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1 Introduction

Whenever a facility is shared by different customers, departments, or other units of an
organization, the problem of how to allocate the costs or the payoffs among players
arises. Relevant examples of this situation include airports, transit systems, water dis-
tribution networks, inventory models, and scheduling. These contexts are well known
as cost or payoff allocation (or sharing) problems. Similar sharing problems arise in
the context of “co-opetition” (Brandenburger and Nalebuff] |1996) where competitors
cooperate to achieve a common goal. Usually, in such contexts, two approaches based
on game theoretical concepts may be adopted.

One approach is for the players to bargain among themselves to determine how
costs or payoffs should be shared. However, this implies a strategic interaction, which
may result in unnecessary additional costs if it is conducted in an unrestricted fashion
(see, e.g., the arguments by [Roth and Verrecchia, 1979). Instead, many bargaining
procedures follow the tradition of setting up sequential, perfect information games based
on offers, that is, games in which, at each stage, one of the players becomes a proposer
of a cost (payoff) allocation, with a requirement for reaching unanimous agreement.
Such bargaining procedures represent negotiations in the style of the well-known two-
player bargaining over a pie in Rubinstein’s problem (Rubinstein, 1982), which is then
extended to the n-player case.

Alternatively, one can view the problem as a normative one, in which an external
player, a so-called regulator, designs a pricing (rewarding) scheme that maximizes some
measures of social welfare or that imposes axioms of equity or stability. [Shubik] (1962)
was among the original proponents of the Shapley value (Shapley, [1953) as a method

of joint-cost allocation. At present, this value continues to attract the greatest interest



among the allocation schemes predicated on notions of cooperative game theory (see,
e.g., Littlechild and Owen, |1973}; Schulz and Uhan, 2010; Timmer et al.,[2013).

Bridging the gap between the strategic and cooperative approaches is recognized as
a fundamental issue of game theory. Attempted resolutions of this issue, well known
as the Nash program (Nash, [1953)), have provided many different strategic bargaining
mechanisms that sustain the Shapley value at equilibrium (for example, among others,
Hart and Mas-Colell, |1996; [Pérez-Castrillo and Wettstein, 2001). Such mechanisms fit
and unify the two approaches, allowing the players who face an allocation problem (in
our specific context) to bargain in a restricted way, and to converge to a stable solution
without the need for an intermediary.

Both the original normative implementation of the Shapley value by a regulator and
the playing of classical bargaining mechanisms based on offers that lead to the Shapley
value require one single agent, either the regulator or one of the players, to propose a
complete allocation. In many contexts, the centralization in the hands of a single player
is often desirable and encouraged. However, in some specific domains, this may repre-
sent an unrealistic assumption, for example, when players are customers of a facility and
do not necessarily know about other customers (Young, 1998)), or when computing such
allocations requires data from each player, some of which may be private (McSherry
and Talwar, 2007)).

An alternative but less common approach is to describe a bargaining mechanism
based on demands rather than offers. A demand-based mechanism was the basis of the
implementation by Nash| (1953)) of the cooperative bargaining solution by Nash| (1950).
Other examples of mechanisms based on demands, though not common, include Young
(1998), who describes a demand revelation mechanism in which potential customers of

a public facility simply bid to be served. Bargaining mechanisms based on demands



resemble oral auctions, in which each player, standing alone, reveals the charges he or
she is ready to pay to be served, or the payoff he or she is ready to accept for offering
collaboration, and waits for such a request to be met. In a demand-based mechanism,
acceptance of a proposal by the organization typically depends on objective feasibility
conditions rather than on subjective approval by its members.

In this paper, we aim to investigate the differences between demand- and offer-based
bargaining mechanisms by experimentally comparing the two well-known mechanisms
inducing the Shapley value as an ex ante equilibrium outcome of a noncooperative bar-
gaining procedure. We choose two mechanisms that are based on these opposing ap-
proaches (demand vs. offer) but that remain, in our opinion, similar in terms of the ease
with which they can be understood by the participants in a laboratory experimentE] The
first mechanism is Winter’s demand commitment bargaining mechanism (Winter, 1994,
referred to as the Winter mechanism below). The second is the Hart and Mas-Colell
procedure (Hart and Mas-Colell, |1996|, referred to as the H—MC mechanism below).

Both procedures are described as sequential, perfect information games, where, at
each stage, a player becomes a proposer. In accordance with the theoretical presentation
of the two mechanisms, we illustrate the bargaining procedures to define a sharing of
payoffs rather than an allocation of costsE] In the first mechanism, which is defined
for cooperative games with increasing returns to scale for cooperation (strictly convex
games), the proposer makes a demand for him- or herself concerning the payoff that
he or she is willing to receive from a possible collaboration. In the second mechanism,

which is defined for monotonic games (a much weaker assumption), the proposer makes

'A comparison between offer-based and demand-based mechanisms has been conducted experimen-
tally for voting games by [Fréchette et al.| (2005a)), as well as empirically by, for example, |Warwick and
Druckman| (2001) and|Ansolabehere et al.| (2005)), employing field data.

“It is straightforward to theoretically establish the equivalence between these two.



a proposal to each of the other players concerning the payoff he or she is willing to offer
them.

Two main issues arise with most strategic bargaining models, as observed by Fréchette
et al. (2005a), in experimental analyses of some well-known legislative bargaining pro-
cesses. First, the equilibrium solution may require an unrealistic degree of rationality on
the part of the players, such that the experimental evidence is very far from the theoreti-
cal prediction. Second, partly related to the first point, while the theoretical predictions
are very sensitive to variations in the rules of the game, the observed bargaining behav-
iors in the experiment are not always so. In our case, although two mechanisms have
the same ex ante prediction (the Shapley value as expected payoffs), it is possible that
the degree to which the observed behavior deviates from the theoretical prediction, and
the reason for doing so, may differ greatly between the two.

Note that, it has been argued that the difference between a demand-based vs. an
offer-based mechanism is less relevant when considering two-player games, such as in
Rubinstein (1982))’s bargaining-over-a-pie game (see, Fréchette et al., 2005a). However,
it may become crucial when considering groups with at least three members. Notice
that, on one hand, in an offer-based mechanism, because proposers propose an allocation
by dividing the worth of the coalition, it is not difficult for a proposal to satisfy both
the feasibility and efficiency conditions. In demand-based mechanisms, on the other
hand, because each player separately makes his/her demand, coordination among them
to make the submitted set of demands as a whole to satisfy these two conditions becomes
more difficult as the group becomes larger.

Our analysis mainly focuses on (i) analyzing whether these mechanisms lead to
formation of the grand coalition and (ii) testing the convergence in expected value and,

as predicted by the theory, to the Shapley value.



Our results show that the H-MC mechanism results in a higher frequency of grand
coalition formation and a higher efficiency than does the Winter mechanism. Con-
versely, the Winter mechanism better implements the Shapley value as the average pay-
off provided that the grand coalition is formed. Therefore, our results suggest that an
offer-based H-MC mechanism better induces players to cooperate and to agree on an
efficient outcome, whereas a demand-based Winter mechanism better implements allo-
cations that reflect players’ effective power provided the grand coalition is formed.

The remainder of the paper is organized as follows. Section 2] reviews existing
studies that are most relevant to our work. Section [3| presents the general definition and
the properties of a cooperative transferable utility (TU) game, as well as the Shapley
value. Section [] presents the two mechanisms that we investigate, namely the Winter
and the H-MC mechanisms. Section [5] describes the setting of our experiment. The
results are presented in Section [6] and Section [7] concludes. Additional analyses that
supplement our results and provide new points for reflection are contained in the Online

Appendices [ to VL.

2 Related work

Bridging the gap between the noncooperative models, in which the primitives are the
sets of possible actions of individual players, and the cooperative models, in which they
are the sets of possible joint actions of groups of players, has been recognized as a fun-
damental issue of game theory. The very first attempt at this so-called Nash program
dates back almost 70 years to Nash himself (Nash, 1953)). His idea was to provide a
noncooperative foundation for cooperative solution concepts, and he began doing so

by proposing a noncooperative game that sustained the Nash solution of his two-player



bargaining problem (Nash, 1950) as its equilibrium. Following this first attempt by
Nash, many alternative procedures for implementing solutions of two-player bargaining
problems or n-player pure bargaining problemf] have been proposed. Some mecha-
nisms intended to obtain the Nash solution, exactly or approximately, at equilibrium
(see, among others, Binmore et al., 1986} Trockel, 2002). Others aimed instead to ob-
tain the Kalai-Smorodinsky solution (Kalai and Smorodinsky, [1975)), that is, the main
alternative solution to such problems (Moulin, |1984b; Trockel, 1999; Haake, 2000).

Many different theoretical mechanisms have been designed with the aim of imple-
menting other cooperative solution concepts via a strategic interaction of the players for
more generic cases, that is, when there are more than two players or when the bargain-
ing problem is not pure. This is the case, for example, in the seminal work of Harsany1
(1974), who reinterpreted the von Neumann—Morgenstern solution as an equilibrium of
a noncooperative bargaining mechanism, and of the many works sustaining the most fa-
mous axiomatic solution concept by [Shapley| (1953), the Shapley value. For a relevant
and extensive review of the theoretical literature on the Nash program, we refer readers
to the surveys by [Serrano| (2005, 2008, 2014, |2021).

In this section, we focus on the literature devoted to testing cooperative game theory
through experiments. To date, this literature has focused mainly on three different direc-
tions. The first direction provides a normative interpretation, as in|De Clippel and Rozen
(2022), in which subjects designated as decision-makers express their view on what is
fair for others by recommending a payoff allocation. De Clippel and Rozen| (2022
show that the decision-maker’s choices can be described as a convex combination of the

Shapley value and the equal division solution.

3A pure bargaining problem is a cooperative game in which only the grand coalition N creates a
positive surplus with respect to what each player can achieve if he or she does not cooperate with anyone.



The second direction investigates how an unstructured interaction affects the final
agreement. One example is the paper by Kalisch et al. (1954), in which groups of
players are asked to freely discuss the formation of coalitions and to reach an agree-
ment on how to split the related values. The authors identify many different factors that
influence the final outcome of such a procedure, including personality differences or
the geometrical arrangement of players around the table. Similarly, but with a greater
focus on voting games, [Montero et al.| (2008]) propose an unstructured bargaining pro-
tocol in which participants propose and vote on how to distribute a fixed budget among
themselves. The paper provides experimental evidence of the so-called paradox of new
members, according to which enlargement of a voting body (i.e., the addition of a new
voter) can increase the voting power of an existing member. |Guerci et al.| (2014) study
the impact of variations in the experimental protocol of Montero et al.| (2008)) on the
formation of the so-called minimal winning coalitions, that is, coalitions for which each
player is crucial.

Most experimental works in the literature follow a third direction, studying the out-
come when a more formal (or structured) bargaining protocol is imposed. Our paper
broadens this last direction of research.

