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Abstract

A literature debates the explanations for the cyclical properties of emerging mar-

kets using either trend shocks (Aguiar and Gopinath 2007) or financial frictions

(Neumeyer and Perri 2004; Garcia-Cicco, Pancrazi, and Uribe 2010). We state a

formal proposition that makes explicit the parametric assumptions needed for con-

sumption to behave (exactly) as in a random-walk, permanent income model. The

result is general and applies to economies with endogenous investment and produc-

tion. The proposition offers a fresh perspective on the debate regarding the sources

of emerging market fluctuations, and reconciles diverging findings in the literature.

Moreover, we quantitatively explore the business cycle properties of the RBC model

when one moves away from the parametric assumptions suggested by the proposition.
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1 Introduction

A large literature seeks to explain a set of important and salient features of emerg-

ing market business cycles based on a class of baseline RBC open economy models.

Different from developed countries, emerging markets tend to exhibit a larger volatil-

ity of consumption than output, and a volatile and countercyclical current account.

These features of the data represent a challenge to standard, frictionless, models.

There are two strands of this literature. One strand of the literature, following the

seminal contribution by Aguiar and Gopinath (2007), asserts that a standard RBC

small open economy à la Schmitt-Grohe and Uribe (2003) subject to permanent

productivity shocks (called also nonstationary technology shocks or trend shocks) is

capable of accounting for the aforementioned features of emerging economies. This

appealing economic insight has proven quite influential. The logic is that, due to

the permanent income assumption, permanent shocks induce large movements in

consumption and a volatile and countercyclical current account. This point has been

extended in work by Boz, Daude, and Durdu (2011), Naoussi and Tripier (2013),

among others.1 A related strand of the literature, initiated by Neumeyer and Perri

(2004) and Uribe and Yue (2006), asserts instead that financial frictions are the

explanation to this large volatility. More recent work by Garcia-Cicco, Pancrazi, and

Uribe (2010), Alvarez-Parra, Brandao-Marques, and Toledo (2013), and Chang and

Fernandez (2013), among others, has also provided quantitative models of financial

frictions. Most often used are purely exogenous shocks to the interest rate faced

by the domestic economy, which are in fact able to generate realistic business cycle

dynamics.

Our main contribution to this debate is analytical. We prove a proposition that

makes explicit the conditions under which the permanent income hypothesis holds

exactly in the specification by Aguiar and Gopinath (2007) (henceforth AG). This

is important, because as AG emphasize, the permanent income hypothesis forms the

basis of an explanation grounded on trend shocks.

Our proposition states that, when the sensitivity of the interest rate to movements

in the stock of debt goes to zero and preferences are separable, consumption dynamics

are only determined by the long-run of level of productivity (up to a constant):

ct = constant · long-run level of productivityt

Somewhat surprisingly, in this parameter region consumption is completely discon-

nected from the rest of the model, and, it is highly sensitive to trend shocks. To

see this, consider a positive trend shock. Because such a shock raises income at in-

1See Durdu (2013) for a recent survey.
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finity, consumption reacts strongly on impact. Thus, not only consumption tends

to be volatile, but the small open economy finances this increase in consumption by

borrowing from the rest of the world, i.e., the net exports are countercyclical. So

long the interest rate does not increase following this increase in debt, this effect is

quantitatively powerful. Instead, if the interest rate increases, this effect is muted

through the consumption Euler equation, and the model may not be able to fit the

facts.

The proposition offers a fresh perspective on the debate regarding the sources of

emerging market fluctuations.

First, it clarifies the key economic role of the interest rate sensitivity. It is impor-

tant that, after an accumulation of debt, the interest rate does not increase by much,

or not at all. So long this is true, the effect of trend shocks is quantitatively power-

ful. Notice that AG (and several other following up papers) indeed fix the sensitivity

of the interest rate using a single parameter ψ, calibrated to a very small value of

ψ = 0.001. So far, this strand of the literature has attributed to ψ just the technical

role of delivering stationarity.2 Our proposition assigns it an economic role, the one

of delivering the random-walk permanent income behavior of consumption.

From a quantitative point of view, the analytical condition on the behavior of

interest rate is an invitation to explore how insensitive the interest rate ought to be

for trend shocks to have traction. We thoroughly study the implications of increasing

the value of ψ, while leaving all other parameters used by AG unchanged (and keeping

their exact specification.) We show that when this parameter has a higher value, but

still rather small (say 0.1), consumption already features excess smoothness, the

volatility of output being higher than the one of consumption. Also, the ratio of

the variances of net exports to output goes down to 0.19, whereas in the benchmark

results it is 0.71. So, net exports volatility is reduced considerably. In addition, the

correlation of net exports and output is also reduced (although to a lesser extent).

Thus, assigning a moderate value to ψ overturns most of the quantitative insights.

Using the value ψ = 1 delivers excess smoothness, a ratio of the variances of net

exports to output of 0.10, and correlation of net exports to output more than 2 times

smaller, overturning the results in AG. To sum up, the permanent shocks explanation

is overturned when the sensitivity of the interest rate in the AG model is increased.

An influential paper by Garcia-Cicco, Pancrazi, and Uribe (2010) (henceforth

GPU), appearing after AG, estimates ψ to 2.8 using Bayesian methods. However,

2Our reading of this literature is that, tacitly, it is comfortable with assigning a very low value to ψ in
order to mimic the behavior of the nonstationary model in which the interest rate is simply fixed. Moving
away from the nonstationary model to a stationary one provides computational advantages and allows
researchers to match second moments (of endogenous model variables in levels) as in the standard RBC
closed-economy model. See for instance the discussion in Mendoza (1991) or Schmitt-Grohe and Uribe
(2003).
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the model used by GPU is not exactly the same as in AG, because it is augmented

with interest rate shocks, preference shocks, and spending shocks. To clarify the

different findings in AG and GPU, in our numerical exercises, we also consider this

estimate (ψ = 2.8) in exactly the same model as in AG. It delivers similar results as

using ψ = 1, overturning the findings in AG. Thus, our proposition underlines the

pivotal role played by the behavior of the interest rate.

To the best of our knowledge, this is the first paper to take a theoretical approach

to analyze the performance of the RBC model in mimicking the economies of emerging

markets. In addition, the paper generalizes previous theoretical results (for instance

by Campbell and Deaton 1989, or Gaĺı 1991 for endowment economies) by showing

that the random-walk permanent income hypothesis for consumption holds exactly,

and quite generally, in economies with endogenous investment and production.

Our proposition is closely related to the result by Engel and West (2005) in the

context of asset prices. In fact, Engel and West (2005) showcase the condition that

the discount factor approaches 1 to guarantee that asset prices manifest a random

walk behavior. Our theorem below also requires this condition to hold.

Our paper is related to a large body of existing literature on emerging market

business cycles. In addition to those already mentioned, for more recent discussion,

see Chen and Crucini (2016), Rothert (2020), Hevia (2014), Dogan (2019), Seoane

(2016), Drechsel and Tenreyro (2018), Akinci (2021), among others.

