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Abstract

This paper proposes a minimum distance (MD) estimator to estimate panel regression

models with measurement error. The model considered is more general than examined in

the literature in that (i) measurement error can be non-classical in the sense that they are

allowed to be correlated with the true regressors, and (ii) serially correlated measurement

error and idiosyncratic error are allowed. We estimate such a model by applying the co-

variance structure analysis, which does not require any instrumental variables to deal with

the endogeneity caused by measurement error. The asymptotic properties of our MD esti-

mator are established, which is non-trivial because an identification issue must be solved.

Since our approach estimates the variances and covariances of latent variables as well as the

coefficient of regressors, we can directly test, for instance, whether the measurement error

are correlated with the true regressors. Monte Carlo simulation is conducted to investigate

the finite sample performance and confirm that the proposed estimator has desirable perfor-

mance. We apply the proposed method to estimate an investment equation for 2002-2016

and find that (i) there is a structural break between 2007 and 2008, (ii) Tobin’s marginal

q is strongly significant, and (iii) cash flow is not significant before 2007, but tends to be

significant after 2009 indicating increased investment-cash flow sensitivity, (iv) measurement

error and idiosyncratic error are serially correlated, (v) measurement error is significantly

negatively correlated with the marginal q, and hence non-classical measurement error.
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20H01484, 20K20760) provided by the JSPS, and Yamagata acknowledges the financial support by JSPS KAK-
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1 Introduction

In empirical studies of corporate finance, since abstract variables such as investment opportuni-

ties, asset tangibility, or Tobin’s marginal q are not directly observable, it is common practice

to substitute them with observable proxy variables.1 Unfortunately, such an empirical practice

causes measurement error or errors-in-variables problems, a major topic in regression analysis.

Since measurement error in regressors makes an OLS estimator inconsistent, several solutions

to obtain consistent estimate have been proposed in the literature.2

Since the seminal study by Griliches and Hausman (1986), various approaches to dealing with

measurement error have been advanced in the context of linear panel regression models.3 These

existing approaches may be categorized into three groups. The first is based on using high-order

moments or cumulants of data. This approach is proposed by Erickson and Whited (2000, 2002,

2012), Erickson, Jiang and Whited (2014), and Meijer, Spierdijk and Wansbeek (2017). The

second is based on assuming a linear structure on the covariance matrix of measurement error or

idiosyncratic error. This approach is proposed by Wansbeek (2001), Xiao, Shao, Xu and Palta

(2007), Xiao, Shao and Palta (2010), and Meijer, Spierdijk and Wansbeek (2017). The third is

based on the instrumental variables (IV) regression proposed by Griliches and Hausman (1986),

Biorn (2000), and Almeida, Campello and Galvao (2010).

As discussed in Angrist and Krueger (1999), Kane, Rouse and Staiger (1999), and Bound,

Brown and Mathiowetz (2001), there have been concerns about violations of the assumptions of

classical measurement error typically employed in the existing approaches. Notably, comparing

matched panel survey earnings (measured earnings) to the recorded earnings in administrative

Social Security pay roll (true earnings), Bound and Krueger (1991) found that the measurement

error (difference between these two earnings) is significantly negatively correlated with true

earnings, and also it is significantly positively serially correlated.4,5

As for the investment equation, which is of our central interest, we will demonstrate that

the Tobin’s marginal q can be negatively correlated with measurement error and it can be

serially correlated. This is essentially because the empirically measured Tobin’s q lacks crucial

but unobservable capital, such as human capital or goodwill of a firm. For more detailed

discussions, see Section 6. Observe that under such “non-classical” measurement error, all the

existing estimation methods mentioned above will become invalid.

In light of this problem, we propose a novel minimum distance (MD) estimator to estimate

1See the introduction of Erickson, Jiang and Whited (2014).
2For an overview of measurement error problem, see Fuller (1987), Aigner, Hsiao, Kapteyn and Wansbeek

(1984), Schennach (2016), and Wansbeek and Meijer (2000).
3Wilhelm (2015) considers nonparametric panel regression model with measurement error.
4Bound and Krueger (1991) call such negatively correlated measurement error as “mean reverting measurement

error”. See Duncan and Hill (1985), Bound, Brown, Duncan and Rodgers (1994), Pischke (1995), Bollinger (1998),

Black, Berger and Scott (2000), Kim and Solon (2005), Gottschalk and Huynh (2010) for further empirical

evidences of non-classical measurement error in earnings data. Also, O’Neill and Sweetman (2013) provide an

empirical evidence of non-classical measurement error in self-reported Body Mass Index (BMI) data.
5Unlike this article, there is also a body of literature that considers different non-classical measurement errors

in non-linear models that affect the true regressors in a non-additive or non-separable way; see Schennach (2016)

for a recent review. The proposed methods therein do not seem applicable to the problem considered in this article,

since they require that the mean of the distribution of measurement error conditional on the true regressors be

zero (e.g. Hu and Schennach (2008)) or require “validation data” (e.g. Sepanski and Carroll (1993)) comprising

an auxiliary sample containing data on both measured and true regressors to recover the distribution of the

measurement error.
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panel regression models, which allows for consistent estimation with such non-classical measure-

ment error. Different from the existing approaches described above, our MD estimator is based

on covariance structure analysis (CSA).6 In the CSA, the sample covariance matrix of dependent

and independent variables is fitted to a hypothetical covariance matrix derived from the model.

Notably, our estimator does not require instrumental variables and also allows for measurement

error and idiosyncratic error to be non-normal, serially correlated (in an autoregressive and

moving average (ARMA) specification), and heteroskedastic over time and cross-sections.7 Fur-

thermore, as a by-product of our approach, we can test if the measurement error is correlated

with the true regressor. We analyze theoretical properties of the proposed MD estimator, but

as explained in Section 3, the theoretical contribution is not trivial, as an identification problem

arises and standard asymptotic results cannot be applied directly. To investigate the finite sam-

ple performance of the proposed method, Monte Carlo experiments are carried out. The results

show that the proposed MD estimator has satisfactory finite sample properties with respect to

bias, dispersion, and inferential accuracy.

We note that, since our approach requires to estimate a larger number of parameters than the

aforementioned approaches, the computational time could be long. This is primarily because,

along with regression coefficients, the variances and autocovariances of regressors for all periods

and covariances between regressors, measurement error and fixed effects for all periods need to be

estimated. To address this problem, we rewrite the objective function as a nonlinear least-squares

criterion, which enable us to employ the well-established Levenberg-Marqurat algorithm which

is very fast and efficient. For instance, in our experimental design with T = 8 and N = 1000,

the computational time is less than a second and all of the parameter estimates converge to true

values.

We apply the MD estimator to estimate an investment equation proposed by Fazzari, Hub-

bard and Petersen (1988) in which Tobin’s marginal q and cash flow (or internal funds) appear

as regressors, using annual data for the United States manufacturing sector from 2002 to 2016

(unbalanced panel data ranging from 828 to 1269 firms over the years). It is found that there

is a structural break in the year of the financial crisis, 2008; thus, we split the sample into two

sub-sample periods, before and after the financial crisis, 2002-2007 and 2009-2016, respectively,

and also firms are split into large and small firms.

Our empirical results provide statistical evidence of non-classical measurement error in all

cases. Specifically, we have found a significant negative correlation between the measurement

error and the Tobin’s marginal q, whereas the consistently estimated coefficient on Tobin’s q is

positive and highly significant. Furthermore, the measurement error and the idiosyncratic error

are serially correlated with an autoregressive (and moving average) structure.

In our estimation results, for large firms the coefficient on cash flow is positive and highly

significant for all the cases, which is in line with the pecking-order theory of Myers and Majluf

6The CSA has been used to estimate income processes in the econometrics literature(e.g. Abowd and Card,

1989), whilst Bollen and Brand (2010) suggest using the CSA to estimate panel regression models in behavioral

science literature.
7The approach based on the high-order moments or cumulants (e.g. Erickson and Whited (2000)) requires

symmetric distribution and classical measurement error. The second approach (e.g. Wansbeek (2001)) cannot

allow for serial correlation and time-series heteroskedasticity simultaneously. Moreover, the derivation of the

coefficient matrix of the linear structure of covariance is model- and case-specific, which can be a serious obstacle

in practice. In the third approach (e.g. Almeida, Campello and Galvao (2010)), the measurement error must be

serially uncorrelated, or only MA-type serial correlation is allowed.
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(1984) and the results of Grullon, Hund and Weston (2018), among others.8 Meanwhile, for

small firms, the coefficient on cash flow is not significant before the crisis, whereas it becomes

significantly positive after the crisis. Evidence given by Board of Governors of the Federal

Reserve System (2017), for example, shows that the credit condition for small businesses from

2009 to 2016 is significantly less accommodative than from 2002 to 2007, which may explain the

change in the cash flow sensitivity.

The rest of this paper is organized as follows. Section 2 introduces a model and assumptions,

and in Section 3, the moment conditions that will be used in the MD estimator and associated

identification problems are discussed. In Section 4, the MD estimator is formally introduced,

and several practical issues are also discussed. Section 5 conducts a Monte Carlo simulation to

investigate the finite sample behavior of the proposed method. Section 6 applies the proposed

method to estimate an investment equation to investigate the investment-cash flow sensitivity.

Finally, we conclude in Section 7.

Notation For a symmetric p × p matrix A, we define the duplication matrix Dp such that

vec (A) = Dp vech (A) where we also have vech (A) = D+
p vec (A) and D+

p =
(
D′
pDp

)−1D′
p. For

a p× q matrix B, we define the commutation matrix Kp,q such that vec (B′) = Kp,q vec (B) and

vec (B) = Kq,p vec (B
′) where Kp,pDp = Dp and K′

p,q = K−1
p,q = Kq,p hold. We also introduce two

new operators denoted by “vecb” and “vecd”. The definition of these two operators is provided

in online Appendix A. For a symmetric matrix, the upper-right element or block are sometimes

denoted as “∗” to save space. Further, let T ∗ = T (T + 1)/2 and ip be the pth column of p × p

identity matrix Ip; that is, ip is a p×1 vector whose pth element is 1 and 0 otherwise. Dimension

of the vector space V such that a ∈ V is denoted as dim(a).

2 Model and assumption

2.1 Model

We consider the following model

yit = µy,t + βx∗it + γwit + ηi + ζit, (i = 1, ..., N ; t = 1, ..., T ) (1)

where µy,t and ηi denote time-specific and individual-specific effects, respectively, and ζit is

an idiosyncratic error term. Time effect µy,t is assumed to be non-random parameters to be

estimated. For ease of exposition, we assume that x∗it and wit are scalars. The case with multiple

x′s and w′s are discussed in online Appendix C. We assume that yit and wit are observed without

measurement errors whereas x∗it is not observed due to measurement error. Instead, we only

8The empirical evidence in the literature has suggested that the capital structure does matter in the market

with frictions and uncertainty. Indeed, after Fazzari, Hubbard and Petersen (1988) empirically showed that,

among financially constrained firms, investment positively responds to cash flow, numerous articles including

Stein (2003), Cummins, Hassett and Oliner (2006), Almeida and Campello (2007), Brown, Fazzari and Petersen

(2009), Almeida, Campello and Galvao (2010), Lewellen and Lewellen (2016), and Ağca and Mozumdar (2017)

among many others, have confirmed such a positive association, whereas Erickson and Whited (2000) has found

cash flow insignificant.
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observe xit contaminated with measurement error ϵit as follows:
9

xit = x∗it + ϵit. (2)

Using (1) and (2), the model to be estimated is given by

yit = µy,t + βxit + γwit + εit, (3)

εit = ηi + ζit − βϵit. (4)

We assume that the idiosyncratic error ζit and the measurement error ϵit are serially correlated

in ARMA(Ly,AR, Ly,MA) and ARMA(Lx,AR, Lx,MA) forms, respectively, such that

ζit = ρy,1ζi,t−1 + · · ·+ ρy,Ly,AR
ζi,t−Ly,AR

+ vit + λy,1vi,t−1 + · · ·+ λy,Ly,MA
vi,t−Ly,MA

, (5)

ϵit = ρx,1ϵi,t−1 + · · ·+ ρx,Lx,AR
ϵi,t−Lx,AR

+ eit + λx,1ei,t−1 + · · ·+ λx,Lx,MA
ei,t−Lx,MA

(6)

with ζi,ℓ = 0, (ℓ = 0, ...,−Ly,AR+1), vi,ℓ = 0, (ℓ = 0, ...,−Ly,MA+1), ϵi,ℓ = 0, (ℓ = 0, ...,−Lx,AR+
1) and ei,ℓ = 0, (ℓ = 0, ....,−Lx,MA + 1). For later usage, let the total numbers of the ARMA

parameters for ζit and εit be Ly = Ly,AR + Ly,MA and Lx = Lx,AR + Lx,MA, respectively.

2.2 Assumption

We make the following assumptions.

Assumption ERR. (i) vit defined in (5) is independent over i and t and has E(vit) = 0,

V ar(vit) = σ2v,t with 0 < σ2v,t <∞ and finite fourth-order moment.

(ii) The unobserved individual effect ηi is independent over i and has E(ηi) = 0 (by construc-

tion), V ar(ηi) = σ2η with 0 < σ2η < ∞ and finite fourth-order moment. Moreover, ηj is

uncorrelated with vit, that is, Cov(vit, ηj) = 0 for all i, j and t.

Remark 1. Assumption ERR(i) allows time-series heteroskedasticity. Although it is possi-

ble to allow for cross-sectional heteroskedasticity such that σ2v,t(N) =
1
N

∑N
i=1 σ

2
v,t,i, we assume

cross-sectional homoskedasticity to simplify the notation. Cross-sectional heteroskedasticity is

considered in Monte Carlo section. Assumption ERR(ii) is a standard assumption in the litera-

ture.

Assumption ME. eit defined in (6) is independent over i and t and has E(eit) = 0, V ar(eit) =

σee,t = σ2e,t with 0 < σ2e,t <∞, Cov(eit, eis) = 0 for t ̸= s and finite fourth-order moment.10

Remark 2. Assumption ME allows the serially correlated measurement error ϵit to be het-

eroskedastic over time.

The following assumption is on the unobserved true regressor, x∗it.

Assumption X. (i) The true regressor x∗it is strictly exogenous in the sense that Cov(x∗it, vis) =

0 for all s and t.

9The observed xit can include fixed effects τi such that xit = τi + x∗
it + ϵit. However, since τi can be absorbed

into ηi, we do not include the fixed effects in xit.
10To simplify the notation, we use σee,t and σ2

e,t interchangeably to denote the variance of eit.
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(ii) x∗
i = (x∗i1, ..., x

∗
iT )

′ has the following form:

x∗
i = µx∗ + ξx∗,i,

where E (x∗
i ) = µx∗ and ξx∗,i is a random vector that is independent over i with E(ξx∗,i) =

0, V ar(ξx∗,i) = V ar(x∗
i ) = Σx∗x∗ = {σx∗x∗,ts} and finite fourth-order moment.

(iii) The true regressor x∗it is allowed to be correlated with ηi such that Cov (x∗it, ηi) = σx∗η,t
for t = 1, ..., T .

(iv) The true regressor x∗it is allowed to be contemporaneously correlated with eit such that

Cov(x∗it, eit) = σx∗e,t for t = 1, ..., T but uncorrelated intertemporally: Cov(x∗it, eis) = 0

for t ̸= s.

Remark 3. Assumption X(ii) states that the true regressor can be decomposed into determinis-

tic and stochastic parts and imposes no functional form. Assumption X(iii) allows x∗it (hence xit
as well) to be correlated with unobserved individual effects ηi in an unrestricted way; thereby,

our model has a flavor of the standard fixed-effects model. Thus, our setup may be considered a

correlated random effect model. Assumption X(iv) allows the non-classical measurement error

in the sense that the measurement error is allowed to be correlated with the true regressor.

Assumption W. (i) wit is strictly exogenous in the sense that Cov(wit, vis) = 0 for all s and

t.

(ii) wi = (wi1, ..., wiT )
′ has the following form:

wi = µw + ξw,i,

where E (wi) = µw and ξw,i is a random vector that is independent over i with E(ξw,i) = 0,

V ar(wi) = V ar(ξw,i) = Σww with finite fourth-order moment.

(iii) wit is allowed to be correlated with ηi such that Cov (wit, ηi) = σwη,t for t = 1, ..., T .

(iv) wit is uncorrelated with the measurement error ejs for all i, j, s, t.

(v) The regressor wi is allowed to be correlated with x∗
i such that Cov(wi,x

∗
i ) = Σwx∗ =

{σwx∗,ts}.

Remark 4. Assumptions W(i)-(iii) for wit are basically the same as Assumptions X(i)-(iii)

for x∗it. No functional form for wi is imposed and the possible correlation between wit and

unobserved individual effects ηi is allowed. By Assumptions W(iv) and (v), wit is allowed to be

correlated with unobserved true regressor, but not allowed to be correlated with the measurement

error, which implies that Cov(wi,xi) = Cov(wi,x
∗
i ).

