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ABSTRACT

The convex time budget (CTB) method is a widely used experimental method for eliciting an individual’s time preference.
Researchers adopting the CTB experiment usually assume quasi-hyperbolic discounting utility as a behavioural model and
estimate the parameters of the utility function. However, few studies using the CTB method have examined parameter recovery.
We conduct simulations and find that the estimation error of the present bias parameter is so large that its effect is difficult
to detect. The large error is due to the improper combination of the experimental method and the utility model, and it is not
a problem we can deal with after the data collection. This paper suggests the importance of running parameter recovery
simulations to audit estimation errors in the experimental design.

Introduction

The decision-making problem between different points in time is an extremely important issue for living organisms1, 2. All life,
including human life, is subject to the choice of taking immediate profit or giving up immediate profit for future profit. The
problem of cross-selection has been studied in birds, mammals, and insects. These organisms have to make a choice between a
small but immediate gain and a larger future gain. Most living things, including humans, are not good at sacrificing immediate
gains for the sake of larger future gains. In the choice problem at different points in time, it is the discount rate that determines
by how much future profits will be discounted over time.

Discount rates are measured using various methods, and some interesting results have emerged. The discount rate can
change over time. Let us consider the following example. The choice is between eating one chocolate or delaying consumption
by a week and eating two chocolates. Many people would probably give in to temptation and eat the one chocolate, rather than
waiting a week. However, if the choice is now whether to eat one chocolate 1 week from now or two chocolates 2 weeks from
now, people are more likely to wait 2 weeks. This is an anomaly named present bias3, a contradiction of choice associated with
the choice problem between different points in time. The existence of present bias suggests that the power of our will is weaker
than we assume. The psychology of procrastinating on tasks we do not want to perform is one of the serious problems caused
by these anomalies.

In addition, we cannot overlook the fact that there is an element of risk associated with the problem of choosing between
different points in time. People may believe that short-term profits are certain, whereas future profits are uncertain. There is
still much controversy about how risk influences the choice problem between different points in time. Therefore, experimental
economists have proposed several ways to separate choice tasks and risk preferences between different points in time.

One method called the convex time budget (CTB) attempts to elicit simultaneously the effects of time discounting and risk
attitude by directly estimating the curvature of the utility function using one single instrument4. In experimental economics,
many experiments on intertemporal choice problems now adopt the CTB method in both laboratory and field settings5–7. When
analysing preferences from behavioural data collected by the CTB method, researchers do not merely compare the intertemporal
allocations across conditions, but also estimate the parameters of the quasi-hyperbolic discounting utility function8, 9. A
meta-analysis of studies using the CTB experiment showed that, on average, the experiment participants discounted the future
payoff by 0.95–0.97 over the payoff available now10.

Although researchers often examine the reliability of estimates a posteriori based on the magnitude of standard errors
associated with the estimates, it is rare to examine the estimates’ precision before undertaking an experiment. We do not
understand how precisely we could estimate the utility function of an individual in a CTB experiment. For example, if an
individual’s present bias parameter estimate is 0.97, is this individual’s behaviour truly biased? We can examine the errors of



the parameter estimates in the preliminary stages of implementation by conducting a simulation called “parameter recovery”11.
Parameter recovery simulation is conducted using the following three steps. First, we generate artificial decision data using
assumed parameter values. Second, we estimate the parameters from the artificial data using the software we will use after the
real data collection. Third, we compare the estimated parameters to the true values to check whether they have been recovered
precisely.

This paper audits parameter estimation error in typical CTB experiment designs. While studies using the CTB method
are still be conducted, the interpretation of the confusion between time preference and risk preference is controversial12–19.
This paper, however, does not use the CTB method to deal with time and risk preferences, but instead, discusses the use of
parametric analysis within the CTB method. We show that the estimation precision of the present bias parameter is not good in
the scope range of the parameter estimates reported so far. Researchers often focus on the existence of a present bias10. Our
results suggest that it is inappropriate to adopt the CTB method to investigate a bias effect whose existence is doubtful and
whose magnitude, if any, may be small.

It has been pointed out that the discerning rate and the ease of generating anomalies differ depending on the experimental
method. In psychology, the reproducibility of experimental results is often a problem, and in experimental economics,
reproducibility is an important issue to consider as well. Although it has been pointed out that the replication rate of
experimental studies in experimental economics is better than that in psychology, it is also true that there is variability among
experiments. This variability between experiments may be due to subject demographics and culture, but it may also depend
on the measurement technique and parameter estimation method. We need to audit our experimental methods by conducting
simulations at the experimental design stage to ensure the reproducibility of the experimental results.

In this paper, we perform parameter recovery simulations to 1) analyse whether discounting behaviours can be detected
based on the standard errors associated with the estimates, and 2) evaluate the resolution of the parameter estimates from the
distribution of the estimates. Then, we show that the combination of the CTB method and the quasi-hyperbolic discounting
model cannot obtain estimates of the present bias parameter with small errors or correctly detect the bias if the actual effect size
is small. Moreover, we discuss the reasons for the low resolution of the present bias parameter estimation.

