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Abstract

This paper proposes a minimum distance (MD) estimator to estimate panel regression
models with measurement error. The model considered is more general than examined in
the literature in that (i) measurement error can be non-classical in the sense that they are
allowed to be correlated with the true regressors, and (ii) serially correlated measurement
error and idiosyncratic error are allowed. We estimate such a model by applying the co-
variance structure analysis, which does not require any instrumental variables to deal with
the endogeneity caused by measurement error. The asymptotic properties of our MD esti-
mator are established, which is non-trivial because an identification issue must be solved.
Since our approach estimates the variances and covariances of latent variables as well as the
coefficient of regressors, we can directly test, for instance, whether the measurement error
are correlated with the true regressors. Monte Carlo simulation is conducted to investigate
the finite sample performance and confirm that the proposed estimator has desirable perfor-
mance. We apply the proposed method to estimate an investment equation for 2002-2016
and find that (i) there is a structural break between 2007 and 2008, (ii) Tobin’s marginal
q is strongly significant, and (iii) cash flow is not significant before 2007, but tends to be
significant after 2009 indicating increased investment-cash flow sensitivity, (iv) measurement
error and idiosyncratic error are serially correlated, (v) measurement error is significantly
negatively correlated with the marginal ¢, and hence non-classical measurement error.

*Hayakawa acknowledges financial support from the Grant-in-Aid for Scientific Research (KAKENHI
20H01484, 20K20760) provided by the JSPS, and Yamagata acknowledges the financial support by JSPS KAK-
ENHI Grant Numbers 20H01484, 20H05631, 21H00700 and 21H04397. The authors are also grateful to Jiaxin
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1 Introduction

In empirical studies of corporate finance, since abstract variables such as investment opportuni-
ties, asset tangibility, or Tobin’s marginal ¢ are not directly observable, it is common practice
to substitute them with observable proxy variables.! Unfortunately, such an empirical practice
causes measurement error or errors-in-variables problems, a major topic in regression analysis.
Since measurement error in regressors makes an OLS estimator inconsistent, several solutions
to obtain consistent estimate have been proposed in the literature.?

Since the seminal study by Griliches and Hausman (1986), various approaches to dealing with
measurement error have been advanced in the context of linear panel regression models.? These
existing approaches may be categorized into three groups. The first is based on using high-order
moments or cumulants of data. This approach is proposed by Erickson and Whited (2000, 2002,
2012), Erickson, Jiang and Whited (2014), and Meijer, Spierdijk and Wansbeek (2017). The
second is based on assuming a linear structure on the covariance matrix of measurement error or
idiosyncratic error. This approach is proposed by Wansbeek (2001), Xiao, Shao, Xu and Palta
(2007), Xiao, Shao and Palta (2010), and Meijer, Spierdijk and Wansbeek (2017). The third is
based on the instrumental variables (IV) regression proposed by Griliches and Hausman (1986),
Biorn (2000), and Almeida, Campello and Galvao (2010).

As discussed in Angrist and Krueger (1999), Kane, Rouse and Staiger (1999), and Bound,
Brown and Mathiowetz (2001), there have been concerns about violations of the assumptions of
classical measurement error typically employed in the existing approaches. Notably, comparing
matched panel survey earnings (measured earnings) to the recorded earnings in administrative
Social Security pay roll (true earnings), Bound and Krueger (1991) found that the measurement
error (difference between these two earnings) is significantly negatively correlated with true
earnings, and also it is significantly positively serially correlated.*°

As for the investment equation, which is of our central interest, we will demonstrate that
the Tobin’s marginal ¢ can be negatively correlated with measurement error and it can be
serially correlated. This is essentially because the empirically measured Tobin’s ¢ lacks crucial
but unobservable capital, such as human capital or goodwill of a firm. For more detailed
discussions, see Section 6. Observe that under such “non-classical” measurement error, all the
existing estimation methods mentioned above will become invalid.

In light of this problem, we propose a novel minimum distance (MD) estimator to estimate

!See the introduction of Erickson, Jiang and Whited (2014).

*For an overview of measurement error problem, see Fuller (1987), Aigner, Hsiao, Kapteyn and Wansbeek
(1984), Schennach (2016), and Wansbeek and Meijer (2000).

3Wilhelm (2015) considers nonparametric panel regression model with measurement error.

4Bound and Krueger (1991) call such negatively correlated measurement error as “mean reverting measurement
error”. See Duncan and Hill (1985), Bound, Brown, Duncan and Rodgers (1994), Pischke (1995), Bollinger (1998),
Black, Berger and Scott (2000), Kim and Solon (2005), Gottschalk and Huynh (2010) for further empirical
evidences of non-classical measurement error in earnings data. Also, O’Neill and Sweetman (2013) provide an
empirical evidence of non-classical measurement error in self-reported Body Mass Index (BMI) data.

SUnlike this article, there is also a body of literature that considers different non-classical measurement errors
in non-linear models that affect the true regressors in a non-additive or non-separable way; see Schennach (2016)
for a recent review. The proposed methods therein do not seem applicable to the problem considered in this article,
since they require that the mean of the distribution of measurement error conditional on the true regressors be
zero (e.g. Hu and Schennach (2008)) or require “validation data” (e.g. Sepanski and Carroll (1993)) comprising
an auxiliary sample containing data on both measured and true regressors to recover the distribution of the
measurement error.



panel regression models, which allows for consistent estimation with such non-classical measure-
ment error. Different from the existing approaches described above, our MD estimator is based
on covariance structure analysis (CSA).% In the CSA, the sample covariance matrix of dependent
and independent variables is fitted to a hypothetical covariance matrix derived from the model.
Notably, our estimator does not require instrumental variables and also allows for measurement
error and idiosyncratic error to be non-normal, serially correlated (in an autoregressive and
moving average (ARMA) specification), and heteroskedastic over time and cross-sections.” Fur-
thermore, as a by-product of our approach, we can test if the measurement error is correlated
with the true regressor. We analyze theoretical properties of the proposed MD estimator, but
as explained in Section 3, the theoretical contribution is not trivial, as an identification problem
arises and standard asymptotic results cannot be applied directly. To investigate the finite sam-
ple performance of the proposed method, Monte Carlo experiments are carried out. The results
show that the proposed MD estimator has satisfactory finite sample properties with respect to
bias, dispersion, and inferential accuracy.

We note that, since our approach requires to estimate a larger number of parameters than the
aforementioned approaches, the computational time could be long. This is primarily because,
along with regression coefficients, the variances and autocovariances of regressors for all periods
and covariances between regressors, measurement error and fixed effects for all periods need to be
estimated. To address this problem, we rewrite the objective function as a nonlinear least-squares
criterion, which enable us to employ the well-established Levenberg-Marqurat algorithm which
is very fast and efficient. For instance, in our experimental design with 7" = 8 and N = 1000,
the computational time is less than a second and all of the parameter estimates converge to true
values.

We apply the MD estimator to estimate an investment equation proposed by Fazzari, Hub-
bard and Petersen (1988) in which Tobin’s marginal ¢ and cash flow (or internal funds) appear
as regressors, using annual data for the United States manufacturing sector from 2002 to 2016
(unbalanced panel data ranging from 828 to 1269 firms over the years). It is found that there
is a structural break in the year of the financial crisis, 2008; thus, we split the sample into two
sub-sample periods, before and after the financial crisis, 2002-2007 and 2009-2016, respectively,
and also firms are split into large and small firms.

Our empirical results provide statistical evidence of non-classical measurement error in all
cases. Specifically, we have found a significant negative correlation between the measurement
error and the Tobin’s marginal ¢, whereas the consistently estimated coefficient on Tobin’s ¢ is
positive and highly significant. Furthermore, the measurement error and the idiosyncratic error
are serially correlated with an autoregressive (and moving average) structure.

In our estimation results, for large firms the coefficient on cash flow is positive and highly
significant for all the cases, which is in line with the pecking-order theory of Myers and Majluf

5The CSA has been used to estimate income processes in the econometrics literature(e.g. Abowd and Card,
1989), whilst Bollen and Brand (2010) suggest using the CSA to estimate panel regression models in behavioral
science literature.

"The approach based on the high-order moments or cumulants (e.g. Erickson and Whited (2000)) requires
symmetric distribution and classical measurement error. The second approach (e.g. Wansbeek (2001)) cannot
allow for serial correlation and time-series heteroskedasticity simultaneously. Moreover, the derivation of the
coefficient matrix of the linear structure of covariance is model- and case-specific, which can be a serious obstacle
in practice. In the third approach (e.g. Almeida, Campello and Galvao (2010)), the measurement error must be
serially uncorrelated, or only MA-type serial correlation is allowed.



(1984) and the results of Grullon, Hund and Weston (2018), among others.® Meanwhile, for
small firms, the coefficient on cash flow is not significant before the crisis, whereas it becomes
significantly positive after the crisis. Evidence given by Board of Governors of the Federal
Reserve System (2017), for example, shows that the credit condition for small businesses from
2009 to 2016 is significantly less accommodative than from 2002 to 2007, which may explain the
change in the cash flow sensitivity.

The rest of this paper is organized as follows. Section 2 introduces a model and assumptions,
and in Section 3, the moment conditions that will be used in the MD estimator and associated
identification problems are discussed. In Section 4, the MD estimator is formally introduced,
and several practical issues are also discussed. Section 5 conducts a Monte Carlo simulation to
investigate the finite sample behavior of the proposed method. Section 6 applies the proposed
method to estimate an investment equation to investigate the investment-cash flow sensitivity.
Finally, we conclude in Section 7.

Notation For a symmetric p X p matrix A, we define the duplication matrix I, such that
vec (A) = D, vech (A) where we also have vech (A) = Djf vec (A) and D} = (D;Dp)_l D},. For
a p X ¢ matrix B, we define the commutation matrix K, , such that vec (B’) = K,, 4 vec (B) and
vec (B) = Ky vec (B') where K, ,D, = D, and K/, | = K, 1 = K, hold. We also introduce two
new operators denoted by “vecb” and “vecd”. The definition of these two operators is provided
in online Appendix A. For a symmetric matrix, the upper-right element or block are sometimes
denoted as “x” to save space. Further, let 7% = T'(T" + 1)/2 and i, be the pth column of p x p
identity matrix I,; that is, i, is a p x 1 vector whose pth element is 1 and 0 otherwise. Dimension
of the vector space V such that a € V is denoted as dim(a).

2 Model and assumption

2.1 Model

We consider the following model
Yit :My,t‘kﬂﬁjt‘f"}’wzt‘f‘??z‘}‘@ta (Z: 177Nat: 1))T) (1)

where p,; and 7; denote time-specific and individual-specific effects, respectively, and (; is
an idiosyncratic error term. Time effect p,; is assumed to be non-random parameters to be
estimated. For ease of exposition, we assume that z7, and w;; are scalars. The case with multiple
z's and w's are discussed in online Appendix C. We assume that y;; and w;; are observed without
measurement errors whereas z, is not observed due to measurement error. Instead, we only

8The empirical evidence in the literature has suggested that the capital structure does matter in the market
with frictions and uncertainty. Indeed, after Fazzari, Hubbard and Petersen (1988) empirically showed that,
among financially constrained firms, investment positively responds to cash flow, numerous articles including
Stein (2003), Cummins, Hassett and Oliner (2006), Almeida and Campello (2007), Brown, Fazzari and Petersen
(2009), Almeida, Campello and Galvao (2010), Lewellen and Lewellen (2016), and Agca and Mozumdar (2017)
among many others, have confirmed such a positive association, whereas Erickson and Whited (2000) has found
cash flow insignificant.



observe x;; contaminated with measurement error €;; as follows:?

Tit = Ty + €jg. (2)
Using (1) and (2), the model to be estimated is given by

Yit = Myt T Bri +ywir + €, (3)
git = i+ Gt — Béi (4)

We assume that the idiosyncratic error (;; and the measurement error €;; are serially correlated
in ARMA(Ly AR, Ly nma) and ARMA(Ly AR, Lgaa) forms, respectively, such that

Gt = pyi1Git—1+ + Py Ly arCit—Lyar T Vit T Ay1Vit—1+ -+ Xy L, yaVit—Ly aras (5)

€it = Pri€it—1+ + Pr Ly ap€it—Lyar T it + Az 1€it—1+ 4+ Ag Ly yraCit—Loaa (6)

with Ci,f =0, (5 =0,..., —Ly,AR—f—l), Vi = 0, (6 =0,..., —L%MA—i-l), €0 = 0, (5 =0,..., —ngAR‘l‘
1) and e;¢p = 0,(¢{ =0,....,—Ly ama + 1). For later usage, let the total numbers of the ARMA
parameters for ¢;; and e be Ly = Ly ar + Ly pma and Ly = Ly ar + Lz a4, respectively.

2.2 Assumption

We make the following assumptions.

Assumption ERR. (i) v defined in (5) is independent over ¢ and ¢ and has E(v;y) = 0,
Var(vit) = oz, with 0 < 02, < oo and finite fourth-order moment.
(ii) The unobserved individual effect n; is independent over i and has E(n;) = 0 (by construc-
tion), Var(n;) = 03] with 0 < 03] < oo and finite fourth-order moment. Moreover, n; is
uncorrelated with vy, that is, Cov(vi, n;) = 0 for all 4, j and t.

Remark 1. Assumption ERR(i) allows time-series heteroskedasticity. Although it is possi-
ble to allow for cross-sectional heteroskedasticity such that 037 HN) = % Zf\i 1 Og,t,i’ we assume
cross-sectional homoskedasticity to simplify the notation. Cross-sectional heteroskedasticity is
considered in Monte Carlo section. Assumption ERR(ii) is a standard assumption in the litera-

ture.

Assumption ME. e;; defined in (6) is independent over i and ¢ and has E(e;) = 0, Var(e;it) =

Teet = Ugyt with 0 < Ug’t < 00, Cov(ey, eis) = 0 for t # s and finite fourth-order moment.'°

Remark 2. Assumption ME allows the serially correlated measurement error €; to be het-
eroskedastic over time.

The following assumption is on the unobserved true regressor, x;,.

Assumption X. (i) The true regressor z}, is strictly exogenous in the sense that Cov(z};, vis) =
0 for all s and t.

9The observed z;; can include fixed effects 7; such that z;; = 7; + 7, + ;. However, since 7; can be absorbed
into n;, we do not include the fixed effects in ;.
0o simplify the notation, we use e, and ag_yt interchangeably to denote the variance of e;:.



(ii) x} = (x}y,...,x}p) has the following form:

* JR—
X; = Mg + gz*,ia

where F (x}) = p,+« and £, ; is a random vector that is independent over i with E (&« ;) =
0, Var(€,-,;) = Var(xj) = Xyez+ = {04+2+ 15} and finite fourth-order moment.

(iii) The true regressor x7, is allowed to be correlated with n; such that Cov (z;,7:) = 0w
fort=1,...T.

(iv) The true regressor x}, is allowed to be contemporaneously correlated with e; such that
Cov(z},, eit) = og+ey for t = 1,...,T but uncorrelated intertemporally: Cov(z}, e;s) = 0
for t # s.

Remark 3. Assumption X(ii) states that the true regressor can be decomposed into determinis-
tic and stochastic parts and imposes no functional form. Assumption X(iii) allows z7, (hence z;
as well) to be correlated with unobserved individual effects n; in an unrestricted way; thereby,
our model has a flavor of the standard fixed-effects model. Thus, our setup may be considered a
correlated random effect model. Assumption X(iv) allows the non-classical measurement error
in the sense that the measurement error is allowed to be correlated with the true regressor.

Assumption W. (i) wy is strictly exogenous in the sense that Cov(wj, vis) = 0 for all s and
t.
(i1) w; = (w41, ..., w;r)" has the following form:

Wi = by, + £w,i7

where E (w;) = p,, and §,, ; is a random vector that is independent over i with £(§,, ;) = 0,
Var(w;) = Var(§, ;) = Zww with finite fourth-order moment.

(iii) wy is allowed to be correlated with n; such that Cov (ws, 7;) = oymy for t =1,...,T.

(iv) wy is uncorrelated with the measurement error ejs for all 4, j, s, t.

(v) The regressor w; is allowed to be correlated with x! such that Cov(w;,x}) = Xy =

{wa*,ts}-

Remark 4. Assumptions W(i)-(iii) for w; are basically the same as Assumptions X(i)-(iii)
for z7,. No functional form for w; is imposed and the possible correlation between w;; and
unobserved individual effects n; is allowed. By Assumptions W(iv) and (v), w;: is allowed to be
correlated with unobserved true regressor, but not allowed to be correlated with the measurement
error, which implies that Cov(w;,x;) = Cov(w;, x}).

2.3 Covariance structure of the model

The model (3) and (4) can be written in a vector form as follows:
Yi= My + J(Bl)xi + J,(yl)wi + &4, (7)

where y; = (i1, ..., yir)’, B, = (P15 oo fly1) s Xi = (@it ooy i) = X7 + €, € = (€1, ..., €1),

1 1 1 .
ei = mitr + ¢~ I e 1 = (1,1, ¢ = (Gity ooy Gir)', 3 = BIp and IV = 417, We use this
non-conventional notation so that we can consider a unified model that allows for a structural
break in Section 4.3.1.



Since the ARMA models for ¢; and €; defined in (5) and (6), respectively, can be written as
W, ARC; = Wy maVi, W, Ar€i = ¥y A€ (8)

where v; = (vi1, ..., vi7)’, € = (€31, ..., ei)’,

1 0
—pj,1 1
‘I"7AR = : E R ) (]:y7$)7
’ —PjLjar " TPl 1
L 0 —PjLijar " —Pi1 1]
- . 0
‘I,',MA = : K E ) j:ywra
’ NiLima " Al 1 ( )
| 0 NjLjaa 0 A1 1
we have the following expression for x; and &;:
x; = x; +¥,e, 9)
e = mur+ ¥~ IV e (10)
where ¥, and ¥, are defined as'!
i 1 0 e e 0]
P 1
-1 . . . .
lIlj = ‘I’j’AR‘I’j,MA = 1/}]-,2 ¢j71 . . : ) (] = y,l’). (11)
: 1 0
L Yir—1 - 2 Yin 1

Note that 1;, is a function of p’s and \’s, and when estimating the model, we estimate p’s and

A’s, not ¢’s. For instance, for AR(1) case with Lj ag = 1 and Ljpya = 0, then, ¢;, = Pj1-
Writing ¥ as in (11) is just to simplify the notation. Also, note that since ¥; includes only 7'—1

distinct elements, we need to assume that the lag order needs to satisfy 1 < L; <T—1,(j =y, z)

for identification of p’s and \’s.

Let us define Var(v;) = Xy, = diag(ail, vy aiT_l, aiT), Var(e;) = Xee = diag(o?, ..., UZT_l, JE,T)7

and Cov(x},e;) = Xy = diag(oge,1s .-, Oz*eT—1,0z*er). Then, the hypothetical covariance

matrix of the 3T x 1 observation vector z; = (y/,x}, w’)" derived for the model specification (7)

with (9), (10) and (11) under Assumptions ERR, ME, X and W is given by

Hy, (¢0) * *
H.. (po) = | Hey(vo) Haew (¥0) * (12)
Huyy (o) Huz (pg) Huw (o)

HSince W, ar and ¥; a4 are lower banded matrices, and the inverse matrix and a product of lower banded

matrices are also lower banded, ¥; also becomes a lower banded matrix.



Hy, (¢) = O‘%LTL,T +9,3,,¥, +3 (Toepty + LTU;*U) + B2, e

+7 (UW,L’T + LTO';Un) + By (Zwm* + ZZM*) + 72w (13)
Hoy(p) = 0wty + B¥eBawe + B30ar + Y8y, (14)
H.. (¢) Boar 4 (Do ¥l + WoXore) + ¥ ), (15)
Hyy (p) = a'wn"/T + B we + YBww, (16)
Hyo (p) = Zua, (17)
Hyw (‘P) = Xuw (18)

and ¢, denotes the true value of ¢ defined by ¢ = (¢}, h) where p; = (ﬁ,fy, ¢’)/, ©a

/ .
(05, Oy Oy Tler Ty Ol s Ol Ty, Thyy) With
/ / .
= (L) . Y = (P PiLyar Al s NiLiara) > (J =4, ),
((Ly+La)x1) (L;x1)
o o = vech (Xgz+), T ww =vech (), Ower = vec (Byg+), (19)
(T(T+1)/2x1) (T(T+1)/2x1) (T2x1)
Ogp = CO’U(X:, 7h) = (O-l“*n,lv ) Um*n,T),a Own = COU(Wh 771) = (an,la ceey an,T)/
(T'x1) (T'x1)
and
2 2y / 2 2/
Owy = (av’l, ...,O'v’T) , Ogre = (Ogrel, o, OgreT) , Oce = (ae’l, ...,0'67T) . (20)
(Tx1) (Tx1) (T'x1)

Note that ¢, includes the parameters associated with the “coefficient” of regressors and
latent variables, whereas ¢, includes the variances and covariances of latent variables. In the
following, we consider the identification, estimation, and inference of ¢.

3 Moment conditions and identification problem

This section considers the MD estimation of ¢. Let us denote the sample covariance matrix of
z; as Sy. Then, since E(Sy) = H..(¢,) holds, we have the following moment conditions:

Elsi —h..(¢0)] =0 (21)

where s; = (%) vech[(z; — 2)(z; — 2)'], Z2 = N~ 2 | 2; and h..(¢) = vech (H..(¢)).

Given model (7), without loss of generality we suppose that the number of moment condi-
tions, dim(s;) = 3T'(37 + 1)/2, is larger than the number of parameters to estimate, dim(¢p) =
3+ Ly + L, + 6T + 272, Tt can be easily shown that this order condition is equivalent to
T(BT —9) > 2(Ly + Ly + 3).

3.1 Identification problem

As is well known in the literature (Newey and McFadden (1994); Cameron and Trivedi (2005);
Hall (2005)), the rank condition that G(¢,) = dh..(¢y)/d¢’ has full column rank is essential
for the identification of the true parameter vector .

Unfortunately, even when the order condition is met, the rank condition is not satisfied
in the current model. As detailed in online Appendix B, the parameters of main interest,

10



p; = (B,7,7¢") as well as those of secondary interest ¢, excluding UaT,UZT’C"m*e,T,O'x*a:*,TT
can be identified using the moments {oyy s, Oyzts, Ozapst for 1 <t < T and 1 < s < T
except for t = s =T, where oyy 15, Oyzts and 044 15 denote the (¢, s) position of Var(y;) = Xy,
Cov(y;,x;) = Xy and Var(x;) = 3z,. The identification problem lies in the moment conditions
in the last period, t = T, given by

Oyy, TT — hyy,TT(‘P) = 012),T + ﬁzo-x*x*,TTa
OxyTT = hzy,TT(sO) = 5Ux*e,T + ﬁ%*m*,T% (22)
Oxx, TT = h:p:v,TT((P) = Ug,T + QUI*Q,T + Ogra* TT-

Treating [ as given (as it is identified with other moment conditions), there are four unknown
parameters, Ug’T, asz, Op*e, T, Oz TT- As can easily be seen, these four parameters cannot be
identified from the three moment conditions given in (22).

This identification problem is formally stated in the following proposition.

Proposition 1. Consider the model (7) with (9), (10) and (11). Suppose that Assumptions
ERR, ME, X and W hold and that the order condition, dim(s;) > dim(ey), is satisfied. Then,
G (pq) is rank deficient with rank(G (ypy)) = dim(e¢) — 1 because the rank of the Jacobian of
h,.(p) with respect to aiT, 0§7T, Opre, T, and Oy« 77 have rank three.

The proof is provided in online Appendix B.

3.2 Reparametrization

In order to resolve this problem, we propose estimating three parameters oy, 77,04y 77, and
oyy, 7T themselves as free parameters. This reparametrization seems to be preferable to imposing
one additional restriction to ¢, since such restrictions might be violated in practice.'? Even

though the four parameters, 0’12),T, O’E’T, Ogre,T, and 0g+g+ 77, Will not be identifiable with the

2 2 2

proposed reparameterization, we can still estimate 0y, 4,07, 0%+, fort =1,..., T —1, and ogx st

for s,t =1,...,T except for s =t =T, which provide sufficiently rich information in practice.

Then, after the reparametrization, the hypothetical covariance matrix of the observation
vector z; = (y},x;, w!) derived for the model specification (7) with (9), (10) and (11) under
Assumptions ERR, ME, X and W is given by

Hyy (90) * *
sz (90) = ny (90) H:m: (00) * (23)
Hwy (00) Hw:p (00) wa (00)
where
H, (0 = O‘%LTL,T + \Ilyilm,\Il; + B (O'I*TIL,T + LTO';*U) + 823 e
+7 (Cuntr + t100,) + BY (Buwer + Zip) + 7 Bww + oyyrrErT, (24)
ny (0) = Um*nL/T + Bq’xzx*e + ﬁzm*z* + ’Yziux* + ny,TTETT7 (25)
Hxa: (0) = zx*m* + (Sx*e‘I’; + ‘I’xzx*e) + ‘I’xzee‘I’; + Umc,TTETTa (26)
12Quch a restriction includes, say, (712;,T—1 = Ug,T, O'iT_l = aiT, Oz*e,T—1 = Og*e,T, OU Ogig* TT =

Og*g* T—1,T—1-
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H,, (0) = O'wnl,/T + BB e + Y 2w, (27)
Hy,, (0) = Xy, (28)
Hy, (0) = 3w (29)
with
S T 2 SP T 2
Yy =diag(oy 1,0y 7-1,0),  Xee = diag(oz 1, 02 7-1,0),
Spre = diag(ax*e,la <y OgxeT—1, 0)7
Ogxx* 11 T Og*g* 1,T—1 Og*x* 1T
Pyegr = 3 - : : : (30)
Og*g*T—1,1 *°° Og*g*xT—-1T—-1 Ogx*x*T-1,T
Og*x* T1 T Og*g* T, T—1 0

and Epp is a T' x T matrix whose (7,7T) position is one and zeros otherwise. 6 is the new
parameter vector to be estimated, which is defined by

IAVYAY
0 = ( 1:92) (31)
where
N/’
6 = (B,7.¢) =,
2 _x / */ *l ! / / / /
02 = (0-777 O s o.z*'qa O rxes Ocer O grgxs OyyTT, Oxy TT Oz, TT o-um? O wax*s o-wu))
with
* 2 2 / * / * 2 2 /
Ow = (Uu,la - Uv,T—l) ;o Opie = (Ozrels s Ogrer—1) Tee = (06,17 ""US,T—l)
(T—-1)x1) ((T-1)x1) (T—-1)x1)
and o7, includes distinctive T'(T + 1)/2 — 1 elements of 3,«,+. Remaining parameters, o+,

Own, Owz+ and Oy, are identical to those used in ¢ and defined in (19).

The difference between 8 and ¢ is that four parameters ag,T, aiT, Oy*e, Ty Ogrz* TT I (p are
now replaced with three parameters oy, 77, 02y, 77, Oz, 77 in 6. Furthermore, note that 61 = ;.
The number of parameters included in 0 is dim(0) = 2 + Ly, + L, + 6T + 277.

Using this reparametrization, we can show that G (6p) = 0h,.(6y)/90" is of full rank as
follows.

Theorem 1. Consider the model (7) with (9), (10) and (11). Let Assumptions ERR, ME, X,
W, hold. Then, G (0¢) is of full column rank.

The proof is provided in online Appendix B. Since G (6p) is shown to be full rank, we can
utilize the general results to derive the asymptotic property of the MD estimator.

4 Minimum distance estimator and practical issues

This section introduces the MD estimator based on the moment conditions

E[s; —h..(0p)]=0 (32)

12



where the parameter to be estimated is @ defined in (31), instead of ¢ defined in (21). The order
condition is satisfied when T'(57 — 9) > 2(L, + L, + 2). For instance, T' > 3 is sufficient for the
order condition when L, + L, <7 with 1 < L; <T —1,(j =y, ). Hereafter, it is assumed that
the order condition is satisfied.

In Section 4.1 below, we first define the MD estimator proposed in this paper, followed by
Section 4.2, which introduces two tests associated with the latent variables, specifically tests for
classical measurement error and for random effects. Section 4.3 discusses some practical issues,
such as treatment of missing values, the optimization algorithm and how to select starting values
for optimization.

4.1 The MD estimator

The MD estimator based on the moment condition (32) is defined as
Oup = argmin Qup(6),
Qup(0) = [sv—h.:(0)'Wn(0)[sx —h..(0)] (33)

where §y = vech(Sy) = N~} sz\il s; and Wy (6) is a positive-definite weighting matrix. For

the choice of weighting matrix W y(8), we consider the following weighting matrix'?

Wy (0)=®(0) = %]D); (H (0) @ H. (9)) D). (34)

zz

The corresponding MD estimators using (34) as weighting matrix in (33) will be called the
continuous-updating MD(CUMD) estimator and denoted as §CU M D since it is the MD estimator
analogue of the continuously update GMM due to Hansen, Heaton and Yaron (1996).

Since the infeasible optimal weighting matrix under multivariate normality of z; is given
by ®y = ® (0)), the CUMD estimator is asymptotically efficient when z; follows a multivariate
normal distribution. However, when z; is non-normal, the CUMD estimator is no longer efficient.
To achieve efficiency, we could consider the optimal MD(OMD) estimator that uses the weighting
matrix Woyp = Qﬁl where

N
Qy = N ;(SZ — gN)(Si — éN)/-

However, we do not consider this OMD estimator for the following reasons. First, the OMD
estimator is only computable when p(p+1)/2 < N since we need to compute QJ_\,I. Second, even
if the OMD estimator can be computed, it has (sometimes very) poor finite sample properties
despite its asymptotic optimality (see, e.g., Altonji and Segal (1996)). Third, with a large sample,
the degree of improvement of OMD over the CUMD is marginal even under nonnormality. For
these reasons, the OMD estimator is not attractive in practice; hence, we do not consider the
OMD estimator.

To derive the asymptotic distribution of the CUMD estimator, we make the following as-
sumptions(Browne, 1974; Chamberlain, 1984; Yuan and Bentler, 2007).

'® Another choices for Wy () would be &n = 1D, (Sy' ® Sy') D, or @(6) where 6 is a preliminary estimate

of 6. Although the three MD estimators using ®(0), ®n, and ®(0) have the same asymptotic distribution, a
preliminary Monte Carlo simulation result revealed that the MD estimator using ®(0) performed best. Hence,

we do not consider the MD estimator using ®x and ®(0) as weighting matrices.
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Assumption MD. (i) All elements of H..(0) and partial derivatives of the first three orders
with respect to the elements of 8 are continuous and bounded in a neighborhood of 8 = .
(ii) The p(p 4+ 1)/2 x ¢ matrix Gy = G(60)) where

oh,.(0)
G(6) = 00
is of full column rank.
(iii) @y is identified; that is, H,.(61) = H,.(6) implies 61 = 0.
(iv) H,,(6y) is positive definite.
(v) The following central limit theorem holds:

(35)

N
\/1N ;(si ~h..(60)) -5 N(0, Q).

Assumption MD (i) is a technical assumption. The rank condition (ii) is already established
in Theorem 1. (iii) is the global identification condition which is often assumed to hold and (iv)
is the standard assumption. (v) will hold under Assumptions ERR, ME, X and W.

The asymptotic property of the CUMD estimator is given by the following theorem.

Theorem 2. Let Assumptions ERR, ME, X, W and MD hold. Then, the CUMD estimator is
consistent as N — oo with T fized:

Ocunp 2 0.

The asymptotic distribution of the CUMD estimator is given by
VN <§CUMD - 90) -4 N (0, Scump),

where

(G6<I>0Go)71 G P PGy (G()‘I'()Gg)f1 when z; is non-normally distributed

Ycump = . , o
(G P0Go) when z; is normally distributed

This result is due to, for example, Browne (1974) and Chamberlain (1984). This implies
that the CUMD estimator is consistent and has an asymptotically normal distribution.

4.2 Tests associated with latent variables

Since our approach estimates the variances and covariances of latent variables, we can conduct
several tests as a by-product of the estimation procedure. Specifically, we consider two tests.
The first is a test of whether the measurement errors are correlated with the true regressors.
The second is whether the true regressors are correlated with the individual effects.

4.2.1 Test for classical measurement error

Testing whether measurement error is correlated with true regressor or not is of great interest in
practice since it has been a common practice to assume that measurement error is not correlated
with true regressor; that is, assuming classical measurement error without verifying it. However,
as demonstrated by Bound and Krueger (1991), there is empirical evidence that measurement
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error is correlated with true regressor; that is, non-classical measurement error. Despite the
importance of a test for classical measurement error, to the best of our knowledge, such a test
has not been well considered in the literature. Fortunately, since our approach estimates the
covariance Cov(x},, e;t) for each ¢, which is identical to the covariance between true regressor
and measurement error, Cov(z};, €it) = 0z+ct, we can provide a straightforward way to test if
Oz+et = 0 or not.

Specifically, we can conduct (i) an individual ¢-test for the hypothesis Hy : 03+ = 0 for each
t, (ii) the Wald test for the joint hypothesis Hy : 04+ 1 = -+ = 0g+c7—1 = 0. Since these tests
can be implemented within the estimation procedure to obtain 8 and -, no further computations

are necessary.

4.2.2 Test for uncorrelatedness between true regressor and individual effects

In the standard panel regression models, it is a common practice to test if individual effects are
correlated with regressors (i.e. ‘random effects’) by the Hausman test. Our method provides
an alternative way to test such a hypothesis. Since we estimate Cov(x},,7;) = 04+y, for each t,
we can conduct a test if o,+,; = 0 or not. As in the above test, we can conduct (i) individual
t test for the hypothesis Hy : 04+, = 0 for each ¢, (ii) the Wald test for the joint hypothesis
Hy : 04ep1 = -+ = oz = 0. Note that this test also does not require additional computation,
and hence it is easy to implement.

4.3 Discussion on some practical aspects

This section considers some issues that may arise when applying the proposed method and offers
measures to address them.

4.3.1 Structural break

In Section 2, the coefficients § and v are assumed to be constant over time. However, in some
empirical applications, the constancy assumption of 8 and v might be dubious. For instance,
if the bankruptcy of Lehman Brothers is included in the estimation period, it is likely that
there is a structural break around 2008, and the coefficients would be different before and after
the collapse. Indeed, this is the case as demonstrated in Section 6. In the current framework,
allowing for a structural break for 5 and v is not difficult. For illustration, let us consider the
case where a structural break occurs once in the period ¢t = Tj.'* In such a case, the model is
given by

Yir = My,t+/8[1}x:t+7[1]wit+77i+@t, t=1,..., T
Z py e + BAzE + A Pwy + i+ Gy t=Tp+1,...,T

where U] and 4! denote the coefficient of jth regime.
Let us define T = T;,, T2 = T — T, and

7@ _ el ety 0 3@ _ MLy 0
B 0 I} [2] L2 ’ K 0 7[2} L2 .