2.3 Covariance structure of the model

The model (3) and (4) can be written in a vector form as follows:

yi = µy + J
(1)
β xi + J(1)

γ wi + εi, (7)

where yi = (yi1, ..., yiT )
′, µy = (µy,1, ..., µy,T )

′, xi = (xi1, ..., xiT )
′ = x∗

i + ϵi, ϵi = (ϵi1, ..., ϵiT )
′,

εi = ηiιT +ζi−J
(1)
β ϵi, ιT = (1, ..., 1)′, ζi = (ζi1, ..., ζiT )

′, J
(1)
β = βIT and J

(1)
γ = γIT . We use this

non-conventional notation so that we can consider a unified model that allows for a structural

break in Section 4.3.1.
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Since the ARMA models for ζi and ϵi defined in (5) and (6), respectively, can be written as

Ψy,ARζi = Ψy,MAvi, Ψx,ARϵi = Ψx,MAei (8)

where vi = (vi1, ..., viT )
′, ei = (ei1, ..., eiT )

′,

Ψj,AR =



1 0

−ρj,1 1
...

. . .
. . .

−ρj,Lj,AR
· · · −ρj,1 1
. . .

. . .
. . .

0 −ρj,Lj,AR
· · · −ρj,1 1


, (j = y, x),

Ψj,MA =



1 0

λj,1 1
...

. . .
. . .

λj,Lj,MA
· · · λj,1 1
. . .

. . .
. . .

0 λjLj,MA
· · · λj,1 1


, (j = y, x),

we have the following expression for xi and εi:

xi = x∗
i +Ψxei, (9)

εi = ηiιT +Ψyvi − J
(1)
β Ψxei (10)

where Ψy and Ψx are defined as11

Ψj = Ψ−1
j,ARΨj,MA =



1 0 · · · · · · 0

ψj,1 1
. . .

...

ψj,2 ψj,1
. . .

. . .
...

...
. . .

. . . 1 0

ψj,T−1 · · · ψj,2 ψj,1 1


, (j = y, x). (11)

Note that ψj,r is a function of ρ’s and λ’s, and when estimating the model, we estimate ρ’s and

λ’s, not ψ’s. For instance, for AR(1) case with Lj,AR = 1 and Lj,MA = 0, then, ψj,r = ρrj,1.

Writing Ψj as in (11) is just to simplify the notation. Also, note that since Ψj includes only T−1

distinct elements, we need to assume that the lag order needs to satisfy 1 ≤ Lj ≤ T−1, (j = y, x)

for identification of ρ’s and λ’s.

Let us define V ar(vi) = Σvv = diag(σ2v,1, ..., σ
2
v,T−1, σ

2
v,T ), V ar(ei) = Σee = diag(σ2e,1, ..., σ

2
e,T−1, σ

2
e,T ),

and Cov(x∗
i , ei) = Σx∗e = diag(σx∗e,1, ..., σx∗e,T−1, σx∗e,T ). Then, the hypothetical covariance

matrix of the 3T × 1 observation vector zi = (y′
i,x

′
i,w

′
i)
′ derived for the model specification (7)

with (9), (10) and (11) under Assumptions ERR, ME, X and W is given by

Hzz (φ0) =

 Hyy (φ0) ∗ ∗
Hxy (φ0) Hxx (φ0) ∗
Hwy (φ0) Hwx (φ0) Hww (φ0)

 (12)

11Since Ψj,AR and Ψj,MA are lower banded matrices, and the inverse matrix and a product of lower banded

matrices are also lower banded, Ψj also becomes a lower banded matrix.
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where

Hyy (φ) = σ2ηιT ι
′
T +ΨyΣvvΨ

′
y + β

(
σx∗ηι

′
T + ιTσ

′
x∗η

)
+ β2Σx∗x∗

+γ
(
σwηι

′
T + ιTσ

′
wη

)
+ βγ

(
Σwx∗ +Σ′

wx∗
)
+ γ2Σww, (13)

Hxy (φ) = σx∗ηι
′
T + βΨxΣx∗e + βΣx∗x∗ + γΣ′

wx∗ , (14)

Hxx (φ) = Σx∗x∗ +
(
Σx∗eΨ

′
x +ΨxΣx∗e

)
+ΨxΣeeΨ

′
x, (15)

Hwy (φ) = σwηι
′
T + βΣwx∗ + γΣww, (16)

Hwx (φ) = Σwx∗ , (17)

Hww (φ) = Σww (18)

and φ0 denotes the true value of φ defined by φ = (φ′
1,φ

′
2)

′ where φ1 =
(
β, γ,ψ′)′, φ2 =(

σ2η,σ
′
vv,σ

′
x∗η,σ

′
x∗e,σ

′
ee,σ

′
x∗x∗ ,σ

′
wη,σ

′
wx∗ ,σ

′
ww

)′
with

ψ
((Ly+Lx)×1)

=
(
ψ′
y,ψ

′
x

)′
, ψj

(Lj×1)

=
(
ρj,1, ..., ρj,Lj,AR

, λj,1, ..., λj,Lj,MA

)′
, (j = y, x),

σx∗x∗
(T (T+1)/2×1)

= vech (Σx∗x∗) , σww
(T (T+1)/2×1)

= vech (Σww) , σwx∗
(T 2×1)

= vec (Σwx∗) , (19)

σx∗η
(T×1)

= Cov(x∗
i , ηi) = (σx∗η,1, ..., σx∗η,T )

′, σwη
(T×1)

= Cov(wi, ηi) = (σwη,1, ..., σwη,T )
′

and

σvv
(T×1)

=
(
σ2v,1, ..., σ

2
v,T

)′
, σx∗e

(T×1)
= (σx∗e,1, ..., σx∗e,T )

′ , σee
(T×1)

=
(
σ2e,1, ..., σ

2
e,T

)′
. (20)

Note that φ1 includes the parameters associated with the “coefficient” of regressors and

latent variables, whereas φ2 includes the variances and covariances of latent variables. In the

following, we consider the identification, estimation, and inference of φ.

3 Moment conditions and identification problem

This section considers the MD estimation of φ. Let us denote the sample covariance matrix of

zi as SN . Then, since E(SN ) = Hzz(φ0) holds, we have the following moment conditions:

E[si − hzz(φ0)] = 0 (21)

where si =
(

N
N−1

)
vech[(zi − z̄)(zi − z̄)′], z̄ = N−1

∑N
i=1 zi and hzz(φ) = vech (Hzz(φ)).

Given model (7), without loss of generality we suppose that the number of moment condi-

tions, dim(si) = 3T (3T +1)/2, is larger than the number of parameters to estimate, dim(φ0) =

3 + Ly + Lx + 6T + 2T 2. It can be easily shown that this order condition is equivalent to

T (5T − 9) ≥ 2(Ly + Lx + 3).

3.1 Identification problem

As is well known in the literature (Newey and McFadden (1994); Cameron and Trivedi (2005);

Hall (2005)), the rank condition that G(φ0) = ∂hzz(φ0)/∂φ
′ has full column rank is essential

for the identification of the true parameter vector φ0.

Unfortunately, even when the order condition is met, the rank condition is not satisfied

in the current model. As detailed in online Appendix B, the parameters of main interest,

10



φ1 = (β, γ,ψ′)′ as well as those of secondary interest φ2 excluding σ2v,T , σ
2
e,T , σx∗e,T , σx∗x∗,TT

can be identified using the moments {σyy,ts, σyx,ts, σxx,ts} for 1 ≤ t ≤ T and 1 ≤ s ≤ T

except for t = s = T , where σyy,ts, σyx,ts and σxx,ts denote the (t, s) position of V ar(yi) = Σyy,

Cov(yi,xi) = Σyx and V ar(xi) = Σxx. The identification problem lies in the moment conditions

in the last period, t = T , given by

σyy,TT = hyy,TT (φ) = σ2v,T + β2σx∗x∗,TT ,

σxy,TT = hxy,TT (φ) = βσx∗e,T + βσx∗x∗,TT , (22)

σxx,TT = hxx,TT (φ) = σ2e,T + 2σx∗e,T + σx∗x∗,TT .

Treating β as given (as it is identified with other moment conditions), there are four unknown

parameters, σ2v,T , σ
2
e,T , σx∗e,T , σx∗x∗,TT . As can easily be seen, these four parameters cannot be

identified from the three moment conditions given in (22).

This identification problem is formally stated in the following proposition.

Proposition 1. Consider the model (7) with (9), (10) and (11). Suppose that Assumptions

ERR, ME, X and W hold and that the order condition, dim(si) ≥ dim(φ0), is satisfied. Then,

G (φ0) is rank deficient with rank(G (φ0)) = dim(φ) − 1 because the rank of the Jacobian of

hzz(φ) with respect to σ2v,T , σ
2
e,T , σx∗e,T , and σx∗x∗,TT have rank three.

The proof is provided in online Appendix B.

3.2 Reparametrization

In order to resolve this problem, we propose estimating three parameters σyy,TT , σxy,TT , and

σyy,TT themselves as free parameters. This reparametrization seems to be preferable to imposing

one additional restriction to φ, since such restrictions might be violated in practice.12 Even

though the four parameters, σ2v,T , σ
2
e,T , σx∗e,T , and σx∗x∗,TT , will not be identifiable with the

proposed reparameterization, we can still estimate σ2v,t, σ
2
e,t, σ

2
x∗e,t for t = 1, ..., T −1, and σx∗x∗,st

for s, t = 1, ..., T except for s = t = T , which provide sufficiently rich information in practice.

Then, after the reparametrization, the hypothetical covariance matrix of the observation

vector zi = (y′
i,x

′
i,w

′
i)
′ derived for the model specification (7) with (9), (10) and (11) under

Assumptions ERR, ME, X and W is given by

Hzz (θ0) =

 Hyy (θ0) ∗ ∗
Hxy (θ0) Hxx (θ0) ∗
Hwy (θ0) Hwx (θ0) Hww (θ0)

 (23)

where

Hyy (θ) = σ2ηιT ι
′
T +ΨyΣ̇vvΨ

′
y + β

(
σx∗ηι

′
T + ιTσ

′
x∗η

)
+ β2Σ̇x∗x∗

+γ
(
σwηι

′
T + ιTσ

′
wη

)
+ βγ

(
Σwx∗ +Σ′

wx∗
)
+ γ2Σww + σyy,TTETT , (24)

Hxy (θ) = σx∗ηι
′
T + βΨxΣ̇x∗e + βΣ̇x∗x∗ + γΣ′

wx∗ + σxy,TTETT , (25)

Hxx (θ) = Σ̇x∗x∗ +
(
Σ̇x∗eΨ

′
x +ΨxΣ̇x∗e

)
+ΨxΣ̇eeΨ

′
x + σxx,TTETT , (26)

12Such a restriction includes, say, σ2
v,T−1 = σ2

v,T , σ2
e,T−1 = σ2

e,T , σx∗e,T−1 = σx∗e,T , or σx∗x∗,TT =

σx∗x∗,T−1,T−1.
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Hwy (θ) = σwηι
′
T + βΣwx∗ + γΣww, (27)

Hwx (θ) = Σwx∗ , (28)

Hww (θ) = Σww (29)

with

Σ̇vv = diag(σ2v,1, ..., σ
2
v,T−1, 0), Σ̇ee = diag(σ2e,1, ..., σ

2
e,T−1, 0),

Σ̇x∗e = diag(σx∗e,1, ..., σx∗e,T−1, 0),

Σ̇x∗x∗ =


σx∗x∗,11 · · · σx∗x∗,1,T−1 σx∗x∗,1T

...
. . .

...
...

σx∗x∗,T−1,1 · · · σx∗x∗,T−1,T−1 σx∗x∗,T−1,T

σx∗x∗,T1 · · · σx∗x∗,T,T−1 0

 , (30)

and ETT is a T × T matrix whose (T, T ) position is one and zeros otherwise. θ is the new

parameter vector to be estimated, which is defined by

θ =
(
θ′1,θ

′
2

)′
(31)

where

θ1 =
(
β, γ,ψ′)′ = φ1,

θ2 =
(
σ2η,σ

⋆′
vv,σ

′
x∗η,σ

⋆′
x∗e,σ

⋆′
ee,σ

⋆′
x∗x∗ , σyy,TT , σxy,TT , σxx,TT ,σ

′
wη,σ

′
wx∗ ,σ

′
ww

)′
with

σ⋆vv
((T−1)×1)

=
(
σ2v,1, ..., σ

2
v,T−1

)′
, σ⋆x∗e

((T−1)×1)

= (σx∗e,1, ..., σx∗e,T−1)
′ , σ⋆ee

((T−1)×1)

=
(
σ2e,1, ..., σ

2
e,T−1

)′
and σ⋆x∗x∗ includes distinctive T (T + 1)/2− 1 elements of Σ̇x∗x∗ . Remaining parameters, σx∗η,

σwη, σwx∗ and σww, are identical to those used in φ and defined in (19).

The difference between θ and φ is that four parameters σ2v,T , σ
2
e,T , σx∗e,T , σx∗x∗,TT in φ are

now replaced with three parameters σyy,TT , σxy,TT , σxx,TT in θ. Furthermore, note that θ1 = φ1.

The number of parameters included in θ is dim(θ) = 2 + Ly + Lx + 6T + 2T 2.

Using this reparametrization, we can show that G (θ0) = ∂hzz(θ0)/∂θ
′ is of full rank as

follows.

Theorem 1. Consider the model (7) with (9), (10) and (11). Let Assumptions ERR, ME, X,

W, hold. Then, G (θ0) is of full column rank.

The proof is provided in online Appendix B. Since G (θ0) is shown to be full rank, we can

utilize the general results to derive the asymptotic property of the MD estimator.

4 Minimum distance estimator and practical issues

This section introduces the MD estimator based on the moment conditions

E[si − hzz(θ0)] = 0 (32)
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where the parameter to be estimated is θ defined in (31), instead of φ defined in (21). The order

condition is satisfied when T (5T − 9) ≥ 2(Ly +Lx + 2). For instance, T ≥ 3 is sufficient for the

order condition when Ly +Lx ≤ 7 with 1 ≤ Lj ≤ T − 1, (j = y, x). Hereafter, it is assumed that

the order condition is satisfied.

In Section 4.1 below, we first define the MD estimator proposed in this paper, followed by

Section 4.2, which introduces two tests associated with the latent variables, specifically tests for

classical measurement error and for random effects. Section 4.3 discusses some practical issues,

such as treatment of missing values, the optimization algorithm and how to select starting values

for optimization.

4.1 The MD estimator

The MD estimator based on the moment condition (32) is defined as

θ̂MD = argmin
θ

QMD(θ),

QMD(θ) = [s̄N − hzz(θ)]
′WN (θ)[s̄N − hzz(θ)] (33)

where s̄N = vech(SN ) = N−1
∑N

i=1 si and WN (θ) is a positive-definite weighting matrix. For

the choice of weighting matrix WN (θ), we consider the following weighting matrix13

WN (θ) = Φ (θ) =
1

2
D′
p

(
H−1
zz (θ)⊗H−1

zz (θ)
)
Dp. (34)

The corresponding MD estimators using (34) as weighting matrix in (33) will be called the

continuous-updating MD(CUMD) estimator and denoted as θ̂CUMD since it is the MD estimator

analogue of the continuously update GMM due to Hansen, Heaton and Yaron (1996).

Since the infeasible optimal weighting matrix under multivariate normality of zi is given

by Φ0 = Φ (θ0), the CUMD estimator is asymptotically efficient when zi follows a multivariate

normal distribution. However, when zi is non-normal, the CUMD estimator is no longer efficient.

To achieve efficiency, we could consider the optimal MD(OMD) estimator that uses the weighting

matrix WOMD = Ω−1
N where

ΩN =
1

N

N∑
i=1

(si − s̄N )(si − s̄N )
′.

However, we do not consider this OMD estimator for the following reasons. First, the OMD

estimator is only computable when p(p+1)/2 ≤ N since we need to compute Ω−1
N . Second, even

if the OMD estimator can be computed, it has (sometimes very) poor finite sample properties

despite its asymptotic optimality (see, e.g., Altonji and Segal (1996)). Third, with a large sample,

the degree of improvement of OMD over the CUMD is marginal even under nonnormality. For

these reasons, the OMD estimator is not attractive in practice; hence, we do not consider the

OMD estimator.

To derive the asymptotic distribution of the CUMD estimator, we make the following as-

sumptions(Browne, 1974; Chamberlain, 1984; Yuan and Bentler, 2007).

13Another choices for WN (θ) would be ΦN = 1
2
D′

p

(
S−1
N ⊗ S−1

N

)
Dp or Φ(θ̃) where θ̃ is a preliminary estimate

of θ. Although the three MD estimators using Φ(θ), ΦN , and Φ(θ̃) have the same asymptotic distribution, a

preliminary Monte Carlo simulation result revealed that the MD estimator using Φ(θ) performed best. Hence,

we do not consider the MD estimator using ΦN and Φ(θ̃) as weighting matrices.
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Assumption MD. (i) All elements of Hzz(θ) and partial derivatives of the first three orders

with respect to the elements of θ are continuous and bounded in a neighborhood of θ = θ0.

(ii) The p(p+ 1)/2× q matrix G0 = G(θ0) where

G(θ) =
∂hzz(θ)

∂θ′
(35)

is of full column rank.

(iii) θ0 is identified; that is, Hzz(θ1) = Hzz(θ0) implies θ1 = θ0.

