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Abstract

The convex time budget (CTB) method is a widely used experimental
technique for eliciting an individual’s time preference in intertemporal choice
problems. This paper investigates the accuracy of the estimation of the dis-
count factor parameter and the present bias parameter in the quasi-hyperbolic
discounting utility function for the CTB experiment. In this paper, we use a
simulation technique called “parameter recovery.” We found that the precision
of present bias parameter estimation is poor within the scope of previously
reported parameter estimates, making it difficult to detect the effect of present
bias. Our results recommend against using a combination of the CTB experi-
mental task and the quasi-hyperbolic discounting utility model to explore the
effect of present bias. This paper contributes to addressing the replicability
issue in experimental economics and highlights the importance of auditing the
accuracy of parameter estimates before conducting an experiment.
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1 Introduction

All forms of life face the trade-off between smaller, immediate rewards and larger,

delayed rewards. However, most organisms, including humans, struggle to delay

rewards and tend to give priority to immediate gains rather than large future

rewards. The discount rate is a key factor in determining the degree to which future

profits are discounted over time in intertemporal choice problems. Discount rates

can be measured by various means, and interesting findings have arisen from such

assessments.

It is important to note that discount rates can change over time. To illustrate

this, suppose that we face the following choice: consume one chocolate now or

delay gratification for a week and receive two chocolates. Many individuals would

likely succumb to temptation and choose to consume one chocolate immediately

rather than wait for the larger reward. However, if the choice becomes whether to

consume one chocolate in a week or two chocolates in two weeks, people are more

prone to wait the full two weeks. This tendency is known as present bias, a time

inconsistency of choice associated with the choice problem between different points

in time, as discussed in O’Donoghue and Rabin (2015). The existence of present bias

suggests that our willpower may be weaker than we imagine. The phenomenon of

procrastination regarding unpleasant tasks is among the serious issues engendered

by such anomalies.

Moreover, it is imperative to recognize that intertemporal choice problems entail

an element of risk. Individuals may perceive immediate gains as certain, while

future gains are perceived as uncertain. The precise influence of risk on the choice

problem between different points in time remains a matter of debate. Accordingly,

experimental economists have proposed various methodologies to isolate choice tasks

and risk preferences across various time frames.

One method is called the convex time budget (CTB), which was developed by

Andreoni and Sprenger (2012a, henceforth AS). The CTB method attempts to elicit

simultaneously the effects of time discounting and risk attitude by directly estimating

the curvature of the utility function using one single instrument.1 When analyzing

1Although studies using the CTB method are still being conducted, the interpretation of the
interplay between time preferences and risk preferences is still a matter of debate (Andreoni and
Sprenger, 2012b; Harrison et al., 2013; Andersen et al., 2014; Cheung, 2015; Epper and Helga, 2015;
Miao and Zhong, 2015; Andreoni et al., 2015; Andreoni and Sprenger, 2015).
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preferences from behavioral data collected by the CTB method, researchers do not

merely compare the intertemporal allocations across conditions, but also estimate

the parameters of the quasi-hyperbolic discounting utility function (Laibson, 1997;

O’Donoghue and Rabin, 1999). In experimental economics, many experiments on

intertemporal choice problems now adopt the CTB method in both laboratory and

field settings (e.g., Augenblick et al., 2015; Carvalho et al., 2016; Blumenstock et al.,

2018; Cheung et al., 2022; Dantas et al., 2022). Imai et al. (2020) have identified

67 articles that employed the CTB method and presented a meta-analysis on these

studies. This meta-analysis showed that, on average, the experiment participants

discounted the future payoff by 0.95–0.97 over the payoff available now.2

While researchers typically assess the reliability of estimates post hoc based on

the magnitude of standard errors associated with the estimates, it is uncommon to

examine the trueness and precision of the estimates prior to conducting an experiment.

The degree to which we can accurately estimate an individual’s utility function using

a CTB experiment remains unclear. For instance, if an individual’s present bias

parameter estimate is 0.97, can we truly claim that this individual’s behavior is

biased? To address this issue, we use a simulation technique called “parameter

recovery” (Wilson and Collins, 2019) to examine the accuracy of parameter estimates.

The process of parameter recovery simulation involves three steps: first, generating

artificial decision data using assumed parameter values (referred to as “ground-truth

values”); second, estimating the parameters from the artificial data using the software

intended for the real data; and finally, comparing the estimated parameters to the

true values to assess the level of precision in their recovery. This paper audits the

accuracy of parameter estimation in a conventional CTB experimental design. Our

findings demonstrate that the performance of present bias parameter estimation is

suboptimal within the scope of previously reported parameter estimates.

According to Imai et al.’s (2020) meta-analysis, there may be a tendency for

selective reporting of present bias parameter estimates of less than one, particularly in

studies using real effort tasks. Additionally, our investigation has revealed imprecision

in estimating present bias parameters, which can exacerbate the problem of selective

reporting of the parameter estimate by reducing the power of a statistical test based

2Cheung et al. (2021), while performing a meta-analysis on present bias parameter estimates
that were not limited to CTB method papers, observed that estimates derived from data collected
through the CTB experiment tended to be closer to 1 compared with those obtained from other
methods, including the double multiple price list method proposed by Andersen et al. (2008).
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on it, regardless of its true value (van Zwet and Cator, 2021). Consequently, our

results imply serious caution against the use of the CTB method at least in its

conventional form—more precisely, a combination of the CTB experimental task and

the quasi-hyperbolic discounting utility model—for exploring the effect of present

bias that is uncertain and possibly insignificant.

In psychology, the replicability of experimental findings can often be problematic,

and in experimental economics, it is a crucial issue to that should also be considered.

While it has been recognized that the replication rate of experimental studies

in economics is somewhat superior to that in psychology (Camerer et al., 2016),

there is still heterogeneity in outcomes across experiments. This variability in

experimental outcomes may be attributed to participants’ demographic and cultural

backgrounds, but it could also be contingent on the measurement technique and

parameter estimation method used. To ensure replicability of experimental results,

it is imperative that we audit our experimental methods by carrying out simulations

at the experimental design phase.

The remainder of this paper is organized as follows. Section 2 describes the virtual

design of a CTB experiment and a behavioral model for the CTB experiment, as well

as the parameter recovery simulation procedures. Section 3 contains the results of the

parameter recovery simulation. In this paper, we perform simulations to 1) analyze

whether discounting behaviors can be detected based on the standard errors associated

with the estimates and 2) evaluate the resolution of the parameter estimates from

the distribution of the estimates. Then, we show that the combination of the CTB

method and the quasi-hyperbolic discounting model cannot obtain estimates of the

present bias parameter with small errors or correctly detect the bias if the actual

effect size is small. In the last part of Section 3, we discuss the reasons for the low

resolution of the present bias parameter estimation. Section 4 concludes.

2 Methods

To conduct a parameter recovery simulation, we will clarify how to generate synthetic

decision data in a CTB experiment—the definition of the demand function, the

specification of the experimental task, and the selection of the ground-truth values

of the parameters—and how to estimate parameters.
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2.1 Behavioral Model

We now consider the decision-making problems associated with allocating the initial

endowmentm between the sooner and later periods. Let (ct, ct+k) denote an allocation

bundle where ct is the payoff for the sooner period t and ct+k is for the k days later

period. It only matters whether the sooner period t is 0 (i.e., present) or not; and

for t > 0, the value of t does not matter, at least in the model we use. The exchange

rate from tokens to material payoffs varies between the sooner and later periods, and

we normalize the rate for the later period to be 1. We denote the exchange rate for

the sooner payoff as 1 + r, where r is interpreted as an interest rate. We assume

that income is exhausted, or that the budget constraint binds the allocation bundle.

Here, we can obtain the budget constraint for the decision problem as follows:

(1 + r)ct + ct+k = m. (1)

To measure an individual’s time preference, the experimenter asks the participants

for their allocation (ct, ct+k) by changing t, k, 1 + r, and m.

