimously accepted (see point 1 above).

Hart and Mas-Colell (1996) show that this game has a unique subgame perfect equi-

librium. At this equilibrium, the grand coalition forms and the a priori expected equi-

librium payoff coincides with the Shapley value. In contrast to the Winter mechanism,

given a specific initial proposer j ∈ N (in the previous mechanism, it was necessary to

specify the order of all the players, whereas in this case only one player, the proposer,

needs to be specified at equilibrium), the a posteriori equilibrium payoff assigns to each

other player his or her Shapley value in the cooperative game, reduced to the set of play-

ers N \ {j}, and the proposer is assigned his or her marginal contribution to the grand

coalition v(N)− v(N \ {j}).

4.3 A comparison between the Winter and the H–MC mechanisms

We illustrate the two mechanisms using the strictly convex three-player game shown

in Table 1. Although our experiment is based on four-player games, a three-player

game example is of particular interest because it allows us to graphically represent the

imputation set, the core, and the different solutions, as illustrated in Figure 1.

Table 1: A three-player game

S 1 2 3 1,2 1,3 2,3 N

v(S) 20 20 30 45 55 60 100
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As we have already observed, the convexity assumption implies the monotonic-

ity. Thus, the game satisfies the assumptions of both the Winter and H–MC mecha-

nisms. The Shapley value of this game is given by the vector φ(v) =
(
170
6
, 185

6
, 245

6

)
=

(28.33, 30.83, 40.83), which corresponds to the a priori equilibrium payoff for both the

Winter and H–MC mechanisms.

We suppose now that player 1 is chosen randomly as the first proposer in both mech-

anisms. Independently of the order of the following players in the Winter mechanism,

the proposer will receive an a posteriori equilibrium payoff equal to 40 in both mech-

anisms, which corresponds to his or her marginal contribution to the grand coalition

v(N)− v(N \ {1}). We can see that both mechanisms lead to a proposer advantage, as

40 > 170
6

, meaning that, as the first proposer, player 1 can obtain more than his or her

Shapley value.

Suppose now that the total ordering of the players in the Winter mechanism is given

by 1, 2, and 3. The a posteriori equilibrium payoff of the Winter mechanism is given by

the vector SOLW (v) = (40, 30, 30), in which player 2 demands his or her marginal con-

tribution v({2, 3})− v({3}), and player 3 demands his or her individual value v({3}).

Conversely, in the case of the H–MC mechanism, the proposer offers the Shapley

value of the reduced game to players 2 and 3. Thus, the a posteriori equilibrium payoff

is given by the vector SOLHMC(v) = (40, 25, 35). Even with the disadvantage of not

being the first mover, player 2, as the second mover, manages to obtain more under the

Winter mechanism than under the H–MC mechanism even if, in both cases, he or she

obtains less than his or her Shapley value.

Figure 1 shows the imputation set I(v) = co 〈(20, 50, 30), (50, 20, 30), (20, 20, 60)〉,

the coreC(v) = co 〈(40, 30, 30), (40, 20, 40), (25, 20, 55), (20, 25, 55), (20, 45, 35), (25, 45, 30)〉,

the Shapley value φ(v), and possible a posteriori solutions SOLW (v) (6 black dots)

19



Figure 1: The core of the three-player game
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and SOLHMC(v) (3 white dots). A point in the simplex corresponds to an allocation

(x1, x2, x3). For example, the height of a point from the edge that is opposite to the

apex labeled (100, 0, 0) represents the payoff allocated to player 1. Thus, a point on the

bottom edge represents an observed allocation that gives a zero payoff to player 1. Sim-

ilarly, the height of a point from the edge that is opposite to the apex labeled (0, 0, 100)

represents the payoff allocated to player 3.

We make the following observation to conclude this example and the comparison

between the two mechanisms.

Observation 1. The core is always a convex polyhedron. The a posteriori equilibrium

of the Winter mechanism always coincides with a vertex of this polyhedron. The a

posteriori equilibrium of the H–MC mechanism always provides a vector on a face of

this polyhedron.
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Table 2: The games

S 1 2 3 4 1,2 1,3 1,4 2,3 2,4 3,4 1,2,3 1,2,4 1,3,4 2,3,4 N

v1(S) 0 5 5 10 20 20 25 20 25 25 50 60 60 60 100
v2(S) 0 20 20 30 20 20 30 45 55 60 45 55 60 100 100
v3(S) = v1(S) + v2(S)
v4(S) = 2v1(S)

5 The experimental setting

5.1 The games

We consider the four four-player games shown in Table 2 in our experiment. These

games are chosen to test the properties of the Shapley value that are discussed in Section

3.1. Note that:

• games 1, 3, and 4 are strictly convex, whereas game 2 is only convex. All four

games are, by consequence, monotonic. Therefore, all four games respect the

assumptions of the H–MC mechanism, whereas all except game 2 respect the

assumptions of the Winter mechanism. However, with game 2 being only convex,

we consider that “strict convexity” could be relaxed and the game could still be

played in such a case;

• in games 1 and 4, players 2 and 3 are symmetric;

• in game 2, player 1 is a null player. This is the reason why the game is only

convex, but not strictly convex, as the presence of a null player does not allow, by

definition, the possibility of having a strictly increasing marginal contribution for

such a player;
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Table 3: The Shapley values of games 1, 2, 3, and 4

φ1(v) φ2(v) φ3(v) φ4(v)

Game 1 22.08 23.75 23.75 30,42
Game 2 0 28.33 30.83 40.83
Game 3 22.08 52.08 54.58 71.25
Game 4 44.16 47.5 47.5 60.83

• game 3 is defined as the sum of games 1 and 2;

• game 4 is defined as twice game 1 and it preserves the symmetry of players 2 and

3;

The Shapley values of the four games are presented in Table 3. The equal division

payoff vector is simply equal to ED(vk) = (25, 25, 25, 25) when k = 1, 2, and to

ED(vk) = (50, 50, 50, 50) when k = 3, 4.

6 Results

The experiment was conducted at the Institute of Social and Economic Research (ISER),

Osaka University, in January and February 2019 (Winter mechanism) and January and

February 2022 (H–MC mechanism).8 A total of 176 students, who had never partic-

ipated in similar experiments before, were recruited as subjects of the experiment, 96

playing the Winter mechanism and 80 playing the H–MC mechanism.9 The experiment
8The experiments were conducted in 2019 and 2022 because the original H–MC experiment con-

ducted in December 2019 (which we refer to as the pseudo-H–MC or H–MCsim in Online Appendix VI)
did not reflect the H–MC model precisely (we thank an anonymous reviewer for pointing this out), and
we have redone the H–MC experiment to correct this. Online Appendix VI compares the outcomes of the
pseudo-H–MC conducted in December 2019 and the (corrected) H–MC conducted in January–February
2022.

9The difference in the number of participants between the two mechanisms is a result of variations in
the show-up rate among experimental sessions.
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was computerized with z-Tree (Fischbacher, 2007) and participants were recruited using

ORSEE (Greiner, 2015).

To control for potential ordering effects, each participant played all four games twice

in one of the following four orderings: 1234, 2143, 3412, and 4321.10 Between each

play of a game (called a round), players were randomly rematched into groups of four

players, and participants were randomly assigned a new role within the newly created

group.11 At the end of the experiment, two rounds (one from the first four rounds and

another from the last four rounds) were randomly selected for payments. Participants

received cash rewards based on the points that they earned in these two selected rounds,

with an exchange rate of 20 JPY = 1 point, as well as a 1,500 JPY participation fee.

On average, the experiments lasted for 1 hour 40 minutes for Winter and 1 hour 45

minutes for H–MC, including the instructions (15 minutes for Winter and 11 minutes

for H–MC), a comprehension quiz (5 minutes), and payment.12 The average earnings

10We let participants play all four games, instead of just one, in each session. Although this design
choice may have meant participants were slower in learning how to play the game, we consider that
having within-session variations is desirable because the tests of the axioms involve comparing outcomes
across different games.

11We implemented random reassignment of the roles across rounds instead of fixing the role. Again,
this may make learning the game slower for players given that their roles change, as Guerci et al. (2014)
suggest. However, given the existence of the null player in one of the four games considered, we chose
reassignment of the role to avoid participants feeling the experiment was unfair.