14 Allowing for multiple structural breaks is straightforward. The breakpoint can be estimated by BIC due to
Andrews and Lu (2001).
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Then, the model can be written as (7) where J g) and J 9) are replaced with J (52) and J (72), respec-

tively. Testing for a structural break can be implemented by the Wald test for the hypothesis
Hy : gl = g1 and A0 =~

4.3.2 Missing values

In practice, the panel data typically contain missing values. Even in such a case, the proposed
MD estimator can be modified straightforwardly. Perhaps, the easiest approach to obtain an
empirical covariance matrix is to use the so-called listwise deletion (LD) method or pairwise
deletion(PD) method.'® In the LD method, complete data that include no missing data are
constructed by removing all the units that involve at least one missing value. A drawback of
the LD method is that it could result in large information loss caused by substantial sample size
reduction. As opposed to the LD method, the PD method tries to use more data to compute
the covariance matrix. Whereas the PD method is routinely used in empirical analysis, for
example, Blundell, Pistaferri and Preston (2008) and Hryshko (2012), a drawback is that it is
an ad hoc method, and there is no statistical ground. Therefore, this paper uses the two-stage
procedure proposed by Yuan and Bentler (2000) since it is more efficient than the LD method
and has a statistical ground. Namely, in the first stage, we use the maximum likelihood (ML)
estimator to obtain a consistent estimate of unstructured covariance matrix from unbalanced
panel data, which is denoted as Sy.16 Then, in the second stage, we estimate the model exactly
in the same way except for replacing Sy with Sy = vech(Sy) in (33). However, we need to use
an alternative expression to compute the standard errors to account for the effect of first-stage
estimation (Yuan and Bentler, 2000; Hayakawa, 2022).

4.3.3 Optimization algorithm

A challenging issue of our approach is that the number of parameters to be estimated becomes
large as T' and /or the number of variables increases. Therefore, how to reduce the computational
time is an important issue. In several optimization algorithms, the first and second derivatives
are usually required for optimization. Although it is not challenging to derive the first derivative,
it is not the case for the second derivative, though not impossible.!” If analytical first and second
derivatives are not provided, we need to rely on numerical derivatives, which can be quite time-
consuming, especially when the number of parameters is large. One way to avoid numerical
differentiation is to regard the optimization problem as a non-linear least-squares problem (NLS
problem) and use an algorithm that does not require the second derivative.
To introduce NLS problem, let us rewrite the objective function (33) as follows:

Qup(0) = |A(0)(5y —h.(0))]* = [[r(0)]> =D _r3(6)
j=1

5For a brief explanation of LD and PD methods, see Cameron and Trivedi (2005, Section 27.3.1).

168y is computed using the expectation-maximization(EM) algorithm due to Dempster, Laird and Rubin
(1977). The details of the computation and asymptotic properties of Sy are provided in Hayakawa (2022).
Furthermore, note that Sy =S N, i.e., the ML estimator coicides with the sample covariance matrix, when there
are no missing values(Abadir and Magnus, 2005, pp.387-388).

1"We may derive the second derivative of the objective function along the lines of Neudecker and Satorra
(1991). However, since its form is slightly complicated and could be slower than the proposed nonlinear least-
squares minimization, we do not consider approaches that require first and second derivatives.
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where p = 3T, Wx(0) = A(6)'A(8), A(0) = (A1(8), ... X,2(0)) and £(0) = (r1(8), ...,r,2(8))’
with 7;(8) = Xj(0)'(sy — h.,(0)) for j = 1,...,p%. Contrary to the minimization problem
(33), there are algorithms that make use of the structure of NLS problem. One of these is the
Levenberg-Marqurt algorithm, in which only the Jacobian matrix of r(€) with respect to 0 is
used and the second derivative is not used. The explicit form of the Jacobian matrix of r(0) with
respect to @ is provided in online Appendix F. Indeed, from the preliminary simulation exercise,
we confirmed that using NLS optimization routine with the analytical Jacobian is substantially
faster than other algorithms that require both the first and second derivatives, not to mention
those requiring numerical derivatives.

4.3.4 Starting values for optimization

Since the number of parameters is large, the choice of starting value is an important issue in
practice. If all the elements of 8 are generated randomly, it is likely that the resultant estimate
could be local minima. If one wants to reduce the possibility of local minima, we need to try as
many starting values we like, but it in turn makes the computational time longer. To address
this issue, we explicitly make use of a relationship between the coefficient vector 8, = (B Yy w/)/
and the variance and covariance vector 3. Actually, when the weighting matrix W (0) in (33)
does not depend on the unknown parameter, we have the following relationship:

0; = [A(61)R, , WNR,, ,,A(0))] " A(6:)R, , Wysy =b(6:), (36)

P1,p2 P1,P2

where R, ,, and A (61) are defined in (S.1) and (S.80), respectively, and the derivation of (36)
is provided in online Appendix D.

Since 05 is a function of 84, if we have a starting value for the coefficient vector 81, denoted
as 051" we can obtain the starting value for 3 based on (36). Hence, in practice, we only need

start
01

to consider a set of randomly chosen and select the solution that yields the lowest value

of objective function. Such a strategy for choosing the starting values is often employed in the
literature, for example, see Bonhomme and Manresa (2015).

4.4 Estimation procedure

Based on the discussion in Sections 4.1 to 4.3, the detailed computation procedure is described
in this subsection. Suppose that the model is given by

Yit = [yt + Bx +ywie + G

k
Tit = Tyt €t

where (;; and €;; follow ARMA(Ly aAr,Lyaa) and ARMA (L, Ar,Lz 114) processes, respectively.

Estimation proceeds with the following steps.

Step 1 Determine if we allow for a structural break in 5 and - or not. If we allow it, provide
the break point Tj,.

Step 2 Specify the lag orders (Ly agr, Ly,ma) and (Ly ar, Lz ma), and verify that the order
condition 3T (3T + 1)/2 > dim(0) is satisfied.
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Step 3 Set the starting value for 61; that is, 5, v, and ARMA coefficients of (;; and €. This

is denoted as 95",

Step 4 Given 05" compute the starting value of 8 with (36) and obtain 859" = (951" g5t
as described in Section 4.3.4.

Step 5 Obtain /O\CU MmD by solving the following problem:
/éCUMD - argénin[éN - hzz<0)]/@ (9) [gN - hzz<0)]a
1 _ _

by using the Levenberg-Marqurt Algorithm with analytical derivatives provided in online

estm‘t

Appendices E and F and the starting value . When missing values are included in

the data, replace S with Sy as described in Section 4.3.2.

Step 6 Compute the standard errors of 5CUM p based on Theorem 1 and related test statistics
such as Wald test statistic for testing classical measurement error (and for no structural
break when a structural break is assumed).

Remark 5. Matlab code implementing this procedure is available, currently from the authors
on request. Users of this code only need to make the appropriate selections in Steps 1, 2 and 3,
and Step 4 onwards will be executed automatically.

Remark 6. To avoid local minima, it is advisable to try different starting values for 85" in
Step 3 and, after repeating Steps 3, 4 and 5, select the one with the smallest objective function
value.

Remark 7. Lag orders and the breaking point T can be determined with information crite-
rion, say, BIC, proposed by Andrews and Lu (2001) by iterating the above procedure over the
candidate lag values and breakpoint.

5 Monte Carlo simulation

This section conducts a Monte Carlo simulation to investigate the finite sample properties of
the CUMD estimator. Since none of the existing methods are valid under the experimental
designs with non-classical measurement error, we only investigate the finite sample behavior of
the CUMD estimator.'®

5.1 Data generating process

We consider the following data generating process:

(Design 1) Yit = Myt + BTy + ywi + 0 + Gt (37)

18We also investigate the performance of our CUMD estimator as well as the cumulant estimator due to Erickson,

Jiang and Whited (2014) using the simulation design of Erickson, Jiang and Whited (2014), where parameter
values are calibrated to the real dataset. The results, reported in online Appendix G, confirm that the CUMD
estimator performs as well as the cumulant estimator overall in the absence of non-classical measurement error.

19The finite sample performance of the CUMD estimator with two mismeasured regressors is investigated. The
associated results are reported in online Appendix G, which are very similar to those with one mismeasured
regressor shown in Tables 1 and 2.
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*
Ty = Mgt + TaMi + K€ty

Wit = WeeMazit + WwwMw,it T Twi-

We assume that the error term (;; follows AR(1) process:
Git = Py,1Git—1 + Vig, (t=1,..1T)

where v;; is independent over i and ¢ with E(vy) = 0 and Var (vy) = O‘iit, aﬁ,it = Ty,
G ~ U(0.5,1.5), and 7 = 0.5+ (t —1)/(T — 1) so that T! ZtT:l 7. = 1. Without loss of
generality, we set u,; = 0. Suppose that among the regressors, we cannot observe xj;,, but can
observe z; contaminated with measurement error €;: x; = x}, + €; where serially correlated

measurement error €; is generated according to ARMA(1,1):
€it = Pr,1€it—1 T €it + Az1€it-1, (t=1,..,7)

with €0 = ejo = 0. e is independent over i and t with E(e;;) = 0 and Var(e;) = 2. Although
time series homoskedasticity is assumed for e;; for simplicity in this DGP, we estimate them as
if they are heteroskedastic. Note that this specification allows the case where the true values zJ,
and the measurement error €;; are correlated, which is controlled by k.

We assume that m;;; is generated as

Mjit = GjMyie—1 + 150, (E=1,...T;j=xw)
with m;j ;o = 0 and 74 ~ iid(0, 072,7].), (j = z,w). For simplicity, we assume o7, = 07, = 07.
For parameter values, we set (8,7) = (1,0.5). Other parameters are set as p,1 = 0.8,

(P21, A2,1) = (0.4,0.2), ¢z = 0.8, ¢y, = 0.4, 75 = 7y = 0.3, Ky = {0,0.3,0.6,0.9}, wyz = /1/5,
Www = \/m The remaining parameter values are determined in terms of signal-to-noise ratio
(SNR) whose definition is provided in online Appendix G. The formula used to determine the
values of 072,, o2, and 021 are also provided in online Appendix G. SN R is set at 5.

For the sample size, we consider 7" = {5,10,15} and N = {250, 500, 1000, 1500} and the
number of replications is 1,000. Significance level is set at 5%.

We generate data according to (37), using the covariance matrix derived from the model,
rather than directly generating the data using (37). In this way, controlling the multivariate
kurtosis is much easier, which is important because it plays an important role in CSA as a
measure of non-normality. Specifically, if we let H..;, (p X p) be the hypothetical covariance
matrix of z; under the current DGP, the data are generated as

z;=H"%¢,,  (i=1,..,N)

22,1

where ¢, is a p x 1 random vector which determines the distributional property of z; and the
explicit form of H,,; is provided in online Appendix G. We consider two distributions for z;:
normal distribution and chi-square distribution. Specifically, according to Yuan and Bentler
(1997) and Yanagihara (2007), we generate ¢; as follows:

C; ~ ¢iA'r;
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where A is a k x p matrix with rank (A) = p and A’A = I,, and r; = (741, ..., 1) with:
(Normal distribution) r;; ~4idN (0,1), ¢;=1 A =1, (k4 =0)
(x? distribution) rij ~ (zij —4) /V8, Tij ~ X1 bi = 1/6/x3

L, I\ —1/2 45p*  p(p+2)
A:[L; Iy 1) ’<H4:p+1+ >

where 14 denotes the multivariate kurtosis due to Mardia (1970).

In the experiment, both cases with and without missing values in the data are considered.
To generate data with missing values, we calibrate the firm investment data used in Section
6. Specifically, we obtain the missing pattern of investment variable from 2002 to 2016 with
the units that have more than or equal to three periods and apply it to each variable. Table 1
provides the missing rate for each (7, N). The missing rate is mainly related to T'; as T' grows,
the missing rate also grows. This seems natural since attrition tends to happen as time goes by.

5.2 Results

Estimation and inference Simulation results are provided in Table 1. This table reports the
mean (Mean), the standard deviation (SD), the root mean squared error (RMSE), and empirical
size (in %) with 5% significance level of the CUMD estimator for § and ~ for the case of the
chi-square distribution with x, = 0.3.2°

The results show that the CUMD estimator has little bias and reasonably small dispersion
for all configurations. Regarding inference, the empirical sizes are close to 5% in most cases. A
few exceptions can be found in the unbalanced panel with (7', N) = (15,250). In this case, the
dimension of 8 is relatively large compared to the sample size. However, as N gets larger, the
empirical sizes get close to 5% in all cases. These results suggest that the CUMD estimator has
desirable finite sample properties for estimating and inference about £ and ~.

Next, we investigate the performance of the remaining parameters. The result is provided
in Table 2. To save space, we only report the result with T'= 10 and N = 500 and k, = 0.3 for

unbalanced panel.?!

Specifically, we report the results excluding 67+ «, Oy Oy Which are not
of interest in general. As can be seen from Table 2, the parameters are estimated with sufficient

precision, and the empirical sizes of the associated t-tests are close enough to the nominal level.

Test for classical measurement error As noted in Section 4, one of the advantages of
our approach is that we can test whether measurement error is correlated with true regressor;
that is, measurement error is classical or non-classical. Table 3 summarizes the size and power
of the Wald test for the hypothesis Hy : o7

xT*e

= 0 against Hy : o)., # 0 where o)., =
(Oz*e1ys s 0zrer—1)" and those of the ¢ test for the hypothesis Hy : oz« = 0 against Hy :
oz+et # 0 for each t = 1,...,T — 1 for the case of T = {5,10} with unbalanced panel data.
Note that the case with k, = 0 corresponds to the size and the case with x, = {0.3,0.6,0.9}
corresponds to the power.??

The table shows that the Wald test has correct empirical size when NV is sufficiently large

(N > 250). On the other hand, the size of the ¢ test is correct for all the configurations including

20Simulation results with other values of k. are provided in the online supplement.
21The results of other configurations are qualitatively similar.
22Note that size-unadjusted powers are reported.
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N = 250. The power of the Wald test and t-tests quickly rises as N and/or k, increases, as
expected.

Test for no structural break As demonstrated in Section 4.3, it is easy to allow for a
structural break in g and . To investigate the performance of the CUMD estimator in such a
model and the size and power property of the Wald test for a structural break, we consider the
following DGP:

pge + BMzs + yWwy + 0+ Go, t=1,...Tp
it =
py s + Bt + ABwi i+ G, t=Ty+1,..,T.

We set T, as the integer part of T'/2. For parameter values of the first period ¢ = 1, ..., T}, we set
sl = (B 41y = (1.00,0.50). For the parameter value of the second period, t = T} + 1, ..., T,
we set 612 = 6 + A x 15 with A = {0.00,0.05,0.10}. Note that the case with A = 0.00
corresponds to the case with no structural break. We set «, = 0.3.

The simulation results of the Wald test for the structural break are provided in Table 4.%3
The table shows that the empirical size is close to the nominal level and the power increases as
N and/or T and/or A increase(s), as expected.

6 Empirical analysis of investment equations

This section specifies and estimates an investment equation by applying the proposed MD es-
timator. Section 6.1 reviews the derivation of a statistical investment equation with Tobin’s ¢,
then Section 6.2 explains that the Tobin’s marginal ¢ can be negatively correlated with measure-
ment error. Note that our new estimation method provides valid estimation and inference under
such a correlation, but the existing GMM and IV estimators employed by, say, Erickson and
Whited (2000), Almeida et al. (2010), Lewellen and Lewellen (2016), and Agca and Mozumdar
(2017), among others, will be inconsistent. Section 6.3 reviews the discussion in the literature
on investment sensitivity to cash flow, and the empirical model of the investment equation with
Tobin’s ¢ and cash flow is introduced in Section 6.4. The annual data for the United States man-
ufacturing sector from 2002 to 2016 (unbalanced panel data ranging from 828 to 1269 firms over
the years) are described in Section 6.5 and the estimation results are presented and discussed
in Section 6.6.

6.1 Investment equation

Let us consider an environment where firm managers choose investment each period to maximize
the expected present value of the stream of future profits. The value of firm ¢ at time ¢ is given
by

oo J
Va=E|>_ (H bi,t+s> (I (Kt Gierg) — O Lty Kty Virg) — Ligg | Qe | (38)

7=0 \s=1

238ince the performance of estimator for 8 and v are qualitatively similar to the case without a structural break
(Table 1), we do not report them.
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where E (-|Q2;;) denotes a conditional expectation given Q;;, where Q;; denotes the information
set of the manager of firm ¢ at time ¢. b;; denotes the firm’s discount factor at time ¢t. K is the
beginning-of-period capital stock and I; denotes investment. II(Kj;,&;) is the profit function
with OII/OK > 0 and & is an exogenous shock to the profit function. ¢ (I;;, K, ;1) denotes the
investment adjustment cost function, which is increasing in [;;, decreasing in K;;, and convex in
both arguments. vy is an exogenous shock to the adjustment cost function. Note that &;; and
vt are observed by the manager but unobserved by the econometrician at time ¢. We assume
that the relative price of capital is normalized to unity.

The firm maximizes equation (38) subject to the following capital stock accounting identity:

Kigr1=(1—d;) Ky + Iy (39)

where d; denotes the constant rate of capital depreciation for firm 7. Let ¢}, be the Lagrange
multiplier on the constraint (39). The first-order condition for maximizing the value of the firm
in (38) subject to (39) is given by

L4 apr (Lie, Kigy vig) = Qi (40)

where

o0 J
G=E> <H bi,t+s> (1= o)’ ™ {Tk (Kot €as) — Ui (Tiings Kigags Vi)Y Qar | - (41)

j=1 \s=1

To empirically test the ¢ theory by a linear regression model, we need to specify a functional
form for the adjustment cost function whose partial derivative with respect to I;; is linear in
It/ K and v, and also need to find a proxy for the unobservable ¢};. Regarding the first issue,
a commonly used function that satisfies the functional form requirement is given by

12
Y (Lig, Kit, vig) = (a1, + a1 + aguie) Iis + a3 KZt + K f (vir) (42)

it

where az > 0 is assumed to ensure concavity of the value function and f(-) is an arbitrary
function. Differentiating (42) with respect to I;; and substituting the result into (40) yields the
following linear regression model

Yit = pe + By + i + Gt (43)
where yir = Lit/Kit, i = —a1,i/ (2a3), pp = — (L 4+ a1¢) /2a3, f =1/ (2a3) and (;x = — (az/2a3) vit.

(43) is the basic regression model we want to investigate. However, unfortunately, this model
is not estimable since ¢}, is not observed. Hence, we need to find an observable proxy for ¢,
which induces measurement error. The following section considers the source of measurement
error in detail following Erickson and Whited (2000).

6.2 Source of non-classical measurement error

This subsection illustrates that the marginal g can be negatively correlated with measurement

error and that measurement error can be serially correlated.

22



Erickson and Whited (2000) defines four kinds of ¢ to investigate the measurement error in
detail. Specifically, they consider four ¢’s: marginal, average, Tobin’s, and measured ¢’s. The
marginal ¢, denoted as ¢}, is defined in (41). ¢}, denotes the firm manager’s expectation of
the marginal contribution of new capital goods to future profit, which is usually unobservable.
The average ¢ is defined as g = Vit/ Ky where Vi is the manager’s subjective valuation of the
capital stock given by (38). The Tobin’s ¢ is defined as

i _ Dit + Sit = Nip — Hi :L;
u K; K;

where D;; is the market value of debt, S;; is the market value of equity, N;; is the replacement
value of inventories, K;; is the replacement value of the capital stock and H;; denotes unobserved
value of non—physical assets such as human capital and goodwill. Finally, the (observable)
measured ¢ is defined as

Dy + Sit — Nip V;

qit = K, K, (44)
Note that ¢;; can be decomposed as follows
Git = Gy + (Gt — ) + (q}t - Qz‘t) + (Qit - q;rt) = g + (€10t + €200 + €301) = @y + €at
where
ot _ -7(‘/;1_‘/“) _ 7(‘2_‘/;)71%
€10t = Qit — Qi €20t = @y — Qit = Ky, €t = it = G = - Ki  Ki

This indicates that there are three components in the measurement error €;;.

The first one, €; j, is the difference between marginal and average ¢g. Hayashi (1982) demon-
strates that if constant returns to scale and perfect competition are assumed, g;; will be equal
to ¢j;; that is, €14 = 0. However, if these assumptions are violated, marginal ¢ will deviate
from average gq. The second one, €2, is the difference between the average and Tobin’s q. As
Blanchard, Rhee and Summers (1993) argues, there are possibly three reasons why average and
Tobin’s ¢ may differ. First, firm managers may have more information than the market. Second,
even if managers and the market have the same information, the market valuation may include
a speculative bubble. Prices might be high (low) relative to fundamentals simply because they
are expected to increase (decrease). Third, the market may be subject to fads, making the
market valuation deviate from fundamentals for a long period. In these cases, Tobin’s ¢ will
deviate from average ¢; that is, €34 # 0. The third one, €3 is the difference between Tobin’s
and measured q. This term appears if H;; is not observable. Thus, the measurement error €;;
includes several components for diverse reasons.

Furthermore, from this discussion, it is considered that the measurement error is serially
correlated because the asymmetry of information between managers and the market might con-
tinue for some periods and because deviations of market expectations from fundamental value
might persist.

Moreover, the marginal ¢;; is likely to be correlated with the measurement error €;; that
is, non-classical measurement error. First, consider a situation that a firm’s manager get an
information that marginal benefit ¢j, will increase, but it is unknown to the market. Then, the
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manager’s subjective valuation Vj; will be larger than market’s evaluation VZL that is, Vi >

T
Vits
Cov (q};,€2it) < 0. Next, even if measurement errors €;;; and €3+ are absent; that is, €; 5+ =

e =0, ¢, = qgt is considered to be correlated with e3 ;. Specifically, conditional on K;; and

and this implies that ez ;; < 0. Thus, in this case, ¢}; and ez ;; are negatively correlated:

assuming no correlation between (D;; + Sy — Nji) and Hy, we have

Thus, even if measurement errors € ;; and e ;; are absent, negative correlation between ¢}, and
€3,i¢ arises due to unobserved variable Hj;.

6.3 Cash flow sensitivity

The results by Modigliani and Miller (1958) imply that in a perfect capital market, firms’ capital
structure (i.e., the combination of debt and equity financing) is irrelevant to their investment
decisions. For a similar reason, the regressors other than ¢ should be insignificant in the in-
vestment regression because the ¢ theory suggests that marginal ¢ is a sufficient statistic for
investment. However, the empirical evidence in the literature has suggested that the capital
structure does matter in the market with frictions and uncertainty. Particularly, the pecking-
order theory of Myers and Majluf (1984) explains that the information asymmetries between
the corporate managers and the external investors result in a particular preference order for
financing investment: internal funds (i.e., “cash flow”), then debt by borrowing from banks
and other financial intermediaries or by issuing securities such as bonds, and finally issuance of
equity; see, for example, Brealey, Myers, Allen and Krishnan (2020).

Indeed, after Fazzari, Hubbard and Petersen (1988) empirically show that, among financially
constrained firms, investment positively responds to cash flow, numerous articles including Stein
(2003), Cummins, Hassett and Oliner (2006), Almeida and Campello (2007), Brown, Fazzari and
Petersen (2009), Almeida, Campello and Galvao (2010), Lewellen and Lewellen (2016), and Agca
and Mozumdar (2017) among many others, have confirmed such a positive association, whereas
Erickson and Whited (2000) has found cash flow insignificant. We will make a contribution to
this literature by using a newly proposed method.

6.4 Empirical model
We estimate the following investment equation:

inviy = py + Bqy + vefie +mi + G

where invy = (Iiy/Kiy), cfii = (CFy/Ky), and I;; denotes investment, K;; denotes capital
stock, ¢}, denotes marginal ¢, C'Fj; denotes cash flow, p; and 7; denotes time- and firm-specific
effects and (;; denotes an idiosyncratic error term. This type of model is studied in the above
cited studies. Unfortunately, since the marginal ¢, ¢, is unobserved, we alternatively use the
observable measured ¢, g;;, where both are related as

Qit = Qi + €t
where ¢;; denotes the measurement error. Using this, the estimable model can be written as

vy = Wy + Bair + yefit + it
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where e = n; + (§it — Beir). Note that this model is a special case of (3) with (yit, T, wit) =
(invit, qit, cfir). Furthermore, as in Section 2, we allow for ARMA type serial correlation for (;
and €

6.5 United States manufacturing firm-level data

The dataset is obtained from Compustat. To calculate the variables, we mainly follow Er-
ickson and Whited (2000) and Erickson, Jiang and Whited (2014). Investment is Compus-
tat item CAPX and deflated by the gross beginning-of-period capital stock, PPEGT. Tobin’s
q is obtained from (DLTT+DLC+PRCC_F«xCSHO—AC)/PPEGT. Cash flow is obtained as
(IB+DP)/PPEGT.

We consider the manufacturing firms with SICs 2000-3999 from 2002 to 2016. We eliminate
firms for which the value of the capital stock in 2002 is less than $5 million, those displaying
real asset or sales growth exceeding 100%, and the number of observed years is less than three.
Descriptive statistics of invy, g, and cfi from 2002 to 2016 are given in Table 5. The average
investment is stable and approximately 0.08-0.11. We also find several outliers in ¢; and cfj,
and this causes a gap between the mean and median.

Since the dataset is unbalanced, we need to use the two-stage procedure outlined in Section
4.3. Specifically, we typically use the EM algorithm to obtain the empirical covariance matrix S N
in the first stage as the counterpart of the sample covariance matrix Sy for the balanced panel.
However, since measured ¢ and cash flow include several outliers as described above, instead of
the EM algorithm, we use the expectation-robust(ER) algorithm proposed by Yuan and Zhang
(2012) and Yuan, Chan and Tian (2016) which is robust to outliers. When using the ER
algorithm, we need to select the tuning parameter, w, which determines how many observations
will be down-weighted to mitigate the effect of outliers. We tried w = {0.10,0.15,0.20}. However,
since the results are qualitatively similar, we mainly report the results with w = 0.15. Other
results are provided in Table 8. We use the one with minimum BIC for the choice of lag orders
of idiosyncratic and measurement errors.

6.6 Estimation results

We consider three estimation periods: 2002-2016, 2002-2007, and 2009-2016. Since it is suspi-
cious that a structural break occurred during the Lehman collapse, we first estimate the entire
period from 2002 to 2016, allowing for a structural break in 5 and ~. By applying the Andrews
and Lu (2001) procedure to detect the breakpoint based on BIC, we find that a structural break
occurred between 2007 and 2008. Indeed, the Wald test for no structural break discussed in
Section 4.3.1 is rejected with a 5% significance level (p-value is 0.023). Moreover, from Figures
1, 2, and 3 which depict the sample and estimated variances and covariances of inv;, ¢;;, and
cfit, we find that the sample variance of ¢ at year 2008 is much smaller and that of cfj is
extremely larger compared with those of 2007 and 2009. Since including the year 2008 could
bias the estimation results, we estimate 2002-2007 and 2009-2016 separately. The estimation
results are provided in Tables 6 and 7.%4

24 Average computation time per one starting value is 0.27 seconds for 2002-2007, 0.45 seconds for 2009-2016,
and 6.1 seconds for 2002-2016 on desktop PC with Intel Xeon Gold 6230 processor(2.1GHz) and 64GB RAM.
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From the tables, we find an evidence of serially correlated measurement error and idiosyn-
cratic error. Regarding the fit of the model, although the goodness-of-fit test is rejected for both
periods, Figures 1, 2, and 3 show reasonably good fit of the model.?®

Let us consider the results for § and . We find that 3, the coefficient of ¢}, is strongly
significant for both periods. However, regarding -, the coefficient of cash flow, we find that
whereas it is not significant at the 5% level for 2002-2007, it becomes significant for 2009-2016,
and the estimate of the latter period is increased compared with the former period. The result
that cash flow is not significant before 2007 is in line with Chen and Chen (2012) who shows
that investment-cash flow sensitivity has declined and disappeared before 2009.

To investigate this result in more detail, we divide the firms into small and large firms
according to the time-series average of total assets. Since the largest 33% of firms possess
95% of total assets over all firms, the largest 33% of firms are categorized as large firms, and
the remaining firms are categorized as small firms. The results for each firm size with w =
{0.10,0.15,0.20} are provided in Table 8. The table shows that the results are similar for
different values of w, which indicates the robustness to w. Hence, we focus on the case with
w = 0.15. From the estimation results, we find that, for the case of small firms, the cash flow is
not significant for 2002-2007 but becomes significant for 2009-2016, whereas, for the large firms,
the cash flow is significant in both periods. One possible reason behind this is as follows. Large
firms tend to bear relatively small financial constraints for investment, and the pecking-order
theory for a desirable capital structure for firms in a specific industry is well applied. This implies
that their investment decision will likely be sensitive to the preferred financing source, internal
funding, or cash flow here. The result that cash flow is an important factor for investment for
large firms in both periods is consistent with Grullon et al. (2018). Note that the value of the
estimate of v is 0.0174 from 2002 to 2007 and falls to 0.0114 from 2009 to 2016, a decrease of
34.5%. This fall in the cash flow sensitivity of large firms can be attributed to relatively cheap
external financing, as seen in the surge in financing through corporate bond issuance after the
financial crisis, as explained next. Figure 4 shows the amount of new corporate bonds issued by
U.S. firms in non-financial and financial industries. The issued amount by the financial industry
almost doubled between 2002 and 2007, which sharply fell in 2008 by more than half, whereas the
issued amount by non-financial industry (including manufacturing) was stable during the same
period and fell by a small amount in 2008. After the crisis, largely due to the zero-interest-rate
policy, the average high-return and triple B bond yields from 2009 to 2016 are significantly lower
than those from 2002 to 2007 (see Figure 2B and D in Board of Governors of the Federal Reserve
System (2017)), and the bond issued by non-financial firms has increased rapidly. Therefore, in
2009-2016, the cost of external financing for large firms was lower than in 2002-2007 on average,
which may have contributed to lower cash flow sensitivity.

Small firms depend more on financial intermediaries such as commercial banks for external
funding, and the issuance of corporate bonds or commercial papers is not an important source
of credit. Even though there is no comprehensive data that measure the financing activities of
small businesses, there is circumstantial but strong evidence suggesting that the credit condition
for small business from 2009-2016 is significantly less accommodative than in 2002-2007, as ex-
plained next; see another evidence in Board of Governors of the Federal Reserve System (2017,

25Note that goodness-of-fit test is often rejected in empirical studies using covariance structure analysis. For
instance, Ashenfelter and Card (1985), Dickens (2000), Hyslop (2001), Baker and Solon (2003), and Kalwij and
Alessie (2007) report a result that goodness-of-fit test is rejected.
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p.8-10). Figure 5 shows the plot of the monthly credit condition of small manufacturing firms,
which is based on the survey of the National Federal of Independent Business (NFIB)members. 20
Specifically, the monthly credit condition is defined as the proportion of respondents who said
their borrowing needs were satisfied in the past three months, subtracting the proportion of
respondents who said their borrowing needs were satisfied in the past three months respondents
who said their borrowing needs were not satisfied. As can be seen from the figure, the average
credit condition during 2002-2007 (34.6%) is substantially higher than the average credit condi-
tion during 2009-2016 (25.6%). This may suggest that the investment decisions of small firms
were insensitive to cash flows during the period of reasonable credit conditions in 2002-2007,
whereas they became more sensitive under the severe financial constraints after the financial
crisis.

Subsequently, let us consider the remaining parameters. Regarding estimation results asso-
ciated with individual effects n;, the significance of Var(n;) supports the presence of individual
effects. Regarding Cov(z},,n;), we find that it is significant for most periods of 2002-2007, but
not the case from 2009 to 2016.27 A similar pattern is also observed in Cov(w;, ;). Note that
the result that Cov(z},,n;) and Cov(ws,n;) for t = 2009, ...,2016 are not significant does not
agree with the results of Wald test reported. This may be due to the covariance matrix structure
used to construct the Wald test statistic.

We now consider Cov(q};, €ir). The t-test results show that ¢}, and €; are negatively sig-
nificantly correlated in most years for both periods, whilst the Wald tests do not reject the
null of classical measurement error. This is probably due to the large positive serial correlation

of (¢}, — E(q},))eir. Table 9 provides the variance decomposition of g;;. As the values of the

2
qt

that Var(git) is estimated precisely. The correlation coefficient between ¢}, and the measure-

sample variance of ¢;; (denoted as s; ) and @"(Qﬁ) are very close, it is reasonable to assume
ment error €; is calculated using this result, the 12-year average is -0.49, indicating a fairly
strong negative correlation. Disentangling the source of negative correlation is not trivial since
there are several components in the measurement error. However, as discussed above, informa-
tion asymmetries between the manager and the market, as well as the unavailability of data
on human capital and goodwill, could very well cause such a negative correlation. From the
above, we conclude that there is strong evidence of non-classical measurement error and that it
is important to control for it in the estimation of investment equations using Tobin’s q.

Table 9 provides the variance decomposition of ¢;; = ¢, + €;;. As the values of the sample
variance of gy (denoted as s7,) and @“(qit) are very close, it is reasonable to assume that
Var(git) is estimated precisely. Because of relatively strong negative correlation between ¢}, and
€it, the variance of observed g, ‘7(1\7'(%), is much smaller than that of unobserved ¢j,. This
decomposition visualizes the importance of controlling for non-classical measurement error in
Tobin’s q.

Finally, we compare the CUMD estimator with the OLS, fixed effects (FE), and cumulant
estimators of (Erickson, Jiang and Whited, 2014).2® Two variants of cumulant estimators, using
the third-cumulants of levels variables and Within-Group (WG) transformed variables, are con-

26http://www.nfib-sbet.org/indicators
2"The Wald test does not reject the null of Cov(q},n:) = 0 for all ¢ for the period of 2002-2007. This is likely

due to the large positive serial correlation of (¢j; — E(gqj;))n;.
2870 deal with outliers of qi+ and cf;;, the largest 2% observations of each variable are removed.
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sidered.?” The results are reported in Table 10, which shows that the CUMD and four estimators
are very different in terms of the magnitude of estimates and statistical significance. Based on
the evidence of fixed effects and measurement errors in Tables 6 and 7, it is reasonable to expect
that the OLS and FE estimators are biased and unreliable. The cumulant estimator is also
expected to be biased and unreliable, based on the evidence of non-classical measurement error
in the same table. It can therefore be concluded that the CUMD estimation results would be
the most reliable.

7 Conclusion

This paper proposed a minimum distance estimator to estimate panel regression models with
measurement error. The model considered is more general than those examined in the literature
in that measurement error can be non-classical in the sense that it is allowed to be correlated
with true regressor and serially correlated measurement error and idiosyncratic error are allowed.
Since our approach estimates the variances and covariances of latent variables in addition to the
main parameter of interest; that is, the coefficient of regressors, as a by-product of estimation,
we can directly test, for instance, whether measurement error is correlated with true regressor,
which is not possible in the existing methods. Monte Carlo simulation is conducted to investigate
the finite sample behavior of the proposed method and confirm that it has desirable performance.
Finally, we have applied our estimator to an investment equation and have obtained evidence to
support that (i) there is a structural break between 2007 and 2008, (ii) marginal ¢ is strongly
significant, (iii) cash flow is not significant before 2007, but becomes significant after 2009 in-
dicating an increased investment-cash flow sensitivity, (iv) measurement error and idiosyncratic
error are serially correlated, (v) measurement error is significantly negatively correlated with
the marginal ¢, i.e., non-classical.