(iv) Hzz(θ0) is positive definite.

(v) The following central limit theorem holds:

1√
N

N∑
i=1

(si − hzz(θ0))
d−→ N(0,Ω0).

Assumption MD (i) is a technical assumption. The rank condition (ii) is already established

in Theorem 1. (iii) is the global identification condition which is often assumed to hold and (iv)

is the standard assumption. (v) will hold under Assumptions ERR, ME, X and W.

The asymptotic property of the CUMD estimator is given by the following theorem.

Theorem 2. Let Assumptions ERR, ME, X, W and MD hold. Then, the CUMD estimator is

consistent as N → ∞ with T fixed:

θ̂CUMD
p−→ θ0.

The asymptotic distribution of the CUMD estimator is given by

√
N
(
θ̂CUMD − θ0

)
d−→ N (0,ΣCUMD) ,

where

ΣCUMD =

{
(G′

0Φ0G0)
−1G′

0Φ0Ω0Φ0G0 (G
′
0Φ0G0)

−1 when zi is non-normally distributed

(G′
0Φ0G0)

−1 when zi is normally distributed
.

This result is due to, for example, Browne (1974) and Chamberlain (1984). This implies

that the CUMD estimator is consistent and has an asymptotically normal distribution.

4.2 Tests associated with latent variables

Since our approach estimates the variances and covariances of latent variables, we can conduct

several tests as a by-product of the estimation procedure. Specifically, we consider two tests.

The first is a test of whether the measurement errors are correlated with the true regressors.

The second is whether the true regressors are correlated with the individual effects.

4.2.1 Test for classical measurement error

Testing whether measurement error is correlated with true regressor or not is of great interest in

practice since it has been a common practice to assume that measurement error is not correlated

with true regressor; that is, assuming classical measurement error without verifying it. However,

as demonstrated by Bound and Krueger (1991), there is empirical evidence that measurement
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error is correlated with true regressor; that is, non-classical measurement error. Despite the

importance of a test for classical measurement error, to the best of our knowledge, such a test

has not been well considered in the literature. Fortunately, since our approach estimates the

covariance Cov(x∗it, eit) for each t, which is identical to the covariance between true regressor

and measurement error, Cov(x∗it, ϵit) = σx∗ϵ,t, we can provide a straightforward way to test if

σx∗ϵ,t = 0 or not.

Specifically, we can conduct (i) an individual t-test for the hypothesis H0 : σx∗ϵ,t = 0 for each

t, (ii) the Wald test for the joint hypothesis H0 : σx∗ϵ,1 = · · · = σx∗ϵ,T−1 = 0. Since these tests

can be implemented within the estimation procedure to obtain β and γ, no further computations

are necessary.

4.2.2 Test for uncorrelatedness between true regressor and individual effects

In the standard panel regression models, it is a common practice to test if individual effects are

correlated with regressors (i.e. ‘random effects’) by the Hausman test. Our method provides

an alternative way to test such a hypothesis. Since we estimate Cov(x∗it, ηi) = σx∗η,t for each t,

we can conduct a test if σx∗η,t = 0 or not. As in the above test, we can conduct (i) individual

t test for the hypothesis H0 : σx∗η,t = 0 for each t, (ii) the Wald test for the joint hypothesis

H0 : σx∗η,1 = · · · = σx∗η,T = 0. Note that this test also does not require additional computation,

and hence it is easy to implement.

4.3 Discussion on some practical aspects

This section considers some issues that may arise when applying the proposed method and offers

measures to address them.

4.3.1 Structural break

In Section 2, the coefficients β and γ are assumed to be constant over time. However, in some

empirical applications, the constancy assumption of β and γ might be dubious. For instance,

if the bankruptcy of Lehman Brothers is included in the estimation period, it is likely that

there is a structural break around 2008, and the coefficients would be different before and after

the collapse. Indeed, this is the case as demonstrated in Section 6. In the current framework,

allowing for a structural break for β and γ is not difficult. For illustration, let us consider the

case where a structural break occurs once in the period t = Tb.
14 In such a case, the model is

given by

yit =

{
µy,t + β[1]x∗it + γ[1]wit + ηi + ζit, t = 1, ..., Tb
µy,t + β[2]x∗it + γ[2]wit + ηi + ζit, t = Tb + 1, ..., T

where β[j] and γ[j] denote the coefficient of jth regime.

Let us define T [1] = Tb, T
[2] = T − Tb, and

J
(2)
β =

[
β[1]IT [1] 0

0 β[2]IT [2]

]
, J(2)

γ =

[
γ[1]IT [1] 0

0 γ[2]IT [2]

]
.

14Allowing for multiple structural breaks is straightforward. The breakpoint can be estimated by BIC due to

Andrews and Lu (2001).
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Then, the model can be written as (7) where J
(1)
β and J

(1)
γ are replaced with J

(2)
β and J

(2)
γ , respec-

tively. Testing for a structural break can be implemented by the Wald test for the hypothesis

H0 : β
[1] = β[2], and γ[1] = γ[2].

4.3.2 Missing values

In practice, the panel data typically contain missing values. Even in such a case, the proposed

MD estimator can be modified straightforwardly. Perhaps, the easiest approach to obtain an

empirical covariance matrix is to use the so-called listwise deletion (LD) method or pairwise

deletion(PD) method.15 In the LD method, complete data that include no missing data are

constructed by removing all the units that involve at least one missing value. A drawback of

the LD method is that it could result in large information loss caused by substantial sample size

reduction. As opposed to the LD method, the PD method tries to use more data to compute

the covariance matrix. Whereas the PD method is routinely used in empirical analysis, for

example, Blundell, Pistaferri and Preston (2008) and Hryshko (2012), a drawback is that it is

an ad hoc method, and there is no statistical ground. Therefore, this paper uses the two-stage

procedure proposed by Yuan and Bentler (2000) since it is more efficient than the LD method

and has a statistical ground. Namely, in the first stage, we use the maximum likelihood (ML)

estimator to obtain a consistent estimate of unstructured covariance matrix from unbalanced

panel data, which is denoted as S̃N .
16 Then, in the second stage, we estimate the model exactly

in the same way except for replacing s̄N with s̃N = vech(S̃N ) in (33). However, we need to use

an alternative expression to compute the standard errors to account for the effect of first-stage

estimation (Yuan and Bentler, 2000; Hayakawa, 2022).

4.3.3 Optimization algorithm

A challenging issue of our approach is that the number of parameters to be estimated becomes

large as T and/or the number of variables increases. Therefore, how to reduce the computational

time is an important issue. In several optimization algorithms, the first and second derivatives

are usually required for optimization. Although it is not challenging to derive the first derivative,

it is not the case for the second derivative, though not impossible.17 If analytical first and second

derivatives are not provided, we need to rely on numerical derivatives, which can be quite time-

consuming, especially when the number of parameters is large. One way to avoid numerical

differentiation is to regard the optimization problem as a non-linear least-squares problem (NLS

problem) and use an algorithm that does not require the second derivative.

To introduce NLS problem, let us rewrite the objective function (33) as follows:

QMD(θ) = ∥Λ(θ)(s̄N − hzz(θ))∥2 = ∥r(θ)∥2 =
p2∑
j=1

r2j (θ)

15For a brief explanation of LD and PD methods, see Cameron and Trivedi (2005, Section 27.3.1).
16S̃N is computed using the expectation-maximization(EM) algorithm due to Dempster, Laird and Rubin

(1977). The details of the computation and asymptotic properties of S̃N are provided in Hayakawa (2022).

Furthermore, note that S̃N = SN , i.e., the ML estimator coicides with the sample covariance matrix, when there

are no missing values(Abadir and Magnus, 2005, pp.387-388).
17We may derive the second derivative of the objective function along the lines of Neudecker and Satorra

(1991). However, since its form is slightly complicated and could be slower than the proposed nonlinear least-

squares minimization, we do not consider approaches that require first and second derivatives.
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where p = 3T , WN (θ) = Λ(θ)′Λ(θ), Λ(θ) =
(
λ1(θ), ...,λp2(θ)

)′
and r(θ) =

(
r1(θ), ..., rp2(θ)

)′
with rj(θ) = λj(θ)

′(s̄N − hzz(θ)) for j = 1, ..., p2. Contrary to the minimization problem

(33), there are algorithms that make use of the structure of NLS problem. One of these is the

Levenberg-Marqurt algorithm, in which only the Jacobian matrix of r(θ) with respect to θ is

used and the second derivative is not used. The explicit form of the Jacobian matrix of r(θ) with

respect to θ is provided in online Appendix F. Indeed, from the preliminary simulation exercise,

we confirmed that using NLS optimization routine with the analytical Jacobian is substantially

faster than other algorithms that require both the first and second derivatives, not to mention

those requiring numerical derivatives.

4.3.4 Starting values for optimization

Since the number of parameters is large, the choice of starting value is an important issue in

practice. If all the elements of θ are generated randomly, it is likely that the resultant estimate

could be local minima. If one wants to reduce the possibility of local minima, we need to try as

many starting values we like, but it in turn makes the computational time longer. To address

this issue, we explicitly make use of a relationship between the coefficient vector θ1 =
(
β, γ,ψ′)′

and the variance and covariance vector θ2. Actually, when the weighting matrix WN (θ) in (33)

does not depend on the unknown parameter, we have the following relationship:

θ2 =
[
A (θ1)R′

p1,p2WNRp1,p2A (θ1)
]−1

A (θ1)
′R′

p1,p2WN s̄N = b (θ1) , (36)

where Rp1,p2 and A (θ1) are defined in (S.1) and (S.80), respectively, and the derivation of (36)

is provided in online Appendix D.

Since θ2 is a function of θ1, if we have a starting value for the coefficient vector θ1, denoted

as θstart1 , we can obtain the starting value for θ2 based on (36). Hence, in practice, we only need

to consider a set of randomly chosen θstart1 and select the solution that yields the lowest value

of objective function. Such a strategy for choosing the starting values is often employed in the

literature, for example, see Bonhomme and Manresa (2015).

4.4 Estimation procedure

Based on the discussion in Sections 4.1 to 4.3, the detailed computation procedure is described

in this subsection. Suppose that the model is given by

yit = µy,t + βx∗it + γwit + ζit

xit = x∗it + ϵit

where ζit and ϵit follow ARMA(Ly,AR,Ly,MA) and ARMA(Lx,AR,Lx,MA) processes, respectively.

Estimation proceeds with the following steps.

Step 1 Determine if we allow for a structural break in β and γ or not. If we allow it, provide

the break point Tb.

Step 2 Specify the lag orders (Ly,AR, Ly,MA) and (Lx,AR, Lx,MA), and verify that the order

condition 3T (3T + 1)/2 ≥ dim(θ) is satisfied.
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Step 3 Set the starting value for θ1; that is, β, γ, and ARMA coefficients of ζit and ϵit. This

is denoted as θstart1 .

Step 4 Given θstart1 , compute the starting value of θ2 with (36) and obtain θstart = (θstart′1 ,θstart′2 )

as described in Section 4.3.4.

Step 5 Obtain θ̂CUMD by solving the following problem:

θ̂CUMD = argmin
θ

[s̄N − hzz(θ)]
′Φ (θ) [s̄N − hzz(θ)],

Φ (θ) =
1

2
D′
p

(
H−1
zz (θ)⊗H−1

zz (θ)
)
Dp,

by using the Levenberg-Marqurt Algorithm with analytical derivatives provided in online

Appendices E and F and the starting value θstart. When missing values are included in

the data, replace s̄N with s̃N as described in Section 4.3.2.

Step 6 Compute the standard errors of θ̂CUMD based on Theorem 1 and related test statistics

such as Wald test statistic for testing classical measurement error (and for no structural

break when a structural break is assumed).

Remark 5. Matlab code implementing this procedure is available, currently from the authors

on request. Users of this code only need to make the appropriate selections in Steps 1, 2 and 3,

and Step 4 onwards will be executed automatically.

Remark 6. To avoid local minima, it is advisable to try different starting values for θstart1 in

Step 3 and, after repeating Steps 3, 4 and 5, select the one with the smallest objective function

value.

Remark 7. Lag orders and the breaking point Tb can be determined with information crite-

rion, say, BIC, proposed by Andrews and Lu (2001) by iterating the above procedure over the

candidate lag values and breakpoint.

5 Monte Carlo simulation

This section conducts a Monte Carlo simulation to investigate the finite sample properties of

the CUMD estimator. Since none of the existing methods are valid under the experimental

designs with non-classical measurement error, we only investigate the finite sample behavior of

the CUMD estimator.18

5.1 Data generating process

We consider the following data generating process:19

(Design I) yit = µy,t + βx∗it + γwit + ηi + ζit, (37)

18We also investigate the performance of our CUMD estimator as well as the cumulant estimator due to Erickson,

Jiang and Whited (2014) using the simulation design of Erickson, Jiang and Whited (2014), where parameter

values are calibrated to the real dataset. The results, reported in online Appendix G, confirm that the CUMD

estimator performs as well as the cumulant estimator overall in the absence of non-classical measurement error.
19The finite sample performance of the CUMD estimator with two mismeasured regressors is investigated. The

associated results are reported in online Appendix G, which are very similar to those with one mismeasured

regressor shown in Tables 1 and 2.
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where

x∗it = mx,it + τxηi + κxeit,

wit = ωwxmx,it + ωwwmw,it + τwηi.

We assume that the error term ζit follows AR(1) process:

ζit = ρy,1ζi,t−1 + vit, (t = 1, ..., T )

where vit is independent over i and t with E(vit) = 0 and V ar (vit) = σ2v,it, σ
2
v,it = ςiτt,

ςi ∼ U(0.5, 1.5), and τt = 0.5 + (t − 1)/(T − 1) so that T−1
∑T

t=1 τt = 1. Without loss of

generality, we set µy,t = 0. Suppose that among the regressors, we cannot observe x∗it, but can

observe xit contaminated with measurement error ϵit: xit = x∗it + ϵit where serially correlated

measurement error ϵit is generated according to ARMA(1,1):

ϵit = ρx,1ϵit−1 + eit + λx,1ei,t−1, (t = 1, ..., T )

with ϵi0 = ei0 = 0. eit is independent over i and t with E(eit) = 0 and V ar(eit) = σ2e . Although

time series homoskedasticity is assumed for eit for simplicity in this DGP, we estimate them as

if they are heteroskedastic. Note that this specification allows the case where the true values x∗it
and the measurement error ϵit are correlated, which is controlled by κx.

We assume that mj,it is generated as

mj,it = ϕjmj,i,t−1 + rj,it, (t = 1, ..., T ; j = x,w)

with mj,i0 = 0 and rj,it ∼ iid(0, σ2r,j), (j = x,w). For simplicity, we assume σ2r,x = σ2r,w = σ2r .

For parameter values, we set (β, γ) = (1, 0.5). Other parameters are set as ρy,1 = 0.8,

(ρx,1, λx,1) = (0.4, 0.2), ϕx = 0.8, ϕw = 0.4, τx = τw = 0.3, κx = {0, 0.3, 0.6, 0.9}, ωwx =
√
1/5,

ωww =
√
4/5. The remaining parameter values are determined in terms of signal-to-noise ratio

(SNR) whose definition is provided in online Appendix G. The formula used to determine the

values of σ2η, σ
2
r , and σ

2
e1 are also provided in online Appendix G. SNR is set at 5.

For the sample size, we consider T = {5, 10, 15} and N = {250, 500, 1000, 1500} and the

number of replications is 1,000. Significance level is set at 5%.

We generate data according to (37), using the covariance matrix derived from the model,

rather than directly generating the data using (37). In this way, controlling the multivariate

kurtosis is much easier, which is important because it plays an important role in CSA as a

measure of non-normality. Specifically, if we let Hzz,i, (p × p) be the hypothetical covariance

matrix of zi under the current DGP, the data are generated as

zi = H
1/2
zz,iζi, (i = 1, ..., N)

where ζi is a p × 1 random vector which determines the distributional property of zi and the

explicit form of Hzz,i is provided in online Appendix G. We consider two distributions for zi:

normal distribution and chi-square distribution. Specifically, according to Yuan and Bentler

(1997) and Yanagihara (2007), we generate ζi as follows:

ζi ∼ ϕiA
′ri
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where A is a k × p matrix with rank (A) = p and A′A = Ip, and ri = (ri1, ..., rip)
′ with:

(Normal distribution) rij ∼ iidN (0, 1) , ϕi = 1 A = Ip, (κ4 = 0)

(χ2 distribution) rij ∼ (xij − 4) /
√
8, xij ∼ χ2

4, ϕi =
√
6/χ2

8

A =

[
Ip
ι′p

] (
Ip + ιpι

′
p

)−1/2
,

(
κ4 =

4.5p2

p+ 1
+
p (p+ 2)

2

)
where κ4 denotes the multivariate kurtosis due to Mardia (1970).

In the experiment, both cases with and without missing values in the data are considered.

To generate data with missing values, we calibrate the firm investment data used in Section

6. Specifically, we obtain the missing pattern of investment variable from 2002 to 2016 with

the units that have more than or equal to three periods and apply it to each variable. Table 1

provides the missing rate for each (T,N). The missing rate is mainly related to T ; as T grows,

the missing rate also grows. This seems natural since attrition tends to happen as time goes by.