Here, we discuss a theoretical model of participants’ behavior (ct, ct+k) for a given

CTB experiment task (t, k, 1 + r,m). For the intertemporal decision-making task

described above, we suppose that each individual’s time preference is represented by

the following constant intertemporal elasticity of substitution and quasi-hyperbolic

discounting (CES-QHD) utility function (Laibson, 1997; O’Donoghue and Rabin,

1999):

U(ct, ct+k) =
1

ρ
cρt + β1t=0δk

1

ρ
cρt+k. (2)

The variable 1t=0 is an indicator of whether the earlier period is the present period.

The parameter δ (> 0) is the one-day discount factor, and the parameter β (> 0)

represents the present/future bias. The parameter ρ controls the curvature of

the utility function and characterizes the intertemporal elasticity of substitution

σ = (1− ρ)−1.3

3Laibson (1997) specified that an individual’s utility function is a function of the summation of
instantaneous utility characterized by constant relative risk aversion. Following Laibson (1997),
Andreoni and Sprenger (2012a) interpreted the parameter ρ as a risk attitude measure. They
compared the parameter ρ to the within-subject Holt and Laury’s (2002) risk preference measure
elicited by the multiple price list tasks—the components of the double multiple price list task devel-
oped by Andersen et al. (2008)—and found that the two measures are virtually uncorrelated. The
relationship between the curvature of utility under risk and utility over time is highly controversial
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We assume that an individual whose preferences are represented by the CES-QHD

utility function (2) faces the utility maximization problem subject to the budget

constraint (1). By solving this utility maximization problem, we obtain the following

demand function:

g(t, k, 1 + r,m | δ, β, σ) =


1

1 +
(
βδk

)σ(
1 + r

)σ−1 for t = 0,

1

1 +
(
δk
)σ(

1 + r
)σ−1 for t > 0.

(3)

Note that the value of the demand function g corresponds to the sooner allocation ct

divided by its upper limit m/(1 + r), and therefore the function g maps onto the

interval [0, 1]. For mathematical tractability, the elasticity of substitution, σ, is used

instead of the parameter ρ (details are provided in Section 2.3).

We perturbed the generated normalized sooner allocation g(•) by adding a random

number ϵ, which follows a normal distribution with mean 0 and standard deviation

s ∈ {0.01, 0.05, 0.10, 0.15, 0.20}. As the ratio of mean absolute deviation to standard

deviation is
√

2/π ≈ 0.8, the generated data have, on average, a 0.8% error for the

interval length allowed as a decision ct for s = 0.01. In the original experiment by

Andreoni and Sprenger (2012a, henceforth AS), participants were asked to select an

integer in the interval from 0 to 100 as a normalized allocation, which corresponds to

the value of g multiplied by 100. Given that forcing discrete choice causes rounding

errors in decision-making, an error size of s = 0.01 is inevitable. We obtained the

root mean squared error (RMSE) for the parameter estimation of AS’s experimental

dataset: the first quartile is 0.019, the median is 0.14, and the third quartile is 0.22.

Given the RMSE distribution, we believe that s = 0.20 is not necessarily too large.

We truncated the noise-added value to the interval [0, 1]: we draw a random

number from the distribution N
(
g(•), s

)
and accept it as a synthesized decision if it

is in [0, 1]; otherwise, we repeatedly draw a random number again. This is because

the decision task that we are considering here involves the allocation of endowment

between two periods. In this scenario, decision-makers are not allowed to borrow

money to consume more than their endowment in the sooner period and to repay

(Abdellaoui et al., 2013; Andersen et al., 2014; Cheung, 2015; Harrison et al., 2013; Takeuchi, 2012).
We then refrain from interpreting the parameter ρ as a risk measure and instead refer to it as the
mathematically straightforward interpretation; namely, the elasticity of substitution between two
periods.
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it in the later period. When the actual decision is at the endpoint of the budget

constraint line, noise can cause the decision to move toward the inside but not toward

the outside.4

2.2 Experimental Tasks

We have two experimental situations (defined as a combination of an early period

date t and a delay length k) for the experimental task: t = 0 (i.e., present) and

k = 70 (days), and t = 1 (i.e., not present) and k = 70 (days). The delay length

k is typically on the scale of weeks to months, and is rarely shorter than one week

(Imai et al., 2020). In each situation, we set 21 uniformly spaced prices chosen from

0.6 ≤ 1 + r ≤ 2. We fixed income m at 20 for simplicity, because it does not affect

behavior in the model. The number of tasks, i.e., the number of data points for each

individual, is 42.

There are three critical differences between our problem set and AS’s problem

set. The first difference is that we chose the price 1 + r from the range where

the interest rate r is not only positive but also negative. Few studies using CTB

experiments, including that by AS, ask participants about negative interest rates.

However, without asking about negative interest rates, it is impossible to estimate

the discount factor for an individual who does not discount the future payoffs, but

who does place a premium on them (for such an individual, the discount factor δ will

be greater than 1). We also conducted simulations using the AS’s original problem

set and summarized the results in Appendix F.

Second, the delay k was set equal to 70 in this paper to simplify the discussion.

Note that for AS’s problem set, there were three conditions of k: 35, 70, and 98.

We also investigated the effect of the number of conditions on k in Appendix F.

Increasing or decreasing the variation in k may affect the parameter estimation error.

Third, we reduced the number of early period dates t to two, i.e., present or

not present. Note that in AS’s experiment, participants made decisions about the

allocation between the future and a later future for t = 7 and t = 35 separately.

4The truncated-noised data are always the interior points of the budget constraint line, and no
corners are chosen. As Harrison et al. (2013) pointed out, it is known that corners are easily chosen
in CTB experiments. Therefore, it could be a more realistic assumption that the noise is censored
at the corners—a noise-added value is shifted to 0 or 1 if a random number drawn from N

(
g(•), s

)
is outside of [0, 1]. We also conducted parameter estimation using data with censored noise (see
Appendix H).
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Regarding the CES-QHD utility function model, there is no difference in decisions

between t = 7 and t = 35, but it can affect real behavior. For a real experimental

design, it may be helpful to designate the variation in t to treat bias in the parameter

estimates, but we discarded that option.

2.3 Ground-truth Values

For the ground-truth values, we used 10 equally spaced values for δ and β from the

range 0.9912 ≤ δ ≤ 1.0025 and 0.85 ≤ β ≤ 1.12, respectively. For the curvature

parameter, we use lnσ = ln(1/1− ρ) instead of the commonly used notation ρ for

mathematical clarity. For the ground-truth curvature lnσ, we used seven equally

spaced values from the range 0.33 ≤ lnσ ≤ 5.00. Table 1 shows the ground-truth

values that generate the decision data. We chose values for δ, β, and lnσ; these values

are evenly spaced as if from a uniform distribution. By combining the ground-truth

values of the three parameters listed in Table 1, there are 700 synthetic individuals.

As mentioned above, there are five levels of noise, s, and we generate 10 sets of data

for each s, resulting in decision data for 35,000 agents.

For the discounting parameters δ and β, we selected a range that covers the

distribution of the estimates reported in AS’s paper. Usually, the discount factor δ

and the present bias β are assumed to be less than 1. However, because some studies

report individuals with estimates greater than 1,5 we also included these values in

our set of possible ground-truth values.

We next describe in detail how we selected the range of the curvature parameter

lnσ: from 0.33 (ρ = 0.283; nearly the Cobb–Douglas utility curvature) to 5 (ρ = 0.993;

nearly linear curvature). Recall that the domain of lnσ is all real numbers. Let

us assume that lnσ = 0 (or ρ = 0), which corresponds to the Cobb–Douglas

utility function, is the center of the curvature parameter space. For lnσ > 0, the

intertemporal allocations become substitutive and complementary otherwise. As

lnσ −→ −∞ (or ρ −→ −∞), the utility function goes to a Leontief function:

U = min{ct, ct+k}, whose indifference curve is L-shaped and is known as the perfect

complement utility function. As lnσ −→ +∞ (or ρ −→ 1), the utility function goes

5We obtained estimates from AS’s experimental dataset. For the distribution of the δ estimates,
the 5th percentile is 0.9917, the median is 0.9989, and the 95th percentile is 1.0018. For the
distribution of the β estimates, the 5th percentile is 0.89, the median is 1.01, and the 95th percentile
is 1.15.
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to a linear function: U = ct + β1t=0δkct+k, which is the perfect substitution utility

function.

