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Abstract

The convex time budget (CTB) method is a widely used experimental
technique for eliciting an individual’s time preference in intertemporal choice
problems. This paper investigates the accuracy of the estimation of the dis-
count factor parameter and the present bias parameter in the quasi-hyperbolic
discounting utility function for the CTB experiment. In this paper, we use a
simulation technique called “parameter recovery.” We found that the precision
of present bias parameter estimation is poor within the scope of previously
reported parameter estimates, making it difficult to detect the effect of present
bias. Our results recommend against using a combination of the CTB experi-
mental task and the quasi-hyperbolic discounting utility model to explore the
effect of present bias. This paper contributes to addressing the replicability
issue in experimental economics and highlights the importance of auditing the
accuracy of parameter estimates before conducting an experiment.
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1 Introduction

All forms of life face the trade-off between smaller, immediate rewards and larger,
delayed rewards. However, most organisms, including humans, struggle to delay
rewards and tend to give priority to immediate gains rather than large future
rewards. The discount rate is a key factor in determining the degree to which future
profits are discounted over time in intertemporal choice problems. Discount rates
can be measured by various means, and interesting findings have arisen from such
assessments.

It is important to note that discount rates can change over time. To illustrate
this, suppose that we face the following choice: consume one chocolate now or
delay gratification for a week and receive two chocolates. Many individuals would
likely succumb to temptation and choose to consume one chocolate immediately
rather than wait for the larger reward. However, if the choice becomes whether to
consume one chocolate in a week or two chocolates in two weeks, people are more
prone to wait the full two weeks. This tendency is known as present bias, a time
inconsistency of choice associated with the choice problem between different points
in time, as discussed in O’Donoghue and Rabin (2015). The existence of present bias
suggests that our willpower may be weaker than we imagine. The phenomenon of
procrastination regarding unpleasant tasks is among the serious issues engendered
by such anomalies.

Moreover, it is imperative to recognize that intertemporal choice problems entail
an element of risk. Individuals may perceive immediate gains as certain, while
future gains are perceived as uncertain. The precise influence of risk on the choice
problem between different points in time remains a matter of debate. Accordingly,
experimental economists have proposed various methodologies to isolate choice tasks
and risk preferences across various time frames.

One method is called the convex time budget (CTB), which was developed by
Andreoni and Sprenger (2012a, henceforth AS). The CTB method attempts to elicit
simultaneously the effects of time discounting and risk attitude by directly estimating

the curvature of the utility function using one single instrument.! When analyzing

L Although studies using the CTB method are still being conducted, the interpretation of the
interplay between time preferences and risk preferences is still a matter of debate (Andreoni and
Sprenger, 2012b; Harrison et al., 2013; Andersen et al., 2014; Cheung, 2015; Epper and Helga, 2015;
Miao and Zhong, 2015; Andreoni et al., 2015; Andreoni and Sprenger, 2015).



preferences from behavioral data collected by the CTB method, researchers do not
merely compare the intertemporal allocations across conditions, but also estimate
the parameters of the quasi-hyperbolic discounting utility function (Laibson, 1997;
O’Donoghue and Rabin, 1999). In experimental economics, many experiments on
intertemporal choice problems now adopt the CTB method in both laboratory and
field settings (e.g., Augenblick et al., 2015; Carvalho et al., 2016; Blumenstock et al.,
2018; Cheung et al., 2022; Dantas et al., 2022). Imai et al. (2020) have identified
67 articles that employed the CTB method and presented a meta-analysis on these
studies. This meta-analysis showed that, on average, the experiment participants
discounted the future payoff by 0.95-0.97 over the payoff available now.>

While researchers typically assess the reliability of estimates post hoc based on
the magnitude of standard errors associated with the estimates, it is uncommon to
examine the trueness and precision of the estimates prior to conducting an experiment.
The degree to which we can accurately estimate an individual’s utility function using
a CTB experiment remains unclear. For instance, if an individual’s present bias
parameter estimate is 0.97, can we truly claim that this individual’s behavior is
biased? To address this issue, we use a simulation technique called “parameter
recovery” (Wilson and Collins, 2019) to examine the accuracy of parameter estimates.
The process of parameter recovery simulation involves three steps: first, generating
artificial decision data using assumed parameter values (referred to as “ground-truth
values”); second, estimating the parameters from the artificial data using the software
intended for the real data; and finally, comparing the estimated parameters to the
true values to assess the level of precision in their recovery. This paper audits the
accuracy of parameter estimation in a conventional CTB experimental design. Our
findings demonstrate that the performance of present bias parameter estimation is
suboptimal within the scope of previously reported parameter estimates.

According to Imai et al.’s (2020) meta-analysis, there may be a tendency for
selective reporting of present bias parameter estimates of less than one, particularly in
studies using real effort tasks. Additionally, our investigation has revealed imprecision
in estimating present bias parameters, which can exacerbate the problem of selective

reporting of the parameter estimate by reducing the power of a statistical test based

2Cheung et al. (2021), while performing a meta-analysis on present bias parameter estimates
that were not limited to CTB method papers, observed that estimates derived from data collected
through the CTB experiment tended to be closer to 1 compared with those obtained from other
methods, including the double multiple price list method proposed by Andersen et al. (2008).



on it, regardless of its true value (van Zwet and Cator, 2021). Consequently, our
results imply serious caution against the use of the C'TB method at least in its
conventional form—more precisely, a combination of the CTB experimental task and
the quasi-hyperbolic discounting utility model—for exploring the effect of present
bias that is uncertain and possibly insignificant.

In psychology, the replicability of experimental findings can often be problematic,
and in experimental economics, it is a crucial issue to that should also be considered.
While it has been recognized that the replication rate of experimental studies
in economics is somewhat superior to that in psychology (Camerer et al., 2016),
there is still heterogeneity in outcomes across experiments. This variability in
experimental outcomes may be attributed to participants’ demographic and cultural
backgrounds, but it could also be contingent on the measurement technique and
parameter estimation method used. To ensure replicability of experimental results,
it is imperative that we audit our experimental methods by carrying out simulations
at the experimental design phase.

The remainder of this paper is organized as follows. Section 2 describes the virtual
design of a CTB experiment and a behavioral model for the CTB experiment, as well
as the parameter recovery simulation procedures. Section 3 contains the results of the
parameter recovery simulation. In this paper, we perform simulations to 1) analyze
whether discounting behaviors can be detected based on the standard errors associated
with the estimates and 2) evaluate the resolution of the parameter estimates from
the distribution of the estimates. Then, we show that the combination of the CTB
method and the quasi-hyperbolic discounting model cannot obtain estimates of the
present bias parameter with small errors or correctly detect the bias if the actual
effect size is small. In the last part of Section 3, we discuss the reasons for the low

resolution of the present bias parameter estimation. Section 4 concludes.