Chen and Crucini (2016) stress that the main limitation of the small open econ-

omy model is the lack of attention paid to the role of TFP spillovers from the large

economies and instead propose a large aggregate economic region in general equilib-

rium with a small open economy to capture the international correlation of business

cycles. In a similar general equilibrium framework, Rothert (2020) allows the domes-

tic and foreign tradable goods to be imperfect substitutes to account for the behavior

of the real exchange rates. There, the impact of the trend shocks on aggregate con-

sumption expenditure becomes smaller in emerging economies as expansionary pro-

ductivity shocks reduce the relative price of domestic goods, dampening the impact

on the country’s income. Extending the ‘Business Cycle Accounting’ methodology

by Chari et al. (2007) to an open economy setting, Hevia (2014) suggests that RBC

models with just productivity shocks do not provide a successful benchmark to un-

derstand emerging market business cycles as productivity shocks in RBC models do

not distort the labor-consumption margin.

In a two-country international real business cycle model with investment and con-

sumption goods, Dogan (2019) shows that investment-specific technology shocks play

an important role in our understanding of emerging market business cycles. Seoane

(2016) proposes a small open economy model with tradable and non-tradable sec-

tors, endogenously accounting for the real exchange rate, and shows that stationary
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productivity shocks and the country premium explain a large share of the variability

observed in the data for emerging economies. Drechsel and Tenreyro (2018) consider

a second sector to capture the separate role of commodities in the economy. There,

commodity price and stationary productivity shocks are the most important source

of fluctuations for output, consumption, and investment, while the contribution of

nonstationary productivity shocks remains non-negligible. In a model with an en-

dogenously evolving time-varying country risk premium, Akinci (2021) shows that

nonstationary productivity shocks are non-negligible but not dominant in explaining

the economic fluctuations in output, consumption, and investment.

The rest of the paper is organized as follows. We setup the model and the log-linear

equilibrium in Section 2. We present the proposition and provide an interpretation in

Section 3. We explore several quantitative implications of the proposition in Section

4. Section 5 concludes. The proof of our proposition is quite lengthy and it is therefore

relegated to the appendix.

2 The Setup and Solution Method

For convenience, it seems natural to use exactly the same model as AG. Thus, we

reproduce here the published setup of the model. Then, we reproduce the normal-

ization and log-linearization reported by Aguiar and Gopinath (undated) (henceforth

AGb). We use the notation adopted there.

2.1 Aguiar and Gopinath’s 2007 Model

This is a single-good, single-asset, small open economy. Technology is characterized

by a Cobb-Douglas production function that uses capital Kt and labor Lt as inputs:

Yt = eztK1−α
t (ΓtLt)

α

where α ∈ (0, 1) represents labor’s share of output, and zt and Γt are productivity

processes. Specifically, level productivity zt follows

zt = ρzzt−1 + ϵzt

with ρz < 1, and ϵzt is a stationary technology shock, labeled also cycle or transitory

shock, and modeled as an i.i.d. draw from a normal distribution with zero mean and

standard deviation σz. Trend productivity is modeled with a nonstationary process

Γt = egtΓt−1
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where

gt = ρggt−1 + ϵgt

and ρg < 1. ϵgt is a nonstationary technology shock, labeled also trend or permanent

shock, and modeled as an i.i.d. draw from a normal distribution with zero mean and

standard deviation σg. AG allow for a deterministic trend in gt (denoted µg, see AG

p. 80.), but to simplify the algebra in the proof of our main result below, we set this

deterministic trend to zero (µg = 0). Our result extends easily to the general case

with unrestricted µg.

Period utility is Cobb-Douglas

ut =
[Cγt (1− Lt)

1−γ ]1−σ

1− σ

where 0 < γ < 1. The resource constraint is

Ct +Kt+1 = Yt + (1− δ)Kt −
ϕ

2

(
Kt+1

Kt
− 1

)2

Kt −Bt +QtBt+1

where Kt+1 is capital, δ is the capital depreciation rate, Bt represents debt due in

period t, qt is the time t price of debt due in period t + 1 and adjustment costs in

capital are captured by
ϕ

2

(
Kt+1

Kt
− 1

)2

Kt

where ϕ > 0 is a parameter.

The price of debt is sensitive to the level of outstanding debt, taking the form

used by Schmitt-Grohe and Uribe (2003):

1

Qt
= 1 + rt = 1 + r∗ + ψ

[
exp

(
Bt+1

Γt
− b

)
− 1

]
(1)

where r∗ is the world interest rate, b represent an exogenous steady-state level of

normalized debt, and ψ > 0 governs the elasticity of the interest rate to debt.

Normalization and Recursive Formulation. For a variable Xt, we write

its detrended counterpart by normalizing the variable using previous period’s trend

productivity:

X̂t =
Xt

Γt−1

In normalized form, the representative agent’s problem is written recursively as

V (K̂, B̂, z, g) = max
{Ĉ,L,K̂′,B̂′}

{
[Ĉγ(1− L)1−γ ]1−σ

1− σ
+ βegγ(1−σ)EV (K̂ ′, B̂′, z′, g′)

}
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subject to

Ĉ + egK̂ ′ = Ŷ + (1− δ)K̂ − ϕ

2

(
eg
K̂ ′

K̂
− 1

)2

K̂ − B̂ + egqB̂′

where a prime on a variable ′ denotes the value of the variable at t+ 1.

Log-linearization. For nonstationary variables, we define the following log-deviations

from stationary steady state quantities:

ĉt ≡ log(Ct/Γt−1)− log(C̄/Γ̄)

ŷt ≡ log(Yt/Γt−1)− log(Ȳ /Γ̄)

x̂t ≡ log(Xt/Γt−1)− log(X̄/Γ̄)

k̂t+1 ≡ log(Kt+1/Γt)− log(K̄/Γ̄)

For variables that are already stationary, we define the following log-deviations

n̂t ≡ log(Nt)− log(N̄)

l̂t ≡ log(Lt)− log(L̄)

q̂t ≡ log(Qt)− log(Q̄)

We then define the absolute deviation of the net exports-to-output ratio

n̂xt = NXt/Yt − N̄X/Ȳ

We also define the absolute deviation of

b̂t+1 =
Bt+1

Γt
− B̄

Γ̄

These definitions for steady state deviations are identical to the ones used in AGb,

with the exception of the last one. There, we use an absolute deviation the relative

(log) deviation used in the original paper, in order to allow for B̄/Γ̄ = 0. This allows

us to obtain general expressions in the proposition below, but our results do not rely

on this specification.

The resulting log-linearized model is fully characterized by the following set of

equations:
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The dynamics of productivity, including the cycle shocks and the trend shocks:

z′ = ρzz + ϵz

g′ = ρgg + ϵg

The first-order condition in k′, which corresponds to equation 12 in AGb:

0 = (γ(1− σ)− 1)Eĉ′ + (1− γ)(1− σ)El̂′ + βϕEg′

+ β(1− α)
Ȳ

K̄
Eŷ′ + βϕEk̂′′

−
(
β

(
(1− α)

Ȳ

K̄
+ ϕ

)
+ ϕ

)
k̂′ − (γ(1− σ)− 1)ĉ

− (1− γ)(1− σ)l̂ + (γ(1− σ)− 1− ϕ)g + ϕk̂

(AGb12)

The first-order condition in b′, which corresponds to equation 17 in AGb:

0 = (γ(1− σ)− 1)Eĉ′ + (1− γ)(1− σ)El̂′ + (γ(1− σ)− 1)g

− (γ(1− σ)− 1)ĉ− (1− γ)(1− σ)l̂ − q̂
(AGb17)

Other equations that describe the dynamics of the log-linearized model are:

0 = ŷ − n̂− ĉ+ l̂

0 =
Ȳ

Γ̄
ŷ + Q̄b̂′ + Q̄

B̄

Γ̄
(g + q̂)− b̂− X̄

Γ
x̂− C̄

Γ̄
ĉ (AGb20)

X̄

Γ̄
x̂ =

K̄

Γ̄

(
k̂′ − (1− δ)k̂ + g

)
(AGb21)

ŷ = z + (1− α)k̂ + α(g + n̂) (AGb22)

L̄l̂ = −N̄ n̂

q̂ = −ψQ̄b̂′ (AGb24)

∆nx = (1− N̄X/Ȳ )ŷ − X̄

Ȳ
x̂− C̄

Ȳ
ĉ

where we have followed the notation in AGb. The model is exactly the same as in

AGb except for (AGb20) and (AGb24). They are different because of the way we

normalize the level of debt.