AS have reported that the curvature of participants’ preferences in CTB experi-

ments is generally (but not completely) linear. Regardless of the distribution of the

actual parameter values, we should also check the estimation errors for individuals

who behave relatively complementarily, because the utility function model does not

explicitly exclude such individuals. However, it is known that for the standard CES

utility function U(x, y) = (xρ + ϕyρ)1/ρ, when the curvature ρ is negative, the share

parameter ϕ—which corresponds to the discounting part β1t=0δk in the CES-QHD

utility—cannot be accurately estimated for mathematical reasons (Inukai et al., 2022;

Thöni, 2015). As the estimation errors of δ and β are inevitably large for lnσ < 0,

we excluded them from our analysis. Consequently, we chose ground-truth values for

lnσ from 0.33 to 5. We also investigated the estimation errors in the same way for

lnσ < 0 and reported the results in Appendix G. Note that previous studies on the

curvature of time preferences report that it is rare to observe individuals for whom

lnσ is negative, regardless of whether or not the CTB method is used (Andersen

et al., 2008; Andreoni and Sprenger, 2012a; Andreoni et al., 2015; Cheung, 2020).

2.4 Estimation Methods

As we described above, for all individuals i characterized by (δi, βi, lnσi), and

for all budget constraint lines j ∈ {1, . . . , 42}, we obtain the decision data c̃ji =

g(tj, kj, 1 + rj,mj | δi, βi, lnσi) + ϵ. Given the generated data, we estimate the three

parameters using a nonlinear least squares method.6 Following AS, we used the “nl”

command in Stata. Mathematically, the values of δ̂, β̂, and l̂nσ minimize the sum of

squared residuals:

42∑
j=1

[
c̃ji − g

(
tj, kj, 1 + rj,mj | δi, βi, lnσi

)]2
. (4)

To prevent estimation failures because of nonconvergence of the calculations, we

6In AS, the error term was assumed to follow a censored normal distribution, and a two-limit
Tobit model was used for estimation. However, the two-limit Tobit model may result in unexpected
interpretations when the error scale s is moderately large. For example, when g(•) = 0.8 and
s = 0.1, the decision is more likely to be in the corner (c̃ = 1) rather than in a position closer to the
theoretical decision. For this reason, we specify an error term with a truncated normal distribution
rather than a censored distribution.
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transformed lnσ using a sigmoid function f as lnσ = f(θ) = 4 tanh(θ) + 1.5 and

estimated the latent variable θ.7

For the parameter estimation, we set the convergence criterion as 10−5 and the

maximum number of iterations as 200. By combining all parameters (δi, βi, lnσi)

and s, there are 3,500 synthetic individuals, and we regenerated the decision data

10 times for each synthetic individual. Of the 3,500 synthetic individuals, 3,483

converged all 10 times, and the remaining 17 individuals had only one failure to

converge.

3 Results

3.1 Detectability of Time Discounting

As a first measure to discuss the estimation error, we examine whether the estimated

discount factor δ̂ and the present/future bias parameter β̂ are distinguishable from

1, indicating that the individual does not discount (or place a premium on) future

payoffs. In previous studies, most attention has been paid to whether present-biased

behavior exists. We examine here how far the true β is away from 1 to determine

whether it can be distinguished from 1.

Figure 1 shows the percentage of successfully rejected null hypotheses such that

δ̂ = 1 and β̂ = 1. We conducted two-tailed Student’s t-tests at the 5% significance

level to examine whether the null hypothesis could be rejected for each simulation

agent.8 Each point summarizes 10 replications of all combinations of ground-truth

7For lnσ > 5.5, we cannot observe differences in the decision data with a practical significant
figure for an additional decrease in lnσ; in other words, we cannot observe an increase in substi-
tutability as a behavior. For lnσ < −2.5, we also cannot observe an increase in complementarity
for an additional increase in lnσ. Then, we assume that lnσ greater than 5.5 means perfect
substitutes and lnσ, less than −2.5 means perfect complements because the effect of lnσ variation
on behavior g(•) saturates (see the demand curves in Appendix J). In the saturating range, the
parameter estimations sometimes do not converge. We can prevent calculation failures using the
S-shaped function f(θ). If a ground-truth lnσ is positive, as discussed in the main analysis, this
transformation had little effect: out of 35,000 agents, it failed 15 (0.004%) without and 17 (0.005%)
with the transformation. However, when ground-truth lnσ is negative (−2.00, −1.22, and −0.44),
the calculations failed 367 (2%) out of 15,000 agents without, but never with the transformation.
See Appendix K for a comparison of estimates with and without the transformation.

8The test statistics are computed using the standard error of the estimate, which is estimated
by the jackknife method. We found that estimation using the bootstrap method overestimates the
standard error of the estimate (see Appendix I). Therefore, we chose the jackknife method to avoid
undervaluing the precision, i.e., to be conservative about what we are trying to conclude.
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values of β (δ) and lnσ, i.e., 700 simulation agents.
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Figure 1: Rate of successful rejection of the null hypothesis

Notes: Tests on a) δ̂ = 1 and b) β̂ = 1. Each point summarizes 10 replications of all
combinations of ground-truth values of β (δ) and lnσ, i.e., 700 simulation agents.

An inspection of Figure 1 reveals that, for the discount factor parameter δ, when

the ground-truth value is less than 0.9962, we can reject δ̂ = 1 in over 90% of cases

regardless of the amount of added noise. For the case of δ > 1, it may be more

challenging to reject null hypotheses compared to the case of δ < 1. To estimate δ

accurately to place a premium on future payoffs, it is necessary to collect decision data

at negative interest rates. However, in our simulation, we included fewer questions

with negative interest rates and therefore, the estimation precision was worse than

that of δ < 1.9

In contrast, for the present/future bias parameter β, we had more difficulty

concluding that the estimates are not equal to 1 compared with the case of the

discount factor parameter δ in general. Even when the true β is as small as 0.85, the

success rate is below 90% for s > 0.05.

3.2 Error Size

To examine the errors of the parameter estimates further, instead of focusing on the

estimated uncertainty of the parameter estimates for each individual, we analyze the

9The potential impact of excluding problems with negative interest rates from the problem set
on parameter estimation is discussed in the latter part of Appendix F.
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actual variation of the estimates in a population with the same true parameter value.

Here, we assume a population in which the three parameters—δ, β, and lnσ—are

distributed on a three-dimensional grid of the ground-truth values that we set. Then,

we check the distribution of estimates of each parameter in this population.

Figure 2 shows the distribution of the estimated values of δ and β as a box plot

(see Appendix A for the lnσ estimates). Each box summarizes 10 replications of all

combinations of ground-truth values of β (δ) and lnσ, i.e., 700 simulation agents.

The two ends of the box represent the first and third quartiles, respectively, and the

two ends of the whiskers represent the 5th and 95th percentiles, respectively. On the

red line, the error of the estimate is 0. If the box is above or below the red line, then

the estimations have less trueness. In most cases, we find that the deviations from

the true value fall within the interquartile range of the estimates’ distribution.
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Figure 2: Box plot of the estimates

Notes: Estimates of a) δ and b) β. Each box summarizes 10 replications of all combinations
of ground-truth values of β (δ) and lnσ, i.e., 700 simulation agents. The two ends of the
box represent the first and third quartiles, respectively, and the two ends of the whiskers
represent the 5th and 95th percentiles, respectively. On the red line, the error of the
estimate is 0.

In addition to the trueness of estimation, we should understand the resolution

of the estimates. If the estimation is obtained using a higher resolution, we can

precisely distinguish between any two individuals, even if the actual parameter values

are in close proximity to one another. In this context, the resolution, defined as the

minimum distance between actual parameter values, can be deemed identifiable by

comparing the lengths of the boxes (i.e., interquartile range).