2 Methods

To conduct a parameter recovery simulation, we will clarify how to generate synthetic
decision data in a CTB experiment—the definition of the demand function, the
specification of the experimental task, and the selection of the ground-truth values

of the parameters—and how to estimate parameters.



2.1 Behavioral Model

We now consider the decision-making problems associated with allocating the initial
endowment m between the sooner and later periods. Let (¢, ¢;1x) denote an allocation
bundle where ¢; is the payoff for the sooner period ¢ and ¢ is for the k days later
period. It only matters whether the sooner period ¢ is 0 (i.e., present) or not; and
for t > 0, the value of ¢ does not matter, at least in the model we use. The exchange
rate from tokens to material payoffs varies between the sooner and later periods, and
we normalize the rate for the later period to be 1. We denote the exchange rate for
the sooner payoff as 1 + r, where r is interpreted as an interest rate. We assume
that income is exhausted, or that the budget constraint binds the allocation bundle.

Here, we can obtain the budget constraint for the decision problem as follows:
(L+7)er + g = m. (1)

To measure an individual’s time preference, the experimenter asks the participants
for their allocation (¢, ¢;1) by changing ¢, k, 1 + r, and m.

Here, we discuss a theoretical model of participants’ behavior (¢, ¢;4) for a given
CTB experiment task (¢,k,1 4 r,m). For the intertemporal decision-making task
described above, we suppose that each individual’s time preference is represented by
the following constant intertemporal elasticity of substitution and quasi-hyperbolic
discounting (CES-QHD) utility function (Laibson, 1997; O’Donoghue and Rabin,
1999):

Uler i) = %cf T ﬁltoakl—l) & (2)

The variable 1;,_q is an indicator of whether the earlier period is the present period.
The parameter § (> 0) is the one-day discount factor, and the parameter § (> 0)
represents the present/future bias. The parameter p controls the curvature of
the utility function and characterizes the intertemporal elasticity of substitution
o=(1-p)t3

3Laibson (1997) specified that an individual’s utility function is a function of the summation of
instantaneous utility characterized by constant relative risk aversion. Following Laibson (1997),
Andreoni and Sprenger (2012a) interpreted the parameter p as a risk attitude measure. They
compared the parameter p to the within-subject Holt and Laury’s (2002) risk preference measure
elicited by the multiple price list tasks—the components of the double multiple price list task devel-
oped by Andersen et al. (2008)—and found that the two measures are virtually uncorrelated. The
relationship between the curvature of utility under risk and utility over time is highly controversial



We assume that an individual whose preferences are represented by the CES-QHD
utility function (2) faces the utility maximization problem subject to the budget
constraint (1). By solving this utility maximization problem, we obtain the following

demand function:

1
1+ (Bo8) (1 +7)"
1
1+ (6M)7(147r)"

for t=0,

i
gt,k,1+r,m|o,p,0)=

(3)

for ¢t>0.

1

Note that the value of the demand function g corresponds to the sooner allocation ¢,
divided by its upper limit m/(1 4 r), and therefore the function g maps onto the
interval [0, 1]. For mathematical tractability, the elasticity of substitution, o, is used
instead of the parameter p (details are provided in Section 2.3).

We perturbed the generated normalized sooner allocation g(e) by adding a random
number €, which follows a normal distribution with mean 0 and standard deviation
s € {0.01, 0.05, 0.10, 0.15, 0.20}. As the ratio of mean absolute deviation to standard
deviation is \/2/_7r ~ 0.8, the generated data have, on average, a 0.8% error for the
interval length allowed as a decision ¢; for s = 0.01. In the original experiment by
Andreoni and Sprenger (2012a, henceforth AS), participants were asked to select an
integer in the interval from 0 to 100 as a normalized allocation, which corresponds to
the value of ¢ multiplied by 100. Given that forcing discrete choice causes rounding
errors in decision-making, an error size of s = 0.01 is inevitable. We obtained the
root mean squared error (RMSE) for the parameter estimation of AS’s experimental
dataset: the first quartile is 0.019, the median is 0.14, and the third quartile is 0.22.
Given the RMSE distribution, we believe that s = 0.20 is not necessarily too large.

We truncated the noise-added value to the interval [0, 1]: we draw a random
number from the distribution N(g(e), s) and accept it as a synthesized decision if it
is in [0, 1]; otherwise, we repeatedly draw a random number again. This is because
the decision task that we are considering here involves the allocation of endowment
between two periods. In this scenario, decision-makers are not allowed to borrow

money to consume more than their endowment in the sooner period and to repay

(Abdellaoui et al., 2013; Andersen et al., 2014; Cheung, 2015; Harrison et al., 2013; Takeuchi, 2012).
We then refrain from interpreting the parameter p as a risk measure and instead refer to it as the
mathematically straightforward interpretation; namely, the elasticity of substitution between two
periods.



it in the later period. When the actual decision is at the endpoint of the budget
constraint line, noise can cause the decision to move toward the inside but not toward

the outside.*

2.2 Experimental Tasks

We have two experimental situations (defined as a combination of an early period
date ¢ and a delay length k) for the experimental task: ¢t = 0 (i.e., present) and
k = 70 (days), and t = 1 (i.e., not present) and k = 70 (days). The delay length
k is typically on the scale of weeks to months, and is rarely shorter than one week
(Imai et al., 2020). In each situation, we set 21 uniformly spaced prices chosen from
0.6 <1+ r < 2. We fixed income m at 20 for simplicity, because it does not affect
behavior in the model. The number of tasks, i.e., the number of data points for each
individual, is 42.

There are three critical differences between our problem set and AS’s problem
set. The first difference is that we chose the price 1 + r from the range where
the interest rate r is not only positive but also negative. Few studies using CTB
experiments, including that by AS, ask participants about negative interest rates.
However, without asking about negative interest rates, it is impossible to estimate
the discount factor for an individual who does not discount the future payoffs, but
who does place a premium on them (for such an individual, the discount factor § will
be greater than 1). We also conducted simulations using the AS’s original problem
set and summarized the results in Appendix F.

Second, the delay k was set equal to 70 in this paper to simplify the discussion.
Note that for AS’s problem set, there were three conditions of k: 35, 70, and 98.
We also investigated the effect of the number of conditions on k in Appendix F.
Increasing or decreasing the variation in £ may affect the parameter estimation error.