Results
Setup
We now consider the decision-making problems associated with allocating the initial endowment m = 20 between the sooner
and later periods. Let (ct ,ct+k) denote an allocation bundle where ct is the payoff for the sooner period t and ct+k is for the
k = 70 days later period. It only matters whether the sooner period t is 0 (i.e., present) or not, and for t > 0, the value of t
does not matter, at least in our model. The exchange rate from tokens to material payoffs varies between the sooner and later
periods, and we normalize the rate for the later period to be 1. We denote the exchange rate for the sooner payoff as 1+ r,
where r ∈ [−0.4,1] is an interest rate. We assume that income is exhausted, or the budget constraint binds the allocation bundle.
Here, we can obtain the budget constraint for the decision problem as follows:

(1+ r)ct + ct+k = m. (1)

To measure an individual’s time preference, the experimenter asks the participants for their allocation (ct , ct+k) with changing t,
k, and r.

We assume that each individual’s time preference is represented by the following constant intertemporal elasticity of
substitution and quasi-hyperbolic discounting (CES-QHD) utility function8, 9 for the intertemporal decision-making task
described above:

U(ct ,ct+k) =
1
ρ

cρ

t +β
1t=0δ

k 1
ρ

cρ

t+k. (2)

The variable 1t=0 is an indicator for whether the sooner period is the present period. The parameter δ (> 0) is the 1-day
discount factor, and the parameter β (> 0) represents the present/future bias. The parameter ρ controls the curvature of the
utility function and characterizes the intertemporal elasticity of substitution σ = (1−ρ)−1. The parameter ρ is sometimes
interpreted as the degree of constant relative risk aversion in the risk context.

Our objective is to evaluate the errors in estimating the parameters δ and β from a dataset of (ct , ct+k) generated using a
utility function for some ground-truth values. For the ground-truth values, we used 10 equally spaced values for δ and β from
the range 0.9912 ≤ δ ≤ 1.0025 and 0.85 ≤ β ≤ 1.12, respectively. Each interval from which we draw δ and β uses the ranges
of the parameter distributions reported by AS. For the ground-truth curvature lnσ , we used seven equally spaced values from
the range 0.33 ≤ lnσ ≤ 5.00. We perturbed the generated data by adding a random number that follows a normal distribution
with mean 0 and standard deviation s ∈ {0.01, 0.05, 0.10, 0.15, 0.20}. As the ratio of mean absolute deviation to standard
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deviation is
√

2/π ≈ 0.8, the generated data have, on average, a 0.8% error for the interval length allowed as a decision ct for
s = 0.01.

Detectability of Time Discounting
As a first measure to discuss the estimation error, we examined whether the estimated discount factor δ̂ and the present/future
bias parameter β̂ are distinguishable from 1, which indicates that the individual does not discount (or put a premium on) future
payoffs. In previous studies, most attention has been paid to whether present-biased behaviour exists. We examine how far the
true β is away from 1 to determine whether it can be distinguished from 1.

Fig. 1 shows the percentage of successfully rejected null hypotheses such that δ̂ = 1 and β̂ = 1. For the discount factor
parameter δ , when the ground-truth value is less than 0.9962, we can reject δ̂ = 1 in over 90% of cases regardless of the amount
of added noise. For the case of δ > 1, it may be more challenging to reject null hypotheses compared with the case of δ < 1.
To estimate δ accurately to place a premium on future payoffs, it is necessary to collect decision data at negative interest rates.
In our simulation, however, we selected fewer interest rates in such a range, and therefore, the estimation accuracy was worse
than that in the case of δ < 1. For the present/future bias parameter β , in general, we may have more difficulty concluding that
the estimates are not equal to 1 compared with the case of the discount factor parameter δ . Even when the true β is as small as
0.85, the success rate is below 90% for s > 0.05.

Error Size
To examine further the errors of the parameter estimates, instead of focusing on the estimated uncertainty of the parameter
estimates for each individual, we analyse the actual variation of the estimates in a population with the same true parameter
values. Here, we assume a population in which the three parameters—δ , β , and lnσ—are distributed on a three-dimensional
grid of ground-truth values that we set. Then, we check the distribution of estimates of each parameter in this population.

Fig. 2 shows the distribution of the estimated values of δ and β as a box plot (see Supplementary Analysis 1 for the lnσ

estimates). If the box is above or below the red line, where the error in the estimate is 0, then the estimate is biased. In most
cases, we find that the magnitude of the bias falls within the interquartile range of the estimates’ distribution.

In addition to the existence of bias, we need to understand the resolution of the estimates. If the estimation is obtained using
a higher resolution, we can precisely distinguish between any two individuals, even if the true parameter values are similar. By
comparing the boxes’ lengths (i.e., interquartile range), we consider the resolution: the minimum distance between the actual
parameter values to be identifiable.

For the discount factor parameter δ , the whiskers of the estimates for any two adjacent ground-truths do not overlap and can
be distinguished from each other for the smallest noise level s = 0.01. Even for the most extensive noise s = 0.20, the boxes do
not overlap, whereas the whiskers do. We conclude that the experimental tasks considered in our simulations have enough
resolution that as long as the distance between the true δ values of any two individuals is at least the ground-truth value spacing
(1.3×10−3), then we can distinguish between them, even assuming relatively large amounts of noise.

In contrast to the case of δ , the resolution of the present/future bias parameter β is generally not high. For s = 0.01, the
whiskers for any two adjacent ground-truths do not overlap in most cases and can be only barely distinguished. However,
whiskers and boxes often overlap when the noise is more prominent than for s = 0.01. For s = 0.20, the boxes overlap unless
the true values of β are at least 0.1 away from each other. In the case of β , unlike the case of δ , we found that when comparing
the magnitude of β for any two individuals using the experimental task we are addressing, the two individuals cannot be
distinguished unless their true β values are farther apart than normally assumed.

