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Abstract
We experimentally compare a simplified version of two mechanisms that im-

plement the Shapley value as an (ex ante) equilibrium outcome of a noncooperative
bargaining procedure: one proposed by Hart and Mas-Colell (1996, H-MC) and
the other by Perez-Castrillo and Wettstein (2001, PC-W). While H-MC induces
the Shapley value only on average, PC-W does so as a unique equilibrium out-
come by introducing an additional bidding stage on top of H-MC. We investigate
the effect of this additional bidding stage on the resulting outcomes such as the
frequency of grand coalition formation, efficiency, and the distance between the
realized allocation and the Shapley value. Our experiment shows that H-MC not
only results in significantly greater efficiency than PC-W, but also that the average
allocation is closer to the Shapley value for those groups that formed the grand
coalition. This difference is because those proposers who won the bidding stage in
PC-W tend to offer an allocation that favors themselves more than the randomly
chosen proposers in H-MC, and such offers are more likely to be rejected.
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1 Introduction

The Nash program (Nash, 1953) provides a noncooperative foundation for cooperative

solution concepts. In this seminal work, Nash showed that the solution to the cooper-

ative bargaining problem (Nash, 1950) can be obtained as an equilibrium outcome of

a noncooperative game. The main idea of the Nash program “is both simple and im-

portant: the relevance of a concept [...] is enhanced if one arrives at it from different

points of view” (Serrano, 2005, p. 220). Then, noticing that a different noncooperative

approach yields the same solution, which “indicates that the solution is appropriate for a

wider variety of situations” (Nash, 1953, p. 136), and then that the cooperative solution

is widely applicable (even through a normative approach and without relying on precise

assumptions about the bargaining protocol).

Many authors have contributed to the development of the Nash program (see, Ser-

rano, 2005, 2008, 2014, 2021, for surveys). Since the inception of the Nash program,

the cooperative solution that has attracted most attention is the Shapley value (Shapley,

1953). The popularity of this solution concept comes from its intuitive definition (an

average of marginal contributions), its desirable properties (such as efficiency, mono-

tonicity, or symmetry), and consequently, from the many theoretical and real-world

applications (cost and payoff sharing, voting power, fair division, etc.). Indeed, various

papers (for example, Gul, 1989; Harsanyi, 1981; Hart and Moore, 1990; Krishna and

Serrano, 1995; Winter, 1994; Hart and Mas-Colell, 1996; Perez-Castrillo and Wettstein,

2001) have proposed its implementation.

Chessa et al. (2022a,b) contributed to this literature by providing experimental com-

parisons between Winter (1994) and Hart and Mas-Colell (1996) in Chessa et al. (2022b)

and among three versions of Winter (1994) in Chessa et al. (2022a). Chessa et al.
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(2022b) found that the demand-based mechanism proposed by Winter (1994) resulted

in an allocation that better reflects players’ effective bargaining power, while the effi-

ciency and the frequency of the grand coalition formation are lower than those from an

offer-based mechanism proposed by Hart and Mas-Colell (1996). However, because this

result was obtained from a simplified version of the approach of Winter (1994), Chessa

et al. (2022a) investigated the robustness of the outcome by comparing the outcome of

the simplified one-period version of Winter (1994) considered in Chessa et al. (2022b)

with a more complex—but closer to the original theoretical analysis—two-period ver-

sion of Winter (1994). Chessa et al. (2022a) found that the results of the one-period and

two-period versions were very similar.

In this paper, we extend the experimental analyses of Chessa et al. (2022a,b) by

comparing the mechanisms proposed by Hart and Mas-Colell (1996) and Perez-Castrillo

and Wettstein (2001). Both mechanisms are offer-based. Namely, in both mechanisms,

there will be a proposer who proposes an allocation, which is voted on by the remaining

players sequentially. The key difference between the two is the way the proposer is

chosen. On the one hand, a proposer is chosen randomly among the players in Hart

and Mas-Colell (1996). On the other hand, in Perez-Castrillo and Wettstein (2001),

the proposer is determined through a bidding procedure. Both mechanisms predict at

equilibrium that the grand coalition will form. Moreover, while Hart and Mas-Colell

(1996) implement the Shapley value as an ex ante equilibrium payoff (i.e., it is only

achieved as an expected outcome), Perez-Castrillo and Wettstein (2001) implement it as

a unique equilibrium outcome of the game.

The bidding procedure introduced by Perez-Castrillo and Wettstein (2001) not only

constitutes an interesting theoretical investigation, but it is also a good representation of

some real-world scenarios. One main characteristic is that regardless of the random se-
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lection of the proposer that many theoretical bidding mechanisms rely on, participants in

a negotiation may often be willing to take costly measures to be selected as the proposer

because of the well-known proposer advantage (an individual who makes a proposal

often obtains a greater share than others). Thus, a preliminary bidding stage may be, for

example, a good representation of pre-negotiations in government coalition formation:

in Italy, a preliminary round of consultation with the possible prime ministers allows the

head of state to select the “best” prime minister according to her/his bid-like preliminary

proposal.1

The literature on competition to win the proposal for the subsequent bargaining pro-

cedure is somewhat vast at present (see, e.g., Yildirim, 2007; Kim and Kim, 2022),

and relies on different approaches such as preliminary lottery contests, ultimatum bar-

gaining games, or bidding procedures. However, these additional preliminary levels in

the bargaining procedures make one wonder whether they would indeed result in the

predicted theoretical solution if the game was played by participants in a laboratory

experiment. For example, Navarro and Veszteg (2011) experimentally investigated the

impact of introducing a bidding stage to determine the proposer in a two-player ultima-

tum bargaining game. Although they found that participants’ behavior stabilized after

many trials (after 20 out of 30 repetitions) and the payoff gap between the proposer

and the responder becomes smaller as predicted by the theory, the observed behavior,

even in these final rounds of the experiment, deviate substantially from the theoretical

prediction.

Furthermore, as demonstrated by the idea of “obviously strategy proofness” (Li,

2017), a mechanism needs to be extremely simple for it to result in the outcome in-

1Similarly, in France, a similar preliminary round of consultation was recently implemented because
of the relative majority of prime minister Macron’s parliamentarian group.
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tended by its designer, and such additional stages certainly make the procedure more

complex. In this paper, we investigate whether the bidding procedure introduced by

Perez-Castrillo and Wettstein (2001) improves (as theoretically predicted) or in fact

lowers the performance of the underlying mechanism of Hart and Mas-Colell (1996) in

implementing the Shapley in a laboratory experiment.

Indeed, our experiment shows that the simpler mechanism à la Hart and Mas-Colell

(1996) not only results in greater efficiency than that of Perez-Castrillo and Wettstein

(2001), but also that the average allocation is closer to the Shapley value for those groups

that formed a grand coalition. Our analyses suggest that this happens because those

proposers who won the bidding stage in Perez-Castrillo and Wettstein (2001) tend to

make offers that favor themselves (thus, they are less equal and deviate more from the

Shapley value) and are more likely to be rejected than those randomly selected proposers

in Hart and Mas-Colell (1996). We believe that this may be a consequence of the fact

that winners at the bidding stage consider themselves to be entitled to a larger share

(due to winning at the bidding phase, or because the winners of a bidding phase are

those players who are the most motivated in exploiting the proposer advantage), whereas

randomly selected proposers feel less legitimate in exploiting such an advantage.