Third, we reduced the number of early period dates ¢ to two, i.e., present or
not present. Note that in AS’s experiment, participants made decisions about the

allocation between the future and a later future for ¢ = 7 and t = 35 separately.

4The truncated-noised data are always the interior points of the budget constraint line, and no
corners are chosen. As Harrison et al. (2013) pointed out, it is known that corners are easily chosen
in CTB experiments. Therefore, it could be a more realistic assumption that the noise is censored
at the corners—a noise-added value is shifted to 0 or 1 if a random number drawn from N (g(o), s)
is outside of [0, 1]. We also conducted parameter estimation using data with censored noise (see
Appendix H).



Regarding the CES-QHD utility function model, there is no difference in decisions
between t = 7 and ¢ = 35, but it can affect real behavior. For a real experimental
design, it may be helpful to designate the variation in ¢ to treat bias in the parameter

estimates, but we discarded that option.

2.3 Ground-truth Values

For the ground-truth values, we used 10 equally spaced values for § and § from the
range 0.9912 < § < 1.0025 and 0.85 < 8 < 1.12, respectively. For the curvature
parameter, we use Ino = In(1/1 — p) instead of the commonly used notation p for
mathematical clarity. For the ground-truth curvature In o, we used seven equally
spaced values from the range 0.33 < Ino < 5.00. Table 1 shows the ground-truth
values that generate the decision data. We chose values for ¢, 3, and In o; these values
are evenly spaced as if from a uniform distribution. By combining the ground-truth
values of the three parameters listed in Table 1, there are 700 synthetic individuals.
As mentioned above, there are five levels of noise, s, and we generate 10 sets of data
for each s, resulting in decision data for 35,000 agents.

For the discounting parameters ¢ and (3, we selected a range that covers the
distribution of the estimates reported in AS’s paper. Usually, the discount factor o
and the present bias 3 are assumed to be less than 1. However, because some studies
report individuals with estimates greater than 1, we also included these values in
our set of possible ground-truth values.

We next describe in detail how we selected the range of the curvature parameter
Ino: from 0.33 (p = 0.283; nearly the Cobb—Douglas utility curvature) to 5 (p = 0.993;
nearly linear curvature). Recall that the domain of Ino is all real numbers. Let
us assume that Inoc = 0 (or p = 0), which corresponds to the Cobb-Douglas
utility function, is the center of the curvature parameter space. For Ino > 0, the
intertemporal allocations become substitutive and complementary otherwise. As
Inc — —oo0 (or p — —o0), the utility function goes to a Leontief function:
U = min{¢, ¢ 41}, whose indifference curve is L-shaped and is known as the perfect

complement utility function. As Inoc — +o0o (or p — 1), the utility function goes

5We obtained estimates from AS’s experimental dataset. For the distribution of the § estimates,
the 5th percentile is 0.9917, the median is 0.9989, and the 95th percentile is 1.0018. For the
distribution of the 8 estimates, the 5th percentile is 0.89, the median is 1.01, and the 95th percentile
is 1.15.
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to a linear function: U = ¢, + 8%=06*c,,1,, which is the perfect substitution utility
function.

AS have reported that the curvature of participants’ preferences in CTB experi-
ments is generally (but not completely) linear. Regardless of the distribution of the
actual parameter values, we should also check the estimation errors for individuals
who behave relatively complementarily, because the utility function model does not
explicitly exclude such individuals. However, it is known that for the standard CES
utility function U(z,y) = (2 4+ ¢y”)'/?, when the curvature p is negative, the share
parameter ¢—which corresponds to the discounting part 3%=°§* in the CES-QHD
utility—cannot be accurately estimated for mathematical reasons (Inukai et al., 2022;
Thoni, 2015). As the estimation errors of 0 and [ are inevitably large for Ino < 0,
we excluded them from our analysis. Consequently, we chose ground-truth values for
Ino from 0.33 to 5. We also investigated the estimation errors in the same way for
Ino < 0 and reported the results in Appendix G. Note that previous studies on the
curvature of time preferences report that it is rare to observe individuals for whom
In o is negative, regardless of whether or not the CTB method is used (Andersen
et al., 2008; Andreoni and Sprenger, 2012a; Andreoni et al., 2015; Cheung, 2020).

2.4 Estimation Methods

As we described above, for all individuals i characterized by (0;, 8;,Ino;), and
for all budget constraint lines j € {1,...,42}, we obtain the decision data & =
g(tj, kj, 1 +1r;,m; | 6, B, Ino;) + €. Given the generated data, we estimate the three
parameters using a nonlinear least squares method.® Following AS, we used the “nl”
command in Stata. Mathematically, the values of ;5\, B , and [n o minimize the sum of

squared residuals:
2 2
Z[Eji_g(thkjal—i_rjﬂmj ’5i>5ialno—i):| . (4)
j=1

To prevent estimation failures because of nonconvergence of the calculations, we

6In AS, the error term was assumed to follow a censored normal distribution, and a two-limit
Tobit model was used for estimation. However, the two-limit Tobit model may result in unexpected
interpretations when the error scale s is moderately large. For example, when g(e) = 0.8 and
s = 0.1, the decision is more likely to be in the corner (¢ = 1) rather than in a position closer to the
theoretical decision. For this reason, we specify an error term with a truncated normal distribution
rather than a censored distribution.

10



transformed In o using a sigmoid function f as lno = f(#) = 4tanh(#) + 1.5 and
estimated the latent variable 6.7

For the parameter estimation, we set the convergence criterion as 10~° and the
maximum number of iterations as 200. By combining all parameters (d;, 5;,In ;)
and s, there are 3,500 synthetic individuals, and we regenerated the decision data
10 times for each synthetic individual. Of the 3,500 synthetic individuals, 3,483
converged all 10 times, and the remaining 17 individuals had only one failure to

converge.

3 Results

3.1 Detectability of Time Discounting

As a first measure to discuss the estimation error, we examine whether the estimated
discount factor & and the present/future bias parameter /6\ are distinguishable from
1, indicating that the individual does not discount (or place a premium on) future
payoffs. In previous studies, most attention has been paid to whether present-biased
behavior exists. We examine here how far the true § is away from 1 to determine
whether it can be distinguished from 1.