Relative to the range of the prior distribution of β that we usually assume, the significant variance of the estimates suggests
the possibility of errors. It has been argued that focusing only on statistically significant results using statistical tests with low
power can lead to overestimation of effect sizes20. A meta-analysis of present bias parameter estimation indicated that the
reported effect is strong such that it is suspected to be publication bias in the studies based on real effort tasks10. Our results
raise further concerns regarding the overestimation of the present bias effect because greater noise in the estimation produces
lower power regarding the statistical tests.

Why is the present bias estimation resolution low?
In the utility function, δ and β appeared as the term D = βδ k (for t = 0). Fig. 3 shows a scatter plot of the estimated values
of δ and β (for lnσ = 2.67 and s = 0.01; see Supplementary Analysis 2 for the scatter plots including all lnσ and s) and a
red line that satisfies βδ 70 = 1. Note that all points have been offset so that the ground-truth values coincide with δ = β = 1
(indicated by the red cross). The points are distributed close to the red line. As the data used for parameter estimation include
those at not only t = 0, but also t > 0, in principle, it is possible to distinguish between δ and β . In practice, however, even
though the value of D itself can be estimated with reasonable precision, its components, δ and β , cannot be identified.
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Figure 1. Rate of successful rejection of the null hypothesis that a) δ̂ = 1 and b) β̂ = 1, respectively. We conducted two-tailed
Student’s t-tests at the 5% significance level to examine whether the null hypothesis could be rejected for each simulation agent.
We plotted each point focusing on a specific ground-truth δ (β ) and a certain noise size s, after which, each point contained 10
replications of all combinations of ground-truth values of β (δ ) and lnσ , i.e., 700 simulation agents. We computed the test
statistic using the standard error of the estimate, which is estimated by the jackknife method.

0.9
91

2

0.9
92

5

0.9
93

7

0.9
95

0

0.9
96

2

0.9
97

5

0.9
98

7

1.0
00

0

1.0
01

2

1.0
02

5

Ground-truth values of 

0.9874
0.9887
0.9899
0.9912
0.9925
0.9937
0.9950
0.9962
0.9975
0.9987
1.0000
1.0012
1.0025
1.0038

E
st

im
at

es
 o

f 

a

0.8
5

0.8
8

0.9
1

0.9
4

0.9
7

1.0
0

1.0
3

1.0
6

1.0
9

1.1
2

Ground-truth values of 

0.70

0.76

0.82

0.88

0.94

1.00

1.06

1.12

1.18

1.24

1.30

E
st

im
at

es
 o

f 

b

= .
= .
= .

Figure 2. Box plot of the estimates of a) δ and b) β . Each box plot uses specific values of ground-truth δ (β ) and certain
noise size s, and each plot summarizes 10 replications of all combinations of ground-truth values of β (δ ) and lnσ , i.e., 700
simulation agents. The two ends of the box represent the first and third quartiles, respectively, and the two ends of the whiskers
represent the 5th and 95th percentiles, respectively. On the red line, the error of the estimate is 0.
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As dD/D = dβ/β + k dδ/δ , a 1% change in β results in a 1% change in D, but a 1% change in δ results in a k% change in
D. As the difference between δ = 1 and δ = 0.9987 is 0.13%, the variation in D is 9.1% for k = 70. However, β = 0.97 is 3%
smaller than β = 1 and yields a 3% variation for D, which is three times smaller than that for the δ case. The effect of the
variation in D on decisions (or the demand function) depends on the curvature parameter lnσ and price 1+ r. For example, in
Fig. 4, we can compare the differences in decisions between individuals with lnσ = 2.67 and different δ and β . We see that the
discount behaviour of δ = 0.9987 is larger than that of β = 0.97. Given the noise, it is more challenging to test whether the
estimated β is less than 1 for an individual whose true β is 0.97 than whether the estimated δ is less than 1 for an individual
whose true δ is 0.9987, because the difference in decisions is three times smaller. In the previous subsection, we observed
that assuming significant noise s = 0.20, the resolution of δ is about 1.3× 10−3, which corresponds to the spacing of our
ground-truth values, while the resolution of β is 0.1, which corresponds to about three times the spacing of our ground-truth
values.

Eventually, low resolution of β estimation occurs because we try to identify values within a very narrow scope (or range of
prior distribution) with a high precision. As is clear from the comparison of demand curves in Fig. 4, when the true difference
in the values of β is less than 0.1, it is inherently difficult to identify individuals regardless of the econometric method used
because the differences in behaviour are small (see Supplementary Analysis 3). In the expanded β scope, it is possible to
distinguish between two individuals with given ground-truth values (see Supplementary Analysis 4). Although δ intuitively
seems to require a very high resolution because it is a daily discount factor, it is actually possible to estimate it with sufficient
resolution because its scope is broader than that of β . Because k depends on the scale of δ , we must expand the scope of δ if
we make k a weekly discount factor. It should be noted that changing the value of k does not improve the resolution of β ’s
estimation (see Supplementary Analysis 5).

Discussion

This paper evaluates the error of estimates for the time discounting parameters obtained using the CTB experiment4 by
conducting parameter recovery simulations11. Figs. 1 and 2 show that for the time discount factor δ , we have enough estimation
resolution that δ = 0.9987 is discriminable from δ = 1. However, the precision of the estimate of β , which represents the
present/future bias, is not good, and it is more difficult to conclude that the estimated β = 0.97 is smaller than 1, compared
with the estimated δ = 0.9987. Using a CTB experiment, we have tried to identify differences in β that are so small that
discrimination is impossible. Considering the differences in behaviour corresponding to the differences in parameter values
(see Fig. 4), we realize that the true β must be smaller than 0.9 to detect that the estimate is smaller than 1. In other words,
when attempting to detect present bias using the problem set we used in our simulations, it can only be detected for individuals
who discount future payoffs by more than 10%. Given the low resolution of the β estimation, it may be prone to overestimating
or underestimating the effect of behavioural bias by chance, making publication bias more problematic. To be clear, we are
not arguing that the CTB experiment itself should not be used, or that the CES-QHD model should not be used. This paper
suggests the importance of understanding resolution for the design of experimental tasks.