Formal bargaining protocols have been designed to tackle different aspects of the
cooperative inclination of the players under different settings. For example, Murnighan
and Roth|(1977) investigate the effect of various communication/information conditions
on the final outcome in a specific game played by a monopolist and two weaker play-
ers. They show how the results over the entire set of conditions closely approximate
the Shapley value, although they often report a clear tendency for an equal split of the
pie. Similarly, Murnighan and Roth| (1982) introduce bargaining models to investigate

the influence of information shared by subjects about the games (e.g., payoffs) on the



final outcome. They show that the quality of the information has an impact on the final
outcome and that the Nash bargaining solution has a good predictive performance in
many cases. Bolton et al. (2003) investigate how the communication configuration af-
fects coalition negotiation and show how players with weaker alternatives would benefit
from a more constrained structure, especially if they can be the conduit of communica-
tion, whereas those endowed with stronger alternatives benefit from working within a
more public communication structure that promotes competitive bidding. Other works
focus more specifically on the coalition formation process, including Nash et al.[(2012);
Shinoda and Funaki (2019); |Abe et al.| (2021)). In the first paper, the authors propose
finitely repeated three-person coalition formation games, showing how efficiency re-
quires people’s willingness to accept the agency of others, such as political leaders. The
second paper is then presented as a follow-up, in which the authors maintain the same
value of the coalitions as in Nash et al.| (2012)), but design a different bargaining proto-
col. They report a rare formation of a grand coalition, which can be induced by some
external factors, such as the presence of a chat window. The third paper presents a com-
parison between two mechanisms that invite players to join a meeting simultaneously or
sequentially. The authors report that the sequential mechanism induces a higher social
surplus than the simultaneous mechanism. Moreover, players make choices consistent
with the subgame perfect Nash equilibrium (SPNE) in the sequential setting and choose
the dominant strategy in the simultaneous setting, when a dominant strategy exists.
Formal bargaining protocols are mostly based on the implementation of allocations,
which are shown to converge to some specific well-known solutions. This is the case,
for example, in Nash| (1953)) and |[Harsany1 (1974)), which we have referred to above, or
in the case of the bargaining mechanism proposed by [Raiffa (1953) to implement the

Raiffa solution (as opposed to the Nash solution) to the Nash cooperative bargaining



problem. Several experiments have been conducted, with the final goal of testing Nash
axioms, or of comparing Nash and Raiffa solutions (see, e.g., Nydegger and Owen,
1975} Rapoport et al., [1977). In addition, there is a large literature devoted to studying
the class of bidding mechanisms. Bidding mechanisms are introduced by Demange
(1984) and Moulin| (1984a), and Moulin and Jackson| (1992) study them in economic
environments. They are developed by Pérez-Castrillo and Wettstein (2001) and Ju and
Wettstein| (2009) to implement solution concepts in the framework of cooperative TU
games.

In particular, many different theoretical mechanisms have been designed specifically
with the aim of implementing the best-known cooperative solution, the Shapley value
(see Shapley, 1953). Because this solution is applied in many economic problems,
supporting it through strategic explanation is considered to be particularly important.
See among others, Harsany1 (1981), Gul (1989), Hart and Moore (1990), Winter| (1994),
and [Hart and Mas-Colell (1996)@

Despite the large body of existing literature, the Nash program “is not ready for
retirement yet”, but is, on the contrary, “still full of energy” and “waiting for good pa-
pers to be written” (Serrano, 2021). In this paper, we aim to contribute to this research
agenda by providing new insights gained from a controlled laboratory experiment. In
particular, we propose an experimental comparison of two mechanisms. The first mech-
anism is the one-period version developed by |Winter (1994) (this simplified version was
also previously used by Bennett and van Damme| (1991) to treat Apex games, a type of
weighted majority games). The second mechanism is by Hart and Mas-Colell (1996), in

the specific case in which a proposer whose proposal is rejected leaves the game with a

4Krishna and Serrano| (1995) deepen the study of the set of subgame perfect equilibria associated with
the bargaining mechanism proposed by Hart and Mas-Colell| (1996)).
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probability 1. Our work is similar to Fréchette et al.| (2005a), who experimentally com-
pare an offer-based model of |Baron and Ferejohn| (1989) with a demand-based model
of Morelli (1999) in weighted majority voting games. Earlier experimental studies of
the Baron—Ferejohn model include Fréchette et al.| (2003, 2005c)), and [Fréchette et al.
(2005b) provide an experimental study of demand bargainingﬂ However, Fréchette
et al.| (2005a) present the first work to directly compare the two within an experimental
framework. Their results show that proposers have some first-mover advantage in both
the demand and offer games, but their power does not differ nearly as much between the

two mechanisms as theory predicts.

3 Theoretical model

3.1 Cooperative TU games and solutions

Let N = {1,...,n} be a finite set of players. Each subset S C N is called a coalition,
and N is called the grand coalition. A cooperative TU game (from now on, cooperative
game) consists of a couple (N, v), where N is the set of players and v : 2 — R is the
characteristic function, which assigns to each coalition S C N the worth v(.S), with
the normalization condition v(()) = 0. The worth of a coalition represents the value
that members of .S can achieve by agreeing to cooperate. To simplify the notation if no
ambiguity appears, we consider the set of players N as fixed and we write v instead of
(N,v). We use GV to denote the set of all games with player set V.

A game v € GV is said to be

* monotonic if v(S) < v(T) foreach S CT C N,

SFiorina and Plott|(1978) propose multiple experiments on committee decision-making under majority
rules to test a wide range of solution concepts of noncooperative games.
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o superadditive if v(S) + v(T) < v(SUT) whenever S NT = (), with S, T C N,

» convex if v(S) +v(T) <v(SUT)+v(SNT), foreach S, T C N, and strictly

convex if the inequality holds strictly.

We observe that convexity = superadditivity = monotonicity. In (strictly) convex
games, cooperation becomes increasingly appealing, and a so-called “snowball effect”
is expected, leading to the formation of the grand coalition. Another equivalent defini-
tion for convexity can be stated as v(S U {i}) — v(S) < v(T U {i}) — v(T), for each
SCTCN\{i}.

Given a game v € GV, an allocation is an n-dimensional vector (X1,...,2,) € RN,
assigning to player i the amount x; € R. For each S C N, we assume that z(S) =

> ics Ti- The imputation set is defined by:

I(v) ={z € R"|z(N) =v(N)and z; > v({i}) Vi € N},

that is, it contains all the allocations that are efficient (x(N) = v(IN)) and individually
rational (x; > v({i})Vi € N).

The core is the set of imputations that are also coalitionally rational, that is,

C(v) ={z € I(v)|z(S) > v(S) VS C N}.

An element of the core is stable in the sense that if such a vector is proposed as an
allocation for the grand coalition, no coalition will have an incentive to split off and
cooperate on its own. Intuitively, the idea behind the core is analogous to that behind
a (strong) Nash equilibrium of a noncooperative game, namely an outcome is stable if

no deviation is profitable. For the Nash equilibrium, the possible deviation concerns a
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single player, whereas in the core, deviations of groups of players are relevant.
A solution is a function 1) : GV — R that assigns an allocation 1)(v) to every game
v € GN. The Shapley value is the best-known solution concept, which is widely applied

in economic models, and is defined as:

oty =y, WL s —wis\ e
SCN,ieS '

The Shapley value assigns to every player his or her expected marginal contribution to
the coalition of players that enter the game before this player, given that every order
of entrance has equal probability. This solution concept has been defined as respecting
some notion of fairness, but it is not necessarily stable. However, if the game is super-
additive, the Shapley value is an imputation, and if the game is convex, it belongs to the
core (in particular, it is its barycenter).

Players i and j are symmetric in v € GV, if v(S U {i}) = v(S U {j}) for all
S C N\ {i,j}. Player i is a null player in v € GV if v(S) = v(S \ {i}) forall S C N.

In the literature, we find various axiomatic characterizations of cooperative solutions
and, in particular, of the Shapley value (Shapley, 1953; [Young, 1985} van den Brink,
2002). Given a solution v’ : GV — R¥, we list here the four axioms that are used in the

characterization by Shapley (1953), and later be used in analyzing our dataE]
Axiom 1 (Efficiency): for every vin GV, >,y ¥;(v) = v(N).

Axiom 2 (Symmetry): if i and j are symmetric players in game v € G, then

Pi(v) = 1;(v).

Axiom 3 (Additivity): for all v,w € GV, ¥ (v +w) = Y(v) + P (w).

See Online Appendix IV for other axioms that have been proposed to characterize the Shapley value.
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Axiom 4 (Null player property): if i is a null player in game v € G”, then

4 Two mechanisms

In this section, we present the demand-based Winter mechanism (Section {.1)) and the
offer-based H-MC mechanism (Section in more detail. Section 4.3] compares the

equilibrium predictions of the two mechanisms with a simple example.

4.1 The Winter mechanism

Winter (1994) presented a bargaining model based on sequential demands for strictly
convex cooperative games. As noted, in such games, cooperation becomes increasingly
appealing and a “snowball effect” is expected, leading to the formation of the grand
coalition. Moreover, in convex games, the Shapley value is a central point in the core,
which is always nonempty.

In this model, players announce their demands publicly in turns. That is, the players
effectively state “I am willing to join any coalition that yields me...” and wait for these
demands to be met by other players. The bargaining starts with a randomly chosen
player from N, say player . This player publicly announces his or her demand d; and
then points to a second player, who has to state his or her demand. Then, the game
proceeds by having each player introduce a demand then point at a new player to take a
turn. If or when, at some point, a compatible demand is introduced, which means that
there exists a coalition S for which the total demand for players in S does not exceed
v(9), then the first player with such a demand selects a compatible coalition S. The

players in S receive their demands and leave the game, and the bargaining continues
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with the rest of the players using the same rule on v restricted on N \ S.

Here, we present the one-period Winter mechanism we consider in our experiment
more formally. This is a simplified version of the more general mechanism in Winter
(1994), which allows for more periods and includes a discount factor. A decision point
position at time ¢ of the one-period demand commitment game is given by the vector

(51,55, ds;, j), where:
St C N is the set of players remaining in the game,
St C St is the set of players who have submitted demands that are not yet met,

dgt = (d;)iesy is the vector of demands submitted by players in S5, (0 < d; <

maxgscn U(S)), and

J € Si\ S is the player taking the decision by introducing a demand d;. His
or her demand d; is said to be compatible if there exists some S C S5 with

v(SU{j}) = D ,cqdi > dj. Otherwise, d; is not compatible.
With j’s decision, the game proceeds in the following way:

1) If d; is compatible, then j specifies a compatible coalition .5, each player ¢ €
S'U{j} is paid d;, and a player k # j is randomly chosen from S! \ S. The new
position is now given by (S, 55", dgiii, k), with S77 = S{\ (S'U {;}) and

Syt =S5\ (SU{j}.
2) If d; is noncompatible, then two cases are distinguished:

2,) if S5 = ST\ {j} (j is the last player to make a demand), then each player

i € St (j included) gets his or her individual payoff v({i}), and the game ends;

15



2;) if S§ < St \ {j}, then j specifies a new player k& # j in St \ S and the new

position is (Si*', S5, dgeer, k), with S7™' = Sfand Sy = S5 U {j}.

The game starts with a randomly chosen player ;7 € /N. Then, the initial position is
set to be (N, (), dy, 7). It terminates either when there are no more players in the game
(see point 1 above), or when St U {j} = S% (see point 2, above).

As shown by Winter for the more generic case, this mechanism has a unique sub-
game perfect equilibrium, which assigns equal probabilities according to the principle
of indifference. At this equilibrium, the grand coalition forms and the a priori expected
equilibrium payoff coincides with the Shapley value. Moreover, given a specific or-
dering of the players, the a posteriori equilibrium payoff of each player depends on the
order of players only through the set of the player’s successors but it is not influenced by
the way that these players are ordered, as each player demands a marginal contribution

to the set of successors.