Figure 1 shows the percentage of successfully rejected null hypotheses such that
5=1and B = 1. We conducted two-tailed Student’s ¢-tests at the 5% significance
level to examine whether the null hypothesis could be rejected for each simulation

agent.® Each point summarizes 10 replications of all combinations of ground-truth

"For Ino > 5.5, we cannot observe differences in the decision data with a practical significant
figure for an additional decrease in In¢; in other words, we cannot observe an increase in substi-
tutability as a behavior. For Ino < —2.5, we also cannot observe an increase in complementarity
for an additional increase in Ino. Then, we assume that Ino greater than 5.5 means perfect
substitutes and In o, less than —2.5 means perfect complements because the effect of In o variation
on behavior g(e) saturates (see the demand curves in Appendix J). In the saturating range, the
parameter estimations sometimes do not converge. We can prevent calculation failures using the
S-shaped function f(6). If a ground-truth In o is positive, as discussed in the main analysis, this
transformation had little effect: out of 35,000 agents, it failed 15 (0.004%) without and 17 (0.005%)
with the transformation. However, when ground-truth In o is negative (—2.00, —1.22, and —0.44),
the calculations failed 367 (2%) out of 15,000 agents without, but never with the transformation.
See Appendix K for a comparison of estimates with and without the transformation.

8The test statistics are computed using the standard error of the estimate, which is estimated
by the jackknife method. We found that estimation using the bootstrap method overestimates the
standard error of the estimate (see Appendix I). Therefore, we chose the jackknife method to avoid
undervaluing the precision, i.e., to be conservative about what we are trying to conclude.

11



values of § (0) and Ino, i.e., 700 simulation agents.

a b
1.0

77

c
o /__—0—-—0
3
o}
o
S —— 5=0.01
2 0.6 —— $=0.05
g —e— 5=0.10
?04 —o— $=0.15
s $=0.20
2
© 0.2
[0)
e
'—
0.0
VTOALLOCALNO® SRR LDL O
SIS FFS S TP T P AR
Q. Q. Q. Q. Q~ Q. Q. \. \. \.

Ground-truth values of § Ground-truth values of g

Figure 1: Rate of successful rejection of the null hypothesis

Notes: Tests on a) 5 =1 and b) B = 1. Each point summarizes 10 replications of all
combinations of ground-truth values of 8 (4) and Ino, i.e., 700 simulation agents.

An inspection of Figure 1 reveals that, for the discount factor parameter §, when
the ground-truth value is less than 0.9962, we can reject § =1 in over 90% of cases
regardless of the amount of added noise. For the case of § > 1, it may be more
challenging to reject null hypotheses compared to the case of § < 1. To estimate ¢
accurately to place a premium on future payoffs, it is necessary to collect decision data
at negative interest rates. However, in our simulation, we included fewer questions
with negative interest rates and therefore, the estimation precision was worse than
that of 6 < 1.7

In contrast, for the present/future bias parameter 3, we had more difficulty
concluding that the estimates are not equal to 1 compared with the case of the
discount factor parameter ¢ in general. Even when the true [ is as small as 0.85, the

success rate is below 90% for s > 0.05.

3.2 Error Size

To examine the errors of the parameter estimates further, instead of focusing on the

estimated uncertainty of the parameter estimates for each individual, we analyze the

9The potential impact of excluding problems with negative interest rates from the problem set
on parameter estimation is discussed in the latter part of Appendix F.

12



actual variation of the estimates in a population with the same true parameter value.
Here, we assume a population in which the three parameters—o, 3, and In c—are
distributed on a three-dimensional grid of the ground-truth values that we set. Then,
we check the distribution of estimates of each parameter in this population.

Figure 2 shows the distribution of the estimated values of 4 and S as a box plot
(see Appendix A for the In o estimates). Each box summarizes 10 replications of all
combinations of ground-truth values of 8 (0) and Ino, i.e., 700 simulation agents.
The two ends of the box represent the first and third quartiles, respectively, and the
two ends of the whiskers represent the 5th and 95th percentiles, respectively. On the
red line, the error of the estimate is 0. If the box is above or below the red line, then
the estimations have less trueness. In most cases, we find that the deviations from

the true value fall within the interquartile range of the estimates’ distribution.
a b
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Figure 2: Box plot of the estimates

Notes: Estimates of a) § and b) 5. Each box summarizes 10 replications of all combinations
of ground-truth values of 8 (§) and Ino, i.e., 700 simulation agents. The two ends of the
box represent the first and third quartiles, respectively, and the two ends of the whiskers
represent the 5th and 95th percentiles, respectively. On the red line, the error of the
estimate is 0.

In addition to the trueness of estimation, we should understand the resolution
of the estimates. If the estimation is obtained using a higher resolution, we can
precisely distinguish between any two individuals, even if the actual parameter values
are in close proximity to one another. In this context, the resolution, defined as the
minimum distance between actual parameter values, can be deemed identifiable by
comparing the lengths of the boxes (i.e., interquartile range).

For the discount factor parameter ¢, Figure 2 shows that the whiskers of the

13



estimates for any two adjacent ground-truths do not overlap and can be distinguished
from each other for the smallest noise level s = 0.01. Even for the most extensive
noise s = 0.20, the boxes do not overlap, whereas the whiskers do. We conclude that
the experimental tasks considered in our simulations have enough resolution that
as long as the distance between the true ¢ values of any two individuals is at least
the ground-truth value spacing (1.3 x 1072), then we can distinguish between them,
even assuming relatively large amounts of noise.

In contrast to the case of §, Figure 2 reveals that the resolution of the present/future
bias parameter [ is generally not high. For s = 0.01, the whiskers for any two ad-
jacent ground-truths do not overlap in most cases and can be barely distinguished.
However, whiskers and boxes often overlap when the noise is more prominent than
for s = 0.01. For s = 0.20, the boxes overlap unless the true values of [ are at least
0.1 away from each other. In the case of 3, unlike the case of §, we found that when
comparing the magnitude of £ for any two individuals using the experimental task
we are addressing, the two individuals cannot be distinguished unless their true g
values are farther apart than normally assumed.

Relative to the range of the prior distribution of g that we usually assume,
the significant variance of the estimates suggests the possibility of errors. It has
been argued that focusing only on statistically significant results using low power
statistical tests can lead to overestimation of effect sizes (van Zwet and Cator, 2021).
A meta-analysis of estimations of the present bias parameter indicated that the
reported effect is strong, such that it is suspected to be a publication bias in studies
based on real effort tasks (Imai et al., 2020). Our results raise further concerns
regarding the overestimation of the present bias effect because greater noise in the

estimation produces lower power in the statistical tests.