3 The Proposition

We consider the case with γ = 1, which corresponds to labor supply being exogenously

given. One can trivially restate the arguments for the case γ ̸= 1 but σ = 1, which
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corresponds to endogenous labor supply, but additively separable from consumption

(log-log preferences). Our result holds when preferences belong to one of these two

cases. (Numerical simulations also show that the result does not hold outside these

two cases.)

If γ = 1, nt = 0. Under this assumption, the linearization of the production

technology (AGb22) becomes

ŷt = zt + (1− α) k̂t + αgt (2)

We will solve for a log-linearized solution of the system using the state state space

Xt =
[
bt k̂t ζt ζt−1 zt

]′
, where ζt = log(Γt) and

bt = b̂t +
B̄

Γ̄
ζt−1

For further use we let X0
t =

[
bt k̂t

]′
and X1

t =
[
ζt ζt−1 zt

]′
. It is also impor-

tant to notice that

gt = ζt − ζt−1

Using the definition of log-consumption, we have

ct = ĉt + ζt−1

Following standard log-linearization techniques, for example as presented in Blan-

chard and Kahn (1980) and Uhlig (1999), the solution to the log-linearized model

(AGb12)-(AGb24) takes the form:

ct = DcXt

bt+1 = DbXt

k̂t+1 = DkXt (3)

In particular,

ct = DcXt = D0
cX

0
t +D1

cX
1
t

= Dc,bbt +Dc,kk̂t +Dc,ζ1ζt +Dc,ζ2ζt−1 +Dc,zzt (4)

Denote by ζt+∞ the expected long-run level of productivity, i.e.

ζt+∞ = lim
j→∞

E[ζt+j ] =
ζt − ρgζt−1

1− ρg
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We claim that as Q̄ → 1 and ψ → 0, consumption is only a function of long-run

productivity. Specifically,

ct =

(
1− X̄/Ȳ

C̄/Ȳ

)
ζt+∞ (5)

The result is expressed formally as follows.

Proposition 1

lim
Q̄→1

lim
ψ→0

Dc,k = 0

lim
Q̄→1

lim
ψ→0

Dc,b = 0

lim
Q̄→1

lim
ψ→0

Dc,ζ1 =

(
1− X̄/Ȳ

C̄/Ȳ

)(
1

1− ρg

)
lim
Q̄→1

lim
ψ→0

Dc,ζ2 =

(
1− X̄/Ȳ

C̄/Ȳ

)(
−ρg
1− ρg

)
lim
Q̄→1

lim
ψ→0

Dc,z = 0

3.1 Interpretation

The proposition states that when the interest rate becomes insensitive to changes in

debt holdings, consumption is only determined by the long-run level of productivity,

as expressed by equation (5). This means, at this limit, the level of debt holdings or

the stock of capital do not matter for the determination of consumption. The result

also requires that in the steady-state the world interest rate goes to zero (Q̄ → 1,

following from β → 1), which allows the agent to roll-over any existing stock of debt

to infinity, thereby allowing to maintain consumption at the long-run level of income

(determined by long-run output).3

A corollary is that consumption only reacts to permanent shocks, and does not

react to transitory shocks. Although not immediately obvious by looking at the

proposition, after a permanent shock to productivity consumption jumps to its long-

run level γt+∞ and stays there. This can be seen in a probably more transparent

way by considering the case of zero steady-state debt holdings (or zero steady-state

net exports). The following Corollary considers this case and derives the resulting

behavior of ĉt, the normalized log-deviation of consumption.

3Campbell and Deaton (1989) and Gaĺı (1991) considered a version of this result in the case of en-
dowment economies. They also focus on the limit of zero interest rate to study the empirical relationship
between the variance of consumption changes and of permanent income shocks (transitory income shocks
will be negligible in this limit) in a simple setting with constant interest rate and without capital accumu-
lation.
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Corollary 1 If C̄/Ȳ + X̄/Ȳ = 1,

lim
Q̄→1

lim
ψ→0

ĉt =
1

1− ρg
gt

Proof. Proposition 1 shows that in the limit

ct =

(
1− X̄/Ȳ

C̄/Ȳ

)(
1

1− ρg

)
ζt −

(
1− X̄/Ȳ

C̄/Ȳ

)(
ρg

1− ρg

)
ζt−1

from which, given C̄/Ȳ + X̄/Ȳ = 1,

ct =
1

1− ρg
ζt −

ρg
1− ρg

ζt−1

Using the definition of ĉt:

ĉt = ct − ζt−1

=
1

1− ρg
ζt −

ρg
1− ρg

ζt−1 − ζt−1

=
1

1− ρg
(ζt − ζt−1) =

1

1− ρg
gt

The constant (1−X̄/Ȳ )/(C̄/Ȳ ) in front of equation (5) is simply a factor that ad-

justs the size of deviations to the value of steady-state variables, which depend on the

steady-state capital-to-output and consumption-to-output ratios (both exogenous).

When C̄/Ȳ + X̄/Ȳ = 1, this constant is equal to 1. Using this and expressing the re-

sult in terms of normalized log-deviations of consumption instead of log-consumption

allows to obtain a simple intuitive expression for the behavior of consumption in the

AG model, where consumption is equal to the expected cumulated sum of permanent

productivity increases (1/(1− ρg)) · gt.
Even though our proposition focuses on consumption, it has indirect implications

for the behavior of net exports. The key point is that persistent permanent shocks

embed a large wealth effect that generates large short-run volatility on consumption,

while they have relatively small effects on output. Thus, the implication is counter-

cyclical and volatile net exports.4

4Notice that transitory shocks are sort of a nuisance in the model because they generate extra output
volatility (and little consumption volatility), competing with the main channel emphasized here. However,
they turn out to be useful to match output volatility.

11



4 Quantitative Explorations

In this section, we explore the quantitative implications of the proposition. We pro-

ceed in three steps. First, we explore the robustness of the ability of the AG model

to match three key moments: the relative variance of consumption to output, the

relative variance of net exports with respect to output, and the correlation of net ex-

ports and output. We look at what happens when the interest rate is more sensitive

than the usual calibration in the literature. Second, we look at the implication of

using separable preferences. Third, we explore an endowment economy and check its

ability to match the three moments just mentioned.

4.1 The Importance of the Sensitivity of the Interest

Rate ψ

Proposition 1 requires ψ −→ 0 in order for consumption to react strongly to changes

in the trend of productivity, thereby causing net exports to be highly volatile and

countercyclical. We now quantitatively explore this point, and study what happens

when ψ is assigned a higher value than the one used in AG (0.001).