12Participants received a copy of instruction slides, and a pre-recorded instruction video was played.
Quiz was given on the screen after the explanation of the game. The user interface was explained during
the practice rounds referring to the handout about the computer screen. The quiz was given on the
screen after the explanation of the game. The user interface was explained during the practice rounds,
referring to the handout about the computer screen. See Online Appendix VII for English translations of
the instruction materials and the comprehension quiz. At each decision screen, there was a non-binding
time limit. The time limit was set to 60 seconds to make a demand (Winter) or a proposal (H-MC) and
30 seconds to choose a coalition (Winter) or decide to approve or reject the proposal (H-MC). When
the time limit was reached, the message "please make a decision" appears on the top of the screen to
encourage participants to make their decisions. On average (the standard deviation, the max, and the
min), participants took 48.62 (25.28, 304, and 2) second for making a demand (n=768) and 20.36 (13.25,
164, and less than 1) seconds to choose a coalition (n=550) in the Winter. For H-MC, they took, on
average (the standard deviation, the max, and the min), 40.83 (23.23, 160, and 7) seconds for making a
proposal (n=257) and 16.18 (11.54, 87, and 2) seconds to approve or reject a proposal (n=531).
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were 2,650 JPY for Winter and 2,850 JPY for H–MC.

We first compare the Winter and H–MC mechanisms in terms of the frequency of

grand coalition formation and efficiency. Then, we analyze whether the resulting allo-

cations from the two mechanisms match the Shapley values, and also try understanding

the reasons for the discrepancies between the realized allocations and the Shapley val-

ues from the failure of four axioms that characterize the Shapley values presented in

Section 3.1. We contrast the experimental results with the allocation predicted under

the SPNE as well as under an equal division. Additional analyses of our experimental

results are presented in the Online Appendix I to VI.

6.1 Grand coalition formation and efficiency

Panel (a) of Figure 2 presents the results concerning the grand coalition formation under

the H–MC and Winter mechanisms pooling the data of all the four games.13 For game 2,

we consider the partition {{1}, {2, 3, 4}} as a realization of the grand coalition for both

the H–MC and Winter mechanisms because player 1 is a null player and, consequently,

the game is only convex and not strictly convex.14

Considering the four games together, the grand coalition (in the case of game 2,

either the grand coalition or the {2, 3, 4} coalition) is formed in 61.9% of the cases under

the H–MC mechanism, but only in 40.1% of the cases under the Winter mechanism.

13The figure is created based on the estimated coefficients of the following linear regressions: gci =
β1HMCi + β2Winteri +µi where gci is a dummy variable that takes a value of 1 if the grand coalition
is formed, and zero otherwise, in group i, HMCi (Winteri) is a dummy variable that takes a value
of 1 if the H–MC (Winter) mechanism is used, and zero otherwise. The standard errors are corrected
for within-session clustering effects. The statistical tests are based on the Wald test for the equality of
the estimated coefficients of two treatment dummies. See Online Appendix I for results for four games
separately.

14Recall that the Winter mechanism is theoretically defined for strictly convex games. In this game,
Player 1 always has a zero marginal contribution and, as such, can be left out of any coalition at no cost
for either him/her or the other players.
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Figure 2: Proportion of times the grand coalition is formed and efficiency

(a) Frequency of Grand Coalition Formation (b) Efficiency
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate the outcomes of H–MC mechanism

and the Winter mechanism are significantly different at the 0.1%, 1%, and 5% significance levels (Wald test), respectively.

As a direct consequence of the grand coalition being formed in less than 100% of

the cases, both mechanisms fail to achieve full efficiency. Efficiency is computed as the

sum of the payoffs obtained by the four players as a proportion of the value of the grand

coalition of the considered game (100 for games 1 and 2, and 200 for games 3 and 4).

As Panel (b) of Figure 2 shows, considering all the four games together, efficiency is

significantly higher under the H–MC mechanism than under the Winter mechanism.15

Therefore, we conclude as follows.

Result 1. Although the grand coalition is not always formed under the two mechanisms,

it is more frequently formed under the H–MC mechanism than under the Winter mech-

anism. Consequently, efficiency is higher under the H–MC mechanism than under the

Winter mechanism.

Note that under the H–MC mechanism, the proposer proposes an allocation to all

15The figure is created based on the estimated coefficients of the following linear regressions: Effi =

β1HMCi + β2Winteri + µi, where Effi ≡
∑

i πi

v(N) is the efficiency measure for group i, HMCi
(Winteri) is a dummy variable that takes a value of 1 if the H–MC (Winter) mechanism is used, and zero
otherwise. The standard errors are corrected for within-session clustering effects. The statistical tests are
based on the Wald test for the equality of the estimated coefficients of the two treatment dummies. If we
consider four games separately, however, the efficiency is not statistically significantly different at 5%
significance level in any of the game. See Online Appendix I.
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the remaining members given the feasibility condition. Conversely, under the Winter

mechanism, the players, speaking one after the other, may make unfeasible demands

or form a small coalition early without waiting for others making their demands. As

a result, the formation of the grand coalition under the H–MC mechanism is simply

determined by whether the remaining players choose to accept the proposal or reject it,

whereas under the Winter mechanism, it can be blocked by either by players forming a

smaller coalition prematurely or by unfeasibility conditions. Such a difference between

the two mechanisms can cause the significantly higher frequency of the grand coalition

formation under the H–MC mechanism compared with the Winter mechanism. Indeed,

in Online Appendix III.1, we report that the main reason for the failure of grand coalition

formation in Winter in our experiment is a coalition being formed before reaching the

fourth player.16

6.2 Allocations

We use πHMC(vk) to denote a vector of payoffs obtained by the players in the H–MC

mechanism in game k, with k = 1, 2, 3, 4. Analogously, let πW (vk) denote a vector of

payoffs obtained by the players under the Winter mechanism. The ex ante theoretical

prediction for both mechanisms states that the mean of such vectors (based on many re-

alizations with different orderings of the players) should converge to the Shapley value.

Figure 3 shows the mean realized payoffs based on all groups in each of the four

games, and the horizontal lines indicate the Shapley values for each game. The mean

16In Online Appendix II, we report the frequency of the grand coalition formation and efficiency by
separating the data for the first half (rounds 1–4) and the second half (rounds 5–8) of the experiment. We
observe an increase in both the frequency of the grand coalition formation and efficiency, at least in some
of the games, for both mechanisms. A significantly higher frequency of grand coalition formation and
efficiency is observed under the H–MC mechanism than under the Winter mechanism even in the second
half of the experiment.
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and the standard errors are obtained by running a set of ordinary least squares (OLS)

regressions for the following system of equations:

π1 = a1g1 + a2g2 + a3g3 + a4g4 + u1

π2 = b1g1 + b2g2 + b3g3 + b4g4 + u2

π3 = c1g1 + c2g2 + c3g3 + c4g4 + u3

π4 = d1g1 + d2g2 + d3g3 + d4g4 + u4

(1)

where πi is the payoff of player i, gj is a dummy variable that takes a value of 1 if the

game j ∈ {1, 2, 3, 4} is played, and zero otherwise. Because participants play all four

games twice, we correct the standard errors for within-group clustering effects. Note

that the estimated coefficients aj , bj , cj , and dj are the average payoffs in game j for

players 1, 2, 3, and 4, respectively.

When players fail to form the grand coalition, the total payoff obtained by the players

is smaller than the value under the grand coalition. As a result, the average realized

payoff vectors are significantly different from the Shapley value, as shown in Figure 3.

We do observe, however, that in game 2, the average payoff of player 1 under Winter

is zero (just as Shapley value) while it is positive under H–MC. Below, we first follow

the approach proposed by Aguiar et al. (2018) and compute the Shapley distance to

decompose the reasons behind the deviations of the realized payoff vectors from the

Shapley values into the failure of its four main properties. We then further investigate

the realized payoff vectors by focusing on those groups that formed the grand coalition.
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Figure 3: Mean payoffs, all groups
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate the average payoff is significantly

different from the Shapley values at the 0.1%, 1%, and 5% significance levels, respectively (Wald test).