3.3 Why Is the Present Bias Estimation Resolution Low?

In the CES-QHD utility function, § and 3 appeared as the term D = 36" for t = 0
and as D = §* for t > 0. If the available data for parameter estimation is only for the
case of t = 0, we cannot uniquely identify ¢ and 5. As we indeed have data for both
cases, t = 0 and t > 0, we should be able to identify the parameters mathematically.

Figure 3 shows a scatter plot of the estimated values of § and g (for Ino = 2.67
and s = 0.01; see Appendix B for the scatter plots including all Ino and s) and a
red line that satisfies 36°° = 1. Note that both axes use a logarithmic scale centered

at 1 and that all points have been offset so that the ground-truth values coincide
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with 6 = =1 (indicated by the red cross). What is interesting in Figure 3 is that
the points are distributed along the red line. Theoretically, it should be possible to
identify 6 and 3; however, in practice, it is difficult even though the value of D itself

can be estimated with reasonable precision.

(x107241)

Estimates of g

10 -05 00 05 10 )
Estimates of § (X107 +1)

Figure 3: Scatter plot of estimated 0 and 3

Notes: The figure shows the case Inoc = 2.67 and s = 0.01. Each point is shifted so
that the pair of corresponding ground-truth values coincides with the red marked point
(6,8) = (1,1). Both axes are on a logarithmic scale centered at 1. On the red line,
B670 =1 is satisfied.

AsdD/D =dp/B+ kdd/o, a 1% change in ( results in a 1% change in D, but a
1% change in § results in a k% change in D. As the difference between 6 = 1 and
0 = 0.9987 is 0.13%, the variation in D is 9.1% for k = 70. However, 8 = 0.97 is
3% smaller than 8 = 1 and yields a 3% variation for D, which is three times smaller
than that for the § case.

We can understand the effects of the parameters by depicting the demand curves
for several combinations of parameters because the effect of the variation in D on
decisions (or the demand function) depends on the curvature parameter Ino and
price 1 + r. Figure 4 shows the demand curve representing the relationship between
the price 1 + r and the amount that individuals are willing to allocate to the sooner
period for Ino = 2.67. Note that the horizontal axis representing price 1 + r uses
a logarithmic scale and that the prices are indicated by the vertical lines in the
figure. In Figure 4, we can compare the differences in decisions between individuals
with Ino = 2.67 and different 6 and . The difference in behavior when only ¢
decreases from 1 to 0.9987 is the difference between the blue and orange dashed

curves. The difference when only § decreases from 1 to 0.97 is the difference between
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the blue and green dotted curves. We see that the discount behavior of 6 = 0.9987 is
more significant than that of 5 = 0.97. Given the noise, it is more challenging to
test whether the estimated [ is less than 1 for an individual whose true g is 0.97
than whether the estimated ¢ is less than 1 for an individual whose true ¢ is 0.9987,
because the difference in decisions is three times smaller. In the previous subsection,
we observed that assuming significant noise s = 0.20, the resolution of § is about
1.3 x 1073, which corresponds to the spacing of our ground-truth values, while the
resolution of 3 is 0.1, which corresponds to about three times the spacing of our

ground-truth values.

_§ 10—y, » 6=0.9987, B=1
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"""" =1 =0.97
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0.6 0.8 1.0 12 14 16 1.8 2.0
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Figure 4: Demand curves

Notes: Each demand curve is for an individual whose curvature parameter is lno = 2.67.
The demand curve represents the relationship between the price 1 + r and the amount
individuals are willing to allocate to the sooner period. The horizontal axis representing
price 1 + r uses a logarithmic scale. Note that the individual faces the decision problem
of allocating between now (¢ = 0) and k = 70 days later with the prices indicated by the
vertical lines.

Eventually, the low resolution of 5 estimation occurs because we try to identify
values within a very narrow scope with high precision. As is clear from the comparison
of demand curves in Figure 4, when the true difference in the values of § is less than
0.1, it is inherently difficult to identify individuals regardless of the econometric
method used because the differences in behavior are small (see Appendix C). In the
expanded [ scope, it is possible to distinguish between two individuals with given
ground-truth values (see Appendix D). Although ¢ intuitively seems to require a
very high resolution because it is a daily discount factor and then values should
be accurately estimated to the fourth decimal place, it is possible to estimate it
with a sufficient resolution because its scope is broader than that of 3. Because k

depends on the scale of §, we must expand the scope of § if we make k£ a weekly
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discount factor. It should be noted that changing the value of k£ does not improve

the resolution of 8’s estimation (see Appendix E).

4 Discussion

This paper evaluates the inaccuracy of the estimates for the CES-QHD utility
parameters obtained using the CTB experiment (Andreoni and Sprenger, 2012a) by
performing parameter recovery simulations (Wilson and Collins, 2019). Figures 1 and
2 demonstrate that the precision of the estimation of the time discount factor ¢ is
sufficient enough to distinguish between § = 0.9987 and § = 1. However, the precision
of the estimation of 3, which represents the present/future bias, is inadequate. It
is more challenging to infer that the estimated value of § = 0.97 is smaller than
1, in comparison with the estimated 0 = 0.9987. Our analysis reveals that CTB
experiments have attempted to identify small differences in § that were inherently
indistinguishable.

Considering the variations in behavior that correspond to the differences in
parameter values (as depicted in Figure 4), the true value of 5 must be less than 0.9
when the estimation is less than 1. In other words, when trying to detect present bias
using the problem set used in our simulations, it can only be detected for individuals
who discount future payoffs by more than 10%. Given the low resolution of the /3
estimation, there is a possibility of overestimating or underestimating the effect of
behavioral bias by chance, which can make publication bias more problematic.

Although variations in behavior may be subtle and obscured by noise, including
more tasks can counteract the impact of noise and enhance the accuracy of estimation.
However, it would be impracticable to increase the number of tasks further because of
the participants’ workload during the experiment.!® In reality, the CTB experiments
conducted subsequent to the original study (Andreoni and Sprenger, 2012a) have
generally reduced the number of tasks (Imai et al., 2020).

It may be feasible to enhance the precision of estimation by modifying the design
of the problem set, rather than increasing the number of tasks. The variables that

can be manipulated in task generation include the sooner date ¢, the delay period k,

10A method for adaptive task generation proposed by Imai and Camerer (2018) could potentially
provide a solution to efficiently obtain high-resolution parameter estimation without the need to
increase the overall number of tasks.
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and the price ratio 1 + r. In particular, there appears to be scope for improving the
generation of price variations.