All values of the rest of the parameters in this section are the ones used in AG, with

the exception of ψ (sensitivity of the interest rate) and γ, as required by Proposition

1. The other benchmark parameter values are presented in Table 1.

Table 1: Benchmark Parameter Values

Parameter Value

Non-productivity Parameters

σ Intertemporal elasticity of substitution 2

B/Y Steady state level of normalized debt 0.10

α Labor’s share of output 0.68

δ Depreciation rate 0.05

ϕ Capital adjustment costs 4.00

Productivity Processes

ρg Persistence permanent shock 0.01

ρz Persistence transitory shock 0.95

σg Standard dev. permanent shock 2.81

σz Standard dev. transitory shock 0.48

Notes: These parameters for shock processes are the same used for Table 4 of AG, Specification 1,
Mexico.

We first check our theoretical result numerically. As shown in Figure 1, imposing

ψ very small (and β close to 1 together with ψ/ (1− β) very small5) ensures the

5These are equivalent to limQ̄→1 limψ→0 (in that order).
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random walk behavior of consumption. Consumption jumps on impact following a

permanent shock, but does not move at all following a transitory shock. These sharp

results are quite striking given the complex structure of the rest of the model.6

Figure 1: Impulse Responses: Consumption and Net Exports

0 5 10 15 20
0

0.5

1

1.5
Permanent Shock: Consumption

0 5 10 15 20
0

0.5

1

1.5
Transitory Shock: Consumption

0 5 10 15 20
−1.5

−1

−0.5

0

Permanent Shock: Net Exports

0 5 10 15 20
0

0.5

1

1.5
Transitory Shock: Net Exports

Notes: The lines depict responses of the model in AG in the limiting case of Proposition 1 where we set β = 0.99999 and
ψ = 10−12. We also set γ = 1 which implies that labor supply is exogenously given. The standard deviations of technology
shocks are normalized to 1, similar to Figure 3 in AG. The other parameters are from Table 1.

Figure 2 examines the role played by the parameter ψ in determining the sensi-

tivity of consumption to trend shocks by depicting impulse responses of consumption

using different values of ψ. We consider the value used in AG (0.001) along with

some larger values (0.01, 2.8). 2.8 is the value estimated by Garcia-Cicco, Pancrazi,

and Uribe (2010) (henceforth GPU). Consumption does not immediately reach its

long-run level with a permanent shock when the parameter ψ takes the values we

choose here, these values being substantially larger than the one we used previously

in Figure 1 (ψ = 10−12). Notice that, crucially, the larger ψ, the smaller the response

of consumption following a permanent shock, and the larger the response following a

transitory shock. This tends to overturn the results.

Further examining the role played by the parameter ψ, we reproduce Figure 3 of

AG with different values of ψ. Again, we consider ψ = 0.001, ψ = 0.01, and ψ = 2.8

and obtain impulse responses of (A) the ratio of net exports to GDP, (B) the ratio of

consumption to GDP, and (C) the ratio of investment to GDP following a 1 percent

6For this Figure, we also set β = 0.99999 and γ = 1 (see p. 10.) We have also verified that setting
σ = 1 instead delivers exactly the same results for consumption, and similar results for net exports.
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Figure 2: Impulse Responses: Consumption (Varying ψ)
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ψ=0.01
ψ=2.8

Notes: For all specifications, we set β = 0.98 and σ = 2. Also, the standard deviations of technology
shocks are normalized to one. Other parameter values are given in Table 1.

shock on ϵg and ϵz. We clearly observe that these ratios vary substantially with the

parameter ψ. Most importantly, the response of net exports to a permanent g shock

is muted with large values of ψ. The reason is the muted response of consumption.

These numerical results reveal a similar behavior of investment, which also features

a muted response.

Finally, Table 2 reports a set of moments7 using different parameter values of ψ,

ranging from 10−12 to 2.8, the value estimated by Garcia-Cicco, Pancrazi, and Uribe

(2010). We use exactly same parameters used in AG, except for ψ.8 As shown in

the table, the volatility of consumption σ(c), the relative volatility of consumption to

output σ(c)/σ(y), and that of net exports to output σ(NX)/σ(y) depend greatly on

the parameter ψ. Also, similar to the results shown in Figure 3, the relative volatility

of investment respect to output σ(I)/σ(y) is decreasing with ψ.

To sum up, consistent with Proposition 1, this subsection has numerically illus-

trated the role played by the interest rate sensitivity parameter ψ for the results in

AG. The main point is that a small value of ψ ensures the random walk behavior of

consumption and leads the model to generate the key moments emphasized in AG.

Larger values of ψ tend to reverse this, the model losing the ability to generate those

moments. A value of ψ of around 0.1 already generates important difficulties at this

task. Larger values overturn the results.

7The same shown in Table 5 in AG, plus σ(c).
8This means that we no longer set σg and σz to one. Instead, following Table 4 in AG, we set σg = 2.81

and σz = 0.48.
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Table 2: Moments - Emerging Market: Mexico

AG (1) (2) (3) (4) (5) (6) GPU

ψ 0.001 10−12 0.00001 0.0001 0.01 0.1 1 2.8

Emerging Market: Mexico

σ(y) 2.40 2.29 2.29 2.31 2.59 2.73 2.76 2.76

σ(∆y) 1.73 1.65 1.66 1.67 1.86 2.00 2.05 2.05

σ(c)/σ(y) 1.26 1.39 1.39 1.37 1.06 0.91 0.88 0.88

σ(I)/σ(y) 2.60 2.67 2.67 2.67 2.26 1.80 1.62 1.61

σ(NX)/σ(y) 0.71 0.84 0.84 0.82 0.45 0.19 0.10 0.10

ρ(y) 0.78 0.78 0.78 0.78 0.77 0.76 0.75 0.75

ρ(∆y) 0.13 0.14 0.14 0.13 0.10 0.08 0.07 0.07

ρ(y,NX) -0.66 -0.65 -0.65 -0.66 -0.63 -0.49 -0.35 -0.31

ρ(y, c) 0.94 0.92 0.92 0.93 0.98 0.99 1.00 1.00

ρ(y, I) 0.92 0.92 0.92 0.92 0.93 0.96 0.97 0.98

σ(c) 3.03 3.18 3.18 3.16 2.75 2.48 2.43 2.43

Notes: AG refers to specification 1 in Table 5 of AG and GPU refers to Garcia-Cicco,
Pancrazi, and Uribe (2010). In GPU, ψ is estimated to be 2.8. Thus, we keep all other
parameters as same as in AG and choose ψ to be 2.8. Similarly, for our specifications (1)
to (6) are obtained by using different parameter values of ψ.

4.2 Implications of Separable Preferences

Second, we investigate whether alternative preferences to those originally used by

AG do a better job at generating consumption volatility. This is indeed suggested

by Proposition 1 because only when preferences are separable consumption has a

random-walk behavior and thus jumps on impact to the long-run level of productivity

implied by the trend shock. The parametrization in AG sets σ = 2, which implies

Cobb-Douglass, non-separable preferences, which can possibly dampen the reaction

of consumption on impact.