6.2.1 Shapley distance

The approach of Aguiar et al. (2018) we apply is based on the decomposition of the

distance of the payoff vectors from the Shapley value into the failure of efficiency, sym-

metry, additivity and null player property. The same decomposition has been used in

Chessa et al. (2022). We present the procedure below.

Let π = (π1, π2, π3, π4) be the realized vector of payoffs in a game. We first

find a vector of payoffs closest to π that satisfies the symmetry. Call such a vector

πsym = (πsym1 , πsym2 , πsym3 , πsym4 ). Namely, we take the sum of payoffs obtained by

symmetric players s (players 2 and 3 in games 1 and 4) and divide the sum equally
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among them. Thus, in games 1 and 4, πsyms =
∑

s∈{2,3} πs/2, and for non-symmetric

players k (including all the players in games 2 and 3), πsymk = πk.

Next, we find a vector of payoffs satisfying efficiency that is closest to πsym. Call

the new payoff vector πsym,eff = (πsym,eff1 , πsym,eff2 , πsym,eff3 , πsym,eff4 ). Namely, for

each player i = 1, 2, 3, 4, πsym,effi = πsymi + [v(N)−
∑

j∈N πj]/4.

We then find a vector of payoffs satisfying null player property that is closest to

πsym,eff . Let πsym,eff,null = (πsym,eff,null1 , πsym,eff,null2 , πsym,eff,null3 , πsym,eff,null4 ) be

the resulting vector of payoffs. Specifically, if player n is a null player (player 1 in

game 2), then her new payoff must be equal to zero, that is, πsym,eff,nulln = 0. Three

other players j in the game (players 2, 3, 4 in game 2) equally share πsym,effn of the null

player. That is, πsym,eff,nullj = πsym,effj + πsym,effn /3. When there is no null player in

the game, πsym,eff,nulli = πsym,effi for all i.

Theorem 3 in Aguiar et al. (2018) shows that a vector of payoffs π = (π1, π2, π3, π4)

obtained when playing game v can be decomposed as follows: π = φ(v)+esym+eeff+

enull + eadd. Thus, the Shapley error, eφ = π − φ(v), is eφ = esym + eeff + enull + eadd

where

esymi = πi − πsymi for all i,

eeffi = πsymi − πsym,effi for all i,

enulli = πsym,effi − πsym,eff,nulli = for all i,

eaddi = πsym,eff,nulli − φi(v) for all i.

Given this decomposition, the Shapley distance is given by:

||eφ||2 = ||esym||2 + ||eeff ||2 + ||enull||2 + ||eadd||2 + 2 < eadd, enull >
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Table 4: Result of Shapley distance decomposition. Based on pooling the data of all
groups and all games

||esym||2 ||eeff ||2 ||enull||2 ||eadd||2 ||eφ||2
H-MC 38.19 429.96 63.97 270.84 802.88

(12.73) (53.41) (8.27) (20.70) (62.70)
Winter 85.18 606.81 7.28 321.49 1020.72

(18.97) (101.35) (1.87) (17.33) (72.22)
No. Obs 352 352 352 352 352
R2 0.132 0.220 0.111 0.369 0.421

p-value∗ 0.079 0.167 0.0003 0.103 0.057
Note: Standard errors are corrected for session-level clustering effects
and shown in parentheses. < eadd, enull > are not reported in the table
as they are negligible (the mean values are 0.0093 for H–MC and 0.0026
for Winter).
* p-values for testing H0: H–MC = Winter (based on the Wald test)

where < ·, · > is the scalar product and for any vector y ∈ Rn, ||y||2 =< y, y >=∑
i∈N y

2
i .17

We perform the Shapley distance decomposition of each payoff vector and the cor-

responding Shapley value, and compute the average distance, pooling data of all groups

and all games, to compare between H–MC and Winter. Results are presented in Table 4.

One can observe from the last column of Table 4, indeed, the Shapley distance is

(marginally significantly) larger under Winter than under H–MC. And this is because

the distance due to the violations of symmetry, efficiency, and additivity axioms tend

to be lager under Winter than under H–MC (and marginally significantly so for the

symmetry). However, as we have observed in Figure 3, the distance due to the violation

of null player property is significantly smaller under Winter than under H–MC. Note

that when decomposed in this way, the distance due to the violation of efficiency axiom

17Differently from the original decomposition by Aguiar et al. (2018), that ensures orthogonal
components, with our decomposition, in general, vectors enull and eadd are not orthogonal so that
< eadd, enull > is not equal to zero.
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is not significantly different between the two mechanisms unlike what we have seen

above. However, this is due to the difference in the definition. The efficiency measure

used above (
∑

i πi/v(N)) and ||eeff ||2 are negatively correlated (the Pearson correlation

coefficient is -0.78) but not perfectly so.

To further compare the realized allocations between the two mechanisms in light of

theoretical predictions, let us now focus on those groups that formed the grand coali-

tion. The reason for focusing on groups that formed the grand coalition is that different

coalition structures provide a different value to be shared, and therefore a comparison

between the payoff vectors in relation to some theoretical benchmark would not be clear

cut. We complement our analyses in Online Appendix V and report the corresponding

results based on all groups using payoff shares, instead of restricting our attention to

groups that formed the grand coalition. The idea behind these additional analyses is to

check whether payoff shares respect the hierarchy among the players as predicted by

the theory.

6.2.2 Allocations when the grand coalition is formed

Figure 4 shows the average payoffs obtained by each player in the four games condi-

tional on the grand coalition being formed.18 The horizontal lines indicate the Shapley

values for each game. It can be observed that for the Winter mechanism, the average

payoffs are not significantly different from the Shapley values for all four players in

games 1, 3, and 4. Conversely, for the H–MC mechanism, they are significantly differ-

ent from the Shapley values for at least three out of four players in all four games. This

indicates that provided that the grand coalition is formed, the average payoffs under the

18The mean and the standard errors are obtained by running a system of linear regressions as we have
done to generate Figure 3 but restricting to those cases where the grand coalition is formed.
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Figure 4: Mean payoffs based only on the groups that formed the grand coalition
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols ***, **,

and * indicate that the average payoff is significantly different from the Shapley values at the 0.1%, 1%, and 5% significance levels

(Wald test), respectively.

Winter mechanism are closer to the Shapley values than those under the H–MC mech-

anism. Furthermore, we report in Online Appendix IV that, provided that the grand

coalition if formed, the realized allocations under the Winter mechanism better satisfy

the axioms characterizing the Shapley values than ones realized under the H–MC mech-

anism.

Result 2. Provided the grand coalition is formed, the average payoffs follow the Shapley

values more closely under the Winter mechanism than under the H–MC mechanism.
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6.2.3 Realized allocations in the grand coalition and a posteriori equilibria

Now, let us analyze the realized payoffs in the light of the a posteriori equilibrium

payoff vectors. We continue to focus only on the groups that formed the grand coali-

tion. We measure the distance between the realized payoff vectors and the allocation

under the SPNE for the four games by their Euclidean distance. Let eqi be the equilib-

rium payoff for player i for the given game, the realized order of the players (making

a proposal or demand), and the mechanism. The distance of the realized payoff from

the equilibrium is computed as Dis2NE =
√∑

i(πi − eqi)2.19 We also consider the

distance between the realized payoff vectors and equal division payoffs, defined by

Dis2ED =
√∑

i(πi − EDi)2 where EDi is the equal division payoff for player i for

the given game.