The problem set used in our simulations includes prices below 1, which implies
negative interest rates. This is because our aim is to consider not only individuals
who discount future payoffs, but also those who place a premium on such payoffs. If
we assume it is possible to disregard atypical individuals who place a premium and
exclude them from analyses, we can raise the number of tasks in positive interest
rate domains by reducing the number of tasks in negative interest rate domains.

We have attempted to improve the accuracy of the estimation by altering the
design of problem sets (see Appendix F). We found that increasing the number of
tasks indisputably improves the estimation resolution.!! However, attempting to
modify the delay period k£ or the price ratio 1 + r without increasing the number of
tasks did not result in significant improvements in resolution.

The difficulty in estimating § primarily stems from the mathematical structure of
the CES-QHD utility model combined with the CTB experimental tasks. Note that
it is entirely possible to discern differences in behavior by actual humans in CTB
experiments, which can be detected as outcomes of present bias—these behaviors may
not be captured by the CES-QHD utility model.'? We believe that researchers who
persist in using the CTB method will necessitate a significant overhaul of behavior

modeling. We additionally recommend the use of parameter recovery simulations.

HTf it is acceptable for us to disregard the individual heterogeneity and all data of a single
population can be merged for parameter estimation, then a significant amount of data is available
for accurate estimation.

12For example, the analyses summarized in Table II of Augenblick et al. (2015) and Table 2 of
Cheung et al. (2022) attempt to assess the magnitude of the present bias effect without employing
the parameters of the CES-QHD utility function.
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A Box Plots of the Ino Estimates

Figure A.1 illustrates the distribution of the estimated curvature parameter Ino
through box plots, which were not included in the main text. Each box summarizes
10 replications of all combinations of ground-truth values of § and (3, representing a
total of 1,000 simulation agents. The first and third quartiles are depicted at the
two ends of the box, while the 5th and 95th percentiles are represented by the two
ends of the whiskers. The error of the estimate is 0 for the red line.

To ensure convergence of the In o estimates, we used the sigmoid function Ino =
f(0) = 4tanh(f) + 1.5 to transform Ino, after which we searched for the latent
variable #. This manipulation allowed the estimated In o to range between —2.5 and
5.5. The black horizontal dashed lines in the figure represent the boundaries of Ino.

Unlike the parameters 6 and (3, the In o estimates are subject to heavy bias and
tend to underestimate, particularly when the added noise is substantial. At s = 0.20,

In o appears to saturate at approximately 2.2.
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Figure A.1: Box plots of the In o estimates
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B Scatter Plots of Estimated /—(

Figure B.1 depicts scatter plots presenting the estimated ¢ and [ for each pair of
specific ground-truth ¢ and 5. Each 0—( plot comprises estimates for all combinations
of ground-truth In o and s. The color intensity of the dots represents the magnitude
of the added noise, with darker dots representing smaller noise. The horizontal and
vertical axes signify the § and g estimates, respectively, while the grid displays the
ground-truth values. Note that although the ground-truth values are linearly equally
spaced, both axes adopt a logarithmic scale, resulting in unevenly spaced grid lines.
Figure B.1 is a matrix, with columns denoting ground-truth 6 and rows representing
ground-truth . Each pair of ground-truth values is indicated by a red cross.

To better understand the relationship between ¢ and [, we have drawn a red
curve, which follows a straight line on log-log graphs, that satisfies 567 = const.
and passes through the red crosses. The scatter plot points are either located near

the red line or in a more vertical distribution than the red line.
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C Detecting the Present Bias by Using a Paired

Two-sample t-test

Here, we identify the existence of present bias by comparing the decision data values
directly rather than by estimating the § parameter. We conducted a two-sided paired
t-test to compare the two series of decisions, with one set for ¢ = 0 and another
for t > 0, across 21 different prices. Figure C.1 displays the proportion of cases in
which the null hypothesis is rejected, in which there was no difference in decisions
at the 5% significance level. Compared with the success rates observed using the [
estimates in the main analysis (see the panel b of Figure 1), detecting present bias

by directly comparing decisions is more challenging.
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Figure C.1: Rate of successful rejection of the null hypothesis in which there was no
difference in decisions between t = 0 and ¢ > 0
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D Re-running the Simulation with the Expanded
Ground-truth S Spacing

In the main analysis, we concluded that the low precision of the 8 estimation was
due to the narrow range of the ground-truth values, which made identification
difficult. Herein, we present the outcomes of re-executing the simulation with the
ground-truth  spacing expanded by roughly three times. To this end, we used 10
evenly spaced values from the range 0.50 < § < 1.40 for the ground-truth g and the
same ground-truth values for 4 and In ¢ as in the main analysis.

Figure D.1 shows box plots illustrating the dispersion of the estimated 0, 3, and
Ino. The distributions of the § and In o estimates remain largely unchanged from
those in the primary analysis, whereas the box length in the distribution of the £
estimates indicates that they are precise enough to distinguish between neighbors
even when the noise size is s = 0.20.

Figure D.2 displays the successful null hypothesis rejection rates for both s=1
and B\ = 1. Compared with panel b of Figure 1, the lines in Figure D.2 are shifted
upward overall, giving the impression of an improved success rate. It must be noted,
however, that we have only expanded the range of the ground-truth g that we
consider, and nothing has been done to improve the precision of the estimation.
Ultimately, the primary takeaway is that the conventional CTB experiment can only
measure J with a rough resolution; however, this method has been used to examine

marginal differences within a narrow range.
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E Re-running the Simulation with £ =1

The magnitude of k, representing the duration of the intertemporal period, is reliant
on the scale of § and the value of k does not inherently enhance parameter estimation
accuracy. Suppose we let k = 1 for one day. Figures E.1 and E.2 present the results
of the recovery simulation with data produced under the same ground-truth values
as in the primary analysis. The precision of ¢ estimation is significantly low. Hence,
in an experimental arrangement with only one day between periods, it is difficult to
estimate ¢ within the given ground-truth range. When compared with panel b of
Figure 1, we observe that the precision of § estimation is nearly the same for both
k=70and k = 1.

Let us consider a scenario where k is set to one “period”, where one period
corresponds to 70 days and 0 represents a discount factor for one period instead of a
daily discount factor. To be more precise, we set k to 1 and generate data by raising
the ground-truth value of ¢ used in the main analysis to the power of 70. The results
are shown in Figures E.3 and E.4. Comparing these figures to Figure 1, we observe
that the resolution of § remains unchanged, and there is only a slight difference in

the resolution of § over the transformed range.
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F Design of Problem Set

In this section, we examine the effect of the problem set design on the accuracy of
estimation. The main analysis uses a problem set called PSO, where m is fixed at
20, k is fixed at 70, and 21 uniformly spaced prices were drawn from the range of
0.6 <1+4+r<2fort=0andt=1, respectively, for a total of 42 problems.