For the discount factor parameter δ, Figure 2 shows that the whiskers of the
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estimates for any two adjacent ground-truths do not overlap and can be distinguished

from each other for the smallest noise level s = 0.01. Even for the most extensive

noise s = 0.20, the boxes do not overlap, whereas the whiskers do. We conclude that

the experimental tasks considered in our simulations have enough resolution that

as long as the distance between the true δ values of any two individuals is at least

the ground-truth value spacing (1.3× 10−3), then we can distinguish between them,

even assuming relatively large amounts of noise.

In contrast to the case of δ, Figure 2 reveals that the resolution of the present/future

bias parameter β is generally not high. For s = 0.01, the whiskers for any two ad-

jacent ground-truths do not overlap in most cases and can be barely distinguished.

However, whiskers and boxes often overlap when the noise is more prominent than

for s = 0.01. For s = 0.20, the boxes overlap unless the true values of β are at least

0.1 away from each other. In the case of β, unlike the case of δ, we found that when

comparing the magnitude of β for any two individuals using the experimental task

we are addressing, the two individuals cannot be distinguished unless their true β

values are farther apart than normally assumed.

Relative to the range of the prior distribution of β that we usually assume,

the significant variance of the estimates suggests the possibility of errors. It has

been argued that focusing only on statistically significant results using low power

statistical tests can lead to overestimation of effect sizes (van Zwet and Cator, 2021).

A meta-analysis of estimations of the present bias parameter indicated that the

reported effect is strong, such that it is suspected to be a publication bias in studies

based on real effort tasks (Imai et al., 2020). Our results raise further concerns

regarding the overestimation of the present bias effect because greater noise in the

estimation produces lower power in the statistical tests.

3.3 Why Is the Present Bias Estimation Resolution Low?

In the CES-QHD utility function, δ and β appeared as the term D = βδk for t = 0

and as D = δk for t > 0. If the available data for parameter estimation is only for the

case of t = 0, we cannot uniquely identify δ and β. As we indeed have data for both

cases, t = 0 and t > 0, we should be able to identify the parameters mathematically.

Figure 3 shows a scatter plot of the estimated values of δ and β (for lnσ = 2.67

and s = 0.01; see Appendix B for the scatter plots including all lnσ and s) and a

red line that satisfies βδ70 = 1. Note that both axes use a logarithmic scale centered

at 1 and that all points have been offset so that the ground-truth values coincide
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with δ = β = 1 (indicated by the red cross). What is interesting in Figure 3 is that

the points are distributed along the red line. Theoretically, it should be possible to

identify δ and β; however, in practice, it is difficult even though the value of D itself

can be estimated with reasonable precision.

. . . . .
Estimates of 

.

.

.
Es

tim
at

es
 o

f 

(× + )

(× + )

Figure 3: Scatter plot of estimated δ and β

Notes: The figure shows the case lnσ = 2.67 and s = 0.01. Each point is shifted so
that the pair of corresponding ground-truth values coincides with the red marked point
(δ, β) = (1, 1). Both axes are on a logarithmic scale centered at 1. On the red line,
βδ70 = 1 is satisfied.

As dD/D = dβ/β + k dδ/δ, a 1% change in β results in a 1% change in D, but a

1% change in δ results in a k% change in D. As the difference between δ = 1 and

δ = 0.9987 is 0.13%, the variation in D is 9.1% for k = 70. However, β = 0.97 is

3% smaller than β = 1 and yields a 3% variation for D, which is three times smaller

than that for the δ case.

We can understand the effects of the parameters by depicting the demand curves

for several combinations of parameters because the effect of the variation in D on

decisions (or the demand function) depends on the curvature parameter lnσ and

price 1 + r. Figure 4 shows the demand curve representing the relationship between

the price 1 + r and the amount that individuals are willing to allocate to the sooner

period for lnσ = 2.67. Note that the horizontal axis representing price 1 + r uses

a logarithmic scale and that the prices are indicated by the vertical lines in the

figure. In Figure 4, we can compare the differences in decisions between individuals

with lnσ = 2.67 and different δ and β. The difference in behavior when only δ

decreases from 1 to 0.9987 is the difference between the blue and orange dashed

curves. The difference when only β decreases from 1 to 0.97 is the difference between
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the blue and green dotted curves. We see that the discount behavior of δ = 0.9987 is

more significant than that of β = 0.97. Given the noise, it is more challenging to

test whether the estimated β is less than 1 for an individual whose true β is 0.97

than whether the estimated δ is less than 1 for an individual whose true δ is 0.9987,

because the difference in decisions is three times smaller. In the previous subsection,

we observed that assuming significant noise s = 0.20, the resolution of δ is about

1.3× 10−3, which corresponds to the spacing of our ground-truth values, while the

resolution of β is 0.1, which corresponds to about three times the spacing of our

ground-truth values.
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Figure 4: Demand curves

Notes: Each demand curve is for an individual whose curvature parameter is lnσ = 2.67.
The demand curve represents the relationship between the price 1 + r and the amount
individuals are willing to allocate to the sooner period. The horizontal axis representing
price 1 + r uses a logarithmic scale. Note that the individual faces the decision problem
of allocating between now (t = 0) and k = 70 days later with the prices indicated by the
vertical lines.

Eventually, the low resolution of β estimation occurs because we try to identify

values within a very narrow scope with high precision. As is clear from the comparison

of demand curves in Figure 4, when the true difference in the values of β is less than

0.1, it is inherently difficult to identify individuals regardless of the econometric

method used because the differences in behavior are small (see Appendix C). In the

expanded β scope, it is possible to distinguish between two individuals with given

ground-truth values (see Appendix D). Although δ intuitively seems to require a

very high resolution because it is a daily discount factor and then values should

be accurately estimated to the fourth decimal place, it is possible to estimate it

with a sufficient resolution because its scope is broader than that of β. Because k

depends on the scale of δ, we must expand the scope of δ if we make k a weekly
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discount factor. It should be noted that changing the value of k does not improve

the resolution of β’s estimation (see Appendix E).

4 Discussion

This paper evaluates the inaccuracy of the estimates for the CES-QHD utility

parameters obtained using the CTB experiment (Andreoni and Sprenger, 2012a) by

performing parameter recovery simulations (Wilson and Collins, 2019). Figures 1 and

2 demonstrate that the precision of the estimation of the time discount factor δ is

sufficient enough to distinguish between δ = 0.9987 and δ = 1. However, the precision

of the estimation of β, which represents the present/future bias, is inadequate. It

is more challenging to infer that the estimated value of β = 0.97 is smaller than

1, in comparison with the estimated δ = 0.9987. Our analysis reveals that CTB

experiments have attempted to identify small differences in β that were inherently

indistinguishable.

Considering the variations in behavior that correspond to the differences in

parameter values (as depicted in Figure 4), the true value of β must be less than 0.9

when the estimation is less than 1. In other words, when trying to detect present bias

using the problem set used in our simulations, it can only be detected for individuals

who discount future payoffs by more than 10%. Given the low resolution of the β

estimation, there is a possibility of overestimating or underestimating the effect of

behavioral bias by chance, which can make publication bias more problematic.

Although variations in behavior may be subtle and obscured by noise, including

more tasks can counteract the impact of noise and enhance the accuracy of estimation.

However, it would be impracticable to increase the number of tasks further because of

the participants’ workload during the experiment.10 In reality, the CTB experiments

conducted subsequent to the original study (Andreoni and Sprenger, 2012a) have

generally reduced the number of tasks (Imai et al., 2020).

It may be feasible to enhance the precision of estimation by modifying the design

of the problem set, rather than increasing the number of tasks. The variables that

can be manipulated in task generation include the sooner date t, the delay period k,

10A method for adaptive task generation proposed by Imai and Camerer (2018) could potentially
provide a solution to efficiently obtain high-resolution parameter estimation without the need to
increase the overall number of tasks.
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and the price ratio 1 + r. In particular, there appears to be scope for improving the

generation of price variations.