Even if the differences in behaviour are small and drowned out by noise, adding more tasks can offset the effect of noise
and improve the precision of the estimation (see Supplementary Analysis 6). However, it would be impractical to increase the
number of tasks any further, given the workload on the participants in the experiment. In fact, the CTB experiments conducted
following the original work4 have tended to reduce the number of tasks10.

It may be possible to improve the estimation precision by modifying how we generate the tasks instead of increasing the
number of tasks (see Supplementary Analysis 6). The variables we can manipulate in generating the tasks are the sooner date
t, the delay period k, and the price ratio 1+ r. Primarily, there seems to be room for improvement in the generation of price
variations. The problem set in our simulations includes prices smaller than 1 (i.e., the interest rate is negative) because we
want to consider the parameters for individuals who place a premium, rather than a discount, on future payoffs. Suppose it
is possible to ignore the existence of individuals with such unusual preferences and exclude them from the analysis. In that
case, we can increase the number of tasks in positive interest rate domains by reducing the negative interest rate. In addition
to modifying the price generation method, the variation of interval length k also matters in minimizing the estimation error,
although the value itself is not an essential issue.
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δ decreases from 1 to 0.9987 is the difference between the blue and orange dashed curves. The difference when only β

decreases from 1 to 0.97 is the difference between the blue and green dotted curves.
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Methods
Behavioural Model
Here we discuss a theoretical model of participants’ behaviour (ct ,ct+k) for a given CTB experiment task (t,k,1+ r,m). We
suppose that an individual whose preferences are represented by the CES-QHD utility function U(ct ,ct+k | δ ,β , lnσ) faces
the utility maximization problem subject to the budget constraint (1+ r)ct + ct+k = m. By solving, we obtain the following
demand function:

g(t,k,1+ r,m | δ ,β , lnσ) =





1

1+
(

βδ k
)σ(

1+r
)σ−1 for t = 0,

1

1+
(

δ k
)σ(

1+r
)σ−1 for t > 0.

(3)

Note that the value of g corresponds to the sooner allocation ct divided by its upper limit m/(1+ r), and thus, the function g
maps into the interval [0,1].

We perturbed the generated normalized sooner allocation g(•) by adding a random number ε , which follows a normal
distribution with mean 0 and standard deviation s ∈ {0.01, 0.05, 0.10, 0.15, 0.20}. In the original experiment by Andreoni
and Sprenger4 (henceforth AS), participants were asked to select an integer in the interval from 0 to 100 as a normalized
allocation, which corresponds to the value of g multiplied by 100. Given that forcing discrete choice causes rounding errors in
decision-making, an error size of s = 0.01 is inevitable. We estimated the root mean squared error (RMSE) on the normalized
sooner allocation from the AS experimental dataset. Regarding the distribution of the RMSE, the first quartile is 0.019, the
median is 0.14, and the third quartile is 0.22. Comparing the distribution of the RMSE with the average size of the noise,
s = 0.20 is not necessarily too large.

We truncated the noise-added value to the interval [0,1]. Thus, the noise-added data are always the interior points of the
budget constraint line, and no end-points are chosen. It has been pointed out that if agents tend to choose extreme allocations, it
is problematic to fit their data to the demand function using the least-squares method13. By truncating instead of censoring, we
avoided this problem. However, the structure of noise associated with actual human decision-making needs to be discussed
separately. While it is possible that our modelling for noise does not capture human behaviour well, it is at least consistent with
the estimation method using nonlinear least squares as well as AS, as discussed below.

Experimental Tasks
We have two experimental situations (defined as a combination of an early period date t and a delay length k) for the experimental
task: t = 0 (i.e., present) and k = 70 (days), and t = 1 (i.e., not present) and k = 70 (days). The delay length k is typically on
the scale of weeks to months, and is rarely shorter than 1 week10. In each situation, we set 21 uniformly spaced prices chosen
from 0.6 ≤ 1+ r ≤ 2. We fixed income m at 20 for simplicity. The number of tasks, i.e., the number of data points for each
individual, is 42.

There are three critical differences between our problem set and the problem set used by AS. The first difference is that we
chose the price 1+ r from the range where the interest rate r is not only positive, but also negative. Few studies using CTB
experiments, including AS, ask participants about negative interest rates. However, without asking about negative interest rates,
it is impossible to estimate the discount factor for an individual who does not discount the future payoffs, but who does place a
premium on them (for such an individual, the discount factor δ will be greater than 1). We also conducted simulations using the
AS’s original problem set and summarized the results in Supplementary Analysis 6.

Second, the delay k was set equal to 70 in this paper to simplify the discussion. Note that for AS’s problem set, there were
three conditions of k: 35, 70, and 98. We also investigate the effect of the number of conditions on k in Supplementary Analysis
6. Increasing or decreasing the variation in k affects the parameter estimation error. We confirm that increasing the variety of
prices 1+ r instead of increasing the variety of k leads to improved estimation precision.