Figure 5 shows the mean Dis2NE and the mean Dis2ED for the two mechanisms

in the four games.20 We observe that the distance to the equal division is significantly

smaller (at the 1% level) for the H–MC mechanism than for the Winter mechanism in

all four games. This may not be surprising because, as Observation 1 states, the a pos-

teriori equilibrium payoff vectors tend to be less unequal under the H–MC mechanism

than under the Winter mechanism. In fact, as we can observe, the distance to the equi-

librium allocation is significantly smaller for the H–MC mechanism than for the Winter

mechanism in games 1 and 4 (in which the equilibrium payoffs are less unequal than

19For the sake of simplicity, we omit the specifications about the considered mechanism and the game.
20The figure is created based on the estimated coefficients of the following linear regressions: Disi =

β1HMCi+β2Winteri+µi, whereDisi is the relevant distance measure for group i,HMCi (Winteri)
is a dummy variable that takes a value of 1 if the H–MC (Winter) mechanism is used, and zero otherwise.
The standard errors are corrected for within-session clustering effects. The statistical tests are based on the
Wald test for the equality of the estimated coefficients of the two treatment dummies. For the difference
between Dis2NE and Dis2ED we compute ∆ = Dis2NE − Dis2ED and run the same regression as
above and test whether the estimated coefficients of treatment dummies are significantly different from
zero.
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Figure 5: Mean of the distances of the realized payoff vectors from the SPNE and the
equal division among those groups that formed the grand coalition.
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate that the differences are statistically

significant at the 0.1%, 1%, and 5% significance levels (Wald test for across treatment differences and t-test for within treatment

difference between Dis2NE and Dis2ED), respectively.

in games 2 and 3) at the 0.1% level. For games 2 and 3, however, the distance to the

equilibrium allocations is not significantly different between the two mechanisms.

Figure 5 shows that, on the one hand, the payoff vectors realized under the H–MC

mechanism are significantly closer to the equal division than to the equilibrium ones in

all but game 2 (in which Dis2NE and Dis2ED are not significantly different). On the

other hand, under the Winter mechanism, the realized payoff vectors are significantly

closer to the equal division than to the equilibrium ones only in games 1 and 4, but the

opposite is the case for game 2. In game 3, Dis2NE and Dis2ED are not significantly

different under the Winter mechanism.

Result 3. When the grand coalition is formed, the H–MC mechanism more often results

in payoffs that are closer to the equal division than to the equilibrium payoffs compared
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with the Winter mechanism.

This indicates that, albeit imperfectly, the Winter mechanism achieves the allocation

that better reflects the power of the players than does the H–MC mechanism. In Online

Appendix III.2, we show that in H-MC, the proposals become more equal after players

observing rejection of earlier, less equal, proposals. Such dynamics lead to this result.

6.3 Exploitation of the first mover advantage

We investigate now for the strategic behavior of the players in our games. At first,

we observe that a direct comparison between H-MC and Winter mechanisms on this

point is rather challenging because the strategic behavior to optimally participate in an

offered based vs. a demand based mechanism is much different off the equilibrium path.

After a first proposal has been made, on the one side, and as already noticed, an offer

based mechanism resemble a voting situation, in which each player simply accepts or

reject the proposal. We may observe that, in this case, the best response simply depends

on the set of players who are left in the game and on the offer he or she received,

independently on what has been offered to the other players. Moreover, at a given

period, the only possibility for a player is to accept forming the coalition containing

all the remaining players, or refusing to do that. On the other side, in a demand based

mechanism, the announcement of a player who is not playing first in the period, i.e.,

after the first demand of the remaining players has been declared, not only depends

on the set of players who are left in the game, but also on all precedent demands in the

period which are not yet satisfied. In this case, the choice is not only on whether forming

a coalition containing all the remaining players, but also on whether eventually forming

other feasible sub-coalitions. Thus, a direct comparison of the strategic behavior along
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the entire strategic interaction under the two different mechanisms is not possible.

Instead, the two mechanisms are fully comparable when investigating the strategic

behavior of the first mover. In fact, once the first player has been randomly chosen, he

or she is theoretically expected to offer him- or herself (under the H-MC mechanism),

or to demand (under the Winter mechanism) exactly the same payoff, i.e., his or her

marginal contribution to the coalition formed by the remaining players (which is equal

to the his or her a posteriori equilibrium payoff). For this reason, we focus our analysis

on the behavior of the first mover to analyze the degree to which participants play the

game as predicted by the theory.

When asking his-or her marginal contribution to the coalition formed by the remain-

ing players, the first mover experiences what we call the first mover advantage, i.e.,

he or she can strategically ask more than what given by the a priori expected equilib-

rium payoff, i.e., the Shapley value. We therefore investigate whether the first mover

successfully exploit this advantage.

In the following, let FAi be the degree to which the first mover i exploits his or her

first mover advantage. Namely, FAi = (ai − φi) / (eqi − φi), where i is the first mover

and ai is either the proposed allocation to i in H-MC or the demand by i in Winter, φi

is i’s Shapley value, and eqi is i’s a posteriori equilibrium payoff. Note that since FAi

is not defined for the null player (player 1 in Game 2), we exclude the null player from

the following analysis.21 But we consider all the groups, otherwise.

Table 5 show the average FAi in two mechanisms for four games. The standard

errors are corrected for session clustering effect. The table is created based on the

21When the null player was the first mover, the average ai was 35 in H–MC and 16.5 in Winter. The
standard errors adjusted for the session clustering effect were 6.830 and 2.284 in H–MC and in Winter,
respectively. The difference is significant at 5% level (p = 0.037) according to the Wald test for the
equality of coefficients of the two treatment dummies in a linear regression where ai is the dependent
variable and two treatment dummies, without the constant, are the only independent variables.
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Table 5: Exploitation of the first move advantage

Game 1 Game 2 Game 3 Game 4
H-MC 0.354∗∗∗ -0.055 0.674∗ 0.406∗∗

(0.022) (0.156) (0.264) (0.089)
Winter -0.096 -0.024 -0.123 -0.218

(0.152) (0.166) (0.104) (0.095)
No. Obs 88 62 88 88
R2 0.245 0.002 0.232 0.238

p-value† 0.022 0.897 0.026 0.002
Note: Standard errors are corrected for session-level clus-
tering effects and shown in parentheses.
***, **, *: estimated coefficient is significantly different
from zero at 0.1, 1, and 5% significance level.
† p-values for testing H0: H–MC = Winter (based on the
Wald test)

estimated coefficients of the linear regression that takes FAi as the independent variable

and two dummy variables representing the two mechanisms as only dependent variables

without the constant. We observe that, on average, while the first mover advantage is

exploited, although not fully, in H–MC except for Game 2, it is not in Winter. Thus, the

first movers are acting significantly closer to the a posteriori equilibrium prediction in

H–MC than in Winter. This finding is in line with the result we have seen in Figure 6.2.3,

where we have shown that the H-MC mechanism provides result that are closer to the

SPNE when the grand coalition is formed.

7 Conclusion

We have experimentally compared two of the best-known bargaining procedures in the

Nash program, the H–MC and the Winter mechanisms. Our main rationale for this

choice is that the two mechanisms stand out in the literature for their distinctive fea-
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tures, and they are a fundamental contribution on the Nash program. Moreover, they are

recognized for their simplicity, which is a key desideratum when considering possible

applicability of a theoretical mechanism to the real world. These two mechanisms have

the same ex ante equilibrium prediction, but differ mainly in their processes: H–MC

mechanism is based on offers, and the Winter on demands.

Previous studies have found a certain closeness of the experimental results when

making a similar comparison (see Fréchette et al., 2005a), despite the sharply different

theoretical predictions. Instead, we show that our two mechanisms behave very dif-

ferently, despite the close theoretical predictions. In particular, the H–MC mechanism

results in higher frequencies of the grand coalition formation and, consequently, higher

efficiency than the Winter mechanism. We suggest that the H–MC mechanism is bet-

ter suited to bargaining over cost or payoff allocation problems when the main target

is efficiency, or when full cooperation represents a crucial goal for society (e.g., full

cooperation in the airport problem (Littlechild and Owen, 1973) results in one single

airport being built instead of many, and this is certainly desirable for environmental rea-

sons). Conversely, provided that the grand coalition is formed, the Winter mechanism

results in average payoffs that are closer to the Shapley values and better satisfy vari-

ous axioms. We suggest that the Winter mechanism, when it leads to collaboration, is

best suited to allocation problems in which it is important to value players’ effective

power (e.g., production games (Owen, 1975), or in which arguments such as social wel-

fare and symmetry are inescapable (e.g., allocation of resources in health or social care

(Kluge, 2007)). Of course, the major drawback of the Winter mechanism is its failure

of reaching the full collaboration.