The problem set used in our simulations includes prices below 1, which implies

negative interest rates. This is because our aim is to consider not only individuals

who discount future payoffs, but also those who place a premium on such payoffs. If

we assume it is possible to disregard atypical individuals who place a premium and

exclude them from analyses, we can raise the number of tasks in positive interest

rate domains by reducing the number of tasks in negative interest rate domains.

We have attempted to improve the accuracy of the estimation by altering the

design of problem sets (see Appendix F). We found that increasing the number of

tasks indisputably improves the estimation resolution.11 However, attempting to

modify the delay period k or the price ratio 1 + r without increasing the number of

tasks did not result in significant improvements in resolution.

The difficulty in estimating β primarily stems from the mathematical structure of

the CES-QHD utility model combined with the CTB experimental tasks. Note that

it is entirely possible to discern differences in behavior by actual humans in CTB

experiments, which can be detected as outcomes of present bias—these behaviors may

not be captured by the CES-QHD utility model.12 We believe that researchers who

persist in using the CTB method will necessitate a significant overhaul of behavior

modeling. We additionally recommend the use of parameter recovery simulations.

11If it is acceptable for us to disregard the individual heterogeneity and all data of a single
population can be merged for parameter estimation, then a significant amount of data is available
for accurate estimation.

12For example, the analyses summarized in Table II of Augenblick et al. (2015) and Table 2 of
Cheung et al. (2022) attempt to assess the magnitude of the present bias effect without employing
the parameters of the CES-QHD utility function.
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A Box Plots of the lnσ Estimates

Figure A.1 illustrates the distribution of the estimated curvature parameter lnσ

through box plots, which were not included in the main text. Each box summarizes

10 replications of all combinations of ground-truth values of δ and β, representing a

total of 1,000 simulation agents. The first and third quartiles are depicted at the

two ends of the box, while the 5th and 95th percentiles are represented by the two

ends of the whiskers. The error of the estimate is 0 for the red line.

To ensure convergence of the lnσ estimates, we used the sigmoid function lnσ =

f(θ) = 4 tanh(θ) + 1.5 to transform lnσ, after which we searched for the latent

variable θ. This manipulation allowed the estimated lnσ to range between −2.5 and

5.5. The black horizontal dashed lines in the figure represent the boundaries of lnσ.

Unlike the parameters δ and β, the lnσ estimates are subject to heavy bias and

tend to underestimate, particularly when the added noise is substantial. At s = 0.20,

lnσ appears to saturate at approximately 2.2.
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Figure A.1: Box plots of the lnσ estimates
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B Scatter Plots of Estimated δ–β

Figure B.1 depicts scatter plots presenting the estimated δ and β for each pair of

specific ground-truth δ and β. Each δ–β plot comprises estimates for all combinations

of ground-truth lnσ and s. The color intensity of the dots represents the magnitude

of the added noise, with darker dots representing smaller noise. The horizontal and

vertical axes signify the δ and β estimates, respectively, while the grid displays the

ground-truth values. Note that although the ground-truth values are linearly equally

spaced, both axes adopt a logarithmic scale, resulting in unevenly spaced grid lines.

Figure B.1 is a matrix, with columns denoting ground-truth δ and rows representing

ground-truth β. Each pair of ground-truth values is indicated by a red cross.

To better understand the relationship between δ and β, we have drawn a red

curve, which follows a straight line on log–log graphs, that satisfies βδ70 = const.

and passes through the red crosses. The scatter plot points are either located near

the red line or in a more vertical distribution than the red line.
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Figure B.1: Scatter plots of estimated δ–β
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C Detecting the Present Bias by Using a Paired

Two-sample t-test

Here, we identify the existence of present bias by comparing the decision data values

directly rather than by estimating the β parameter. We conducted a two-sided paired

t-test to compare the two series of decisions, with one set for t = 0 and another

for t > 0, across 21 different prices. Figure C.1 displays the proportion of cases in

which the null hypothesis is rejected, in which there was no difference in decisions

at the 5% significance level. Compared with the success rates observed using the β

estimates in the main analysis (see the panel b of Figure 1), detecting present bias

by directly comparing decisions is more challenging.
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Figure C.1: Rate of successful rejection of the null hypothesis in which there was no
difference in decisions between t = 0 and t > 0
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D Re-running the Simulation with the Expanded

Ground-truth β Spacing

In the main analysis, we concluded that the low precision of the β estimation was

due to the narrow range of the ground-truth values, which made identification

difficult. Herein, we present the outcomes of re-executing the simulation with the

ground-truth β spacing expanded by roughly three times. To this end, we used 10

evenly spaced values from the range 0.50 ≤ β ≤ 1.40 for the ground-truth β and the

same ground-truth values for δ and lnσ as in the main analysis.

Figure D.1 shows box plots illustrating the dispersion of the estimated δ, β, and

lnσ. The distributions of the δ and lnσ estimates remain largely unchanged from

those in the primary analysis, whereas the box length in the distribution of the β

estimates indicates that they are precise enough to distinguish between neighbors

even when the noise size is s = 0.20.

Figure D.2 displays the successful null hypothesis rejection rates for both δ̂ = 1

and β̂ = 1. Compared with panel b of Figure 1, the lines in Figure D.2 are shifted

upward overall, giving the impression of an improved success rate. It must be noted,

however, that we have only expanded the range of the ground-truth β that we

consider, and nothing has been done to improve the precision of the estimation.

Ultimately, the primary takeaway is that the conventional CTB experiment can only

measure β with a rough resolution; however, this method has been used to examine

marginal differences within a narrow range.
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Figure D.1: Box plots of estimates for the expanded ground-truth β range

Notes: Estimates of a) δ, b) β, and c) lnσ. Shaded area in panel b represents the range
of unexpanded ground-truth β: 0.85 ≤ β ≤ 1.12.
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Figure D.2: Rate of successful rejection for the expanded ground-truth β range

Notes: Tests on a) δ̂ = 1 and b) β̂ = 1.
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E Re-running the Simulation with k = 1

The magnitude of k, representing the duration of the intertemporal period, is reliant

on the scale of δ and the value of k does not inherently enhance parameter estimation

accuracy. Suppose we let k = 1 for one day. Figures E.1 and E.2 present the results

of the recovery simulation with data produced under the same ground-truth values

as in the primary analysis. The precision of δ estimation is significantly low. Hence,

in an experimental arrangement with only one day between periods, it is difficult to

estimate δ within the given ground-truth range. When compared with panel b of

Figure 1, we observe that the precision of β estimation is nearly the same for both

k = 70 and k = 1.

Let us consider a scenario where k is set to one “period”, where one period

corresponds to 70 days and δ represents a discount factor for one period instead of a

daily discount factor. To be more precise, we set k to 1 and generate data by raising

the ground-truth value of δ used in the main analysis to the power of 70. The results

are shown in Figures E.3 and E.4. Comparing these figures to Figure 1, we observe

that the resolution of β remains unchanged, and there is only a slight difference in

the resolution of δ over the transformed range.
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Figure E.1: Box plots of estimates for k = 1 without expanding ground-truth δ range

Notes: Estimates of a) δ, b) β, and c) lnσ.
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Figure E.2: Rate of successful rejection for k = 1 without expanding ground-truth δ
range

Notes: Tests on a) δ̂ = 1 and b) β̂ = 1.
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Figure E.3: Box plots of estimates for k = 1 with expanding ground-truth δ range

Notes: Estimates of a) δ, b) β, and c) lnσ.
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Figure E.4: Rate of successful rejection for k = 1 with expanding ground-truth δ
range

Notes: Tests on a) δ̂ = 1 and b) β̂ = 1.
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F Design of Problem Set

In this section, we examine the effect of the problem set design on the accuracy of

estimation. The main analysis uses a problem set called PS0, where m is fixed at

20, k is fixed at 70, and 21 uniformly spaced prices were drawn from the range of

0.6 ≤ 1 + r ≤ 2 for t = 0 and t = 1, respectively, for a total of 42 problems.