The remainder of the paper is organized as follows. We present several theoretical

preliminaries in cooperative game theory and the two mechanisms considered in our

experiment in Section 2. Section 3 describes the experiment procedure, while the results

are presented in Section 4. Section 5 concludes.

2 Theoretical preliminaries
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2.1 Cooperative games and values

Let N = {1, . . . , n} be a finite set of players. Each subset S of N is called a coali-

tion while N is called the grand coalition. A cooperative game with transferable utility

(hereafter, a cooperative game) on a fixed player set N is a function v : 2N → R such

that v(∅) = 0. For each coalition S ⊆ N , v(S) describes the worth that members

of S can achieve by agreeing to cooperate. We use GN to denote the set of all games

with player set N . A game v ∈ GN is said to be monotonic if v(S) ≤ v(T ) for each

S ⊆ T ⊆ N . In monotonic games, the bigger the coalition is, the higher its worth

becomes. A game v ∈ GN is said to be zero-monotonic if v(S) + v({i}) ≤ v(S ∪ {i})

for any subset S ⊆ N with i 6∈ S. In zero-monotonic games, there are no negative

externalities when a single player joins a coalition.2

A value is a mapping ψ : GN → RN which uniquely determines, for each v ∈ GN

and each player i ∈ N , a payoff ψi(v) ∈ R for participating to v ∈ GN . The Shapley

value is the best-known solution concept, which is widely applied in economic and

political models, and is defined as:

φi(v) =
∑

S⊆N,i∈S

(|S| − 1)!(|N | − |S|)!
|N |!

(v(S)− v(S \ {i})) ∀i ∈ N.

The Shapley value assigns to every player his or her expected marginal contribution to

the coalition of players that enter the game before this player, given that every order of

entrance has equal probability. Various characterizations of the Shapley value have been

2Note that the classes of zero-monotonic and monotonic games are not equivalent. For example,
let N = {1, 2}, v be such that v({1}) = 4, v({2}) = −2 and v({1, 2}) = 3, and w be such that
w({1}) = 3, w({2}) = 2 and w({1, 2}) = 4. We can see that v is zero-monotonic but not monotonic
while w is monotonic but not zero-monotonic. It is worth noting that all the four games we consider in
experiments respect these two assumptions.
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provided in the literature. One of the most famous characterizations uses efficiency,

symmetry, the null player, and additivity axioms and can be easily deduced from the

seminal article by Shapley (1953).

2.2 Two mechanisms

In this subsection, we present the Hart and Mas-Colell (1996, referred to as H-MC

below) mechanism (Section 2.2.1) and the Perez-Castrillo and Wettstein (2001, referred

to as PC-W below) mechanism (Section 2.2.2) in more detail.

2.2.1 H-MC mechanism

The bargaining procedure proposed by Hart and Mas-Colell (1996) implements the

Shapley value in monotonic cooperative games. In this mechanism, the bargaining starts

with a randomly chosen proposer making an offer to the other players (responders). The

responders, sequentially, may either accept or reject the offer. If the offer is accepted

by all responders, it is implemented. If one of the responders rejects the offer, the game

moves to the next stage. If the offer is rejected, the proposer leaves the game with the

worth of her stand-alone coalition with probability p and the bargaining continues with

the remaining players, with a new player randomly chosen as the new proposer. In our

laboratory implementation, we set p = 1 to make it comparable with the PC-W mecha-

nism. We present here a more formal description of the H-MC mechanism. A decision

point position at time t is given simply by the vector (St, j), where:

St ⊆ N is the set of players still in the game, and

j ∈ St is the player making an offer to the remaining players (ti)i∈St\{j} such

that
∑

i∈St\{j} ti ≤ v(St).
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With j’s offer, the game proceeds now in the following way:

1) if all i ∈ St \ {j} accept the offer one after the other, then players in St \ {j}

are paid (ti)i∈St\{j}, player j is paid v(St)−
∑

i∈St\{j} ti, and the game ends;

2) if at least one player i ∈ St \ {j} refuses the offer, then there are two possibil-

ities:

2a) if |St| = 2 (only one more player is left, together with j), then they both

obtain the worth of their own stand-alone coalition v({i}) for each i ∈ St, and

the game ends;

2b) if |St| > 2, then player i is removed from the game, she obtains her individual

payoff v({i}), a new proposer k ∈ St+1 = St \ {j} is randomly selected, and the

new position is (St+1, k).

The game starts with a randomly chosen proposer j ∈ N , so that the initial position

is (N, j). It terminates either when there are no more players in the game (see point 2a

above), or when the offer is unanimously accepted (see point 1 above).

Hart and Mas-Colell (1996) showed that this game has a unique subgame perfect

equilibrium that supports the grand coalition and yields the Shapley value payoff vector

in expectation.

Given a specific initial proposer j ∈ N , the a posteriori equilibrium payoff assigns

to each other player her Shapley value in the cooperative game reduced to the set of

players N \ {j}, and to the proposer, the marginal contribution to the grand coalition

v(N)− v(N \ {j}).
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2.2.2 PC-W mechanism

Perez-Castrillo and Wettstein (2001) proposed a bidding mechanism to implement the

Shapley value for zero-monotonic cooperative games. In this mechanism, unlike Hart

and Mas-Colell (1996), the bargaining starts with a bidding stage where each of the

players makes a bid to each of the other players. The proposer is chosen as the player

making the highest net bid, calculated as the difference between the sum of the bids a

player makes to the others minus the sum of the bids the others make to her. If several

players make the highest net bid, the proposer is then selected randomly from them. At

the end of the bidding stage, the proposer pays the promised bids to the other players.

In the second stage, the proposer makes an offer to the other players (responders). This

offer is sequentially accepted or rejected by the responders. If all the responders accept,

the game ends and the proposer pays the other players according to their offers and

receives what remains of the worth of the coalition. If one of the responders rejects the

offer, the proposer leaves the game and obtains the worth of her stand-alone coalition

minus the bids she has already paid in the first stage. The remaining players keep what

they have received, and they begin a new bargaining round.

We present here a more formal description of the PC-W mechanism. A decision

point position at time t is given simply by the set of players St ⊆ N remaining in the

game, (when t = 1, St = N ). The game is described as follows:

(1) Each player i ∈ St makes bids bij to the other players j ∈ St\{i}. Player i with

the highest net bid
∑

j∈S\{i}(b
i
j − bji ) is chosen to be the proposer and pays bij

to every j ∈ St\{i}; if several players make the highest net bid, the proposer is

chosen randomly among them.

(2) If player i is the proposer, she makes an offer yij to the other players j ∈ St\{i}.
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(3) With i’s offer, the game proceeds in the following way:

(3a) If the offer is sequentially accepted by the other players, each player j ∈

St\{i} receives bij + yij , the proposer obtains v(St) −
∑

j∈St\{i}(b
i
j + yij),

and the game ends.