To begin with, we investigate the impact of merely increasing the number of
problems. For PS1, we draw 42 prices, twice the number of PS0, from the same price
range. For PS2, we draw 210 prices, 10 times the number of PS0O, from the same
price range.

We then consider the strategy of altering the number of types for each variable
without increasing the total number of problems. For PS3, we set the number of
prices 141 to seven for each combination of ¢ and k, instead of increasing the number
of k to three (35, 70, and 98). PS4 differs from PS3 in that the values of k are
altered to 35, 175, and 350. For PS5, we set the number of prices 1 + r to three
(0.9, 1.2, and 1.5) for each combination of ¢ and k, instead of increasing the number
of k to seven (14, 28, 42, 56, 70, 84, and 98). For PS6, we fixed k to 70 and draw
14 prices from the range 0.6 < 1+ 1r < 2, once at t = 0 and twice at t = 1. This
corresponds to setting two different ¢ situations for ¢ > 0 (i.e., two decision makings
for k = 70: one between 7 and 77 days later and the other between 35 and 105 days
later). For PS7, we neglected the existence of individuals who place a premium on
future payoffs and did not consider negative interest rates. We fixed k£ to 70 and
drew 21 prices from the range 1.05 < 1+ r <2 for ¢t = 0 and t = 1, respectively.

We conducted simulations using the problem sets PS1 to PS7 and the original
problem set used by AS. AS’s problem set is summarized in Table F.1.

Table F.1: Problem set of AS

t k  (1+rm)

0 35 (L05,20) (L11,20) (1.25 20) (1.25,25) (L.43,20)
0 70 (105, 20) (L.11,20) (1.25,20) (1.25,25) (1.43,20)
0 98 (L.05,20) (1.25, 20) (1.25,25) (1.54,20) (2.00,20)
735 (1.05,20) (1.11,20) (1.25,20) (1.25,25) (1.43, 20)
735 (1.05,20) (1.11,20) (1.25,20) (1.25,25) (1.43,20)
770 (1.00,20) (1.05,20) (1.11,20) (1.25,20) (1.43,20)
35 70 (1.05,20) (L.11,20) (1.25,20) (1.25,25) (1.43,20)
35 98 (1.05,20) (1.25,20) (1.25,25) (1.54,20) (2.00,20)
35 08 (1.05,20) (1.25,20) (1.25,25) (1.54,20) (2.00,20)
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For PS1 and PS2, we computed the standard error of the estimates using the
inverse of the negative Hessian. However, for PS3—-PS7 and AS, we computed them
using the jackknife method, as in the main analysis.

Figure F.1 displays the box plots of the estimates, and Figure F.2 illustrates the
rate of successful rejection of the null hypothesis for the problem sets PS1-PS7 and
AS. We also present the data of PS0O as a dashed line in Figure F.2.

Figures F.3 and F.4 illustrate the absolute magnitude of the error and the standard
error of the estimate by problem set, respectively. In both figures, we have depicted
the mean and median along with bootstrap 95% confidence intervals. To depict the
mean value, we have used a logarithmic scale as some values are excessively large.

Comparing the estimation precision of PSO with that of PS1 and PS2, it becomes
apparent that the latter two exhibit an improvement in precision. This enhancement
is attributed to an increase in the number of problems, as precision is seen to be
positively correlated with the number of tasks. Despite PS2 comprising a total of 420
tasks, however, it remains challenging to reject the hypothesis that an individual’s
estimate with a true value of 0.97 is not equal to 1 when the noise size is s = 0.20.
With regard to PS3 to PS6, no particular problem set appears to be definitively
superior to PS0. While PS4 displayed improved precision in estimating ¢ for ground-
truth values near 1, precision worsened for ground-truth values smaller than 0.9950,
and overall estimation precision for 3 also decreased.

For PS7 and AS, which do not involve prices with negative interest rates, the
precision of the § estimates is inferior for individuals whose ground-truth ¢ is greater
than 1. It is acknowledged that significant errors in parameter estimation are
inevitable, especially for individuals with preferences close to linear. To simplify,
we assume here that an individual’s preferences are represented by a completely
linear utility. They allocate all tokens to a later period if the offered price exceeds a
certain threshold, known as the switching point. Specifically, if 1 + 7 > (Bt=0§%)"1,
they allocate all tokens to the later period; otherwise, to the sooner period. If
the minimum offering price exceeds their switching point, (3=06%)~1  then that
individual will always allocate all endowments to the later period in any problem,
and thus it is impossible to estimate their switching point from the observed data.
To extract the switching point for an individual who highly values future profits
(i.e., whose discount factor ¢ is greater than 1), we need to examine whether they
are willing to allocate to the later periods despite the nominal decrease in allocated
payoffs, where the interest rate is negative.

The panels located in the upper left and middle left of Figure F.5 illustrate
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the regions for PS7 and AS, respectively, in which the values of § and ( satisfy
the requirement that the switching point is either less than the minimum price
(orange) or greater than the maximum price (blue). Note that the area is shaded
for each value of k, as AS comprises three different types of k. The grid of black
dots depicts the simulated ground-truth values. In the upper center and middle
center panels of Figure F.5, heatmaps are presented for PS7 and AS, respectively,
which exhibit the medians of the Euclidean distance between the ground-truth (4, 3)
and the estimates (25\, B) within each cell. For pairs that are darker in color, the
estimation error is more significant. The northeast area of the heatmaps indicates a
worsening in the accuracy of the estimation for both PS7 and AS. When comparing
the left panel to the right panel, it becomes apparent that the cells are darker for
parameter combinations that correspond to the shaded regions, which further reduces
the estimation’s accuracy. For individuals whose preferences are not relatively linear
(ground-truth Ino = 0.33,1.11, 1.89), there is no noticeable pattern of the estimation
error being significant for a specific combination of parameters (see the upper right

and middle right panels of Figure F.5).
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Figure F.1: Box plots of estimates for each problem set

Notes: Estimates of a) ¢, b) /3, and c) Ino. For PS0, panels a and b are reshown as
Figure 2 and panel c is reshown as Figure A.1.
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Figure F.5: Range of parameters for which estimation accuracy is inevitably low

Notes: Left: Region plots where the switching point is outside the range of prices of the
problem set for individuals for whom the utility function is linear. Center: Heatmaps
representing the median Euclidean distance between the ground-truth and the estimated
values within each cell. Right: Heatmaps of synthetic individuals with relatively nonlinear

utility (Ino = 0.33,1.11,1.89).
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G Negative Ground-truth Ino

In the main analysis, the ground-truth values of the curvature parameter In o were
restricted to positive values. However, in this section, we examine the accuracy
and precision of parameter estimation for negative values of In o, representing lower
elasticities. Specifically, we used ground-truth values of Ino at —2.00, —1.22, and
—0.44 (—6.39, —2.39, and —0.56 in p), along with the same ground-truth values for
0 and ( as in the main analysis.