Although we have focused on the Tobin’s ¢ as the mis-measured regressor, there are numerous
empirical models in which the regressor is mis-measured and measurement error is considered
non-classical, including the labor supply model in which earnings are subject to non-classical
measurement error as evidenced in Bound and Krueger (1991). The proposed MD estimation
method can be applied to such models and provides consistent estimators and asymptotically
valid inference.

Finally, we briefly discuss some possible extensions from a theoretical perspective. First, in
the model considered in this paper, the true regressors are assumed to be strictly exogenous.
However, in some cases, the true regressor becomes endogenous due to simultaneity or the pres-
ence of a common component that affects the regressor and error term. In these cases, the
proposed method cannot be directly applicable and extensions will be required. Second, ex-
tending the model subject to non-classical measurement errors to a dynamic model by including
a lagged dependent variable seems important. Third, although this study has considered the
conventional time-invariant fixed effects, it is important to extend it to time-varying fixed effects
or interactive fixed effects along the lines of Ahn, Lee and Schmidt (2013). We are currently
working on these extensions, which will be available soon.

29The cumulant estimators with fourth and fifth orders are also computed, which are reported in online Ap-
pendix H.
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Table 1: Simulation results for Design I (k, = 0.3)
Balanced panel
B=1 v=20.5
T N miss rate Mean SD RMSE  Size Mean SD RMSE  Size
5 250 0 1.034 0.141 0.145 7.9 0.486 0.064 0.066 6.2
5 500 0 1.019 0.116 0.118 6.9 0.494  0.049 0.049 5.4
5 1000 0 1.018 0.094 0.096 6.5 0.493 0.040 0.041 5.2
5 1500 0 1.015 0.088  0.089 6.1 0.494 0.036  0.037 5.7
10 250 0 1.016  0.068 0.069 5.6 0.493 0.034 0.035 6.2
10 500 0 1.016 0.061  0.063 6.2 0.493 0.029 0.029 5.3
10 1000 0 1.009 0.049 0.050 5.4 0.497 0.022  0.023 5.4
10 1500 0 1.006 0.044 0.044 6.4 0.498  0.020 0.020 7.2
15 250 0 1.010 0.043 0.044 4.9 0.496 0.025 0.025 4.4
15 500 0 1.009 0.043 0.044 5.7 0.498 0.021  0.021 5.6
15 1000 0 1.008 0.034 0.035 4.9 0.497 0.016 0.016 3.9
15 1500 0 1.004 0.030 0.030 5.1 0.499 0.014 0.014 5.0
Unbalanced panel
B=1 v=0.5
T N miss rate Mean SD RMSE  Size Mean SD RMSE  Size
5 250 0.04 1.030 0.131 0.134 6.5 0.488 0.060 0.061 5.4
5 500 0.05 1.024 0.123 0.125 6.7 0.490 0.055 0.056 6.2
5 1000 0.05 1.017 0.100 0.101 6.4 0.493 0.040 0.041 4.9
5 1500 0.09 1.015 0.092 0.094 6.7 0.494 0.038 0.038 5.6
10 250 0.14 1.019 0.071 0.073 4.0 0.493 0.036 0.037 3.6
10 500 0.14 1.017 0.064 0.066 5.7 0.494 0.030 0.031 5.6
10 1000 0.15 1.009 0.055 0.055 6.0 0.497 0.025 0.025 5.8
10 1500 0.19 1.009 0.046 0.047 4.1 0.497  0.021 0.022 4.9
15 250 0.23 1.011  0.038 0.039 0.4 0.496 0.024 0.024 0.3
15 500 0.22 1.009 0.043 0.044 2.9 0.496 0.023  0.023 34
15 1000 0.23 1.009 0.040 0.041 5.8 0.496  0.020 0.020 6.4
15 1500 0.26 1.008 0.035 0.036 4.1 0.497 0.016 0.017 5.5
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Table 2: Detailed simulation results for Design I (7" = 10, N = 500, k, = 0.3)

unbalanced panel data

Parameter True Mean SD RMSE  Size Parameter True Mean SD RMSE  Size
B 1.00 1.017 0.064 0.066 5.7 Oz*el 0.45 0.455 0.281 0.281 7.8
¥ 0.50 0.494 0.030 0.031 5.6 Oz*e,2 0.45 0.447 0.190 0.190 5.5
Py,1 0.80 0.802 0.049 0.049 8.6 Oz*e,3 0.45 0.455 0.203  0.203 5.2
Pz 0.40 0.395 0.079 0.079 8.0 Oz*ed 0.45 0.445 0.214 0.214 6.5
Az,1 0.20 0.200 0.069  0.068 9.2 Oz e5 0.45 0.446 0.244 0.244 7.7
0,27 1.01  0.995 0.321 0.322 3.0 Oz*e,6 0.45 0.441 0.265 0.265 7.9
012,71 0.50 0.481 0.538 0.538 6.2 Oz eT 0.45 0.444 0.277 0.277 7.3
03,2 0.61 0.590 0.269 0.269 7.4 Oz*e,8 0.45 0.449 0.303 0.302 7.6
012,,3 0.72 0.696 0.274  0.275 8.5 Oz*e,9 0.45 0.455 0.338 0.338 7.4
012,74 0.83 0.800 0.287  0.289 7.8 Own,1 0.30 0.301 0.147 0.147 4.6
03,5 0.94 0.895 0.322 0.326 11.6 Own,2 0.30 0.305 0.173 0.173 6.3
012,,6 1.06 1.011 0.340 0.343 8.9 Own,3 0.30 0.294 0.178 0.178 4.7
012,77 1.17  1.120 0.356  0.359 9.3 Own,4 0.30 0.292 0.189 0.189 6.3
03,8 1.28 1.241 0.388  0.389 9.4 Own,5 0.30 0.285 0.182 0.183 4.7
03,9 1.39 1.349 0.425 0.426 9.0 Own,6 0.30 0.286 0.196 0.197 5.5
Oa*n,1 0.30 0.306 0.242 0.242 5.2 Own,7 0.30 0.282 0.204 0.205 6.9
Ox*n,2 0.30 0.303 0.270  0.270 5.7 Own,8 0.30 0.290 0.203  0.204 4.8
Oz*n,3 0.30 0.297 0.280  0.280 5.1 Own,9 0.30 0.285 0.205  0.206 5.0
Oa*n,4 0.30 0.289 0.288  0.288 6.1 Own,10 0.30 0.287 0.209 0.210 4.5
Ox*n,5 0.30 0.286 0.292  0.292 5.6 03,1 1.49 1.531 0.413 0.415 6.1
Oz*n,6 0.30 0.284 0.304 0.304 6.2 02,2 1.49 1.509 0.327 0.327 6.4
Oa*n,7 0.30 0.291 0.314 0.314 5.5 0373 1.49 1510 0.349 0.350 7.3
Ox*n,8 0.30 0.294 0.325 0.325 6.2 03,4 1.49 1.514 0.364 0.364 7.6
Oz*n,9 0.30 0.293 0.322 0.322 5.3 0275 1.49 1.525 0.387 0.389 7.6
Oz*n,10 0.30 0.284 0.323 0.323 5.3 0376 1.49 1512 0.395 0.396 7.3

03,7 1.49 1.521 0.415 0.416 7.6

olg 1.49 1495 0435 0.434 7.3

ol 1.49 1.514 0.462  0.462 5.8
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Table 3:

Size and power of ¢ and Wald tests for classical measurement error for Design I

unbalanced panel data

Wald test t test for Ho : o+ = 0,(t =1,2,...,T — 1)

T N ke o 1 2 3 4 5 6 7 8 9

5 250 0 8.2 6.9 6.4 7.1 6.8

5 250 0.3 41.2 17.7 31.6 25.2 16.5

5 250 0.6 90.9 38.1 73.3 65.8 49.6

5 250 0.9 99.7 60.0 95.4 90.5 78.0

5 500 0 5.5 6.0 5.5 5.0 5.6

5 500 0.3 61.6 24.0 46.8 35.0 26.8

5 500 0.6 99.7 55.8 93.5 89.0 76.5

5 500 0.9 99.9 77.4 99.4 98.7 96.4

5 1000 0 4.3 5.6 4.6 4.5 4.7

5 1000 0.3 87.3 33.1 71.5 60.6 43.5

5 1000 0.6 100.0 75.6 99.7 98.3 96.1

5 1000 0.9 100.0 95.8 100.0 99.7 99.6

5 1500 0 4.0 5.0 5.0 7.0 5.0

5 1500 0.3 97.4 42.1 87.5 72.9 57.3

5 1500 0.6 100.0 86.1 99.9 99.9 98.9

5 1500 0.9 100.0 97.9 100.0 100.0 99.9

10 250 0 9.5 6.4 8.7 7.4 6.5 7.9 6.5 7.0 6.1 5.9
10 250 0.3 72.2 25.5 44.9 40.8 34.3 32.6 26.9 24.3 23.6 17.2
10 250 0.6 97.4 59.3 86.6 81.8 79.0 73.8 68.7 60.2 55.0 45.0
10 250 0.9 99.2 82.3 94.1 93.3 91.7 88.8 87.6 86.0 78.2 70.7
10 500 0 7.9 6.6 5.9 5.9 6.3 7.3 6.1 8.0 5.0 7.1
10 500 0.3 97.6 46.1 72.3 66.1 60.4 54.7 48.9 45.8 40.1 35.3
10 500 0.6 99.9 90.1 99.4 98.9 97.7 96.0 94.3 89.4 86.4 80.0
10 500 0.9 100.0 99.1 99.9 99.8 99.8 99.7 99.8 99.6 98.8 97.4
10 1000 0 7.3 5.9 5.9 6.7 5.4 6.1 5.5 5.4 6.7 6.6
10 1000 0.3 100.0 65.9 91.7 86.9 82.5 77.3 71.6 66.5 63.5 51.0
10 1000 0.6 100.0 98.8 100.0 100.0 100.0 99.6 99.1 99.6 99.0 97.1
10 1000 0.9 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.7
10 1500 0 5.6 6.6 5.0 6.3 5.6 5.3 6.2 6.8 6.3 5.7
10 1500 0.3 99.9 79.2 97.8 95.6 92.0 89.6 86.5 78.9 75.8 68.7
10 1500 0.6 100.0 99.8 100.0 100.0 100.0 100.0 100.0 99.7 99.8 99.6
10 1500 0.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: Kz = 0 corresponds to the size and x; = 0.3,0.6,0.9 correspond to the power.

Table 4: Size and power of Wald test for no structural break

balanced panel data

unbalanced panel data

A= A=

T N 0.00 0.05 0.10 0.00 0.05 0.10

10 250 7.3 419 94.2 3.7 28.0 81.7
10 500 5.3 68.0 99.4 5.9 60.9 99.3
10 1000 4.0 94.0 100.0 4.6 86.7 100.0
10 1500 6.1 984 100.0 6.0 96.6 100.0
15 250 6.0 54.7 98.0 0.1 5.7 46.8
15 500 6.5 82.1 100.0 3.7 57.6 95.0
15 1000 5.9 98.0 100.0 5.8 93.5 99.7
15 1500 4.6 99.8 100.0 4.7 98.4 99.9

Note: A = 0 correspond to the size and A = 0.05,0.10

correspond to the power.
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Table 5: Descriptive statistic

mu

year obs. mean median S.D. min Q1 Q3 max skew. kurt.

2002 1216 0.091 0.069 0.08 0.000 0.042 0.114 0.639 2.42 8.61
2003 1230  0.082 0.066 0.07 0.001  0.038 0.102 0.574 2.43 8.97
2004 1269  0.091 0.069 0.07 0.001 0.044 0.113 0.591 2.41 8.33
2005 1217 0.099 0.077 0.08 0.001 0.049 0.121 0.626 2.32 7.92
2006 1169  0.109 0.084 0.09 0.004  0.053 0.133 0.787 2.86 12.23
2007 1093  0.111 0.085 0.10 0.001  0.057 0.128 0.941 3.08 14.35
2008 1048 0.109 0.084 0.09 0.000 0.055 0.135 0.657 2.54 8.84
2009 1013  0.079 0.062 0.07 0.000  0.036 0.097 0.646 2.64 10.56
2010 977  0.089 0.066 0.09 0.000  0.042 0.106 1.137 4.49 36.00
2011 954 0.099 0.078 0.09 0.000 0.051 0.123 0.829 3.45 18.58
2012 935  0.100 0.081 0.08 0.001  0.050 0.121 0.852 3.18 17.59
2013 925  0.098 0.077  0.08 0.000  0.052 0.120 0.696 2.59 10.51
2014 942 0.098 0.078 0.08 0.000 0.053 0.120 0.889 3.14 16.40
2015 876  0.091 0.074 0.08 0.000  0.048 0.108 0.695 3.26 16.79
2016 828  0.081 0.069 0.06 0.000  0.045 0.100 0.576 2.44 10.47

q

year obs. mean median S.D. min Q1 Q3 max skew. kurt.

2002 1208  2.520 0.965 5.36 -4.201  0.322 2.646 67.159 5.84  49.48
2003 1222 4.039 1.568 8.02 -2.034 0.655 4.054 124.276 6.72 69.27
2004 1262  4.225 1.753 7.73 -5.152  0.730 4.523 81.775 4.80 30.99
2005 1210 5.126 1.845 13.68 -3.747 0.711 4.504 249.166 9.36 122.07
2006 1161 5.137 2.044 11.40 -3.052 0.855 4.912 158.969 6.81 63.15
2007 1087  5.115 1.925 14.21 -3.487  0.655 4.575 282.949 10.54 160.33
2008 1042 1.687 0.688 6.29 -96.974 0.039 2.112 97.052 1.51  125.47
2009 1006  2.976 1.326 8.01 -84.986  0.434 3.228 145.895 6.23 125.43
2010 974 4.117 1.531 2248 -74.110 0.564 3.747 658.362 25.51 734.67
2011 950 2.877 1.134 6.96 -34.801 0.281 3.146 89.783 6.48 67.32
2012 930  3.243 1.405 8.14  -79.685 0.351 3.768 91.250 3.38 53.47
2013 920  4.660 2.112 9.75 -65.400  0.723 4.935 114.605 4.91 48.70
2014 938 4.840 2.053 12.52 -152.243 0.785 5.195 129.196 1.80 59.38
2015 874  4.252 2.012 9.68  -99.630 0.622 4.855 109.426 1.85 45.93
2016 828  4.611 2.451 8.05 -39.571  0.838 5.383 90.219 4.43 35.03

cf

year obs. mean median S.D. min Q1 Q3 max skew. kurt.

2002 1214  0.035 0.133 0.88 -12.435 0.045 0.254 3.072  -6.88 72.77
2003 1230 0.118 0.139 0.59 -6.853 0.055 0.272 3.216 -4.43 46.29
2004 1269  0.152 0.169 0.73 -8.045 0.080 0.304 6.381 -3.33 43.90
2005 1217  0.210 0.182 1.17  -14.078 0.079 0.336 23.344 6.38 175.93
2006 1170  0.161 0.184 1.10  -20.371  0.087 0.340 9.093  -7.61 136.92
2007 1094  0.068 0.181 1.72 -32.663  0.083 0.339 13.761 -10.42 175.77
2008 1048 -0.069 0.150 1.58  -23.884 -0.015 0.323 14.971 -5.98 80.05
2009 1012 0.033 0.118 1.15 -23.112 0.013 0.273 3.551 -11.08 183.59
2010 977  0.168 0.189 3.17  -62.242 0.089 0.344  68.996 2.32  377.71
2011 955  0.222 0.197  0.88 -7.593  0.088 0.365 11.881 1.61 66.17
2012 935  0.170 0.165 1.28 -8.369  0.071 0.328 28.667  10.83 266.44
2013 925  0.093 0.164 1.09  -18.088  0.068 0.332 5717  -7.91 110.45
2014 942 0.021 0.157 3.10 -21.704 0.066  0.320 82.784 19.14  539.48
2015 876 -0.219 0.163 294  -53.193 0.049 0.310 3.509 -12.39 186.17
2016 828 -0.086 0.162 1.70  -33.187  0.051 0.303 2.987 -11.10 182.93
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Table 6: Estimation result of investment equation for 2002-2007

parameter coef. s.e. parameter coef. s.e.

B8 0.0071*** (0.0012) Cov(x5002, €2002) -1.1211 (1.1411)
5 -0.0031 (0.0036) Cov(z5003, €2003) -2.1538"" (0.9852)
Py.1 0.5185™** (0.0446) Cov(xgom, €2004) -2.4675"" (1.0977)
Pai1 1.1725"** (0.0908) Cov(x5005, €2005) -1.5566" (0.8922)
Azi 1 -0.9017***  (0.1447) Cov(z5006, €2006) -1.7159* (0.9161)
Ay 2 -0.0716™" (0.0322)

Var(n) 0.0003"** (0.0001) Cov(wao02,7M) 0.0009***  (0.0002)
Var(v2002) 0.0012*** (0.0001) Cov(wa003,M) 0.0009"**  (0.0002)
Var(v2003) 0.0005"** (0.0001) Cov(wa2004,M) 0.0007***  (0.0002)
Var(v2004) 0.0005**)k (00001) C’O’U(wzoo57 7]) 0.0006*** (O 0002)
Var(v200s) 0.0005*** (0.0001) Cov(wa006,M) 0.0006™**  (0.0002)
Var(’l)zooa) 0.0006™** (0,0001) CO'U(’LUQOO?, 77) 0.0004** (0 0002)
Cov(x3002,7) 0.0020 (0.0032) VCLT(@Q()()Q) 0.8838 (1.2400)
Cov(x3003,M) 0.0073* (0.0039) Var(e2003) 3.5232"**  (1.0586)
Cov(x5004, 1) 0.0076" (0.0039) Var(ez004) 3.2780"**  (1.1276)
Cov(x5005,M) 0.0092** (0.0039) Var(e200s) 2.4509™* (0.9570)
Cov(x5006,M) 0.0092** (0.0041) Var(e2006) 2.4130™* (0.9692)
Cov(z5097,1) 0.0099** (0.0044)

Note: *** ** and * indicate statistical significance at the 1, 5, and 10 percent levels, respectively.

Wald test (p-value)

Ho : Cov(q},mi) =0 9.66 (0.140)
Hyp : Cov(cfi,m) =0 40.23 (0.000)
Ho : Cov(q;,e;) =0 5.90 (0.316)
Goodness-of-fit test [d.f.] (p-value) 276.25 [57] (0.000)
BIC -137.07
Observations 7578

(Ly, AR, Ly,ma) (1,0)

(Le, ARy La,na) (1,2)
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Table 7: Estimation result of investment equation for 2009-2016

parameter coef. s.e. parameter coef. s.e.
B 0.0069***  (0.0010) Cov(xho09, €2009)  -1.2598 (0.9447)
5 0.0060**  (0.0027) Cov(xho10, €2010)  -2.8565"*  (1.2774)
Py,1 0.6080™** (00305) CO’U(IE;OU_, 62011) -2.0911* (09142)
Pzl 0.8854™*  (0.0642) Cov(z3o1a, €2012) -2.2119"*  (0.9637)
Aoyt -0.6081***  (0.0832) Cov(xho1s, €2013)  -3.1143**  (1.2870)
Cov(z3014, €2014) -1.6978"*  (0.7673)
Var(n) 0.0003"** (0.0001) Cov(x5015, €2015) -1.2871** (0.6097)
Va’l“(’l)zoog) 0.0010**)k (00001)
Va?“(vz()lo) 0.0006*** (00001) COU(wzoog, 77) 0.0001 (00002)
Var(v2011) 0.0006™** (0.0001) COU(w2010, 77) 0.0002 (0.0002)
Va’l“(’l)2012) 0.0006*** (00001) COU(U}QQH, ?7) -0.0001 (00002)
V(IT(”L)2013) 0.0005*** (00001) COU(wQ()lQ, 77) -0.0001 (00002)
Var(v2014) 0.0005*** (0.0001) COU(’U)2013, 77) -0.0002 (0.0002)
Va’l“(’l)2015) 0.0004*** (00001) COU(U}QQM, ?7) -0.0003 (00002)
Cov(wso15,7) -0.0005* (0.0002)
Cov(x5009,7) -0.0007 (0.0032) Cov(wao16,M) -0.0006™**  (0.0002)
Cov(x5010,7) -0.0005 (0.0033)
Cov(z3011,7) -0.0023 (0.0031) Var(ezo00) 1.3006 (1.1388)
Cov(x3012,7) -0.0039 (0.0033) Var(e2o10) 3.8735"  (1.3649)
Cov(z3013,7m) -0.0061 (0.0040) Var(eo11) 2.7897***  (0.9820)
Cov(z3014,7) -0.0074* (0.0041) Var(ezo12) 2.7068"**  (1.0087)
Cov(x5015,7) -0.0086™  (0.0042) Var(e2013) 3.8545™  (1.3279)
Cov(z3016,7M) -0.0121***  (0.0044) Var(ezo14) 2.5342°**  (0.8375)
Var(eso1s) 2.0252°**  (0.6449)

Note: *** ** and * indicate statistical significance at the 1, 5, and 10 percent levels, respectively.

Wald test (p-value)

Hy : Cov(q;,n:) =0
Hop : Cov(cfs,m) =0
Hp : Cov(q;,e;) =0

28.
32.

24 (0.000)
24 (0.000)

7.46 (0.382)

Goodness-of-fit test [d.f.] (p-value)

238.83 [119] (0.000)

BIC -613.12
Observations 8528
(Ly, AR, Ly,ma) (1,0)
(LIE,AR7LZE,MA) (17 1)
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Table 8: Estimation results with different firm size and values for w
Result for g

w=0.10 w=0.15 w=0.20
2002-2007
firm coef. s.e. coef. s.e. coef. s.e.
all 0.0074***  (0.0012) 0.0070***  (0.0012) 0.0060*** (0.0012)
small  0.0042***  (0.0014) 0.0045***  (0.0015) 0.0045*** (0.0015)
large  0.0063***  (0.0015) 0.0066™**  (0.0016) 0.0067*** (0.0016)
2009-2016
firm coef. s.e. coef. s.e. coef. s.e.
all  0.0068***  (0.0010) 0.0069"**  (0.0010) 0.0069"**  (0.0010)
small  0.0053"**  (0.0016) 0.0054"**  (0.0010) 0.0055*** (0.0010)
large  0.0038***  (0.0011) 0.0039***  (0.0011) 0.0039*** (0.0011)

Result for ~

w=10.10 w=0.15 w =0.20
2002-2007
firm coef. s.e. coef. s.e. coef. s.e.
all -0.0044 (0.0036) -0.0031 (0.0036) 0.0001 (0.0037)
small -0.0036 (0.0039) -0.0032 (0.0040) -0.0028 (0.0041)
large  0.0165** (0.0066) 0.0174** (0.0068) 0.0178* (0.0070)
2009-2016
firm coef. s.e. coef. s.e. coef. s.e.
all 0.0057** (0.0027) 0.0060™* (0.0027) 0.0066™ (0.0028)
small  0.0087*" (0.0035) 0.0088"**  (0.0032) 0.0086*** (0.0032)
large  0.0108** (0.0045) 0.0114** (0.0046) 0.0119*** (0.0046)

Note: w is a tuning parameter that determins how much observations will be downweighted
to mitigate the effect of outlier.

wex **and * indicate statistical significance at the 1, 5, and 10 percent levels, respectively.

Table 9: Variance decomposition for g;; = ¢, + €

year 52, Var(gu) Var(q:) Var(ew) Cov(qh,esn)
2002 2.844 2.842 4.201 0.884 -1.121
2003 4.769 4.701 5.421 3.588 -2.154
2004 4.660 4.626 5.972 3.590 -2.468
2005 4.357 4.335 4.471 2.978 -1.557
2006 3.852 3.842 4.089 3.185 -1.716
2009 3.736 3.735 4.954 1.301 -1.260
2010 4.350 4.377 6.117 3.973 -2.857
2011 3.726 3.775 4.791 3.166 -2.091
2012 4.036 4.082 5.290 3.216 -2.212
2013  5.920 5.921 7.688 4.462 -3.114
2014 6.193 6.131 6.220 3.307 -1.698
2015  6.209 6.169 5.918 2.826 -1.287

Note: 5(2“ denotes the sample variance of g;;.

_ ——
Var and Cov denote estimated variances and covariance.
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Table 10: Estimation results of investment equation by OLS, FE and cumulant estimators

2002-2007
All firms Small firms Large firms
B v B ¥ B ¥
OLS estimator
coef. 0.0032***  0.0029*** 0.0021***  0.0022™** 0.0049"**  0.0039
s.e. (0.0001) (0.0008) (0.0001) (0.0009) (0.0002) (0.0027)
Fixed effects estimator
coef. 0.0004**  -0.0008 0.0001 -0.0001 0.0010"*  -0.0022
s.e. (0.0002)  (0.0023) (0.0002)  (0.0022) (0.0005)  (0.0045)
third-order cumulant estimator (level)
coef. 0.0066***  -0.0056"" 0.0045"** 0.0012 0.0064"** 0.0077
s.e. (0.0005) (0.0023) (0.0004) (0.0022) (0.0008) (0.0067)

Sargan test (p-value)

10.69 (0.0984) 24.34 (0.0005)

16.31 (0.0121)

third-order cumulant estimator (WG)

coef.
s.e.
Sargan test (p-value)

0.0034* 0.0007
(0.0019)  (0.0041)
0.81 (0.9917)

0.0035*  0.0040
(0.0020)  (0.0042)
4.64 (0.5909)

0.0058***  0.0151**
(0.0017)  (0.0072)
21.40 (0.0016)

2009-2016
All firms Small firms Large firms
B Y B ¥ B ¥
OLS estimator
coef. 0.0013***  -0.0015*** 0.0012***  -0.0014*** 0.0006"* 0.0300"**
s.e. (0.0001) (0.0004) (0.0001) (0.0005) (0.0003) (0.0038)
Fixed effects estimator
coef. 0.0001 0.0000 -0.0001 0.0016 0.0011 0.0131*
s.e. (0.0003) (0.0009) (0.0002) (0.0015) (0.0007) (0.0070)
third-order cumulant estimator (level)
coef. 0.0039***  0.0059*** 0.0032*** 0.0046*** 0.0049***  -0.0007
s.e. (0.0004) (0.0015) (0.0004) (0.0013) (0.0012) (0.0088)

Sargan test (p-value)

6.38 (0.6049) 11.67 (0.1664)

18.00 (0.0213)

third-order cumulant estimator (WG)

coef.
s.e.
Sargan test (p-value)

0.0006 0.0004
(0.0005)  (0.0013)
16.06 (0.0415)

0.0006 0.0009
(0.0006)  (0.0027)
17.49 (0.0254)

-0.0023 0.0100*
(0.0015)  (0.0061)
7.41 (0.4936)

Note: *** ** and * indicate statistical significance at the 1, 5, and 10 percent levels, respectively.

41



Var(invt)

0.003
0.002
W
0.001
0
2002 2008 2016
Cov(qt, invt) Var(qt)
0.06 10
8
0.04 6
0,02 W !
2
0 0
2002 2008 2016 2002 2008 2016
Cov(cft, invt) Cov(cft, qt) Var(cft)
0.004 04
0.003 03 0.1
0.002 02
< 0.05
0.001 0.1
0 0 0
2002 2008 2016 2002 2008 2016 2002 2008 2016

| —— empirical — - - estimate(2002-2007) - -o- - estimate(2009-2016)|

Figure 1: Empirical and estimated variances and covarainces (lag=0)
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Figure 2: Empirical and estimated variances and covarainces (lag=1)
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Figure 3: Empirical and estimated variances and covarainces (lag=2)
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A Alternative vectorization operators: vecb and vecd

A.1 vecb operator
We introduce an alternative vech operator defined as

vech (211)
vech (2) = | vec (X91)
vech (222)

where 3 is a symmetric p X p matrix given by

X Xy
o1 Yoo

2:

)

311 is p1 X p1, o1 is po X p1 and 9o is p2 X po. Note that this vecb operator is different from
that considered in Koning, Neudecker and Wansbeek (1991) in that we consider a symmetric
matrix whereas they consider a general matrix which is not necessarily symmetric. Note also
that vecb (3) and vech (X) have a relationship as follows:

vech (X) =R, p, vecb (X)

where
Dy, 0 0
K 0 0 K 0
Rpypr = D; 1())1,19 K ] 0 Ip2,p1 0 (S.1)
P2,p p1p2

0 Dy,

The permutation matrix Ry, ,, has the following properties:

, PE—
Rm D2 Rpipo = Ip(p+1)/2’
/ _ -1
pP1,p2 Rpl D2
/ —_—
Rpl :p2RP1,p2 - Ip(p+1)/2'

The first result is obtained as follows by noting that vecb is an operator that changes the order
of vech:

vech (2)' vech (£) = vecb (2)'R., | Ry, ,, vech (£) = vech (£) vech (2).

P1,P2

The second and third results can be obtained from the first one.
The permutation matrix R,, ,, can be derived as follows:

vec >
by p > Ky, pvec | Xy XL
vech(3) = DF vec( & ) — D 2l =mh | 2
221 E22 vec 21 Km’p vec 221 222
D))
vec (X11) vec (211)
_ D+ Kplyp 0 vee (2/21) — D+ Kplyp 0 Kp2vp1 vec (221)
P 0 Kps p vec (Xo1) P 0 Kps.p vec (X21)
vec (222) vec (222)



D 0 0
P vech (211)
— D+ Kpl,p 0 0 KPQ:pl 0 vec (221)
P 0 KPQJ’ 0 Iplpz 0 vech (222)
0 0 D,
= Ry, p, vecb (X.;).

A.2 vecd operator

For an n x n diagonal matrix A = diag(aq, ...,a,), we define the vecd operator that constructs
an n X 1 vector whose element is a diagonal element of A such that

vecd(A) = (ay,...,an) = a.
The relationship between vec and vecd operators is given by

vec (A) = M, vecd (A) = M,,a

where??
‘ M, 11 0
M, = [ vec(Eq1) -+ vec(Ep_1pn-1) ' vec(Epy) } = mil
(n?2xn) ‘ 0 } 1

and E;; is an n x n matrix whose (7, j) element is one and zeros otherwise.

A.3 The column-wise Khatri-Rao product

Let A = (ai,...,an) and B = (by,...,b,,) be n1 x m and ny x m matrices where a; and by,
(j =1,...,m) are ny x 1 and ng x 1, respectively. Then, the column-wise Khatri-Rao product,
denoted as ®, is defined as(Lev-Ari, 2005; Liu and Trenkler, 2008)

A®B =|ai©by a®by - an@by |

(nin2xm)
Note that the Khatri-Rao and the Kronecker products have the following relationship(Lev-Ari,
2005)

A®B = (A®B) S,

(n1nzxm) (nin2 ><m2)(m2><m)
where S, = [vec(E11),- -+, vec(Epm)] and Ej; is an m x m matrix whose (7, j) element is one
and zeros otherwise.

The advantage to use the Khatri-Rao product rather than the Kronecker product is compu-

tational efficiency. To demonstrate this, let A, B and C be n x m, m x m and m X k matrices.
Then, if B is a diagonal matrix, Lev-Ari (2005) derives the following result

vec(ABC) = (C' ® A) vec(B) = (C' ® A) vecd(B). (S.2)

Note that the dimensions of (C' ® A) and vec(B) are nk x m? and m? x 1, respectively, while
those of (C'® A) and vecd(B) are nk x m and m x 1, respectively. Hence, the use of the
Khatri-Rao product greatly reduces the dimension of matrices especially when m is large, and
this leads to computational efficiency.

30The matrix M, can be derived as follows. Since A can be written as A = a1 E11 + a2Eos + - -+ + anEnn, we
have vec(A) = 37", a; vec(Ej;) = Mya.
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A.4 vec operator for a partitioned matrix with a zero block

Let us consider an m x n matrix B and an m; X n matrix B; and m9 X n zero matrix with
m = mq + mo such that

B,

Omg Xn

B=

For this matrix, we define
vec (B) = Um0 vee (By)

where

Onmz Xnmai

[ Koy
Unmin = Kom b ] (S.3)

The derivation of (S.3) is as follows:

B B/
vec (B) = vec ! = Kn,m vec [ B1 O xmo } = Kan,m VeC( l)
Omzxn 0nm2><1
K B K
_ Kn,m mi,m VeC( 1) _ Kn,m mi1,m vec (Bl) _ ]Um,ml,n vec (Bl) .
Onm2 x1 Onmz Xnmi
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B Proof of Proposition 1 and Theorem 1

First, we provide a lemma that will be used in the proof.

Lemma S1. (i) Let us define n X p matriz

| A Ap
N »

where A11 1s n1 X p1, A12 15 N X p2, and Agg is ny X pa with ny > p1, n1 > p2, Ny > p2,
p=p1+p2 and n = ny + ny. Then, we have

rank (A) > rank (A1) + rank (Ags)

(ii) Let us consider a matriz given by (S.4). If A1 and Agy have full column rank such that
rank (A11) = p1 and rank (Ags) = po, then, rank (A) = p.

Proof: (i) See Abadir and Magnus (2005, p.120). (ii) Using (i), we have rank (A1) +
rank (Ag) = p1 +p2 = p <rank (A) < p. O

B.1 Proof of Proposition 1

Let us consider the model (7) with (9), (10) and (11) where the idiosyncratic and measurement
errors follow ARMA(Ly ar,Ly ar) and ARMA(L, ar,Ls Ar) process, respectively. Note that,
unlike Proposition 1(i), we consider the model with the regressor w;; and allow for a general
ARMA process for idiosyncratic and measurement errors. The hypothetical covariance ma-
trix of z; = (y},x},w})’, H.. (¢g), is defined by (12) and expressions of Hyy (), Hay (¢0),
H.. (¥0), Huy (¥0), Hus (@) and Hy,y, (¢g) are provided in (13), (14), (15), (16), (17), and
(18), respectively.