5.2 Results

Estimation and inference Simulation results are provided in Table 1. This table reports the

mean (Mean), the standard deviation (SD), the root mean squared error (RMSE), and empirical

size (in %) with 5% significance level of the CUMD estimator for β and γ for the case of the

chi-square distribution with κx = 0.3.20

The results show that the CUMD estimator has little bias and reasonably small dispersion

for all configurations. Regarding inference, the empirical sizes are close to 5% in most cases. A

few exceptions can be found in the unbalanced panel with (T,N) = (15, 250). In this case, the

dimension of θ2 is relatively large compared to the sample size. However, as N gets larger, the

empirical sizes get close to 5% in all cases. These results suggest that the CUMD estimator has

desirable finite sample properties for estimating and inference about β and γ.

Next, we investigate the performance of the remaining parameters. The result is provided

in Table 2. To save space, we only report the result with T = 10 and N = 500 and κx = 0.3 for

unbalanced panel.21 Specifically, we report the results excluding σ⋆x∗x∗ , σww σwx∗ which are not

of interest in general. As can be seen from Table 2, the parameters are estimated with sufficient

precision, and the empirical sizes of the associated t-tests are close enough to the nominal level.

Test for classical measurement error As noted in Section 4, one of the advantages of

our approach is that we can test whether measurement error is correlated with true regressor;

that is, measurement error is classical or non-classical. Table 3 summarizes the size and power

of the Wald test for the hypothesis H0 : σ⋆x∗ϵ = 0 against H0 : σ⋆x∗ϵ ̸= 0 where σ⋆x∗ϵ =

(σx∗ϵ,1, ..., σx∗ϵ,T−1)
′ and those of the t test for the hypothesis H0 : σx∗ϵ,t = 0 against H0 :

σx∗ϵ,t ̸= 0 for each t = 1, ..., T − 1 for the case of T = {5, 10} with unbalanced panel data.

Note that the case with κx = 0 corresponds to the size and the case with κx = {0.3, 0.6, 0.9}
corresponds to the power.22

The table shows that the Wald test has correct empirical size when N is sufficiently large

(N > 250). On the other hand, the size of the t test is correct for all the configurations including

20Simulation results with other values of κx are provided in the online supplement.
21The results of other configurations are qualitatively similar.
22Note that size-unadjusted powers are reported.
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N = 250. The power of the Wald test and t-tests quickly rises as N and/or κx increases, as

expected.

Test for no structural break As demonstrated in Section 4.3, it is easy to allow for a

structural break in β and γ. To investigate the performance of the CUMD estimator in such a

model and the size and power property of the Wald test for a structural break, we consider the

following DGP:

yit =

{
µy,t + β[1]x∗it + γ[1]wit + ηi + ζit, t = 1, ..., Tb

µy,t + β[2]x∗it + γ[2]wit + ηi + ζit, t = Tb + 1, ..., T.

We set Tb as the integer part of T/2. For parameter values of the first period t = 1, ..., Tb, we set

δ[1] = (β[1], γ[1])′ = (1.00, 0.50). For the parameter value of the second period, t = Tb + 1, ..., T ,

we set δ[2] = δ[1] + ∆ × ι2 with ∆ = {0.00, 0.05, 0.10}. Note that the case with ∆ = 0.00

corresponds to the case with no structural break. We set κx = 0.3.

The simulation results of the Wald test for the structural break are provided in Table 4.23

The table shows that the empirical size is close to the nominal level and the power increases as

N and/or T and/or ∆ increase(s), as expected.

6 Empirical analysis of investment equations

This section specifies and estimates an investment equation by applying the proposed MD es-

timator. Section 6.1 reviews the derivation of a statistical investment equation with Tobin’s q,

then Section 6.2 explains that the Tobin’s marginal q can be negatively correlated with measure-

ment error. Note that our new estimation method provides valid estimation and inference under

such a correlation, but the existing GMM and IV estimators employed by, say, Erickson and

Whited (2000), Almeida et al. (2010), Lewellen and Lewellen (2016), and Ağca and Mozumdar

(2017), among others, will be inconsistent. Section 6.3 reviews the discussion in the literature

on investment sensitivity to cash flow, and the empirical model of the investment equation with

Tobin’s q and cash flow is introduced in Section 6.4. The annual data for the United States man-

ufacturing sector from 2002 to 2016 (unbalanced panel data ranging from 828 to 1269 firms over

the years) are described in Section 6.5 and the estimation results are presented and discussed

in Section 6.6.

6.1 Investment equation

Let us consider an environment where firm managers choose investment each period to maximize

the expected present value of the stream of future profits. The value of firm i at time t is given

by

Vit = E

 ∞∑
j=0

(
j∏
s=1

bi,t+s

)
{Π(Ki,t+j , ξi,t+j)− ψ (Ii,t+j ,Ki,t+j , νi,t+j)− Ii,t+j}

∣∣∣∣∣∣Ωit
 (38)

23Since the performance of estimator for β and γ are qualitatively similar to the case without a structural break

(Table 1), we do not report them.
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where E (·|Ωit) denotes a conditional expectation given Ωit, where Ωit denotes the information

set of the manager of firm i at time t. bit denotes the firm’s discount factor at time t. Kit is the

beginning-of-period capital stock and Iit denotes investment. Π(Kit, ξit) is the profit function

with ∂Π/∂K > 0 and ξit is an exogenous shock to the profit function. ψ(Iit,Kit, νit) denotes the

investment adjustment cost function, which is increasing in Iit, decreasing in Kit, and convex in

both arguments. νit is an exogenous shock to the adjustment cost function. Note that ξit and

νit are observed by the manager but unobserved by the econometrician at time t. We assume

that the relative price of capital is normalized to unity.

The firm maximizes equation (38) subject to the following capital stock accounting identity:

Ki,t+1 = (1− di)Kit + Iit (39)

where di denotes the constant rate of capital depreciation for firm i. Let q∗it be the Lagrange

multiplier on the constraint (39). The first-order condition for maximizing the value of the firm

in (38) subject to (39) is given by

1 + ψI (Ii,t,Ki,t, νi,t) = q∗it (40)

where

q∗it = E

 ∞∑
j=1

(
j∏
s=1

bi,t+s

)
(1− di)

j−1 {ΠK (Ki,t+j , ξi,t+j)− ψK (Ii,t+j ,Ki,t+j , νi,t+j)}

∣∣∣∣∣∣Ωit
 . (41)

To empirically test the q theory by a linear regression model, we need to specify a functional

form for the adjustment cost function whose partial derivative with respect to Iit is linear in

Iit/Kit and νit, and also need to find a proxy for the unobservable q∗it. Regarding the first issue,

a commonly used function that satisfies the functional form requirement is given by

ψ (Iit,Kit, νit) = (a1,i + a1,t + a2νit) Iit + a3
I2it
Kit

+Kitf (νit) (42)

where a3 > 0 is assumed to ensure concavity of the value function and f (·) is an arbitrary

function. Differentiating (42) with respect to Iit and substituting the result into (40) yields the

following linear regression model

yit = µt + βq∗it + ηi + ζit (43)

where yit = Iit/Kit, ηi = −a1,i/ (2a3), µt = − (1 + a1,t) /2a3, β = 1/ (2a3) and ζit = − (a2/2a3) νit.

(43) is the basic regression model we want to investigate. However, unfortunately, this model

is not estimable since q∗it is not observed. Hence, we need to find an observable proxy for q∗it,

which induces measurement error. The following section considers the source of measurement

error in detail following Erickson and Whited (2000).

6.2 Source of non-classical measurement error

This subsection illustrates that the marginal q can be negatively correlated with measurement

error and that measurement error can be serially correlated.
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Erickson and Whited (2000) defines four kinds of q to investigate the measurement error in

detail. Specifically, they consider four q’s: marginal, average, Tobin’s, and measured q’s. The

marginal q, denoted as q∗it, is defined in (41). q∗it denotes the firm manager’s expectation of

the marginal contribution of new capital goods to future profit, which is usually unobservable.

The average q is defined as q̄it = Vit/Kit where Vit is the manager’s subjective valuation of the

capital stock given by (38). The Tobin’s q is defined as

q†it =
Dit + Sit −Nit −Hit

Kit
=
V †
it

Kit

where Dit is the market value of debt, Sit is the market value of equity, Nit is the replacement

value of inventories, Kit is the replacement value of the capital stock and Hit denotes unobserved

value of non–physical assets such as human capital and goodwill. Finally, the (observable)

measured q is defined as

qit =
Dit + Sit −Nit

Kit
=
Ṽit
Kit

(44)

Note that qit can be decomposed as follows

qit = q∗it + (q̄it − q∗it) +
(
q†it − q̄it

)
+
(
qit − q†it

)
= q∗it + (ϵ1,it + ϵ2,it + ϵ3,it) = q∗it + ϵit

where

ϵ1,it = q̄it − q∗it, ϵ2,it = q†it − q̄it =

(
V †
it − Vit

)
Kit

, ϵ3,it = qit − q†it =

(
Ṽit − V †

it

)
Kit

=
Hit

Kit
.

This indicates that there are three components in the measurement error ϵit.

The first one, ϵ1,it, is the difference between marginal and average q. Hayashi (1982) demon-

strates that if constant returns to scale and perfect competition are assumed, q̄it will be equal

to q∗it; that is, ϵ1,it = 0. However, if these assumptions are violated, marginal q will deviate

from average q. The second one, ϵ2,it, is the difference between the average and Tobin’s q. As

Blanchard, Rhee and Summers (1993) argues, there are possibly three reasons why average and

Tobin’s q may differ. First, firm managers may have more information than the market. Second,

even if managers and the market have the same information, the market valuation may include

a speculative bubble. Prices might be high (low) relative to fundamentals simply because they

are expected to increase (decrease). Third, the market may be subject to fads, making the

market valuation deviate from fundamentals for a long period. In these cases, Tobin’s q will

deviate from average q; that is, ϵ2,it ̸= 0. The third one, ϵ3,it is the difference between Tobin’s

and measured q. This term appears if Hit is not observable. Thus, the measurement error ϵit
includes several components for diverse reasons.

Furthermore, from this discussion, it is considered that the measurement error is serially

correlated because the asymmetry of information between managers and the market might con-

tinue for some periods and because deviations of market expectations from fundamental value

might persist.

Moreover, the marginal q∗it is likely to be correlated with the measurement error ϵit; that

is, non-classical measurement error. First, consider a situation that a firm’s manager get an

information that marginal benefit q∗it will increase, but it is unknown to the market. Then, the
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manager’s subjective valuation Vit will be larger than market’s evaluation V †
it; that is, Vit >

V †
it, and this implies that ϵ2,it < 0. Thus, in this case, q∗it and ϵ2,it are negatively correlated:

Cov (q∗it, ϵ2,it) < 0. Next, even if measurement errors ϵ1,it and ϵ2,it are absent; that is, ϵ1,it =

ϵ2,it = 0, q∗it = q†it is considered to be correlated with ϵ3,it. Specifically, conditional on Kit and

assuming no correlation between (Dit + Sit −Nit) and Hit, we have

Cov (q∗it, ϵ3,it) = Cov

(
Dit + Sit −Nit −Hit

Kit
,
Hit

Kit

)
= −V ar

(
Hit

Kit

)
< 0

Thus, even if measurement errors ϵ1,it and ϵ2,it are absent, negative correlation between q∗it and

ϵ3,it arises due to unobserved variable Hit.

6.3 Cash flow sensitivity

The results by Modigliani and Miller (1958) imply that in a perfect capital market, firms’ capital

structure (i.e., the combination of debt and equity financing) is irrelevant to their investment

decisions. For a similar reason, the regressors other than q should be insignificant in the in-

vestment regression because the q theory suggests that marginal q is a sufficient statistic for

investment. However, the empirical evidence in the literature has suggested that the capital

structure does matter in the market with frictions and uncertainty. Particularly, the pecking-

order theory of Myers and Majluf (1984) explains that the information asymmetries between

the corporate managers and the external investors result in a particular preference order for

financing investment: internal funds (i.e., “cash flow”), then debt by borrowing from banks

and other financial intermediaries or by issuing securities such as bonds, and finally issuance of

equity; see, for example, Brealey, Myers, Allen and Krishnan (2020).

Indeed, after Fazzari, Hubbard and Petersen (1988) empirically show that, among financially

constrained firms, investment positively responds to cash flow, numerous articles including Stein

(2003), Cummins, Hassett and Oliner (2006), Almeida and Campello (2007), Brown, Fazzari and

Petersen (2009), Almeida, Campello and Galvao (2010), Lewellen and Lewellen (2016), and Ağca

and Mozumdar (2017) among many others, have confirmed such a positive association, whereas

Erickson and Whited (2000) has found cash flow insignificant. We will make a contribution to

this literature by using a newly proposed method.

6.4 Empirical model

We estimate the following investment equation:

invit = µt + βq∗it + γcfit + ηi + ζit

where invit = (Iit/Kit), cfit = (CFit/Kit), and Iit denotes investment, Kit denotes capital

stock, q∗it denotes marginal q, CFit denotes cash flow, µt and ηi denotes time- and firm-specific

effects and ζit denotes an idiosyncratic error term. This type of model is studied in the above

cited studies. Unfortunately, since the marginal q, q∗it, is unobserved, we alternatively use the

observable measured q, qit, where both are related as

qit = q∗it + ϵit

where ϵit denotes the measurement error. Using this, the estimable model can be written as

invit = µt + βqit + γcfit + εit
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where εit = ηi + (ξit − βϵit). Note that this model is a special case of (3) with (yit, xit, wit) =

(invit, qit, cfit). Furthermore, as in Section 2, we allow for ARMA type serial correlation for ζit
and ϵit

6.5 United States manufacturing firm-level data

The dataset is obtained from Compustat. To calculate the variables, we mainly follow Er-

ickson and Whited (2000) and Erickson, Jiang and Whited (2014). Investment is Compus-

tat item CAPX and deflated by the gross beginning-of-period capital stock, PPEGT. Tobin’s

q is obtained from (DLTT+DLC+PRCC F∗CSHO−AC)/PPEGT. Cash flow is obtained as

(IB+DP)/PPEGT.

We consider the manufacturing firms with SICs 2000-3999 from 2002 to 2016. We eliminate

firms for which the value of the capital stock in 2002 is less than $5 million, those displaying

real asset or sales growth exceeding 100%, and the number of observed years is less than three.

Descriptive statistics of invit, qit, and cfit from 2002 to 2016 are given in Table 5. The average

investment is stable and approximately 0.08-0.11. We also find several outliers in qit and cfit,

and this causes a gap between the mean and median.

Since the dataset is unbalanced, we need to use the two-stage procedure outlined in Section

4.3. Specifically, we typically use the EM algorithm to obtain the empirical covariance matrix S̃N
in the first stage as the counterpart of the sample covariance matrix SN for the balanced panel.

However, since measured q and cash flow include several outliers as described above, instead of

the EM algorithm, we use the expectation-robust(ER) algorithm proposed by Yuan and Zhang

(2012) and Yuan, Chan and Tian (2016) which is robust to outliers. When using the ER

algorithm, we need to select the tuning parameter, ω, which determines how many observations

will be down-weighted to mitigate the effect of outliers. We tried ω = {0.10, 0.15, 0.20}. However,
since the results are qualitatively similar, we mainly report the results with ω = 0.15. Other

results are provided in Table 8. We use the one with minimum BIC for the choice of lag orders

of idiosyncratic and measurement errors.

6.6 Estimation results

We consider three estimation periods: 2002-2016, 2002-2007, and 2009-2016. Since it is suspi-

cious that a structural break occurred during the Lehman collapse, we first estimate the entire

period from 2002 to 2016, allowing for a structural break in β and γ. By applying the Andrews

and Lu (2001) procedure to detect the breakpoint based on BIC, we find that a structural break

occurred between 2007 and 2008. Indeed, the Wald test for no structural break discussed in

Section 4.3.1 is rejected with a 5% significance level (p-value is 0.023). Moreover, from Figures

1, 2, and 3 which depict the sample and estimated variances and covariances of invit, qit, and

cfit, we find that the sample variance of qit at year 2008 is much smaller and that of cfit is

extremely larger compared with those of 2007 and 2009. Since including the year 2008 could

bias the estimation results, we estimate 2002-2007 and 2009-2016 separately. The estimation

results are provided in Tables 6 and 7.24

24 Average computation time per one starting value is 0.27 seconds for 2002–2007, 0.45 seconds for 2009-2016,

and 6.1 seconds for 2002-2016 on desktop PC with Intel Xeon Gold 6230 processor(2.1GHz) and 64GB RAM.
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From the tables, we find an evidence of serially correlated measurement error and idiosyn-

cratic error. Regarding the fit of the model, although the goodness-of-fit test is rejected for both

periods, Figures 1, 2, and 3 show reasonably good fit of the model.25

Let us consider the results for β and γ. We find that β, the coefficient of q∗it, is strongly

significant for both periods. However, regarding γ, the coefficient of cash flow, we find that

whereas it is not significant at the 5% level for 2002-2007, it becomes significant for 2009-2016,

and the estimate of the latter period is increased compared with the former period. The result

that cash flow is not significant before 2007 is in line with Chen and Chen (2012) who shows

that investment-cash flow sensitivity has declined and disappeared before 2009.