Third, we limited the number of early period dates t to two, i.e., present or not present. Note that in AS’s experiment,
participants made decisions about the allocation between the future and a later future for t = 7 and t = 35 separately. Regarding
the CES-QHD utility function model, there is no difference in decisions between t = 7 and t = 35, but it may affect real
behaviour. For a real experimental design, it may be helpful to designate the variation in t to treat for bias in the parameter
estimates, but we discarded that option.

Ground-truth Values
Table 1 shows the ground-truth parameter values that generate the decision data. We chose values for δ , β , and lnσ ; these
values are evenly spaced as if from a uniform distribution. By combining the ground-truth values of the three parameters listed
in Table 1, there are 700 synthetic individuals. As mentioned above, there are five noise levels s, and we generate 10 sets of
data for each s, resulting in decision data for 35,000 agents.
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Table 1. List of values used as ground-truth values for the three parameters characterizing the CES-QHD utility function and
the standard deviation values for the added noise. We have also listed the corresponding ρ values for the curvature parameter
lnσ .

δ 0.9912 0.9925 0.9937 0.9950 0.9962 0.9975 0.9987 1.0000 1.0012 1.0025
β 0.85 0.88 0.91 0.94 0.97 1.00 1.03 1.06 1.09 1.12
lnσ 0.33 1.11 1.89 2.67 3.44 4.22 5.00
(ρ) (0.283) (0.671) (0.849) (0.931) (0.968) (0.985) (0.993)
s 0.01 0.05 0.10 0.15 0.20

For the discounting parameters δ and β , we selected from a range covering the distribution of the estimates reported in
AS’s paper. Usually, the discount factor δ and the present bias β are assumed to be less than 1. However, because some studies
report individuals with estimates greater than 1, we also included such values in our set of possible ground-truth values. We
obtained estimates from the AS’s experimental dataset. For the distribution of δ , the 5th percentile is 0.9917, the median is
0.9989, and the 95th percentile is 1.0018. For the distribution of β , the 5th percentile is 0.89, the median is 1.01, and the 95th
percentile is 1.15.

We selected values of the curvature parameters lnσ from 0.33 (ρ = 0.283; nearly the Cobb–Douglas utility curvature) to 5
(ρ = 0.993; nearly linear curvature). We next describe in detail how we selected the curvature parameters. For mathematical
clarity, we use lnσ = ln(1/1−ρ) instead of the commonly used notation ρ to discuss the curvature parameter. The domain of
lnσ is all real numbers, whereas the parameter ρ is defined on the domain (−∞,1]. Let us assume that lnσ = 0 (or ρ = 0), which
corresponds to the Cobb–Douglas utility function, is the centre of the curvature parameter space. For lnσ > 0, the intertemporal
allocations become substitutive, and complementary otherwise. As lnσ −→−∞ (or ρ −→−∞), the utility function goes to a
Leontief function: U = min{ct ,ct+k}, whose indifference curve is L-shaped, and which is known as the perfect complement
utility function. As lnσ −→+∞ (or ρ −→ 1), the utility function goes to a linear function: U = ct +β 1t=0δ kct+k, which is the
perfect substitution utility function.

Previous studies have reported that the curvature of participants’ preferences in CTB experiments is generally linear.
Regardless of the distribution of the actual parameter values, we should also check the estimation errors for individuals who
would behave relatively complementarily because the utility function model does not explicitly exclude such individuals.
However, when the curvature of the standard CES utility function U(x,y) = (xρ +φyρ)1/ρ is negative, the parameter φ , which
corresponds to the discounting part β 1t=0δ k in the CES-QHD utility, is no longer interpretable21. As the estimation errors of
δ and β are inevitably large for lnσ < 0, we excluded them from our analysis. Consequently, we chose ground-truth values
for lnσ from 0.33 to 5. We also investigated the estimation errors in the same way for lnσ < 0 and reported the results in
Supplementary Analysis 7. Note that previous studies on the curvature of time preferences report that it is rare to observe
individuals for whom lnσ is negative, regardless of whether the CTB method is used4, 18, 22, 23.

Estimation Methods
As we described above, for all individuals i characterized by (δi,βi, lnσi), and for all budget constraint lines j ∈ {1, . . . ,42}, we
obtain the decision data c̃ j

i = g(t j,k j,1+ r j,m j | δi,βi, lnσi)+ ε . Given the generated data, we estimated the three parameters
using a nonlinear least squares method. Following AS, we used the “nl” command in Stata. Mathematically, we search for the
values of δ̂ , β̂ , and l̂nσ that minimize the sum of squared residuals:

42

∑
j=1

[
c̃ j

i −g
(
t j,k j,1+ r j,m j | δi,βi, lnσi

)]2
. (4)

Although the curvature parameter lnσ is defined over all real numbers, outside of a specific range, the effect of lnσ variation
on behaviour g(•) saturates: for an additional increase (decrease) in lnσ , we cannot observe differences in the decision data
and therefore we cannot observe an increase in substitutability (complementarity) as a behaviour (see Supplementary Analysis
8). We assume that lnσ less than −2.5 indicates perfect complements and lnσ greater than 5.5 indicates perfect substitutes.
Therefore, we transformed the equation for lnσ to lnσ = f (θ) = 4tanh(θ)+1.5 and estimated the latent variable θ . Through
this manipulation, the estimated lnσ ranges between −2.5 and 5.5. Using the function f (θ), we obtained the lnσ estimates
from the estimated θ .