(3b) If at least one player j ∈ St\{i} refuses the offer, then proposer i is removed

and obtains v({i}) −
∑

j∈St\{i} b
i
j; the new set of players becomes St+1 =

St\{i} in which each member j receives bij and a new bidding mechanism

starts among them (if only one player remains in the game, i.e., |St+1| = 1,

then that player obtains the worth of her stand-alone coalition and the game

ends).

Perez-Castrillo and Wettstein (2001) show that any subgame perfect equilibrium of

this game implements the Shapley value as the a posteriori equilibrium payoff. At

these equilibria, the bid of player i to player j corresponds to j’s Shapley value of the

original game minus j’s Shapley value in the cooperative game reduced to the set of

players N \ {i}. The balanced contribution property (Myerson, 1980) then ensures that

all net bids are equal to zero, leading to a random selection of the proposer among all

the players. Moreover, player i, if she is randomly selected to be the proposer, offers to

player j her Shapley value in the reduced cooperative game with player set N \{i}. It is

worth noting that when the game is strictly zero-monotonic,3 the grand coalition always

forms. Otherwise, rejection of some offers could also constitute a subgame perfect

equilibrium (this is the case, for example, in game 2 in Table 1 below when Player 1 is

chosen as the proposer).
3A game is strictly zero-monotonic if v(S) + v({i}) < v(S ∪ {i}) for any nonempty subset S ⊆ N

with i 6∈ S. Note that only games 1, 3, and 4 that we consider in our experiments are strictly zero-
monotonic.
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3 The experimental setting

We consider the four games that are studied in (Chessa et al., 2022a,b). These games

and their corresponding Shapley values are reported in Table 1.

Table 1: Four games and corresponding Shapley values

Game 1 Game 2 Game 3 Game 4
v1(S) v2(S) v3(S) v4(S)

S = v1(S) + v2(S) = 2v1(S)

1 0 0 0 0
2 5 20 25 10
3 5 20 25 10
4 10 30 40 20
1,2 20 20 40 40
1,3 20 20 40 40
1,4 25 30 55 50
2,3 20 45 65 40
2,4 25 55 80 50
3,4 25 60 85 50
1,2,3 50 45 95 100
1,2,4 60 55 115 120
1,3,4 60 60 120 120
2,3,4 60 100 160 120
N 100 100 200 200

Shapley values for each player

φ1(v) 22.08 0 22.08 44.16
φ2(v) 23.75 28.33 52.08 47.5
φ3(v) 23.75 30.83 54.58 47.5
φ4(v) 30.42 40.83 71.25 60.84

3.1 Procedure

Upon arrival, participants received a copy of the instruction slides. The instructions

were divided into two parts: an explanation of the rules of the game and an explanation

of the computer interface. First, a prerecorded video of the first part of the instruc-
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tions (explanation of the rules of the game) was played. Then, a comprehension quiz

(computerized) was administered to make sure participants understood the rules of the

game. They needed to answer each question correctly before proceeding to the next one.

Once all the participants finished answering the quiz questions, two practice rounds of

a game in which the Shapley value for all the players was 25 was run to familiarize the

participants with the software before the real experiment started. During these prac-

tice rounds, participants were asked to look at the second part of the instructions about

the computer interface. In the first round of the practice, the experimenter explained

each screen following the instructions. See Appendix D for English translations of the

instruction slides and the comprehension quiz.

In the actual experiment, just as in Chessa et al. (2022a,b), each participant played

all four games twice in one of the following four orderings: 1234, 2143, 3412, and 4321.

Between each play of a game (called a round), players were randomly rematched into

groups of four players, and participants were randomly assigned a new role within the

newly created group.4 At the end of the experiment, two rounds (one from the first four

rounds and another from the last four rounds) were randomly selected for payments.

Participants received cash rewards based on the points they earned in these two selected

rounds with an exchange rate of 20 JPY = 1 point in addition to 1500 JPY and 1900 JPY

participation fees for H-MC and PC-W. The participation fee for PC-W was set larger

4As Chessa et al. (2022b) note, this design choice may have slowed down participants’ learning how
to play the game, and therefore makes the data noisier compared with a design in which participants play
only one game. Despite this concern, this design is chosen in Chessa et al. (2022b) to have within-session
variations of games because the tests of the axioms involve comparing outcomes across different games.
Furthermore, as suggested by Guerci et al. (2014), this random reassignment of the roles across rounds
instead of fixing the roles may have slowed down participants’ learning how to play the game, and thus
may have made our data noisier. Chessa et al. (2022b) opt for this design, however, to avoid participants
feeling the experiment is unfair because of the existence of the null player in game 2. Because the data
of H-MC used in this paper are the same as those reported in Appendix V of Chessa et al. (2022b) as H-
MCsim, we also follow these design choices in PC-W. See Appendix C for analyses as well as discussions
related to subject learning.

12



to compensate for the longer experiment, as well as to cover possible losses participants

may have made.

3.2 Simplification of, and an additional difference between, the mech-

anisms

In our experiment, we simplified both the H-MC and PC-W mechanisms. Namely, after

a proposer made an offer, instead of the remaining players (responders) approving or

rejecting the offer one by one sequentially, all responders decided simultaneously.

Coalition formation processes may perform differently in the two settings (sequen-

tial versus simultaneous). For example, recently, Abe et al. (2021) compared exper-

imentally the efficiency of (a) a mechanism in which participants decide to join the

coalition sequentially, as in the original theoretical analysis of Hart and Mas-Colell

(1996) and Perez-Castrillo and Wettstein (2001) and (b) an analogous mechanism in

which participants decide to join the coalition simultaneously, as in our experimental

implementation. The authors found that the former resulted in higher efficiency than

the latter. However, Chessa et al. (2022b) investigated the effect of this simplification in

H-MC in the same four games we consider in this paper (see their Appendix V). This

simplification gives rise to other Nash equilibria, in which two or more players refuse

the proposal. However, they reported that the simplified H-MC indeed resulted in a

significantly lower frequency of grand coalition formation and efficiency in game 2, but

not in the remaining three games, such that the performances of the two implementa-

tions were comparable. Moreover, in our experiment this simplification is done both

for H-MC and PC-W. Therefore, for the purpose of investigating the effect of adding a

bidding stage to determine the proposer, the impact of this simplification, if any, should
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be analogous on two mechanisms and should not affect their comparison.

In our experiment, in addition to the way the proposer is chosen, there is a difference

in the way the simplified version of the H-MC and PC-W is implemented. Namely, on

the one hand, under our H-MC implementation, the responders observed the proposed

allocation to all the players when deciding to accept or reject the proposal. On the

other hand, under our PC-W implementation, each responder observed only their own

proposed allocation and not those to other players (see the screenshots entitled “respon-

dent’s input” for H-MC and “STEP 2 (Respondent)” for PC-W included in the English

translation of the instruction material available in Appendix D). The reason for intro-

ducing this difference is that in PC-W, responders are presented not only with the offer

in the second stage, but also the allocated amount in the first bidding stage and the sum

of the two. Presenting the proposed allocation for all the responders in this manner for

PC-W substantially increases the amount of information that participants must process

when deciding to approve or reject the offer. While this difference in the presentation of

the information does not influence the theoretical analyses (based on the standard set of

assumptions), it may influence the results we report below. We investigate whether and

how this difference in the procedure may have impacted the results in Section 4.2.2.