4.2 The Hart and Mas-Colell mechanism

Hart and Mas-Colell (1996) proposed a bargaining procedure for monotonic cooperative
games. This is a much weaker assumption compared with the strict convexity required
by the Winter mechanism. Thus, the H-MC procedure is applicable for a larger set of
cooperative games.

In this mechanism, the bargaining starts with a randomly chosen proposer making
an offer to the other players, with the meaning “If you agree to form a coalition with
me, [ will give you...”. Then the other players, who act sequentially, may either accept
or reject the proposal. The requirement for agreement is unanimity. The key modeling

issue is the specification of what happens if there is no agreement and, as a consequence,
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the game moves to the next stage. The more general mechanism by Hart and Mas-Colell
(1996) allows for a proposer, even after a rejection, to remain in the game and join the
other to next stage with a given probability. In our experiment, we consider the special
case in which such a probability is zero, and then, if the proposal is rejected, the proposer
leaves the game with his or her individual value and the bargaining continues among the
rest of the players, with a new player randomly chosen as a new proposelﬂ

We present a more formal description of the H-MC mechanism. A decision point

position at time ¢ is simply given by the vector (S, j), where:
SY C N is the set of players remaining in the game,

j € S* is the player making an offer to the remaining players (¢;);cst\(;; such

With j’s proposal, the game proceeds now in the following way:

1) Ifall i € S*\ {j}, who decide sequentially, accept the proposal one after
the other, then players in S* \ {j} are paid (t;);est\ (53, player j is paid v(S*) —

Zz‘est\{j} t;, and the game ends;

2) If at least one player i € S*\ {;j} refuses the offer, then two cases are distin-

guished:

2a) if |S*| = 2 (only one more player is left, together with 5), then they both

receive their individual value v({:}) for each i € S*, and the game ends;

20) if |S*| > 2, then player i is removed from the game, he or she receives his or

her individual payoff v({i}), a new proposer k € S**1 = S\ {j} is randomly

7A first simplified version of the mechanism by Hart and Mas-Colell had already appeared in Mas-
Colell| (1988).
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selected, and the new position is (S**! k).

The game starts with a randomly chosen player ;7 € /N. Then, the initial position is
set to be (NN, j). It terminates either when there are no more players in the game (see
point 2a above), or when the proposal is unanimously accepted (see point 1 above).

Hart and Mas-Colell| (1996) show that this game has a unique subgame perfect equi-
librium. At this equilibrium, the grand coalition forms and the a priori expected equi-
librium payoff coincides with the Shapley value. In contrast to the Winter mechanism,
given a specific initial proposer 5 € N (in the previous mechanism, it was necessary to
specify the order of all the players, whereas in this case only one player, the proposer,
needs to be specified at equilibrium), the a posteriori equilibrium payoff assigns to each
other player his or her Shapley value in the cooperative game, reduced to the set of play-
ers N \ {j}, and the proposer is assigned his or her marginal contribution to the grand

coalition v(N) — v(N \ {j})-

4.3 A comparison between the Winter and the H-MC mechanisms

We illustrate the two mechanisms using the strictly convex three-player game shown
in Table [II Although our experiment is based on four-player games, a three-player
game example is of particular interest because it allows us to graphically represent the

imputation set, the core, and the different solutions, as illustrated in Figure m

Table 1: A three-player game

S 1 2 3 12 13 23 N
v(S) 20 20 30 45 55 60 100
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As we have already observed, the convexity assumption implies the monotonic-
ity. Thus, the game satisfies the assumptions of both the Winter and H-MC mecha-

nisms. The Shapley value of this game is given by the vector ¢(v) = (122, 132 212) —

67 67 6

(28.33,30.83,40.83), which corresponds to the a priori equilibrium payoff for both the
Winter and H-MC mechanisms.

We suppose now that player 1 is chosen randomly as the first proposer in both mech-
anisms. Independently of the order of the following players in the Winter mechanism,
the proposer will receive an a posteriori equilibrium payoff equal to 40 in both mech-
anisms, which corresponds to his or her marginal contribution to the grand coalition
v(N) —v(N \ {1}). We can see that both mechanisms lead to a proposer advantage, as
40 > l%, meaning that, as the first proposer, player 1 can obtain more than his or her
Shapley value.

Suppose now that the total ordering of the players in the Winter mechanism is given
by 1, 2, and 3. The a posteriori equilibrium payoff of the Winter mechanism is given by
the vector SO Ly (v) = (40, 30, 30), in which player 2 demands his or her marginal con-
tribution v({2,3}) — v({3}), and player 3 demands his or her individual value v({3}).

Conversely, in the case of the H-MC mechanism, the proposer offers the Shapley
value of the reduced game to players 2 and 3. Thus, the a posteriori equilibrium payoff
is given by the vector SO Ly c(v) = (40,25,35). Even with the disadvantage of not
being the first mover, player 2, as the second mover, manages to obtain more under the
Winter mechanism than under the H-MC mechanism even if, in both cases, he or she
obtains less than his or her Shapley value.

Figure 1] shows the imputation set I (v) = co {(20, 50, 30), (50, 20, 30), (20, 20, 60)),
the core C'(v) = co ((40, 30, 30), (40, 20, 40), (25, 20, 55), (20, 25, 55), (20, 45, 35), (25, 45, 30)),

the Shapley value ¢(v), and possible a posteriori solutions SO Ly, (v) (6 black dots)
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Figure 1: The core of the three-player game

(100, 0,0)
—JInputation Set
20 —J Core
T2 45 T

SOL g (v)

o o' 40
SOLw (v). /
.{1 T .f?z 20
b(v)
(0,100, 0) 30 55 (0,0,100)

T3

and SOLgpc(v) (3 white dots). A point in the simplex corresponds to an allocation
(1,9, 23). For example, the height of a point from the edge that is opposite to the
apex labeled (100, 0, 0) represents the payoff allocated to player 1. Thus, a point on the
bottom edge represents an observed allocation that gives a zero payoff to player 1. Sim-
ilarly, the height of a point from the edge that is opposite to the apex labeled (0, 0, 100)
represents the payoff allocated to player 3.

We make the following observation to conclude this example and the comparison

between the two mechanisms.

Observation 1. The core is always a convex polyhedron. The a posteriori equilibrium
of the Winter mechanism always coincides with a vertex of this polyhedron. The a
posteriori equilibrium of the H-MC mechanism always provides a vector on a face of

this polyhedron.
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Table 2: The games

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N

v(S) 0 5 5 10 20 20 25 20 25 25 50 60 60 60 100
va(S) 0 20 20 30 20 20 30 45 55 60 45 55 60 100 100
v3(S) =v1(5) + v2(S)

’U4(S) = 2U1 (S)

S The experimental setting

5.1 The games

We consider the four four-player games shown in Table [2] in our experiment. These
games are chosen to test the properties of the Shapley value that are discussed in Section

3.1. Note that:

* games 1, 3, and 4 are strictly convex, whereas game 2 is only convex. All four
games are, by consequence, monotonic. Therefore, all four games respect the
assumptions of the H-MC mechanism, whereas all except game 2 respect the
assumptions of the Winter mechanism. However, with game 2 being only convex,
we consider that “strict convexity” could be relaxed and the game could still be

played in such a case;
* in games 1 and 4, players 2 and 3 are symmetric;

* in game 2, player 1 is a null player. This is the reason why the game is only
convex, but not strictly convex, as the presence of a null player does not allow, by
definition, the possibility of having a strictly increasing marginal contribution for

such a player;
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Table 3: The Shapley values of games 1, 2, 3, and 4

¢1(v)  B2(v)  @3(v)  Pa(v)

Game 1 22.08 23.75 23.75 30,42
Game 2 0 28.33 30.83 40.83
Game 3 22.08 52.08 54.58 71.25
Game 4 44.16 475 475 60.83

» game 3 is defined as the sum of games 1 and 2;

» game 4 is defined as twice game 1 and it preserves the symmetry of players 2 and

3;

The Shapley values of the four games are presented in Table [3] The equal division
payoff vector is simply equal to ED(vy) = (25,25,25,25) when £ = 1,2, and to
ED(vy) = (50,50, 50,50) when k& = 3, 4.

6 Results

The experiment was conducted at the Institute of Social and Economic Research (ISER),
Osaka University, in January and February 2019 (Winter mechanism) and January and
February 2022 (H-MC mechanism)ﬂ A total of 176 students, who had never partic-
ipated in similar experiments before, were recruited as subjects of the experiment, 96

playing the Winter mechanism and 80 playing the H-MC mechanismﬂ The experiment

8The experiments were conducted in 2019 and 2022 because the original H-MC experiment con-
ducted in December 2019 (which we refer to as the pseudo-H-MC or H-MCg;,,, in Online Appendix VI)
did not reflect the H-MC model precisely (we thank an anonymous reviewer for pointing this out), and
we have redone the H-MC experiment to correct this. Online Appendix VI compares the outcomes of the
pseudo-H-MC conducted in December 2019 and the (corrected) H-MC conducted in January—February
2022.

The difference in the number of participants between the two mechanisms is a result of variations in
the show-up rate among experimental sessions.
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was computerized with z-Tree (Fischbacher, [2007) and participants were recruited using
ORSEE (Greiner, 2015)).

To control for potential ordering effects, each participant played all four games twice
in one of the following four orderings: 1234, 2143, 3412, and 4321 Between each
play of a game (called a round), players were randomly rematched into groups of four
players, and participants were randomly assigned a new role within the newly created
group At the end of the experiment, two rounds (one from the first four rounds and
another from the last four rounds) were randomly selected for payments. Participants
received cash rewards based on the points that they earned in these two selected rounds,
with an exchange rate of 20 JPY = 1 point, as well as a 1,500 JPY participation fee.
On average, the experiments lasted for 1 hour 40 minutes for Winter and 1 hour 45
minutes for H-MC, including the instructions (15 minutes for Winter and 11 minutes

for H-MC), a comprehension quiz (5 minutes), and paymentr_zl The average earnings

10We let participants play all four games, instead of just one, in each session. Although this design
choice may have meant participants were slower in learning how to play the game, we consider that
having within-session variations is desirable because the tests of the axioms involve comparing outcomes
across different games.

"'We implemented random reassignment of the roles across rounds instead of fixing the role. Again,
this may make learning the game slower for players given that their roles change, as|Guerci et al.|(2014)
suggest. However, given the existence of the null player in one of the four games considered, we chose
reassignment of the role to avoid participants feeling the experiment was unfair.

2Participants received a copy of instruction slides, and a pre-recorded instruction video was played.
Quiz was given on the screen after the explanation of the game. The user interface was explained during
the practice rounds referring to the handout about the computer screen. The quiz was given on the
screen after the explanation of the game. The user interface was explained during the practice rounds,
referring to the handout about the computer screen. See Online Appendix VII for English translations of
the instruction materials and the comprehension quiz. At each decision screen, there was a non-binding
time limit. The time limit was set to 60 seconds to make a demand (Winter) or a proposal (H-MC) and
30 seconds to choose a coalition (Winter) or decide to approve or reject the proposal (H-MC). When
the time limit was reached, the message "please make a decision" appears on the top of the screen to
encourage participants to make their decisions. On average (the standard deviation, the max, and the
min), participants took 48.62 (25.28, 304, and 2) second for making a demand (n=768) and 20.36 (13.25,
164, and less than 1) seconds to choose a coalition (n=550) in the Winter. For H-MC, they took, on
average (the standard deviation, the max, and the min), 40.83 (23.23, 160, and 7) seconds for making a
proposal (n=257) and 16.18 (11.54, 87, and 2) seconds to approve or reject a proposal (n=531).
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were 2,650 JPY for Winter and 2,850 JPY for H-MC.