For the parameter estimation, we set the convergence criterion as 10−5 and the maximum number of iterations as 200. By
combining all parameters (δi,βi, lnσi) and s, there are 3,500 synthetic individuals, and we regenerate the decision data 10 times
for each synthetic individual. Of the 3,500 synthetic individuals, 3,483 converged all 10 times, and the remaining 17 individuals
had only one failure to converge.
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Supplementary Analyses for “Investigation of the Convex Time Budget

Experiment by Parameter Recovery Simulation”

Yuta Shimodaira∗, Kohei Shiozawa†, and Keigo Inukai‡

August, 2022

SA.1 Box plots of the lnσ estimates

Fig. S1 shows box plots of the distribution of the estimated curvature parameter lnσ, which was omitted

from the main text. Each box focuses on a specific ground-truth lnσ and a certain noise size s, and then

each plot summarizes 10 replications of all combinations of ground-truth values of δ and β, i.e., 1,000

simulation agents. The two ends of the box represent the first and third quartiles, respectively, and the

two ends of the whiskers represent the 5th and 95th percentiles, respectively. For the red line, the error of

the estimate is 0.

To ensure that the lnσ estimates converge, we transformed lnσ using the function lnσ = 4 tanh(θ)+1.5

and searched the latent variable θ. Through this manipulation, the estimated lnσ ranges between −2.5

and 5.5. The black horizontal dashed lines in the figure indicate the boundaries of lnσ.

Contrary to the parameters δ and β, lnσ tends to have lower estimates, especially when the added

noise is considerable. In the case of s = 0.20, lnσ appears to be saturated at about 2.2.

∗Graduate School of Economics, Osaka University.
†Faculty of Economics, Takasaki City University of Economics.
‡Faculty of Economics, Meiji Gakuin University. E-mail: inukai@eco.meijigakuin.ac.jp

11/36



. . . . . . .
Ground-truth values of 

− .
− .
− .

.

.

.

.

.

.

.

E
st

im
at

es
 o

f 


= .
= .
= .

Figure S1: Box plots of the lnσ estimates.
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SA.2 Scatter plots of estimated δ–β

Fig. S2 shows scatter plots of the estimated δ and β for each pair of specific ground-truth δ and β. Each

δ–β plot includes estimates for all combinations of ground-truth lnσ and s. The darkness of the dots

indicates the magnitude of the added noise; the darker the colour, the smaller the noise. The horizontal

and vertical axes represent the δ and β estimates, respectively, and the grid shows the ground-truth values.

Note that while the ground-truth values are linearly equally spaced, both axes use a logarithmic scale, so

the grid lines are not exactly equally spaced. Fig. S2 is a matrix, with columns representing ground-truth

δ and rows representing ground-truth β. A red cross indicates each pair of ground-truth values.

We have drawn a red curve (a straight line in log-log graphs) that satisfies βδ70 = const. and passes

through the red crosses. The points in each scatter plot are distributed either near the red line or in a

more vertical belt than the red line.
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SA.3 Detect the present bias by using a paired two-sample t-test

We attempted to detect present bias by directly comparing the values of the decision data rather than

by parameter β estimation. With two decisions required for the sooner periods, t = 0 and t > 0 for 21

different prices, we conducted a paired t-test for the two series. Fig. S3 shows the proportion of cases in

which the two-tailed test rejected the null hypothesis that there was no difference in decisions at the 5%

level. Compared with the success rates using the β estimates in the main analysis, it is more difficult to

detect present bias when directly comparing decisions. Individuals whose utility function is almost linear

will make drastic decisions, allocating everything to early periods on the one hand and late periods on the

other, bounded by a specific price (the switching point). The difficulty of detection occurs because the

effect we want to detect is drowned out by noise if we include data in the range where the decision does

not change from that in the sooner period t.
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Figure S3: Rate of successful rejection of the null hypothesis that there was no difference in decisions for
t = 0 and t > 0.
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SA.4 Re-running the simulation with the expanded ground-truth β

spacing

In the main analysis, we concluded that the poor accuracy of the β estimation reflected the required

resolution, i.e., the spacing of the ground-truth values, being too narrow to identify in the first place. Here,

we show the results of re-running the simulation with the spacing of the ground-truth β expanded by

about three times. We used 10 equally spaced values from the range 0.50 ≤ β ≤ 1.40 for the ground-truth

β and the same ground-truth values for δ and lnσ as in the main analysis.

Fig. S4 shows box plots representing the distribution of the estimated δ, β, and lnσ. The distributions

of the δ and lnσ estimates do not change significantly from those in the main analysis, while the distribution

of the β estimates shows that, based on the length of the box, the estimates are accurate enough to identify

neighbours even when the noise size is s = 0.20.

Fig. S5 shows the rate of successful rejection of the null hypothesis that δ̂ = 1 and β̂ = 1, respectively.

From the graph of the success rates for β, we can see that if the true β is far enough from 1, we can

correctly reject the absence of bias.
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Figure S4: Box plots of a) δ, b) β, and c) lnσ estimates for an expanded ground-truth β range.
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Figure S5: Rate of successful rejection of the null hypothesis that a) δ̂ = 1 and b) β̂ = 1, respectively, for
an expanded ground-truth β range.
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SA.5 Re-running the simulation with k = 1

The value of k, which represents the length of the intertemporal period, depends on the scale of δ, and an

enormous value of k has no intrinsic effect on the accuracy of parameter estimation. Let us assume that

k = 1 “day”. Figs. S6 and S7 show the results of the recovery simulation, where the data are generated

with k = 1 for the same ground-truth values as in the main analysis. The resolution is very low for δ

estimation. This suggests that, in an experimental setup where there is only 1 day between periods, it is

challenging to estimate δ in the ground-truth range we have set. Compared with the figures for β shown in

the main analysis, we can see that the estimation accuracy of β is almost the same for k = 70 as for k = 1.