4 Results

The computerized experiment was conducted at the Institute of Social and Economic

Research (ISER), Osaka University, between June and December 2019. The experiment

was computerized and used z-Tree (Fischbacher, 2007). A total of 164 students among

those registered in the participant database managed by ORSEE (Greiner, 2015), who

had not participated in similar experiments previously, were recruited as subjects of the
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experiment. Among these 164 participants, 84 played H-MC and 80 played PC-W.5 As

noted in footnote 4 above, the data of H-MC used in this paper are the same as those

reported in Appendix V of Chessa et al. (2022b) as H-MCsim.

The experiment lasted on average 1h30m for H-MC and 2h05m for PC-W including

the instructions, comprehension quiz, and payment. The average earning was 2780

JPY for H-MC and 2990 JPY for PC-W (approximately 25.7 and 27.7 USD using an

average exchange rate of 1 USD = 108 JPY for the period over which the experiment

was conducted.)

4.1 Grand coalition formation and efficiency

Figure 1 presents the results relating to the grand coalition formation in the H-MC mech-

anism and in the PC-W mechanism, for the four games. The figure is created based

on the estimated coefficients of the following linear regression: gci = β1HMCi +

β2PCWi + µi where gci is a dummy variable that takes the value 1 if the grand coali-

tion is formed, and zero otherwise, in group i, and HMCi (PCWi) is a dummy variable

that takes the value 1 if the H-MC (PC-W) mechanism is used, and zero otherwise.

Standard errors are corrected for within-session clustering effects (there are 8 clusters,

4 clusters within each treatment, in total). The statistical tests are based on the Wald test

for equality of the estimated coefficients of two treatment dummies.

For game 2, we also consider the case in which we allow a coalition without the null

player as the grand coalition (panel b’). We observe from Figure 1 that the frequency

of grand coalition formation is higher under H-MC than under PC-W; however, the

difference is not statistically significant.
5There were four sessions, corresponding to four orderings of the games, for each mechanism. For

H-MC, we had 24 participants in one session (with the order of games being 4321) and 20 participants in
three other sessions. For PC-W, we had 20 participants in all four sessions.
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Figure 1: H-MC and PC-W mechanisms: proportion of times the grand coalition formed

(a) Game 1 (b) Game 2 (b’) Game 2, allow {2,3,4}

H-MC PC-W
0

0.2
0.4
0.6
0.8

1

n.s.

H-MC PC-W
0

0.2
0.4
0.6
0.8

1

n.s.

H-MC PC-W
0

0.2
0.4
0.6
0.8

1

n.s.

(c) Game 3 (d) Game 4

H-MC PC-W
0

0.2
0.4
0.6
0.8

1

n.s.

H-MC PC-W
0

0.2
0.4
0.6
0.8

1

n.s.

Note: Error bars show one standard error range. ***, **, and * indicate the proportion of times that grand coalition formation is

significantly different between the H-MC and the PC-W at the 0.1, 1, and 5% significance levels, respectively (Wald test).

As a direct consequence of the grand coalition not always being formed, both mech-

anisms fail to achieve full efficiency. Figure 2 compares the efficiency of the two mech-

anisms for the four games. Efficiency is computed as the fraction of the sum of the

payoffs obtained by the four players compared with the value of the grand coalition

of the considered game (100 for games 1 and 2 and 200 for games 3 and 4). The fig-

ure is created based on the estimated coefficients of the following linear regressions:

Effi = β1HMCi + β2PCWi + µi where Effi ≡
∑

i πi
v(N)

is the efficiency measure for

group i,HMCi (PCWi) is a dummy variable that takes the value 1 if the H-MC (PC-W)

mechanism is used, and zero otherwise. Standard errors are corrected for within-session

clustering effects. The statistical tests are based on the Wald test for the equality of the

estimated coefficients of two treatment dummies.

Figure 2 shows that efficiency is higher under the H-MC mechanism than under the
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Figure 2: Efficiency
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Note: Error bars show the one standard error range. ***, **, and * indicate that efficiency is significantly different between H-MC

and PC-W at the 0.1, 1, and 5% significance levels, respectively (Wald test).

PC-W mechanism, and that the difference is statistically significant at the 5% level for

games 3 and 4.

The significantly lower efficiency under PC-W compared with H-MC (for game 3,

the mean efficiency is 0.747 and 0.858 for PC-W and H-MC, respectively, and for game

4, it is 0.788 and 0.871) demonstrates that the cost introduced by the bidding procedure

of the former is not negligible.

4.2 The first proposals and responses against them

To better understand the reason for the lower efficiency of PC-W compared to H-MC,

we analyze the first proposals and responses against them. We focus on the first proposer

because for the grand coalition to be formed, we require the first proposal to be accepted.

We start by looking at who became the first proposer.
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Table 2: Frequency of being the first proposer

(a) Frequencies in PC-W and H-MC (all games combined)
Player 1 Player 2 Player 3 Player 4

PC-W 21 38 39 62
H-MC 41 40 45 42

(b) Result of multi-nominal logistic regression
Proposer 1 2 3
H-MC 1.059∗∗ 0.441 0.533∗∗

(0.349) (0.318) (0.168)
Constant -1.083∗∗∗ -0.490 -0.464∗∗∗

(0.228) (0.264) (0.131)

Note: Proposer 4 is the baseline outcome. Standard errors are corrected for session-level clustering effect. *** and ** are statisti-

cally significant at 0.1 and 1% level respectively.

Panel (a) of Table 2 shows the frequency of each player being chosen as the first

proposer in PC-W and H-MC. We have pooled all the games from all the sessions. In

H-MC, by construction, all four players have been selected with similar frequencies to

be a proposer. In PC-W, however, Player 4 is almost three times more likely to become

the proposer than Player 1, and Players 2 and 3 are almost twice more likely to become

the proposer than Player 1.

To test whether there is a significant difference between PC-W and H-MC regarding

the frequency of chosen proposer, we have conducted multi-nominal logistic regression

where the dependent variable is the chosen proposer (Players 1 to 4) and independent

variables are constant and the H-MC dummy that takes value 1 if the treatment is H-MC

and zero in case of PC-W. Standard errors are corrected for within-session clustering

effect. The result, with Player 4 used as the base outcome, is shown in panel (b) of

Table 2. As we have observed in panel (a), for PC-W, Players 1 and 3 are significantly

(at 1% significance level) less likely to be selected as the proposer than Player 4 (the null
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hypothesis, constant=0, is rejected (p-value < 0.001)). For H-MC, however, the null

hypothesis, constant + H-MC=0, is not rejected (p-value = 0.928, Wald test) suggesting

that all the players are equally likely to become the proposer.