We first compare the Winter and H-MC mechanisms in terms of the frequency of
grand coalition formation and efficiency. Then, we analyze whether the resulting allo-
cations from the two mechanisms match the Shapley values, and also try understanding
the reasons for the discrepancies between the realized allocations and the Shapley val-
ues from the failure of four axioms that characterize the Shapley values presented in
Section 3.1. We contrast the experimental results with the allocation predicted under
the SPNE as well as under an equal division. Additional analyses of our experimental

results are presented in the Online Appendix I to VI.

6.1 Grand coalition formation and efficiency

Panel (a) of Figure 2] presents the results concerning the grand coalition formation under
the H-MC and Winter mechanisms pooling the data of all the four gamesﬁ For game 2,
we consider the partition {{1}, {2, 3,4} } as a realization of the grand coalition for both
the H-MC and Winter mechanisms because player 1 is a null player and, consequently,
the game is only convex and not strictly convexE]

Considering the four games together, the grand coalition (in the case of game 2,
either the grand coalition or the {2, 3, 4} coalition) is formed in 61.9% of the cases under

the H-MC mechanism, but only in 40.1% of the cases under the Winter mechanism.

3The figure is created based on the estimated coefficients of the following linear regressions: gc; =
B1HMC; + BoWinter; + p; where gc; is a dummy variable that takes a value of 1 if the grand coalition
is formed, and zero otherwise, in group ¢, H M C; (Winter;) is a dummy variable that takes a value
of 1 if the H-MC (Winter) mechanism is used, and zero otherwise. The standard errors are corrected
for within-session clustering effects. The statistical tests are based on the Wald test for the equality of
the estimated coefficients of two treatment dummies. See Online Appendix I for results for four games
separately.

14Recall that the Winter mechanism is theoretically defined for strictly convex games. In this game,
Player 1 always has a zero marginal contribution and, as such, can be left out of any coalition at no cost
for either him/her or the other players.
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Figure 2: Proportion of times the grand coalition is formed and efficiency
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate the outcomes of H-MC mechanism
and the Winter mechanism are significantly different at the 0.1%, 1%, and 5% significance levels (Wald test), respectively.

As a direct consequence of the grand coalition being formed in less than 100% of
the cases, both mechanisms fail to achieve full efficiency. Efficiency is computed as the
sum of the payoffs obtained by the four players as a proportion of the value of the grand
coalition of the considered game (100 for games 1 and 2, and 200 for games 3 and 4).
As Panel (b) of Figure 2 shows, considering all the four games together, efficiency is
significantly higher under the H-MC mechanism than under the Winter mechanismE]

Therefore, we conclude as follows.

Result 1. Although the grand coalition is not always formed under the two mechanisms,
it is more frequently formed under the H-MC mechanism than under the Winter mech-
anism. Consequently, efficiency is higher under the H-MC mechanism than under the

Winter mechanism.

Note that under the H-MC mechanism, the proposer proposes an allocation to all

SThe figure is created based on the estimated coefficients of the following linear regressions: Ef f; =
B1HMC; + BoWinter; + u;, where Eff; = %:(A?)‘ is the efficiency measure for group i, HMC;
(Winter;) is a dummy variable that takes a value of 1 if the H-MC (Winter) mechanism is used, and zero
otherwise. The standard errors are corrected for within-session clustering effects. The statistical tests are
based on the Wald test for the equality of the estimated coefficients of the two treatment dummies. If we
consider four games separately, however, the efficiency is not statistically significantly different at 5%
significance level in any of the game. See Online Appendix I.
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the remaining members given the feasibility condition. Conversely, under the Winter
mechanism, the players, speaking one after the other, may make unfeasible demands
or form a small coalition early without waiting for others making their demands. As
a result, the formation of the grand coalition under the H-MC mechanism is simply
determined by whether the remaining players choose to accept the proposal or reject it,
whereas under the Winter mechanism, it can be blocked by either by players forming a
smaller coalition prematurely or by unfeasibility conditions. Such a difference between
the two mechanisms can cause the significantly higher frequency of the grand coalition
formation under the H-MC mechanism compared with the Winter mechanism. Indeed,
in Online Appendix III.1, we report that the main reason for the failure of grand coalition

formation in Winter in our experiment is a coalition being formed before reaching the

fourth player

6.2 Allocations

We use mHMC(

vy) to denote a vector of payoffs obtained by the players in the H-MC
mechanism in game k, with k& = 1,2, 3,4. Analogously, let 7%V (v;,) denote a vector of
payoffs obtained by the players under the Winter mechanism. The ex ante theoretical
prediction for both mechanisms states that the mean of such vectors (based on many re-
alizations with different orderings of the players) should converge to the Shapley value.

Figure 3] shows the mean realized payoffs based on all groups in each of the four

games, and the horizontal lines indicate the Shapley values for each game. The mean

'6In Online Appendix II, we report the frequency of the grand coalition formation and efficiency by
separating the data for the first half (rounds 1-4) and the second half (rounds 5-8) of the experiment. We
observe an increase in both the frequency of the grand coalition formation and efficiency, at least in some
of the games, for both mechanisms. A significantly higher frequency of grand coalition formation and
efficiency is observed under the H-MC mechanism than under the Winter mechanism even in the second
half of the experiment.
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and the standard errors are obtained by running a set of ordinary least squares (OLS)

regressions for the following system of equations:

T = a191 + G292 + a3g3 + asgs + Uq
mo = b1g1 + baga + b3gs + ba1ga + us W
T3 = €191 + C292 + C393 + €494 + U3

Ty = d1g1 + dage + d3gs + dags + ug

where m; is the payoff of player 7, g; is a dummy variable that takes a value of 1 if the
game j € {1,2,3,4} is played, and zero otherwise. Because participants play all four
games twice, we correct the standard errors for within-group clustering effects. Note
that the estimated coefficients a;, b;, ¢;, and d; are the average payoffs in game j for
players 1, 2, 3, and 4, respectively.

When players fail to form the grand coalition, the total payoff obtained by the players
is smaller than the value under the grand coalition. As a result, the average realized
payoft vectors are significantly different from the Shapley value, as shown in Figure [3]
We do observe, however, that in game 2, the average payoff of player 1 under Winter
is zero (just as Shapley value) while it is positive under H-MC. Below, we first follow
the approach proposed by |/Aguiar et al.| (2018) and compute the Shapley distance to
decompose the reasons behind the deviations of the realized payoff vectors from the
Shapley values into the failure of its four main properties. We then further investigate

the realized payoff vectors by focusing on those groups that formed the grand coalition.
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Figure 3: Mean payoffs, all groups
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate the average payoff is significantly

different from the Shapley values at the 0.1%, 1%, and 5% significance levels, respectively (Wald test).

6.2.1 Shapley distance

The approach of Aguiar et al.| (2018) we apply is based on the decomposition of the
distance of the payoff vectors from the Shapley value into the failure of efficiency, sym-
metry, additivity and null player property. The same decomposition has been used in
Chessa et al.| (2022). We present the procedure below.
Let m = (my,mq, 73, m4) be the realized vector of payoffs in a game. We first
find a vector of payoffs closest to 7 that satisfies the symmetry. Call such a vector
sym

v = (" " ™ m?™). Namely, we take the sum of payoffs obtained by

symmetric players s (players 2 and 3 in games 1 and 4) and divide the sum equally
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among them. Thus, in games 1 and 4, 75¥™ = > (2.3} Ts /2, and for non-symmetric

sym

players k (including all the players in games 2 and 3), 7, = 7.

Next, we find a vector of payoffs satisfying efficiency that is closest to 7°¥™. Call

sym.eff _sym.eff
) 1t2 )

the new payoff vector 7*v™¢/f = (7] symeff psymelf)

e . Namely, for

each player i = 1,2, 3,4, m¥"/) = 7™ 4 [u(N) — > jen mil/4

7

We then find a vector of payoffs satisfying null player property that is closest to

7.(.sym,eff. Let 7.[.sym,eff,null — (Wi@ym,eff,null’ W;ym,eff,null7 ﬂ.gym’eff:nU”7 ﬂ.Zym:effan”) be

the resulting vector of payoffs. Specifically, if player n is a null player (player 1 in
game 2), then her new payoff must be equal to zero, that is, wsv™¢//mull — (), Three

other players j in the game (players 2, 3, 4 in game 2) equally share 75¥™// of the null

sym,ef fnull _ ﬂ_s'ym@ff 4+

player. That is, 7; ; symeff /3. When there is no null player in

1l .
symief fonull _ wfym’eff for all :.

the game, 7,
Theorem 3 in|Aguiar et al.| (2018) shows that a vector of payoffs m = (7, ma, 73, 74)
obtained when playing game v can be decomposed as follows: 7 = ¢(v) +e*¥™ +e// +

el 4 eadd Thus, the Shapley error, e? = m — ¢(v), is e? = V™ + e/ 4 enull 4 gadd

where
e = — U™ for all 4,
efff =m0 — nym’eff for all 4,
enull — gsymeel ) gsymeffmull _ gop a1 4,

7 - N %

eddd = g2 ymef finull_ ¢i(v) for all i.

Given this decomposition, the Shapley distance is given by:

||€¢||2:||6Sym||2+||€eff‘|2+||6nu”||2—}-‘|€add||2—|—2<eadd7€nu”>
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Table 4: Result of Shapley distance decomposition. Based on pooling the data of all
groups and all games

[lesv™ (12 fle N2 Jle™™[[* Tle*®[[*  [le°]”
H-MC 38.19 429.96 63.97 270.84 802.88
(12.73)  (53.41) (8.27) (20.70) (62.70)
Winter 85.18 606.81 7.28 321.49 1020.72
(18.97) (101.35) (1.87) (17.33) (72.22)
No. Obs 352 352 352 352 352
R? 0.132 0.220 0.111 0.369 0.421
p-value*  0.079 0.167 0.0003  0.103 0.057
Note: Standard errors are corrected for session-level clustering effects
and shown in parentheses. < e%??, e"“!! > are not reported in the table
as they are negligible (the mean values are 0.0093 for H-MC and 0.0026

for Winter).
* p-values for testing Hy: H-MC = Winter (based on the Wald test)

where < -, - > is the scalar product and for any vector y € R", ||[y||* =< y,y >=
ZiGN %2

We perform the Shapley distance decomposition of each payoff vector and the cor-
responding Shapley value, and compute the average distance, pooling data of all groups
and all games, to compare between H-MC and Winter. Results are presented in Table 4]

One can observe from the last column of Table ] indeed, the Shapley distance is
(marginally significantly) larger under Winter than under H-MC. And this is because
the distance due to the violations of symmetry, efficiency, and additivity axioms tend
to be lager under Winter than under H-MC (and marginally significantly so for the
symmetry). However, as we have observed in Figure[3] the distance due to the violation
of null player property is significantly smaller under Winter than under H-MC. Note

that when decomposed in this way, the distance due to the violation of efficiency axiom

"Differently from the original decomposition by |Aguiar et al, (2018), that ensures orthogonal
components, with our decomposition, in general, vectors e™“! and e are not orthogonal so that
< edd enull ~ g not equal to zero.
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is not significantly different between the two mechanisms unlike what we have seen
above. However, this is due to the difference in the definition. The efficiency measure
used above (3, m;/v(N)) and ||e*//||? are negatively correlated (the Pearson correlation
coefficient is -0.78) but not perfectly so.