To investigate the rank of G(pg) = Oh,.(py)/0¢" where h,.(¢) = vech(H..(¢)), we need
to derive its explicit expression. However, since columns of Hy, (), Hay (), Hyy(e), Hez(p)
H,.(¢) appear interchangingly in h,,(¢), it is difficult to consider h,,(¢) itself. In order to
consider the rank of G(¢) in a tractable way, by noting that interchanging the order of elements
of h,,(¢) does not affect the rank of G(¢p), we consider

hi, (p) = [vech[Hy, (¢)],vec[Hyy (@), vech [Hay (9)],
vee [Huy ()", vee [Hug ()], veeh [Hu (0)]']'
where
vech [Hy, ()] — ]D); 072, vec (¢ptlp) + X yMrpoy, + 28 (vr @ Ip) 0';*77 + Do gy 7
+27 (er @ Ir) Owy + 28V0war + 7 Droww

(S.5)
vec [Hyy (@) = (t7 @Ip) 0pey + BT Mroge + BDro s + YK 170 was, (5.6)
vech [Hy, (¢)] D 20,M7o e + XYoMroee + Doy, (S.7)
vec [Hyy ()] = (17 @ Ir) 0wy + Bower +YDrowu, (S.8)
vec [Hyy (@) = owar, (S.9)
vech [Hyw ()] = oww, (S.10)
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with ¥; = ¥; ® ¥, and I'; = Iy ® ¥; for j = y,2.3! Note that h?, () can be obtained by
multiplying a suitable permutation matrix to h,, (¢). Accordingly, the Jacobian matrix is given
by

oh?, ()
o,

ohZ, (¢)
O

ohZ, (¢)
o

oh?, (¢)
81[);

_ 0hZ, () _ [ 9 (#)
0 B

G (p)

!/
where Y = (80/17 90,2)/? P11 = (67 Vs ,'10;/7 ’ﬁb;;)/» P2 = (072]7 Ug)'w o{c*na Ugc*m Ué@? a’?p*x* ’ o-éurp U{wx* ’ O-'Iww) ’

and v;, (j = y,x) is an L;j x 1 vector with L; = L; ar+Lj m that includes pj, (r = 1,..., Lj ar)
and Aj,, (r=1,...,Ljna). Note that dim(¢p) = 3 + L, + L, + 6T + 272

Now, we derive the expressions included in G°(¢). First, using (13), (14) and (16), the
derivatives with regard to 8 and - are given by

[ Oshyy (p)  Oyhyy (@) ] I Cfl sz ]
Oghay ()  Oyhyy (p) Cgl 052
oh?, (¢) Ohg, (p) 0 0 0 0
o _ 2z 2z S R RN B - C
o (@) op Iy Ophuy (p)  Oyhyy (¥) ¢l Ch (@)
0 0 0 0
L 0 0 | | 0 0 |
(S.11)
where
Ovech [H
Oshyy (@) = éﬂyy ()] = 27, [vec (opntT) + Bvec (Bpeg+) + 7 vec (Sug+)]
0 H,
aﬁhxy (90) = W = vec (‘I’xzx*e) + vec (Zx*x*) ;
dvec [Hyy, (¢
aﬁth/ (@) = [86 < ( >] = vec (wa*) )
Ovech [H
87hyy (90> = [8,yyy (SO)] - 2]1); [vec (UwULIT) + /BVGC <2wx*) + 7y vec (wa)] ’
0 H,
Oyhgy () = W = Kr,1 vec (Zya+) ,
dvec[Hy,
Oyhuy (p) = Ovec Huy (#)] = vec (Byw) -

Oy

Next, using (13), (14) and (15), the derivatives with regard to 1, and ), are given by

[ Oy, hyy (@) Oy, hyy () ] [ P{, P
Oy, hay () Oy, hay (o) Pfl P§2
S (@) = ohz, §<P) Oh, EL‘O) _ | Oubee () Ophuc(p) | _ | Py Poy | P ()
oy, o, 0 0 0 0
0 0 0 0
I 0 0 I Lo o |

31We used vech (A + A') = 2D vec (A) for a symmetric matrix A.
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(S.12)

where
Py | Oy, hyy () Oy, hyy (@) a%,;:y hy, (¢)
PY | = | Ophay(p) | = | Opuhay(@) -+ Oy, hay (@)
P% L Oy, oz (o) Oy hzz () awy,Ly heo (#)
Oy, hyy () -+ 8wy,Ly hy, (¢)
= 0 e 0
I 0 e 0
with
0vech [Hy, ()] oY
8 Yy Th (‘p) = 1y = ID)+ Y vec (EU’U) I
Yo Dby T\ Oty
0 vech [Hyy ()]
a Y rhw (‘P) = S = 07
Yy, Yy a/l,z)y,r
dvech [Hy, (¢)]
O Doz () = =0
v Dby
forr=1,..., Ly, and
P, | Oy, hyy (o) Oppihyy (@) -+ Oy, hyy (o)
Ph | = | Ouhay(@) | = | Opibhay(e) -+ Op,, hay (o)
P%, | 0uhes(9) | | Ouha (@) o Oy, s ()
[ 0 0
= adfz,lhwy (p) - 8wz,Lm hg, (¥ |,
L 8¢I,1hm (p) - awz,Lx hy. (o)
with
dvec[Hy, (¢
8’¢)m,rhyy (‘P) = W - 07
~ Ovec[Hyy ()] ar',
awz,rhxy (‘P) - a/lz)xm - 6 8¢I7T vec (2]}*6) 9
O vech [Hy, or, oY,
bty = P o () s (272 et
forr=1,...,L,.

We derive the explicit form of the derivatives. First, using the differential
a¥; = d (‘I’j_jR‘I’mMA) = (d‘I’j_,ixR> Wjara+ g (AT 0ra)
= 0 (A aR) W) 4 p W s+ W) 4, (AT)004)

= W e (AW aR) W+ O L p (A 0a),  (J=y,2)
we have
8p‘] = ~Yiir ( 8—; ) ;=W i glrj ¥ =Djar, (j=y,2, r=1,..,L;ar)
J,T 7,7
8‘1’ ] _ 6‘1’ 71\414 _ .
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Iy, = IOTX(T_T) Orxr ]
Ir—r  O(r—r)xr

Also, note that

oY O P
]D)JTr <a¢yi> vec (Byy) = ]D);F KW;,Z«) ® ‘I’y} vec (Xyy) —I-]D)r}r [\Ily ® <8¢yi~>] vee (Xyy)

/
= 2ID>; vec [\IlyEm, ((;9;1@) } ,
y,r

(i) wemes = [1oo (22 )| otmed e[ (552 )20

/
D; <§@Zi> vec (Bee) = QD; vec [\leZee (g;;i) ] .

Hence, when v, = pj, we have

0 vech [H,, (¢)

Oy, Dy () = Dpur = 2D vec (¥, 20Dy 4p,]
Ovec[H
Oy, oy () = W = Bvec Dy AR Zese]
z,r
Ovech [H
Oy Nz () = 8[p = (o) 27 vec [Dy, AR r Xaxe] + 207 vee (¥, XDy g,
T,

and when v, = A; ., we have

dvech [Hy, (¢)]

awy,rhyy (LP) = 8Ay R = 2]1);: vec [‘I’yzv’UD;/vMA,T] )
Ovec [H,
0y, iy () = TN e D g ]
dvech [Hy,
Op Bps (p) = o 8& I _ oDt vee Dy aray Sove + 2D vee [¥,50 D' 140 ]

Finally, let us consider the derivative with regard to ¢,. For this, we reformulate the
expressions of vech [Hy, (¢)], vec [Hyy ()] and vech [Hy, ()] which are provided in (S.5), (S.6)
and (S.7), respectively.

Let Ay, Az, B,B;,Bs be conformable matrices and a be a column vector. Then, we have
[A1,A2] ® B = [A; ® B,A; ®B] and a® [B1,B2] = [a® B1,a® By|. Using these and the

decomposition®?

. 1—110 .
\I:j:[\pj. IT}, Ipzlpo 1]:[1212,}, (S.13)
we can rewrite X; and I'; as follows:
T = v = vew rewl e | =[],
r, = IT®\I:]-=[1TT®\I:J» iT®\IJT§iT®iT}:[r}§iT2].

32Recall that i, denotes an n x 1 vector whose nth element is one and zeros otherwise.
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Also note that the duplication matrix can be decomposed as

Dri1 § 0 Pl
b=l 1]_[DT‘T2}

where Dr} and ip2 are linearly independent. Moreover, using ID);;ID)T = D; [ }D)TT ip2 } =
[ DD} Dfige | = I = [T ire |, we have DD}, = T, and Dfige = ir- where
T =T(T +1)/2.

Using these in (S.5), (S.6) and (S.7), we have the following alternative expressions:

vech [Hy, (@)] = 0727 vech (LTL/T) + [ ]D);;TLMT,H ips } Oy + ZﬂD; (tr @Ir) Oy
152 [ . i ] Tarar + 29D (17 @ I7) Oy + 287D F O e + V20w, (S.14)
vee[Hey (9)] = (7 @) oeg + 8| ThMirsy i | e+ 8] D} igs | 0ese + 7K,
(S.15)
vech [Hyy ()] = 2 [ DITEMryy g } Tre + [ DEYEMr 1 g } Tee + [ . i } P
(S.16)

Then, using (S.14), (S.15), (S.16), (S.8), (S.9), and (S.10), h?, () can be written as

[ vech [Hy, ()] |

)
vee [y, ()]
)

o | vech[Hgy (@)] |
hzz (QO) - vec [Hwy (‘P)] =L ((P) P2
)l
)

vec [Hy, (¢
| vech [Hyw (¢

[ vech (LTL/T) D; TLMT,H 17+ 26@; (LT &® IT)
0 0 0 (er @ 1Ip)
0 0 0 0
Q(Q") = | 6 ”””””””” 6 ””””” 6 "’”"”"6 ”””””
0 0 0 0
0 0 0 0
0 0 0 0 BIL. B
BTIMp11  Bige 0 0 BDL Bip
2DFTEMry 2 DEYIMry dpe I i
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 ]
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q(llpl sz qfs fzx 0 0 0 0 Qfg qi.10
0 0 0 ngx Q§5 qgﬁ 0 0 Qgg qg,m
_ [0 0 0 0 Qi aj Qp dim Qi 90
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
= |af Qf af Qf QF af Qf af QF qf |. (8.17)
[ 2’)/]1))}' (e @ 1Ip) QB’y]D)}' Vs T [ RY, RY, R
0 ‘Krr 0 0 R 0
0 0 0 0 0 0
R (P e R e e e R ]
() (roty) B Dy RY, R}, R}
0 I 0 0 R 0
L 0 0 IT* | 0 0 RgS h
Hence, we have
ohZ, (¢)
= -1 Q@) R (5.18)
0py

Collecting (S.11), (S.12), and (S.18), G° (¢) can be written as

G°(¢)= [ Cle) P(¢) Qv) Rip)

Since the expression of G° (¢) is now obtained, we consider its rank. However, since the form
of G°(¢) is not useful to investigate the rank, and interchanging the columns does not affect
the rank of a matrix, we consider the following alternative expression:

*
G*(¢)=| Q(¢) P(p) C(¢) R(o) ] (5.19)
[af; QL afsy Qf, O 0 0 0 Qf c11 10 ' Pf 0 icfy ocf 1 R, RY, R
0 0 0 Q5 Qf aj O 0 Q% afip: 0 PHichi e 0 R O
_ |00 0 0 Qf g QF af Qs a0 PL 0 010 0 o0
0 0 0 0 0 0 0 0 o 0 :' 0 0 :ci c& RY RI RY
0o o o o o0 O o0 o0 O 0 00 ©O0:0 O0:0 RZ O
0 0 o o o0 O 0 o0 o 0 0 0.0 O0:0 0 RE
[ \ )
_ | G G Gy G | | Ki Ki (S.20)
: - K :
| 0 0 [Gi; Gy 0 | K3,

To demonstrate that G* () is rank deficient, it suffices to show that one of the four matrices
in (S.19) is rank deficient. Specifically, investigating Q (¢) matrix defined in (S.17), we find that
the following holds

afo — a5 —af +af = 0.
This indicates that Q (¢) is rank deficient and hence we have

rank(G (¢)) < dim(yp) — (S.21)

Note that the columns (g5, qf, af, q,) correspond to the derivatives with respect to 012)7T, aiT, Oy*e,Ts O z* TT-
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From the above analysis, although we find that G (¢) is rank deficient, we cannot know the
exact rank. In the following, we demonstrate that the rank of G (¢) is dim() — 1. For this, let
us investigate the rank of K{; and K&, in (S.20). First, consider the rank of K¥,, which can be
written as follows

¢ _ch Ry IREL RE s¢, | s,
KL=1 0 0 0 (R, 0 |=|-bigh
0o o 0 0 Rgs 22

Since both Sy, and S¥, have full column rank, by using Lemma A(ii), K, is shown to be of
full column rank with rank(K%,) = T + 2 + T* + T?. Next, to investigate the rank of K,
since interchanging the columns does not affect the rank, we consider the following alternative

expression
an Qb a3 PLiQG 0 0 Qf afy, 0 0 0
K = 0 0 0 0:Qf Qf aj Q% a0 P5, 0 0
| 0 0 0 0.0 Q5 ais Qh qg,m P Q5 aj
_ | Mf} MY
B 0 My,

It is easy to see that MY is of full column rank with rank(MY,) = T + 1 + L,. With regard to
the rank of MY,, after interchanging some columns, it can be written as

Mg, = [ 50 Qf Qi ak qg,lo 0 P

0 Q5 Qf Qf aj qg,lo azi P
v @I 0 BTIMr1  ADL Bipz Bipe 0 Po
0 DIYIMpy, 2DITIMr.; Th.  2ipe  ipe i Pa

From this, we find that fifth to seventh columns are linearly dependent, but other columns are
linearly independent. Hence, MY, is rank deficient with rank(M$,) = 37 +T* + L, — 1. Hence,
using Lemma A(i), we have

rank(G° (¢)) > rank(KY)) + rank(K%,) = rank(K7Y;) + rank(Ks,)
> rank(MY)) + rank(M$,) + rank(K$,) = 2 + Ly, + L, + 6T + 2T

= dim(p)—1 (S.22)

Hence, combining (S.21) and (S.22), we have rank(G® (¢)) = rank(G (¢)) = dim(p) — 1. B
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B.2 TIllustration of Proposition 1 with 7"=4

Since we assume fixed T' model, let us consider the specific case with T" = 4. Moreover, to
simplify the discussion, we consider the case where the regressor w;; is absent and (;; and €
follows AR(1) and MA(1) processes, respectively. In this specific case, the moment conditions

(21) in a matrix form can be written as

E(Syy) = Sy = {oyst} = Hy(e) = Hf (¢) + H (¢)

= agLTL’T + 9,3, ¥, + (ozentp + LTU;*U) + B8 e,
E<Séry) = Xy = {Uﬂcy,st} = Hmy(‘P) = H;rcy(‘P) + Hiy(@) = Ux*nL/T + 5‘11352;*6 + BXgprgr,
E(Sez) = Tur = {0ust} = Hualp) = Hi, (p) + Hi(¢)

=Spear + OB W, + U3+ g W,

where S, and S, denote the sample variance matrices of y,; and x;, respectively, S;, denotes
the sample covariance matrix between y, and x;, and

T o T % 2 2 2 2
Un + pyylo-v,l | Gn + py,lav,l + JU,Q
2 ' 2
B (0w £ Oemn) + 0w r 1 T2B0une + BrOurar 2

_ 2 2 2 2 2 2
HLy((P) - Gn + py,lav,l Un + pz,lav,l + py,lav,Q
+5 (Ux*n,l + U:(:*n,S) + ﬁ20'x*x*731 +5 (Ur*n,Z + Uz‘*n,?;) + 620':(;*:1:*,32

IS B SRR ) 2779
oy + Pya0u Oyt Pya0u1 T Py100 2
2
+3 (Ux*n,l + Um*n,4) + Ox*x* 41

””””” 2 4 2 o o Ty e
U'r] + py,lo-v,l + py,lo-v,Z + Uv,?:
2
+260-m*77,3 + ﬁ Ox*z* 33

5,5 2 375 2 5,6 2 ) O
Oyt Py10u1 T Py10p2 T Py104,3 1 Ot Py10,1+ Py10p2 T Py 1043

+3 (Ux*n,S + Jx*nA) + /820'33*:):*,43 +2ﬁ0x*r],4 ]
0 0 0 0
0 0 O 0
Hy () = | 0 o ¢ 0 :
00 0 o2+ P00 0
Owqt Bores +fouer | Ourn2 + Bowaror |
Hi (¢) = Oarn 1+ BAe10arer + B0urar o1 | Oary2 + POuren + BOarar 22 |

Oz*n,1 + Bo'x*x*Al Oz*n,2 + ﬁo-:c*x*,42

Oz*n,3 + ,80'35*3;*,31 Ox*nd + /Bax*w*,41
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000 0
000 0

H! =
000

50—3{7*874 + /Bam*z*,44

'
'
'
””””””””””””””””””” L e it |
' '

2 2 2 2
HT . Og*z* 21 T >\x,10'671 + )\m,lo':r*e,l 1 Og*g* 22 + )‘zjlo-e,l + O¢2 + 20_$*€,2 !
wx(so) N

,,,,,,,,,,,,,,, Opwal L Orrsrt A1+ An10rer
L Ox*z* 41 i Oz*x* 42 i
o o
Ogx*x* 33 + A%JUEQ + 0'3’3 + 20'95*6,3 i * ’
Ox*z* 43 1 Aw,lo'g,g + )\J:,lax*e,3 i )‘m 10'273
0 0O 0
+ . 0 0O 0
H..(¢) =
0 0O 0
000 02,4 + 20x*e,4 + Ox*x* 44

Now, consider the identification of this model. Since the number of unknown parameters is
29 and that of moments is 36, the order condition is satisfied.

This model includes the parameters 3, py 1, Az 1, oit,

2
Octs Ox*nty; Ox*ety Oz a* sty for1 <t <
s < 4. Since oyyst, Opy,st a0d 0gz s, (1 <t < s < 4) can be consistently estimated from data,
we assume that these are known.
First, it is clear that oy« 31, 0g*z+ 41 and ogz+ 42, which are the elements of Hlx(cp), are

directly identified from 044 31, 022,41 and 044 42, as follows:

Og*x*31 = Ogx,31y Ogz*x*41 = Oxxdl, Oz*x* 42 = Oxx,42-

Next, since 0y 31 and 04y 41 include two unknown parameters 3 and 0.+, 1, given identification
of opxp+ 31 and oy#z+ 41, we can solve for these two parameters. Specifically, the solutions are

given by
8 = Ozy,41 — Ozy,31
- 9
Ozxx,41 — Ozxx,31
Oz*n,1l = Ogzy,31 — ﬁo-x*m*ﬁl-

Hence, 8 and o,+,,1 are identified. Note that this structure has an instrumental variable re-
gression interpretation that we estimate the first period y;1 = Bz;1 + ;1 with an instrument
Axiy = xig — ;3.

In the following, we consider identification of remaining parameters. From o0y 42, 04y,13, and
Ozy,14, We can show that o,y 2, 04+ 3 and o,y 4 are identified as follows:

Og*n2 = Ogyd2 — Bo—w*m*,427
Oz*n,3 = Ogy,13 — Bo'x*x*,?;l’
Ox*nd — Oxy14 — Bax*a:*Al-
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SO, ITOIN O 44,125 Ogy .23 allA O gy 34, WE Call SNOW al Ogxgp*x 21, Ogxg* 32, AllA O g*gp* 43 are identifie
Also, f Y125 Oy 23 and 0y 34, how that 21, 32, and , dentified

as follows:
1
O’];*Z‘*,Ql - B (O-xy712 - O-x*7772) )
1
Torwed2 = 5 (02y,23 — Oan,3) »
1
o’l’*ﬁ?*,43 = B (O-‘Zy734 - O-w*ﬁA) :
if B #0.33

Since three moments oyy 21, 0yy 31 and oyy 41 include three parameters 0727, py,1 and 03’1,
these parameters can be solved and hence identified as

Oyy,al — Oyy31 — (ca1 — c31)

Pyl = ’
Oyy,31 — Oyy21 — (c31 — ca1)
52— Tl = P010yy31 — (ca1 — po,1c31)
- )
K 1- py,l
2

2 . Oyy,21 — 0y — C21

01},1 -

Py,1

2 2
where cp; = /8 (Ux*n,l + Um*n,2)+/8 Og*g* 21, C31 = B (Ux*n,l + Uz*n,3)+/8 Og*gp* 31, C41 = /8 (Ua:*n,l + Um*n,4)+
2
B Og*x* 41-
From oyy 11, 0yy,32 and oy, 22, we can show that oz« 11, 03,2 and o+« 20 are identified as

2 2
Oyy,11 — Op — Oy 1 — 2/6013*n,1

Og*g* 11 = 62 )
2 3 2 2
2. — Oyy,32 = Opn = Py10y1 — B (0w n2 + Oan3) — B Oz 32
0,2 T )
Py,1
2 2 2 2
 Oyy,22 = 0y = Py10y1 — Oy — 2B05%,2
Ogxxg* 22 = ,82 .

From oy, 43 and oy, 33, it can be shown that ag 3 and o+« 33 are identified as

2 5 2 3 2 2
o2 _ Oyyd3 — 0y = Py10u1 — Py1902 — B (Ux*n,B + U:(:*n,4) - B Oz*x* 43
v,3 )
Py,1
2 4 2 2 2 2
_ Oyy33 = O0p = Py10u1 — Py1%u2 — 943 — 2B0,3
Ox*x* 33 — 62 .

From o4y,11, 0zy,22 and 0y 33, we can show that oue 1, 0ze 2, 0ze,3 are identified as

_ Ogy,11 — Og*p,1 — Bo-a:*x*,ll
Ogx*e,l = 3 ’

Ogy,22 — Og*n,2 — BO-:E*:E*,ZZ
Og*e2 = 3 >

Ozy,33 — Ox*n3 — BOs+z+ 33
Ozx*e3 — 5 .

33Note that the assumption that 8 # 0 is not restrictive since an endogeneity does not happen and the
conventional fixed effects estimator becomes consistent when 8 = 0.
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From 0.5 11 and 0,4 21, we can show that 0371 and A; 1 are identified as

2
Oe1 = Ozzll — Og*z* 11 — 2Ux*e,17
Oxx,21 — Ox*x* 21
)\:c,l .

2
Oc1 + Oz*e,1

Finally, 0372, and 023 are identified from 0,4 22, 042 33,

2 2 2

Oe2 — Ogz22 — Og*g*22 — )\%10'371 - 2Ux*e,2’
2 2 2

Oe3 = Ozz33 — Ox*z*33 — )\%10@72 - 20$*6,3‘

The parameters identified so far are all included in sz(cp), HLy(go) and HI (). Now, we
consider the remaining four parameters 0374, 02’4, Oze4 and opxg+ 44 Which only appear in the
(4,4) position of three matrices Hiy(go), Hiy(go) and HE (o). This indicates that the available
information for identification of 03’4, 0374, Ozred and Oprgx 44 are only oyy a4, Opyaa and oy 44.
From this it is clear that these four parameters cannot be identified since we have only three
moments.

The analysis so far is based on the case with T' = 4. However, it is easy to see that the same
problem arises for general fixed T". Namely, since three observable moments oy, 77, 04,77 and
0z, 77 include four unknown parameters ag’T, O'S’T, Ogre,r and 0y gz 7, these four parameters
are not identified. Hence, this covariance structure is not identified and this induces the violation
of the rank condition in the regularity conditions.
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B.3 Proof of Theorem 1

Let us consider the model (7) with (9), (10) and (11) where the idiosyncratic and measurement
errors follow ARMA(Ly ar,Ly ar) and ARMA(L, ar,Lz ar) process, respectively. Note that,
unlike Proposition 1(i), we consider the model with the regressor w;; and allow for a general
ARMA process for idiosyncratic and measurement errors. The hypothetical covariance matrix
of z = (yl,x},w}), H., (0), after reparametrization is defined by (23) and expressions of
H,, (60), Hyy (00), Hyy (60), Huy (00), Hys (00) and Hy,y, (09) are provided in (24), (25), (26),
(27), (28), and (29), respectively.
As in the proof of Proposition 1(ii), we consider the following Jacobian matrix:

ao gy~ 90 (0) _ [ oh:. (9) oh:,(9) oh:,(9) oh:,(9) oh, (9)
O="3g"=| "8 o oy, ow, o8

where

h?, (0) = [Vech H,, (0)]' ,vec [Hyy (0)]' , vech [Hy, (0)]' ,
vec [Hy, ()], vec [Hy, (0)]', vech [Hyy, ()],
0 = ( /170/2),7 61 = (6777¢;7¢;)/7

o 2 % ! */ */ */ ! / / !
02 - (0-7]7 O vy Oyy,TT O-;U*na O pxes Oxy,TT> O cer Oaxx,TTs O gxg*s o-wna O x> s wa) )

and dim(6) = 2+ Ly, + L, + 6T + 272
We first reformulate the expression of Hy, (6), Hyy (09) and H,, (0¢) which are pro-
vided in (24), (25) and (26). For this, let us define ¥, = diag (agyl,...,a?)’T_l), St =

diag (Gg,1> "'703,T—1>7 and X%., = diag (4% 1, ..., Oz+e,r—1). Then, we have

v, = ¥Isvlytol Err,

U, 3.V, = UX, O+l Err,
W, Ype = |: \IILE;*e Ux*e,TiT :| = [ ‘I’I;Eg*e 0 ] +Ux*e,TETTa

Sper = Zjegs + 0prer TTETT

where \Il}, (j = y,z) is defined in (S.13), %, . = X4+« (defined in (30)) and Epp = iriy is a
T x T matrix whose (T',T") position is one and zeros otherwise. Using these, we have

H,, (6) = afszL’T + \IILEZU\I’L' + B (oant + LTO',I*U) + B2z + 0y 7TETT
+7 (Guwntr + LTO'Lm) + 87 (Buwer + D) + VX s (S.23)
H,, (0) = oupgly+ [ oz 0 } + BS e + Oyt BT + 7S (S.24)
/

H,.(0) = ([ wixt. 0 ] + [ ozt 0 D IR 3 S0 SIS > LT, .

(S.25)
Then, from (S.23), (S.24), (S.25), (27), (28) and (29), we obtain

vech [Hy, (0)] = 0727 vech (vrer) + ]DJTFTiMT,lo'ZU + 28D (vr @ Ip) 0oy + 521l o A
+oyy rTiTe + 27]1)}' (er @I7) Oy + 267D}Lam* + 720 wws (S.26)

vec [Hyy (0)] = (er @Ip) opey + 5UT2,T1T,1F§5MT—10'L*6 + ﬂDTTU;*x*
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+0zy rTiT2 + YRT 170 W00 (S.27)

vech [H,; (8)] = 2D3Ug2 0 TEMy 103, + DFYEMy 107,
+Th.ol. . + opnrrir, (S.28)
vec[Hyy (0)] = (er @I7) 0wy + Bowe + VDroww, (S.29)
vec [Hyy (0)] = Owar (S.30)
vech [Hyy (0)] = oww, (S.31)
where T;E. = <\IJ; ® \Il;r) ,(j =y,z) and ri= (IT ® \IIL), and we also used
vec (X%, ,«) = Dpvech (X7.,-) = [ DE i } [ IT(T+01)/2—1 ] 0Fpe = Dbt
First, using (24), (25) and (27), the derivatives with regard to § and 7 are given by
[ Oshyy (6) Oyhy, () ] (el cfy ]
Oghay (0)  Oyhyy (0) chy b
oh?, (0) ohg, (0) ] 0 0 0 o
G—<> 0 = E24 E24 e R T i R e = C 0
5 (©) B Ay dshyy (8) 9,hy, (0) i, <, ©)
0 0 0O o
0 0o | 0 0
where
h
Oshy, (0) = ALS g;yy (0)] = 27, [vec (oponty) + Bvec (i pe) + v vec (Sugr)]
H,
Oty (0) = T O o (mt ) U (1 91) vec (3.
O vec[Hy, (60
oty ) = PO ez,
h
dhy, (0) = O vec gfylyy (0)] = QD; [Vec (O'wnl//T) + Bvec (Byzr ) + 7y vee (Eww)] ,
H,, (60
9y hay @) = MC[&YZ/()] = Kr, vec (Zyz+) ,
0 vec [Hy,y (0)]
Ohy, (0) = —— 7 — vec (Zpuw) -
s y( ) 87 ( )
Next, using (S.26), (S.27) and (S.28), the derivatives with regard to %, and %, are given by
[ Op,hyy (0) 9y,hy, (0) ] [Pl Py ]
Oy iy () Oy, hay (6) Pgl PgZ
<& <&
oy [ PO O] | hen(0) Ouher(0) || Ph PR |
oY, oy, 0 0 0 o0
0 0 0 0
0 0o | 0 0
where
P(fl awyhyy (0) a¢y,1hyy @) - awy,Ly hy, (6)
P%l = | Ophay(0) | = | Oy, hay(0) - Oy, hy, (6)
Ps, 8¢yhm (6) 5wy,1hm @) - awy,Ly hy, (0)

S.16



= 0 .. 0
0 . 0
with
dvech [Hy, (0)] oY}
h 9 — vy — ]D)-i- Yy 2*
al/’y,r yy( ) awy,r T 8¢y7r VeC( vv)?
0 vec [Hyy (0)]
h,, () = ————2 70 —
awy,r y( ) 8¢y’7‘ 07
0vech [Hy, (0)]
Oy, Dzz (0) = =0
v Dby
forr=1,..., Ly, and
P?Q [ 8¢whyy (9) awz,lhyy (9) 8¢z,L1 hyy (9)
Pg2 = &lzz hwy (9) = a¢z,1h:vy (0) 8%,% hwy (9)
ng L azbzhm (6) a'l/}m,lhl'x (6) 8¢1,Lm hg, (6)
i 0 . 0
= awmhxy @) - awz,LI h., (0)
L a¢z,1hxl’ @) - a¢z,Lz h,, (0)
with
dvech [Hy, ()]
awz,rhyy (9) = 31/1xj~y =0,
Jvec[H,, (0 GI‘;@
aww-hxy (0) = W = IBUTQ,T1T,1 (Wm‘) vee (2;*6) 5
Ovech [H,., (6 ors
0y e (6) = GOl p i ( : ¢> vee (22.,) + (
forr=1,..., L,.

To derive the explicit expression, note that

Ir_
‘I/}z[‘I'T- iT}[Tl —wIl,  (j=y

0

where ITT is defined in (S.13). Then, we have

0wl Hw, 0wl 9w,
I = 1 =Djap, I, and L= 22l =
6,0]‘77« 8pj,,~ OAM 6)\7~
Also note that
/I
oY} ow!
D Y ) = 2D Pisx y
! <8wy,r>vec( wh = e (B Gy, ) |

r} !
(;:b ) vec (Xr.,) = vec K;‘bpx ) 3ee
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7x)

|\

D.jaMAerr}'

ox:
0y r

) vec (X7,)




ox:
Oy y

]D)%(

)Vec(Eze) = 2D vec

Hence, when 9, = p;,r, we have

8¢y,rhyy (0)
8¢z,rhxy (0)

a¢w,rhx$ (9)

and when v;, =
atﬁy,rhyy (9)
ad)z,Thzy (9)

Oy, e (6)

0 vech [Hy, (0)]

Opy.r
Ovec [Hyy (0)]

apz,r
dvech [H,, ()]

8p:1:,r
Ajr, We have

Ovech [Hy, (0)]

Oy r
Ovec [Hy, (0)]

8)\x,r
0vech [Hy, (0)]

a)\ac,r

ow!t

T

Oz

wisy, (

)]

= 2D vee [ W5, 11D 4, |,

= BUp2 1,7,1 vec [Dx,AR,TI;“EL*e} ;

= 2D Up2 171 vee | Dy an 1S, | + 207 vee W12, 1D 4,

/

— 2D vee | W5, 11D) 44,

]

= B[UTZ,TlT,l vec |:DJ;,MA7TI;12;*6:| y

!/

— 2D Urs gy vee [Daara 1B | + 2D vee @IS IIDY r4,

Finally, let us consider the derivative with regard to 62. Using using (S.26), (S.27), (S.28),
(S.29), (S.31) and (S.30), h$, (0) can be written as

h<>

zZ

(9)

[ vech [Hy, (0)] ]
vec [Hy, (0)]
vech [H,, (0)]
vec [Hy, (6)] =L (6)6:
vec [Hy, (0)]
vech [Hy,y, (0)]
Q@) R(O) | with
[ vech (LTL/T) D;TiMT_l 17 26@; (LT & IT>
0 0 0 (b7 @ 17)
0 0 0 0
””””” o o o o
0 0 0 0
0 0 0 0
0 0 0 0 BI.. |
BUrer TEMr_1 i 0 0 gD
204 Upe pyra DsMy—y 0 DEYEMyp_q ipe I
7777777777 o o o o o
0 0 0 0 0
0 0 0 0 0
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I Q?1 Q({2 (ﬁg Q(ﬁ 0 0 0 0 Q§9 ]
0 0 0 Q5 Q) d% 0 0 Q3
_ |0 0 o0 0 Qp 0 Q% af Qf
0o o o o o o o0 o o0 |
o 0 O O O O 0 o0 O
L. 0 o0 0o O O O o0 O0 O
29D (br @Ir) 28yDE A% ] [ RY RY, Ry
0 YKy 0 0 Rj) O
R(O) = |- 0 .0 o0 | _[o o o
(er @ 1) Bly2 4Dy Rl R, Ri
0 P 0 0 R o
i 0 0 I+ | 0 0 RY ]

Hence, we have

ohZ, ()
Toa = QO RO ].

Now, let us consider the rank of G°(8). Since interchanging the columns does not affect the
rank of G°(6), we consider the following matrix

G* (0) = [ Q) P(6) C(8) R(O) (5.32)
[ al, QY (ﬁs Q, o 0 0 0 Q?g i P{, o0 ic
0 0 Qg4 Qgs qgﬁ 0 0 ‘ 0

0 0 Qgs qgﬁ Qg? qgs Qgs} Y

Let us consider the rank of K9, and K$,. First, we consider the rank of K,, which can be

written as
ol cl, Ri IRY Rl g0 g
Ki,b=| 0 0 o0 Rf 0 |= ,,,6,1,@,61)2,, (S.33)
0 0 0! 0 R P22

Since both SY; and 8%, have full column rank, by using Lemma A(ii), K%, is shown to be of
full column rank with rank(K$,) = 7'+ 2 4+ T* + T2. Next, to investigate the rank of K¢,
since interchanging the columns does not affect the rank, we consider the following alternative

expression
r 0 0
, a4 Q afy P1,iQ, 0 0 Q) 0 0 0
Kii = 0 o0 0 0. 5% Q% d QY Pl 0 0
0 0 0 0:0 Q% df Q% P Q% i
_ | My MY,
0 M,
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MY, is of full column rank with rank(M¢,) = T + 1+ L,. With regard to the rank of M%,, after

interchanging some columns, it can be written as
9 9 9 9
Qu 0 Qyp Qyp qgﬁ 0 Py
9 9 9 0 0 0
0 Q3 Q3 Q3 a3 gz Px

tr @I 0 BUre i DiMr_y DL Bir= 0 P
0 DiUppnrYiMr oy 2DLUp i TiMr I, 0 iy P,

o _
My, =

From this, we find that MY, is of full column rank with rank(M$,) = 3T +T* + L, — 1. Hence,
using Lemma A(i), we have

rank(G° (9)) rank(KY,) + rank(K%,) = rank(K{}) + rank(K9,)
rank(MY;) + rank(M$,) 4 rank(K%,) = 2 + L, + L, + 6T + 27>

— dim(0). (S.34)

>
>

Hence, combining (S.34) and rank(G (6)) < min (p(p + 1)/2,dim(0)) = dim(8), we have rank(G* (0)) =
rank(G (0)) = dim(0), and therefore G () is has full column rank. W
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C Models with multiple regressors

In this section, we extend the model to include multiple regressors.