Our findings suggest that when facing a cost or payoff allocation problem, the choice

of which bargaining procedure to use, one based on offers or on demands, may have
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some unexpected effects, regardless of the theoretical prediction. This should be taken

into account when making such a choice in various applications. In fact, different bar-

gaining mechanisms, even when equivalent from the theoretical point of view, favor

different properties that are reflected in the resulting allocations. An example of such

effects may be found in the verification of the null player property of the Shapley value.

Theoretically, a player who always has a zero marginal contribution should receive a

zero payoff, according to Shapley. In accordance with the theoretical prediction, in a

demand-based mechanism, non-null players have refused a strictly positive demand by a

null player in our experiment. However, we find that non-null players in our experiment

seem to be uncomfortable with making a zero offer to a null player in an offer-based

mechanism, and this contributes to a final payoff share that is closer to the equal divi-

sion solution. A deeper analysis of how different mechanisms can lead players toward

respecting or violating some properties would be a fruitful direction for future research.

Many potentially important complementary questions can be addressed in future

research. Among others, an analysis of the more complex versions of our proposed

mechanisms (e.g., the Winter mechanism with more periods and a discount factor (see,

Chessa et al., 2022, for two periods version), or the H–MC mechanism where the pro-

poser whose offer is refused then leaves the game with a probability strictly smaller

than one) can be compared with our actual results. Comparing the outcomes of the ex-

periments based on noncooperative mechanisms with those of unstructured bargaining

experiments would be an interesting topic for future research.
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Online Appendix

I Grand coalition formation and efficiency for each game

Figure I.1 shows the frequency of grand coalition formation under H-MC and Winter for

four games separately. We observe that for game 2 and the Winter mechanism, the grand

coalition never forms (because player 1 is a null player and, consequently, the game is

only convex and not strictly convex. Therefore, for game 2, we consider the partition

{{1}, {2, 3, 4}} as a realization of the grand coalition for both the H–MC and Winter

mechanisms. Grand coalition is significantly more frequently formed under H-MC than

under Winter in games 3 and 4.

Figure I.1: Proportion of times the grand coalition is formed

(a) Game 1 (b) Game 2 (b’) Game 2, allow (2,3,4)
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate the proportion of times that the

formation of the grand coalition is significantly different between the two mechanisms at the 0.1%, 1%, and 5% significance levels

(Wald test), respectively.
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Figure I.2: Efficiency

(a) Game 1 (b) Game 2
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate that the efficiency is significantly

different between the two mechanisms, at the 0.1%, 1%, and 5% significance levels (Wald test), respectively.

Figure I.2 shows the average efficiency under H-MC and Winter for four games

separately. Unlike the case where we pool all the data, the efficieny is not significantly

different under two mechanisms in any of the games at 5% significance level.

II Effect of learning

II.1 Grand coalition formation and efficiency

We have already shown in Section 6.1 that both mechanisms fail to achieve an efficient

outcome. However, H–MC mechanism performs significantly better in this matter. A

possible explanation is because, as we have already observed in Section 6.1 and with

Result 1, H–MC mechanism forces feasible offers, while Winter mechanism allows

for unfeasible demands or players forming smaller coalitions prematually which, as a
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result, lead to inefficiencies. This also naturally leads to the fact that the grand coalition

is formed more often under the H–MC mechanism, than under the Winter mechanism.

One may hypothesize that this generalized failure (more for Winter, but partially also

for H-MC) in reaching an efficient outcome can explained by some limited rationality

arguments: even if we chose two mechanisms that are in our opinion simple, the games’

optimal dynamics is hard to understand for participants to the experiment especially in

the beginning.

We check this hypothesis by investigating the presence of a learning effect by com-

paring the outcomes in the first half of four rounds (1-4) and the second half of four

rounds (5-8). Because the number of groups that formed a grand coalition becomes

small if we separate the data into the first half and second half (see Table II.1), we

investigate only the frequency of grand coalition formation and efficiency.

Figure II.1 shows the frequency of the grand coalition formation (left) and the aver-

age efficiency (i.e., the average total payoff / value of the grand coalition, right) for the

first half and the second half (i.e., the first four rounds vs. the second four rounds). We

pool four games. For H–MC, while the frequency of the grand coalition formation is not

significantly different in the early and later rounds, the efficiency is significantly higher

in the later rounds than in the early rounds. For the Winter mechanism, both the fre-

Table II.1: Number of groups with Grand Coalition

game 1 game 2 game 3 game 4
Winter early 10 10 1 9
Winter late 13 17 5 12
H–MC early 10 12 11 17
H–MC late 15 13 8 13
Note: game 2 allows {2, 3, 4} to be the grand coalition.
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Figure II.1: Grand coalition formation and efficiency in early and late rounds (all games
pooled)

Grand Coalition Formation Efficiency

Early Late Early Late
0

0.2
0.4
0.6
0.8

1
n.s. n.s.**

n.s.

H–MC Winter

Early Late Early Late
0

0.2
0.4
0.6
0.8

1 *** n.s.*
*

H–MC Winter

Note: The error bars show the one standard error range. The symbols ***, **, and * indicate the outcomes shown in two bars are

significantly different at 0.1%, 1%, and 5% significance levels, respectively (Wald test).

quency of the grand coalition formation and the average efficiency are not significantly

different between early and late rounds.

Figures II.2 and II.3 show the frequency of the grand coalition formation and the

average efficiency for the first half and the second half of each game. For H–MC, the

frequency of the grand coalition formation and the average efficiency are significantly

higher in the later rounds only in game 1; for the remaining three games, there are no

significant differences between the early and late rounds. For the Winter mechanism,

both the frequency of the grand coalition formation and the average efficiency are sig-

nificantly higher in the later rounds only in game 3, with no significant differences in

other games.

As conclusion, we report no statistically significant learning effect, when testing

either the H–MC or the the Winter mechanism. This does not rule out the possibility

that by implementing a higher number of repetitions, a significant learning effect could

be observed.
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Figure II.2: Proportion of times the grand coalition formed in early and late rounds

Game 1 {2, 3, 4} allowed
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate the outcomes shown in two bars are

significantly different at 0.1%, 1%, and 5% significance levels, respectively (Wald test).

III Observed dynamics in Winter and H-MC

In this section, we analyze the coalition formation dynamics of Winter as well as the

way proposals evolved in H–MC to better understand the results presented in the main

text. Namely, the reason for failure of the grand coalition formation in Winter and the

allocation becoming closer to the equal division solution in H–MC.

III.1 Dynamics of coalition formation in Winter

We first show the low frequency of the grand coalition formation under Winter is due

to participants forming smaller coalitions before reaching the 4th player making the

demand.
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Figure II.3: Efficiency in early and late rounds
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Early Late Early Late
0

0.2
0.4
0.6
0.8

1 *** n.s.
n.s. *

H–MC Winter

Early Late Early Late
0

0.2
0.4
0.6
0.8

1 n.s. n.s.
n.s.

n.s.

H–MC Winter

Game 3 Game 4

Early Late Early Late
0

0.2
0.4
0.6
0.8

1 n.s. **
n.s. ***

H–MC Winter

Early Late Early Late
0

0.2
0.4
0.6
0.8

1 n.s. n.s.*
n.s.

H–MC Winter

As one can observe from Table III.1, out of 176 play of the games where the first

mover was not the null player, the first mover exited the game by belonging to a coalition

without waiting for the fourth player making the demand 77 times. Thus, there is a clear

tendency for participants forming a coalition and exiting the game prematurely.

Among 70 cases in games other than game 2 where the first move belonged to the

coalition formed by the fourth mover, only 50 formed the grand coalition. For game 2,

in 2 out of 2 cases in which the first move belonged to the coalition formed by the fourth

mover and 17 out of 18 in which the first move belonged to the coalition formed by the

third mover, the resulting coalition were {2, 3, 4} which, in our analyses, considered as

the grand coalition.

Furthermore, among these 21 cases where the grand coalition (including {2, 3, 4} in

game 2) was not formed even when the coalition to which the first player belonged to
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Table III.1: Frequency of the timing of the formation of the coalition to which the
first mover belongs to.