To further compare the realized allocations between the two mechanisms in light of
theoretical predictions, let us now focus on those groups that formed the grand coali-
tion. The reason for focusing on groups that formed the grand coalition is that different
coalition structures provide a different value to be shared, and therefore a comparison
between the payoff vectors in relation to some theoretical benchmark would not be clear
cut. We complement our analyses in Online Appendix V and report the corresponding
results based on all groups using payoff shares, instead of restricting our attention to
groups that formed the grand coalition. The idea behind these additional analyses is to
check whether payoff shares respect the hierarchy among the players as predicted by

the theory.

6.2.2 Allocations when the grand coalition is formed

Figure [4] shows the average payoffs obtained by each player in the four games condi-
tional on the grand coalition being formedff] The horizontal lines indicate the Shapley
values for each game. It can be observed that for the Winter mechanism, the average
payoffs are not significantly different from the Shapley values for all four players in
games 1, 3, and 4. Conversely, for the H-MC mechanism, they are significantly differ-
ent from the Shapley values for at least three out of four players in all four games. This

indicates that provided that the grand coalition is formed, the average payoffs under the

8The mean and the standard errors are obtained by running a system of linear regressions as we have
done to generate Figure E]but restricting to those cases where the grand coalition is formed.
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Figure 4: Mean payoffs based only on the groups that formed the grand coalition
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols *#*%*, **

and * indicate that the average payoff is significantly different from the Shapley values at the 0.1%, 1%, and 5% significance levels

(Wald test), respectively.

Winter mechanism are closer to the Shapley values than those under the H-MC mech-
anism. Furthermore, we report in Online Appendix IV that, provided that the grand
coalition if formed, the realized allocations under the Winter mechanism better satisfy

the axioms characterizing the Shapley values than ones realized under the H-MC mech-

anism.

Result 2. Provided the grand coalition is formed, the average payoffs follow the Shapley

values more closely under the Winter mechanism than under the H-MC mechanism.
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6.2.3 Realized allocations in the grand coalition and a posteriori equilibria

Now, let us analyze the realized payoffs in the light of the a posteriori equilibrium
payoff vectors. We continue to focus only on the groups that formed the grand coali-
tion. We measure the distance between the realized payoff vectors and the allocation
under the SPNE for the four games by their Euclidean distance. Let eg; be the equilib-
rium payoff for player ¢ for the given game, the realized order of the players (making
a proposal or demand), and the mechanism. The distance of the realized payoff from

the equilibrium is computed as Dis2ng = /Y, (m — eqi)2 We also consider the

distance between the realized payoff vectors and equal division payoffs, defined by

Dis2gp = \/Y_,(m; — ED;)? where ED; is the equal division payoff for player ¢ for
the given game.

Figure [5] shows the mean Dis2yp and the mean Dis2gp for the two mechanisms
in the four gamesF_G] We observe that the distance to the equal division is significantly
smaller (at the 1% level) for the H-MC mechanism than for the Winter mechanism in
all four games. This may not be surprising because, as Observation I] states, the a pos-
teriori equilibrium payoff vectors tend to be less unequal under the H-MC mechanism
than under the Winter mechanism. In fact, as we can observe, the distance to the equi-
librium allocation is significantly smaller for the H-MC mechanism than for the Winter

mechanism in games 1 and 4 (in which the equilibrium payoffs are less unequal than

19For the sake of simplicity, we omit the specifications about the considered mechanism and the game.

20The figure is created based on the estimated coefficients of the following linear regressions: Dis; =
B1HMC;+ BoWinter; + 1u;, where Dis; is the relevant distance measure for group i, H M C; (Winter;)
is a dummy variable that takes a value of 1 if the H-MC (Winter) mechanism is used, and zero otherwise.
The standard errors are corrected for within-session clustering effects. The statistical tests are based on the
Wald test for the equality of the estimated coefficients of the two treatment dummies. For the difference
between Dis2yg and Dis2pp we compute A = Dis2yp — Dis2gp and run the same regression as
above and test whether the estimated coefficients of treatment dummies are significantly different from
ZEero.
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Figure 5: Mean of the distances of the realized payoff vectors from the SPNE and the
equal division among those groups that formed the grand coalition.

(a) Game 1 (b) Game 2
40 . f FEK ! skk 40 . f ns ! kg
= = = ]
0 I I = ‘;\-’ 0 I I I I
H-MC Winter H-MC Winter H-MC Winter H-MC Winter
Dis2NEg Dis2gp Dis2NEg Dis2gp
(c) Game 3 (d) Game 4
100 o ‘ 100 ‘

[\ e}
[N el
EEEEREREE
|=]
2
[\ RF o]
S oo oo
EEEEREREE
:J*
*
ki

= = | =[]
H-MC Winter H-MC Winter H-MC Winter H-MC Winter
DiS?NE DiSQED DiSQNE DiSQED

Note: The error bars show the one standard error range. The symbols *** ** and * indicate that the differences are statistically
significant at the 0.1%, 1%, and 5% significance levels (Wald test for across treatment differences and t-test for within treatment

difference between Dis2 g and Dis2gp), respectively.

in games 2 and 3) at the 0.1% level. For games 2 and 3, however, the distance to the
equilibrium allocations is not significantly different between the two mechanisms.
Figure [5] shows that, on the one hand, the payoff vectors realized under the H-MC
mechanism are significantly closer to the equal division than to the equilibrium ones in
all but game 2 (in which Dis2yp and Dis2gp are not significantly different). On the
other hand, under the Winter mechanism, the realized payoff vectors are significantly
closer to the equal division than to the equilibrium ones only in games 1 and 4, but the
opposite is the case for game 2. In game 3, Dis2yg and Dis2gp are not significantly

different under the Winter mechanism.

Result 3. When the grand coalition is formed, the H-MC mechanism more often results

in payoffs that are closer to the equal division than to the equilibrium payoffs compared
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with the Winter mechanism.

This indicates that, albeit imperfectly, the Winter mechanism achieves the allocation
that better reflects the power of the players than does the H-MC mechanism. In Online
Appendix 1.2, we show that in H-MC, the proposals become more equal after players

observing rejection of earlier, less equal, proposals. Such dynamics lead to this result.

6.3 Exploitation of the first mover advantage

We investigate now for the strategic behavior of the players in our games. At first,
we observe that a direct comparison between H-MC and Winter mechanisms on this
point is rather challenging because the strategic behavior to optimally participate in an
offered based vs. a demand based mechanism is much different off the equilibrium path.
After a first proposal has been made, on the one side, and as already noticed, an offer
based mechanism resemble a voting situation, in which each player simply accepts or
reject the proposal. We may observe that, in this case, the best response simply depends
on the set of players who are left in the game and on the offer he or she received,
independently on what has been offered to the other players. Moreover, at a given
period, the only possibility for a player is to accept forming the coalition containing
all the remaining players, or refusing to do that. On the other side, in a demand based
mechanism, the announcement of a player who is not playing first in the period, i.e.,
after the first demand of the remaining players has been declared, not only depends
on the set of players who are left in the game, but also on all precedent demands in the
period which are not yet satisfied. In this case, the choice is not only on whether forming
a coalition containing all the remaining players, but also on whether eventually forming

other feasible sub-coalitions. Thus, a direct comparison of the strategic behavior along
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the entire strategic interaction under the two different mechanisms is not possible.

Instead, the two mechanisms are fully comparable when investigating the strategic
behavior of the first mover. In fact, once the first player has been randomly chosen, he
or she is theoretically expected to offer him- or herself (under the H-MC mechanism),
or to demand (under the Winter mechanism) exactly the same payoff, i.e., his or her
marginal contribution to the coalition formed by the remaining players (which is equal
to the his or her a posteriori equilibrium payoff). For this reason, we focus our analysis
on the behavior of the first mover to analyze the degree to which participants play the
game as predicted by the theory.

When asking his-or her marginal contribution to the coalition formed by the remain-
ing players, the first mover experiences what we call the first mover advantage, i.e.,
he or she can strategically ask more than what given by the a priori expected equilib-
rium payoff, i.e., the Shapley value. We therefore investigate whether the first mover
successfully exploit this advantage.

In the following, let F'A; be the degree to which the first mover ¢ exploits his or her
first mover advantage. Namely, F'A; = (a; — ¢;) / (eq; — ¢;), where i is the first mover
and a; is either the proposed allocation to ¢ in H-MC or the demand by 7 in Winter, ¢;
is ¢’s Shapley value, and eq; is ¢’s a posteriori equilibrium payoff. Note that since F'A;
is not defined for the null player (player 1 in Game 2), we exclude the null player from
the following analysis But we consider all the groups, otherwise.

Table [5| show the average F'A; in two mechanisms for four games. The standard

errors are corrected for session clustering effect. The table is created based on the

2'When the null player was the first mover, the average a; was 35 in H-MC and 16.5 in Winter. The
standard errors adjusted for the session clustering effect were 6.830 and 2.284 in H-MC and in Winter,
respectively. The difference is significant at 5% level (p = 0.037) according to the Wald test for the
equality of coefficients of the two treatment dummies in a linear regression where a; is the dependent
variable and two treatment dummies, without the constant, are the only independent variables.

36



Table 5: Exploitation of the first move advantage

Gamel Game?2 Game3 Game4
H-MC 0.354*** -0.055 0.674* 0.406**
(0.022) (0.156) (0.264) (0.089)
Winter -0.096 -0.024  -0.123 -0.218
(0.152) (0.166) (0.104) (0.095)
No. Obs 88 62 88 88
R? 0.245 0.002 0.232 0.238
p-ValueT 0.022 0.897 0.026 0.002
Note: Standard errors are corrected for session-level clus-
tering effects and shown in parentheses.
wkxkx %k estimated coefficient is significantly different
from zero at 0.1, 1, and 5% significance level.

T p-values for testing Hy: H-MC = Winter (based on the
Wald test)

estimated coefficients of the linear regression that takes F'A; as the independent variable
and two dummy variables representing the two mechanisms as only dependent variables
without the constant. We observe that, on average, while the first mover advantage is
exploited, although not fully, in H-MC except for Game 2, it is not in Winter. Thus, the
first movers are acting significantly closer to the a posteriori equilibrium prediction in
H-MC than in Winter. This finding is in line with the result we have seen in Figure[6.2.3]
where we have shown that the H-MC mechanism provides result that are closer to the

SPNE when the grand coalition is formed.