4.2.1 Offer made by the first proposer

We now investigate the offers made by the first proposer in H-MC and PC-W. We have

pooled all the games from all the sessions. We consider the following three characteris-

tics regarding the offer made by the first proposers:

• Deviation from the equal division: devED =
∑

j(oj − v(N)/4)2 where oj is the

offered amount to player j

• Deviation from the Shapley value: devSV =
∑

j(oj−φj)2 where oj is the offered

amount to player j and φj is the Shapley value of player j in the game

• Relative proposer advantage: Adv = (op−φp)/φp where op and φp are the amount

the proposer allocated to him/herself in the proposal and φp is her/his Shapley

value in the game

In all the measures, for PC-W we include the amount allocated as a result of the first

bidding stage in the first proposal to be able to better compare H-MC and PC-W. Ap-

pendix A provides analyses of the bidding stage in PC-W.

Figure 3 shows the empirical cumulative distribution of devED (left), devSV (cen-

ter), and Adv (right) for H-MC (solid red) and PC-W (dashed blue). In each panel, the

distribution of H-MC lies on the left of that of PC-W, suggesting that first proposals

under H-MC tend to be more equal, closer to SV, and not to give a large amount to the

proposer relative to his/her Shapley value, compared to PC-W.
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Figure 3: Empirical cumulative distribution of devED, devSV , and Adv
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Note: Solid Red: H-MC. Dashed Blue: PC-W.

To test whether there are significant differences in terms of these three measures

of the first proposals between H-MC and PC-W, we conduct an ordinary least square

(OLS) regression that takes either devED, devSV , or Adv as a dependent variable and

constant and the H-MC dummy as the independent variables (regressions (1), (3), and

(5) in Table 3). We also run a regression in which we add the proposer’s ID (1, 2, 3, or

4) as an independent variable in order to control for the difference in the frequency of

proposer between PC-W and H-MC (regressions (2), (4), and (6) in Table 3). Standard

errors are corrected for session-level clustering effect.

The regression results shown in Table 3 confirm our observation from Figure 3.

Namely, the first proposal results in H-MC are significantly more equal, closer to SV,

and the amount allocated to the proposer is significantly closer to his/her Shapley value

than in PC-W.

4.2.2 Responses to the first proposal

We have seen that the first proposals under PC-W tend to allocate a much larger share to

the proposer (relative to her/his Shapley value). This may result in responders rejecting

the first proposal with a higher frequency (which results in a lower frequency of the
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Table 3: Results of OLS regression

(1) (2) (3) (4) (5) (6)
devED devSV Adv

H-MC -888.84∗ -765.14 -1120.79∗∗ -1096.84∗ -0.195∗∗∗ -0.25∗∗∗

(337.28) (330.31) (307.51) (342.34) (0.0383) (0.0214)
Proposer 340.12 65.86 -0.18∗∗

(1,2,3,4) (195.74) (233.75) (0.0489)
Constant 1694.15∗∗∗ 712.04 2089.07∗∗∗ 1898.91∗ 0.38∗∗∗ 0.91∗∗∗

(316.06) (627.46) (287.99) (803.57) (0.033) (0.012)
No. obs 328 328 328 328 317 317

R2 0.012 0.020 0.020 0.020 0.015 0.076

Note: Standard errors are corrected for session-level clustering effect. ***, **, * indicate statistically significant at 0.1%, 1%, and

5% level.

grand coalition formation and also a lower efficiency, as we have observed).

We investigate whether, controlling for the characteristics of the first proposals (us-

ing the three measures we have considered above), there are significant differences in

terms of frequency of the first proposal being accepted or not between H-MC and PC-

W. In particular, we consider the logit regression6 with the dependent variable being a

rejection dummy that takes the value 1 if the proposal is rejected and zero otherwise,

and independent variables being constant, the H-MC dummy, one of the three measures

of the proposal (either devED, devSV , and Adv) and its interaction with the H-MC

dummy.

The results reported in Table 4 show that for each of the three measures of the first

proposal (devED, devSV , and Adv), the larger the measure is, the higher is the like-

lihood of the proposal being rejected. However, except for the regression where we

use Adv as the measure of the proposal, there is no statistically significant difference

between the H-MC and PC-W regarding the likelihood of the proposal being rejected.

6We obtain qualitatively the same results if we use probit specification
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Table 4: Results of logit regression

Dependent variable: Rejection dummy
X = devED X = devSV X = Adv

X 0.002∗∗ 0.0005∗∗ 1.8445∗∗∗

(0.0008) (0.0002) (0.2681)
X × H-MC -0.0007 0.00001 -0.2661

(0.0011) (0.00026) (0.4057)
H-MC -0.214 -0.3690 -0.481∗∗

(0.281) (0.2479) (0.1556)
Constant -0.425∗ -0.1770 -0.034

(0.185) (0.2071) (0.1249)
No. Obs 328 328 317

pseudo R2 0.1563 0.084 0.1250

Note: Standard errors are corrected for session-level clustering effect. ***, **, * indicate statistically significant at 0.1%, 1%, and

5% level.

Therefore, a lower efficiency observed in PC-W compared to H-MC is a result of the

differences in the proposals. The results suggest that those participants who won the

bidding stage and have actively become the proposer in PC-W, instead of being ran-

domly chosen in H-MC, seem to claim a large amount to themselves, and as a result,

their proposals are more likely to be rejected.

The regression results also suggest that the differences in the way the information

regarding the proposal is presented between the two mechanisms when responders de-

cide to approve or reject it (c.f. Section 3.2) had some, but not too strong, impacts on

the result once the characteristics of the proposal are controlled for.

Let us now analyze the realized allocations.
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4.3 Allocations

We denote by πHMC(vk) a vector of payoffs obtained by the players in the H-MC mech-

anism in game k, with k = 1, 2, 3, 4. Analogously, we denote by πPCW (vk) a vector

of payoffs obtained by the players in the PC-W mechanism. As noted above, H-MC

implements the Shapley value only on average, whereas PC-W, thanks to the bidding

stage, does so as a unique equilibrium outcome. Therefore, we first compare the average

realized payoff vectors between the two mechanisms. However, when the players fail to

form the grand coalition, the total payoffs obtained by the players are smaller than the

value of the grand coalition. This results in the average realized payoff vectors being

significantly different from the Shapley value. We therefore focus our analyses on those

groups that formed the grand coalition.7

Our main analyses are based on a set of OLS regressions (using only the data from

groups that formed the grand coalition) for the following system of equations.

π1 = a1g1 + a2g2 + a3g3 + a4g4 + u1

π2 = b1g1 + b2g2 + b3g3 + b4g4 + u2

π3 = c1g1 + c2g2 + c3g3 + c4g4 + u3

π4 = d1g1 + d2g2 + d3g3 + d4g4 + u4,

(1)

where πi is the payoff of player i, gj is a dummy variable that takes the value 1 if the

game j ∈ {1, 2, 3, 4} is played, and zero otherwise. Because participants play all four

games twice, we correct the standard errors for any within-group clustering effect. Note

that the estimated coefficients aj , bj , cj , and dj are the average payoffs in game j for

players 1, 2, 3, and 4, respectively.