Table 3: Moments - Separable Preferences Rather than Cobb-Douglas

AG (σ = 2) AG: Separable preferences (σ = 1)

σ(c)/σ(y) 1.26 1.35

σ(NX)/σ(y) 0.71 0.82

ρ(NX, y) -0.66 -0.62

Notes: All parameters are those from AG, except for σ in the second column.

To investigate this point we simulate moments with σ = 1 (and letting all other

features and parameter values in the original AG model, including the productivity
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parameters). Table 3 shows that using separable preferences generates an increase

in the volatility of consumption to output by 9%. This finding confirm the intuition

provided by Proposition 1. Also, this produces an increase in the volatility of net

exports to output by 11%. There is slight fall in the correlation between net exports

and output from -0.66 to -0.62.

Should one then advocate the use of separable preference in this type of exercises?

Actually, one important caveat of separable preferences is the negative comovement

of labor supply and trend productivity due to the wealth effect. Avoiding this issue

is one reason to resort to other preferences, as in AG. Figure 4 shows that, after a

permanent shock, labor supply falls. The next subsection discusses this issue further.

0 5 10 15 20
−0.2

−0.1

0

0.1
Permanent Shock: Labor Supply

Figure 4: Impulse Responses: Labor Supply

Notes: All parameters are those from AG, except for σ, which is set to 1.

4.3 A Simple Specification

We showed previously that even though separable preferences allow to more easily

obtain consumption and net exports volatility, labor supply falls. Recalling Jaimovich

and Rebelo (2009), one immediate reaction is that the model requires more frictions

to perform well on this dimension. However, an easier and interesting fix is to remove

labor supply altogether, i.e., to consider an endowment economy. Notice however that

this would also require removing investment from the model. From the point of view

of Proposition 1 this is not a problem because its proof does not use any particular

form of the economy’s supply side.

Table 4 shows the results. It compares the moments generated by the baseline

emerging market calibration in AG to a calibration of the simple model we propose.

The calibration is in Table 5. The calibrated simple moments does well in replicating

the moments in AG, with a larger ratio of the volatility of consumption to the volatil-

ity of output σ(c)/σ(y), a slightly smaller ratio of the volatility of net exports to the

volatility of output σ(NX)/σ(y), and the same correlation between net exports and

output ρ(NX, y). So, one could recur to the simple model to match these moments

in the data.
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Table 4: Moments - Simple Model

AG Simple Model

σ(c)/σ(y) 1.26 1.55

σ(NX)/σ(y) 0.71 0.66

ρ(NX, y) -0.66 -0.66

Notes: The first column (AG) is from Column of Table 4 in AG (equivalently, Specification 1, Mexico,
Table 5). For the simple model, we use the following parameter values ρg = 0.40, ρz = 0.95, β = 0.99,
ψ = 0.0001. Other parameter values are from Table 1. The simple model does not include labor supply
nor capital (endowment economy).

Table 5: Calibration

Parameter Value

Non-productivity Parameters

B/Y Steady state level of normalized debt 0.10

Productivity Processes

ρg Persistence permanent shock 0.40

ρz Persistence transitory shock 0.95

σg Standard dev. permanent shock 2.81

σz Standard dev. transitory shock 0.48

Notes: All other parameters are from AG. Specifically, we set β = 0.98 and ψ = 0.001.

5 Conclusions

In our view, the main conclusions can be drawn from these exercises is the impor-

tance of efforts towards a precise and well-identified estimation of the sensitivity of

the interest rate ψ. In this direction, recently Miyamoto and Nguyen (2017) esti-

mate using data for 17 developing and developed countries and find that ψ features a

credible interval that is bounded away from 0, but the point estimate greatly varies

across countries. So far, these estimates have been obtained via structural estimation.

Therefore, identification has remained dependent on the exact specification and de-

tails of the model. Finding complementary approaches to identifying the sensitivity

of the interest rate is a fruitful research avenue.

We finalize this discussion by highlighting the importance of trend shocks to fit

the data in other contexts. We emphasize that trend shocks have an important

conceptual advantage, the one of resting on a well-established economic mechanism

(the permanent income hypothesis) in order to (at least qualitatively) generate highly

volatile consumption and net exports, and countercyclical net exports. Trend shocks

have been successfully used in “cousin” literatures to match interesting facts implied
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by consumption dynamics.9 Thus, we remain under the impression that efforts in

the direction of improving the propagation of trend shocks with the help of extra

frictions constitute a fruitful research avenue. We look forward to developments in

this direction.

9See, for instance, Blanchard and Quah (1989), Gali (1999), or Blanchard, L’Huillier, and Lorenzoni
(2013).
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A Main Proof

The following equations help determine the steady state values and will be important

for the proof of Proposition 1:

Q̄ =
1

1 + r∗
= β

(1− α)
Ȳ

K̄
=

1

Q̄
− 1 + δ

C̄

Ȳ
= 1− δ

K̄

Ȳ
+ (Q̄− 1)

B̄

Ȳ

N̄ =

(
1 +

C̄

Ȳ

(
1− γ

αγ

))−1

K̄

Γ̄
=

(
K̄

Ȳ

) 1
α

N̄

Ȳ

Γ̄
=

(
Ȳ

K̄

)(
K̄

Γ̄

)
C̄

Γ̄
=

(
C̄

Ȳ

)(
Ȳ

Γ̄

)
X̄

Γ̄
= δ

K̄

Γ̄

N̄X/Ȳ = 1− C̄

Ȳ
− X̄

Ȳ

Proof of Proposition 1. Substituting ŷt from (2) and substituting x̂t from

(AGb21) in the linearization of the budget constraint (AGb20) implies

0 =
Ȳ

Γ̄

(
zt + (1− α) k̂t + αgt

)
+ Q̄

B̄

Γ̄

(
gt − ψQ̄b̂t+1

)
+Q̄b̂t+1 − b̂t −

K̄

Γ̄

(
k̂t+1 − (1− δ) k̂t + gt

)
− C̄

Γ̄
ĉt

20



Combining with the definition of bt+1 and ct, we obtain

Q̄

(
1− ψQ̄

B̄

Γ̄

)
bt+1 = bt −

(
α
Ȳ

Γ̄
− K̄

Γ̄
+ Q̄

B̄

Γ̄

)
gt −

(
Ȳ

Γ̄
(1− α) +

K̄

Γ̄
(1− δ)

)
k̂t

− Ȳ
Γ̄
zt −

C̄

Γ̄
γt−1 + Q̄

B̄

Γ̄

(
1− ψQ̄

B̄

Γ̄

)
γt −

B̄

Γ̄
γt−1 +

[
C̄/Γ̄ K̄/Γ̄

] [ ct

k̂t+1

]
(6)

=
[
1 −

(
Ȳ
Γ̄
(1− α) + K̄

Γ̄
(1− δ)

)]
X0
t

+

[
−
(
α Ȳ

Γ̄
− K̄

Γ̄
+ ψ

(
Q̄ B̄

Γ̄

)2) (
α Ȳ

Γ̄
− K̄

Γ̄
+ Q̄ B̄

Γ̄
− C̄

Γ̄
− B̄

Γ̄

)
− Ȳ

Γ̄

]
X1
t

+
C̄

Γ̄
D0
cX

0
t +

K̄

Γ̄
D0
kX

0
t +

C̄

Γ̄
D1
cX

1
t +

K̄

Γ̄
D1
kX

1
t

We regroup the coefficients on X0
t and X1

t to obtain:

D0
b =

1

Q̄
(
1− ψQ̄ B̄

Γ̄

) (D̄b +
C̄

Γ̄
D0
c +

K̄

Γ̄
D0
k

)
(7)

where D̄b =
[
1 −

(
Ȳ
Γ̄
(1− α) + K̄

Γ̄
(1− δ)

)]
and

D1
b =

1

Q̄
(
1− ψQ̄ B̄

Γ̄

) ([−(α Ȳ
Γ̄
− K̄

Γ̄
+ ψ(Q̄ B̄

Γ̄
)2
) (

α Ȳ
Γ̄
− K̄

Γ̄
+ (Q̄− 1) B̄
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− C̄

Γ̄

)
− Ȳ

Γ̄

]
+
C̄

Γ̄
D1
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K̄

Γ̄
D1
k

)

More explicitly:

Db,b =
1

Q̄
(
1− ψQ̄ B̄

Γ̄

) (1 + K̄

Γ̄
Dk,b +

C̄

Γ̄
Dc,b

)

Db,k =
1

Q̄
(
1− ψQ̄ B̄

Γ̄

) (K̄
Γ̄
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C̄

Γ̄
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(
Ȳ

Γ̄
(1− α) +

K̄

Γ̄
(1− δ)
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and
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1

Q̄
(
1− ψQ̄ B̄

Γ̄

) (K̄
Γ̄
Dk,z +
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Db,ζ1 =
1
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(
1− ψQ̄ B̄
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) (K̄
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Dk,ζ1 +
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Dc,ζ1 −

(
α
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Γ̄
− K̄

Γ̄
+ ψ

(
Q̄
B̄
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)2
))

Db,ζ2 =
1
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(
1− ψQ̄ B̄
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) (K̄
Γ̄
Dk,ζ2 +
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From the log-linearizing equation of the Euler equation with respect to k′ (AGb12),

using the assumption that γ = 1 and l̂ ≡ 0, we have

0 = −σEt [ct+1 − ct] + βϕEt [gt+1]

+β (1− α)
Ȳ

K̄
Et
[
zt+1 + (1− α) k̂t+1 + αgt+1

]
+ βϕEt

[
k̂t+2

]
−
(
β

(
(1− α)

Ȳ

K̄
+ ϕ

)
+ ϕ

)
k̂t+1 − (σ + ϕ) gt + ϕk̂t (8)

We use the fact that

Et [gt+1] = ρggt

Et [zt+1] = ρzzt

and gt = ζt − ζt−1, together with

Et
[
k̂t+2

]
= Et [DkXt+1]

= Et [Dk,bDbXt +Dk,kDkXt +Dk,zzt+1 +Dk,ζ1ζt+1] +Dk,ζ2ζt

= (Dk,bDb +Dk,kDk)Xt +Dk,zρzzt + ((1 + ρg)Dk,ζ1 +Dk,ζ2)ζt − ρgDk,ζ1ζt−1

Et
[
k̂t+1

]
= DkXt

Et [ct+1] = Et [DcXt+1]

= (Dc,bDb +Dc,kDk)Xt +Dc,zρzzt + ((1 + ρg)Dc,ζ1 +Dc,ζ2)ζt − ρgDc,ζ1ζt−1

Et [ct] = DcXt

to simplify (8) to

0 = −σ ((Dc,bDb +Dc,kDk)Xt +Dc,zρzzt + ((1 + ρg)Dc,ζ1 +Dc,ζ2)ζt − ρgDc,ζ1ζt−1 −DcXt)

+βϕρg (ζt − ζt−1) + β (1− α)
Ȳ

K̄
(ρzzt + αρg (ζt − ζt−1)) + β (1− α)

Ȳ

K̄
(1− α)DkXt

+βϕ ((Dk,bDb +Dk,kDk)Xt +Dk,zρzzt + ((1 + ρg)Dk,ζ1 +Dk,ζ2)ζt − ρgDk,ζ1ζt−1)

−
(
β

(
(1− α)

Ȳ

K̄
+ ϕ

)
+ ϕ

)
DkXt − (σ + ϕ) (ζt − ζt−1) + ϕk̂t
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Now, extracting the components related to X0
t from this equation, we have

0 = −σ
((
Dc,bD

0
b +Dc,kD

0
k

)
X0
t −D0

cX
0
t

)
+β (1− α)

Ȳ

K̄
(1− α)D0

kX
0
t + βϕ

((
Dk,bD

0
b +Dk,kD

0
k

)
X0
t

)
−
(
β

(
(1− α)

Ȳ

K̄
+ ϕ

)
+ ϕ

)
D0
kX

0
t + ϕk̂t

for all X0
t . This implies

0 = −σ
((
Dc,bD

0
b +Dc,kD

0
k

)
−D0

c

)
+β (1− α)

Ȳ

K̄
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0
k

)
−
(
β

(
(1− α)

Ȳ

K̄
+ ϕ

)
+ ϕ

)
D0
k + ϕDk (9)

where Dk =
[
0 1

]
. This equation helps determines D0

k, i.e., Dk,b and Dk,k as

functions of Dc,b and Dc,k. In particular when Dc,b and Dc,k are close to zero, we

have the Taylor expansion:

Dk,b = α1Dc,b + β1Dc,k + o (Dc,b) + o (Dc,k)

Dk,k = D∗
k,k + α2Dc,b + β2Dc,k + o (Dc,b) + o (Dc,k) (10)

where D∗
k,k is the solution of

0 = −
(
β

(
(1− α)α

Ȳ

K̄
+ ϕ

)
+ ϕ

)
D∗
k,k + βϕ(D∗

k,k)
2 + ϕ

i.e. equation (9) for D0
k,k when D0

c = 0.

Armed with the solution (10), we now use the first order condition for b′ (AGb17),

again with γ = 1 and l̂ ≡ 0:

0 = σEt [ct+1 − ct]− ψQ̄bt+1 + ψQ̄
B̄

Γ̄
ζt (11)

and extract the coefficients on X0
t to obtain

0 = σ
((
Dc,bD

0
b +Dc,kD

0
k

)
−D0

c

)
− ψQ̄D0

b

Substituting D0
b from (7) into this equation, we arrive at
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0 =

(
Dc,b −

ψ

σ
Q̄
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1

Q̄
(
1− ψQ̄ B̄

Γ̄

) (Db +
C̄

Γ̄
D0
c +

K̄

Γ̄
D0
k

)
+Dc,kD

0
k −D0

c

We separate the equations for Dc,b and Dc,k to obtain

0 =

(
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ψ

σ
Q̄

)
1

Q̄
(
1− ψQ̄ B̄
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1
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Dk,b (12)

and

0 =
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ψ
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1
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(
1− ψQ̄ B̄
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1
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(
1− ψQ̄ B̄

Γ̄

) K̄
Γ̄

+Dc,k

Dk,k (13)

Now, we use the results above to show that as Q̄→ 1 and ψ → 0, Dc,b → 0.