7 Conclusion

We have experimentally compared two of the best-known bargaining procedures in the
Nash program, the H-MC and the Winter mechanisms. Our main rationale for this

choice is that the two mechanisms stand out in the literature for their distinctive fea-
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tures, and they are a fundamental contribution on the Nash program. Moreover, they are
recognized for their simplicity, which is a key desideratum when considering possible
applicability of a theoretical mechanism to the real world. These two mechanisms have
the same ex ante equilibrium prediction, but differ mainly in their processes: H-MC
mechanism is based on offers, and the Winter on demands.

Previous studies have found a certain closeness of the experimental results when
making a similar comparison (see [Fréchette et al., [2005a), despite the sharply different
theoretical predictions. Instead, we show that our two mechanisms behave very dif-
ferently, despite the close theoretical predictions. In particular, the H-MC mechanism
results in higher frequencies of the grand coalition formation and, consequently, higher
efficiency than the Winter mechanism. We suggest that the H-MC mechanism is bet-
ter suited to bargaining over cost or payoff allocation problems when the main target
is efficiency, or when full cooperation represents a crucial goal for society (e.g., full
cooperation in the airport problem (Littlechild and Owen, |1973)) results in one single
airport being built instead of many, and this is certainly desirable for environmental rea-
sons). Conversely, provided that the grand coalition is formed, the Winter mechanism
results in average payoffs that are closer to the Shapley values and better satisfy vari-
ous axioms. We suggest that the Winter mechanism, when it leads to collaboration, is
best suited to allocation problems in which it is important to value players’ effective
power (e.g., production games (Owenl [1975)), or in which arguments such as social wel-
fare and symmetry are inescapable (e.g., allocation of resources in health or social care
(Kluge, [2007)). Of course, the major drawback of the Winter mechanism is its failure
of reaching the full collaboration.

Our findings suggest that when facing a cost or payoff allocation problem, the choice

of which bargaining procedure to use, one based on offers or on demands, may have

38



some unexpected effects, regardless of the theoretical prediction. This should be taken
into account when making such a choice in various applications. In fact, different bar-
gaining mechanisms, even when equivalent from the theoretical point of view, favor
different properties that are reflected in the resulting allocations. An example of such
effects may be found in the verification of the null player property of the Shapley value.
Theoretically, a player who always has a zero marginal contribution should receive a
zero payoff, according to Shapley. In accordance with the theoretical prediction, in a
demand-based mechanism, non-null players have refused a strictly positive demand by a
null player in our experiment. However, we find that non-null players in our experiment
seem to be uncomfortable with making a zero offer to a null player in an offer-based
mechanism, and this contributes to a final payoff share that is closer to the equal divi-
sion solution. A deeper analysis of how different mechanisms can lead players toward
respecting or violating some properties would be a fruitful direction for future research.

Many potentially important complementary questions can be addressed in future
research. Among others, an analysis of the more complex versions of our proposed
mechanisms (e.g., the Winter mechanism with more periods and a discount factor (see,
Chessa et al., 2022, for two periods version), or the H-MC mechanism where the pro-
poser whose offer is refused then leaves the game with a probability strictly smaller
than one) can be compared with our actual results. Comparing the outcomes of the ex-
periments based on noncooperative mechanisms with those of unstructured bargaining

experiments would be an interesting topic for future research.
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Online Appendix

I Grand coalition formation and efficiency for each game

Figure|l.1|shows the frequency of grand coalition formation under H-MC and Winter for
four games separately. We observe that for game 2 and the Winter mechanism, the grand
coalition never forms (because player 1 is a null player and, consequently, the game is
only convex and not strictly convex. Therefore, for game 2, we consider the partition
{{1},{2,3,4}} as a realization of the grand coalition for both the H-MC and Winter
mechanisms. Grand coalition is significantly more frequently formed under H-MC than

under Winter in games 3 and 4.

Figure I.1: Proportion of times the grand coalition is formed

(a) Game 1 (b) Game 2 (b’) Game 2, allow (2,3,4)
1 - 1 - 1 -
0.8 — 0.8 — 0.8 —
0.6 — 0.6 — 0.6 —
0.4 — 0.4 — 0.4 —
0.2 — ﬂ I—I_I 0.2 — I—}l 02 — ﬂ l—I_l
0 T T 0 T T 0 1 1
H-MC Winter H-MC Winter H-MC Winter
(c) Game 3 (d) Game 4
1 - 1 -
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0.6 — 0.6 —
04 — I’I‘I 04 — I—I—l
0.2 - 02 -
0 — ‘ ‘_TI—‘ 0 —

T T
H-MC Winter H-MC Winter

Note: The error bars show the one standard error range. The symbols *** ** and * indicate the proportion of times that the
formation of the grand coalition is significantly different between the two mechanisms at the 0.1%, 1%, and 5% significance levels

(Wald test), respectively.



Figure 1.2: Efficiency

(a) Game 1 (b) Game 2
1 - 1 -
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H-MC Winter H-MC Winter
(c) Game 3 (d) Game 4
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1 = 1=
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0 I I 0 I I
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate that the efficiency is significantly
different between the two mechanisms, at the 0.1%, 1%, and 5% significance levels (Wald test), respectively.

Figure shows the average efficiency under H-MC and Winter for four games
separately. Unlike the case where we pool all the data, the efficieny is not significantly

different under two mechanisms in any of the games at 5% significance level.

II Effect of learning

II.1 Grand coalition formation and efficiency

We have already shown in Section [6.1] that both mechanisms fail to achieve an efficient
outcome. However, H-MC mechanism performs significantly better in this matter. A
possible explanation is because, as we have already observed in Section [6.1] and with
Result 1, H-MC mechanism forces feasible offers, while Winter mechanism allows

for unfeasible demands or players forming smaller coalitions prematually which, as a



result, lead to inefficiencies. This also naturally leads to the fact that the grand coalition
is formed more often under the H-MC mechanism, than under the Winter mechanism.

One may hypothesize that this generalized failure (more for Winter, but partially also
for H-MC) in reaching an efficient outcome can explained by some limited rationality
arguments: even if we chose two mechanisms that are in our opinion simple, the games’
optimal dynamics is hard to understand for participants to the experiment especially in
the beginning.

We check this hypothesis by investigating the presence of a learning effect by com-
paring the outcomes in the first half of four rounds (1-4) and the second half of four
rounds (5-8). Because the number of groups that formed a grand coalition becomes
small if we separate the data into the first half and second half (see Table [[L.I]), we
investigate only the frequency of grand coalition formation and efficiency.

Figure lI. 1| shows the frequency of the grand coalition formation (left) and the aver-
age efficiency (i.e., the average total payoff / value of the grand coalition, right) for the
first half and the second half (i.e., the first four rounds vs. the second four rounds). We
pool four games. For H-MC, while the frequency of the grand coalition formation is not
significantly different in the early and later rounds, the efficiency is significantly higher

in the later rounds than in the early rounds. For the Winter mechanism, both the fre-

Table II.1: Number of groups with Grand Coalition

game 1 game?2 game3 game4

Winter early 10 10 1 9
Winter late 13 17 5 12
H-MC early 10 12 11 17
H-MC late 15 13 8 13

Note: game 2 allows {2, 3, 4} to be the grand coalition.



Figure II.1: Grand coalition formation and efficiency in early and late rounds (all games
pooled)

Grand Coalition Formation Efficiency
F
1 - . n.s. ‘ | ' ns.
0.8 — —— —S 0.8 —
06 — 06 —
04 — 04 —
Al s
0 T T T T 0 T T T T
Early Late Early Late Early Late Early Late
H-MC Winter H-MC Winter

Note: The error bars show the one standard error range. The symbols **%, #%, and * indicate the outcomes shown in two bars are
significantly different at 0.1%, 1%, and 5% significance levels, respectively (Wald test).

quency of the grand coalition formation and the average efficiency are not significantly
different between early and late rounds.

Figures and show the frequency of the grand coalition formation and the
average efficiency for the first half and the second half of each game. For H-MC, the
frequency of the grand coalition formation and the average efficiency are significantly
higher in the later rounds only in game 1; for the remaining three games, there are no
significant differences between the early and late rounds. For the Winter mechanism,
both the frequency of the grand coalition formation and the average efficiency are sig-
nificantly higher in the later rounds only in game 3, with no significant differences in
other games.

As conclusion, we report no statistically significant learning effect, when testing
either the H-MC or the the Winter mechanism. This does not rule out the possibility
that by implementing a higher number of repetitions, a significant learning effect could

be observed.



Figure I1.2: Proportion of times the grand coalition formed in early and late rounds

Game 1 {2, 3,4} allowed
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate the outcomes shown in two bars are

significantly different at 0.1%, 1%, and 5% significance levels, respectively (Wald test).

III Observed dynamics in Winter and H-MC

In this section, we analyze the coalition formation dynamics of Winter as well as the
way proposals evolved in H-MC to better understand the results presented in the main
text. Namely, the reason for failure of the grand coalition formation in Winter and the

allocation becoming closer to the equal division solution in H-MC.

III.1 Dynamics of coalition formation in Winter

We first show the low frequency of the grand coalition formation under Winter is due
to participants forming smaller coalitions before reaching the 4th player making the

demand.



Figure I1.3: Efficiency in early and late rounds
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As one can observe from Table out of 176 play of the games where the first
mover was not the null player, the first mover exited the game by belonging to a coalition
without waiting for the fourth player making the demand 77 times. Thus, there is a clear
tendency for participants forming a coalition and exiting the game prematurely.

Among 70 cases in games other than game 2 where the first move belonged to the
coalition formed by the fourth mover, only 50 formed the grand coalition. For game 2,
in 2 out of 2 cases in which the first move belonged to the coalition formed by the fourth
mover and 17 out of 18 in which the first move belonged to the coalition formed by the
third mover, the resulting coalition were {2, 3,4} which, in our analyses, considered as
the grand coalition.

Furthermore, among these 21 cases where the grand coalition (including {2, 3,4} in

game 2) was not formed even when the coalition to which the first player belonged to



Table III.1: Frequency of the timing of the formation of the coalition to which the
first mover belongs to.

Formed by All  All* Gamel Game?2 Game?2* Game3 Game4

Self 4 4 0 3 3 0 1
Second mover 8 8 0 2 2 3 3
Third mover 65 65 15 18 18 19 13
Fourth mover 72 72 27 2 2 17 26
None 43 27 6 23 7 9 5
Total 192 176 48 48 32 48 48

* Excluding the cases where the null player was the first mover.

was formed by the 4th (or the 3rd in case of game 2) player, the total amount demanded
by four players exceeded v(/V), and thus it was not possible to form the grand coalition,
in 14 cases. In remaining 7 cases, the grand coalition was not formed although doing
so was possible. An interesting observation is that in 2 cases in game 2 where the first
mover belonged to the coalition formed by the fourth mover and the coalition {2, 3,4}
instead of {1, 2, 3,4} was formed, the sum of the demand including the one by the null

player did not exceed v(N).

III.2 Dynamics of proposals in H-MC

In Section [6] we have already shown that accepted proposals in the H-MC mechanism
go in the sense of equal division. This result is not surprising, as experimental results
of offer-based mechanisms (such as the well-known two-player bargaining over a pie
of Rubinstein| (1982)) often show that, contrary to the theoretical prediction, players
tend to go for an equal split of the pie. We show that, in our experiment, this behavior
becomes more evident after a first rejection of a proposal, as second proposals are closer
to the equal share than the first ones.