To investigate this result in more detail, we divide the firms into small and large firms

according to the time-series average of total assets. Since the largest 33% of firms possess

95% of total assets over all firms, the largest 33% of firms are categorized as large firms, and

the remaining firms are categorized as small firms. The results for each firm size with ω =

{0.10, 0.15, 0.20} are provided in Table 8. The table shows that the results are similar for

different values of ω, which indicates the robustness to ω. Hence, we focus on the case with

ω = 0.15. From the estimation results, we find that, for the case of small firms, the cash flow is

not significant for 2002-2007 but becomes significant for 2009-2016, whereas, for the large firms,

the cash flow is significant in both periods. One possible reason behind this is as follows. Large

firms tend to bear relatively small financial constraints for investment, and the pecking-order

theory for a desirable capital structure for firms in a specific industry is well applied. This implies

that their investment decision will likely be sensitive to the preferred financing source, internal

funding, or cash flow here. The result that cash flow is an important factor for investment for

large firms in both periods is consistent with Grullon et al. (2018). Note that the value of the

estimate of γ is 0.0174 from 2002 to 2007 and falls to 0.0114 from 2009 to 2016, a decrease of

34.5%. This fall in the cash flow sensitivity of large firms can be attributed to relatively cheap

external financing, as seen in the surge in financing through corporate bond issuance after the

financial crisis, as explained next. Figure 4 shows the amount of new corporate bonds issued by

U.S. firms in non-financial and financial industries. The issued amount by the financial industry

almost doubled between 2002 and 2007, which sharply fell in 2008 by more than half, whereas the

issued amount by non-financial industry (including manufacturing) was stable during the same

period and fell by a small amount in 2008. After the crisis, largely due to the zero-interest-rate

policy, the average high-return and triple B bond yields from 2009 to 2016 are significantly lower

than those from 2002 to 2007 (see Figure 2B and D in Board of Governors of the Federal Reserve

System (2017)), and the bond issued by non-financial firms has increased rapidly. Therefore, in

2009-2016, the cost of external financing for large firms was lower than in 2002-2007 on average,

which may have contributed to lower cash flow sensitivity.

Small firms depend more on financial intermediaries such as commercial banks for external

funding, and the issuance of corporate bonds or commercial papers is not an important source

of credit. Even though there is no comprehensive data that measure the financing activities of

small businesses, there is circumstantial but strong evidence suggesting that the credit condition

for small business from 2009-2016 is significantly less accommodative than in 2002-2007, as ex-

plained next; see another evidence in Board of Governors of the Federal Reserve System (2017,

25Note that goodness-of-fit test is often rejected in empirical studies using covariance structure analysis. For

instance, Ashenfelter and Card (1985), Dickens (2000), Hyslop (2001), Baker and Solon (2003), and Kalwij and

Alessie (2007) report a result that goodness-of-fit test is rejected.
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p.8-10). Figure 5 shows the plot of the monthly credit condition of small manufacturing firms,

which is based on the survey of the National Federal of Independent Business (NFIB)members.26

Specifically, the monthly credit condition is defined as the proportion of respondents who said

their borrowing needs were satisfied in the past three months, subtracting the proportion of

respondents who said their borrowing needs were satisfied in the past three months respondents

who said their borrowing needs were not satisfied. As can be seen from the figure, the average

credit condition during 2002-2007 (34.6%) is substantially higher than the average credit condi-

tion during 2009-2016 (25.6%). This may suggest that the investment decisions of small firms

were insensitive to cash flows during the period of reasonable credit conditions in 2002-2007,

whereas they became more sensitive under the severe financial constraints after the financial

crisis.

Subsequently, let us consider the remaining parameters. Regarding estimation results asso-

ciated with individual effects ηi, the significance of V ar(ηi) supports the presence of individual

effects. Regarding Cov(x∗it, ηi), we find that it is significant for most periods of 2002-2007, but

not the case from 2009 to 2016.27 A similar pattern is also observed in Cov(wit, ηi). Note that

the result that Cov(x∗it, ηi) and Cov(wit, ηi) for t = 2009, ..., 2016 are not significant does not

agree with the results of Wald test reported. This may be due to the covariance matrix structure

used to construct the Wald test statistic.

We now consider Cov(q∗it, ϵit). The t-test results show that q∗it and ϵit are negatively sig-

nificantly correlated in most years for both periods, whilst the Wald tests do not reject the

null of classical measurement error. This is probably due to the large positive serial correlation

of (q∗it − E(q∗it))ϵit. Table 9 provides the variance decomposition of qit. As the values of the

sample variance of qit (denoted as s2qt) and V̂ ar(qit) are very close, it is reasonable to assume

that V ar(qit) is estimated precisely. The correlation coefficient between q∗it and the measure-

ment error ϵit is calculated using this result, the 12-year average is -0.49, indicating a fairly

strong negative correlation. Disentangling the source of negative correlation is not trivial since

there are several components in the measurement error. However, as discussed above, informa-

tion asymmetries between the manager and the market, as well as the unavailability of data

on human capital and goodwill, could very well cause such a negative correlation. From the

above, we conclude that there is strong evidence of non-classical measurement error and that it

is important to control for it in the estimation of investment equations using Tobin’s q.

Table 9 provides the variance decomposition of qit = q∗it + ϵit. As the values of the sample

variance of qit (denoted as s2qt) and V̂ ar(qit) are very close, it is reasonable to assume that

V ar(qit) is estimated precisely. Because of relatively strong negative correlation between q∗it and

ϵit, the variance of observed qit, V̂ ar(qit), is much smaller than that of unobserved q∗it. This

decomposition visualizes the importance of controlling for non-classical measurement error in

Tobin’s q.

Finally, we compare the CUMD estimator with the OLS, fixed effects (FE), and cumulant

estimators of (Erickson, Jiang and Whited, 2014).28 Two variants of cumulant estimators, using

the third-cumulants of levels variables and Within-Group (WG) transformed variables, are con-

26http://www.nfib-sbet.org/indicators
27The Wald test does not reject the null of Cov(q∗it, ηi) = 0 for all t for the period of 2002-2007. This is likely

due to the large positive serial correlation of (q∗it − E(q∗it))ηi.
28To deal with outliers of qit and cfit, the largest 2% observations of each variable are removed.
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sidered.29 The results are reported in Table 10, which shows that the CUMD and four estimators

are very different in terms of the magnitude of estimates and statistical significance. Based on

the evidence of fixed effects and measurement errors in Tables 6 and 7, it is reasonable to expect

that the OLS and FE estimators are biased and unreliable. The cumulant estimator is also

expected to be biased and unreliable, based on the evidence of non-classical measurement error

in the same table. It can therefore be concluded that the CUMD estimation results would be

the most reliable.

7 Conclusion

This paper proposed a minimum distance estimator to estimate panel regression models with

measurement error. The model considered is more general than those examined in the literature

in that measurement error can be non-classical in the sense that it is allowed to be correlated

with true regressor and serially correlated measurement error and idiosyncratic error are allowed.

Since our approach estimates the variances and covariances of latent variables in addition to the

main parameter of interest; that is, the coefficient of regressors, as a by-product of estimation,

we can directly test, for instance, whether measurement error is correlated with true regressor,

which is not possible in the existing methods. Monte Carlo simulation is conducted to investigate

the finite sample behavior of the proposed method and confirm that it has desirable performance.

Finally, we have applied our estimator to an investment equation and have obtained evidence to

support that (i) there is a structural break between 2007 and 2008, (ii) marginal q is strongly

significant, (iii) cash flow is not significant before 2007, but becomes significant after 2009 in-

dicating an increased investment-cash flow sensitivity, (iv) measurement error and idiosyncratic

error are serially correlated, (v) measurement error is significantly negatively correlated with

the marginal q, i.e., non-classical.

Although we have focused on the Tobin’s q as the mis-measured regressor, there are numerous

empirical models in which the regressor is mis-measured and measurement error is considered

non-classical, including the labor supply model in which earnings are subject to non-classical

measurement error as evidenced in Bound and Krueger (1991). The proposed MD estimation

method can be applied to such models and provides consistent estimators and asymptotically

valid inference.

Finally, we briefly discuss some possible extensions from a theoretical perspective. First, in

the model considered in this paper, the true regressors are assumed to be strictly exogenous.

However, in some cases, the true regressor becomes endogenous due to simultaneity or the pres-

ence of a common component that affects the regressor and error term. In these cases, the

proposed method cannot be directly applicable and extensions will be required. Second, ex-

tending the model subject to non-classical measurement errors to a dynamic model by including

a lagged dependent variable seems important. Third, although this study has considered the

conventional time-invariant fixed effects, it is important to extend it to time-varying fixed effects

or interactive fixed effects along the lines of Ahn, Lee and Schmidt (2013). We are currently

working on these extensions, which will be available soon.

29The cumulant estimators with fourth and fifth orders are also computed, which are reported in online Ap-

pendix H.
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Table 1: Simulation results for Design I (κx = 0.3)
Balanced panel

β = 1 γ = 0.5

T N miss rate Mean SD RMSE Size Mean SD RMSE Size

5 250 0 1.034 0.141 0.145 7.9 0.486 0.064 0.066 6.2
5 500 0 1.019 0.116 0.118 6.9 0.494 0.049 0.049 5.4
5 1000 0 1.018 0.094 0.096 6.5 0.493 0.040 0.041 5.2
5 1500 0 1.015 0.088 0.089 6.1 0.494 0.036 0.037 5.7

10 250 0 1.016 0.068 0.069 5.6 0.493 0.034 0.035 6.2
10 500 0 1.016 0.061 0.063 6.2 0.493 0.029 0.029 5.3
10 1000 0 1.009 0.049 0.050 5.4 0.497 0.022 0.023 5.4
10 1500 0 1.006 0.044 0.044 6.4 0.498 0.020 0.020 7.2
15 250 0 1.010 0.043 0.044 4.9 0.496 0.025 0.025 4.4
15 500 0 1.009 0.043 0.044 5.7 0.498 0.021 0.021 5.6
15 1000 0 1.008 0.034 0.035 4.9 0.497 0.016 0.016 3.9
15 1500 0 1.004 0.030 0.030 5.1 0.499 0.014 0.014 5.0

Unbalanced panel

β = 1 γ = 0.5

T N miss rate Mean SD RMSE Size Mean SD RMSE Size

5 250 0.04 1.030 0.131 0.134 6.5 0.488 0.060 0.061 5.4
5 500 0.05 1.024 0.123 0.125 6.7 0.490 0.055 0.056 6.2
5 1000 0.05 1.017 0.100 0.101 6.4 0.493 0.040 0.041 4.9
5 1500 0.09 1.015 0.092 0.094 6.7 0.494 0.038 0.038 5.6

10 250 0.14 1.019 0.071 0.073 4.0 0.493 0.036 0.037 3.6
10 500 0.14 1.017 0.064 0.066 5.7 0.494 0.030 0.031 5.6
10 1000 0.15 1.009 0.055 0.055 6.0 0.497 0.025 0.025 5.8
10 1500 0.19 1.009 0.046 0.047 4.1 0.497 0.021 0.022 4.9
15 250 0.23 1.011 0.038 0.039 0.4 0.496 0.024 0.024 0.3
15 500 0.22 1.009 0.043 0.044 2.9 0.496 0.023 0.023 3.4
15 1000 0.23 1.009 0.040 0.041 5.8 0.496 0.020 0.020 6.4
15 1500 0.26 1.008 0.035 0.036 4.1 0.497 0.016 0.017 5.5
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Table 2: Detailed simulation results for Design I (T = 10, N = 500, κx = 0.3)
unbalanced panel data

Parameter True Mean SD RMSE Size Parameter True Mean SD RMSE Size

β 1.00 1.017 0.064 0.066 5.7 σx∗ϵ,1 0.45 0.455 0.281 0.281 7.8
γ 0.50 0.494 0.030 0.031 5.6 σx∗ϵ,2 0.45 0.447 0.190 0.190 5.5
ρy,1 0.80 0.802 0.049 0.049 8.6 σx∗ϵ,3 0.45 0.455 0.203 0.203 5.2
ρx,1 0.40 0.395 0.079 0.079 8.0 σx∗ϵ,4 0.45 0.445 0.214 0.214 6.5
λx,1 0.20 0.200 0.069 0.068 9.2 σx∗ϵ,5 0.45 0.446 0.244 0.244 7.7
σ2
η 1.01 0.995 0.321 0.322 3.0 σx∗ϵ,6 0.45 0.441 0.265 0.265 7.9

σ2
v,1 0.50 0.481 0.538 0.538 6.2 σx∗ϵ,7 0.45 0.444 0.277 0.277 7.3

σ2
v,2 0.61 0.590 0.269 0.269 7.4 σx∗ϵ,8 0.45 0.449 0.303 0.302 7.6

σ2
v,3 0.72 0.696 0.274 0.275 8.5 σx∗ϵ,9 0.45 0.455 0.338 0.338 7.4

σ2
v,4 0.83 0.800 0.287 0.289 7.8 σwη,1 0.30 0.301 0.147 0.147 4.6

σ2
v,5 0.94 0.895 0.322 0.326 11.6 σwη,2 0.30 0.305 0.173 0.173 6.3

σ2
v,6 1.06 1.011 0.340 0.343 8.9 σwη,3 0.30 0.294 0.178 0.178 4.7

σ2
v,7 1.17 1.120 0.356 0.359 9.3 σwη,4 0.30 0.292 0.189 0.189 6.3

σ2
v,8 1.28 1.241 0.388 0.389 9.4 σwη,5 0.30 0.285 0.182 0.183 4.7

σ2
v,9 1.39 1.349 0.425 0.426 9.0 σwη,6 0.30 0.286 0.196 0.197 5.5

σx∗η,1 0.30 0.306 0.242 0.242 5.2 σwη,7 0.30 0.282 0.204 0.205 6.9
σx∗η,2 0.30 0.303 0.270 0.270 5.7 σwη,8 0.30 0.290 0.203 0.204 4.8
σx∗η,3 0.30 0.297 0.280 0.280 5.1 σwη,9 0.30 0.285 0.205 0.206 5.0
σx∗η,4 0.30 0.289 0.288 0.288 6.1 σwη,10 0.30 0.287 0.209 0.210 4.5
σx∗η,5 0.30 0.286 0.292 0.292 5.6 σ2

e,1 1.49 1.531 0.413 0.415 6.1
σx∗η,6 0.30 0.284 0.304 0.304 6.2 σ2

e,2 1.49 1.509 0.327 0.327 6.4
σx∗η,7 0.30 0.291 0.314 0.314 5.5 σ2

e,3 1.49 1.510 0.349 0.350 7.3
σx∗η,8 0.30 0.294 0.325 0.325 6.2 σ2

e,4 1.49 1.514 0.364 0.364 7.6
σx∗η,9 0.30 0.293 0.322 0.322 5.3 σ2

e,5 1.49 1.525 0.387 0.389 7.6
σx∗η,10 0.30 0.284 0.323 0.323 5.3 σ2

e,6 1.49 1.512 0.395 0.396 7.3
σ2
e,7 1.49 1.521 0.415 0.416 7.6

σ2
e,8 1.49 1.495 0.435 0.434 7.3

σ2
e,9 1.49 1.514 0.462 0.462 5.8
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Table 3: Size and power of t and Wald tests for classical measurement error for Design I
unbalanced panel data

Wald test t test for H0 : σx∗ϵ,t = 0, (t = 1, 2, ..., T − 1)

T N κx σ⋆
x∗ϵ 1 2 3 4 5 6 7 8 9

5 250 0 8.2 6.9 6.4 7.1 6.8
5 250 0.3 41.2 17.7 31.6 25.2 16.5
5 250 0.6 90.9 38.1 73.3 65.8 49.6
5 250 0.9 99.7 60.0 95.4 90.5 78.0

5 500 0 5.5 6.0 5.5 5.0 5.6
5 500 0.3 61.6 24.0 46.8 35.0 26.8
5 500 0.6 99.7 55.8 93.5 89.0 76.5
5 500 0.9 99.9 77.4 99.4 98.7 96.4

5 1000 0 4.3 5.6 4.6 4.5 4.7
5 1000 0.3 87.3 33.1 71.5 60.6 43.5
5 1000 0.6 100.0 75.6 99.7 98.3 96.1
5 1000 0.9 100.0 95.8 100.0 99.7 99.6

5 1500 0 4.0 5.0 5.0 7.0 5.0
5 1500 0.3 97.4 42.1 87.5 72.9 57.3
5 1500 0.6 100.0 86.1 99.9 99.9 98.9
5 1500 0.9 100.0 97.9 100.0 100.0 99.9

10 250 0 9.5 6.4 8.7 7.4 6.5 7.9 6.5 7.0 6.1 5.9
10 250 0.3 72.2 25.5 44.9 40.8 34.3 32.6 26.9 24.3 23.6 17.2
10 250 0.6 97.4 59.3 86.6 81.8 79.0 73.8 68.7 60.2 55.0 45.0
10 250 0.9 99.2 82.3 94.1 93.3 91.7 88.8 87.6 86.0 78.2 70.7

10 500 0 7.9 6.6 5.9 5.9 6.3 7.3 6.1 8.0 5.0 7.1
10 500 0.3 97.6 46.1 72.3 66.1 60.4 54.7 48.9 45.8 40.1 35.3
10 500 0.6 99.9 90.1 99.4 98.9 97.7 96.0 94.3 89.4 86.4 80.0
10 500 0.9 100.0 99.1 99.9 99.8 99.8 99.7 99.8 99.6 98.8 97.4

10 1000 0 7.3 5.9 5.9 6.7 5.4 6.1 5.5 5.4 6.7 6.6
10 1000 0.3 100.0 65.9 91.7 86.9 82.5 77.3 71.6 66.5 63.5 51.0
10 1000 0.6 100.0 98.8 100.0 100.0 100.0 99.6 99.1 99.6 99.0 97.1
10 1000 0.9 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.7

10 1500 0 5.6 6.6 5.0 6.3 5.6 5.3 6.2 6.8 6.3 5.7
10 1500 0.3 99.9 79.2 97.8 95.6 92.0 89.6 86.5 78.9 75.8 68.7
10 1500 0.6 100.0 99.8 100.0 100.0 100.0 100.0 100.0 99.7 99.8 99.6
10 1500 0.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: κx = 0 corresponds to the size and κx = 0.3, 0.6, 0.9 correspond to the power.