Next, let us assume that k = 1 “period”, where one period represents 70 days and δ is not a daily

discount factor, but rather, a one “period” discount factor. In other words, set k = 1 and generate data

using the ground-truth value of δ as the value in the main analysis to the power of 70. Figs. S8 and S9

show the results. Compared with the figures shown in the main analysis, we can see that in addition to

the no change in resolution for β, there is little change in δ’s resolution over the converted scope range.
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Figure S6: Box plots of a) δ, b) β, and c) lnσ estimates for k = 1.
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Figure S7: Rate of successful rejection of the null hypothesis that a) δ̂ = 1 and b) β̂ = 1, respectively, for
k = 1.
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Figure S8: Box plots of a) δ, b) β, and c) lnσ estimates for k = 1 with an expanded ground-truth δ range.
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Figure S9: Rate of successful rejection of the null hypothesis that a) δ̂ = 1 and b) β̂ = 1, respectively, for
k = 1 with an expanded ground-truth δ range.
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SA.6 Design of problem set

This section analyses how estimation accuracy varies depending on how the problem set is designed. The

problem set used in the main analysis is referred to as PS0 in the following. For PS0, m is fixed to 20 and

k is fixed to 70, and 21 uniformly spaced prices were drawn from the range 0.6 ≤ 1 + r ≤ 2 for t = 0 and

t = 1, respectively, for a total of 42 problems in all.

First, we examine the effect of simply increasing the number of problems. Let PS1 be the problem set

that withdraws 42 prices, or twice the number of PS0, from the same range of prices, and let PS2 be the

problem set that withdraws 210 prices, or 10 times the number of PS0.

Next, we consider the strategy of changing the number of each variable types without increasing the

number of problems. For problem set PS3, instead of increasing the number of k to three—35, 70, and

98—we set the number of prices 1+ r to seven from the range 0.6 ≤ 1+ r ≤ 2 for each combination of t and

k. For problem set PS4, instead of increasing the number of k to seven—14, 28, 42, 56, 70, 84, and 98—we

set the number of prices 1 + r to three—0.9, 1.2, and 1.5—for each combination of t and k. For problem

set PS5, we fixed k to 70 and use 14 prices drawn from the range 0.6 ≤ 1 + r ≤ 2, once at t = 0 and twice

at t = 1. This corresponds to setting two different t situations for t > 0 (e.g., two decision makings for

k = 70: one between 7 and 77 days later and the other between 35 and 105 days later). For problem set

PS6, we ignored the existence of individuals who place a premium on future payoffs, and did not consider

negative interest rates; i.e., we fixed k to 70 and drew 21 prices from the range 1.05 ≤ 1 + r ≤ 2 for t = 0

and t = 1, respectively.

We conducted simulations using the problem sets PS1–PS6 as well as the original problem set used by

Andreoni and Sprenger (2012) (henceforth AS). The problem set of AS is summarized in Table S1. For

PS1 and PS2, we computed the standard error of the estimates using the inverse of the negative Hessian,

whereas for PS3–PS6 and AS, we computed them using the jackknife method, as in the main analysis.

Figs. S10–S23 show the box plots of the estimates and the rate of successful rejection of the null

hypothesis for the problem sets PS1–PS6 and AS. We also included the PS0 data as a dashed line in the

success rate graph. Figs. S24 and S25 plot the absolute value of the error and the standard error of the

estimate by problem set, respectively. We plotted the mean and median with bootstrap 95% confidence

intervals. For the plot of the mean value, we used the logarithm scale because some values are enormous.

Comparing PS0 with PS1 and PS2, it is clear that estimation accuracy is improved for PS1 and PS2.

Increasing the number of problems improves the accuracy. However, even with PS2, which has 420 tasks
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in total, it is difficult to reject that the β estimate of an individual, whose actual value is 0.97, is not equal

to 1 when the noise size is s = 0.20.

For PS3–PS5, it is difficult to conclude that any particular problem set is clearly superior to PS0. As

PS6 and AS do not include prices with negative interest rates, the accuracy of δ estimation is inevitably

very poor for individuals with δ > 1, but improves in some cases for individuals with δ < 1.

Table S1: Problem set of AS

t k (1 + r,m)

0 35 (1.05, 20) (1.11, 20) (1.25, 20) (1.25, 25) (1.43, 20)
0 70 (1.05, 20) (1.11, 20) (1.25, 20) (1.25, 25) (1.43, 20)
0 98 (1.05, 20) (1.25, 20) (1.25, 25) (1.54, 20) (2.00, 20)
7 35 (1.05, 20) (1.11, 20) (1.25, 20) (1.25, 25) (1.43, 20)
7 35 (1.05, 20) (1.11, 20) (1.25, 20) (1.25, 25) (1.43, 20)
7 70 (1.00, 20) (1.05, 20) (1.11, 20) (1.25, 20) (1.43, 20)
35 70 (1.05, 20) (1.11, 20) (1.25, 20) (1.25, 25) (1.43, 20)
35 98 (1.05, 20) (1.25, 20) (1.25, 25) (1.54, 20) (2.00, 20)
35 98 (1.05, 20) (1.25, 20) (1.25, 25) (1.54, 20) (2.00, 20)
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Figure S10: Box plots of a) δ, b) β, and c) lnσ estimates for PS1.