7In Appendix B we report the distribution of realized allocation in four games under two mechanisms
for those groups that formed the grand coalition.
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Table 5: Results of linear regression based only on the groups that formed the grand
coalition

H-MC PC-W
π1 π2 π3 π4

g1 23.88 25.63 24.56 25.93
(0.70) (0.43) (0.11) (0.42)

g2 11.07 26.07 27.73 35.13
(3.31) (1.45) (0.97) (1.95)

g3 45.88 51.32 49.72 53.08
(1.70) (1.19) (0.50) (1.84)

g4 47.83 48.67 50.5 53.00
(1.17) (0.89) (0.87) (1.10)

R2 0.96 0.99 0.99 0.97
Obs. 97 97 97 97

π1 π2 π3 π4
g1 23.93 25.00 24.86 26.21

(0.39) (1.54) (0.72) (1.04)
g2 22.18 23.45 25.55 28.82

(4.01) (1.15) (0.99) (3.78)
g3 50.76 49.18 51.18 48.88

(0.44) (1.59) (0.41) (2.08)
g4 49.08 49.64 49.16 52.12

(1.16) (0.57) (0.75) (1.46)
R2 0.98 0.98 0.99 0.97

Obs. 67 67 67 67

Note: Standard errors are corrected for any within-group clustering effect.

Table 5 reports the results of these regressions, with H-MC in the left panel and PC-

W in the right panel. These estimated coefficients and standard errors are also visualized

in Figure 4. In the figure, the horizontal lines indicate the Shapley values for each game.

The stars above each bar indicate that the average payoff is significantly different from

the corresponding Shapley value at the 0.1, 1, or 5% levels. As one can observe, there

are only a few cases (players 2 and 3 in game 1 as well as Player 2 in game 3 for PC-

W, and Player 2 in games 2, 3, and 4 for H-MC) where the average payoffs are not

significantly different from the Shapley value at the 5% level. Thus, neither H-MC nor

PC-W implement the Shapley values.

To better compare the two mechanisms in terms of how close their average payoffs
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Figure 4: Mean payoffs based only on the groups that formed the grand coalition
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Note: The horizontal lines indicate the Shapley values. Error bars show one standard error range. ***, **, and * indicate the average

payoff being significantly different from the Shapley value at the 0.1, 1, and 5% significance levels (χ2 test).

are to the Shapley value, we compute the following measure:

Disφ =

√∑
i

(πi − φi)2, (2)

where πi and φi are the average payoff and Shapley value for player i, respectively, in

the given game. As above, we focus on only those groups that formed a grand coalition.
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Figure 5: H-MC and PC-W mechanisms: distance from Shapley
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Note: Error bars show the one standard error range. ***, **, and * indicate significant difference between H-MC and PC-W at the

0.1, 1, and 5% significance levels (two-sample t-test).

Furthermore, we employ a bootstrapping technique to conduct statistical tests.8 Namely,

in each iteration, we use a subsample (with replacement) of our data, run the system of

regressions presented above (Eq. 1), and computeDisφ based on the obtained estimated

coefficients (i.e., the average payoffs for the subsample).

Figure 5 shows the results based on the outcomes of 1000 repetitions. As one can

observe, Disφ is significantly higher for games 2, 3, and 4 under PC-W than H-MC.9

Thus, the bidding stage of PC-W not only results in a lower efficiency, but also a larger

deviation from the Shapley value even among those groups that successfully formed the

grand coalition.

8Note that we have one observation ofDisφ for each game becauseDisφ is based on average payoffs.
By using a bootstrapping technique, we generate multiple observations of Disφ using sub-samples.

9Based on a two-sample t-test with unequal variance using the sample generated by the bootstrap. The
meansDisφ (standard errors) for the H–MC mechanism are 5.21 (0.041) in game 1, 13.11 (0.088) in game
2, 30.31 (0.089) in game 3, and 9.21 (0.058) in game 4. For the PC-W mechanism, the corresponding
values are 5.21 (0.041) for game 1, 26.34 (0.098) for game 2, 36.67 (0.053) for game 3, and 10.59 (0.077)
for game 4.
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4.4 Realized allocations and the a posteriori equilibria

Let us now analyze the realized payoffs in light of the a posteriori equilibrium payoff

vectors. We continue to focus only on the groups that formed the grand coalition. We

measure the distance between the realized payoff vectors and the equilibrium allocation

for the four games by the Euclidean distances between the two. Let eqi be the equilib-

rium payoff for player i for the given game and the mechanism. Note that eqi depends

also on the realized proposer in the case of H-MC. The distance of the realized pay-

off from the equilibrium is computed as DisNE =
√∑

i(πi − eqi)2. We also consider

the distance between the realized payoff vectors and equal division payoffs, defined by

DisED =
√∑

i(πi − EDi)2, where EDi is the equal division payoff for player i for

the given game.

Figure 6 shows the mean DisNE and the mean DisED for the two mechanisms

in the four games.10 Figure 6 shows that, except for game 2, the realized allocations

are closer to the equal division than for the equilibrium under both H-MC and PC-W.

The differences between DisNE and DisED are significant at the 1% significance level,

except for game 2. Because the allocation is closer to the equal division than that for

equilibrium, and the equilibrium allocation of PC-W is less extreme than those of H-

MC, we observe that PC-W results in an allocation closer to that of equilibrium than

H-MC for games 1 and 4 at the 0.1% significance level. For games 2 and 3, DisNE is

not significantly different between the two mechanisms.

10The figure is created based on the estimated coefficients of the following linear regressions: Disi =
β1HMCi + β2PCWi + µi where Disi is the relevant distance measure for group i, HMCi (PCWi)
is a dummy variable that takes the value 1 if the H-MC (P-WC) mechanism is used, and zero otherwise.
Standard errors are corrected for any within-session clustering effect. The statistical tests are based on
the Wald test for the equality of the estimated coefficients of the two treatment dummies.
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Figure 6: Mean of the distances of the realized payoff vectors from the subgame perfect
Nash equilbrium and the equal division
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Note: Error bars show the one standard error range. ***, **, and * indicate that the distance of the payoff vectors from the

equilibrium allocations or from the equal division was significantly different between H-MC and PC-W at the 0.1, 1, and 5%

significance levels (Wald test).

4.5 Shapley distance

Finally, following Aguiar et al. (2018), we decompose Shapley distance (the distance of

payoff vectors from the corresponding Shapley value) into the failure of axioms char-

acterizing the Shapley value. While Aguiar et al. (2018) proposes the decomposition

into the failure of the symmetry, the efficiency, and the marginality axioms, we follow

Chessa et al. (2022a) and decompose it into the failure of the axioms considered by

Shapley (1953), namely, the efficiency, the symmetry, the additivity, and the null player.

For this exercise, we consider all the groups, i.e., including those groups that did not

form the grand coalition.

Let π = (π1, π2, π3, π4) be a vector of payoffs obtained by the four players. Below,
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we summarize the detailed procedure of this decomposition.

(1) First, find a vector of payoffs, πsym, that satisfies symmetry and is closest to π. That

is, for symmetric players (j = {2, 3} in games 1 and 4), πsymj =
∑

j∈Ns πj/|N s|, where

N s is the set of symmetric players in the game. For other players, πsymk = πk.