To begin with, we investigate the impact of merely increasing the number of

problems. For PS1, we draw 42 prices, twice the number of PS0, from the same price

range. For PS2, we draw 210 prices, 10 times the number of PS0, from the same

price range.

We then consider the strategy of altering the number of types for each variable

without increasing the total number of problems. For PS3, we set the number of

prices 1+r to seven for each combination of t and k, instead of increasing the number

of k to three (35, 70, and 98). PS4 differs from PS3 in that the values of k are

altered to 35, 175, and 350. For PS5, we set the number of prices 1 + r to three

(0.9, 1.2, and 1.5) for each combination of t and k, instead of increasing the number

of k to seven (14, 28, 42, 56, 70, 84, and 98). For PS6, we fixed k to 70 and draw

14 prices from the range 0.6 ≤ 1 + r ≤ 2, once at t = 0 and twice at t = 1. This

corresponds to setting two different t situations for t > 0 (i.e., two decision makings

for k = 70: one between 7 and 77 days later and the other between 35 and 105 days

later). For PS7, we neglected the existence of individuals who place a premium on

future payoffs and did not consider negative interest rates. We fixed k to 70 and

drew 21 prices from the range 1.05 ≤ 1 + r ≤ 2 for t = 0 and t = 1, respectively.

We conducted simulations using the problem sets PS1 to PS7 and the original

problem set used by AS. AS’s problem set is summarized in Table F.1.

Table F.1: Problem set of AS

t k (1 + r,m)

0 35 (1.05, 20) (1.11, 20) (1.25, 20) (1.25, 25) (1.43, 20)
0 70 (1.05, 20) (1.11, 20) (1.25, 20) (1.25, 25) (1.43, 20)
0 98 (1.05, 20) (1.25, 20) (1.25, 25) (1.54, 20) (2.00, 20)
7 35 (1.05, 20) (1.11, 20) (1.25, 20) (1.25, 25) (1.43, 20)
7 35 (1.05, 20) (1.11, 20) (1.25, 20) (1.25, 25) (1.43, 20)
7 70 (1.00, 20) (1.05, 20) (1.11, 20) (1.25, 20) (1.43, 20)
35 70 (1.05, 20) (1.11, 20) (1.25, 20) (1.25, 25) (1.43, 20)
35 98 (1.05, 20) (1.25, 20) (1.25, 25) (1.54, 20) (2.00, 20)
35 98 (1.05, 20) (1.25, 20) (1.25, 25) (1.54, 20) (2.00, 20)

31



For PS1 and PS2, we computed the standard error of the estimates using the

inverse of the negative Hessian. However, for PS3–PS7 and AS, we computed them

using the jackknife method, as in the main analysis.

Figure F.1 displays the box plots of the estimates, and Figure F.2 illustrates the

rate of successful rejection of the null hypothesis for the problem sets PS1–PS7 and

AS. We also present the data of PS0 as a dashed line in Figure F.2.

Figures F.3 and F.4 illustrate the absolute magnitude of the error and the standard

error of the estimate by problem set, respectively. In both figures, we have depicted

the mean and median along with bootstrap 95% confidence intervals. To depict the

mean value, we have used a logarithmic scale as some values are excessively large.

Comparing the estimation precision of PS0 with that of PS1 and PS2, it becomes

apparent that the latter two exhibit an improvement in precision. This enhancement

is attributed to an increase in the number of problems, as precision is seen to be

positively correlated with the number of tasks. Despite PS2 comprising a total of 420

tasks, however, it remains challenging to reject the hypothesis that an individual’s β

estimate with a true value of 0.97 is not equal to 1 when the noise size is s = 0.20.

With regard to PS3 to PS6, no particular problem set appears to be definitively

superior to PS0. While PS4 displayed improved precision in estimating δ for ground-

truth values near 1, precision worsened for ground-truth values smaller than 0.9950,

and overall estimation precision for β also decreased.

For PS7 and AS, which do not involve prices with negative interest rates, the

precision of the δ estimates is inferior for individuals whose ground-truth δ is greater

than 1. It is acknowledged that significant errors in parameter estimation are

inevitable, especially for individuals with preferences close to linear. To simplify,

we assume here that an individual’s preferences are represented by a completely

linear utility. They allocate all tokens to a later period if the offered price exceeds a

certain threshold, known as the switching point. Specifically, if 1 + r > (β1t=0δk)−1,

they allocate all tokens to the later period; otherwise, to the sooner period. If

the minimum offering price exceeds their switching point, (β1t=0δk)−1, then that

individual will always allocate all endowments to the later period in any problem,

and thus it is impossible to estimate their switching point from the observed data.

To extract the switching point for an individual who highly values future profits

(i.e., whose discount factor δ is greater than 1), we need to examine whether they

are willing to allocate to the later periods despite the nominal decrease in allocated

payoffs, where the interest rate is negative.

The panels located in the upper left and middle left of Figure F.5 illustrate
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the regions for PS7 and AS, respectively, in which the values of δ and β satisfy

the requirement that the switching point is either less than the minimum price

(orange) or greater than the maximum price (blue). Note that the area is shaded

for each value of k, as AS comprises three different types of k. The grid of black

dots depicts the simulated ground-truth values. In the upper center and middle

center panels of Figure F.5, heatmaps are presented for PS7 and AS, respectively,

which exhibit the medians of the Euclidean distance between the ground-truth (δ, β)

and the estimates (δ̂, β̂) within each cell. For pairs that are darker in color, the

estimation error is more significant. The northeast area of the heatmaps indicates a

worsening in the accuracy of the estimation for both PS7 and AS. When comparing

the left panel to the right panel, it becomes apparent that the cells are darker for

parameter combinations that correspond to the shaded regions, which further reduces

the estimation’s accuracy. For individuals whose preferences are not relatively linear

(ground-truth lnσ = 0.33, 1.11, 1.89), there is no noticeable pattern of the estimation

error being significant for a specific combination of parameters (see the upper right

and middle right panels of Figure F.5).
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PS0: {t | 0, 1} × {k | 70} × {1 + r | 0.60, 0.67, . . . , 2.00} (# = 42)
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PS1: {t | 0, 1} × {k | 70} × {1 + r | 0.60, 0.63, . . . , 2.00} (# = 84)
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PS2: {t | 0, 1} × {k | 70} × {1 + r | 0.600, 0.607, . . . , 2.000} (# = 420)
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Figure F.1: Box plots of estimates for each problem set

Notes: Estimates of a) δ, b) β, and c) lnσ. For PS0, panels a and b are reshown as
Figure 2 and panel c is reshown as Figure A.1.
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PS3: {t | 0, 1} × {k | 35, 70, 98} × {1 + r | 0.60, 0.83, . . . , 2.00} (# = 42)
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PS4: {t | 0, 1} × {k | 35, 175, 350} × {1 + r | 0.60, 0.83, . . . , 2.00} (# = 42)
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PS5: {t | 0, 1} × {k | 14, 28, 42, 56, 70, 84, 98} × {1 + r | 0.9, 1.2, 1.5} (# = 42)

. . . . . . . . . .

Ground-truth values of 

.

.

.

.

.

.

.

.

.

.

.

.

.

Es
tim

at
es

 o
f 

a

= .
= .
= .

. . . . . . . . . .
Ground-truth values of 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Es
tim

at
es

 o
f 

b

= .
= .
= .

. . . . . . .
Ground-truth values of 

.

.

.

.

.

.

.

.

.

.

Es
tim

at
es

 o
f 

c

= .
= .
= .

Figure F.1: Box plots of estimates for each problem set (cont’d)
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PS6: {t | 0, 1, 1} × {k | 70} × {1 + r | 0.60, 0.71, . . . , 2.00} (# = 42)
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PS7: {t | 0, 1} × {k | 70} × {1 + r | 1.05, 1.10, . . . , 2.00} (# = 42)
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AS (summarized in Table F.1, # = 45)
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Figure F.1: Box plots of estimates for each problem set (cont’d)
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PS1: {t | 0, 1} × {k | 70} × {1 + r | 0.60, 0.63, . . . , 2.00} (# = 84)
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PS2: {t | 0, 1} × {k | 70} × {1 + r | 0.600, 0.607, . . . , 2.000} (# = 420)
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Figure F.2: Rate of successful rejection for each problem set

Notes: Tests on a) δ̂ = 1 and b) β̂ = 1. Dashed lines are for PS0.
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PS3: {t | 0, 1} × {k | 35, 70, 98} × {1 + r | 0.60, 0.83, . . . , 2.00} (# = 42)

. . . . . . . . . .