. . . . . . . . . .

Ground-truth values of 

0.0

0.2

0.4

0.6

0.8

1.0

Th
e 

ra
te

 o
f s

uc
ce

ss
fu

l r
eje

cti
on

a

 = 0.01
 = 0.05
 = 0.10
 = 0.15
 = 0.20

. . . . . . . . . .
Ground-truth values of 

0.0

0.2

0.4

0.6

0.8

1.0

Th
e 

ra
te

 o
f s

uc
ce

ss
fu

l r
eje

cti
on

b

 = 0.01
 = 0.05
 = 0.10
 = 0.15
 = 0.20

Figure S11: Rate of successful rejection of the null hypothesis that a) δ̂ = 1 and b) β̂ = 1, respectively, for
PS1.
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Figure S12: Box plots of a) δ, b) β, and c) lnσ estimates for PS2.
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Figure S13: Rate of successful rejection of the null hypothesis that a) δ̂ = 1 and b) β̂ = 1, respectively, for
PS2.
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Figure S14: Box plots of a) δ, b) β, and c) lnσ estimates for PS3.
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Figure S15: Rate of successful rejection of the null hypothesis that a) δ̂ = 1 and b) β̂ = 1, respectively, for
PS3.
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Figure S16: Box plots of a) δ, b) β, and c) lnσ estimates for PS4.
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Figure S17: Rate of successful rejection of the null hypothesis that a) δ̂ = 1 and b) β̂ = 1, respectively, for
PS4.
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Figure S18: Box plots of a) δ, b) β, and c) lnσ estimates for PS5.
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Figure S19: Rate of successful rejection of the null hypothesis that a) δ̂ = 1 and b) β̂ = 1, respectively, for
PS5.
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Figure S20: Box plots of a) δ, b) β, and c) lnσ estimates for PS6.
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Figure S21: Rate of successful rejection of the null hypothesis that a) δ̂ = 1 and b) β̂ = 1, respectively, for
PS6.
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Figure S22: Box plots of a) δ, b) β, and c) lnσ estimates for AS.
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Figure S23: Rate of successful rejection of the null hypothesis that a) δ̂ = 1 and b) β̂ = 1, respectively, for
AS.
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Figure S24: a) Mean and b) median of the absolute errors of the estimates for each problem set. Error
bars represent the bootstrap 95% confidence intervals.
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Figure S25: a) Mean and b) median of the standard errors of the estimates for each problem set. Error
bars represent the bootstrap 95% confidence intervals.
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SA.7 Case of negative ground-truth lnσ

In the analysis in the main text, the ground-truth values of the curvature parameter lnσ were restricted

to positive values, but here, we analyse the accuracy of parameter estimation for negative values of lnσ or

the case of a lower elasticity. We used ground-truth values for lnσ of −2.00, −1.22, and −0.44, and the

same ground-truth values for δ and β as in the main analysis.

Fig. S26 a) and b) show box plots representing the distribution of the estimated δ and β. Each plot

summarizes 10 replications of all combinations of ground-truth values of β (δ) and lnσ, i.e., 300 simulation

agents. Although the median of the estimates is not significantly different from the case where lnσ is

positive, the range of the distribution of the estimates (length of boxes and whiskers) is much larger than

that in the case where lnσ is positive.

Fig. S26 c) shows box plots representing the distribution of the estimated lnσ. Each plot summarizes

10 replications of all combinations of ground-truth values of δ and β, i.e., 1,000 simulation agents. For the

case where ground-truth lnσ is positive (Fig. S1), even with a noise size of s = 0.10, the estimation was

accurate enough not to overlap the whiskers of neighbouring plots, whereas the negative case is poor.

Fig. S27 shows the rate of successful rejection of the null hypothesis that δ̂ = 1 and β̂ = 1, respectively.

Each point contained 10 replications of all combinations of ground-truth values of β (δ) and lnσ, i.e., 300

simulation agents. Compared with the case where lnσ is positive, the success rate is generally lower.
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Figure S26: Box plots of a) δ, b) β, and c) lnσ estimates in the case where ground-truth lnσ is negative.
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Figure S27: Rate of successful rejection of the null hypothesis that a) δ̂ = 1 and b) β̂ = 1, respectively, in
the case where lnσ is negative.
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SA.8 Demand curve for individuals who has an extreme lnσ

Fig. S28 shows demand curves for individuals with very large or small values of the curvature parameter

lnσ. Both individuals with lnσ = 6 and 7 allocate all amount to the sooner period at lower prices than

the switching point; otherwise, they allocate all to the later period. There is no difference in behaviour

between the two. For lnσ = 5, since they allocate an amount greater than 0 to the sooner period at a price

1 + r = 1.44, which is higher than the switching point, there is a difference in the behaviour compared

with lnσ = 6. However, there is no difference in behaviour other than at a price 1 + r = 1.44.

For lnσ = −2, −3 and −4, the demand curves do not strictly coincide, so there is a difference in

behaviour. However, the differences are slight.
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Figure S28: Demand curve for an individual whose curvature parameter is a) lnσ ≥ 5 and b) lnσ ≤ −2,
where δ = 0.9950 and β = 1. The horizontal axis representing price 1 + r is on a logarithmic scale. Note
that the individual faces the decision problem of allocating between now (t = 0) and k = 70 days later
with the prices indicated by the vertical lines in the figure. For Fig. a, only the neighbourhood of the
switching point (indicated as a red line) is shown.
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