Formed by All All* Game 1 Game 2 Game 2* Game 3 Game 4
Self 4 4 0 3 3 0 1

Second mover 8 8 0 2 2 3 3
Third mover 65 65 15 18 18 19 13
Fourth mover 72 72 27 2 2 17 26

None 43 27 6 23 7 9 5
Total 192 176 48 48 32 48 48

* Excluding the cases where the null player was the first mover.

was formed by the 4th (or the 3rd in case of game 2) player, the total amount demanded

by four players exceeded v(N), and thus it was not possible to form the grand coalition,

in 14 cases. In remaining 7 cases, the grand coalition was not formed although doing

so was possible. An interesting observation is that in 2 cases in game 2 where the first

mover belonged to the coalition formed by the fourth mover and the coalition {2, 3, 4}

instead of {1, 2, 3, 4} was formed, the sum of the demand including the one by the null

player did not exceed v(N).

III.2 Dynamics of proposals in H–MC

In Section 6, we have already shown that accepted proposals in the H–MC mechanism

go in the sense of equal division. This result is not surprising, as experimental results

of offer-based mechanisms (such as the well-known two-player bargaining over a pie

of Rubinstein (1982)) often show that, contrary to the theoretical prediction, players

tend to go for an equal split of the pie. We show that, in our experiment, this behavior

becomes more evident after a first rejection of a proposal, as second proposals are closer

to the equal share than the first ones.

Let the distance between the proposal and equal devision in Lth proposal (for a
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group), devEQL, be devEQL =
∑

i |aL,i − ED| where aL,i is the proposed allocation

for player i in Lth proposal (for the group) and ED is the equal division payoff for the

game.

First, we observe the first proposal is less likely to be accepted if its distance from

the equal division is larger. The estimated coefficient for the devEQ1 is negative and

significant in a linear regression in which the dependent variable is the dummy variable

that takes value of 1 if the proposal is accepted and 0 otherwise, and the independent

variables are the constant and devEQ1 (-0.005 with the standard error (corrected for the

session clustering effect) being 0.0009 and p-value = 0.008. N = 160. R2 = 0.1352)).

Figure III.1: H–MC mechanism: Distance from equal division for the first and the
second proposals (top) and the second and the third proposals (bottom)

Game 1 Game 2 Game 3 Game 4
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Note: In each panel, only those groups in which the first proposal (top) or the second proposal (bottom) is rejected are plotted.

p-values are based on the Signed-Rank test (two-tailed) with the null hypothesis devEQL = devEQL+1.
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In Figure III.2, devEQL =
∑

i |aL,i−ED| for the first (L = 1, horizontal axis) and

the second (vertical axis) proposals (top) and the second (L = 2, horizontal axis) and

the third (vertical axis) proposals (bottom) for each game. Each dot corresponds to a

pair of the proposals of a group.

We observe a clear tendency for either the second proposal to be more equal than the

first one (devEQ1 > devEQ2) or the second proposal to be more equal than the third

one (devEQ2 > devEQ3) depending on the game.

IV Testing for the axioms of the Shapley value

We test the axioms that are historically the most relevant to characterizing the Shapley

value. In doing so, we aim to provide greater insight into whether a demand-based

bargaining mechanism is more appropriate than an offer-based bargaining mechanism

for cost or payoff allocation problems when the allocation scheme is constructed on the

main axiomatic solution notion of cooperative game theory, that is, the Shapley value.

In the literature, we find various axiomatic characterizations of cooperative solutions

and, in particular, of the Shapley value. Given a solution ψ : GN → RN , we have already

listed in Section 3 four axioms that are used in the characterization by Shapley (1953):

efficiency, symmetry, additivity and null player property. Here, we list three additional

commonly used axioms to provide a characterization.

Axiom 5 (Homogeneity): for all v ∈ GN and a ∈ R, ψ(av) = aψ(v).

Axiom 6 (Strong monotonicity): if i ∈ N is such that v(S ∪ {i}) − v(S) ≤

w(S ∪ {i})− w(S) for each S ⊆ N , then ψi(v) ≤ ψi(w).

Axiom 7 (Fairness): if i, j are symmetric in w ∈ GN , then ψi(v +w)− ψi(v) =
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ψj(v + w)− ψj(v) for all v ∈ GN .

Fairness states that if we add a game w ∈ GN , in which players i and j are

symmetric, to a game v ∈ GN , then the payoffs of players i and j change by the

same amount.

The axiomatization of Young (1985) involves axioms 1, 2, and 6, whereas that of

van den Brink (2002) involves axioms 1, 4, and 7. Note that axiom 5, even if not directly

involved in any of these axiomatizations, is crucial because, together with axiom 3, it

guarantees the linearity of the solution.1

We noted in Section 6 that both mechanisms fail to satisfy efficiency (axiom 1) if

we examine overall data. Here, we examine the remaining six axioms focusing on the

groups that formed grand coalition. These axioms are tested based on the estimated

coefficients obtained from running the regression of Eq. 1 as follows.

• Symmetry (axiom 2) requires b1 = c1 and b4 = c4.

• Additivity (axiom 3) and homogeneity (axiom 5) require that x3 = x1 + x2 and

x4 = 2x1 for x ∈ {a, b, c, d}, respectively.

• Null player property (axiom 4) requires that a2 = 0.

• Strong monotonicity (axiom 6) requires that a1 > a2 and a4 > a3.

• Fairness (axiom 7) requires that b3 − b2 = c3 − c2.

1The equal division solution satisfies 1, 2, and 3, but does not satisfy the null player property in 4.
However, it satisfies a similar property when null players are replaced with nullifying players. Player i
is a nullifying player if v(S) = 0 for each S ⊆ N such that i ∈ S. Then, we can state the following
additional axiom that can be called the nullifying player property: if i is a nullifying player in game
v ∈ GN , then ψi(v) = 0. Replacement of the null player property in the axiomatization of the Shapley
value in Shapley (1953) with the nullifying player property characterizes the equal division solution (see
van den Brink, 2006).
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Table IV.1: Results of Wald tests for the verification of the symmetry, additivity, homo-
geneity, strong monotonicity, and fairness axioms (based only on the groups that formed
a grand coalition)

H–MC Winter

Axiom H0 χ2 p-value χ2 p-value

Symmetry a2 = a3 0.35 0.552 1.85 0.174
d2 = d3 1.60 0.206 0.06 0.811

Additivity c1 = a1 + b1 6.69 0.001 0.13 0.721
c2 = a2 + b2 3.23 0.072 0.02 0.878
c3 = a2 + b3 2.16 0.142 0.47 0.492
c4 = a4 + b4 1.52 0.218 0.78 0.376

Homogeneity d1 = 2a1 0.00 0.946 0.10 0.749
d2 = 2a2 0.08 0.772 0.11 0.745
d3 = 2a3 0.00 0.983 0.00 0.947
d4 = 2a4 0.06 0.813 0.82 0.365

Null player a2 = 0 42.91 0.000 . .
Strong monotonicity a1 = b1 10.76 0.001 102.24 0.000
(H0 should be rejected) c1 = d1 0.16 0.692 26,84 0.000
Fairness b3 − b2 = c3 − c2 0.62 0.433 0.74 0.391

In Table IV.1, we present the results of the Wald tests for the verification of these axioms,

together with the null hypothesis (H0).

Note that the symmetry (according to which H0 should not be rejected) is confirmed

for the two cases under both the Winter and the H–MC mechanisms. The additivity

(according to which H0 should not be rejected) is always confirmed under the Winter

mechanism, but is not confirmed in one of four cases under the H–MC mechanism.

The homogeneity (according to which H0 should not be rejected) is always confirmed

for both mechanisms. The null player property (according to which H0 should not be

rejected) is not confirmed in the H–MC mechanism, but it is confirmed (respected 100%

of the time) for the Winter mechanism. The strong monotonicity (according to which
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Table IV.2: Tests of axioms (based only on the groups that formed a grand coalition)

Axiom H–MC Winter

Symmetry + +
Additivity + +
Homogeneity + +
Null player property - +
Strong monotonicity - +
Fairness + +
+ indicates that the axiom is considered to be satisfied on average. − indicates the opposite.

H0 should be rejected) is confirmed for the Winter mechanism but only for half of the

time for the H–MC mechanism. The fairness (according to which H0 should not be

rejected) is confirmed for both mechanisms.