C.1 Model

We consider the following model

K L

Vit =ty + O BT+ > wwia +mi+ G, (=1, Nt =1,...T) (5.35)
k=1 =1

where p,; and 7; denote time-specific and individual specific effects, respectively, and (;; is
an idiosyncratic error term. Time effect p,; is assumed to be non-random parameters to be
estimated. We assume that y;; and wy i, (I = 1,..., L) are observed without measurement errors
whereas :E;;,it, (k = 1,...,K) are not observed due to measurement errors. Instead, we only
observe xj ;; contaminated with measurement error € ;; as follows

Thit = Thyp + €hit, (b =1,..., K). (S.36)

Using (S.35) and (S.36), the model to be estimated is given by

K L
Yit = |yt + Z BrTr,it + Z MWy it + it (S.37)
k=1 =1
K
it = i+ Git— Y Brchit (5.38)
k=1

We assume that the idiosyncratic error ¢;; and the measurement error € ;; are serially correlated
in ARMA(Lj AR, Ljma),(j =y, 21,...,2x) form such that

Gt = PyiGit—1++ PyLy arCit—Ly ar T Vit + Ay1Vig—1+ -+ Ay L, yaVit—Ly aia
ek,it = pxk,]_ek;’i’t_l —|— ... —|— pxkngck,ARekyi,t_La:k,AR

ekt + Aoy 1€hi-1+ -+ /\ﬂ%,sz,MAek,i,t*L;ck,MA’ (k=1,..,K)

with Ci,e = 07 (E = 0’)"'7_Ly,AR + 1)7 Vig = O) (E = 077---7_Ly,MA + 1)7 €kil — 07 (E =
o,..., *Lkw,AR + 1) and €kl = 0, (f =0,..., 7L’€x7MA + 1).

C.2 Assumption
We modify Assumptions ME, X and W so that multiple regressors are allowed.

Assumption ME’. (i) The error ej; is independent over ¢ and ¢ and has E(ey ;) = 0,
Var(egit) = Ocpept = aght for k=1,...K with 0 < agw < oo and finite fourth-order
moment.3*

(ii) The error ey ; is allowed to be correlated with the true regressor :E;Z-t at the same period
such that C’ov(a:’,gﬁ, €k,it) = Outept fork=1,....,K and t = 1,...,T, but uncorrelated with
other true regressors such that C’ov(:n;it, em,is) =0 for k#m and s,t =1,...,T.

34To simplify the notation, we use both Oepepn,t and agk_,t interchangeably to denote the variance of ey ;¢.
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(iii) When K > 1, the measurement errors are allowed to be mutually correlated at the same pe-
riod such that Cov(e,it, €m,it) = Ocpen,t for k,m =1,..., K, (k # m) and Cov(eg it, €m,is) =
0 for kkm=1,..,K and t # s.

Remark S.1. Assumption ME(i) and (ii) are straightforward extension of Assumption ME.
Assumption ME(iii) is newly added and mutually correlated measurement errors are allowed.

Assumption X’. (i) We assume that z ,,,(k = 1,..., K) is strictly exogenous in the sense
that Cov(x}, 4, vis) = 0 for all s and . 7
(ii) Let x3, = (2} ;15 2r,p),(k = 1,..,K) be a T x 1 vector that collects time series
observations of the kth i"egressor for each i. We assume that xj ; has the following form:

Xii= Moy +€urin  (k=1,2,..,K)

where E (XZ 1) = My, and E’CZvi is a random variable that is independent over i with finite

fourth-order moment. We also let C'ov (x,’;,i, xfm) =F (5%25{%2) = Byrrr, = {00rar, st}
for km=1,..,K and s,t =1,...,T.

(iii) The kth regressor xz’it is allowed to be correlated with 7; such that C'ov (:U*,;Z-t, ﬁi) = Oyt
fork=1,..,Kandt=1,..,T.

Assumption W’. (i) We assume that wy;, (I = 1,...,L) is strictly exogenous in the sense
that Cov(wy i, vis) = 0 for all s and ¢.
(ii) Let wy; = (wii1,...,z17), (1 =1,...,L) be a T x 1 vector that collect time series observa-
tions of the /th regressor for each i. We assume that w;; has the following form:

Wi = Py + € (1=1,2,..,L)

where E(w;;) = p,, and &, ; is a random variable that is independent over i with
finite fourth-order moment. We also let Cov (Wi, wri) = E (&,,:&0,.:) = Zww, for
IL,Lr=1,.., L.

(iii) The lth regressor wy; is allowed to be correlated with 7; such that Cov (wyit, mi) = Twn,t
forl=1,..,.Landt=1,...,T.

(iv) The regressor wyt, (I = 1,...,L) is uncorrelated with the measurement error e;s for all
1,7,S,t.

(v) The regressor wy; is allowed to be correlated with xj, ; such that Cov(wy;, x}zl) = Bz

Remark S.2. Assumptions X’ and W’ are straightforward extension of Assumptions X and W
so that multiple z’s and w’s are allowed.
C.3 Latent expression of the model

We now consider a reformulation of the model given by (S.37) and (S.38). The basic idea is
to separate observed variables and unobserved latent variables. To do so, we first rewrite the
model in a matrix form as follow:

K L
yi=py+ > IV%00+ Y I Wi+ (S.39)
k=1 =1

/ / /
where y, = (yil,...,yiT) s p,y = (My,lv-uaﬂy,T) y Xk,i = szi + ek,i; Ek,i = (ek,,;l,...,emT) , € =

nitt + C’L - 25:1 J/(Bzem,ia C'L = (Cil, "'7<iT)/’ JI(Blk) = /BkITv (k = 17 7K) and J’(Y%) = VZITv (l =
1. L)
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Since the ARMA models, ¢; and €; can be written as
‘I,y,ARCi = ‘I’y,MAVia ‘I,Ik,ARek,i = ‘I’xk,MAek,ia (k = 17 ceey K)
where v; = (vi1, ..., i), €k = (€1, s rir)’

1 0
—pj,1 1

‘I",AR = : B - ) (] = y73717-~-,37K)7
! ~PiLjar T P11

0 —PjLiar " P41 1_

‘I,j,MA = A ' A 1 ) (j:ywrlw‘wa)a
3L A 7,1

0 )‘j,Lj,MA )‘j,l 1 i

we have the following expression

Xpi = x}’;ﬂ- + W, e, (k=1,..,K), (S.40)
K
g = nitr +¥yv; — Z J(ﬁlrilIlwmemJ (S.41)
m=1

where ¥, can be written as

1 0O -+ -+ 0
Yin 1
U= Wima=| g gy . G| U= 8e e Tk), (S.42)
: .. 100
L Yir—1 0 W2 i 1]

Next, let us define observed variables z; and unobserved variable u; as follows:

z; = (yilu-"ayiT7x/]_7i7"' 7X/[(7ivwll7ia”' 7WIL77,')/ = (YQ7X;7W£)/ = (Yszlzi)/a 72 = (X;7Wg)/7

u, = &
’ Ezg,i

/ /
/ / ! / / /
where x; = (X/Li’ s ,XIKJ-) , Wi = (Wll,i’ o 7W/L,i) 7£zz,i = (€x7i7£w,i) 7533,1‘ = ('socl,h e 7‘590;(,@'7) )

/
ﬁxk,i = Sq;z,@ =+ llekek,i’ (k = 17 7K) and Sw,i = (&’lwl,iv U aS{u)L,ia) .

Then, the model (S.39) can be written as

Bz, = p+u; (S.43)
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where

B B I B
. 2= T 2 ) By = [ sz B¥2 } ’
0 I, 0 I, (p1xp2)
1 1 1 1
[0 0] B =[] (8.44)
(p1><pw)
/ / !

(Ny,lv"' 7/‘y,T’p’zla"' ,p’zK) .

p1 =T, po = Pz + pw, pe = TK, py =TL and p = p1 + ps so that p denotes the number of rows

of z;.

Since B is invertible, we have

Z; = Bilu + Bilui.

Therefore, under Assumptions ERR, ME’, X’ and W’, the hypothetical covariance matrix of z;

is given by

H.. (¢)

(pxp)

where

B!
(pxp)

2}’LLU,
(pxp)

Hy, (¥)
(TxT)

H.,y (¥)
(p2xT)

258
(TxT)

2228
(p2xT)

zxka
(TxT)

Ex;;ek
(TXT)

zwle
(TxT)

H.,., (¢)

(p2xp2)

H,, (‘P)
(TKXTK)

- - Hy, (¢) *
= Bl%,,(B Y =] %W (S.45)
“ ( ) H.,y (¢) H.,., ()
B -B;Biz | _|Ir -Bun
0 I, 0 I, ’
Var (w;) = Var (e:) * Liee * ,
Cov (Zgi, Ei) Var (ZQi) 2@5 2Z2Z2
Y. — X,.Bly —BpX.,. + BpX.,., By, (S.46)
e — Hopzy (90) ,12a (5.47)
K K
o2ty + 0,8, + > N Ve, =, . v, 30 (S.48)
r=1m=1
[2;:157 ) Eg;Kav 2241157 ) E{LULE]/ )
K
1 1
Cov(Xpi, €5) = Tazptlp — Sare, W I = S Wy, 3, W, IV (k=1,.., K),
m=1
(S.49)
diag (U:c,’;ek,la T 70—x26k,T) s 2]ekem = diag (Uekem,la T ao—ekem,T) s
(T'XT)
Cov(wyi &) = ownty, (=1,..,L),
H.. (#) *
i Hys () Huyw (#)
[ Hayo () * Huw, (#) *
» o Huw (‘P) = )
(TLxTL)
| Hopeoy (¥) | = P (¥) Huypu, (¥) Huypw, (‘P)




Huy,z, () Huyyap (#)
Hy: (p) = )
TLXTK
() Hoyo (9) - Hupoy (9)
H, . (p) = Exzm;; + \IlmkEekek\Il;k + ‘I’mkE;zek + Ex;;ek \Il;k, (k=1,..,K), (S.50)
(TxT)
Hy, (0) = Sorer + 94,3, 9, (kkm=1,..,K, k#m), (S.51)
(TXT)
Hy. () = zwzx27 (k=1,.,K;l=1,..,L).
(TXT)

The parameters to be estimated in the model are given by
/
¢ = (#1,95)
!/ /! .
where Y1 = (5/7¢/) y P2 = (90/557 90/2287 Qoﬁzev Qolzzzz) with

/ /! !/
6 - (13/77/ ) /3:(517"'761()7 7:(717"'77[/)
/
%b, (¢;7¢lx17 ’¢;K)
/ .
Vi = (P PiLians N s NiLyara) 5 (0= Us T,y T,
2 1/ 2 2 /
(P&‘E - (0—77,0-1},0) y Oy = (UU,17 "'7UU,T)
_ / / / / !
Proe — (Uxfav : 70’x}(avaw1n> T vaLn) )
/
Ozie = (a/meoJxZek) ’ (k =1, ’K)
/ /
Ozin = (szn,la : 7O-$;;’I7,T) » Oxie, = (U:L"Zek,la T 7Ux]tek,T> )
/
Own = (O'wm,la : ya'wm,T) ) (l =1, ...,L)
/ ! / !
Pz (aﬂc*m*ﬂawmaww) )
Oprgr = vech(Bpepr), Oue = vec(Byz), Tww = vech(Byy)

and ¢, includes the variance Var (e ;) and covariances Cov(eg i, erit) for k # r. For instance,

L N _ _ / / / / —
Pee 1s given by ., = O¢e, for K =1, and ¢, = (0'616170'6262,0'6162) for K = 2 where
/
Ocre, — (Ueker,lu ---ao'eker,T) .
Note that ¢, includes the parameters associated with the “coeflicient” of regressors and

latent variables while ¢, includes the variances and covariances of latent variables. In the

following, we consider the identification, estimation and inference of ¢.
C.4 Model after reparametrization

We apply the reparametrization discussed in Section 3.2 to the general case. For this, we consider

a decomposition

b va + 2’01}7
Zerem 2e,ﬂem + 2eremv (’I”, m = 17 ) K)7
Ex;;ek. Sx;;ek + i}x,*;eka (k =1, -'-7K)7
Ex;ix;;l = Er;z,’g@ + E:c;i:r;;‘na (r,m = ]-a cey K),
Wy, 11 0 .
v, = b :[\Iﬁ ' } —(0,...,0,1)
Tk W, 01 Py o M ir = )

S.25



where

. . . - T 2 2
Yoo = dlag( vV ) ;g = diag (O’ O-U,T) ’ = diag ( To,15 0 UU7T_1) ’

. . .. . N

267'5'm = dla‘g ( erem’ ) I 267‘677L = dlag (07 O-e're”m,T) ’ 2€T6 dlag (0-67-6"“17 Tt 08T6m7T_1) )

ExZek = dlag ( xk eku > ) EzZek = dlag (07 szek,T> ) ZmZek = dla‘g (O—le;;ek,l’ ) O—:J:;;ek,Tfl) I
Ograr, 11 T Ozrxr, 1, T—1 Ozrxr, 1T 0 -+ 0 0

Emix;‘n = ' ) ' ' ) Exizr;“n =

Ograx, T—1,1 "' Ogrzr T—1T—-1 Ogzrat, T—1,T 0 -+ 0 0

Ogrzx, T1 " Ogrgx T, T—1 0 0 -+ 0 ograr, 1

and \Il;f% isa T x (T — 1) matrix composed with the first ' — 1 columns of ¥, .
Then, we have

vz, = U3,V +¥5,0 =¥ 5 e+l Err, (8.52)
o, Teren U = U Ne, W, 40, % U = \IlT B W 4o, TETT,
(S.53)
. »*., ol
Ezzekq’;k = E%Gk‘I], +2$Z€kl1126k - [ E e(]; " +Uw?;evaETT' (8'54)

Then, using (S.52), (S.53) and (S.54) in (S.48), (S.49), (S.50) and (S.51), we can derive the
following reparametrized expression:

_ Hy, (9) *
H(0) = [Hmw) H.,., <o>] (5:55)

(pxp)
where
Hyy (0) = 2 EfzgeBIIQ - Blzgzza + B1222222B/127 (856)
(TxT)
szy (9) = 2226 - H2222 (9) /12’ (8.57)
(p2xT)
H,. (0) *
H.,., (p) =
(p22>§p2) L Hoys (0) Hyw (0) ]
[ Hy,o (0) * ]
(TKXTK)
L HwKLEl (0) HxKIK (0) i
[ lezl (9) lexK (0) 1 Hw1w1 (0) *
Hy. (0) = ; Hyw (0) = )
(TLXTK) (TLxTL)
L Hlel (0) HwLﬂﬁK (0) _ HwLwl (0) T HwLwL (9)
with
K
B = olupdp+UiEE e+ Z Vel sr el 304 02 Err, (S.58)
(TxT) r=1m=1
2225 = [Elxlea o E;Ka’ 2{11}167 o EguLe] ’
(p2xT)
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> ol

Soe = Oupiy— |G Z O}, U1, I+ 0nyerr B,
(TXT) 0
(k=1,..,K), (S.59)
Yuwe = medf, (l=1,..L), (S.60)
(TxT)
Hyp (0) = Sprep + W 30 00 430, W0 4+ 9, 3%+ 040, 7B,
(k=1,..,K), (S.61)
Hypo, (0) = Xproe + L35 Ol + o000 mrBrr,  (kom=1,.. K k#m)(S.62)

Hyo () = Suap, (k=1,.,Kl=1,.1L).
(TXT)

and

K K
2 _ 2
oo = Oyrt BrBmTepem T

r=1m=1
Ooe T = —BkOsie,, 7 — § BmTepem,T
Oxran, T = Ocper, T T QUmZek,T + Oxray TT
Ozpzm, 7T — Oepem,T + O—:E’,;x;‘n,TT-

The parameters to be estimated in this reparametrized model are given by

TAYAY
6 = (0),65) (S.63)
! n/ / ! / / .
where 61 = (&', ¢')’, 62 = (065,0225,068,0z222) with
_ 2 */ 2 / *x 2 2 /
055 - (Jm O v U&,T) ) Oy = (Jv,la ceey av,T—l) )
_ */ */ ! / /
0225 = (Umle’ s O gke Twyny 70-1UL77) ’
/
* _ / -
Ore = (Ua?};n U$*6k,angk7gp) , (k=1,..,K),
N /
U;pZek = (UxZek,h e 70':1:;;ek,T71) )
_ */ / ! /
92’222 - (O-x*:p*va.wxv wa) :

for K = 1, and 0., = (0'*’ o o for K = 2 where

€1e17 7 eze? 6152)

O.. is given by 0.

6131

*
exeér

for K = 2 where 0,7 and o3, include distinct 7'(7 +1)/2 — 1 elements of I o and ngxg,
respectively and oz, includes T? — 1 elements of X« sor excluding (7, T') element.

/
— — T — — * *
o = (Teper 15 ) Ocper,T—1), and O grgr = Ty for K = 1and oy« = (0}« i O et O nsas

. . 2
Comparing ¢ and 6, a%T, Outey,Ts Ocyer,T and Ot T N @ are replaced with 01, Opyer,T
. _ . . 2
and O-I1CE1,TT mn 0 When K - 1 SlmllarIYJ O-»U’Ta U{EIS]_,Ta O-Z'Seg,T7 06161,T7 UEQBQ,TJ 06162,T7 O'wT:B’{,TTa
. . 2
Owsay, IT and Ogray,TT I @ are replaced with O-1y Ozier,Ty Omoea, Ty Ozyat,TTs Ozows,TT and

Oz, 7T in 6 when K = 2.35

35Gince there are only six observed moments in the last period t = T, i.e., Oy, 7T, Tuya1,TT, Owows, TT» Tzyzs,TT)
Oyay,TT> Oyzs,TT, three parameters need to be reduced for identification.
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D Linear expression of h,.(0)

In this section, we derive a linear expression of h,.(0) with regard to 6, for the model (S.39)
with (S.40), (S.41) and (S.42) where the hypothetical covariance matrix is given by (S.55).

Let J g, denote either J gk) orJ gk)

unless otherwise stated. Using (S.58), (S.59), (S.60), (S.61),

(S.62) and (S.2), we have

vech (X.¢)

vece (Xz,¢)

vece (Be)
vech (Hy, », (0))

vec (Hy, ,,(0))

02 vech (LTL/T) + D7 (\IlT ® \IIT) oy, + 0'5 7 vech (Epr)

*ZZW (35,98, © 35,90 ) oty

r=1m=1

(tr ®@1Ir)ozry — Jg, @Ir) Urny 1 (‘I’ ® ITl)

(S.64)

. T Oupe T VEC (Er7)

K
- (Jﬁm‘l'* ® ] ) T erem (S.65)
m=1
vec (lenL/'T> = (¢7 @ Ir) Oy (S.66)
2D3Urmy 1 (‘I’T ® IT1> O e, + D7 <\IlT ® Ul ) ol e
+0 s 0r + Oaar 71 vech(Err), (S.67)
Oear, + (‘I’lm ® ‘I’:Tpk) e, t Outax, 77 vec(ErT), (k#m). (S.68)

Using these, we consider the cases with K = 1 and K = 2, respectively. First, we consider the

case with K = 2 and the results for K = 1 will be obtained as a special case of K = 2.
First, note that (S.64), (S.65), (S.66), (S.67) and (S.68) can be written as

vech (286) = Caa 58(01)085 + 085,66(91)0667 (869)
vee (Ewké) = Cﬂﬁka mka(el)azke + kaa,ee(el)gee; (k == 1, 2), (S?O)
vee (Bue) = Cupenrnebupes (=1, L), (8.71)
vech (Hwk:vk (0)) = kawk,ﬂﬁkf(gl)eww + Cﬂck%ﬁﬁ(ol)eze + C:Ekxk,me;;em;;m,’;a (k =1, 2)7
vec (Haya, (0)) = Cayayee(61)87 + Cosar w327 Ozyar
where
o
Cecee(81) = [ vech(urey), DF (@) @), veeh(Brr) |, 0= o3, |
Jg,T
068766(01) = [ D; (Jﬁlqlil ® JﬂllIlj01> ) ]D); (JBQlIleQ @ Jﬁg‘]:llg) 5
0.2161
]D)'—It {(JﬂQ‘IJ:TEQ ® Jﬁl \Ilj;n) + (Jﬁl \IJQTCl ® JBQlIll'z) }j| ’ 0 e = Oce = 02262
0-2162
Copeape(01) = [ (tr@lr), —Jg, @Ir)Urn (‘I’jek ® ITl) :
01277
vec (ETT) ] ’ gfka = U;ZEJC ) (k = 17 2)7
Oxpe,TT
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Corcee(®) = —[ (Il 0wl), 0, (Jp0l,ewl) ],

(
(

Crpercc(01) = — [ 0, (J52@;2®xpl2), J5, 01, @\1/12) }
Cwls,wls = (LT & IT) 5 ewla = Ow;n» (l = 17 ceny L>7
Corrme(®) = [0, 2DFUrp (W, 011), 0 (k=1,2),

Cuponcc(01) = Di (xIﬁ ® Wl ) (k=1,2),

ng.m,ee (01) -

(\IIT ® ol )
|
Copopara; = [ [ T(T+1 /2 1] vech(Err)

Oxpxy,, TT
I Lo A
Cazgarl,a:’z‘x’l‘ [ T2—-1 ] VGC(ETT) s exsxf = [ 2% ] X
Oxoxy, TT
Using (S.70) and (S.71), we have the following expression
[ vec (EHME) [ Cxls,mle(el)exls + Cxla,ee(gl)gee 1
vec (2:1:25) Cmge,zge(gl)ea:gs + sza,ee(gl)eee
vec (211115) = Cwla,w1€0w1€
| vee (Bye) | i CurewreOuwre i
= CZ2€,z26(01)02’28 + sza,ee(el)eee (872)
where
[ Czle,mﬁ(el) 0 0 0 | [ 0m1a ]
0 Cx26,$2€(91> 0 0 0$2€
C22€,z25(01) = 0 0 Cw1a,w15 0 , 0228 — Owlg
L 0 0 0 Cstngs i | G’LULE i
/
CZ2€,€€(01) = [ Céms ee(el) C;vzs ee(al) o - 0 } ) Occ = G-Ze
We also have
[ vech (Hy,4,(0)) | [ Crii,216(01)001e + Coyayee(01)8ee + Cuyay 2t27 0072 |
vee (Hmm (0)) szxl,ee(ol)eee + mel,x;x{O:vSmI
vech (Hzgx (0)) = C:ch:rg,:}cgs(el)exzs + szxz,ee(el)aee + szxg,xgocga:cgaz’z‘
vec (wa(g)) ew:v
L vech (wa( )) | Oww J

= ngzg,zza(el)gzga + CZQZ2,€€(01)066 + 022227232502%(25 (873)

where 0, = vec(Eyz) = Twz, Oww = vech(Eyw) = Tuww,

I Cxlxl,xls(al) 0 0 0 Cxlx1,ee(91)
0 0 0 0 Cooryee(01)
CZ222,ZQE(01) = 0 szxz,xzs(al) 0 0 ) CZQZQ,ee: szzz,ee(el)
0 0 0 0 0
I 0 0 0 0 | I 0 |
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Ca:1:v1,:vfac{ 0 0 0 0 [ 0961961‘

0 Cx2x1,x§x{ 0 0 0 Omgaq

szz2,z§z§ 0 0 szxz,xzx’g 0 0 s 023‘2; = eocgcc;
0 0 0 L,.p. 0 0.2

. 0 0 0 0 Lty L O

Furthermore, note that vec (X,,-) and vech(X,,.,) can be written as

vec (2225) = KT,p2 vec |: Elrle 2;?26 E;Ule e E/st ]
[ K vec (Baye) | [ vec (Z4,0) ]
Kz, vee (Ba,e) vec (Xe,e)
= KT,pz KT,T vec (Zwla) = szs vec (2w15) (874)
| Krrvee (Bu,e) | | vee (Buge) |

where Q.,. = Krp, (Ix4+r @ Krr), and

vech (H,(0))
vech (H,.,(0)) = Ry, p., vech (B2p2) = Rp, pw vec (Hye(0)) (S.75)
vech (Hy, (0))
RTT Ver (Hm;(e))
= sz sPw vec (wa (0))
| vech (Hyw(0))
i vech (Hy, 4, (0)) | | vech (Hy, 4, (0)) ]|
Ry vec (szzl (9)) vec (HCD2$1 (9)>
- Rpx \Pw vech (Hmwz (0)) = QZQZz vech (Hmwz (9)) ’
vec (Hyy(0)) vec (Hyz(0))
vech (Hy,,(0)) i | vech (Hy(0)) |
(S.76)
[ Rpr 0O 0
QZ2Z2 = sz:pw O Ipzpw 0
| 0 0 L, (p.+1)2
Hence, using (S.72) and (S.73) in (S.74) and (S.76), we have
vec (2228) = Q22€ (0225,226(91)0226 + C226,66(01>068) ) (877)

vech (HZQZQ (0)) = QZQZQ (CzQZQ,ZQE(gl)OZQE + CZQZQ,ee(el)eee + CzQZQ,ZQZQHz;z;) . (878)
Using (S.69), (S.77) and (S.78), the hypothetical covariance matrices can be written as

vech (Hy(0)) = vech(Z..) —2D7 (Ir ® Bi2) vec (£.,c) + D (B12 ® Bi2) Dy, vech (H,, ., (0))
= Ay c(01)0c + Ay 20c(01)05c + Ayyee(01)0ce + Ay 2r25(01)05 5,
vec (H,,,(0)) = vec () — (B2 ®1,,) Dy, vech (H,,.,(0))
Ay e(01)020e + Ay ee(01)0ce + ALy ro2(01)0525,
vech (H,2,(0)) = Az 20e(01)020e + Asyzy ce(01)0ce + A,y 2525 (01)02
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Ayy,ea(el) = Cea,aa(el),
Ay ne(01) = —2D% (Ir @ B12) Q1 Coye 2ye (01) + D (B12 @ B12) D, Q2. Coy iy 200 (01),
Ayyec(01) = Ceeree(61) — 2D7 (Ir @ Biz) Q2 Coye e (61)

+D} (Bi2 @ B12) Dy, Qz,2,Coy oy e (61),

Ayy i (01) = D7 (B2 @ Bi2) D), Q20 Cryiy i
Ay e (01) Q2,:Crie 20c(01) — (B12 ® I,,) Dy, Q2,2 Coyzy 20 (01),
Ayee(01) = QueChyeree(01) — (B12 ®@1,) Dy, Q125 Cryzy e (01),
Ay (01) = —(Bra®@1y,)DpyQsyzyCoyiy zses,
Ay 0e(01) = Q12 Cryiy e (01),
Acrpee(01) = Q2y2Cryzpee(61),
A2y (01) = Q2 Clyzyoapis

Using this, we obtain

vech(H,,(0))
h..(0) = Ry p, VeC(HZ2y(0)) = Rp, p, A(01)02 (S.79)
vech(H,,,(80))
where
Ayyﬁswl) Ayy7225(01) Ayy,eewl) Ayy,zijz; (61)
A(01) = AZzy,aa(gl) Azwzza(el) A22y,6e(01) Azzy,zgzg (01) : (S~80)
0 AZQZQ,ZQE(O].) AZQZQ,ee(Bl) A@m,z%*z% (01)
Note that the expression (S.79) has a notable structure that h,,(0) is a linear function of 8y for
a given @1. This will be utilized to derive the closed form solution of @2 below.

The above results are for the case of K = 2. The results for K = 1 are obtained by using
the followings expressions:

Ceceel®1) = DF (35,91, ©359%,), Corcecl01) = — (35,9, @ 91,), 6 =0,

Coocze(01) = diag(Caic,01c(01); Cuncunes s Cwpewre), Oz = (0;1579;}16’ .. 79’wL€)’7
nge,ee(01> = (C/ 0 ...,O)/,

T1E,07 )
Cxwwms(el) 0 0 Cmm,ee(al)
ngzg,zza(al) - 0 o --- 0 ; szzg,ee(gl) = 0 y
0 0 0 0
/
02222,2525 = diag (Cxlwl,w’fﬂﬂf’Ipwpz’Ipw(pw+1)/2)’ 02525 = (egc{mi‘veimc’géuw>
QZ2Z2 = Rpm,pw'

Note that the formulas not mentioned here are identical to those of K = 2.

Finally, we derive (36). When weighting matrix does not depend on unknown parameters,
by using (S.79), the objective function can be written as

QMD(Q) = [gN - hZZ(a)}/WN[éN - hZZ(e)]
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= [5n — Ry, p, A (61) 02] W [y — Ry, p, A (61) 03]
Then, the first-order condition associated with 6- is given by

9Qmp(6)

5. = —2A (61) R, Wnsy +2A(01)R),  WrR,, ,,A (01) 0 =0.
2

P1,P2 P1,P2
From this, we obtain (36) as follows:

0> = [A'(81)R,  WNR,, ,, A (61)] " A(6:1) R, , Wysy =b(6:).

S.32



E Derivation of Jacobian matrix G(0) = oh_.(0)/06’

In this section, we derive the Jacobian G(0) = 0h,,(0)/08" for the model (S.39) with (S.40),
(S.41) and (S.42) where the hypothetical covariance matrix is given by (S.55). To simplify the
notation, we omit “(@)” from H (6)’s and h,, () in this section. Let Jg, denote either J(Blk) or
J (ﬂi) unless otherwise stated.

Recall that H,, = B~ 'X,,B~" and h,, = vech (H,,) = Ry, po A (61) 02. Also, note that
when K =1, 3., and ¥, . can be written as

See = opurth + U + 35 W, X0, W, I + 02 7By,
Exﬁ: = Ux{nL/T - Ex’l‘el ‘IJ;IJ/ﬁl - ‘I’xl Zelel ‘I’;lJ/ﬁl + lee,TTETT
. . . . /
H:plxl (0) = 2:{:’1‘1"1‘ + ‘I’rl 26161 ‘I’g;l + Ex’l‘el ‘ngl + ‘Ilml 290{61 + lexl,TTETTa

and when K = 2, ¥, 3, . and X¥;,. can be written as
See = opurtp + U NV + 35 Wy B, W, T+ T, 0,5, W, T
(35,90, B W, 3, + 35,90, B0, W0, 3G, ) + 02 B,
Toe = Ouigth — Bare, W Iy — W0 B W, T — Wy, 3 0, W, Ty + 00 r7ErT,
Sue = Oagpth — Base, Wi, g, — W, By, W, T — W, 30,0, W) Ty + 00pe 17y
H,p (0) = Sy + Wa,Seo, Wl + 0o, O + W0, S + 0w rrBrr, (h=1,2)
Hopo, (0) = Suser + o0, Ul + 0o 77ETT

where Epr = iri’,. We shall use these to derive the Jacobian of h,, given by

GO =% _[ 097 08, ]_[ 08" oy’ R g (1)
First, we consider dh,,/dd’. By using
dH.. = (dB™")=,B"+B ' (d%,,)B"+B 'S, (dB™")

= -B'(dB)B'%,,B"+B ! (d%,,) B -B'%,,B"" (dB)B™"
= -B'(dB)H..+B ! (dZ,,) B - H,. (dB")B™",

we have
dh., = D} vec (dH;.) = —2D;} vec (B™" (dB) H..) + D vec (B~ (d%,,) B™").

Hence, we have

- _ - =1,..
a5, 2D, vec (B ((%]) sz) + Dy vec <B 25, B , (g ooy K+ L)
0B 0
— _Q}D)Jr B*1 g D+ Bfl Bfl uu
N (sz® )Vec<85j)+ N ( ® )vec( 25, )
where
o
aB EE
OB 0 —— O 2,
2, Bl e | o=
i j 22
0 0 95, 0

S.33



82225 _ 82gu& 827;31@ o --. 0]/
35]' 85J 65] ‘

Since the form of Oh,, /08’ changes depending on whether we allow for a structural break or
not in 4, we consider separately the cases with or without a structural break.
When there is no structural break in §, we have

6hZZ ahzz 8hzz :| _ 1
oh.. — B I oL -
04’ oh.; oh,. Oh..  Oh. ] .
651 662 (9’71 ar}/L
First, note that
0B '
35;2 = (e/K—l-L,j ®Ir), (j=1,..K+1L)

where ex 1 j is a (K + L) x 1 vector whose jth element is one and zeros otherwise. Also, let
8.]%?/85,% = ]I(Tl) = I. Then, 0%,,/06; for the case with K =1 can be obtained from

o 1 . 1 1 < 1
8; = 1V, 3., v, 30 + 3V e, 3, v 1Y
by
0%ee  _ 0, (I=1,..1L),
o
!/
0y _ [0%. o o
8&1 851
s, ) )
685116 - 725’:761@;1}1%)/*‘1’1126161W;1H§})/7
b
08aie _ 0, (I=1,..1L),
M
and 0X%,,,/00; for the case with K = 2 can be obtained from
ox 1 - 1 1 d 1
85&? = 1V, 3, v, 30 3V, 5, v, 1
1 < 1) 1 : 1)
(10, B 90,30+ 3, B, W 1)
8255 1 d 1 1 : 1
5 = 1 W, Se0e, 05,35 + 300, 5, 0, 1
+ (J(ﬁll)\xfmzmqf;;;l)’ + ]1}1)\1'36226261@;1J}311)’) ,
by
0%ee  _ 0, (I=1,..1L),
o
/
0%se  _ [32 e o ... 0],
OB 01 0B
>, ) )
685116 - _Ef"’felql;ll(Tl)/_‘1’1126161W;1H§})/7
02, . 1
aﬁfs = 0,5, U1
82z25 _ |: 62;}15 82,1‘28 O 0 :|/,
0B 0B2 032



azz . 1)
8/8215 = —lI’xl 28162‘:[,.,’22]15—') ’

Oy - (1) : 0
8522 = —Zfﬂsez‘I’/xQHT - ‘I’xzzmezq’gﬁzﬂT :

Next, we consider the case with a structural break. In this case, dh,,/0¢8’ is given by

ahzz 8hzz ahzz 8hzz 8hzz 6hzz
oh.. _ [ apll ag? oyl 9yl o oy } r=t
85/ o ahzz 8hzz ahzz 8hzz ahzz éthz 8hzz 8hzz 9
[ opt o opl ol o oyl oy o) } -

Also, let us define

@ _ | Irw O @ [0 0
Tt 0o 0|’ T 0 Ipp

Note that 935 /08y = 0357 fory" = 12 and 835 /08 = 037 jo~?) = 12, Then, we have

Tl
OBy 2) OBy 2)
q=l I 0 o =0 1% 0], (r=12)
Also, 0%,,,/00; for the case with K =1 and r = 1,2 can be obtained from
e _ 42 g, 5,9, 32 4+ 300, 8., 9,12, (=12
[r] - T["'] r1<eiel 1 51 61 Tr1<ier€e1 1 T[’V‘]’ r=1, )
9B
>
8—? =0, (I=1,..,Lr=1,2),
0,
%! '
P~ | T 00|l =1,
0%, : (2) : (2)r
= B WL I W B WL I, (r=1,2),
083
pS
0 [741]6 = 07 (lzlv .,L;T:1,2),
0,
and 03,,/06; for the case with K = 2 can be obtained from
22 2) : @, 1@g s @y
= I B W, I I B T
2 . 2 2 . 2
+ (H;[l] v, 5, ¥, 30 + Jgjq:mze%lq:;ln(ﬂl’]) ,
0%ee ) : @, 1@g s @
= I WS, W, I + I, B, W T
2 . 2 2 . 2
+ (300, B, LI 10 W, 3, 9,30
b}
0 j]s =0, (I=1,..1L),
0
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0%, _ [ 9. 82;25 -
opy’ opyl o |

ox ' (2) @)

aﬁgfﬁf = e W, Ty — W e U, L,
1

GETQ]E — ‘Il 26261 lIl‘/rl]Ig—‘Z)/

aﬁlr

82225 o 82;316 82;26 0 .. 0 I

ol syl opl ’

62.’?1]6 — ‘I’ 26162 ‘II;QH;?)/

aﬁ;

0%, 2) @)

aﬁ[jf = Yo, WL — W, By, W I
2

Finally, we consider dh,,/dv'. Note that the form of dh,,/01’ is identical regardless of
whether there is a structural break or not in §. Note that dh,,/0v’ can be written as

oy | O, O, LU
where
ahzz 8lllZZ 8]:IZZ
— . e L = L L ] == e
a¢; |: 81/}]',1 aw]’ ; :| ) i ],AR+ J,MA; (j Y, T1, 733K)
8266 82,225
oh,, 1 [ 0% _ 0Xuu o oY
= h B 1 B b = ¢37T 7,7
s~ () ) S| e |
Ojr Oy
aH:m:
0%, [ o) az;m 0 0 ]/ OH.,., 90, 0
awj,r 8¢],r 87/1],7” ’ awj,r ij 0

and 9;, denotes the rth element of ¥, (j = y,1,..., 2k, 7= 1,..., L;).
Note that Let us define ¥; can be written as>0

1 .