Table 4: Size and power of Wald test for no structural break
balanced panel data unbalanced panel data

∆ = ∆ =
T N 0.00 0.05 0.10 0.00 0.05 0.10

10 250 7.3 41.9 94.2 3.7 28.0 81.7
10 500 5.3 68.0 99.4 5.9 60.9 99.3
10 1000 4.0 94.0 100.0 4.6 86.7 100.0
10 1500 6.1 98.4 100.0 6.0 96.6 100.0
15 250 6.0 54.7 98.0 0.1 5.7 46.8
15 500 6.5 82.1 100.0 3.7 57.6 95.0
15 1000 5.9 98.0 100.0 5.8 93.5 99.7
15 1500 4.6 99.8 100.0 4.7 98.4 99.9

Note: ∆ = 0 correspond to the size and ∆ = 0.05, 0.10

correspond to the power.
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Table 5: Descriptive statistic
inv

year obs. mean median S.D. min Q1 Q3 max skew. kurt.

2002 1216 0.091 0.069 0.08 0.000 0.042 0.114 0.639 2.42 8.61
2003 1230 0.082 0.066 0.07 0.001 0.038 0.102 0.574 2.43 8.97
2004 1269 0.091 0.069 0.07 0.001 0.044 0.113 0.591 2.41 8.33
2005 1217 0.099 0.077 0.08 0.001 0.049 0.121 0.626 2.32 7.92
2006 1169 0.109 0.084 0.09 0.004 0.053 0.133 0.787 2.86 12.23
2007 1093 0.111 0.085 0.10 0.001 0.057 0.128 0.941 3.08 14.35
2008 1048 0.109 0.084 0.09 0.000 0.055 0.135 0.657 2.54 8.84
2009 1013 0.079 0.062 0.07 0.000 0.036 0.097 0.646 2.64 10.56
2010 977 0.089 0.066 0.09 0.000 0.042 0.106 1.137 4.49 36.00
2011 954 0.099 0.078 0.09 0.000 0.051 0.123 0.829 3.45 18.58
2012 935 0.100 0.081 0.08 0.001 0.050 0.121 0.852 3.18 17.59
2013 925 0.098 0.077 0.08 0.000 0.052 0.120 0.696 2.59 10.51
2014 942 0.098 0.078 0.08 0.000 0.053 0.120 0.889 3.14 16.40
2015 876 0.091 0.074 0.08 0.000 0.048 0.108 0.695 3.26 16.79
2016 828 0.081 0.069 0.06 0.000 0.045 0.100 0.576 2.44 10.47

q

year obs. mean median S.D. min Q1 Q3 max skew. kurt.

2002 1208 2.520 0.965 5.36 -4.201 0.322 2.646 67.159 5.84 49.48
2003 1222 4.039 1.568 8.02 -2.034 0.655 4.054 124.276 6.72 69.27
2004 1262 4.225 1.753 7.73 -5.152 0.730 4.523 81.775 4.80 30.99
2005 1210 5.126 1.845 13.68 -3.747 0.711 4.504 249.166 9.36 122.07
2006 1161 5.137 2.044 11.40 -3.052 0.855 4.912 158.969 6.81 63.15
2007 1087 5.115 1.925 14.21 -3.487 0.655 4.575 282.949 10.54 160.33
2008 1042 1.687 0.688 6.29 -96.974 0.039 2.112 97.052 1.51 125.47
2009 1006 2.976 1.326 8.01 -84.986 0.434 3.228 145.895 6.23 125.43
2010 974 4.117 1.531 22.48 -74.110 0.564 3.747 658.362 25.51 734.67
2011 950 2.877 1.134 6.96 -34.801 0.281 3.146 89.783 6.48 67.32
2012 930 3.243 1.405 8.14 -79.685 0.351 3.768 91.250 3.38 53.47
2013 920 4.660 2.112 9.75 -65.400 0.723 4.935 114.605 4.91 48.70
2014 938 4.840 2.053 12.52 -152.243 0.785 5.195 129.196 1.80 59.38
2015 874 4.252 2.012 9.68 -99.630 0.622 4.855 109.426 1.85 45.93
2016 828 4.611 2.451 8.05 -39.571 0.838 5.383 90.219 4.43 35.03

cf

year obs. mean median S.D. min Q1 Q3 max skew. kurt.

2002 1214 0.035 0.133 0.88 -12.435 0.045 0.254 3.072 -6.88 72.77
2003 1230 0.118 0.139 0.59 -6.853 0.055 0.272 3.216 -4.43 46.29
2004 1269 0.152 0.169 0.73 -8.045 0.080 0.304 6.381 -3.33 43.90
2005 1217 0.210 0.182 1.17 -14.078 0.079 0.336 23.344 6.38 175.93
2006 1170 0.161 0.184 1.10 -20.371 0.087 0.340 9.093 -7.61 136.92
2007 1094 0.068 0.181 1.72 -32.663 0.083 0.339 13.761 -10.42 175.77
2008 1048 -0.069 0.150 1.58 -23.884 -0.015 0.323 14.971 -5.98 80.05
2009 1012 0.033 0.118 1.15 -23.112 0.013 0.273 3.551 -11.08 183.59
2010 977 0.168 0.189 3.17 -62.242 0.089 0.344 68.996 2.32 377.71
2011 955 0.222 0.197 0.88 -7.593 0.088 0.365 11.881 1.61 66.17
2012 935 0.170 0.165 1.28 -8.369 0.071 0.328 28.667 10.83 266.44
2013 925 0.093 0.164 1.09 -18.088 0.068 0.332 5.717 -7.91 110.45
2014 942 0.021 0.157 3.10 -21.704 0.066 0.320 82.784 19.14 539.48
2015 876 -0.219 0.163 2.94 -53.193 0.049 0.310 3.509 -12.39 186.17
2016 828 -0.086 0.162 1.70 -33.187 0.051 0.303 2.987 -11.10 182.93
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Table 6: Estimation result of investment equation for 2002-2007
parameter coef. s.e. parameter coef. s.e.

β 0.0071∗∗∗ (0.0012) Cov(x∗
2002, ϵ2002) -1.1211 (1.1411)

γ -0.0031 (0.0036) Cov(x∗
2003, ϵ2003) -2.1538∗∗ (0.9852)

ρy,1 0.5185∗∗∗ (0.0446) Cov(x∗
2004, ϵ2004) -2.4675∗∗ (1.0977)

ρx1,1 1.1725∗∗∗ (0.0908) Cov(x∗
2005, ϵ2005) -1.5566∗ (0.8922)

λx1,1 -0.9017∗∗∗ (0.1447) Cov(x∗
2006, ϵ2006) -1.7159∗ (0.9161)

λx1,2 -0.0716∗∗ (0.0322)

V ar(η) 0.0003∗∗∗ (0.0001) Cov(w2002, η) 0.0009∗∗∗ (0.0002)
V ar(v2002) 0.0012∗∗∗ (0.0001) Cov(w2003, η) 0.0009∗∗∗ (0.0002)
V ar(v2003) 0.0005∗∗∗ (0.0001) Cov(w2004, η) 0.0007∗∗∗ (0.0002)
V ar(v2004) 0.0005∗∗∗ (0.0001) Cov(w2005, η) 0.0006∗∗∗ (0.0002)
V ar(v2005) 0.0005∗∗∗ (0.0001) Cov(w2006, η) 0.0006∗∗∗ (0.0002)
V ar(v2006) 0.0006∗∗∗ (0.0001) Cov(w2007, η) 0.0004∗∗ (0.0002)

Cov(x∗
2002, η) 0.0020 (0.0032) V ar(e2002) 0.8838 (1.2400)

Cov(x∗
2003, η) 0.0073∗ (0.0039) V ar(e2003) 3.5232∗∗∗ (1.0586)

Cov(x∗
2004, η) 0.0076∗ (0.0039) V ar(e2004) 3.2780∗∗∗ (1.1276)

Cov(x∗
2005, η) 0.0092∗∗ (0.0039) V ar(e2005) 2.4509∗∗ (0.9570)

Cov(x∗
2006, η) 0.0092∗∗ (0.0041) V ar(e2006) 2.4130∗∗ (0.9692)

Cov(x∗
2007, η) 0.0099∗∗ (0.0044)

Note: ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1, 5, and 10 percent levels, respectively.

Wald test (p-value)

H0 : Cov(q∗
i , ηi) = 0 9.66 (0.140)

H0 : Cov(cf i, ηi) = 0 40.23 (0.000)
H0 : Cov(q∗

i , ei) = 0 5.90 (0.316)

Goodness-of-fit test [d.f.] (p-value) 276.25 [57] (0.000)
BIC -137.07
Observations 7578

(Ly,AR, Ly,MA) (1, 0)
(Lx,AR, Lx,MA) (1, 2)
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Table 7: Estimation result of investment equation for 2009-2016
parameter coef. s.e. parameter coef. s.e.

β 0.0069∗∗∗ (0.0010) Cov(x∗
2009, ϵ2009) -1.2598 (0.9447)

γ 0.0060∗∗ (0.0027) Cov(x∗
2010, ϵ2010) -2.8565∗∗ (1.2774)

ρy,1 0.6080∗∗∗ (0.0305) Cov(x∗
2011, ϵ2011) -2.0911∗∗ (0.9142)

ρx1,1 0.8854∗∗∗ (0.0642) Cov(x∗
2012, ϵ2012) -2.2119∗∗ (0.9637)

λx1,1 -0.6081∗∗∗ (0.0832) Cov(x∗
2013, ϵ2013) -3.1143∗∗ (1.2870)

Cov(x∗
2014, ϵ2014) -1.6978∗∗ (0.7673)

V ar(η) 0.0003∗∗∗ (0.0001) Cov(x∗
2015, ϵ2015) -1.2871∗∗ (0.6097)

V ar(v2009) 0.0010∗∗∗ (0.0001)
V ar(v2010) 0.0006∗∗∗ (0.0001) Cov(w2009, η) 0.0001 (0.0002)
V ar(v2011) 0.0006∗∗∗ (0.0001) Cov(w2010, η) 0.0002 (0.0002)
V ar(v2012) 0.0006∗∗∗ (0.0001) Cov(w2011, η) -0.0001 (0.0002)
V ar(v2013) 0.0005∗∗∗ (0.0001) Cov(w2012, η) -0.0001 (0.0002)
V ar(v2014) 0.0005∗∗∗ (0.0001) Cov(w2013, η) -0.0002 (0.0002)
V ar(v2015) 0.0004∗∗∗ (0.0001) Cov(w2014, η) -0.0003 (0.0002)

Cov(w2015, η) -0.0005∗ (0.0002)
Cov(x∗

2009, η) -0.0007 (0.0032) Cov(w2016, η) -0.0006∗∗∗ (0.0002)
Cov(x∗

2010, η) -0.0005 (0.0033)
Cov(x∗

2011, η) -0.0023 (0.0031) V ar(e2009) 1.3006 (1.1388)
Cov(x∗

2012, η) -0.0039 (0.0033) V ar(e2010) 3.8735∗∗∗ (1.3649)
Cov(x∗

2013, η) -0.0061 (0.0040) V ar(e2011) 2.7897∗∗∗ (0.9820)
Cov(x∗

2014, η) -0.0074∗ (0.0041) V ar(e2012) 2.7068∗∗∗ (1.0087)
Cov(x∗

2015, η) -0.0086∗∗ (0.0042) V ar(e2013) 3.8545∗∗∗ (1.3279)
Cov(x∗

2016, η) -0.0121∗∗∗ (0.0044) V ar(e2014) 2.5342∗∗∗ (0.8375)
V ar(e2015) 2.0252∗∗∗ (0.6449)

Note: ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1, 5, and 10 percent levels, respectively.

Wald test (p-value)

H0 : Cov(q∗
i , ηi) = 0 28.24 (0.000)

H0 : Cov(cf i, ηi) = 0 32.24 (0.000)
H0 : Cov(q∗

i , ei) = 0 7.46 (0.382)

Goodness-of-fit test [d.f.] (p-value) 238.83 [119] (0.000)
BIC -613.12
Observations 8528

(Ly,AR, Ly,MA) (1, 0)
(Lx,AR, Lx,MA) (1, 1)
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Table 8: Estimation results with different firm size and values for ω
Result for β

ω = 0.10 ω = 0.15 ω = 0.20

2002-2007

firm coef. s.e. coef. s.e. coef. s.e.

all 0.0074∗∗∗ (0.0012) 0.0070∗∗∗ (0.0012) 0.0060∗∗∗ (0.0012)
small 0.0042∗∗∗ (0.0014) 0.0045∗∗∗ (0.0015) 0.0045∗∗∗ (0.0015)
large 0.0063∗∗∗ (0.0015) 0.0066∗∗∗ (0.0016) 0.0067∗∗∗ (0.0016)

2009-2016

firm coef. s.e. coef. s.e. coef. s.e.

all 0.0068∗∗∗ (0.0010) 0.0069∗∗∗ (0.0010) 0.0069∗∗∗ (0.0010)
small 0.0053∗∗∗ (0.0016) 0.0054∗∗∗ (0.0010) 0.0055∗∗∗ (0.0010)
large 0.0038∗∗∗ (0.0011) 0.0039∗∗∗ (0.0011) 0.0039∗∗∗ (0.0011)

Result for γ

ω = 0.10 ω = 0.15 ω = 0.20

2002-2007

firm coef. s.e. coef. s.e. coef. s.e.

all -0.0044 (0.0036) -0.0031 (0.0036) 0.0001 (0.0037)
small -0.0036 (0.0039) -0.0032 (0.0040) -0.0028 (0.0041)
large 0.0165∗∗ (0.0066) 0.0174∗∗ (0.0068) 0.0178∗ (0.0070)

2009-2016

firm coef. s.e. coef. s.e. coef. s.e.

all 0.0057∗∗ (0.0027) 0.0060∗∗ (0.0027) 0.0066∗∗ (0.0028)
small 0.0087∗∗ (0.0035) 0.0088∗∗∗ (0.0032) 0.0086∗∗∗ (0.0032)
large 0.0108∗∗ (0.0045) 0.0114∗∗ (0.0046) 0.0119∗∗∗ (0.0046)

Note: ω is a tuning parameter that determins how much observations will be downweighted

to mitigate the effect of outlier.

∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1, 5, and 10 percent levels, respectively.

Table 9: Variance decomposition for qit = q∗it + ϵit
year s2qt V̂ ar(qit) V̂ ar(q∗it) V̂ ar(ϵit) Ĉov(q∗it, ϵit)

2002 2.844 2.842 4.201 0.884 -1.121
2003 4.769 4.701 5.421 3.588 -2.154
2004 4.660 4.626 5.972 3.590 -2.468
2005 4.357 4.335 4.471 2.978 -1.557
2006 3.852 3.842 4.089 3.185 -1.716

2009 3.736 3.735 4.954 1.301 -1.260
2010 4.350 4.377 6.117 3.973 -2.857
2011 3.726 3.775 4.791 3.166 -2.091
2012 4.036 4.082 5.290 3.216 -2.212
2013 5.920 5.921 7.688 4.462 -3.114
2014 6.193 6.131 6.220 3.307 -1.698
2015 6.209 6.169 5.918 2.826 -1.287

Note: s2qt denotes the sample variance of qit.