Let us consider that the axiom is satisfied on average if it is confirmed for strictly

more than half of the cases being tested. Table IV.2 summarizes whether each axiom is

satisfied on average (+) or not (-) for two mechanisms. We can state the following.

Result 4. Provided the grand coalition is formed, the Winter mechanism better satisfies

axioms that characterize the Shapley value than the H–MC mechanism.

V Additional results based on payoff shares

In this section, we report the results based on all the groups and we use the payoff share

instead of restricting our attention to those that formed the grand coalition. Payoff shares

are defined as π̃i
W (vk) =

πWi (vk)∑
j∈N πWj (vk)

×vk(N) and π̃i
H−−MC(vk) =

πH−−MC
i (vk)∑

j∈N πH−−MC
j (vk)

×

vk(N) for each i = 1, 2, 3, 4.

As in the main text, our analyses are based on running a set of OLS regressions
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shown by Eq. 1 but using payoff shares as dependent variables.

Figure V.1 shows the mean of the normalized payoffs in the four games, where the

horizontal lines indicate the Shapley values for each game. It can be observed that for

the Winter mechanism, the average normalized payoffs are not significantly different

from the Shapley values for all four players in games 1, 2, and 4. However, for the H–

MC mechanism, the average normalized payoffs for all four players respect the Shapley

values only in game 3 at the 5% significance level.

Figure V.1: Mean of the normalized payoffs
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols ***, **, and

* indicate the frequency with which the average normalized payoff is significantly different from the Shapley values at the 0.1%,

1%, and 5% significance levels, respectively (Wald test).
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Tables V.1 and V.2 summarize the results of testing the six axioms. Based on the

normalized payoff, on average, the symmetry, strong monotonicity, and fairness axioms

are now satisfied under the H–MC mechanism. For the Winter mechanism, with nor-

malized payoffs, the fairness axiom is no longer satisfied.

Thus, if we consider all the groups and normalized payoffs, the Winter and H–

MC mechanisms are comparable in terms of their distance to the Shapley value and

satisfaction of its properties.

Table V.1: Wald tests for the verification of the symmetry, additivity, homogeneity,
strong monotonicity, and fairness axioms for normalized payoffs

H–MC Winter

Axiom H0 χ2 p-value χ2 p-value

Symmetry a2 = a3 0.53 0.466 0.08 0.781
d2 = d3 0.03 0.869 0.14 0.712

Additivity c1 = a1 + b1 0.99 0.319 7.25 0.007
c2 = a2 + b2 0.07 0.790 0.65 0.422
c3 = a2 + b3 0.00 0.952 2.54 0.111
c4 = a4 + b4 0.92 0.336 0.35 0.555

Homogeneity d1 = 2a1 2.48 0.115 0.06 0.805
d2 = 2a2 0.01 0.926 0.37 0.542
d3 = 2a3 0.31 0.580 0.02 0.892
d4 = 2a4 0.00 0.963 0.35 0.552

Null player a2 = 0 49.51 0.000 . .
Strong monotonicity a1 = b1 46.26 0.000 62.74 0.000
(H0 should be rejected) c1 = d1 14.57 0.001 147.12 0.000
Fairness b3 − b2 = c3 − c2 0.58 0.447 7.53 0.006

Figure V.2 shows the mean Dis2NE and the mean Dis2ED for the two mechanisms

in the four games computed based on the normalized payoffs using all the groups. The

normalized payoffs under the H–MC mechanism are significantly closer to the equal
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Table V.2: Tests of axioms for normalized payoffs

Axiom H–MC Winter

Symmetry + +
Additivity + +
Homogeneity + +
Null player property - +
Strong monotonicity + +
Fairness + -
+ indicates that the axiom is considered to be satisfied on average. − indicates the opposite.

division than those under the Winter mechanism in all four games. Furthermore, those

under H–MC are significantly closer to the equilibrium payoffs in game 4 than those

under the Winter mechanism. However, for games 1 and 4, for both the Winter and H–

MC mechanisms, normalized payoffs are significantly closer to the equal division than

to the equilibrium payoffs. For games 2 and 3, the normalized payoffs under the Winter

mechanism are significantly closer to the equilibrium than to the equal division. Under

H–MC, Dis2NE and Dis2ED are not significantly different in games 2 and 3.
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Figure V.2: Mean of the distances of the normalized payoff vectors from the SPNE and
the equal division

(a) Game 1 (b) Game 2

H–MC Winter H–MC Winter
0

20

40 n.s. ***
***

***

Dis2NE Dis2ED

H–MC Winter H–MC Winter
0

20

40 n.s. ***
n.s. ***

Dis2NE Dis2ED

(c) Game 3 (d) Game 4

H–MC Winter H–MC Winter
0

20
40
60
80

100
n.s. **

n.s.
***

Dis2NE Dis2ED

H–MC Winter H–MC Winter
0

20
40
60
80

100
** **

***
***

Dis2NE Dis2ED

Note: The error bars show the one standard error range. The symbols ***, **, and * indicate statistically significant differences

between the two bars at the 0.1%, 0.5%, and 5% significance levels (Wald test for across treatment differences and t-test for within

treatment difference between Dis2NE and Dis2ED), respectively.
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VI Comparison of a classical H–MC sequential approval

mechanism vs. a pseudo-H–MC simultaneous ap-

proval mechanism

The comparison between sequential mechanisms and simultaneous ones in favoring the

formation of efficient coalitions has been the object of recent experimental laboratory

studies (Abe et al., 2021). Experimental evidence shows that subjects may perform very

differently in these two proposed settings. Analogously, we propose a comparison be-

tween the performances of the H–MC mechanism and a pseudo-H–MC mechanism (in

the following, denoted as H–MCsim), whose structure is identical to that of the original

mechanism except that after an offer is proposed, players are asked to either accept or

refuse the proposal simultaneously. Theoretically, the H–MCsim mechanism allows for

many more Nash equilibria in which two or more players refuse the proposal.1 We show

that sometimes, as observed by Fréchette et al. (2005a), bargaining behavior is not as

sensitive to the different bargaining rules as the theory suggests.

The H–MCsim experiment was conducted in December 2019 at ISER at Osaka Uni-

versity. In total, 84 participants, who had never participated in similar experiments

before, were recruited. The experimental procedure was identical to the H–MC ex-

periment reported in the main text. On average, the experiment lasted for 1 hour 30

minutes, including the instructions (11 minutes), a comprehension quiz (5 minutes),

and payment.2 The average earnings were 2,780 JPY.

1We thank an anonymous reviewer for pointing this out.
2Just as in the H-MC and the Winter, there was a non-binding time limit of 60-seconds to make a

proposal and of 30-seconds to accept or reject the proposal. The average (the standard deviation, the
maximum, and the minimum) time participants spent to make a proposal is 43.10 (22.31, 111, and 5)
seconds (n=313), while those to accept or reject a proposal is 16.72 (10.83, 61, and 1) seconds (n-782).
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VI.1 Grand coalition formation and efficiency

Figure VI.1 report the results concerning the grand coalition formation and efficiency by

pooling four games. There are no significant difference between H–MC and H–MCsim.

Figure VI.1: Proportion of times the grand coalition is formed and efficiency
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate the outcomes of H–MC mechanism

and the H–MCsim mechanism are significantly different at the 0.1%, 1%, and 5% significance levels (Wald test), respectively.

Figures VI.2 reports the results concerning the grand coalition formation and ef-

ficiency for each game separately. The only significant differences reported are for

game 2.
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Figure VI.2: H–MC and H–MCsim mechanisms, proportion of times the grand coalition
is formed and efficiency
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate a statistically significant difference at

the 0.1%, 1%, and 5% significance levels (Wald test), respectively.
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Figure VI.3: H–MC and H–MCsim mechanisms, mean payoffs all the group
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols ***, **,

and * indicate the average normalized payoff, which is significantly different from the Shapley value at the 0.1%, 1%, and 5%

significance levels (Wald test), respectively.

VI.2 Allocations

We follow the analyses in the main text by first looking at the average payoffs of each

player in each game based on the all the groups.