Ground-truth values of 

0.0

0.2

0.4

0.6

0.8

1.0

Th
e 

ra
te

 o
f s

uc
ce

ss
fu

l r
eje

cti
on

a

 = 0.01
 = 0.05
 = 0.10
 = 0.15
 = 0.20

. . . . . . . . . .
Ground-truth values of 

0.0

0.2

0.4

0.6

0.8

1.0

Th
e 

ra
te

 o
f s

uc
ce

ss
fu

l r
eje

cti
on

b

 = 0.01
 = 0.05
 = 0.10
 = 0.15
 = 0.20

PS4: {t | 0, 1} × {k | 35, 175, 350} × {1 + r | 0.60, 0.83, . . . , 2.00} (# = 42)

. . . . . . . . . .

Ground-truth values of 

0.0

0.2

0.4

0.6

0.8

1.0

Th
e 

ra
te

 o
f s

uc
ce

ss
fu

l r
eje

cti
on

a

 = 0.01
 = 0.05
 = 0.10
 = 0.15
 = 0.20

. . . . . . . . . .
Ground-truth values of 

0.0

0.2

0.4

0.6

0.8

1.0

Th
e 

ra
te

 o
f s

uc
ce

ss
fu

l r
eje

cti
on

b

 = 0.01
 = 0.05
 = 0.10
 = 0.15
 = 0.20

PS5: {t | 0, 1} × {k | 14, 28, 42, 56, 70, 84, 98} × {1 + r | 0.9, 1.2, 1.5} (# = 42)

. . . . . . . . . .

Ground-truth values of 

0.0

0.2

0.4

0.6

0.8

1.0

Th
e 

ra
te

 o
f s

uc
ce

ss
fu

l r
eje

cti
on

a

 = 0.01
 = 0.05
 = 0.10
 = 0.15
 = 0.20

. . . . . . . . . .
Ground-truth values of 

0.0

0.2

0.4

0.6

0.8

1.0

Th
e 

ra
te

 o
f s

uc
ce

ss
fu

l r
eje

cti
on

b

 = 0.01
 = 0.05
 = 0.10
 = 0.15
 = 0.20

Figure F.2: Rate of successful rejection for each problem set (cont’d)
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PS6: {t | 0, 1, 1} × {k | 70} × {1 + r | 0.60, 0.71, . . . , 2.00} (# = 42)
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PS7: {t | 0, 1} × {k | 70} × {1 + r | 1.05, 1.10, . . . , 2.00} (# = 42)
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Figure F.2: Rate of successful rejection for each problem set (cont’d)
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Figure F.3: Absolute errors of the estimates for each problem set

Notes: Represented by a) mean and b) median. Error bars represent the bootstrap 95%
confidence intervals.
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Figure F.4: Standard errors of the estimates for each problem set

Notes: Represented by a) mean and b) median. Error bars represent the bootstrap 95%
confidence intervals.

41



PS7

����� ����� ����� ����� ����� �����
����

����

����

����

����

����

����

����

δ

β

0.9
91

2

0.9
92

5

0.9
93

7

0.9
95

0

0.9
96

2

0.9
97

5

0.9
98

7

1.0
00

0

1.0
01

2

1.0
02

5



1.12
1.09
1.06
1.03
1.00
0.97
0.94
0.91
0.88
0.85



0.02

0.04

0.06

0.08

0.10

D
is

ta
nc

e 
fro

m
 g

ro
un

d-
tru

th

0.9
91

2

0.9
92

5

0.9
93

7

0.9
95

0

0.9
96

2

0.9
97

5

0.9
98

7

1.0
00

0

1.0
01

2

1.0
02

5



1.12
1.09
1.06
1.03
1.00
0.97
0.94
0.91
0.88
0.85



0.02

0.04

0.06

0.08

0.10

D
is

ta
nc

e 
fro

m
 g

ro
un

d-
tru

th

AS

����� ����� ����� ����� ����� �����
����

����

����

����

����

����

����

����

δ

β

0.9
91

2

0.9
92

5

0.9
93

7

0.9
95

0

0.9
96

2

0.9
97

5

0.9
98

7

1.0
00

0

1.0
01

2

1.0
02

5



1.12
1.09
1.06
1.03
1.00
0.97
0.94
0.91
0.88
0.85



0.02

0.04

0.06

0.08

0.10

D
is

ta
nc

e 
fro

m
 g

ro
un

d-
tru

th

0.9
91

2

0.9
92

5

0.9
93

7

0.9
95

0

0.9
96

2

0.9
97

5

0.9
98

7

1.0
00

0

1.0
01

2

1.0
02

5



1.12
1.09
1.06
1.03
1.00
0.97
0.94
0.91
0.88
0.85


0.02

0.04

0.06

0.08

0.10

D
is

ta
nc

e 
fro

m
 g

ro
un

d-
tru

th

PS0

����� ����� ����� ����� ����� �����
����

����

����

����

����

����

����

����

δ

β

0.9
91

2

0.9
92

5

0.9
93

7

0.9
95

0

0.9
96

2

0.9
97

5

0.9
98

7

1.0
00

0

1.0
01

2

1.0
02

5



1.12
1.09
1.06
1.03
1.00
0.97
0.94
0.91
0.88
0.85



0.02

0.04

0.06

0.08

0.10

D
is

ta
nc

e 
fro

m
 g

ro
un

d-
tru

th

0.9
91

2

0.9
92

5

0.9
93

7

0.9
95

0

0.9
96

2

0.9
97

5

0.9
98

7

1.0
00

0

1.0
01

2

1.0
02

5



1.12
1.09
1.06
1.03
1.00
0.97
0.94
0.91
0.88
0.85



0.02

0.04

0.06

0.08

0.10

D
is

ta
nc

e 
fro

m
 g

ro
un

d-
tru

th

Figure F.5: Range of parameters for which estimation accuracy is inevitably low

Notes: Left: Region plots where the switching point is outside the range of prices of the
problem set for individuals for whom the utility function is linear. Center: Heatmaps
representing the median Euclidean distance between the ground-truth and the estimated
values within each cell. Right: Heatmaps of synthetic individuals with relatively nonlinear
utility (lnσ = 0.33, 1.11, 1.89).
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G Negative Ground-truth lnσ

In the main analysis, the ground-truth values of the curvature parameter lnσ were

restricted to positive values. However, in this section, we examine the accuracy

and precision of parameter estimation for negative values of lnσ, representing lower

elasticities. Specifically, we used ground-truth values of lnσ at −2.00, −1.22, and

−0.44 (−6.39, −2.39, and −0.56 in ρ), along with the same ground-truth values for

δ and β as in the main analysis.

The lower panel of Figure G.1 presents box plots of the estimates obtained

for negative ground-truth values of lnσ. In panels a and b, each plot provides a

summary of 10 replications of all combinations of ground-truth values of β (δ) and

lnσ, respectively, thus involving 300 simulation agents. In panel c, each plot provides

a summary of 10 replications of all combinations of ground-truth values of δ and β,

thus involving 1,000 simulation agents.

Upon comparing the upper and lower rows of panels a and b, it appears that

the medians of the estimates of δ and β do not show any significant difference.

However, for negative ground-truth values of lnσ, we observe that the distribution

range of estimates (length of boxes and whiskers) is considerably larger and hence,

the estimation precision is comparatively low. The lower row panel c displays the

estimates of lnσ, where the boxes with ground-truth values of −2.00 and −1.22

overlap even at s = 0.10. Therefore, distinguishing between them for negative values

of ln σ can be very challenging.