V̂ ar and Ĉov denote estimated variances and covariance.
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Table 10: Estimation results of investment equation by OLS, FE and cumulant estimators
2002-2007

All firms Small firms Large firms

β γ β γ β γ

OLS estimator

coef. 0.0032∗∗∗ 0.0029∗∗∗ 0.0021∗∗∗ 0.0022∗∗∗ 0.0049∗∗∗ 0.0039
s.e. (0.0001) (0.0008) (0.0001) (0.0009) (0.0002) (0.0027)

Fixed effects estimator

coef. 0.0004∗∗ -0.0008 0.0001 -0.0001 0.0010∗∗ -0.0022
s.e. (0.0002) (0.0023) (0.0002) (0.0022) (0.0005) (0.0045)

third-order cumulant estimator (level)

coef. 0.0066∗∗∗ -0.0056∗∗ 0.0045∗∗∗ 0.0012 0.0064∗∗∗ 0.0077
s.e. (0.0005) (0.0023) (0.0004) (0.0022) (0.0008) (0.0067)

Sargan test (p-value) 10.69 (0.0984) 24.34 (0.0005) 16.31 (0.0121)

third-order cumulant estimator (WG)

coef. 0.0035∗ 0.0040 0.0034∗ 0.0007 0.0058∗∗∗ 0.0151∗∗

s.e. (0.0020) (0.0042) (0.0019) (0.0041) (0.0017) (0.0072)
Sargan test (p-value) 4.64 (0.5909) 0.81 (0.9917) 21.40 (0.0016)

2009-2016

All firms Small firms Large firms

β γ β γ β γ

OLS estimator

coef. 0.0013∗∗∗ -0.0015∗∗∗ 0.0012∗∗∗ -0.0014∗∗∗ 0.0006∗∗ 0.0300∗∗∗

s.e. (0.0001) (0.0004) (0.0001) (0.0005) (0.0003) (0.0038)

Fixed effects estimator

coef. 0.0001 0.0000 -0.0001 0.0016 0.0011 0.0131∗

s.e. (0.0003) (0.0009) (0.0002) (0.0015) (0.0007) (0.0070)

third-order cumulant estimator (level)

coef. 0.0039∗∗∗ 0.0059∗∗∗ 0.0032∗∗∗ 0.0046∗∗∗ 0.0049∗∗∗ -0.0007
s.e. (0.0004) (0.0015) (0.0004) (0.0013) (0.0012) (0.0088)

Sargan test (p-value) 6.38 (0.6049) 11.67 (0.1664) 18.00 (0.0213)

third-order cumulant estimator (WG)

coef. 0.0006 0.0009 0.0006 0.0004 -0.0023 0.0100∗

s.e. (0.0006) (0.0027) (0.0005) (0.0013) (0.0015) (0.0061)
Sargan test (p-value) 17.49 (0.0254) 16.06 (0.0415) 7.41 (0.4936)

Note: ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1, 5, and 10 percent levels, respectively.
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Figure 1: Empirical and estimated variances and covarainces (lag=0)
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Figure 2: Empirical and estimated variances and covarainces (lag=1)
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Figure 3: Empirical and estimated variances and covarainces (lag=2)
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In this appendix, we provide the mathematical details of the above paper and additional simu-

lation results. The detailed contents are as follows:

Section A Alternative vectorization operators: vecb and vecd
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A Alternative vectorization operators: vecb and vecd

A.1 vecb operator

We introduce an alternative vech operator defined as

vecb (Σ) =

 vech (Σ11)

vec (Σ21)

vech (Σ22)


where Σ is a symmetric p× p matrix given by

Σ =

[
Σ11 Σ′

21

Σ21 Σ22

]
,

Σ11 is p1 × p1, Σ21 is p2 × p1 and Σ22 is p2 × p2. Note that this vecb operator is different from

that considered in Koning, Neudecker and Wansbeek (1991) in that we consider a symmetric

matrix whereas they consider a general matrix which is not necessarily symmetric. Note also

that vecb (Σ) and vech (Σ) have a relationship as follows:

vech (Σ) = Rp1,p2 vecb (Σ)

where

Rp1,p2 = D+
p

[
Kp1,p 0

0 Kp2,p

]
Dp1 0 0

0 Kp2,p1 0

0 Ip1p2 0

0 0 Dp2

 . (S.1)

The permutation matrix Rp1,p2 has the following properties:

R′
p1,p2Rp1,p2 = Ip(p+1)/2,

R′
p1,p2 = R−1

p1,p2 ,

Rp1,p2R′
p1,p2 = Ip(p+1)/2.

The first result is obtained as follows by noting that vecb is an operator that changes the order

of vech:

vech (Σ)′ vech (Σ) = vecb (Σ)′R′
p1,p2Rp1,p2 vecb (Σ) = vecb (Σ)′ vecb (Σ) .

The second and third results can be obtained from the first one.

The permutation matrix Rp1,p2 can be derived as follows:

vech (Σ) = D+
p vec

(
Σ11 Σ′

21

Σ21 Σ22

)
= D+

p


vec

[
Σ11

Σ21

]

vec

[
Σ′

21

Σ22

]
 = D+

p

 Kp1,p vec
[
Σ11 Σ′

21

]
Kp2,p vec

[
Σ21 Σ22

] 

= D+
p

[
Kp1,p 0

0 Kp2,p

]
[

vec (Σ11)

vec (Σ′
21)

]
[

vec (Σ21)

vec (Σ22)

]
 = D+

p

[
Kp1,p 0

0 Kp2,p

]
vec (Σ11)

Kp2,p1 vec (Σ21)

vec (Σ21)

vec (Σ22)


S.1



= D+
p

[
Kp1,p 0

0 Kp2,p

]
Dp1 0 0

0 Kp2,p1 0

0 Ip1p2 0

0 0 Dp2


 vech (Σ11)

vec (Σ21)

vech (Σ22)


= Rp1,p2 vecb (Σzz) .

A.2 vecd operator

For an n× n diagonal matrix A = diag(a1, ..., an), we define the vecd operator that constructs

an n× 1 vector whose element is a diagonal element of A such that

vecd(A) = (a1, ..., an)
′ = a.

The relationship between vec and vecd operators is given by

vec (A) = Mn vecd (A) = Mna

where30

Mn
(n2×n)

=
[
vec(E11) · · · vec(En−1,n−1) vec(Enn)

]
=

[
Mn,11 0

0 1

]
and Ejj is an n× n matrix whose (j, j) element is one and zeros otherwise.

A.3 The column-wise Khatri-Rao product

Let A = (a1, ..., am) and B = (b1, ...,bm) be n1 × m and n2 × m matrices where aj and bj ,

(j = 1, ...,m) are n1 × 1 and n2 × 1, respectively. Then, the column-wise Khatri-Rao product,

denoted as ⊛, is defined as(Lev-Ari, 2005; Liu and Trenkler, 2008)

A⊛B
(n1n2×m)

=
[
a1 ⊗ b1 a2 ⊗ b2 · · · am ⊗ bm

]
.

Note that the Khatri-Rao and the Kronecker products have the following relationship(Lev-Ari,

2005)

A⊛B
(n1n2×m)

= (A⊗B)
(n1n2×m2)

Sm
(m2×m)

where Sm = [vec(E11), · · · , vec(Emm)] and Ejj is an m ×m matrix whose (j, j) element is one

and zeros otherwise.

The advantage to use the Khatri-Rao product rather than the Kronecker product is compu-

tational efficiency. To demonstrate this, let A, B and C be n×m, m×m and m× k matrices.

Then, if B is a diagonal matrix, Lev-Ari (2005) derives the following result

vec(ABC) =
(
C′ ⊗A

)
vec(B) =

(
C′ ⊛A

)
vecd(B). (S.2)

Note that the dimensions of (C′ ⊗A) and vec(B) are nk ×m2 and m2 × 1, respectively, while

those of (C′ ⊛A) and vecd(B) are nk × m and m × 1, respectively. Hence, the use of the

Khatri-Rao product greatly reduces the dimension of matrices especially when m is large, and

this leads to computational efficiency.

30The matrix Mn can be derived as follows. Since A can be written as A = a1E11 + a2E22 + · · ·+ anEnn, we
have vec(A) =

∑n
j=1 aj vec(Ejj) = Mna.
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A.4 vec operator for a partitioned matrix with a zero block

Let us consider an m × n matrix B and an m1 × n matrix B1 and m2 × n zero matrix with

m = m1 +m2 such that

B =

[
B1

0m2×n

]
.

For this matrix, we define

vec (B) = Um,m1,n vec (B1)

where

Um,m1,n = Kn,m

[
Km1,n

0nm2×nm1

]
(S.3)

The derivation of (S.3) is as follows:

vec (B) = vec

[
B1

0m2×n

]
= Kn,m vec

[
B′

1 0n×m2

]
= Kn,m

[
vec (B′

1)

0nm2×1

]

= Kn,m

[
Km1,n vec (B1)

0nm2×1

]
= Kn,m

[
Km1,n

0nm2×nm1

]
vec (B1) = Um,m1,n vec (B1) .

S.3



B Proof of Proposition 1 and Theorem 1

First, we provide a lemma that will be used in the proof.

Lemma S1. (i) Let us define n× p matrix

A =

[
A11 A12

0 A22

]
(S.4)

where A11 is n1 × p1, A12 is n1 × p2, and A22 is n2 × p2 with n1 > p1, n1 > p2, n2 > p2,
p = p1 + p2 and n = n1 + n2. Then, we have

rank (A) ≥ rank (A11) + rank (A22)

(ii) Let us consider a matrix given by (S.4). If A11 and A22 have full column rank such that
rank (A11) = p1 and rank (A22) = p2, then, rank (A) = p.

Proof : (i) See Abadir and Magnus (2005, p.120). (ii) Using (i), we have rank (A11) +

rank (A22) = p1 + p2 = p ≤ rank (A) ≤ p. □

B.1 Proof of Proposition 1

Let us consider the model (7) with (9), (10) and (11) where the idiosyncratic and measurement

errors follow ARMA(Ly,AR,Ly,AR) and ARMA(Lx,AR,Lx,AR) process, respectively. Note that,

unlike Proposition 1(i), we consider the model with the regressor wit and allow for a general

ARMA process for idiosyncratic and measurement errors. The hypothetical covariance ma-

trix of zi = (y′
i,x

′
i,w

′
i)
′, Hzz (φ0), is defined by (12) and expressions of Hyy (φ0), Hxy (φ0),

Hxx (φ0), Hwy (φ0), Hwx (φ0) and Hww (φ0) are provided in (13), (14), (15), (16), (17), and

(18), respectively.

To investigate the rank of G(φ0) = ∂hzz(φ0)/∂φ
′ where hzz(φ) = vech(Hzz(φ)), we need

to derive its explicit expression. However, since columns of Hyy(φ), Hxy(φ), Hwy(φ), Hxx(φ)

Hwx(φ) appear interchangingly in hzz(φ), it is difficult to consider hzz(φ) itself. In order to

consider the rank of G(φ) in a tractable way, by noting that interchanging the order of elements

of hzz(φ) does not affect the rank of G(φ), we consider

h⋄
zz (φ) =

[
vech [Hyy (φ)]

′ , vec [Hxy (φ)]
′ , vech [Hxx (φ)]

′ ,

vec [Hwy (φ)]
′ , vec [Hwx (φ)]

′ , vech [Hww (φ)]′
]′
.

where

vech [Hyy (φ)] = D+
T

[
σ2η vec (ιT ι

′
T ) +ΥyMTσvv + 2β (ιT ⊗ IT )σx∗η + β2DTσx∗x∗

+2γ (ιT ⊗ IT )σwη + 2βγσwx∗ + γ2DTσww

]
,

(S.5)

vec [Hxy (φ)] = (ιT ⊗ IT )σx∗η + βΓxMTσx∗e + βDTσx∗x∗ + γKT,Tσwx∗ , (S.6)

vech [Hxx (φ)] = D+
T [2ΓxMTσx∗e +ΥxMTσee + DTσx∗x∗ ] , (S.7)

vec [Hwy (φ)] = (ιT ⊗ IT )σwη + βσwx∗ + γDTσww, (S.8)

vec [Hwx (φ)] = σwx∗ , (S.9)

vech [Hww (φ)] = σww, (S.10)
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with Υj = Ψj ⊗ Ψj and Γj = IT ⊗ Ψj for j = y, x.31 Note that h⋄
zz (φ) can be obtained by

multiplying a suitable permutation matrix to hzz (φ). Accordingly, the Jacobian matrix is given

by

G⋄ (φ) =
∂h⋄

zz (φ)

∂φ′ =

[
∂h⋄

zz (φ)

∂β

∂h⋄
zz (φ)

∂γ

∂h⋄
zz (φ)

∂ψ′
y

∂h⋄
zz (φ)

∂ψ′
x

∂h⋄
zz (φ)

∂φ′
2

]
where φ = (φ′

1,φ
′
2)

′, φ1 = (β, γ,ψ′
y,ψ

′
x)

′, φ2 =
(
σ2η,σ

′
vv,σ

′
x∗η,σ

′
x∗e,σ

′
ee,σ

′
x∗x∗ ,σ

′
wη,σ

′
wx∗ ,σ

′
ww

)′
,

and ψj , (j = y, x) is an Lj×1 vector with Lj = Lj,AR+Lj,MA that includes ρj,r, (r = 1, ..., Lj,AR)

and λj,r, (r = 1, ..., Lj,MA). Note that dim(φ) = 3 + Ly + Lx + 6T + 2T 2.

Now, we derive the expressions included in G⋄ (φ). First, using (13), (14) and (16), the

derivatives with regard to β and γ are given by

G⋄
βγ (φ) =

[
∂h⋄

zz (φ)

∂β

∂h⋄
zz (φ)

∂γ

]
=



∂βhyy (φ) ∂γhyy (φ)

∂βhxy (φ) ∂γhxy (φ)

0 0

∂βhwy (φ) ∂γhwy (φ)

0 0

0 0


=



cφ11 cφ12
cφ21 cφ22
0 0

cφ41 cφ42
0 0

0 0


= C(φ)

(S.11)

where

∂βhyy (φ) =
∂ vech [Hyy (φ)]

∂β
= 2D+

T

[
vec
(
σx∗ηι

′
T

)
+ β vec (Σx∗x∗) + γ vec (Σwx∗)

]
,

∂βhxy (φ) =
∂ vec [Hxy (φ)]

∂β
= vec (ΨxΣx∗e) + vec (Σx∗x∗) ,

∂βhwy (φ) =
∂ vec [Hwy (φ)]

∂β
= vec (Σwx∗) ,

∂γhyy (φ) =
∂ vech [Hyy (φ)]

∂γ
= 2D+

T

[
vec
(
σwηι

′
T

)
+ β vec (Σwx∗) + γ vec (Σww)

]
,

∂γhxy (φ) =
∂ vec [Hxy (φ)]

∂γ
= KT,T vec (Σwx∗) ,

∂γhwy (φ) =
∂ vec [Hwy (φ)]

∂γ
= vec (Σww) .

Next, using (13), (14) and (15), the derivatives with regard to ψy and ψx are given by

G⋄
ψ (φ) =

[
∂h⋄

zz (φ)

∂ψ′
y

∂h⋄
zz (φ)

∂ψ′
x

]
=



∂ψyhyy (φ) ∂ψxhyy (φ)

∂ψyhxy (φ) ∂ψxhxy (φ)

∂ψyhxx (φ) ∂ψxhxx (φ)

0 0

0 0

0 0


=



Pφ
11 Pφ

12

Pφ
21 Pφ

22

Pφ
31 Pφ

32

0 0

0 0

0 0


= P (φ)

31We used vech (A+A′) = 2D+
T vec (A) for a symmetric matrix A.
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(S.12)

where Pφ
11

Pφ
21

Pφ
31

 =

 ∂ψyhyy (φ)

∂ψyhxy (φ)

∂ψyhxx (φ)

 =

 ∂ψy,1hyy (φ) · · · ∂ψy,Ly
hyy (φ)

∂ψy,1hxy (φ) · · · ∂ψy,Ly
hxy (φ)

∂ψy,1hxx (φ) · · · ∂ψy,Ly
hxx (φ)


=

 ∂ψy,1hyy (φ) · · · ∂ψy,Ly
hyy (φ)

0 · · · 0

0 · · · 0


with

∂ψy,rhyy (φ) =
∂ vech [Hyy (φ)]

∂ψy,r
= D+

T

(
∂Υy

∂ψy,r

)
vec (Σvv) ,

∂ψy,rhxy (φ) =
∂ vech [Hxy (φ)]

∂ψy,r
= 0,

∂ψy,rhxx (φ) =
∂ vech [Hxx (φ)]

∂ψy,r
= 0

for r = 1, ..., Ly, and Pφ
12

Pφ
22

Pφ
32

 =

 ∂ψxhyy (φ)

∂ψxhxy (φ)

∂ψxhxx (φ)

 =

 ∂ψx,1hyy (φ) · · · ∂ψx,Lx
hyy (φ)

∂ψx,1hxy (φ) · · · ∂ψx,Lx
hxy (φ)

∂ψx,1hxx (φ) · · · ∂ψx,Lx
hxx (φ)


=

 0 · · · 0

∂ψx,1hxy (φ) · · · ∂ψx,Lx
hxy (φ)

∂ψx,1hxx (φ) · · · ∂ψx,Lx
hxx (φ)

 ,
with

∂ψx,rhyy (φ) =
∂ vec [Hyy (φ)]

∂ψx,r
= 0,

∂ψx,rhxy (φ) =
∂ vec [Hxy (φ)]

∂ψx,r
= β

(
∂Γx
∂ψx,r

)
vec (Σx∗e) ,

∂ψx,rhxx (φ) =
∂ vech [Hxx (φ)]

∂ψx,r
= D+

T

[
2

(
∂Γx
∂ψx,r

)
vec (Σx∗e) +

(
∂Υx

∂ψx,r

)
vec (Σee)

]
.

for r = 1, ..., Lx.