Indeed, we first solve for Dc,k from the second equation (13):

Dc,k =

(
Dc,b − ψ

σ Q̄
)

1

Q̄
(
1−ψQ̄ B̄

Γ̄
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(
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Γ̄
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As ψ → 0, this equation simplifies to

Dc,k =
Dc,b

1
Q̄

(
Db,k +

K̄
Γ̄
Dk,k

)
1−Dc,b

1
Q̄
C̄
Γ̄
−Dk,k

(14)

In addition, equation (12) simplifies to

0 = Dc,b
1

Q̄

(
Db,b +

C̄

Γ̄
Dc,b

)
−Dc,b +

{
Dc,b

1

Q̄

K̄

Γ̄
+Dc,k

}
Dk,b (15)

Plugging (14) into (15) and grouping by Dc,b (also by definition Db,b = 1), we
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have

0 =
1

Q̄

(
1 +

C̄

Γ̄
Dc,b

)
− 1 +

 1

Q

K̄

Γ̄
+

1
Q̄

(
Db,k +

K̄
Γ̄
Dk,k

)
1−Dc,b

1
Q̄
C̄
Γ̄
−Dk,k

Dk,b

Equivalently,

Q̄− 1 =
C̄

Γ̄
Dc,b +

K̄Γ̄ +
Db,k +

K̄
Γ̄
Dk,k

1−Dc,b
1
Q̄
C̄
Γ̄
−Dk,k

Dk,b

As Q̄ → 1 and ψ → 0, Lemma 1 below shows that (10) holds with α1 = β1 = 0,

and 0 < D∗
k,k < 1. Therefore,

Q̄− 1 =
C̄

Γ̄
Dc,b + o(Dc,b)

Therefore, as Q̄→ 1, Dc,b → 0.

Then, (10) and (14) imply that

lim
Q̄→1

lim
ψ→0

Dc,k = 0

lim
Q̄→1

lim
ψ→0

Dk,b = 0

lim
Q̄→1

lim
ψ→0

Dk,k = lim
Q̄→1

D∗
k,k

=
(αδ/ϕ+ 2)−

√
(αδ/ϕ+ 2)2 − 4

2

where the last limit is given in Lemma 1.

We now move on to compute D1
c .

Rearranging equation (11) and using the conjecture for ct+1, we obtain:

0 =

(
Dc,b −

ψQ̄

σ

)
bt+1 +Dc,kk̂t+1 +D1

cAX
1
t − ct +

ψQ̄B̄/Γ̄

σ
ζt

and substituting bt+1 from (6), we have

(1− x̄) ct =
x̄

C̄/Γ̄

[
bt −

(
α
Ȳ

Γ̄
− K̄

Γ̄
+ ψ

(
Q̄
B̄

Γ̄

)2
)
ζt +

(
α
Ȳ

Γ̄
− K̄

Γ̄
+ Q̄

B̄

Γ̄
− C̄

Γ̄
− B̄

Γ̄

)
ζt−1 −

Ȳ

Γ̄
zt

]

− x̄

C̄/Γ̄

[(
Ȳ

Γ̄
(1− α) +

K̄

Γ̄
(1− δ)

)
k̂t −

K̄

Γ̄
k̂t+1

]
+D1

cAX
1
t +Dc,kk̂t+1 +

ψQ̄B̄/Γ̄

σ
ζt (16)
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where

A =

1 + ρg −ρg 0

1 0 0

0 0 ρz


and

x̄ =
(Dc,b − ψQ̄

σ )C̄/Γ̄

Q̄
(
1− ψQ̄ B̄

Γ̄

)
Collecting the terms for ζt from (16), we have

(1− x̄)Dc,ζ1 = (1 + ρg)Dc,ζ1 +Dc,ζ2 +
ψQ̄B̄/Γ̄

σ

− x̄

C̄/Γ̄

(
α
Ȳ

Γ̄
− K̄

Γ̄
+ ψ

(
Q̄
B̄

Γ̄

)2
)

+

(
x̄

C̄/Γ̄

K̄

Γ̄
+Dc,k

)
Dk,ζ1

which leads to

(ρg + x̄)Dc,ζ1 +Dc,ζ2 =
x̄

C̄/Γ̄

(
α
Ȳ

Γ̄
− K̄

Γ̄
+ ψ

(
Q̄
B̄

Γ̄

)2
)

−
(

x̄

C̄/Γ̄

(
K̄

Γ̄

)
+Dc,k

)
Dk,ζ1 −

ψQ̄B̄/Γ̄

σ
(17)

Similarly, collecting the terms for ζt−1 from (16), we have

(1− x̄)Dc,ζ2 = −ρgDc,ζ1 +
x̄

C̄/Γ̄

(
α
Ȳ

Γ̄
− K̄

Γ̄
+ Q̄

B̄

Γ̄
− C̄

Γ̄
− B̄

Γ̄

)
+

(
x̄

C̄/Γ̄

(
K̄

Γ̄

)
+Dc,k

)
Dk,ζ2

which leads to

ρg
1− x̄

Dc,ζ1 +Dc,ζ2 =
x̄

1− x̄

(
1

C̄/Γ̄

)(
α
Ȳ

Γ̄
− K̄

Γ̄
+ Q̄

B̄

Γ̄
− C̄

Γ̄
− B̄

Γ̄

)
+

1

1− x̄

(
x̄

C̄/Γ̄

(
K̄

Γ̄

)
+Dc,k

)
Dk,ζ2 (18)

Substituting Dc,ζ2 from (18) into (17) and using the following steady state rela-

tions:
C̄

Γ̄
+
X̄

Γ̄
+
B̄

Γ̄
=
Ȳ

Γ̄
+ Q̄

B̄

Γ̄
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we obtain

Dc,ζ1 =

(
1− x̄

1− x̄− ρg

)(
1

C̄/Γ̄

)(
α
Ȳ

Γ̄
− K̄

Γ̄
+ ψ

(
Q̄
B̄

Γ̄

)2
)

−
(

1

1− x̄− ρg

)(
1

C̄/Γ̄

)(
α
Ȳ

Γ̄
− K̄

Γ̄
+
X̄

Γ̄
− Ȳ

Γ̄

)
−
(

1− x̄

1− x̄− ρg

)(
1

C̄/Γ̄

)(
1

C̄/Γ̄

)
(Dk,ζ1 +Dk,ζ2)

−
(

1

1− x̄− ρg

)(
1− x̄

x̄

)(
1

C̄/Γ̄

)
Dc,k (Dk,ζ1 +Dk,ζ2)

−
(

1

1− x̄− ρg

)((
x̄

C̄/Γ̄

)(
K̄

Γ̄

)
+Dc,k

)
Dk,ζ2 (19)

Now as ψ goes to zero,

lim
ψ→0

x̄ =
(
Dc,b/Q̄

) (
C̄/Γ̄

)
Then, as Q̄ goes to one, as shown above, we have

lim
Q̄→1

lim
ψ→0

x̄ = lim
Q̄→1

lim
ψ→0

(
Dc,b/Q̄

) (
C̄/Γ̄

)
= 0

In addition, Lemma 2 shows that as Q̄ → 1 and ψ → 0, Dk,ζ1 + Dk,ζ2 = 0.