‘I’j = ‘I’j,AR‘I’j,MAa (j :y73717~-7$K)7
Wiar = Ir—pjalry — = pjr; apIT L ans
Viva = Ir+XNadlra+ -+ A0, ualrr; a-

Since the differential of W¥; is given by

d¥; = - Lr (AT AR) \Ifjjjm\llj’MA + \I/jj}m (AP, ara),

we have
ow ow;
Jj -1 JAR -1 ] - | -1 ) .
op; ~ ¥4 AR Opi ‘I’j,AR‘I’J,MA = ‘I’j,ARIT,T‘I’j,AR‘I’LMA =Dj AR,
<]7T J?r

36Note that this include AR, MA or ARMA models with any order less than or equal to 7' — 1.
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8‘I’k _1 ow i, MA 1
= <J =W aplr; =Djmar

oNjr AR 0N,
and OW;/0pp, = O®; /0N, = 0 for j # h.
Using

dZ.. = (d¥,) 3, ¥, + ¥, %,, (d¥)
+J5, (A¥s) Be,e, U T + T3, W0, Beye, (AT,) Tj,
+35, (A¥0,) Bese, Ul I, + T3, W0, Bese, (AW,) T,
+5, (A¥s) Be e, U, T, + T3, 0, By, (AT),) T,
+35, (AW 0y) Bepe, Ol I + T3, W0, B, (AW),) T,

we can show that 0X../01;, for the case with K =1 can be obtained from

o0x . .
8p e = Dy,AR,TEUUlI’?g + ‘I,yZ’UUD;’AR’TW
y7r
0Xce . P
apxl - = Jﬁ1 DfEl,ARﬂ“zelel lI’mJﬂl + Jﬁ1‘Il z]6161 D;vl AR r']ﬂp
o . )
O\ = = Dy,MA,TE’UU‘I’; + ‘I’yzvv ;,MAJM
Y,r
0Xee . P
3)\951 - = J51 Dm,MAJ“Eelel ‘IJleﬂl + Jﬁl‘Il Eelelel MA TJ,Bl
and 0X../0v;, for the case with K = 2 can be obtained from
J’
o0 . )
8p e _ Dy,AR,T’EUU‘I’; + \I’yzvy ;,AR,M
y7r
0X e . , ,
W = J,31D961,AR 7"26161‘:0 J . T J,31 ¥, 26161Dx1,AR,rJ61
T1,T
+Js, D9017AR:T‘26162\P202J,/32 +Js, \le226261 Dgcl AR rJ/[J’lv
0x
8p = = JBQDM,AR 7"26262‘1’/ J + JBQlI’ 28262Dx2 ARr /
x2,T
+J, W, EelezD;Q,AR,rJ/ﬁg + Jg, Dz, AR, 7‘26261 ‘Il/ J/ﬁl )
ox . .
2 = = DymarZe¥, + 30D 4,
y7r
15) 3 . P
6/\3:1 - = J51D11,MA,7"26161 ‘Il:clJ,Bl + J/BI\I’ 26161Dm1 MA r']ﬁl
+J61D$1,MA 7"26162‘1’/ J/ﬂg + Jﬁz‘I’ 26261 Dxl MA rJ,Bla
ox . .
a/\m:‘i = Jﬁz sz,MA,T262€2 ‘III.Z’QJIBQ + J/Bz\I’l“z 26262 Dgcg,MA,rJ,ﬁQ

+J61\Il 23162D1’2 MA rJﬁg + Jﬁszz,MA 7”26261 ‘Il/ J,/B1'
Also, by using
d2x16 = 2:1: 1€1 (d‘II/ )JIB1 B |:(d‘I’$1) 28161 ‘Il/ + lI’$1 26161 (d‘I’;cl)] J%’l
~ [(A90,) B, W, + Wy B, (49),)] TG,

dzme = _293362 (d‘I’;cz) Jiﬁz - [(d‘IIIQ) 26261 ‘Il/ + ‘1'3?226261 (d‘I’;n)] J,ﬁl
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0%,,:/0v;, for the case with K =1 can be obtained from

— |:(d‘le2) 26262 lIl?):g + \Il$226252 (dlI’/mZ)i| J/B2

/
CCl,AR,T‘i| Jﬁl )

/ / N / c / /
_ErfelDzl,MA,rJﬁl - |:fo17MA,T‘2€1€1 \Ilml + ‘I,xlzelelDzl,MA,T} Jﬁlu

N / / N / N / !
_2$T61DI1,MA,TJ,31 - [levMAﬂ"Eelel ‘I’a:l + Wy, Eelele1,MA,T] Jﬁl

/
9027MA77’} J52

82z28 — |: 82;15 0 . O :|/
8¢x17r awzl,r
Bue _ 5 p J D S ¥ +W, 3, . D
op = T &rjer Pz ARrY B T z1,AR;r2de1e1 Wy + Way 2ieieg
x1,T
03¢ _ .
Oz v
03z 03 _0
Opy,r OAy,r
and 03,,. /01, for the case with K = 2 can be obtained from
/
02226 _ 82;15 822825 0o --- 0 :| 7
Oy Mjr Oy
ox . . .
5 r1e —EmfﬁD‘{m,ARme& - [Dm,AR,TE@lel‘I"{rl + ‘I’ﬂclzelelDéﬁl,AR,T} J,/B1
T1,T
_Dxl,AR,rzeleQ‘Il/zQJlﬁ27
ox .
ﬁ = _lI’mEelezD;:z,AR,rJlﬁy
03¢ _
a)\ﬂflﬂ"
_Dxl,MA,'r’EeleglII;QJ/IBQa
ox .
a)\;i = _‘Il$1261€2 ;327MA,T’J/BQ’
15) .
Wwir = _‘1’38226261 ;1,AR,r ,617
08ape _ >, D J D ., U +¥, 3. D J
Operr ayeaDay AR By, = (Do, ARr2eses Wy + Was 2iese, Dy, ARy | I,
2,
_DxQ,AR,rzezellIl/xl /517
ox .
a)\:i = =Wy, vacl ,MA,rJlﬂl )
0Bue _ 5 D J D ..U+ 0, 3. D
Mg r = T Hzieaag MArY By 2o, MA;r2deses Wo + Wiy 2icses
25
_sz,MA,rz‘)egel\P;IJ///jla
2N ) N
Opy,r Opy,r OAy,r OAy,r

Finally, 0H.,.,/0v; , for the case with K =1 can be obtained from

OH., .,
6¢I1,T‘
OH,, 2,
apml,r

8Hmlxl 0
81/11‘177‘ ’
0 0

: / : /
DI17AR7T26161 ‘IJ:rl + Wy Yo Dxl,AR,r} + DIELARJ‘
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OHy, 4,
anl,r

O0Hyz, 4,
Opy,r

. / . / . / . ,
D1'17]V[A:T25151 \Ilacl + Wy, e, Dxl,MA,r + DILMA,TEx’{el + Er{elel,MA,m
034z,

=0
OAy,r

and 0H., ., /0v;, for the case with K = 2 can be obtained from

0H.,.,
awj,r

O0Hz, 4,
apxl,r
O0Hg,q,
8,0351 T
[7) = P
Pz,
0H,q0,
0Py
O0Hgz, 4,
Oy
(7] = P
OAgy
O0H 0,
OAgyr
0H.,yq0,
OAgo
OHy, 4,
Apy,r
O0Hg;, 4,
OAy,r

O0H,, 2, § .
8wj,r
OHy,z,  OHgyo, « |
;i r 0,
0 0 0

Dx1,AR,r26161‘I’;1 + ‘I’$126161D;1,AR,J + D$17AR7T2;’1‘61 + Sxfel lm,AR,ra
‘Ilmzelez ;:1,AR,T7

ng,AR,rzeleg ‘Il/x17

{sz,AR,rgezez lIllwg + ‘I’xzzezezD?pg,ARm} + thz,AR,rz;;eg + S:E;egD;Q,AR,ra
|:D-'E1,MA77'2€1€1 lI]:,vl + Wy, z.]6161]:)251,MA,7*} + Drl,MA,TZ/acTel + 233161 ir1,MA,r?

N !
‘IICC2 2616213 MA,r»

1,

: !
DJL’Q,MA,’I‘281€2 ‘I’zl ;

. , . / . , . /
Df?aMAyTZSQGZlIIxQ + ¥, z:6262D9cg,MA,r + DﬂEQ,MA,TZx;eg + 296362 xo,MA,r>

Moy Oy My,  OMa
8py,r 8py,r 8/)1’1,7” apxg,r ,
My,  OMypey Oy,  OHay
OAy,r Oy r Oz r OAgyr '
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F Jacobian for nonlinear least squares problem

We derive the Jacobian for nonlinear least squares criterion, which is used to compute the MD
estimators. First, let us consider the case where the weighting matrix does not depend on 6. In
this case, the objective function can be written as

Qup(0) =r(6)'r (0) (S.81)
where r (0) = W%Z (v —h,, (0)). Then, since the differential of r(0) is given by dr () =
—W}fdhzz (), the Jacobian is given by

_or(0)

3(0) = 55 = ~Wy'’G(6).

Next, let us consider the objective function of the CUMD estimator. Below, we write H..(0) as
H for simplicity except for the final expression. Note that the objective function of the CUMD
estimator can be written as

Qcump (0) = vec(Sy —H) % (H'o@H ') vec(Sy —H) =1(0)'r (0)

1
r@) = 7 (H_l/2 ® H_l/z) vec (Sy — H)
1 _ _ 1 _ _
= v [H V2(Sy —H)H 1/2} = e [H 128 {12 — 1| .
The differential of r(0) is given by
— L -1/2 -1/2
dr(0) = —dvee [H SyH }

= \}ﬁvec [(dH_lﬂ) SNH_l/Q] + \}évec [H_l/QSN (dH_1/2)]

- \;5 [H_I/QSN ® Ip] vee (dH_l/2) T \}5 [Ip ® H_I/QSN} vec (dH—l/Q)
= \;é { [H—1/2SN ® Ip} + [Ip ® H_1/2SN} } vece (dH—1/2) ‘

Let us derive the differential dH /2. Taking the differential of H'?H /2 =H"! yields
(aE2) 2 12 (aH ) = aH ! = —H (dH)H
This is called the Sylvester equation. From this, we obtain

[H2 @1, | vee (aH™2) + |1, @ H™V/2| vec (aH™/2) = — vec [H™! (aH) H!]

or37

vec (dH_1/2> _ { [H—W ® Ip} + [Ip ® H—l/z} }_1 (H™' @ H ) vec[(dH)] .

Hence, the differential can be written as

dr(9) = —%{{H1/ZSN®IP}+[IP®H1/QSNH

3"Note that this involves the Kronecker sum defined by A B=A®IL, +1, B where A and B are n xn
and m X m matrices, respectively.
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X { [H—W ® Ip} + [Ip ® H—l/ﬂ }71 (H™' @ H™!) vec[(dH)]
and the Jacobian is given by

or (6)

06’
_ \}i { [Hz_zl/Q (0)Sy ® Ip} + [Ip ® Hz—zl/Q (9) SN} }

Ao o)+ Lo @)} (B 0) o H 0) G o).

JO) =

However, unfortunately, this expression is not computationally efficient since it involves a com-
putation of the inverse of p? x p? matrix which can be huge for a large p. Therefore, we consider
an alternative expression that avoids the computation of p? x p? inverse matrix.

Consider the spectral decomposition of H,/? (0) given by H,/? (0) = PAP’ where A is a
diagonal matrix whose diagonal components are eigenvalues of HZ_Z1 2 (0), and P is composed of

corresponding eigenvectors with P'P = I,,, which implies P’ = P~!. Then, we have
[H;;/Q ) ® Ip} + [Ip ® H 2 (9)} — [PAP'® L] + [I, ® PAP|
= PoP)AQL +L,oA) (P @P)
and hence the inverse is given by
-1
{ [H;;ﬂ 0)® 1,,} + [Ip © H 2 (0)} } —(PaP)(A®L+LaA) " (P'oP).

Although the middle matrix of the right-hand side is a p? x p? inverse matrix, the computation
is straightforward since it is a diagonal matrix. Consequently, the computationally efficient
expression of the Jacobian matrix is given by

JO) = \}i { {H;;/Z (6) SN P ®P] + {P@H;;/Q 0) SNP]}

< (A®L,+1,®A)" (P'H.! (0) o P'H. (9)) G (0).
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G Additional simulation results

In this section, we provide further simulation results with additional two designs. However, for
completeness, we also include the simulation design used in the main body as Design I with
slight modification of notation.

G.1 Simulation Designs I and II
G.1.1 Data generating process

We consider the following two data generating processes:

(Design I): Yit = byt + B121 5 + YWt + M3 + Gt (5.82)
(Design II): Yit = Myt + 5133>1k,it + 5235;,11 + ywi + 1 + Git (S.83)
where
T = Moyt + Tay i + Kay €1t
Ty = Wagay May it + WagwgMag it + TapMi + Kap €2t
Wit = Wz May it + QwzsMaw,it + Twi-

We assume that the error term (;; follows AR(1) process:

Git = py,1Git—1 +vie, (t=1,...T)

where v;; is independent over i and t with E(vi) = 0 and Var (vy) = 02, 02, = T,

6 ~ U(0.5,1.5), and 7, = 0.5 + (t — 1)/(T — 1) so that T-*3. 7 = 1. Without loss of
generality, we set p,,; = 0. In Design I, there is a single mismeasured regressor while there are
two mis-measured regressors in Design II. Suppose that among the regressors, we cannot observe
Ty, 4, but can observe xy,;; contaminated with measurement error €;

Tig = X4+ €1t

Tt = Tt €2t
The serially correlated measurement errors € ;+ and €z ;+ are generated according to ARMA(1,1)
and MA(2), respectively

€14t = Pry,1€Lit—1 €1t + Agq1€1,00-1, (t=2,..,7)

€0t = €2t + Ay 1€2it—1 + Apy 2€2 -2

with €10 = 0 and €20 = €2, -1 = 0. €14+ and eg;; are jointly generated as

€1,it .. 0 Oerer Oeqen
~ iid ,
€2t 0 Ociez  Uegen

where we set 0e,e, = W (Tejey + Tegey)- Although time series homoskedasticity is assumed for

el and eg j; for simplicity in DGP, we estimate them as if they are heteroskedastic.
Note that this specification allows the case where the true :J:Zﬁ and the measurement error
€t are correlated, which is controlled by g, , for each k.
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We assume that m;; is generated as
mjit = ¢jmj,i’t_1 + 75, (t =2,...T;7 = x1, 22, w)

with m; 0 = 0 and rj; ~ iid(O,J?’j), (j = @1, w9, w). For simplicity, we assume 0371 = 0372 =
J%w =02

For parameter values, we set (81,7) = (1,0.5) for Design I and (f1, 82,7) = (1,1.5,0.5) for
Design II. Other parameters are set as py1 = 0.8, (pz1,1,A21,1) = (0.4,0.2), (Apo,1,Agn2) =
(0.2,0.2), ¢y, = 0.8, ¢y = 04, ¢y, = 02, 7y, = Ty, = Ty = 0.3, Ky, = Kgy = K =
{0,0.3,0.6,0.9}, wypey = \/1/5, Wapzy = V/4/5, Wz, = V1/5, wWuwz, = /4/5 and w = 0.2.
SNR is set at 5.

For the sample size, we consider T" = {5,10,15} and N = {250,500,1000,1500} and the

number of replications is 1,000. Significance level is set at 5%.

In the following, we first provide an explicit formula of H,. ;(6) and then provide formula to
determine the values of 03], 02, Oejers Oepe, aNd T¢ e,
To derive the form of H,, ;(0), we rewrite the model in a vector form as follows

* *
yi = p+B1xi;+ Baxsy,; +ywi + nitr + ¢,
*
X1 = hg i+ T mitr + ke €1,
X9 Wrox Ny i T Wrgxog Ny i T Tao ThHLT T K2y €24t
W; = Wwaz; h:c1,z' + Wwes hw,i + TwnitT

where hjﬂ' = A]’I'j,i, (] = x1,$2,w), Cz = ‘I’yVZ' with ‘Ily = \Ily,MAv €15t = \leleut with \lel =
-1 .
‘]:,ILAR‘IJ:E]_,MA) €2.it = ‘IJJSQeZ,it with ‘lez = \111-2’MA and

-1

1 0
Aj = A(d)) = .
0 —¢; 1
Then, we have
yi = p+ (51 + Wrozy B2 + Wwzy 7) Azcl T i+ w$2$262A1’2 Tpoi t+ ww$27Awrw,i
+B1kz €1t + Bokz,€2t + (14 Ty B1 + Ty B2 + Twy) nitr + Wy vi,
g = nitr+¥,yv, — [1Ps e — BaWa,e0,
X, = AgToi+ ToNilr + K €1t
xg,z’ = Wryzy Ay Ty i+ Weoao A, Croi T TaaMilT + Kzp €24t
X1 = Awlrwl,i + Te MitT + (‘Pm + Ky IT) €1,
X240 = wx2I1A$1r11,i + W:czng:L‘zra:g,i + T MitT + (‘I’xz + EIQIT) €2,
W, = Wz Aat1r:cl,i + ww:czAwrw,i + TwnilT.

Using these expressions, we can derive the following variances and covariances:

Var (yl) = Hyy,i = Uz,xl (51 + Wroxq BQ + wwx17)2 A:v1 A;l + 0'7%,:1:2 (wx2x2/82)2 A$2Alx2
+03,w (Www27)2 AwAéu + B%“ilzelel + 531632522@@2 + 2018262 Ky Xiey e
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+02 (14 T, B1 + Tay B2 + Tw))” bty + ¥y By, ;U
Var(e) = Beei=oppty + Oy 0, W) + 70, B0, W), + B5%,,5c,c, U,
+,3162 (‘I’ 26162 ‘I’/ + lI’xz 2628]_ lI’, )

Var (xfz) = mlA A' xl nLTLT + /ﬁxlEelel,

Va,r (Xg,i) = 0—1%901 CCQCClA A, + Jr , T2 xQxQA A/ :cg ZLTLT + H 26262?

Var (Xl,l) 2x1x1 - rmlA A, rl nLTLT + (llel + ’QﬂﬁllT) 26161 (lIlm + ’imIT)/v

Var (XQ,Z) = 2$2$2 = Uz,xl a:g:z:lA A/ + UT‘ T2 xgsz Al a:g nLTLT7

+ (‘Ilm + HJOCQIT) Yeses (‘I’CEQ + K’$QIT)
Var (w;) = Zypw= ale Way Ag Al + 07 wwwmA Al +T nLTLT
Cov(x24,X1i) = Dgoz = U?wleﬂQxlASClAl + TxlTxQU%LTL/T + (Oy, + by I7) Byey (Uyy + ﬁxQIT)/ ,
Cov (Wi, X1;) = Dyg, = ExlwwxlAanA +Tx1TwJ2LTLT,
Cov (wW;,Xg,) Yz, = UzmwgmclwwmAIIAJE1 + Tx2TwO'nLTL/T,
Cov (Xl,zv Z> = 23516 = TﬂﬁlangLLF - 51 (‘I’l’l + HIIIT) 26181 ‘I’, - 62 (‘Ilzl + Hw11T> 28162 ‘11;27
Cov (X2 iy € z) ECL‘QE = TIQU%LTL’,T - 61 (‘Il:rg + /{:szT) 26162\1], - BQ (‘IJJL“Q + K/IQIT) Z36262 lIlmz?
Cov (wi,€;) = e = Tw0'727LTL/T.

From this, we obtain

sz,z(a) = BilZouB/il (884)
where
[ 25571' * *
Yoe gz * for Design I

211)5 szl zww
S = SR . . (S.85)
;xﬁ Xiza * for Design 11

T2 2x2z1 ZCC2$2 *

E’U)E Ew.ﬁtl wag Eww

Next, to derive the formula to compute the variances, assume that

% tr [Var (ex,)]

% tr [Var (xzzﬂ o

Note that ¢ denotes the relative magnitude of the variance of the measurement error to that of

true regressor. We set ¢; = c¢o = 0.3. Then, after some algebra, we obtain

1 (02, 7 tr [Ag AL ] + 72 02)

Oeiey 1 2371 u )
T tr [\IIII\II ] C1K,
_ @ (Ugm xzxﬂl“tr [A AL ] T:vz zzwzilftr [A A, ]""Twzag)
Oeges

% tr [\IIQD2 \Iffm] coK2,

We set 0cie, = @ (Oeye; + Tege,) Where w = 0.2.
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For simplicity, to derive the formula of 03 and (7,27, we assume that 3, ; = 3, for all ¢. The
average of variance of y;; is given by

T
1 1
T Var (i) = @0, + 02070, + Qwory + a0y + ot (8 Se )
t=1
where
1 Clﬁlﬁx (ﬁlﬁx +2ﬂ2/€m w)
= —tr(Ay, A + w + w 24 L L 2=
q1 T ( T ggl) (61 12z1/82 wa:17) %tr [\I’m‘I’ggl] N 61:%%1
w2, €226 0y (Bakiay + 2B1Ke, @)
7t [, W ] — cor?, ’
1 WQ c?ﬁ?’ix (/82’€x +261’€x w)
= —tr(AnLAL) [(w 2y Trat 2 2 1,
1
Qo = (wwx27)2 T tr (AwA/w) ,
2 2
175 B1kg, (B1Eg, + 280Kz, @ o5 Bokig, (Bokey, + 201K, @
4 = U ( _ = ) + == e { = - ) + (1 + BiTuy + BoTuy +77w)? -
7t (W, Wl ] — k2, 7t (W, Wl | — a2,
If we assume that U%wl = a,%m = U%w = 02, we obtain

1 1
Tt [Var (yi)] = (@ + @2 + qu) 07 + qos + =t (TS0, L)) .

Using this, SNR is defined as

7 i 2o WVar (yalns) — Var (Ga)] 73 [Var (yilmi) — Var (G)]

SNR = —
NT i 2o Var (Git) LS Var (Gr)

_ ptrlVer(yim)] = 70 (900 %)) (a1 + e +4w) o}

7t (U, 3, W) Ftr (U, %,

from which we have

_ SNRx 7 tr (®,%,,%))

2
o S.86
" (¢1 + 92 + qu) (5-86)
We set SNR = 5 and also let
11
2 _ '
or = %Ttr (0,2, %))

G.1.2 Results

Estimation and inference Tables S.1, S.2, and S.3 provide the simulation results of Design
I. Tables S.1, S.2 provide the results for various values of k. From the tables, we find that the
results are very similar regardless the value of k. Table S.3 provides the detailed results for the
case of balanced panel data. Comparing this with that of unbalanced panel data provided in
the main body, we find that the results are qualitatively similar.
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Tables S.4-S.13 provide the simulation results of Design II. From Tables S.4 and S.5, we
find that the CUMD estimator has little bias and reasonably small dispersion for all con-
figurations. Regarding inference, the empirical sizes are close to 5% in most cases. A few
exceptions are the cases with (K,T,N) = (2,15,250) for balanced panel and (K,T,N) =
(2,10,250), (2, 15,250), (2,15,500) for unbalanced panel. In these case, the dimension of the
variable is relatively large compared to the sample size. However, as N gets larger, the empiri-
cal sizes get close to 5% in all cases.

Subsequently, we investigate the performance for the remaining parameters which are pro-
vided in Tables S.6 and S.7. To save space, we only report the result with 7'= 10 and N = 500
with k = 0.3. From the tables, we find that the main parameter of interest, 51, £, and v are
estimated very precisely; the bias is relatively small and the empirical sizes are close to 5% for
most parameters. However, we find that Outerts Oagent and 0¢, ¢, + are somewhat biased with
some size distortions. This is due to the correlation between measurement errors in x1; and
x4, controlled by w. In the current DGP, we set @ = 0.2. However, unreported simulation
results reveal that if we let w = 0, the bias of those parameters disappear and inference is
accurate. However they become more biased and inference becomes more inaccurate if we use
a larger w, say, w = 0.4. Hence, it is conjectured that the correlation between two measure-
ment errors makes the identification of these parameters challenging. Fortunately, this does not
affect the performance of main parameters of interest, 51, f2, and v as shown in Tables S.4
and S.5. Therefore, we need to be careful when investigating ouz1¢, ¢, Ougey t and ey, ¢ With two
mis-measured regressors.

Test for classical measurement error In Tables S.8-S.12, the size and power of the Wald
for the hypothesis Hy : ngﬁk
for k = 1,2 and those of ¢ test for the hypothesis Hy : Ourept = 0 against Ho : ogre, 1 = 0 for
eacht =1,..,T — 1 for k = 1,2. We consider k = Kz, = kg, = {0,0.3,0.6,0.9}. Note that the

case with kK = 0 corresponds to the size and the case with x = {0.3,0.6,0.9} corresponds to the

J— I . * * _ /
= 0 against Hy : Oy =% 0 where Ore, = (Uz;;ek,la ~--,Uz;;ek,T—1)

power.

From the tables, we find that, although the Wald test has correct empirical sizes when T' = 5,
it is slightly size distorted when T = 10 and N = 250. However, it improves as N gets larger.
Regarding the power, the Wald test becomes more powerful as N and/or k increase as expected.
Meanwhile, regarding the ¢ test, we find that the ¢ test has the correct empirical size for all the
configurations and the power of the ¢ test increases as N and/or k increase(s) as expected. For
the effects of the number of mismeasured regressors, we find that the test becomes less powerful
if K is increased from K = 1 to K = 2. However, the test is still reasonably powerful even in
such a case.

Test for no structural break To investigate the performance of the size and power of the
Wald test for a structural break, we consider the following data generating process

1
gy = {1t T X Bl Gy =1 T
it — 2]
My,t+Z£(:1B][§}xk7it+7[2}wit+ni+<ita t=T,+1,...T

where K = 1 for Design I and K = 2 for Design II. We set T} as the integer part of T'/2.
For parameter values of the first period ¢ = 1, ..., T}, we set 8} = (ﬁ{u,vm)’ = (1.00,0.50) for
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K =1and 6l = (5?], g],y[l])’ = (1.00, 1.50,0.50) for K = 2. For the parameter value of the
second period, t = Ty + 1,..., T, we set 82 = 61 + A x ¢ with A = {0.00,0.05,0.10}. Note
that the case with A = 0.00 corresponds to the case with no structural break. We consider
this case to investigate the size property of the Wald test for structural break. The case with
A ={0.05,0.10} corresponds to the case with a structural break. These cases are considered to
investigate the power property of the Wald test. We also set x = 0.3.

The simulation results of the Wald test for a structural break for Design II are provided
in Table S.13. The table shows that the empirical size is close to the nominal level except for
T =15 and N = 250,500. Note that a similar size distortion problem is also observed in the
estimation of 31, B2 and 7 in these cases(Table S.5). Regarding the power, the test is reasonably
powerful when N is larger than 500 and the power increases as N and/or T" and /or A increase(s)
as expected.

G.2 Simulation Design III
G.2.1 Data generating process

As the third simulation design, we consider the data generating process used in Erickson and
Whited (2012), which is given by

yie = p+ By +ywi + G,

*
Tit = Tyt €y
where
* ~%
Tip = Mo+ O Ty,
Wit = Hw + OwWit,

Ty | _ | Oza Oaw V1= pii,
V1= piabi |

T = paTip_q + T, Wit = PuwWit—1 + Sit,

Gt = ocV/1—p2Ga, Git = puGit—1 + Vit,

€t = O\/1— p?ét, €it = pegi,t—l + €it,
Vit = (vt — apby)//aub?2, € = (€ir — aebe)/\/acb?, Tiy = (1t — arbr)/\/arb2, 55 = (s —
ashs)/\/asb?, vy ~ iidGam(ay,by), ey ~ iidGam(ae,be), it ~ iidGam(a,,b,), and s; ~
1idGam/(as, bs) with Gam(a,b) being the gamma distribution with shape parameter a and the

Ozw Oww

scale parameter b. For the generation of AR processes, following Erickson and Whited (2012), we
generate T+ 10 periods and discard the first ten periods to reduce the effect of initial conditions.

This DGP is more restrictive than that of Design I in that (i) the idiosyncratic term (; is
homoskedastic, (ii) measurement error is classical in the sense that x}, and €;; are uncorrelated,
and (iii)the fixed effects are not included. Note that configurations (ii) and (iii) are considered
somewhat restrictive since we obtain empirical results that measurement error is correlated with
the true regressor and that the presence of fixed effects is not rejected.

Erickson and Whited (2012) choose the parameter values carefully so that the simulated data
has higher moments that are close to the real data. Specifically, following Erickson and Whited
(2012), we set 8 = 0.02, v = 0.05, (ay, @e, ar,as) = (0.25,0.023,0.027,0.8) and (by, be, by, bs) =
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(1,1,1,1). For other parameters, we set p, = 0.129, p, = 2.28, p, = 0.18, 0y = 0.978,
ozw = 0.209, oy = 0.978, p, = 0.72, p,, = 0.46. For the value of p, and p., we consider
(pvs pe) = (0.5,0.5). For the computation of o, and o, see Erickson and Whited (2012). For
the sample size, we consider T = {5,10,15}, N = {250, 500, 1000, 1500}. Following Erickson
and Whited (2012), the median bias (Bias), interquartile range (IQR), and median absolute
error (MAE), multiplied by 100, based on 1000 replications, are reported. The nominal size
is set to be 5% and the probability concentration that the estimate is within 20% of the true
value(Pr(|5\— d]/6 < 0.2) where § denotes S or v, is also reported. We report the results for the
cumulant estimator due to Erickson, Jiang and Whited (2014). Specifically, we consider third
or fourth-order cumulants estimator for data in levels or after within-group transformation,
thus considering four variants of the cumulant estimator. The cumulant estimator with third
and fourth-order cumulants for data in levels are denoted as “C3” and “C4,” respectively, and
those with data after within-group transformation are denoted as “C3-WG” and “C4-WG,”
respectively. Note that the performance of C3-WG and C4-WG will not be affected even if fixed
effects are included in DGP, which is not the case for C3 and C4.

G.2.2 Results

Simulation results are provided in Table S.14. From the table, we find that the CUMD estimator
for g and « has little bias, and inference is accurate for all cases but has a large dispersion, making
MAE larger. Furthermore, we find that probability concentration improves as T’ gets larger.

Regarding the cumulant estimators, we find that the C3 and C4 tend to perform (sometimes
substantially) better than C3-WG and C4 FE in terms of bias, IQR, MAE, and probability
concentration and that C3 and C3-WG tend to perform better than C4 and C4-WG. The
former is because the within-group transformation removes data variation. We also find that
the performance for 5 and + is very different, i.e., the performance of v is much worse than that
of B in terms of bias, IQR, and accuracy of inference.

Let us compare the performance of CUMD, C3, and C3-WG. First, with regard to g, from
the table, we find that the CUMD outperforms C3 and C3-WG in terms of bias in all cases.
However, in terms of IQR, MAE, and probability concentration, C3 outperforms CUMD in
many cases. Furthermore, although C3 has a higher probability concentration than CUMD
when T = 5, the difference becomes negligible when T is increased to T = 15. The relative
performance between CUMD and C3-WG depends on T. When T = 5, the C3-WG tends to
outperform the CUMD in terms of IQR, MAE, and probability concentration. However, when
T = 10, the performance of CUMD and C3-WG is comparable, and when T = 15, the CUMD
tends to outperform C3-WG in many cases.

Subsequently, regarding ~, we find that the C3 and C3-WG are substantially biased, and
inference is (sometimes very) inaccurate. Hence, the cumulant estimators for v are unreliable and
cannot be recommended in practice, although C3 has a smaller MAE than CUMD. Furthermore,
in many cases, C3-WG has a larger MAE than CUMD.