(2) Second, find a vector of payoffs, πsym,eff , that satisfies efficiency and is closest

to πsym. In particular, for each player i = 1, 2, 3, 4, πsym,eff = πsym + [v(N) −∑
j∈N πj]/|N |.

(3) Third, find a vector of payoffs, πsym,eff,null, that satisfies the null player property

and is closest to πsym,eff . Namely, if player i is a null player (Player 2 in game 2),

πsym,eff,nulli = 0. For the other players j, πsym,eff,nullj = πsym,effj +
∑

i∈Nn π
sym,eff
i /(|N |−

|Nn|), where Nn is the set of null players.

(4) Fourth, using these payoff vectors, π, πsym, πsym,eff , πsym,eff,null, and the corre-

sponding vector of the Shapley values, φ(v), we can define the following “errors” for

each Player i

• eφi = πi − φi(v)

• esymi = πi − πsymi ,

• eeffi = πsymi − πsym,effi ,

• enulli = πsym,effi − πsym,eff,nulli ,

• eaddi = πsym,eff,nulli − φi(v).

Given these “errors”, the Shapley distance ||eφ||2 can be decomposed into the failure

of the symmetry, the efficiency, the null player, and the additivity axioms as follows:

||eφ||2 = ||esym||2 + ||eeff ||2 + ||enull||2 + ||eadd||2 + 2 < eadd, enull >,
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where < ·, · > is the scalar product.11 As one can observe from the presence of

< eadd, enull >, unlike the decomposition of Aguiar et al. (2018) that ensures decompo-

sition into three orthogonal components, in the decomposition of Chessa et al. (2022a),

vectors enull and eadd are not orthogonal, and < eadd, enull > is not equal to zero. How-

ever, < eadd, enull > in our data are several orders of magnitude smaller than other

components and can be safely ignored (on average, they are 0.014 and 0.007 in PC-W

and H-MC, respectively).

To test for differences between PC-W and H-MC, we run the following OLS regres-

sion by pooling the data from all four games:

||ek||2g = β1HMC + β2PCW + U. (3)

The dependent variable is the components of the Shapley distance corresponding to the

four axioms as well as the Shapley distance itself (||ek||2g with k ∈ {sym, eff, null, add, φ})

for group g and the independent variables are HMC and PCW , which take a value of

1 if the corresponding mechanism is used, and zero otherwise. Standard errors are cor-

rected for within-session clustering effects.

Table 6 shows the results of the regressions. The Shapley distance is significantly

larger for PC-W (1604.27) than for H-MC (769.12, p-value = 0.008, Wald test). In both

PC-W and H-MC, the main components of the Shapley distance are due to the failure

of the efficiency and the additivity axioms. They account for 49.2% and 40.5% in PC-

W and 50.3% and 41.2% in H-MC. Furthermore, as we have observed in Figure 4, the

failure of the null player axiom is significantly larger for PC-W than H-MC (p-value =

0.028, Wald test) which accounts for, respectively, 7.3% in PC-W and 5.1% in H-MC

11For any vector y ∈ Rn, ||y||2 =< y, y >=
∑
i∈N y

2
i .
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||esym||2 ||eeff ||2 ||enull||2 ||eadd||2 ||eφ||2

PC-W 48.58 789.34 117.32 649.15 1604.27
(7.67) (96.88) (26.04) (136.96) (220.94)

H-MC 25.90 386.64 39.55 317.10 769.12
(2.28) (40.36) (10.47) (21.81) (55.17)

No. Obs 328 328 328 328 328
R2 0.103 0.248 0.125 0.265 0.427

p-value∗ 0.025 0.006 0.028 0.048 0.008
Standard errors are corrected for session-level clustering effects and shown in
parentheses.
* p-values for testing H0: PC-W = H-MC (based on the Wald test)

Table 6: Result of Shapley distance decomposition. Based on pooling the data of all
groups and all games

of the Shapley distance.

5 Summary and conclusion

In this paper, we aim to experimentally contribute to the Nash program (Nash, 1953) by

extending the experimental analyses of Chessa et al. (2022a,b). We do so by comparing

the simplified version of the mechanisms proposed by Hart and Mas-Colell (1996) and

Perez-Castrillo and Wettstein (2001). In the original theoretical investigation, in both

mechanisms, there is a proposer who proposes an allocation, which is voted on sequen-

tially by the remaining players (in our experiment, the voting is done simultaneously).

The proposal is accepted if all the remaining players accept the proposal; if not, with

some probability in H-MC and with probability one in PC-W (in our experiment, both

are set to be with probability 1 to be comparable), the proposer leaves the game with

his/her individual value (minus the sum allocated in the bidding stage in PC-W), and

the game continues with the remaining players. The key difference between the two

mechanisms is the way the proposer is chosen. On the one hand, a proposer is chosen
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randomly from among the players in Hart and Mas-Colell (1996). On the other hand, in

Perez-Castrillo and Wettstein (2001), the proposer is determined through a bidding pro-

cedure. While Hart and Mas-Colell (1996) implements the Shapley value as an ex ante

equilibrium payoff (i.e., it is only achieved as an expected outcome), Perez-Castrillo

and Wettstein (2001) implements it as a unique equilibrium of the game.

Our experiment shows that the simpler mechanism a la Hart and Mas-Colell (1996)

not only results in higher efficiency than the one by Perez-Castrillo and Wettstein (2001),

but also that the average allocation is closer to the Shapley value for those groups that

formed a grand coalition. Thus, the complexity of the mechanism of Perez-Castrillo

and Wettstein (2001) imposes substantial costs for implementing the Shapley value. In

particular, we find that those proposers who have been selected via the bidding in PC-W

tend to propose an allocation that favors themselves than those selected randomly in H-

MC. Namely, the allocations proposed in PC-W are significantly less equal and deviate

more from Shapley value than those proposed in H-MC. However, such proposals are

more likely to be rejected by other players, and as a result, the grand coalition are less

likely to be formed and efficiency is lower under PC-W than under H-MC. This suggests

a possibility that while those who win the bidding stage in PC-W consider themselves

to be entitled to receive a larger share, others do not think in the same way.

Chessa et al. (2022a,b), as well as the present paper, showed that participants have

difficulty forming a grand coalition and achieving full efficiency under various noncoop-

erative mechanisms (namely, Winter, 1994; Hart and Mas-Colell, 1996; Perez-Castrillo

and Wettstein, 2001). A natural question is whether participants can better form a grand

coalition and achieve a higher efficiency if they can negotiate freely in an unstructured

bargaining environment. Establishing such a benchmark in more “cooperative” envi-

ronments and comparing them with the results obtained under “noncooperative” envi-
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ronments would be fruitful future research.

Other possible future work could investigate the performance of modifications of

the mechanism by Perez-Castrillo and Wettstein (2001) when implementing some vari-

ations of the Shapley value, such as the egalitarian Shapley value (van den Brink et al.,

2013) or when we introduce discounting in the bidding mechanism (van den Brink and

Funaki, 20015).
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A Bidding stage in PC-W

In this section, we analyze the result of the bidding stage in PC-W. In particular, we

investigate (1) whether a small number of participants have won the bidding stage most

of the time, and (2) the distribution of the submitted bids.