VI.2.1 Average payoffs

Figure VI.3 shows the average payoffs of each player in each game. The horizontal lines

indicate the Shapley values for each game. As we have seen in the main text comparing

20



Table VI.1: Result of Shapley distance decomposition. Based on pooling the data of all
groups and all games

||esym||2 ||eeff ||2 ||enull||2 ||eadd||2 ||eφ||2
H-MC 38.19 429.96 63.97 270.84 802.88

(12.73) (53.41) (8.27) (20.70) (62.70)
H-MCsim 25.90 386.64 39.55 317.10 769.12

(2.28) (40.36) (10.47) (21.81) (55.17)
No. Obs 328 328 328 328 352
R2 0.085 0.170 0.107 0.261 0.378

p-value∗ 0.374 0.538 0.110 0.168 0.698
Note: Standard errors are corrected for session-level clustering effects
and shown in parentheses. < eadd, enull > are not reported in the table
as they are negligible (the mean values are 0.0093 for H–MC and 0.0074
for H–MCsim).
* p-values for testing H0: H–MC = H–MCsim (based on the Wald test)

the Winter and H–MC, because of the failure of forming the grand coalition, the average

payoffs are significantly different from the Shapley values in both H-MC and H-MCsim.

VI.2.2 Shapley distance decomposition

Are there significant differences in terms of the results of Shapley distance decomposi-

tion between H-MC and H-MCsim? The results reported in Table VI.1 suggest that is not

the case. The average Shapley distances and their four components are not significantly

different between H-MC and H-MCsim.

VI.3 Analyses based only on groups that formed the grand coalition

We now focus on those groups that formed grand coalition. Figure VI.4 shows the

average payoffs obtained by each player in the four games, conditional on the grand

coalition being formed. The horizontal lines indicate the Shapley values for each game.
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Figure VI.4: H–MC and H–MCsim mechanisms, mean payoffs based only on the groups
that formed the grand coalition
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols ***, **,

and * indicate the average normalized payoff, which is significantly different from the Shapley value at the 0.1%, 1%, and 5%

significance levels (Wald test), respectively.

We observe that the two mechanisms perform similarly in that there are players whose

average payoff is significantly different from the Shapley value in all four games un-

der both mechanisms even when we focus on only those groups that formed the grand

coalition.
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VI.3.1 Realized allocations and a posteriori equilibria

In terms of distance from SPNE or equal division, we observe from Figure VI.5 that H–

MCsim results in outcomes significantly closer to equal division compared with H–MC

only in game 1, whereas in the other games there is no significant difference.

Figure VI.5: H–MC and H–MCsim mechanisms, mean of the distances of the realized
payoff vectors from the SPNE and the equal division
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate a statistically significant difference

at the 0.1%, 0.5%, and 5% significance levels (Wald test for across treatment differences and t-test for within treatment difference

between Dis2NE and Dis2ED), respectively.
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VI.3.2 Axioms

Finally, verification of the axioms (comparing Table VI.2 and the left column of Ta-

bles IV.1 and IV.2) indicates that the differences in results between H–MC and H–

MCsim are observed for symmetry and fairness (satisfied in H–MC but not in H–MCsim).

Table VI.2: Results of Wald tests for the verification of the symmetry, additivity, homo-
geneity, strong monotonicity, and fairness axioms (based only on the groups that formed
the grand coalition)

Axiom H0 χ2 p-value Test

Symmetry a2 = a3 5.07 0.024 -
d2 = d3 1.11 0.293

Additivity c1 = a1 + b1 4.84 0.028 -
c2 = a2 + b2 0.03 0.861
c3 = a2 + b3 14.99 0.000
c4 = a4 + b4 11.10 0.001

Homogeneity d1 = 2a1 0.00 0.983 +
d2 = 2a2 13.12 0.000
d3 = 2a3 2.25 0.134
d4 = 2a4 0.43 0.513

Null player a2 = 0 9.90 0.002 -
Strong monotonicity a1 = b1 215.83 0.000 -

c1 = d1 0.67 0.411
Fairness b3 − b2 = c3 − c2 3.02 0.082 +
+ indicates that the axiom is considered to be satisfied on average. − indicates the opposite.

To summarize, there is no systematic difference between the H–MC and the H–

MCsim mechanisms except that the H–MC better satisfies the symmetry axiom than

does H–MCsim if we focus on the groups that formed grand coalitions.
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Figure VI.6: Mean of the normalized payoffs
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols ***, **, and

* indicate the average normalized payoff being significantly different from the Shapley values at the 0.1%, 1%, and 5% significance

levels (Wald test), respectively.

VI.4 Analyses based on all the groups but only on normalized pay-

offs

Below, we compare H–MC and H–MCsim based on the normalized payoffs but using

the data for all groups.

Figure VI.6 shows the average normalized payoffs obtained by each player in the

four games under H–MC and H–MCsim based on results of running a set of OLS re-

gressions as in Eq. 1. The horizontal lines indicate the Shapley values for each game.
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Figure VI.7: Mean of the distances of the normalized payoff vectors from the SPNE and
the equal division
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate a statistically significant difference

at the 0.1%, 1%, and 5% significance levels (Wald test for across treatment differences and t-test for within treatment difference

between Dis2NE and Dis2ED), respectively.

We observe that for games 1 and 4 under H–MCsim, the average normalized payoffs of

each of the four players are not significantly different from the Shapley values at 5%

significance level, while those for H-MC is significantly different at 5% level for at least

for one player in all the four games.

VI.4.1 Normalized payoffs and a posteriori equilibria

In terms of distance from SPNE or equal division, we observe from Figure VI.7 that

Dis2NE is significantly smaller under H–MC than under H–MCsim only in game 4.

For other games, the values are not significantly different between the two mechanisms.

In terms of Dis2ED, although it is significantly smaller under H–MC in game 2, the

opposite is the case for game 3. For games 1 and 4, there is no significant difference
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between the two mechanisms. We observe that normalized payoffs are significantly

closer to the equal division than the SPNE for both mechanisms in games 1 and 4. For

H–MCsim, Dis2ED is significantly larger than Dis2NE in game 2, whereas the opposite

is the case for game 3. For H–MC, Dis2NE and Dis2ED are not significantly different

in games 2 and 3.

VI.4.2 Axioms

Finally, verification of the axioms (comparing Table VI.3 and the left column of Ta-

bles V.1 and V.2) indicates that the differences in results between H–MC and H–MCsim

are observed for additivity and homogeneity (satisfied in H–MC but not in H–MCsim).

Table VI.3: H–MCsim normalized payoffs, Wald tests for the verification of the symme-
try, additivity, homogeneity, strong monotonicity and fairness axioms

Axiom H0 χ2 p-value Test

Symmetry a2 = a3 1.01 0.314 +
d2 = d3 0.47 0.492

Additivity c1 = a1 + b1 36.91 0.000 -
c2 = a2 + b2 1.11 0.292
c3 = a2 + b3 0.53 0.466
c4 = a4 + b4 4.78 0.0288

Homogeneity d1 = 2a1 0.16 0.689 +
d2 = 2a2 0.28 0.598
d3 = 2a3 5.90 0.015
d4 = 2a4 3.23 0.072

Null player a2 = 0 9.90 0.002 -
Strong monotonicity a1 = b1 23.87 0.000 +
(H0 should be rejected) c1 = d1 11.55 0.001
Fairness b3 − b2 = c3 − c2 0.15 0.694 +
+ indicates that the axiom is considered to be satisfied on average. − indicates the opposite.

To summarize, even comparing the payoff shares using all the groups, there is no
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systematic difference between the H–MC and the H–MCsim mechanisms, except that

H–MC better satisfies the additivity axiom than H–MCsim.

VII Translated instruction materials and screenshots of

the comprehension quiz

• Winter mechanism: https://www.dropbox.com/s/galeo3todbah7iw/

Winter_1_loop_handout.pdf?dl=0

• H–MC mechanism: https://www.dropbox.com/s/ctlw85momf96vmx/

HMChandout_seq.pdf?dl=0

• Simultaneous voting version of the H–MC mechanism (H–MCsim): https://

www.dropbox.com/s/78lf5bn6qi3qfwp/HMChandout_sim.pdf?dl=

0
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