The lower panel of Figure G.1 presents box plots of the estimates obtained
for negative ground-truth values of Ino. In panels a and b, each plot provides a
summary of 10 replications of all combinations of ground-truth values of 8 () and
In o, respectively, thus involving 300 simulation agents. In panel c, each plot provides
a summary of 10 replications of all combinations of ground-truth values of § and S,
thus involving 1,000 simulation agents.

Upon comparing the upper and lower rows of panels a and b, it appears that
the medians of the estimates of ¢ and 8 do not show any significant difference.
However, for negative ground-truth values of In o, we observe that the distribution
range of estimates (length of boxes and whiskers) is considerably larger and hence,
the estimation precision is comparatively low. The lower row panel ¢ displays the
estimates of Ino, where the boxes with ground-truth values of —2.00 and —1.22
overlap even at s = 0.10. Therefore, distinguishing between them for negative values
of Ino can be very challenging.

Figure G.2 depicts the success rate of null hypothesis rejection when In o values
are negative. Each data point is obtained by conducting 10 replications of all
combinations of ground-truth values of 8 (§) and In o, totaling 300 simulation agents.
In comparison to the scenario where Ino is positive (as illustrated in Figure 1), the

rate of successful null hypothesis rejection is typically lower.
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H Censored Noise

In the main analysis, the synthesized decision data were subjected to a truncated
distribution of added noise. In this section, we investigate the estimation using
censored-noised decision data.

Figure H.1’s lower row displays box plots of the estimates for the censored-
noised data. In general, there is little disparity in the accuracy and precision of the
estimates between noise types. However, the estimation of Ino at s = 0.20 exhibits
a notable difference: the corrected-noised data do not saturate, as opposed to the
truncated-noised data.

Figure H.2 displays the successful rejection rates for both censored noise (repre-
sented by solid lines) and truncated noise (represented by dashed lines). Although
there is generally little difference in the success rates between the two noise types,

censored noise appears to have a higher success rate when the noise level is large.
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I Evaluation of Standard Errors by the Bootstrap
Method

In the main analysis, we used the jackknife method to assess the standard errors of
the estimates. In this section, we examine the success rate of the null hypothesis
when standard errors are evaluated by the bootstrap method.

The upper row of Figure 1.1 depicts the rate of successful rejection of the null
hypothesis for the bootstrap method (represented by solid lines) and the jackknife
method (represented by dashed lines). The difference in the success rate for ¢ is
minimal across the evaluation methods. However, for (3, the success rate tends to be
lower with standard errors computed by the bootstrap method in comparison to the
jackknife method.

A significant contrast is discernible when the problem set lacks a question con-
cerning negative interest rates. The success rate is illustrated in the lower row of
Figure 1.1, employing problem set PS7 in Appendix F. In the case of §’s success rate,

we note that for s = 0.01, there are instances where the success rate falls below 80%.
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J Demand Curve for Individuals Who Have an

Extreme Ino

Figure J.1 illustrates the demand curves of individuals with extremely large or small
values of the curvature parameter In . Both individuals with Ino = 6 and 7 allocate
all of their resources to the sooner period when prices are lower than the switching
point (8=06%)~1 and all to the later period otherwise. Their behavior is similar,
with no discernible difference. For Ino = 5, there is a slight variation in behavior
compared with Ino = 6, as they allocate a positive amount to the sooner period
when the price is 1 + r = 1.44, which is higher than the switching point. However,
no other differences in behavior are observed. For Inoc = —2, —3, and —4, there are

some differences in the demand curves, but they are negligible.

0.8

Demand for the sooner allocation
Demand for the sooner allocation ©

| i T ' 0.0L. , \ \ : : ‘ ‘
1.37 1.44 1.51 0.6 0.8 1.0 12 14 16 18 20

1+r 1+r

Figure J.1: Demand curves for extreme values of Ino

Notes: Each demand curve corresponds to an individual with different values of the
curvature parameter: a) Ino > 5, and b) lno < —2. Here, § = 0.9950 and 8 = 1. The
horizontal axis, which represents the price 1+ r, is presented on a logarithmic scale. Note
that the individual faces the decision of allocating resources between the present time
(t = 0) and 70 days later (k = 70), at prices indicated by the vertical lines in the figure.
For panel a, only the neighborhood of the switching point, (3%t=0¢*)~1 (indicated as a
red line), is displayed.
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K Transformation of Ino

In the main analysis, we applied a sigmoid function Ino = f(#) = 4 tanh(#) + 1.5 to
transform In ¢ and searched for the latent variable 6 to avoid estimation failures. In
this section, we examine the estimation results without the transformation f(0).

The lower row of Figure K.1 presents box plots of the estimates without the
transformation f(6). We observe minimal differences in the estimation results with
and without the transformation. Figure K.2 displays box plots for negative true
Ino, as discussed in Appendix G. For negative ground-truth In o, the whiskers are
more extended than with the transformation, indicating that some estimates may be
considered outliers.

Figure K.3 depicts the success rate of rejecting the null hypothesis with (repre-
sented by dashed lines) and without (represented by solid lines) the transformation

f(0). The difference in the success rate between the two cases is negligible.
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With transformation Ino = f(6)
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Figure K.1: Box plots of estimates with and without the transformation f(6) for
positive ground-truth In o

Notes: Estimates of a) d, b) 8, and c) Ino. For the with-transformation case, panels a
and b are reshown as Figure 2 and panel c is reshown as Figure A.1.
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With transformation Ino = f(6)
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Figure K.2: Box plots of estimates with and without the transformation f(6) for
negative ground-truth Ino

Notes: Estimates of a) J, b) 3, and c¢) Ino. For the with-transformation case, panel a, b,
and c are reshown as Figure G.1.
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Positive ground-truth Ino
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Figure K.3: Rate of successful rejection without and with the transformation

Notes: Tests were conducted on the estimated parameters of a) §=1and b) B =1. Solid
lines represent the results without the transformation, whereas dashed lines represent the
results with the transformation.
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