A.1 Frequency of winning the first bidding stage

Table 7: Frequency of becoming the first proposer

Session
Fr. of winning 1 2 3 4

0 6 3 3 2
1 3 5 6 7
2 4 7 4 5
3 2 2 3 5
4 2 1 3 0
5 3 1 1 0
6 0 1 0 0
7 0 0 0 0
8 0 0 0 1

total 20 20 20 20

Table 7 shows the distribution of the frequency of becoming the first proposer in

each of four sessions. There is one participant in session 4 who won the first bidding

36



Figure 7: Histogram of non-negative total bids and winning total bids
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stage and became the first proposer in all the 8 games in which s/he participated. There

are also a few participants who became the first proposer more than half (4) of the times.

Thus, there are some participants who bid aggressively to become a proposer.

A.2 Submitted bids

Figure 7 shows the histogram of the total bids (sum of the bids to three other players

in the group) that are non-negative as well as the winning total bids. Note that there

are 42 (out of 640) cases in which participants submitted a negative total bid to avoid

becoming the proposer (in some cases, the total bid was -300).

Figure 8 shows the distribution of the total bids (that are non-negative). The left

panel shows all the bids, and the right panel shows the only the winning bids. In both

panels, the sum of the equilibrium bids (equilibrium total bids) is indicated in the x-axis

as well as the straight line in the figure. While there are cases of participants bidding

more than the equilibrium amount, in most of the cases, total bids were less than the

equilibrium amounts. The same is true among those who won the bidding stage shown
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Figure 8: Distribution of total bids vis-a-vis the equilibrium total bids
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on the right panel.

B Realized allocations in the grand coalitions

Table 8 shows the distribution of realized allocations in four games for those groups

that formed a grand coalition. For games 1, 3, and 4, there are many groups that opted

for the equal division. There are also groups that decided to allocate points among four

players in the reverse ordering of the Shapley value.

C Comparison of the first two games and the last two

games

So far, we have considered all the rounds and compared H-MC and PC-W. However,

given that PC-W is more complex than H-MC, it is possible that it takes longer for
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participants to learn to play better. In this section, therefore, we separately investigate

the outcomes in the early rounds (i.e., the first two games that participants played) and

in the late rounds (i.e., the last two games that participants played). The figures below

are generated in a similar way to the corresponding figures presented above.12

Figure 9 shows the frequency of grand coalition formation in four games for the

early and the late rounds. For H-MC, the grand coalition is significantly more frequently

formed in the late rounds than in the early rounds for game 1 (at the 1% significance

level). For PC-W, the frequency of grand coalition formation is significantly higher in

the late rounds than in the early rounds for games 3 and 4 (at the 0.1 and 1% significance

levels, respectively). A similar tendency can be observed for the efficiency shown in

Figure 10.

Figure 11 shows Disφ for the early and late rounds in H-MC and PC-W for the four

games. While for H-MC, Disφ becomes smaller in the late rounds than in the early

rounds for all four games, this is not the case for PC-W.13 For PC-W, Disφ becomes

smaller in the late rounds than in the early rounds only for games 3 and 4, whereas for

games 1 and 2, it becomes larger in the late rounds.14 Thus, gaining experience playing

the game does not necessarily lead to allocation according to the Shapley value under

PC-W.
12Namely, the figures are created based on the estimated coefficients of the following linear regression:

yi = β1HMCei + β2HMCli + β3PCW
e
i + β4PCW

l
i + µi where yi is the outcome variable of interest

in group i, and HMCτi (PCW τ
i ) is a dummy variable that takes the value 1 for τ ∈ {e, l} where e and l

stand for early and late rounds of the H-MC (PC-W) mechanism, and zero otherwise. The standard errors
are corrected for any within-session clustering effect. The statistical tests are based on the Wald test for
the equality of the estimated coefficients of two treatment dummies.

13The mean Disφ (the standard errors) for H-MC in early and late rounds are 6.44 (0.013) and 4.78
(0.027) for game 1, 19.03 (0.09) and 7.38 (0.11) for game 2, 32.08 (0.13) and 29.18 (0.13) for game 3,
and 9.96 (0.09) and 8.78 (0.07) for game 4, respectively.

14For PC-W, the mean Disφ (the standard errors) in early and late rounds are 4.38 (0.056) and 7.21
(0.057) for game 1, 18.18 (0.17) and 31.70 (0.05) for game 2, 37.16 (0.03) and 36.55 (0.08) for game 3,
and 11.68 (0.11) and 10.16 (0.10) for game 4, respectively.
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Figure 9: H-MC and PC-W mechanisms: proportion of times the grand coalition was
formed in early and late rounds

Game 1 Game 2 ({2, 3, 4} allowed)
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1
n.s. **
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n.s.
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Note: Error bars show the one standard error range. ***, **, and * indicate that the two averages were significantly different at the

0.1, 1, and 5% significance levels (Wald test).
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Figure 10: H-MC and PC-W mechanisms: efficiency in early and late rounds

Game 1 Game 2
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Game 3 Game 4
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Note: Error bars show the one standard error range. ***, **, and * indicate that the two averages were significantly different at the

0.1, 1, and 5% significance levels (Wald test).
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Figure 11: Mean Dis2φ in early and late rounds

(a) Game 1 (b) Game 2
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(c) Game 3 (d) Game 4
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0
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40 *** ***
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***
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Note: Error bars show the one standard error range. ***, **, and * indicate a statistically significant difference between the two

means, at the 0.1, 1, and 5% significance levels (Wald test).

This point can also be observed for DisNE . Figure 12 shows DisNE (top four

panels) andDisED (bottom four panels) in the early and the late rounds. For game 2, on

the one hand, under H-MC,DisNE becomes significantly smaller (and correspondingly,

DisED becomes significantly larger) in the late rounds compared with the early rounds

at the 1% significance level. On the other hand, under PC-W, the opposite is observed.

Namely, DisNE becomes significantly larger (and correspondingly, DisED becomes

significantly smaller) in the late rounds compared with the early rounds at the 0.1%

significance level. Furthermore, for PC-W in game 4, DisNE in the late rounds is

significantly larger than in the early rounds at the 5% significance level.
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Figure 12: Mean DisNE and DisED in early and late rounds

DisNE
(a) Game 1 (b) Game 2
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DisED
(a) Game 1 (b) Game 2
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Note: Error bars show the one standard error range. ***, **, and * indicate a statistically significant difference between the two

means at the 0.1, 1, and 5% significance levels (Wald test).
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D English translations of the instruction materials

The instruction materials and screenshots of the quiz for

• H-MC can be obtained from https://www.dropbox.com/s/78lf5bn6qi3qfwp/

HMChandout_sim.pdf?dl=0

• PC-W can be obtained from https://www.dropbox.com/s/yc584hk4c58ceyr/

PCW_handout.pdf?dl=0
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