Let the distance between the proposal and equal devision in Lth proposal (for a



group), devEQy, be devEQL = ). |ar; — ED| where ay; is the proposed allocation
for player ¢ in Lth proposal (for the group) and ED is the equal division payoff for the
game.

First, we observe the first proposal is less likely to be accepted if its distance from
the equal division is larger. The estimated coefficient for the dev E'(); is negative and
significant in a linear regression in which the dependent variable is the dummy variable
that takes value of 1 if the proposal is accepted and 0 otherwise, and the independent
variables are the constant and dev E () (-0.005 with the standard error (corrected for the
session clustering effect) being 0.0009 and p-value = 0.008. N = 160. R? = 0.1352)).

Figure III.1: H-MC mechanism: Distance from equal division for the first and the
second proposals (top) and the second and the third proposals (bottom)
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Note: In each panel, only those groups in which the first proposal (top) or the second proposal (bottom) is rejected are plotted.

p-values are based on the Signed-Rank test (two-tailed) with the null hypothesis devEQ [, = devEQ, 1.



In Figure[IL.2} devEQp = >, lar; — ED| for the first (L = 1, horizontal axis) and
the second (vertical axis) proposals (top) and the second (L. = 2, horizontal axis) and
the third (vertical axis) proposals (bottom) for each game. Each dot corresponds to a
pair of the proposals of a group.

We observe a clear tendency for either the second proposal to be more equal than the
first one (devE(Q), > devE(Q)2) or the second proposal to be more equal than the third

one (devEQy > devE(Q)3) depending on the game.

IV Testing for the axioms of the Shapley value

We test the axioms that are historically the most relevant to characterizing the Shapley
value. In doing so, we aim to provide greater insight into whether a demand-based
bargaining mechanism is more appropriate than an offer-based bargaining mechanism
for cost or payoff allocation problems when the allocation scheme is constructed on the
main axiomatic solution notion of cooperative game theory, that is, the Shapley value.
In the literature, we find various axiomatic characterizations of cooperative solutions
and, in particular, of the Shapley value. Given a solution 1) : GV — R, we have already
listed in Section [3] four axioms that are used in the characterization by [Shapley| (1953):
efficiency, symmetry, additivity and null player property. Here, we list three additional

commonly used axioms to provide a characterization.

Axiom 5 (Homogeneity): forallv € GV and a € R, ¢)(av) = ap(v).

Axiom 6 (Strong monotonicity): if i € N is such that v(S U {i}) — v(5) <
w(SU{i}) —w(S) foreach S C N, then ¢;(v) < ;(w).

Axiom 7 (Fairness): if i, j are symmetric in w € GV, then ¥;(v + w) — 1;(v) =

9



Yi(v+w) —;(v) forallv € GV.
Fairness states that if we add a game w € GV, in which players i and j are
symmetric, to a game v € GV, then the payoffs of players i and j change by the

same amount.

The axiomatization of [Young| (1985) involves axioms 1, 2, and 6, whereas that of
van den Brink| (2002) involves axioms 1, 4, and 7. Note that axiom 5, even if not directly
involved in any of these axiomatizations, is crucial because, together with axiom 3, it
guarantees the linearity of the solutionE]

We noted in Section [6] that both mechanisms fail to satisfy efficiency (axiom 1) if
we examine overall data. Here, we examine the remaining six axioms focusing on the
groups that formed grand coalition. These axioms are tested based on the estimated

coefficients obtained from running the regression of Eq. [I]as follows.

Symmetry (axiom 2) requires b; = c; and by = c4.

Additivity (axiom 3) and homogeneity (axiom 5) require that 3 = 1 + x5 and

xy = 2z for x € {a, b, ¢, d}, respectively.

Null player property (axiom 4) requires that ay = 0.

Strong monotonicity (axiom 6) requires that a; > as and a4 > as.

* Fairness (axiom 7) requires that b3 — by = c3 — co.

'The equal division solution satisfies 1, 2, and 3, but does not satisfy the null player property in 4.
However, it satisfies a similar property when null players are replaced with nullifying players. Player 7
is a nullifying player if v(S) = 0 for each S C N such that i € S. Then, we can state the following
additional axiom that can be called the nullifying player property: if ¢ is a nullifying player in game
v € GV, then v;(v) = 0. Replacement of the null player property in the axiomatization of the Shapley
value in Shapley| (1953)) with the nullifying player property characterizes the equal division solution (see
van den Brinkl |2006).
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Table IV.1: Results of Wald tests for the verification of the symmetry, additivity, homo-
geneity, strong monotonicity, and fairness axioms (based only on the groups that formed
a grand coalition)

H-MC Winter
Axiom H, x?  p-value x?  p-value
Symmetry ag = as 0.35 0.552 1.85 0.174
dy = dj 1.60  0.206 0.06 0.811
Additivity cp=a+b 6.69  0.001 0.13 0.721
co = ag + by 323 0.072 0.02 0.878
c3 = as + b3 2.16  0.142 0.47 0.492
¢y =ay+ by .52 0.218 0.78 0.376
Homogeneity dy = 2a,4 0.00 0.946 0.10 0.749
dy = 2as 0.08 0.772 0.11 0.745
ds = 2a3 0.00 0.983 0.00 0.947
dy = 2ay 0.06 0.813 0.82 0.365
Null player as =0 4291 0.000 . .
Strong monotonicity a; = by 10.76 ~ 0.001 102.24  0.000
(Hp should be rejected) c1=d; 0.16  0.692 26,84  0.000
Fairness by —by=c3—co 0.62 0433 0.74 0.391

In Table[IV.I] we present the results of the Wald tests for the verification of these axioms,
together with the null hypothesis (H).

Note that the symmetry (according to which Hj should not be rejected) is confirmed
for the two cases under both the Winter and the H-MC mechanisms. The additivity
(according to which H, should not be rejected) is always confirmed under the Winter
mechanism, but is not confirmed in one of four cases under the H-MC mechanism.
The homogeneity (according to which H should not be rejected) is always confirmed
for both mechanisms. The null player property (according to which H, should not be
rejected) is not confirmed in the H-MC mechanism, but it is confirmed (respected 100%

of the time) for the Winter mechanism. The strong monotonicity (according to which
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Table IV.2: Tests of axioms (based only on the groups that formed a grand coalition)

Axiom H-MC Winter
Symmetry + +
Additivity + +
Homogeneity + +
Null player property - +
Strong monotonicity - +
Fairness + +

+ indicates that the axiom is considered to be satisfied on average. — indicates the opposite.

Hy should be rejected) is confirmed for the Winter mechanism but only for half of the

time for the H-MC mechanism. The fairness (according to which H, should not be
rejected) is confirmed for both mechanisms.

Let us consider that the axiom is satisfied on average if it is confirmed for strictly
more than half of the cases being tested. Table summarizes whether each axiom is

satisfied on average (+) or not (-) for two mechanisms. We can state the following.

Result 4. Provided the grand coalition is formed, the Winter mechanism better satisfies

axioms that characterize the Shapley value than the H-MC mechanism.

V Additional results based on payoff shares

In this section, we report the results based on all the groups and we use the payoff share

instead of restricting our attention to those that formed the grand coalition. Payoff shares

nf MO ()

~W _ V() ~H-—MC _ ;
are defined as 7; " (vy,) = S D X vg(N) and 7; (vg) = S ) X

vg(N) foreachi = 1,2,3, 4.

As in the main text, our analyses are based on running a set of OLS regressions
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shown by Eq. [I|but using payoff shares as dependent variables.

Figure [V.1] shows the mean of the normalized payoffs in the four games, where the
horizontal lines indicate the Shapley values for each game. It can be observed that for
the Winter mechanism, the average normalized payoffs are not significantly different
from the Shapley values for all four players in games 1, 2, and 4. However, for the H-
MC mechanism, the average normalized payoffs for all four players respect the Shapley

values only in game 3 at the 5% significance level.

Figure V.1: Mean of the normalized payoffs
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols ***, ** and
* indicate the frequency with which the average normalized payoff is significantly different from the Shapley values at the 0.1%,

1%, and 5% significance levels, respectively (Wald test).
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Tables and summarize the results of testing the six axioms. Based on the
normalized payoff, on average, the symmetry, strong monotonicity, and fairness axioms
are now satisfied under the H-MC mechanism. For the Winter mechanism, with nor-
malized payoffs, the fairness axiom is no longer satisfied.

Thus, if we consider all the groups and normalized payoffs, the Winter and H—
MC mechanisms are comparable in terms of their distance to the Shapley value and

satisfaction of its properties.

Table V.1: Wald tests for the verification of the symmetry, additivity, homogeneity,
strong monotonicity, and fairness axioms for normalized payoffs

H-MC Winter
Axiom H, x?  p-value x?  p-value
Symmetry as = ag 0.53  0.466 0.08 0.781
dy = dj 0.03  0.869 0.14 0.712
Additivity c1=a+b 099 0319 7.25 0.007
cy = as + bo 0.07  0.790 0.65 0.422
c3 = ag + b3 0.00 0.952 2.54 0.111
cy =ay+ by 092 0.336 0.35 0.555
Homogeneity dy = 2a, 248  0.115 0.06 0.805
dy = 2as 0.01  0.926 0.37 0.542
ds = 2ag 0.31  0.580 0.02 0.892
dy = 2ay 0.00  0.963 0.35 0.552
Null player as =0 49.51  0.000 . .
Strong monotonicity a; = by 46.26  0.000 62.74  0.000
(Hy should be rejected) ¢ =dy 14.57  0.001 147.12  0.000
Fairness bs —by =c3—co 0.58 0.447 7.53 0.006

Figure shows the mean Dis2y g and the mean Dis2gp for the two mechanisms
in the four games computed based on the normalized payoffs using all the groups. The

normalized payoffs under the H-MC mechanism are significantly closer to the equal
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Table V.2: Tests of axioms for normalized payoffs

Axiom H-MC Winter
Symmetry + +
Additivity + +
Homogeneity + +
Null player property - +
Strong monotonicity + +
Fairness + -

+ indicates that the axiom is considered to be satisfied on average. — indicates the opposite.

division than those under the Winter mechanism in all four games. Furthermore, those
under H-MC are significantly closer to the equilibrium payoffs in game 4 than those
under the Winter mechanism. However, for games 1 and 4, for both the Winter and H-
MC mechanisms, normalized payoffs are significantly closer to the equal division than
to the equilibrium payoffs. For games 2 and 3, the normalized payoffs under the Winter
mechanism are significantly closer to the equilibrium than to the equal division. Under

H-MC, Dis2yg and Dis2gp are not significantly different in games 2 and 3.

15



Figure V.2: Mean of the distances of the normalized payoff vectors from the SPNE and

the equal division
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate statistically significant differences

between the two bars at the 0.1%, 0.5%, and 5% significance levels (Wald test for across treatment differences and t-test for within

treatment difference between Dis2 g and Dis2 g p), respectively.
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VI Comparison of a classical H-MC sequential approval
mechanism vs. a pseudo-H-MC simultaneous ap-
proval mechanism

The comparison between sequential mechanisms and simultaneous ones in favoring the
formation of efficient coalitions has been the object of recent experimental laboratory
studies (Abe et al.,|2021). Experimental evidence shows that subjects may perform very
differently in these two proposed settings. Analogously, we propose a comparison be-
tween the performances of the H-MC mechanism and a pseudo-H-MC mechanism (in
the following, denoted as H-MCj;,,,), whose structure is identical to that of the original
mechanism except that after an offer is proposed, players are asked to either accept or
refuse the proposal simultaneously. Theoretically, the H-MCg;,, mechanism allows for
many more Nash equilibria in which two or more players refuse the proposalﬂ We show
that sometimes, as observed by [Fréchette et al.| (2005a), bargaining behavior is not as
sensitive to the different bargaining rules as the theory suggests.