In summary, in the current somewhat restrictive simulation design, we find that C3 tends to
perform best and that the performance of CUMD and C3-WG is comparable.
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H Additional empirical results

In Tables S.15, S.16, S.17, estimation results omitted in the main body are provided.
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Table S.1: Simulation results for Design I (K = 1)

Balanced panel

B1=1 v=0.5
T N K Mean SD RMSE  Size Mean SD RMSE  Size
5 250 0 1.028 0.148 0.151 8.8 0.491 0.064 0.065 6.7
5 250 0.3 1.034 0.141 0.145 7.9 0.486 0.064 0.066 6.2
5 250 0.6 1.036 0.137 0.142 6.1 0.485 0.063  0.065 4.5
5 250 0.9 1.031 0.127 0.131 6.4 0.489 0.065 0.066 5.6
5 500 0 1.013 0.119 0.120 7.4 0.494 0.051 0.051 6.9
5 500 0.3 1.019 0.116 0.118 6.9 0.494 0.049 0.049 5.4
5 500 0.6 1.028 0.113  0.117 6.1 0.490 0.049 0.050 5.4
5 500 0.9 1.025 0.109 0.111 5.7 0.492 0.048 0.049 4.7
5 1000 0 1.014 0.099 0.100 6.5 0.495 0.041 0.042 6.2
5 1000 0.3 1.018 0.094 0.096 6.5 0.493 0.040 0.041 5.2
5 1000 0.6 1.024 0.098  0.100 6.7 0.491 0.041  0.042 6.5
5 1000 0.9 1.024 0.097 0.100 7.8 0.491 0.041 0.042 6.3
5 1500 0 1.010 0.084 0.085 6.9 0.496 0.035 0.035 6.3
5 1500 0.3 1.015 0.088  0.089 6.1 0.494 0.036  0.037 5.7
5 1500 0.6 1.013 0.080 0.081 5.4 0.495 0.034 0.035 5.2
5 1500 0.9 1.020 0.085 0.088 6.1 0.493 0.036 0.036 5.9
10 250 0 1.014 0.071 0.073 5.9 0.495 0.037 0.037 6.1
10 250 0.3 1.016 0.068  0.069 5.6 0.493 0.034 0.035 6.2
10 250 0.6 1.021 0.063  0.066 4.9 0.493 0.033 0.033 4.7
10 250 0.9 1.017 0.064 0.066 6.1 0.493 0.034 0.035 5.2
10 500 0 1.009 0.063 0.064 5.8 0.498 0.029 0.029 5.4
10 500 0.3 1.016 0.061  0.063 6.2 0.493 0.029 0.029 5.3
10 500 0.6 1.013 0.056  0.058 6.0 0.494 0.028 0.028 6.3
10 500 0.9 1.016 0.055 0.057 6.1 0.494 0.027 0.028 4.7
10 1000 0 1.005 0.050 0.050 4.7 0.498 0.023  0.023 5.8
10 1000 0.3 1.009 0.049 0.050 5.4 0.497 0.022 0.023 5.4
10 1000 0.6 1.009 0.047 0.048 4.8 0.498 0.022 0.022 5.4
10 1000 0.9 1.012 0.049 0.050 6.7 0.495 0.022 0.023 5.6
10 1500 0 1.009 0.045 0.046 4.6 0.497 0.020 0.020 5.6
10 1500 0.3 1.006 0.044 0.044 6.4 0.498 0.020 0.020 7.2
10 1500 0.6 1.010 0.043 0.044 6.1 0.497 0.020 0.020 6.1
10 1500 0.9 1.009 0.041 0.042 5.0 0.497 0.019 0.019 4.5
15 250 0 1.007 0.046  0.046 4.8 0.498 0.025 0.025 4.4
15 250 0.3 1.010 0.043 0.044 4.9 0.496 0.025 0.025 4.4
15 250 0.6 1.012 0.043 0.045 5.5 0.496 0.024 0.025 4.0
15 250 0.9 1.016 0.042 0.045 6.5 0.493 0.025 0.026 4.9
15 500 0 1.008 0.044 0.044 5.1 0.496 0.021  0.022 49
15 500 0.3 1.009 0.043 0.044 5.7 0.498 0.021 0.021 5.6
15 500 0.6 1.009 0.040 0.041 6.4 0.496 0.021 0.021 4.9
15 500 0.9 1.013 0.038  0.041 5.2 0.495 0.020 0.021 4.2
15 1000 0 1.005 0.036 0.036 4.8 0.498 0.017  0.017 4.0
15 1000 0.3 1.008 0.034 0.035 4.9 0.497 0.016 0.016 3.9
15 1000 0.6 1.008 0.035 0.035 6.1 0.497 0.016 0.016 4.9
15 1000 0.9 1.011 0.033  0.035 6.1 0.496 0.018 0.018 6.4
15 1500 0 1.003 0.031 0.031 4.8 0.499 0.014 0.014 4.7
15 1500 0.3 1.004 0.030 0.030 5.1 0.499 0.014 0.014 5.0
15 1500 0.6 1.006 0.030 0.031 5.9 0.498 0.014 0.014 4.8
15 1500 0.9 1.008 0.029 0.030 4.7 0.497 0.014 0.015 5.0
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Table S.2: Simulation results for Design I (K = 1)

Unbalanced panel

B1=1 =05
T N K Mean StDev RMSE Size Mean StDev RMSE Size
5 250 1.025 0.144 0.146 8.4 0.489 0.064 0.064 6.0
5 250 0.3 1.030 0.131 0.134 6.5 0.488  0.060 0.061 5.4
5 250 0.6 1.037  0.142 0.147 7.1 0.486  0.067 0.068 5.1
5 250 0.9 1.040 0.131 0.136 7.0 0.483 0.064 0.067 5.1
5 500 0 1.021 0.125 0.126 6.7 0.491 0.053 0.054 6.9
5 500 0.3 1.024 0.123 0.125 6.7 0.490  0.055 0.056 6.2
5 500 0.6 1.034 0.118 0.122 5.9 0.488  0.051 0.053 5.2
5 500 0.9 1.038 0.117 0.123 5.2 0.485 0.053 0.055 5.3
5 1000 0 1.015 0.101 0.102 7.7 0.494 0.042 0.042 6.5
5 1000 0.3 1.017  0.100 0.101 6.4 0.493  0.040 0.041 4.9
5 1000 0.6 1.018  0.093 0.095 5.8 0.493  0.040 0.041 5.2
5 1000 0.9 1.027 0.098 0.102 7.2 0.490 0.043 0.044 6.2
5 1500 0 1.008  0.093 0.093 7.3 0.497  0.037 0.038 6.9
5 1500 0.3 1.015  0.092 0.094 6.7 0.494  0.038 0.038 5.6
5 1500 0.6 1.021  0.093 0.095 8.6 0.493  0.038 0.039 7.3
5 1500 0.9 1.022  0.083 0.086 6.4 0.492  0.035 0.036 5.9
10 250 0 1.019 0.072 0.075 5.5 0.493  0.037 0.038 3.2
10 250 0.3 1.019 0.071 0.073 4.0 0.493  0.036 0.037 3.6
10 250 0.6 1.019 0.063 0.066 3.6 0.493 0.036 0.036 3.4
10 250 0.9 1.021  0.063 0.066 5.4 0.493  0.035 0.035 3.1
10 500 0 1.008  0.065 0.065 5.2 0.497  0.030 0.031 5.8
10 500 0.3 1.017  0.064 0.066 5.7 0.494  0.030 0.031 5.6
10 500 0.6 1.018 0.060 0.063 6.0 0.495 0.029 0.030 4.9
10 500 0.9 1.019 0.059 0.062 5.2 0.493  0.029 0.030 4.4
10 1000 0 1.008  0.054 0.055 5.3 0.497  0.025 0.025 5.8
10 1000 0.3 1.009  0.055 0.055 6.0 0.497  0.025 0.025 5.8
10 1000 0.6 1.012 0.050 0.051 5.3 0.495 0.024 0.024 5.0
10 1000 0.9 1.015  0.050 0.052 5.5 0.494 0.023 0.024 5.2
10 1500 0 1.005  0.047 0.048 4.6 0.498  0.021 0.021 6.0
10 1500 0.3 1.009  0.046 0.047 4.1 0.497  0.021 0.022 4.9
10 1500 0.6 1.012  0.045 0.047 5.4 0.495 0.021 0.021 5.6
10 1500 0.9 1.013  0.045 0.047 5.5 0.496  0.021 0.021 4.4
15 250 0 1.009  0.037 0.038 0.2 0.497  0.023 0.023 0.1
15 250 0.3 1.011 0.038 0.039 0.4 0.496 0.024 0.024 0.3
15 250 0.6 1.011  0.035 0.037 0.3 0.496  0.022 0.022 0.1
15 250 0.9 1.013  0.033 0.035 0.1 0.496  0.023 0.024 0.0
15 500 0 1.009  0.045 0.046 3.9 0.497  0.023 0.023 2.8
15 500 0.3 1.009 0.043 0.044 2.9 0.496 0.023 0.023 3.4
15 500 0.6 1.012  0.044 0.045 5.1 0.495  0.023 0.024 3.9
15 500 0.9 1.015  0.043 0.046 4.9 0.494 0.023 0.024 4.1
15 1000 0 1.005 0.039 0.039 5.0 0.498 0.018 0.019 4.6
15 1000 0.3 1.009 0.040 0.041 5.8 0.496 0.020 0.020 6.4
15 1000 0.6 1.011  0.039 0.040 6.1 0.496  0.020 0.020 7.0
15 1000 0.9 1.012  0.037 0.039 5.9 0.495 0.019 0.019 4.4
15 1500 0 1.006 0.036 0.037 4.8 0.497  0.017 0.017 5.4
15 1500 0.3 1.008 0.035 0.036 4.1 0.497  0.016 0.017 5.5
15 1500 0.6 1.009  0.033 0.034 5.1 0.496  0.016 0.017 4.3
15 1500 0.9 1.011  0.033 0.035 3.8 0.496  0.017 0.017 5.4
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Table S.3: Detailed simulation results for Design I (K =1, T = 10, N = 500, x = 0.3)

Balanced panel data

Parameter True Mean SD RMSE  Size Parameter True Mean SD RMSE  Size
y 030 0483 002 019 53  encs o5 040 0z o 79
Yy .5 . . . 5. Ox*eq,2 . . . . .
Py,1 0.80 0.802 0.041 0.041 6.8 az%q,g 0.45 0.442 0.203 0.203 7.2
Paq 1 0.40 0.394 0.071 0.072 8.3 Trter d 0.45 0.440 0.208 0.208 5.6
Azp1 0.20 0.202 0.065 0.065 8.9 Tzter 5 0.45 0.440 0.224 0.224 7.4
Ug 1.01 1.009 0.259 0.259 3.8 Trter 6 0.45 0.449 0.231 0.231 6.7
"g!l 0.50 0.467 0.488  0.488 7.9 Txter,7 0.45 0.446 0.238 0.238 6.2
0'12),2 0.61 0.581 0.261 0.262 7.6 Txter 8 0.45 0.453 0.252  0.252 6.1
Ou3 0.72 0.688 0.263  0.266 9.4 Txter,9 0.45 0.453 0.285 0.285 7.0
0314 0.83 0.797 0.263  0.265 7.4
012,,5 0.94 0.908 0.295 0.297 9.3 Own,1 0.30 0.302 0.143 0.143 4.6
0376 1.06 1.032 0.305 0.306 8.2 COwn,2 0.30 0.286 0.168 0.169 6.0
0317 1.17  1.120 0.318 0.321 6.4 Own,3 0.30 0.288 0.177  0.177 6.6
o2 s 1.28 1249 0.322 0323 6.4 Cwn.a 0.30 0290 0.182 0.182 5.7
0379 1.39 1.367 0.360 0.361 6.5 Cwn,5 0.30 0.279 0.180 0.182 6.0
Own,6 0.30 0.287 0.180  0.181 5.0
Outn,1 0.30 0.298 0.226  0.226 6.8 Own,7 0.30 0.283 0.182 0.183 5.3
Tutn,2 0.30 0.291 0.263 0.263 6.6 Own,8 0.30 0.288 0.183 0.184 6.1
Oxin,s 0.30 0.282 0.277 0.278 6.2 Own,9 0.30 0.290 0.182 0.183 5.8
Oxin,a 0.30 0.280 0.281 0.282 5.5 Own,10 0.30 0.289 0.184 0.184 4.9
Oxin,5 0.30 0.277 0.281 0.282 4.6 031,1 1.49 1.521  0.389 0.390 8.2
Txin,6 0.30 0.281 0.285 0.286 5.7 031,2 1.49 1.514 0.317 0.319 6.5
Txin,7 0.30 0.288 0.281 0.281 4.9 03173 1.49 1.507 0.329 0.330 6.6
Oz%n,8 0.30 0.280 0.288 0.289 4.8 02174 1.49 1.518 0.338 0.339 6.6
Oz%n,9 0.30 0.275 0.286 0.288 5.8 03175 1.49 1.513 0.359 0.360 8.0
Ttn,10 0.30 0.268 0.287  0.289 5.4 03176 1.49 1516 0.346 0.347 6.3
ol . 1.49 1526 0.366 0.368 6.9
051,8 1.49 1.507 0.387 0.388 7.3
ol 1.49 1.493 0.391  0.391 5.4
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Table S.4: Simulation results for Design II (K = 2)

Balanced panel

B1=1 B2 = 1.5 v=05
T N K Mean SD RMSE  Size Mean SD RMSE  Size Mean SD RMSE Size
5 250 1.003 0.232 0.231 5.3 1.507 0.240 0.240 6.6 0.50 0.10 0.10 4.8
5 250 0.3 1.010 0.232 0.232 6.5 1.527 0.235 0.236 7.1 0.49 0.10 0.10 5.2
5 250 0.6 1.000 0.216 0.216 6.2 1.542  0.237 0.241 6.4 0.50 0.10 0.10 5.6
5 250 0.9 1.001 0.211 0.211 6.5 1.550 0.236 0.242 6.6 0.49 0.11 0.11 3.6
5 500 0 1.010 0.218 0.218 7.6 1.502 0.234 0.234 7.7 0.49 0.09 0.09 6.1
5 500 0.3 1.018 0.209  0.209 7.2 1.500 0.229 0.229 7.3 0.49  0.09 0.09 5.8
5 500 0.6 0.989 0.210 0.210 9.8 1.526 0.234  0.235 8.0 0.50  0.09 0.09 6.2
5 500 0.9 0.996 0.198 0.198 6.8 1.554 0.231 0.237 7.0 0.49 0.09 0.09 5.1
5 1000 0 1.030 0.185 0.187 6.3 1.482 0.218 0.219 7.7 0.49 0.07 0.07 6.2
5 1000 0.3 1.003 0.191 0.191 7.8 1.498 0.200 0.200 6.1 0.50  0.07 0.07 7.6
5 1000 0.6 1.010 0.178 0.179 6.0 1.510 0.194 0.195 7.0 0.49  0.07 0.07 6.7
5 1000 0.9 1.003 0.177 0.177 5.7 1.535 0.208 0.211 7.1 0.49 0.07 0.07 4.6
5 1500 O 1.019 0.169 0.170 5.6 1.488 0.205 0.205 7.7 0.50  0.06 0.06 6.3
5 1500 0.3 1.003 0.164 0.164 5.9 1.499 0.187 0.187 6.2 0.50  0.06 0.06 4.8
5 1500 0.6 1.002 0.162 0.162 6.4 1.501 0.179 0.179 6.6 0.50  0.06 0.06 6.3
5 1500 0.9 1.005 0.161 0.161 6.0 1.528 0.183  0.185 6.2 0.49  0.07 0.07 7.3
10 250 0 0.999 0.098 0.098 4.0 1.509 0.104 0.105 4.6 0.50 0.06 0.06 4.6
10 250 0.3 0.997 0.089  0.089 4.4 1.512 0.101  0.102 4.9 0.50 0.05 0.05 4.2
10 250 0.6 0.999 0.082 0.082 3.6 1.518 0.091 0.093 3.5 0.50 0.05 0.05 3.9
10 250 0.9 0.995 0.072 0.072 3.6 1.518 0.083  0.085 3.4 0.50 0.05 0.05 2.4
10 500 0 1.007 0.104 0.105 5.7 1.501 0.105 0.105 4.0 0.50 0.05 0.05 5.3
10 500 0.3 1.003 0.095 0.095 5.5 1.508 0.101  0.101 5.4 0.50  0.05 0.05 5.6
10 500 0.6 0.993 0.091 0.091 6.1 1.517  0.099 0.101 6.4 0.50 0.04 0.04 4.4
10 500 0.9 0.996 0.079  0.079 4.7 1.516 0.093  0.094 5.1 0.50 0.05 0.05 3.7
10 1000 O 1.003 0.086 0.086 6.1 1.502 0.096 0.096 6.2 0.50 0.04 0.04 5.5
10 1000 0.3 1.005 0.085  0.085 5.5 1.505 0.094 0.094 5.1 0.50 0.04 0.04 5.4
10 1000 0.6 0.999 0.081 0.081 5.6 1.511  0.089 0.090 5.6 0.50 0.04 0.04 4.8
10 1000 0.9 0.996 0.078 0.078 5.6 1.516 0.086  0.087 4.7 0.50 0.04 0.04 4.3
10 1500 O 1.004 0.078 0.078 5.0 1.503 0.090 0.090 5.3 0.50 0.03 0.03 4.2
10 1500 0.3 1.000 0.078 0.078 5.6 1.506 0.086  0.086 4.9 0.50 0.03 0.03 5.5
10 1500 0.6 1.006 0.072 0.072 5.2 1.500 0.082  0.082 5.7 0.50 0.03 0.03 4.9
10 1500 0.9 0.998 0.069 0.069 4.1 1.513 0.084 0.085 5.7 0.50  0.03 0.03 4.1
15 250 0 1.001 0.056 0.056 1.3 1.504 0.059 0.059 2.1 0.50 0.04 0.04 1.6
15 250 0.3 0.998  0.052 0.052 1.7 1.509 0.053 0.054 1.5 0.50 0.03 0.03 2.7
15 250 0.6 0.998 0.047  0.047 1.4 1.511 0.052 0.053 2.4 0.50 0.03 0.03 1.3
15 250 0.9 0.998 0.039 0.039 1.5 1.510 0.043  0.044 1.0 0.50  0.03 0.03 1.3
15 500 0 1.001 0.066 0.066 5.0 1.505 0.071  0.071 4.8 0.50  0.03 0.03 4.6
15 500 0.3 0.999  0.065 0.065 4.2 1.509 0.066 0.067 4.3 0.50 0.03 0.03 4.8
15 500 0.6 0.998 0.057  0.057 4.4 1.512 0.065 0.066 5.2 0.50 0.03 0.03 3.3
15 500 0.9 0.995 0.053 0.053 4.7 1.519 0.058 0.061 3.5 0.50 0.03 0.03 3.4
15 1000 O 1.006 0.059 0.059 5.3 1.498 0.069 0.069 4.4 0.50 0.03 0.03 3.9
15 1000 0.3 1.003 0.056 0.056 3.9 1.503 0.063 0.063 4.8 0.50 0.03 0.03 5.6
15 1000 0.6 0.999 0.052  0.052 4.5 1.506 0.062  0.062 4.8 0.50 0.03 0.03 5.2
15 1000 0.9 0.998 0.050 0.050 5.0 1.513  0.057 0.058 4.1 0.50 0.03 0.03 4.7
15 1500 O 1.004 0.053 0.053 5.0 1.501 0.064 0.064 5.5 0.50  0.02 0.02 3.7
15 1500 0.3 1.005 0.052 0.052 4.9 1.498 0.060 0.060 5.4 0.50 0.02 0.02 4.6
15 1500 0.6 1.002 0.049 0.049 5.1 1.505 0.057  0.057 4.5 0.50  0.02 0.02 4.5
15 1500 0.9 0.999 0.047  0.047 5.1 1.511 0.055 0.056 5.1 0.50  0.02 0.02 3.9
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Table S.5: Simulation results for Design II (K = 2)

Unbalanced panel

B1=1 B =1.5 v=05
T N K Mean StDev RMSE Size Mean StDev RMSE Size Mean StDev RMSE Size
5 250 1.009 0.245 0.245 7.3 1.520 0.246 0.247 6.5 0.490 0.110 0.110 5.1
5 250 0.3 1.012 0.237 0.237 6.8 1.507  0.236 0.236 7.2 0.498  0.108 0.108 5.4
5 250 0.6 0.997 0.213 0.213 6.0 1.543 0.223 0.227 4.8 0.494 0.104 0.104 4.2
5 250 0.9 0.998 0.197 0.197 6.0 1.547 0.241 0.245 6.6 0.491 0.104 0.105 4.1
5 500 0 1.014 0.226 0.226 5.8 1.514 0.235 0.235 7.7 0.490 0.094 0.095 7.1
5 500 0.3 1.002  0.220 0.220 6.6 1.522  0.235 0.236 6.7 0.494  0.095 0.095 5.8
5 500 0.6 1.014  0.200 0.200 5.8 1.531  0.225 0.227 6.0 0.492  0.087 0.088 5.2
5 500 0.9 0.990 0.201 0.201 6.6 1.554 0.240 0.246 6.7 0.492 0.090 0.090 4.0
5 1000 0 1.021 0.195 0.196 7.1 1.486 0.220 0.221 7.1 0.494 0.076 0.077 5.0
5 1000 0.3 1.019 0.185 0.186 7.3 1.492  0.200 0.200 7.6 0.494 0.074 0.074 5.8
5 1000 0.6 1.010 0.190 0.190 7.9 1.517  0.210 0.210 7.7 0.491  0.076 0.076 5.7
5 1000 0.9 1.008 0.182 0.183 6.6 1.531 0.201 0.203 6.6 0.490 0.079 0.079 5.7
5 1500 O 1.018 0.176 0.176 5.9 1.489  0.202 0.202 7.3 0.495  0.065 0.066 5.9
5 1500 0.3 1.008 0.174 0.174 6.3 1.500 0.204 0.204 7.7 0.498  0.065 0.065 6.4
5 1500 0.6 1.007  0.169 0.169 5.7 1.504  0.203 0.203 8.9 0.496  0.066 0.066 5.9
5 1500 0.9 0.996 0.163 0.163 5.8 1.526  0.200 0.202 7.4 0.498  0.065 0.065 5.7
10 250 0 1.004  0.095 0.095 1.3 1.509  0.091 0.092 0.9 0.495 0.054 0.054 0.9
10 250 0.3 0.999  0.080 0.080 0.8 1.509  0.085 0.085 0.9 0.498  0.051 0.051 0.7
10 250 0.6 0.998 0.076 0.076 1.1 1.512 0.081 0.082 0.8 0.500 0.052 0.052 1.4
10 250 0.9 1.000 0.065 0.065 1.0 1.520 0.070 0.073 0.3 0.497  0.050 0.050 1.0
10 500 0 1.005 0.105 0.105 4.7 1.504 0.112 0.112 5.9 0.496 0.051 0.051 4.1
10 500 0.3 1.000 0.097 0.097 5.3 1.515 0.103 0.104 4.2 0.495  0.048 0.048 3.8
10 500 0.6 0.998 0.088 0.088 4.8 1.520 0.097 0.099 4.4 0.496 0.048 0.048 3.7
10 500 0.9 0.994  0.079 0.079 5.2 1.521  0.091 0.093 3.3 0.499  0.048 0.048 3.8
10 1000 O 1.009 0.088 0.089 4.5 1.501  0.101 0.101 5.1 0.497  0.040 0.040 5.3
10 1000 0.3 1.001  0.088 0.088 5.2 1.508  0.095 0.096 6.0 0.498  0.041 0.041 5.2
10 1000 0.6 0.996 0.085 0.085 6.4 1.516 0.093 0.094 4.3 0.498 0.039 0.039 3.8
10 1000 0.9 0.996  0.078 0.078 5.0 1.523  0.090 0.093 4.8 0.497  0.041 0.041 3.9
10 1500 O 1.001  0.085 0.085 5.5 1.502  0.095 0.095 5.4 0.500  0.036 0.036 4.8
10 1500 0.3 0.999 0.084 0.084 5.3 1.507  0.090 0.091 4.5 0.499  0.036 0.036 4.1
10 1500 0.6 1.000 0.081 0.081 6.0 1.512  0.086 0.087 5.2 0.497  0.036 0.036 5.0
10 1500 0.9 1.000 0.074 0.074 5.7 1.519  0.085 0.087 4.2 0.497  0.036 0.036 4.0
15 250 0 1.000 0.025 0.025 0.0 1.504  0.027 0.027 0.0 0.499  0.019 0.019 0.0
15 250 0.3 1.000 0.020 0.020 0.0 1.503 0.023 0.023 0.0 0.499 0.017 0.017 0.0
15 250 0.6 0.999 0.019 0.019 0.0 1.503  0.021 0.021 0.0 0.500 0.018 0.018 0.0
15 250 0.9 1.000 0.016 0.016 0.0 1.502  0.018 0.018 0.0 0.499 0.017 0.017 0.0
15 500 0 1.000 0.062 0.062 1.0 1.503  0.066 0.066 0.5 0.499  0.036 0.036 0.8
15 500 0.3 0.999 0.058 0.058 0.5 1.508 0.063 0.063 0.8 0.498 0.034 0.034 0.7
15 500 0.6 1.000 0.053 0.052 0.7 1.510  0.057 0.057 0.9 0.495  0.033 0.033 0.7
15 500 0.9 0.997 0.044 0.044 0.5 1.516  0.054 0.057 0.5 0.498  0.034 0.034 0.6
15 1000 O 1.005  0.062 0.062 3.5 1.504 0.073 0.073 4.9 0.497  0.031 0.031 4.6
15 1000 0.3 1.000 0.063 0.063 4.9 1.509 0.066 0.066 4.7 0.497 0.031 0.031 3.7
15 1000 0.6 1.000 0.057 0.057 5.8 1.512  0.063 0.064 4.9 0.498  0.031 0.031 4.1
15 1000 0.9 0.998  0.051 0.051 3.6 1.516  0.059 0.061 3.8 0.498  0.030 0.030 3.4
15 1500 O 1.004 0.063 0.063 6.2 1.504  0.068 0.069 4.7 0.498  0.028 0.028 5.1
15 1500 0.3 1.003  0.059 0.059 5.3 1.506  0.064 0.064 4.2 0.497  0.028 0.029 5.0
15 1500 0.6 1.003  0.053 0.053 5.1 1.506  0.059 0.060 5.2 0.497  0.027 0.027 5.0
15 1500 0.9 0.998  0.050 0.050 4.6 1.514  0.056 0.058 4.1 0.498  0.027 0.027 3.5
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Table S.6: Detailed simulation results for Design II (K =2, T'= 10, N = 500, x = 0.3)

Balanced panel data

Parameter True Mean SD RMSE  Size Parameter True Mean SD RMSE  Size

B 1.00  1.003 0.095 0.095 55 Tugennt 012 0159 0126 0132 7.5
B 150 1.508 0.101 0.101 5.4 Tagens2 012 0157 0.116 0122 7.8
v 050 0.498 0.047 0.047 5.6 Tagenss 012 0160 0.120 0127 87
Py 080 0.801 0.048 0.048 6.9 Tagent 012 0159 0124 0130 9.5
Par 040 0.394 0.085 0.085 82 Tagenss 012 0161 0.129 0135 82
Aei 020 0203 0.106 0.106 88 Tagenss 012 0158 0.130 0136 7.5
Azat 020 0.195 0.055 0.056 8.9 Tagen,t 012 0162 0.132 0139 9.3
Ag.2 020 0.199 0.041 0041 7.7 Tagenss 012 0156 0.142 0147 7.9
o2 059 0568 0.294 0.295 3.0 Tages9 012 0160 0.144 0150 7.0
02, 050 0519 0.465 0465 7.4
02, 061 0.601 0268 0.268 7.0 Cum1 0.8 0.171 0.081 0.081 49
024 072 0.723 0291 0291 9.3 Cum,2 0.8 0.167 0.087 0.087 4.6
o2, 083 0.815 0294 0295 87 T3 0.18 0.168 0.092 0.093 52
025 094 0943 0318 0318 88 Cuma 0.18 0.175 0.095 0.095 52
o2 1.06  1.057 0330 0330 7.6 Cums 0.8 0.175 0.099 0.099 4.5
02, 117 1142 0347 0348 85 Cum,6 018 0171 0.101 0101 5.0
o2s 128 1.267 0381 0381 9.4 Cum,7 0.8 0.176 0.097 0.097 3.9
024 1.39  1.371 0401 0402 8.4 Cum s 018 0.175 0.099 0.099 5.3
Tuwn,o 0.8 0.175 0100 0.100 4.6
Tatni 018 0170 0.124 0125 4.9 Tum, 10 0.18 0.173 0.098 0.098 4.6
Tatna 018 0.174 0.149 0.149 54 o2 0.53 0478 0373 0377 83
Oans 018 0.174 0.145 0.145 3.9 o2 o 0.53 0484 0.382 0.385 104
Grina 018 0179 0.151 0151 45 o2 5 0.53 0475 0.386 0.389 11.2
Tatns 018 0.180 0.155 0.155 5.0 o2 4 0.53 0473 0392 0396 11.0
Tatns 018 0177 0.156 0156 3.7 o2 s 0.53 0475 0.396 0.399 104
Tatnt 018 0.180 0.154 0.154 52 o2 s 0.53 0.468 0.378 0383 9.2
Tutns 018 0179 0.158 0.158 4.4 o2 0.53 0.494 0.368 0369 7.2
Tatn 018 0174 0.157 0157 5.1 02 s 0.53 0474 0.399 0403 9.0
Tatn10 018 0177 0.153 0153 5.4 02 o 0.53 0.487 0450 0452 8.2
Turern 016 0224 0236 0245 7.9 02,1 039 0359 0.148 0.152 83
Tuter2 016 0237 0214 0228 10.1 02 5 0.39 0355 0.147 0152 10.0
Tuters 016 0243 0213 0229 89 025 039 0352 0151 0157 9.3
Tutera 016 0.236 0228 0240 10.7 024 039 0354 0.154 0159 83
Tuters 016 0238 0230 0243 9.4 o2 5 039 0345 0.155 0.162 83
Tuters 016 0241 0224 0239 96 026 0.39 0353 0.160 0.165 8.4
Turerr 016 0232 0222 0233 7.5 o2, 039 0353 0.165 0170 88
Toters 016 0239 0238 0251 9.5 025 039 0359 0171 0175 8.0
Tater 9 016 0.243 0249 0263 87 020 039 0354 0.183 0187 58
Oerent 018 0230 0.164 0170 9.7
Tagni 018 0.170 0.110 0.110 4.2 Oeren2 018 0238 0.174 0182 10.6
Tasnz 018 0.172 0.106 0.106 3.6 Oerer.3 0.8 0237 0.177 0184 118
Tasns 018 0173 0.102 0102 3.4 Oerenit 018 0241 0173 0182 122
Tusna 018 0.177 0.105 0.105 5.8 Oererss 0.8 0241 0.179 0188 124
Tasns 018 0177 0.108 0108 4.7 Oerenss 018 0241 0.174 0.182 10.0
Tasns 018 0.174 0.106 0.106 5.3 Oerens 018 0232 0.170 0.176 8.6
Tasnt 018 0173 0.110 0.110 58 Oerers 018 0238 0174 0182 98
Tusns 018 0.180 0.102 0.102 3.8 Oerenso 018 0234 0207 0213 10.0
Tasno 018 0.178 0.109 0.109 5.4
Tagn10 018 0172 0.108 0108 5.7
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Table S.7: Detailed simulation results for Design II (K =2, T'= 10, N = 500, x = 0.3)
Unbalanced panel data

Parameter True Mean SD RMSE  Size Parameter True Mean SD RMSE  Size
B1 1.00 1.000 0.097 0.097 5.3 Oufen,1 0.12 0.162 0.131 0.138 8.9
B2 1.50 1.515 0.103 0.104 4.2 Tahes,2 0.12 0.162 0.120 0.128 9.2
0 0.50 0.495 0.048 0.048 3.8 Ou%es,3 0.12 0.161 0.124 0.131 7.7
Py,1 0.80 0.801 0.055 0.055 6.8 Oufen,d 0.12 0.159 0.127 0.134 7.7
P11 0.40 0.392 0.094 0.094 7.1 Ou%es,5 0.12 0.163 0.141 0.148 8.9
Azi1 0.20 0.207 0.113 0.113 7.2 Ou%es,6 0.12 0.157 0.139 0.144 5.7
Aol 0.20 0.191  0.057 0.057 6.5 Ouken,T 0.12 0.157 0.152 0.157 7.3
Azy,2 0.20 0.200 0.044 0.044 6.8 Ouses,8 0.12 0.162 0.164 0.170 7.9
o% 0.59 0.558 0.453 0.454 4.0 Ou%es,9 0.12 0.155 0.176 0.179 4.8
012) 1 0.50 0.529  0.600 0.600 6.7
o2, 061 0614 0284 0284 64 T, 018 0.176 0.077 0077 38
03:3 0.72 0.724 0.291 0.291 8.4 Own,2 0.18 0.175 0.089 0.089 3.9
0'5 4 0.83 0.842 0.302 0.302 7.5 Own,3 0.18 0.169  0.095 0.095 3.8
0375 0.94 0.937 0.339 0.338 7.1 Cwn,4 0.18 0.172 0.101 0.101 4.3
012)76 1.06  1.037 0.361 0.361 7.6 Own,5 0.18 0.172 0.103 0.103 5.2
012)!7 1.17  1.156  0.406 0.406 8.5 Own,6 0.18 0.173 0.106 0.106 4.7
012)’8 1.28 1.283 0.418 0.418 7.4 Own,7 0.18 0.172 0.105 0.105 4.7
012):9 1.39  1.362 0.462 0.463 8.4 Own,8 0.18 0.172 0.111 0.111 5.6
Own,9 0.18 0.177 0.113 0.113 6.1
Ot 0.18 0.172 0.131 0.132 5.5 Own,10 0.18 0.171  0.115 0.115 4.5
Ogrn,2 0.18 0.174 0.156 0.156 4.8 ‘731,1 0.53  0.467 0.409 0.413 8.7
Oxin,s 0.18 0.171  0.156 0.156 4.6 o5 2 0.53 0.472 0.385 0.390 11.1
Oxin,a 0.18 0.166 0.160 0.161 4.7 o3 0.53 0.472 0.392 0.396 10.3
Outn,5 0.18 0.176  0.162 0.162 4.0 054 0.53  0.459 0.403 0.409 11.3
Outn,6 0.18 0.175 0.165 0.164 3.8 0315 0.53 0.486 0.428 0.430 9.4
Outn,T 0.18 0.178 0.164 0.164 4.3 021’6 0.53 0.455 0.435 0.441 10.7
Ozin,8 0.18 0.174 0.171 0.171 3.7 031,7 0.53 0.451 0.471 0.478 11.3
Tx1n,9 0.18 0.176  0.180 0.180 4.9 031’8 0.53  0.482 0457 0.459 8.3
Oatn,10 0.18 0.174 0.178 0.178 4.3 U31,9 0.53 0.482 0.528 0.530 8.7
Ogter 1 0.16  0.227 0.250 0.259 7.4 032,1 0.39 0.355 0.146 0.151 7.9
Tater,2 0.16 0.246 0.223 0.239 10.7 0'22,2 0.39 0.355 0.153 0.157 10.3
Oxter,3 0.16  0.252 0.235 0.253 11.8 052,3 0.39 0.357 0.156 0.161 7.4
Outer d 0.16  0.243 0.231 0.246 9.7 032’4 0.39 0.347 0.160 0.166 8.7
Outer,5 0.16  0.231 0.258 0.268 9.9 03%5 0.39 0.355 0.167 0.172 7.4
Outer,6 0.16  0.250 0.255 0.270 10.5 o, 6 0.39 0.355 0.182 0.186 8.3
Oxter,T 0.16 0.253 0.255 0.271 9.1 0'22,7 0.39 0.354 0.193 0.197 9.0
Oxter,8 0.16  0.232 0.270 0.280 9.0 052,8 0.39 0.356 0.201 0.204 7.3
Outer,9 0.16  0.239 0.297 0.307 7.9 0,0 0.39 0.349 0.222 0.226 5.8
Oeqes,l 0.18 0.228 0.172 0.178 9.0
Ousn,1 0.18 0.173 0.118 0.118 4.8 Oeqes,2 0.18 0.237 0.172 0.180 11.3
Ouzn,2 0.18 0.170 0.111 0.111 5.3 Oeqes,3 0.18 0.236 0.176 0.183 10.0
Ousn,3 0.18 0.173 0.112 0.112 5.5 Oeqes,d 0.18 0.244 0.185 0.194 12.4
Tin,4 0.18 0.171 0.112 0.112 6.1 Ocqes,5 0.18 0.244 0.190 0.199 10.5
Tzin,5 0.18 0.172 0.113 0.114 4.6 Ocies,6 0.18 0.246 0.198 0.207 11.3
T2%n,6 0.18 0.176 0.116 0.116 4.7 Ocqen,T 0.18 0.243 0.214 0.222 11.8
Oain,T 0.18 0.180 0.115 0.115 3.5 Ocien,8 0.18 0.236 0.210 0.216 10.0
Ozn,8 0.18 0.178 0.124 0.124 4.4 Oeies,9 0.18 0.244 0.244 0.251 9.0
Oz5n,9 0.18 0.174 0.125 0.125 4.5
Tazn10 0.18 0174 0129 0129 43
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Table S.8: Size and power of ¢t and Wald tests for testing classical measurement error for Design
I(K=1)

Balanced panel data

Wald t test for Hy $0gte,t =0, (t=1,2,..,T—-1)