Therefore (19) implies that

lim
Q̄→1

lim
ψ→0

Dc,ζ1 =

(
1− X̄/Ȳ

C̄/Ȳ

)(
1

1− ρg

)

Similarly, from (18),

lim
Q̄→1

lim
ψ→0

Dc,ζ2 = −ρg lim
Q̄→1

lim
ψ→0

Dc,ζ1

=

(
1− X̄/Ȳ

C̄/Ȳ

)(
−ρg
1− ρg

)

Finally, collecting the terms for zt from (16), we have

(1− x̄)Dc,z = ρzDc,z −
x̄

C̄/Γ̄

(
Ȳ

Γ̄

)
+

(
x̄

C̄/Γ̄

(
K̄

Γ̄

)
+Dc,k

)
Dk,z
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and rearranging the equations, we have

Dc,z =
1

(1− x̄− ρz)

(
− x̄

C̄/Γ̄

(
Ȳ

Γ̄

)
+

(
x̄

C̄/Γ̄

(
K̄

Γ̄

)
+Dc,k

)
Dk,z

)

As as ψ goes to zero and Q̄ goes to one, we have already shown that x̄ goes to

zero and that Dc,k goes to zero such that in the limit Dc,z becomes

lim
Q̄→1

lim
ψ→0

Dc,z = lim
Q̄→1

lim
ψ→0

1

(1− x̄− ρz)

(
− x̄

C̄/Γ̄

(
Ȳ

Γ̄

)
+

(
x̄

C̄/Γ̄

(
K̄

Γ̄

)
+Dc,k

)
Dk,z

)
=

1

1− ρg
× 0 = 0

This completes the proof.

Lemma 1 Consider the Taylor expansion in (10). As Q̄→ 1 and ψ → 0, α1, β1 → 0,

and 0 < D∗
k,k < 1.

Proof. First of all, from the equation that determines D∗
k,k in (10), as Q̄ → 1 and

ψ → 0, this equation becomes

0 = (D∗
k,k)

2 −
(
αδ

ϕ
+ 2

)
D∗
k,k + 1

since (1− α) Ȳ
K̄

= δ. This equation gives

D∗
k,k =

(αδ/ϕ+ 2)−
√
(αδ/ϕ+ 2)2 − 4

2
=

2

(αδ/ϕ+ 2) +
√
(αδ/ϕ+ 2)2 − 4

∈ (0, 1)

Now, we can use the solution for Dk,b and Dk,k from (10) to obtain the constant

α1 and β1. We collect the terms for bt from (9):

0 = −σ ((Dc,bDb,b)−Dc,b) + βδ(1− α)Dk,b

+βϕ(Dk,bDb,b +Dk,kDk,b)− (β(δ + ϕ) + ϕ)Dk,b

Substituting Db,b from (7) and let D̃k,k = Dk,k−D∗
k,k, we rewrite the last equation
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as

0 = −σ

Dc,b

 1

Q̄
(
1− ψQ̄ B̄

Γ̄

) (1 + K̄

Γ̄
Dk,b +

C̄

Γ̄
Dc,b

)−Dc,b

+ βδ(1− α)Dk,b

+βϕ

Dk,b

 1

Q̄
(
1− ψQ̄ B̄

Γ̄

) (1 + K̄

Γ̄
Dk,b +

C̄

Γ̄
Dc,b

)+
(
D̃k,k +D∗

k,k

)
Dk,b


−(β(δ + ϕ) + ϕ)Dk,b

Ignoring the second order terms such as Dc,bDk,b, D
2
c,b, D

2
k,b, and D̃k,kDk,b in the

first order approximation, the last equation becomes

0 = −σ

Dc,b
1

Q̄
(
1− ψQ̄ B̄

Γ̄

) −Dc,b

+ βδ(1− α)Dk,b

+βϕ

Dk,b
1

Q̄
(
1− ψQ̄ B̄

Γ̄

) +D∗
k,kDk,b

− (β(δ + ϕ) + ϕ)Dk,b

Therefore, we haveβ(δ + ϕ) + ϕ− βδ(1− α)− βϕ

 1

Q̄
(
1− ψQ̄ B̄

Γ̄

)
−D∗

k,kβϕ

Dk,b = −σ

 1

Q̄
(
1− ψQ̄ B̄

Γ̄

) − 1

Dc,b

or equivalently,βδα+ ϕ

1− β

Q̄
(
1− ψQ̄ B̄

Γ̄

)
+ βϕ(1−D∗

k,k)

Dk,b = −σ

 1

Q̄
(
1− ψQ̄ B̄

Γ̄

) − 1

Dc,b

Then, as ψ goes to zero, since β = Q̄, we have

(
βδα+ βϕ(1−D∗

k,k)
)
Dk,b = −σ

(
1

Q̄
− 1

)
Dc,b

Also, Q̄→ 1, the coefficient on Dk,b on the right-hand side is

δα+ ϕ
(
1−D∗

k,k

)
> 0

and on the left-hand side

1

Q̄
− 1 → 0

29



Therefore, α1, β1 → 0.

Lemma 2 As Q̄→ 1 and ψ → 0, Dk,ζ1 +Dk,ζ2 = 0.

Proof. Combining the Euler equation with respect to k′ (8) and the Euler equation

with respect to b′ (11), we have

0 = σ(ζt − ζt−1) + ψQ̄bt+1 − ψQ̄
B̄

Γ̄
ζt

+βϕρg(ζt − ζt−1) + β(1− α)
Ȳ

K̄

(
ρzzt + (1− α)k̂t+1 + αρ(ζt − ζt−1)

)
+βϕE[k̂t+2 − k̂t+1]

−
(
β(1− α)

Ȳ

K̄
+ ϕ

)
k̂t+1 − (σ + ϕ)(ζt − ζt−1) + ϕk̂t

As ψ goes to zero, this equation simplifies to

0 =

(
βϕρg + β(1− α)

Ȳ

K̄
αρg − ϕ

)
(ζt − ζt−1) + β(1− α)

Ȳ

K̄
ρzzt

+βϕE
[
k̂t+2 − k̂t+1

]
+ ϕk̂t − (αδ + ϕ)k̂t+1 (20)

We use the conjecture for k̂

E
[
k̂t+2

]
= Dk,bDbXt +Dk,kDkXt + ρzDk,zzt + ((1 + ρg)Dk,ζ1 +Dk,ζ2)ζt − ρgDk,ζ1ζt−1

E
[
k̂t+1

]
= Dk,bbt +Dk,kk̂t +Dk,zzt +Dk,ζ1ζt +Dk,ζ2ζt−1

to collect the terms for ζt from (20):(
βϕρg + β(1− α)

Ȳ

K̄
αρg − ϕ

)
−(αδ+ϕ)Dk,ζ1+βϕ(Dk,bDb,ζ1+Dk,kDk,ζ1+ρgDk,ζ1+Dk,ζ2) = 0

(21)

Similarly, collecting the terms for ζt−1:

−
(
βϕρg + β(1− α)

Ȳ

K̄
αρg − ϕ

)
−(αδ+ϕ)Dk,ζ2+βϕ(Dk,bDb,ζ2+Dk,kDk,ζ2−ρgDk,ζ1−Dk,ζ2) = 0

(22)

Combining (21) and (22), as Q̄→ 1, and consequently β → 1 , we have

(αδ + ϕ)(Dk,ζ1 +Dk,ζ2)− ϕDk,k(Dk,ζ1 +Dk,ζ2) = 0

which leads to

(Dk,ζ1 +Dk,ζ2)(αδ + ϕ(1−Dk,k)) = 0
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As Q̄→ 1 and ψ → 0, Dk,k → D∗
k,k < 1, therefore

Dk,ζ1 +Dk,ζ2 = 0
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