Figure G.2 depicts the success rate of null hypothesis rejection when lnσ values

are negative. Each data point is obtained by conducting 10 replications of all

combinations of ground-truth values of β (δ) and lnσ, totaling 300 simulation agents.

In comparison to the scenario where lnσ is positive (as illustrated in Figure 1), the

rate of successful null hypothesis rejection is typically lower.
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Positive ground-truth lnσ
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Figure G.1: Box plots of estimates for positive and negative ground-truth lnσ

Notes: Estimates of a) δ, b) β, and c) lnσ. For positive ground-truth lnσ, panels a and
b are reshown as Figure 2 and panel c is reshown as Figure A.1.
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Figure G.2: Rate of successful rejection for negative ground-truth lnσ

Notes: Tests on a) δ̂ = 1 and b) β̂ = 1.
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H Censored Noise

In the main analysis, the synthesized decision data were subjected to a truncated

distribution of added noise. In this section, we investigate the estimation using

censored-noised decision data.

Figure H.1’s lower row displays box plots of the estimates for the censored-

noised data. In general, there is little disparity in the accuracy and precision of the

estimates between noise types. However, the estimation of lnσ at s = 0.20 exhibits

a notable difference: the corrected-noised data do not saturate, as opposed to the

truncated-noised data.

Figure H.2 displays the successful rejection rates for both censored noise (repre-

sented by solid lines) and truncated noise (represented by dashed lines). Although

there is generally little difference in the success rates between the two noise types,

censored noise appears to have a higher success rate when the noise level is large.
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Truncated noise

. . . . . . . . . .

Ground-truth values of 

.

.

.

.

.

.

.

.

.

.

.

.

.

Es
tim

at
es

 o
f 

a

= .
= .
= .

. . . . . . . . . .
Ground-truth values of 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Es
tim

at
es

 o
f 

b

= .
= .
= .

. . . . . . .
Ground-truth values of 

.

.

.

.

.

.

.

.

.

.

Es
tim

at
es

 o
f 

c

= .
= .
= .

Censored noise

. . . . . . . . . .

Ground-truth values of 

.

.

.

.

.

.

.

.

.

.

.

.

.

Es
tim

at
es

 o
f 

a

= .
= .
= .

. . . . . . . . . .
Ground-truth values of 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Es
tim

at
es

 o
f 

b

= .
= .
= .

. . . . . . .
Ground-truth values of 

.

.

.

.

.

.

.

.

.

.

Es
tim

at
es

 o
f 

c

= .
= .
= .

Figure H.1: Box plots of estimates for the truncated and censored noise

Notes: Estimates of a) δ, b) β, and c) lnσ. For the truncated noise, panels a and b are
reshown as Figure 2 and panel c is reshown as Figure A.1.
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Figure H.2: Rate of successful rejection for the censored and truncated noise

Notes: Tests on a) δ̂ = 1 and b) β̂ = 1. Solid lines are for the censored noise and dashed
lines are for the truncated noise.
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I Evaluation of Standard Errors by the Bootstrap

Method

In the main analysis, we used the jackknife method to assess the standard errors of

the estimates. In this section, we examine the success rate of the null hypothesis

when standard errors are evaluated by the bootstrap method.

The upper row of Figure I.1 depicts the rate of successful rejection of the null

hypothesis for the bootstrap method (represented by solid lines) and the jackknife

method (represented by dashed lines). The difference in the success rate for δ is

minimal across the evaluation methods. However, for β, the success rate tends to be

lower with standard errors computed by the bootstrap method in comparison to the

jackknife method.

A significant contrast is discernible when the problem set lacks a question con-

cerning negative interest rates. The success rate is illustrated in the lower row of

Figure I.1, employing problem set PS7 in Appendix F. In the case of δ’s success rate,

we note that for s = 0.01, there are instances where the success rate falls below 80%.
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Including questions about negative interest rates (PS0)
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Figure I.1: Rate of successful rejection for the bootstrap and jackknife method

Notes: Tests on a) δ̂ = 1 and b) β̂ = 1. Solid lines are for the bootstrap method and
dashed lines are for the jackknife method.
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J Demand Curve for Individuals Who Have an

Extreme lnσ

Figure J.1 illustrates the demand curves of individuals with extremely large or small

values of the curvature parameter lnσ. Both individuals with lnσ = 6 and 7 allocate

all of their resources to the sooner period when prices are lower than the switching

point (β1t=0δk)−1, and all to the later period otherwise. Their behavior is similar,

with no discernible difference. For lnσ = 5, there is a slight variation in behavior

compared with lnσ = 6, as they allocate a positive amount to the sooner period

when the price is 1 + r = 1.44, which is higher than the switching point. However,

no other differences in behavior are observed. For lnσ = −2, −3, and −4, there are

some differences in the demand curves, but they are negligible.
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Figure J.1: Demand curves for extreme values of lnσ

Notes: Each demand curve corresponds to an individual with different values of the
curvature parameter: a) lnσ ≥ 5, and b) lnσ ≤ −2. Here, δ = 0.9950 and β = 1. The
horizontal axis, which represents the price 1 + r, is presented on a logarithmic scale. Note
that the individual faces the decision of allocating resources between the present time
(t = 0) and 70 days later (k = 70), at prices indicated by the vertical lines in the figure.
For panel a, only the neighborhood of the switching point, (β1t=0δk)−1 (indicated as a
red line), is displayed.
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K Transformation of lnσ

In the main analysis, we applied a sigmoid function lnσ = f(θ) = 4 tanh(θ) + 1.5 to

transform lnσ and searched for the latent variable θ to avoid estimation failures. In

this section, we examine the estimation results without the transformation f(θ).

The lower row of Figure K.1 presents box plots of the estimates without the

transformation f(θ). We observe minimal differences in the estimation results with

and without the transformation. Figure K.2 displays box plots for negative true

lnσ, as discussed in Appendix G. For negative ground-truth lnσ, the whiskers are

more extended than with the transformation, indicating that some estimates may be

considered outliers.

Figure K.3 depicts the success rate of rejecting the null hypothesis with (repre-

sented by dashed lines) and without (represented by solid lines) the transformation

f(θ). The difference in the success rate between the two cases is negligible.
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With transformation ln σ = f(θ)
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Figure K.1: Box plots of estimates with and without the transformation f(θ) for
positive ground-truth ln σ

Notes: Estimates of a) δ, b) β, and c) lnσ. For the with-transformation case, panels a
and b are reshown as Figure 2 and panel c is reshown as Figure A.1.
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With transformation ln σ = f(θ)

. . . . . . . . . .

Ground-truth values of 

.

.

.

.

.

Es
tim

at
es

 o
f 

a
= .
= .
= .

. . . . . . . . . .
Ground-truth values of 

.

.

.

.

.

.

.

.

Es
tim

at
es

 o
f 

b
= .
= .
= .

. . .
Ground-truth values of 

.

.

.

.

Es
tim

at
es

 o
f 

c
= .
= .
= .

Without transformation ln σ = f(θ)

. . . . . . . . . .

Ground-truth values of 

.

.

.

.

.

.

Es
tim

at
es

 o
f 

a
= .
= .
= .

. . . . . . . . . .
Ground-truth values of 

.

.

.

.

.

.

.

.

Es
tim

at
es

 o
f 

b
= .
= .
= .

. . .
Ground-truth values of 

.

.

.

.

.

.

.

.

.

Es
tim

at
es

 o
f 

c

= .
= .
= .

Figure K.2: Box plots of estimates with and without the transformation f(θ) for
negative ground-truth lnσ

Notes: Estimates of a) δ, b) β, and c) lnσ. For the with-transformation case, panel a, b,
and c are reshown as Figure G.1.
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Positive ground-truth lnσ
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Negative ground-truth lnσ
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Figure K.3: Rate of successful rejection without and with the transformation

Notes: Tests were conducted on the estimated parameters of a) δ̂ = 1 and b) β̂ = 1. Solid
lines represent the results without the transformation, whereas dashed lines represent the
results with the transformation.
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