T N K Oute; 1 2 3 4 5 6 7 8 9

5 250 0 7.7 7.8 6.0 6.6 5.2

5 250 0.3 43.5 18.2 32.0 25.0 16.7

5 250 0.6 93.3 39.1 78.2 66.8 54.0

5 250 0.9 99.5 58.7 95.4 91.9 83.7

5 500 0 6.6 7.3 5.8 7.0 5.7

5 500 0.3 64.3 21.1 50.7 39.9 29.2

5 500 0.6 99.6 52.5 94.7 89.0 80.3

5 500 0.9 100.0 79.0 99.7 99.2 96.9

5 1000 0 4.5 6.3 3.7 5.8 5.7

5 1000 0.3 89.6 35.5 74.3 62.9 47.9

5 1000 0.6 100.0 77.5 99.5 98.6 95.2

5 1000 0.9 100.0 96.0 99.9 99.9 99.9

5 1500 0 4.9 5.3 5.1 5.7 4.9

5 1500 0.3 98.3 47.3 87.9 80.0 66.8

5 1500 0.6 100.0 89.7 100.0 100.0 99.7

5 1500 0.9 100.0 99.2 100.0 100.0 100.0
10 250 0 12.1 8.5 6.9 9.9 7.5 8.1 8.7 8.1 7.6 7.8
10 250 0.3 89.4 30.0 48.6 47.8 45.9 40.2 40.0 36.9 33.3 28.7
10 250 0.6 100.0 75.2 92.9 91.3 88.4 87.9 85.2 82.5 81.0 70.0
10 250 0.9 100.0 93.7 99.7 99.7 98.8 99.1 98.2 97.6 96.5 93.7
10 500 0 8.0 7.1 7.4 5.0 5.6 7.5 7.7 6.8 7.0 6.8
10 500 0.3 99.4 45.9 72.3 68.1 63.0 58.4 58.5 53.6 51.8 43.9
10 500 0.6 100.0 93.1 99.8 99.2 99.4 98.2 97.4 96.1 95.6 91.1
10 500 0.9 100.0 99.6 100.0 100.0 100.0 100.0 100.0 99.9 100.0 99.9
10 1000 0 5.5 6.7 5.1 5.3 5.7 5.4 6.1 5.4 6.6 5.2
10 1000 0.3 100.0 72.4 92.5 89.2 88.1 83.1 81.8 77.5 74.8 67.5
10 1000 0.6 100.0 99.6 100.0 100.0 100.0 100.0 99.9 99.9 99.7 99.2
10 1000 0.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10 1500 0 5.3 6.8 6.6 5.6 5.1 5.1 5.5 5.3 5.1 5.4
10 1500 0.3 100.0 84.9 98.9 97.2 96.3 93.7 92.5 89.3 86.7 80.7
10 1500 0.6 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 99.7
10 1500 0.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table S.9: Size and power of ¢t and Wald tests for testing classical measurement error for Design
II(K=2)

Balanced panel data

Wald t test for Hp : Oxter,t =0, (t=1,2,..,T—-1)
T N K Oute 1 2 3 4 5 6 7 8 9
5 250 0 4.8 4.6 5.6 5.5 3.3
5 250 0.3 14.1 9.8 14.7 135 11.7
5 250 0.6 33.0 176 29.5 27.6 19.9
5 250 0.9 54.4 30.4 46.6 41.4 349
5 500 0 4.9 5.5 5.7 5.5 4.5
5 500 0.3 17.8 13.0 18.7 154 14.3
5 500 0.6 42.7 28.0 387 36.4 33.6
5 500 0.9 64.7 44.1 60.7 55.6 49.2
5 1000 0 3.9 4.1 6.1 4.9 5.1
5 1000 0.3 22.8 18.1 23.8 24.7 21.5
5 1000 0.6 56.5 38.8 57.0 551 454
5 1000 0.9 83.1 61.2 80.7 76.1 684
5 1500 0 5.9 8.1 7.3 7.2 6.9
5 1500 0.3 32.3 24.7 35.6 30.6 29.8
5 1500 0.6 68.5 52.4 70.3 66.4 60.5
5 1500 0.9 92.9 77.8 92.0 88.9 83.5
10 250 0 12.2 7.3 7.5 8.5 8.4 8.5 6.7 7.8 7.2 6.9
10 250 0.3 40.0 224 23.0 226 239 232 21.1 20.1 20.7 186
10 250 0.6 80.5 40.9 489 485 472 453 46.8 449 423 389
10 250 0.9 96.7 59.7 732 726 69.5 69.0 686 656 64.7 56.0
10 500 0 8.4 7.2 6.8 6.4 6.4 6.8 7.0 7.7 6.8 7.6
10 500 0.3 42.4 23.2 304 294 272 298 26.6 258 249 23.7
10 500 0.6 89.0 54.6 69.9 68.6 64.0 63.1 59.8 61.8 57.8 56.6
10 500 0.9 99.3 80.8 90.5 &88.8 888 86.0 879 824 832 752
10 1000 0 5.9 8.2 7.1 5.9 6.6 7.0 6.9 6.7 7.1 5.0
10 1000 0.3 53.4 34.4 449 429 43.1 424 428 383 38.3 34.0
10 1000 0.6 96.0 76.2 86.3 87.1 85.1 835 81.6 82.1 80.0 74.2
10 1000 0.9 100.0 95.9 98.6 98.8 976 98.0 972 971 96.2 93.1
10 1500 0 5.9 5.6 6.9 6.3 5.8 5.9 5.8 6.4 5.8 5.2
10 1500 0.3 60.4 42.2 51.4 533 49.1 49.6 486 49.8 46.9 43.1
10 1500 0.6 99.4 88.5 949 939 949 934 936 915 89.9 87.1
10 1500 0.9 100.0 99.0 99.7 99.8 999 99.8 99.3 99.3 994 97.9
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Table S.10: Size and power of t and Wald tests for testing classical measurement error for Design
II (K =2)

balanced panel data

Wald t test for Ho : 0436, = 0,(t =1,2,...,T = 1)

T N K Ouses 1 2 3 4 5 6 7 8 9
5 250 0 4.6 6.0 5.1 6.1 2.8

5 250 0.3 19.1 15.2 16.4 15.7 8.0

5 250 0.6 57.9 35.3 42.6 37.7 26.3

5 250 0.9 83.5 56.8 71.7 64.7 50.2

5 500 0 4.3 5.9 4.8 4.7 2.7

5 500 0.3 28.5 20.5 25.8 21.2 13.0

5 500 0.6 70.0 50.2 58.8 55.3 41.1

5 500 0.9 92.9 7T 87.0 84.0 75.0

5 1000 0 5.5 5.3 4.3 5.1 4.3

5 1000 0.3 40.8 31.1 34.1 31.6 25.2

5 1000 0.6 84.5 66.7 76.3 73.6 63.5

5 1000 0.9 97.2 90.7 94.6 92.8 88.6

5 1500 0 6.3 6.6 5.3 5.7 3.7

5 1500 0.3 44.7 33.7 40.5 37.4 32.5

5 1500 0.6 90.9 77.8 85.5 81.9 77.3

5 1500 0.9 99.3 96.6 98.8 97.6 96.1

10 250 0 7.4 8.8 7.1 7.8 7.9 7.6 7.6 8.1 6.9 6.1
10 250 0.3 49.9 25.1 25.9 24.3 23.8 23.5 23.3 21.5 21.1 17.2
10 250 0.6 97.3 60.4 66.6 64.4 60.2 61.4 58.0 53.2  50.6 48.1
10 250 0.9 100.0 88.8 94.6 93.1 91.2 88.6 87.1 86.0 83.0 80.5
10 500 0 6.3 6.1 5.9 6.0 6.7 6.8 7.5 7.9 5.9 6.8
10 500 0.3 61.6 31.7 35.5 35.7 33.6 33.3 30.8 29.3  26.6 24.5
10 500 0.6 99.0 76.9 84.8 83.5 80.5 78.1 75.8 75.1 75.5 64.5
10 500 0.9 100.0 97.8 99.3 98.5 97.9 98.0 97.0 96.0 95.3 94.8
10 1000 0 4.9 6.4 5.6 5.2 5.4 6.6 7.1 5.8 6.7 4.8
10 1000 0.3 78.3 47.2 51.1 49.5 50.8 48.0 43.1 44.9  39.2 37.6
10 1000 0.6 99.9 93.9 95.8 96.7 95.3 94.3 94.0 92.4 90.0 86.9
10 1000 0.9 100.0 99.9 100.0 100.0 99.9 99.8 99.7 99.9 99.5 99.5
10 1500 0 5.0 5.3 5.4 7.3 5.1 5.3 6.0 4.7 5.8 4.0
10 1500 0.3 87.4 59.1 63.1 65.8 62.0 59.2 57.8 55.3 524 49.9
10 1500 0.6 100.0 98.5 98.8 98.3 98.1 97.5 97.4 97.0 94.6 94.1
10 1500 0.9 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 99.9 100.0
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Table S.11: Size and power of ¢t and Wald tests for testing nonclassical measurement errors for
Design II (K = 2)
Unbalanced panel data

Wald t test for Ho : 0426, =0,(t =1,2,..,T = 1)
T N K Oute 1 2 3 4 5 6 7 8 9
5 250 0 3.2 3.3 4.7 5.0 4.0
5 250 0.3 13.2 11.3 14.5 129 9.1
5 250 0.6 31.7 204  29.0 25.7 20.8
5 250 0.9 52.0 28.8 44.6 424 343
5 500 0 3.3 5.2 4.9 3.6 3.6
5 500 0.3 20.2 144 189 16.5 13.1
5 500 0.6 41.7 25.1 40.8 38.0 30.1
5 500 0.9 63.7 40.2 60.1 54.9 475
5 1000 0 3.4 4.6 7.1 6.2 5.8
5 1000 0.3 22.2 16.0 259 21.1 19.3
5 1000 0.6 55.1 42,5 573 53.6 46.1
5 1000 0.9 81.2 60.0 784 754 67.7
5 1500 0 5.5 5.6 7.7 4.3 5.7
5 1500 0.3 28.6 19.5 30.3 27.1 229
5 1500 0.6 66.3 48.3 67.8 63.1 55.3
5 1500 0.9 87.5 71.3 86.7 84.3 T7.7
10 250 0 4.8 4.2 3.6 3.7 4.5 4.1 2.8 3.1 3.4 2.9
10 250 0.3 18.4 10.6 124 129 11.5 11.8 10.6 10.1 7.6 6.9
10 250 0.6 49.7 22.5 303 31.8 28.2 232 219 220 189 152
10 250 0.9 73.5 38.0 499 464 429 422 364 36.8 29.8 23.0
10 500 0 7.9 7.7 7.1 8.3 6.0 7.6 6.7 7.0 7.0 4.9
10 500 0.3 40.4 21.7 293 293 263 244 257 233 196 188
10 500 0.6 81.8 51.5 64.2 61.3 60.7 52.6 50.6 514 483 43.8
10 500 0.9 97.0 72.8 85.6 86.5 814 782 760 734 682 638
10 1000 0 7.7 6.8 7.4 8.2 6.1 7.0 7.1 7.0 6.1 5.4
10 1000 0.3 48.4 33.5 41.1 405 39.2 357 358 352 319 28.1
10 1000 0.6 94.0 725 836 81.6 798 751 73.1 739 67.7 628
10 1000 0.9 99.4 92.6 975 97.0 96.0 94.7 919 91.2 91.1 84.6
10 1500 0 5.4 6.9 6.1 6.9 6.6 6.1 6.8 5.5 5.3 6.8
10 1500 0.3 55.3 40.0 53.3 479 435 43.7 409 39.5 374 347
10 1500 0.6 97.1 84.3 91.8 92.8 87.7 88.1 856 823 798 70.3
10 1500 0.9 100.0 98.0 994 99.1 989 989 979 972 96.1 92.6
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Table S.12: Size and power of t and Wald tests for testing nonclassical measurement errors for
Design II (K = 2)
Unbalanced panel data

Wald t test for Ho : 043e,0 =0, (t =1,2,...,T — 1)
T N K Ousey 1 2 3 4 5 6 7 8 9
5 250 0 5.6 7.1 4.8 6.1 3.2
5 250 0.3 18.7 14.2 16.4 14.1 6.8
5 250 0.6 54.1 33.7 42.9 36.9 241
5 250 0.9 81.4 54.9 68.3 63.4 44.2
5 500 0 4.8 5.5 5.9 5.0 3.1
5 500 0.3 30.6 21.3 26.2 21.7 13.8
5 500 0.6 67.0 51.1 58.1 52.5 41.1
5 500 0.9 92.7 76.1 87.3 81.9 70.8
5 1000 0 6.1 5.5 4.5 7.4 3.9
5 1000 0.3 37.9 25.7 32.3 33.3 24.0
5 1000 0.6 82.8 63.4 75.5 68.8 59.5
5 1000 0.9 97.8 90.3 94.8 91.9 88.5
5 1500 0 6.0 5.6 6.2 6.1 4.2
5 1500 0.3 46.0 36.2 42.5 35.2 30.1
5 1500 0.6 86.8 75.7 83.4 78.7 71.8
5 1500 0.9 98.0 94.7 97.6 94.7 93.6
10 250 0 2.8 3.8 2.7 4.4 3.8 3.8 4.3 4.5 3.1 2.9
10 250 0.3 23.8 13.2 14.4 16.7 14.1 12.3 10.8 11.7 8.8 7.3
10 250 0.6 75.9 38.8 44.2 43.5 38.6 354 339 30.1 232 178
10 250 0.9 93.5 64.8 73.3 71.8 69.4 63.9 60.3 55.7 475 39.0
10 500 0 6.8 7.4 5.5 7.0 6.7 6.5 6.3 5.3 5.7 6.3
10 500 0.3 57.0 30.2 36.2 34.9 31.1 29.6 25.6 241 228 199
10 500 0.6 98.5 75.9 80.3 82.6 78.5 76.0 69.2 62.5 59.0 57.2
10 500 0.9 99.7 95.1 97.9 98.1 97.4 95.5 93.7 92.0 88.6 86.8
10 1000 0 4.0 5.2 5.5 5.9 5.6 5.4 4.2 5.0 6.2 3.7
10 1000 0.3 75.2 46.0 50.4 49.2 43.0 427 381 36.6 329 29.8
10 1000 0.6 99.8 92.8 96.5 95.3 93.9 90.9 89.0 859 828 774
10 1000 0.9 100.0 99.8 100.0 100.0 99.7 99.6 99.9 98.8 98.9 97.3
10 1500 0 4.5 5.0 5.7 5.8 5.9 5.5 6.0 5.6 6.9 6.1
10 1500 0.3 82.7 54.3 62.4 59.1 53.8 519 46.6 445 41.1 37.1
10 1500 0.6 99.9 97.0 98.3 98.0 97.1 95.9 94.7 949 89.7 874
10 1500 0.9 100.0 99.7 100.0 100.0 100.0 100.0 99.9 99.7 99.9 98.8

Table S.13: Size and power of Wald test for no structural break for Design II (K = 2)

balanced panel data unbalanced panel data
A= A=

T N 0.00 0.05 0.10 0.00 0.05 0.10
10 250 5.1 18.9 60.0 1.2 5.4 27.4
10 500 6.3 339 89.3 51 274 79.4
10 1000 5.3 B8.7 99.7 5.0 52.2 97.9
10 1500 5.6 774  100.0 51 65.4 99.4
15 250 1.7 159 79.6 0.0 0.0 0.9
15 500 5.6 43.9 97.3 0.8 11.1 57.3
15 1000 5.5 729  100.0 4.1 575 98.9
15 1500 4.3 88.0 100.0 55 74.8 99.9
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Table S.14: Simulation results for Design III (Unbalanced panel)

B Y
CUMD C3 C4 C3-WG  C4-WG CUMD C3 C4 C3-WG C4-WG
T =5 N =250
Bias (x100 -0.001 -0.169 -0.232 -0.288 -0.517 0.085 0.513 0.940 1.299 2.074
IQR (x100 0.855 0.357 0.567 0.781 1.153 2.787 2.210 2.182 2.613 2.555
MAE (x100) 0.432 0.237 0.264 0.375 0.556 1.399 1.142 1.246 1.571 2.098
Size (%) 8.4 7.0 8.1 3.5 5.1 8.0 15.6 30.3 26.8 56.5
Pr(b(d) < 0.20) 47.1 71.8 62.6 51.7 43.0 36.3 44.8 41.9 32.4 24.6
T =5, N =500
Bias (x100 0.006 -0.102 -0.162 -0.201 -0.361 0.020 0.318 0.632 0.938 1.665
IQR (x100 0.792 0.275 0.309 0.578 0.961 2.487 1.581 1.564 2.207 2.239
MAE (x100) 0.396 0.159 0.190 0.287 0.375 1.239 0.796 0.887 1.265 1.695
Size (%) 8.6 4.6 7.8 4.5 5.1 8.3 14.8 27.9 25.4 59.9
Pr(b(d) < 0.20) 50.6 87.1 77.9 61.2 51.7 40.9 60.5 55.7 40.1 30.8
T =5, N =1000
Bias (x100) 0.024 -0.064 -0.107 -0.142 -0.216 -0.011  0.166  0.377 0.633 1.076
IQR (x100) 0.759 0.199 0.163 0.369 0.506 2.272  1.080 1.020 1.510 1.740
MAE (x100) 0.379 0.113 0.124 0.207 0.234 1.130 0.555 0.588 0.894 1.140
Size (%) 8.8 5.0 6.8 3.8 5.1 8.8 12.5 23.8 18.8 53.3
Pr(b(d) < 0.20) 52.1 97.0 93.5 75.5 65.9 45.0 76.0 72.9 56.4 46.0
T =5 N =1500
Bias (x100 0.017 -0.036 -0.083 -0.113 -0.143 -0.012 0.122  0.299 0.442 0.711
IQR (x100 0.680 0.161 0.153 0.311 0.323 2.107 0.859 0.829 1.273 1.385
MAE (x100) 0.339 0.084 0.103 0.162 0.161 1.069 0.430 0.459 0.695 0.812
Size (%) 9.7 4.7 6.6 1.1 4.8 9.2 10.3 20.3 19.4 45.5
Pr(b(8) < 0.20) 567  99.0  97.2 82.1 77.6 481 871 847 65.7 58.5
T =10, N =250
Bias (x100 -0.005 -0.151 -0.260 -0.227 -0.489 0.017 0.547 1.008 1.241 2.033
IQR (x100 0.420 0.282 0.535 0.540 0.931 1.473 1.482 1.462 2.114 1.752
MAE (x100) 0.209 0.177 0.286 0.278 0.510 0.732 0.843 1.097 1.438 2.036
Size (%) 3.2 6.3 8.2 71 5.3 3.0 19.8 41.5 34.4 71.5
Pr(b(d) < 0.20) 78.4 81.7 62.8 63.0 40.9 61.4 57.6 45.2 35.6 21.1
T =10, N =500
Bias (x100) -0.009 -0.108 -0.171 -0.185 -0.398 0.000 0.285 0.723 0.771 1.668
IQR (x100) 0.430 0.198 0.300 0.332 0.713 1.347 1.204 1.240 1.575 1.638
MAE (x100) 0.215 0.132 0.182 0.213 0.404 0.674 0.632 0.805 0.971 1.668
Size (%) 5.0 3.9 6.1 3.7 3.5 4.8 17.1 39.3 28.5 70.6
Pr(b(d) < 0.20) 80.2 92.5 76.4 76.1 49.6 67.5 70.5 59.7 51.0 28.7
T =10, N = 1000
Bias (x100 -0.005 -0.071 -0.112 -0.135 -0.241 0.015 0.180 0.391 0.589 1.230
IQR (x100 0.390 0.144 0.145 0.234 0.448 1.261 0.854 0.838 0.993 1.273
MAE (x100) 0.197 0.089 0.121 0.156 0.251 0.632 0.451 0.494 0.682 1.238
Size (%) 5.7 3.6 6.9 2.9 5.7 6.4 16.7 31.6 23.6 70.1
Pr(b(d) < 0.20) 82.2 99.0 92.1 87.8 65.7 72.5 86.0 80.7 68.8 39.3
T =10, N = 1500
Bias (x100 -0.010 -0.052 -0.088 -0.101 -0.184 0.030 0.084 0.275 0.408 0.892
IQR (x100 0.356 0.120 0.117 0.196 0.303 1.142 0.702 0.647 0.918 1.055
MAE (x100) 0.178 0.074 0.098 0.133 0.187 0.574 0.354 0.393 0.535 0.898
Size (%) 6.0 4.4 6.8 2.9 4.6 5.9 13.0 23.7 21.2 64.1
Pr(b(d) < 0.20) 85.7 100.0 96.7 94.8 76.3 75.6 93.9 92.3 79.1 54.8
T =15, N =250
Bias (x100) -0.032 -0.161 -0.277 -0.223 -0.515 0.065 0.532  0.967 1.139 1.902
IQR (x100) 0.246 0.273 0.518 0.433 0.776 0.938 1.362 1.412 1.740 1.515
MAE (x100) 0.127 0.188 0.298 0.252 0.521 0.466 0.780 1.010 1.251 1.902
Size (%) 0.8 6.7 6.9 6.8 4.8 0.1 26.0 47.8 38.6 76.2
Pr(b(d) < 0.20) 90.7 82.1 60.0 67.2 41.8 79.3 61.3 49.5 41.7 22.3
T =15, N =500
Bias (x100 -0.033 -0.117 -0.187 -0.168 -0.362 0.085 0.350 0.733 0.789 1.665
IQR (x100 0.284 0.176 0.337 0.271 0.658 0.983 1.049 1.040 1.305 1.299
MAE (x100) 0.146 0.128 0.194 0.182 0.374 0.521 0.582 0.802 0.884 1.665
Size (%) 1.5 4.2 6.5 3.4 4.2 1.2 22.9 46.7 35.9 81.8
Pr(b(d) < 0.20) 90.7 93.9 73.6 80.9 52.4 80.9 74.0 62.1 56.0 24.4
T =15, N = 1000
Bias (x100 -0.022 -0.075 -0.119 -0.129 -0.253 0.033 0.186  0.447 0.483 1.239
IQR (x100 0.250 0.126 0.152 0.189 0.389 0.863 0.752 0.705 0.841 1.030
MAE (x100) 0.121 0.088 0.124 0.142 0.256 0.434 0.374 0.504 0.566 1.239
Size (%) 2.6 3.4 6.5 3.4 4.2 2.4 18.8 37.2 28.5 78.6
Pr(b(d) < 0.20) 94.0 98.9 89.6 92.9 67.5 88.2 89.4 84.6 75.5 39.6
T =15, N = 1500
Bias (x100) -0.008 -0.063 -0.100 -0.102 -0.190 0.029 0.132 0.353 0.459 1.025
IQR (x100) 0.250 0.112 0.114 0.151 0.280 0.810 0.584 0.575 0.754 0.860
MAE (x100) 0.125 0.076 0.104 0.111 0.200 0.416 0.326 0.393 0.512 1.025
Size (%) 3.8 3.9 5.4 2.3 5.3 3.6 14.4 34.4 27.9 76.8
Pr(b(d) < 0.20) 94.5 99.7 95.2 96.9 77.1 89.0 96.7 93.2 84.3 48.9
Note: b(d) = |37 4|/6 where ¢ denotes (3 or 7. S.62



Table S.15: Estimation result of investment equation for 2002-2016

parameter coef. s.e. parameter coef. s.e.
Bl 0.0057***  (0.0006) Cov(xhpoa, €2002)  -3.3638"*  (1.4004)
B 0.0056***  (0.0006) Cov(xho0s, €2003)  -2.4065"*  (1.0052)
A1 -0.0006 (0.0035) C’ov(x2004, e2004)  -3.1172°**  (1.0367)
412 0.0096***  (0.0024) Cov(xhpos, €2005)  -2.0123**  (0.8839)
Py, 0.5727***  (0.0205) Cov(x5006, €2006) -1.7319** (0.8542)
[t 1.0129"**  (0.0213) Cov(x5007, €2007)  -1.2772 (0.8248)
Azy 1 -0.77677**  (0.0626) Cov(z500s, €2008)  -1.5196™ (0.7963)
)\1172 -0.0303™" (00150) ’U(LE;OOQ, 62009) -1.7122*" (07842)
U(J,';Olo, 62010) -2.3385** (1,0037)
Var(n) 0.0002***  (0.0000) Cov(z5011, €2011)  -2.2943%" (0.9416)
Va?“(’vzo()z) 0.0013*** (00001) 0(183012, 62012) -2.3171*" (09368)
Va’l“(vgoog) 0.0006*** (0.0001) U(IEOB, 62013) -2.8099** (1,1486)
Var(v2004) 0.0006™** (00001) U(.T;OM, 62014) -1.5277*" (0.7471)
Var(v200s) 0.0006™**  (0.0001) Cov(z5015, €2015) -1.8965"" (0.7437)
T(U2006) 0.0008*** (0.0001)
7"(1)2007) 0.0006*** (00001)
T(vzo()s) 0.0007*** (0.0001) CO’U(wzooz, 77) 0.0004™* (0.0002)
T(Uzoog) 0.0005*** (0.0001) CO’U(’wzoog, 77) 0.0006*** (0,0001)
7‘(1}2010) 0.0004*** (00001) COU(’LUQQ(M, 77) 0‘0006*** (00002)
Var(v2o11) 0.0004™**  (0.0000) Cov(w2005,M) 0.0006™**  (0.0001)
T(112012) 0.0005*** (0.0001) CO’U(’LUQ()()(;, 77) 0.0004*** (0,0001)
7‘(1}2013) 0.0005*** (00001) COU(’LUQQ(W, 77) 0.0004** (00002)
Var(v2o14) 0.0004™**  (0.0001) Cov(w2008,M) 0.0002 (0.0002)
VCLT(112015) 0.0003*** (0.0000) CO’U(’LUQ()OQ, 77) 0.0002 (0.0001)
COU(’wgom, 77) 0.0003** (00001)
Cov(wa011,M) 0.0001 (0.0001)
Cov(x5002,7) 0.0036**  (0.0016) Cov(wz012,M) 0.0001 (0.0001)
Cov(x5003,7) 0.0107***  (0.0023) Cov(wz013,7M) -0.0001 (0.0001)
Cov(x5004,7) 0.0110"**  (0.0023) Cov(wz014,M) -0.0001 (0.0001)
Cov(x5005,7) 0.0123***  (0.0024) Cov(w2015,M) -0.0003* (0.0002)
Cov(x5006,7) 0.0118™**  (0.0023) Cov(w2016,7M) -0.0004* (0.0002)
Cov(x5007,7) 0.0113***  (0.0023)
Cov(x5008,7) 0.0055***  (0.0019) Var(e2002) 3.4670*" (1.5361)
Cov(z3009, 1) 0.0075"**  (0.0021) Var(e2003) 3.8217***  (1.1033)
Cov(x5010,7) 0.0069**  (0.0023) Var(e2004) 3.9340*  (1.1147)
Cov(x5011,7) 0.0058"**  (0.0025) Var(e200s) 3.0486™"  (0.9643)
Cov(x5012,7) 0.0053**  (0.0027) Var(e2006) 251117 (0.9243)
Cov(x5013,7) 0.0038 (0.0030) Var(e2007) 2.4213***  (0.8675)
Cov(x5014,7) 0.0025 (0.0031) Var(e200s) 2.2878** (0.9038)
Cov(x5015,7) 0.0015 (0.0031) Var(e2009) 2.1822** (0.8444)
Cov(x5016,7) -0.0002 (0.0033) Var(e2010) 2.8280***  (1.0667)
VG//‘(62011) 2.8427*** (1.0173)
Var(ezom) 2.8354*** (1.0017)
Var(e2013) 3.2370"**  (1.2123)
Va’/‘(62014) 2.1186** (0.8180)
Var(ez201s) 2.4999"**  (0.7894)

Note: ***, ** "and * indicate statistical significance at the 1, 5, and 10 percent levels, respectively.

Wald test (p-value)

Hy: Cov(q;,m:) =0 65.39 (0.000)

Hy : Cov(cef;,m) =0 52.15 (0.000)
Hp: Cov(q*,€) =0 17.40 (0.235)

Hj : no structural break in 8 and vy 7.55 (0.023)
Goodness-of-fit test [d.f.] (p-value) 457.92 [487] (0.8237)
BIC -3155.03
Observations 15834
(Ly,AR, Ly,MA) (13 O)
(LI,AR7 Lz,MA) (1’ 2)
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Table S.16: Estimation results for OLS, FE and EW estimators(2002-2007)

All firms Small firms Large firms
B ¥ B ¥ B ¥
OLS estimator
coef. 0.0032***  0.0029*** 0.0021***  0.0022™** 0.0049***  0.0039
s.e. (0.0001)  (0.0008) (0.0001)  (0.0009) (0.0002)  (0.0027)
Fixed effects estimator
coef. 0.0004™*  -0.0008 0.0001 -0.0001 0.0010"*  -0.0022
s.e. (0.0002) (0.0023) (0.0002) (0.0022) (0.0005) (0.0045)
third-order cumulant estimator (level)
coef. 0.0066"**  -0.0056"* 0.0045***  0.0012 0.0064***  0.0077
s.e. (0.0005)  (0.0023) (0.0004)  (0.0022) (0.0008)  (0.0067)

Sargan test (p-value)

10.69 (0.0984) 24.34 (0.0005) 16.31 (0.0121)

fourth-order cumulant estimator (level)

coef.
s.e.
Sargan test (p-value)

0.0069***  -0.0051** 0.0054***  0.0016 0.0089***  -0.0007
(0.0003)  (0.0023) (0.0003)  (0.0023) (0.0002)  (0.0041)
9.18 (0.1636) 22.41 (0.0010) 73.74 (0.0000)

fifth-order cumulant estimator (level)

coef.
s.e.
Sargan test (p-value)

0.003" -0.0043" 0.0059***  0.0012 0.0083***  0.0083"*
(0.0002)  (0.0023) (0.0003)  (0.0024) (0.0002)  (0.0032)
352.63 (0.0000) 31.25 (0.0000) 165.36 (0.0000)

third-order cumulant estimator (WG)

coef.
s.e.
Sargan test (p-value)

0.0035* 0.004** 0.0034*  0.0007 0.0058***  0.0151**
(0.0020)  (0.0042) (0.0019)  (0.0041) (0.0017)  (0.0072)
4.64 (0.5909) 0.81 (0.9917) 21.40 (0.0016)

fourth-order cumulant estimator (WG)

coef.
s.e.
Sargan test (p-value)

-0.0012**  0.0079"** 0.0036***  -0.0062"* 0.0022**  0.0153***
(0.0005)  (0.0026) (0.0007)  (0.0030) (0.0010)  (0.0055)
21.23 (0.0017) 18.15 (0.0059) 117.45 (0.0000)

fifth-order cumulant estimator (WG)

coef.
s.e.
Sargan test (p-value)

0.0009***  -0.0008 0.0085***  0.0150***
(0.0002)  (0.0025) (0.0002)  (0.0051)
127.67 (0.0000) 279.17 (0.0000)

-0.001 0.0041*
(0.0004)  (0.0023)
51.67 (0.0000)

Note: ***, ** "and * indicate statistical significance at the 1, 5, and 10 percent levels, respectively.
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Table S.17: Estimation results for OLS, FE and EW estimators(2009-2016)

All firms Small firms Large firms
B Y B Y s gl
OLS estimator
coef. 0.0013***  -0.0015"** 0.0012***  -0.0014™** 0.0006™* 0.0300"**
s.e. (0.0001)  (0.0004) (0.0001)  (0.0005) (0.0003)  (0.0038)
Fixed effects estimator
coef. 0.0001 0.0000 -0.0001 0.0016 0.0011 0.0131"
s.e. (0.0003)  (0.0009) (0.0002)  (0.0015) (0.0007)  (0.0070)
third-order cumulant estimator (level)
coef. 0.0039"**  0.0059*** 0.0032***  0.0046™** 0.0049"**  -0.0007
s.e. (0.0004)  (0.0015) (0.0004)  (0.0013) (0.0012)  (0.0088)
Sargan test (p-value) 6.38 (0.6049) 11.67 (0.1664) 18.00 (0.0213)
fourth-order cumulant estimator (level)
coef. 0.0022***  0.0020** 0.0032***  0.0050™** 0.0030"** 0.0030
s.e. (0.0002)  (0.0008) (0.0003)  (0.0011) (0.0004)  (0.0025)
Sargan test (p-value) 53.21 (0.000) 40.52 (0.000) 29.58 (0.0003)
fifth-order cumulant estimator (level)
coef. 0.0014™**  0.0027*** 0.0012***  0.0018™** 0.0011*** 0.0007
s.e. (0.0001)  (0.0007) (0.0001)  (0.0007) (0.0002)  (0.0021)
Sargan test (p-value) 148.64 (0.000) 275.18 (0.000) 119.78 (0.000)
third-order cumulant estimator (WG)
coef. 0.0006 0.0009 0.0006 0.0004 -0.0023 0.0100*
s.e. (0.0006)  (0.0027) (0.0005)  (0.0013) (0.0015)  (0.0061)
Sargan test (p-value) 17.49 (0.0254) 16.06 (0.0415) 7.41 (0.4936)
fourth-order cumulant estimator (WG)
coef. 0.0006™*  0.0020** 0.0003* -0.0001 -0.0011***  0.0056™
s.e. (0.0001)  (0.0008) (0.0002)  (0.0007) (0.0002)  (0.0029)
Sargan test (p-value) 95.09 (0.000) 23.48 (0.0028) 113.95 (0.000)
fifth-order cumulant estimator (WG)
coef. 0.0013***  0.0028*** 0.0000 0.0004 -0.0016™*  0.0098***
s.e. (0.0000)  (0.0006) (0.0001)  (0.0005) (0.0001)  (0.0028)
Sargan test (p-value) 532.09 (0.000) 149.56 (0.000) 535.43 (0.000)

Note: *** ** and * indicate statistical significance at the 1, 5, and 10 percent levels, respectively.

S.65



	1188.pdf
	DP1188.pdf
	Introduction
	Model and assumption
	Model
	Assumption
	Covariance structure of the model

	Moment conditions and identification problem
	Identification problem
	Reparametrization

	Minimum distance estimator and practical issues
	The MD estimator
	Tests associated with latent variables
	Test for classical measurement error
	Test for uncorrelatedness between true regressor and individual effects

	Discussion on some practical aspects
	Structural break
	Missing values
	Optimization algorithm
	Starting values for optimization

	Estimation procedure

	Monte Carlo simulation
	Data generating process
	Results

	Empirical analysis of investment equations
	Investment equation
	Source of non-classical measurement error 
	Cash flow sensitivity
	Empirical model
	United States manufacturing firm-level data
	Estimation results

	Conclusion
	Alternative vectorization operators: vecb and vecd
	vecb operator
	vecd operator
	The column-wise Khatri-Rao product
	vec operator for a partitioned matrix with a zero block

	Proof of Proposition 1 and Theorem 1
	Proof of Proposition 1
	Illustration of Proposition 1 with  T=4 
	Proof of Theorem 1

	Models with multiple regressors
	Model
	Assumption
	Latent expression of the model
	Model after reparametrization

	Linear expression of hzz()
	Derivation of Jacobian matrix G()=hzz()/
	Jacobian for nonlinear least squares problem
	Additional simulation results
	Simulation Designs I and II
	Data generating process
	Results

	Simulation Design III
	Data generating process
	Results


	Additional empirical results