The H-MC;,,, experiment was conducted in December 2019 at ISER at Osaka Uni-
versity. In total, 84 participants, who had never participated in similar experiments
before, were recruited. The experimental procedure was identical to the H-MC ex-
periment reported in the main text. On average, the experiment lasted for 1 hour 30
minutes, including the instructions (11 minutes), a comprehension quiz (5 minutes),

and paymentE] The average earnings were 2,780 JPY.

"We thank an anonymous reviewer for pointing this out.

2Just as in the H-MC and the Winter, there was a non-binding time limit of 60-seconds to make a
proposal and of 30-seconds to accept or reject the proposal. The average (the standard deviation, the
maximum, and the minimum) time participants spent to make a proposal is 43.10 (22.31, 111, and 5)
seconds (n=313), while those to accept or reject a proposal is 16.72 (10.83, 61, and 1) seconds (n-782).
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VI.1 Grand coalition formation and efficiency

Figure[VIL.T|report the results concerning the grand coalition formation and efficiency by

pooling four games. There are no significant difference between H-MC and H-MC;,,,.

Figure VI.1: Proportion of times the grand coalition is formed and efficiency
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate the outcomes of H-MC mechanism

and the H-MCg;,, mechanism are significantly different at the 0.1%, 1%, and 5% significance levels (Wald test), respectively.

Figures reports the results concerning the grand coalition formation and ef-
ficiency for each game separately. The only significant differences reported are for

game 2.
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Figure VI.2: H-MC and H-MC;,,, mechanisms, proportion of times the grand coalition

is formed and efficiency
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate a statistically significant difference at

the 0.1%, 1%, and 5% significance levels (Wald test), respectively.
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Figure VI.3: H-MC and H-MCg;,,, mechanisms, mean payoffs all the group
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols *#*%*, **
and * indicate the average normalized payoff, which is significantly different from the Shapley value at the 0.1%, 1%, and 5%

significance levels (Wald test), respectively.

V1.2 Allocations

We follow the analyses in the main text by first looking at the average payoffs of each

player in each game based on the all the groups.

VI.2.1 Average payoffs

Figure[VI.3|shows the average payoffs of each player in each game. The horizontal lines

indicate the Shapley values for each game. As we have seen in the main text comparing
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Table VI.1: Result of Shapley distance decomposition. Based on pooling the data of all
groups and all games

[lesv™ (12 Jle“ I [le™™[* Tle*®[[*  [le?]?
H-MC 38.19 42996 6397  270.84 802.88
(12.73)  (53.41) (8.27) (20.70) (62.70)
H-MC;,,,  25.90 386.64 39.55 317.10 769.12
(2.28) (40.36) (10.47) (21.81) (55.17)
No. Obs 328 328 328 328 352
R? 0.085 0.170 0.107 0.261 0.378
p-value* 0.374 0.538 0.110 0.168 0.698
Note: Standard errors are corrected for session-level clustering effects
and shown in parentheses. < €4 ™! > are not reported in the table
as they are negligible (the mean values are 0.0093 for H-MC and 0.0074

for H-MCg;.).
* p-values for testing Hy: H-MC = H-MCy;,,, (based on the Wald test)

the Winter and H-MC, because of the failure of forming the grand coalition, the average

payoffs are significantly different from the Shapley values in both H-MC and H-MC,,,.

VI.2.2 Shapley distance decomposition

Are there significant differences in terms of the results of Shapley distance decomposi-
tion between H-MC and H-MCyg;,,,? The results reported in Table suggest that is not
the case. The average Shapley distances and their four components are not significantly

different between H-MC and H-MC,;,,.

VI.3 Analyses based only on groups that formed the grand coalition

We now focus on those groups that formed grand coalition. Figure shows the
average payoffs obtained by each player in the four games, conditional on the grand

coalition being formed. The horizontal lines indicate the Shapley values for each game.
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Figure VI1.4: H-MC and H-MC;,,, mechanisms, mean payoffs based only on the groups
that formed the grand coalition
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols *#%*, **
and * indicate the average normalized payoff, which is significantly different from the Shapley value at the 0.1%, 1%, and 5%
significance levels (Wald test), respectively.

We observe that the two mechanisms perform similarly in that there are players whose
average payoff is significantly different from the Shapley value in all four games un-
der both mechanisms even when we focus on only those groups that formed the grand

coalition.
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VI.3.1 Realized allocations and a posteriori equilibria

In terms of distance from SPNE or equal division, we observe from Figure [VL.5|that H-

MC;,,, results in outcomes significantly closer to equal division compared with H-MC

only in game 1, whereas in the other games there is no significant difference.

Figure VI.5: H-MC and H-MCj;,,, mechanisms, mean of the distances of the realized
payoff vectors from the SPNE and the equal division
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate a statistically significant difference

at the 0.1%, 0.5%, and 5% significance levels (Wald test for across treatment differences and t-test for within treatment difference

between Dis2n g and Dis2gp), respectively.
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VI1.3.2 Axioms

Finally, verification of the axioms (comparing Table and the left column of Ta-
bles and [IV.2)) indicates that the differences in results between H-MC and H-
MC;,,, are observed for symmetry and fairness (satisfied in H-MC but not in H-MCg;,,,).
Table VI.2: Results of Wald tests for the verification of the symmetry, additivity, homo-

geneity, strong monotonicity, and fairness axioms (based only on the groups that formed
the grand coalition)

Axiom Hy x?  p-value Test

Symmetry as = as 5.07 0.024 -
dy = dj .11 0.293

Additivity cp=a;+b 4.84 0.028 -

co = ag + bo 0.03 0.861
c3 = ag + b 14.99  0.000
cy =ay+ by 11.10  0.001

Homogeneity dy = 2a, 0.00 0.983 +
dy = 2ay 13.12  0.000
ds = 2as 2.25 0.134
dy = 2ay 0.43 0.513
Null player az =0 9.90 0.002 -
Strong monotonicity ap = by 215.83  0.000 -
C1 = dl 0.67 0.411
Fairness bs — by =c3—cy 3.02 0.082 +

+ indicates that the axiom is considered to be satisfied on average. — indicates the opposite.

To summarize, there is no systematic difference between the H-MC and the H—
MC,;,, mechanisms except that the H-MC better satisfies the symmetry axiom than

does H-MCg;,,, if we focus on the groups that formed grand coalitions.

24



Figure VI.6: Mean of the normalized payoffs
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols ***, ** and
* indicate the average normalized payoff being significantly different from the Shapley values at the 0.1%, 1%, and 5% significance

levels (Wald test), respectively.

VI.4 Analyses based on all the groups but only on normalized pay-

offs

Below, we compare H-MC and H-MCg;,,, based on the normalized payoffs but using
the data for all groups.

Figure [VL.6| shows the average normalized payoffs obtained by each player in the
four games under H-MC and H-MC;,,, based on results of running a set of OLS re-

gressions as in Eq. [I] The horizontal lines indicate the Shapley values for each game.
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Figure VI.7: Mean of the distances of the normalized payoff vectors from the SPNE and
the equal division

(a) Game 1 (b) Game 2
— — - s o '
00 "5 Bf
0 I I |-\—-| I—:::—I 0 I I I I
H-MC H-MCg;, H-MC H-MCg; H-MC H-MCg; H-MC H-MCg;y,
D’iSQNE D’iSQED DiSQNE DiSQED
(c) Game 3 (d) Game 4
100 — i ‘ 100 — — ‘
60 — 60 —
20 — l—I—l 20 —
0 I I I |{\—| 0 I I |_:F—| |"E|
H-MC H-MCg; H-MC H-MCg;y, H-MC H-MCg;y, H-MC H-MCgy;
Dis2NE Dis2gp Dis2NEg Dis2gp

Note: The error bars show the one standard error range. The symbols ***, ** and * indicate a statistically significant difference
at the 0.1%, 1%, and 5% significance levels (Wald test for across treatment differences and t-test for within treatment difference

between Dis2n g and Dis2 g p), respectively.

We observe that for games 1 and 4 under H-MCg;,,,, the average normalized payoffs of
each of the four players are not significantly different from the Shapley values at 5%
significance level, while those for H-MC is significantly different at 5% level for at least

for one player in all the four games.

V1.4.1 Normalized payoffs and a posteriori equilibria

In terms of distance from SPNE or equal division, we observe from Figure [VI.7] that
Dis2yp is significantly smaller under H-MC than under H-MCg;,,, only in game 4.
For other games, the values are not significantly different between the two mechanisms.
In terms of Dis2gp, although it is significantly smaller under H-MC in game 2, the

opposite is the case for game 3. For games 1 and 4, there is no significant difference
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between the two mechanisms. We observe that normalized payoffs are significantly
closer to the equal division than the SPNE for both mechanisms in games 1 and 4. For
H-MC;,,,, Dis2gp is significantly larger than Dis2y 5 in game 2, whereas the opposite
is the case for game 3. For H-MC, Dis2yg and Dis2gp are not significantly different

in games 2 and 3.

VI14.2 Axioms

Finally, verification of the axioms (comparing Table and the left column of Ta-
bles[V.1]and indicates that the differences in results between H-MC and H-MCjg,,,

are observed for additivity and homogeneity (satisfied in H-MC but not in H-MCjg;,,,).

Table VI.3: H-MC;,,, normalized payoffs, Wald tests for the verification of the symme-
try, additivity, homogeneity, strong monotonicity and fairness axioms

Axiom H, x?  p-value Test

Symmetry as = as 1.01  0.314 +
dy = ds 047 0492

Additivity c1=ay+ b 36.91 0.000 -

cy = ag + by .11 0.292
C3 = Qg + bg 0.53 0.466
cy = ayg+ by 4.78 0.0288

Homogeneity dy = 2a, 0.16  0.689 +
dy = 2ay 0.28  0.598
d3 = 2(13 5.90 0.015
dy = 2ay 323  0.072
Null player as =0 9.90 0.002 -
Strong monotonicity a; = by 23.87  0.000 +
(Hp should be rejected) c1=dy 11.55 0.001
Fairness bs — by =c3—cy 0.15 0.694 +

+ indicates that the axiom is considered to be satisfied on average. — indicates the opposite.

To summarize, even comparing the payoff shares using all the groups, there is no
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systematic difference between the H-MC and the H-MCg;,,, mechanisms, except that

H-MC better satisfies the additivity axiom than H-MCg;,,,.

VII Translated instruction materials and screenshots of
the comprehension quiz

¢ Winter mechanism: https://www.dropbox.com/s/galeo3todbah7iw/

Winter_1_loop_handout.pdf?dl1=0

¢ H-MC mechanism: https://www.dropbox.com/s/ctlw85momf96vms/

HMChandout_seqg.pdf?dl1=0

* Simultaneous voting version of the H-MC mechanism (H-MCg;,,,): https://
www .dropbox.com/s/781f5bn6gi3gfwp/HMChandout_sim.pdf?dl=

0
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