We derive the explicit form of the derivatives. First, using the differential

dΨj = d
(
Ψ−1
j,ARΨj,MA

)
=
(
dΨ−1

j,AR

)
Ψj,MA +Ψ−1

j,AR (dΨj,MA)

= −Ψ−1
j,AR (dΨj,AR)Ψ

−1
j,ARΨj,MA +Ψ−1

j,AR (dΨj,MA)

= −Ψ−1
j,AR (dΨj,AR)Ψj +Ψ−1

j,AR (dΨj,MA) , (j = y, x)

we have

∂Ψj

∂ρj,r
= −Ψ−1

j,AR

(
∂Ψj,AR

∂ρj,r

)
Ψj = Ψ−1

j,ARIT,jΨj = Dj,AR,r, (j = y, x, r = 1, ..., Lj,AR)

∂Ψj

∂λj,r
= Ψ−1

j,AR

(
∂Ψj,MA

∂λj,r

)
= Ψ−1

j,ARIT,r = Dj,MA,r, (j = y, x, r = 1, ..., Lj,MA)
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IT,r =

[
0r×(T−r) 0r×r
IT−r 0(T−r)×r

]
.

Also, note that

D+
T

(
∂Υy

∂ψy,r

)
vec (Σvv) = D+

T

[(
∂Ψy

∂ψy,r

)
⊗Ψy

]
vec (Σvv) + D+

T

[
Ψy ⊗

(
∂Ψy

∂ψy,r

)]
vec (Σvv)

= 2D+
T vec

[
ΨyΣvv

(
∂Ψy

∂ψy,r

)′]
,(

∂Γx
∂ψx,r

)
vec (Σx∗e) =

[
IT ⊗

(
∂Ψx

∂ψx,r

)]
vec (Σx∗e) = vec

[(
∂Ψx

∂ψx,r

)
Σx∗e

]
,

D+
T

(
∂Υx

∂ψx,r

)
vec (Σee) = 2D+

T vec

[
ΨxΣee

(
∂Ψx

∂ψx,r

)′]
.

Hence, when ψj,r = ρj,r, we have

∂ψy,rhyy (φ) =
∂ vech [Hyy (φ)]

∂ρy,r
= 2D+

T vec
[
ΨyΣvvD

′
y,AR,r

]
,

∂ψx,rhxy (φ) =
∂ vec [Hxy (φ)]

∂ρx,r
= β vec [Dx,AR,rΣx∗e] ,

∂ψx,rhxx (φ) =
∂ vech [Hxx (φ)]

∂ρx,r
= 2D+

T vec [Dx,AR,rΣx∗e] + 2D+
T vec

[
ΨxΣeeD

′
x,AR,r

]
and when ψj,r = λj,r, we have

∂ψy,rhyy (φ) =
∂ vech [Hyy (φ)]

∂λy,r
= 2D+

T vec
[
ΨyΣvvD

′
y,MA,r

]
,

∂ψx,rhxy (φ) =
∂ vec [Hxy (φ)]

∂λx,r
= β vec [Dx,MA,rΣx∗e] ,

∂ψx,rhxx (φ) =
∂ vech [Hxx (φ)]

∂λx,r
= 2D+

T vec [Dx,MA,rΣx∗e] + 2D+
T vec

[
ΨxΣeeD

′
x,MA,r

]
.

Finally, let us consider the derivative with regard to φ2. For this, we reformulate the

expressions of vech [Hyy (φ)], vec [Hxy (φ)] and vech [Hxx (φ)] which are provided in (S.5), (S.6)

and (S.7), respectively.

Let A1,A2,B,B1,B2 be conformable matrices and a be a column vector. Then, we have

[A1,A2] ⊗ B = [A1 ⊗B,A2 ⊗B] and a ⊗ [B1,B2] = [a⊗B1,a⊗B2]. Using these and the

decomposition32

Ψj =
[
Ψ†
j iT

]
, Ip =

[
Ip−1 0

0 1

]
=
[
I†p ip

]
, (S.13)

we can rewrite Υj and Γj as follows:

Υj = Ψj ⊗Ψj =
[
Ψ†
j ⊗Ψj iT ⊗Ψ†

j iT ⊗ iT

]
=
[
Υ†
j iT 2

]
,

Γj = IT ⊗Ψj =
[
I†T ⊗Ψj iT ⊗Ψ† iT ⊗ iT

]
=
[
Γ†
j iT 2

]
.

32Recall that in denotes an n× 1 vector whose nth element is one and zeros otherwise.
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Also note that the duplication matrix can be decomposed as

DT =

[
DT,11 0

0 1

]
=
[
D†
T iT 2

]
where D†

T and iT 2 are linearly independent. Moreover, using D+
TDT = D+

T

[
D†
T iT 2

]
=[

D+
TD

†
T D+

T iT 2

]
= IT ∗ =

[
I†T ∗ iT ∗

]
, we have D+

TD
†
T = I†T ∗ and D+

T iT 2 = iT ∗ where

T ∗ = T (T + 1)/2.

Using these in (S.5), (S.6) and (S.7), we have the following alternative expressions:

vech [Hyy (φ)] = σ2η vech
(
ιT ι

′
T

)
+
[
D+
TΥ

†
yMT,11 iT ∗

]
σvv + 2βD+

T (ιT ⊗ IT )σx∗η

+β2
[
I†T ∗ iT ∗

]
σx∗x∗ + 2γD+

T (ιT ⊗ IT )σwη + 2βγD+
Tσwx∗ + γ2σww, (S.14)

vec [Hxy (φ)] = (ιT ⊗ IT )σx∗η + β
[
Γ†
xMT,11 iT 2

]
σx∗e + β

[
D†
T iT 2

]
σx∗x∗ + γKT,Tσwx∗ ,

(S.15)

vech [Hxx (φ)] = 2
[
D+
TΓ

†
xMT,11 iT ∗

]
σx∗e +

[
D+
TΥ

†
xMT,11 iT ∗

]
σee +

[
I†T ∗ iT ∗

]
σx∗x∗ .

(S.16)

Then, using (S.14), (S.15), (S.16), (S.8), (S.9), and (S.10), h⋄
zz (φ) can be written as

h⋄
zz (φ) =



vech [Hyy (φ)]

vec [Hxy (φ)]

vech [Hxx (φ)]

vec [Hwy (φ)]

vec [Hwx (φ)]

vech [Hww (φ)]


= L (φ)φ2

where L (φ) =
[
Q (φ) R (φ)

]
with

Q (φ) =



vech (ιT ι
′
T ) D+

TΥ
†
yMT,11 iT ∗ 2βD+

T (ιT ⊗ IT )

0 0 0 (ιT ⊗ IT )

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 β2I†T ∗ β2iT ∗

βΓ†
xMT,11 βiT 2 0 0 βD†

T βiT 2

2D+
TΓ

†
xMT,11 2iT ∗ D+

TΥ
†
xMT,11 iT ∗ I†T ∗ iT ∗

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


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=



qφ11 Qφ
12 qφ13 Qφ

14 0 0 0 0 Qφ
19 qφ1,10

0 0 0 Qφ
24 Qφ

25 qφ26 0 0 Qφ
29 qφ2,10

0 0 0 0 Qφ
35 qφ36 Qφ

37 qφ38 Qφ
39 qφ3,10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


=

[
qφ1 Qφ

2 qφ3 Qφ
4 Qφ

5 qφ6 Qφ
7 qφ8 Qφ

9 qφ10

]
, (S.17)

R (φ) =



2γD+
T (ιT ⊗ IT ) 2βγD+

T γ2IT ∗

0 γKT,T 0

0 0 0

(ιT ⊗ IT ) βIT 2 γDT
0 IT 2 0

0 0 IT ∗


=



Rφ
11 Rφ

12 Rφ
13

0 Rφ
22 0

0 0 0

Rφ
41 Rφ

42 Rφ
43

0 Rφ
52 0

0 0 Rφ
63


.

Hence, we have

∂h⋄
zz (φ)

∂φ′
2

=
[
Q (φ) R (φ)

]
. (S.18)

Collecting (S.11), (S.12), and (S.18), G⋄ (φ) can be written as

G⋄ (φ) =
[
C (φ) P (φ) Q (φ) R (φ)

]
.

Since the expression of G⋄ (φ) is now obtained, we consider its rank. However, since the form

of G⋄ (φ) is not useful to investigate the rank, and interchanging the columns does not affect

the rank of a matrix, we consider the following alternative expression:

G∗ (φ) =
[
Q (φ) P (φ) C (φ) R (φ)

]
(S.19)

=


qφ
11 Qφ

12 qφ
13 Qφ

14 0 0 0 0 Qφ
19 qφ

1,10 Pφ
11 0 cφ11 cφ12 Rφ

11 Rφ
12 Rφ

13

0 0 0 Qφ
24 Qφ

25 qφ
26 0 0 Qφ

29 qφ
2,10 0 Pφ

22 cφ21 cφ22 0 Rφ
22 0

0 0 0 0 Qφ
35 qφ

36 Qφ
37 qφ

38 Qφ
39 qφ

3,10 0 Pφ
32 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 cφ41 cφ42 Rφ
41 Rφ

42 Rφ
43

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rφ
52 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rφ
63


=

[
G∗

11 G∗
12 G∗

13 G∗
14

0 0 G∗
23 G∗

24

]
=

[
Kφ

11 Kφ
12

0 Kφ
22

]
. (S.20)

To demonstrate that G∗ (φ) is rank deficient, it suffices to show that one of the four matrices

in (S.19) is rank deficient. Specifically, investigating Q (φ) matrix defined in (S.17), we find that

the following holds

qφ10 − β2qφ3 − qφ6 + qφ8 = 0.

This indicates that Q (φ) is rank deficient and hence we have

rank(G (φ)) ≤ dim(φ)− 1. (S.21)

Note that the columns (qφ3 ,q
φ
6 ,q

φ
8 ,q

φ
10) correspond to the derivatives with respect to σ2v,T , σ

2
e,T , σx∗e,T , σx∗x∗,TT .
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From the above analysis, although we find that G (φ) is rank deficient, we cannot know the

exact rank. In the following, we demonstrate that the rank of G (φ) is dim(φ)− 1. For this, let

us investigate the rank of Kφ
11 and Kφ

22 in (S.20). First, consider the rank of Kφ
22, which can be

written as follows

Kφ
22 =

 cφ41 cφ42 Rφ
41 Rφ

42 Rφ
43

0 0 0 Rφ
52 0

0 0 0 0 R63

 =

[
Sφ11 Sφ12
0 Sφ22

]
.

Since both Sφ11 and Sφ22 have full column rank, by using Lemma A(ii), Kφ
22 is shown to be of

full column rank with rank(Kφ
22) = T + 2 + T ∗ + T 2. Next, to investigate the rank of Kφ

11

since interchanging the columns does not affect the rank, we consider the following alternative

expression

Kφ∗
11 =

 qφ11 Qφ
12 qφ13 Pφ

11 Qφ
14 0 0 Qφ

19 qφ1,10 0 0 0

0 0 0 0 Qφ
24 Qφ

25 qφ26 Qφ
29 qφ2,10 Pφ

22 0 0

0 0 0 0 0 Qφ
35 qφ36 Qφ

39 qφ3,10 Pφ
32 Qφ

37 qφ38


=

[
Mφ

11 Mφ
12

0 Mφ
22

]
.

It is easy to see that Mφ
11 is of full column rank with rank(Mφ

11) = T + 1 + Ly. With regard to

the rank of Mφ
22, after interchanging some columns, it can be written as

Mφ
22 =

[
Qφ

24 0 Qφ
25 Qφ

29 qφ26 qφ2,10 0 Pφ
22

0 Qφ
37 Qφ

35 Qφ
39 qφ36 qφ3,10 qφ38 Pφ

32

]

=

[
ιT ⊗ IT 0 βΓ†

xMT,11 βD†
T βiT 2 βiT 2 0 P22

0 D†
TΥ

†
xMT,11 2D†

TΓ
†
xMT,11 I†T ∗ 2iT 2 iT ∗ iT ∗ P32

]
.

From this, we find that fifth to seventh columns are linearly dependent, but other columns are

linearly independent. Hence, Mφ
11 is rank deficient with rank(Mφ

22) = 3T +T ∗ +Lx− 1. Hence,

using Lemma A(i), we have

rank(G⋄ (φ)) ≥ rank(Kφ
11) + rank(Kφ

22) = rank(Kφ∗
11 ) + rank(Kφ

22)

≥ rank(Mφ
11) + rank(Mφ

22) + rank(Kφ
22) = 2 + Ly + Lx + 6T + 2T 2

= dim(φ)− 1 (S.22)

Hence, combining (S.21) and (S.22), we have rank(G⋄ (φ)) = rank(G (φ)) = dim(φ)− 1. ■
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B.2 Illustration of Proposition 1 with T = 4

Since we assume fixed T model, let us consider the specific case with T = 4. Moreover, to

simplify the discussion, we consider the case where the regressor wit is absent and ζit and ϵit
follows AR(1) and MA(1) processes, respectively. In this specific case, the moment conditions

(21) in a matrix form can be written as

E(Syy) = Σyy = {σyy,st} = Hyy(φ) = H†
yy(φ) +H‡

yy(φ)

= σ2ηιT ι
′
T +ΨyΣvvΨ

′
y + β

(
σx∗ηι

′
T + ιTσ

′
x∗η

)
+ β2Σx∗x∗ ,

E(Sxy) = Σxy = {σxy,st} = Hxy(φ) = H†
xy(φ) +H‡

xy(φ) = σx∗ηι
′
T + βΨxΣ

′
x∗e + βΣx∗x∗ ,

E(Sxx) = Σxx = {σxx,st} = Hxx(φ) = H†
xx(φ) +H‡

xx(φ)

= Σx∗x∗ +ΨxΣeeΨ
′
x +ΨxΣ

′
x∗e +Σx∗eΨ

′
x

where Syy and Sxx denote the sample variance matrices of yi and xi, respectively, Sxy denotes

the sample covariance matrix between yi and xi, and

H†
yy(φ) =



σ2η + σ2v,1 + β2σx∗x∗,11 + 2βσx∗η,1 ∗
σ2η + ρy,1σ

2
v,1

+β (σx∗η,1 + σx∗η,2) + β2σx∗x∗,21

σ2η + ρ2y,1σ
2
v,1 + σ2v,2

+2βσx∗η,2 + β2σx∗x∗,22

σ2η + ρ2y,1σ
2
v,1

+β (σx∗η,1 + σx∗η,3) + β2σx∗x∗,31

σ2η + ρ3y,1σ
2
v,1 + ρy,1σ

2
v,2

+β (σx∗η,2 + σx∗η,3) + β2σx∗x∗,32

σ2η + ρ3y,1σ
2
v,1

+β (σx∗η,1 + σx∗η,4) + β2σx∗x∗,41

σ2η + ρ4y,1σ
2
v,1 + ρ2y,1σ

2
v,2

+β (σx∗η,2 + σx∗η,4) + β2σx∗x∗,42

∗ ∗
∗ ∗

σ2η + ρ4y,1σ
2
v,1 + ρ2y,1σ

2
v,2 + σ2v,3

+2βσx∗η,3 + β2σx∗x∗,33
∗

σ2η + ρ5y,1σ
2
v,1 + ρ3y,1σ

2
v,2 + ρy,1σ

2
v,3

+β (σx∗η,3 + σx∗η,4) + β2σx∗x∗,43

σ2η + ρ6y,1σ
2
v,1 + ρ4y,1σ

2
v,2 + ρ2y,1σ

2
v,3

+2βσx∗η,4


,

H‡
yy(φ) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 σ2v,4 + β2σx∗x∗,44

 ,

H†
xy(φ) =


σx∗η,1 + βσx∗e,1 + βσx∗x∗,11 σx∗η,2 + βσx∗x∗,21

σx∗η,1 + βλx,1σx∗e,1 + βσx∗x∗,21 σx∗η,2 + βσx∗e,2 + βσx∗x∗,22

σx∗η,1 + βσx∗x∗,31 σx∗η,2 + βλx,1σx∗e,2 + βσx∗x∗,32

σx∗η,1 + βσx∗x∗,41 σx∗η,2 + βσx∗x∗,42

σx∗η,3 + βσx∗x∗,31 σx∗η,4 + βσx∗x∗,41

σx∗η,3 + βσx∗x∗,32 σx∗η,4 + βσx∗x∗,42

σx∗η,3 + βσx∗e,3 + βσx∗x∗,33 σx∗η,4 + βσx∗x∗,43

σx∗η,3 + βλx,1σx∗e,3 + βσx∗x∗,43 σx∗η,4

 ,
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H‡
xy(φ) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 βσx∗e,4 + βσx∗x∗,44

 ,

H†
xx(φ) =


σx∗x∗,11 + σ2e,1 + 2σx∗e,1 ∗

σx∗x∗,21 + λx,1σ
2
e,1 + λx,1σx∗e,1 σx∗x∗,22 + λ2x,1σ

2
e,1 + σ2e,2 + 2σx∗e,2

σx∗x∗,31 σx∗x∗,32 + λx,1σ
2
e,2 + λx,1σx∗e,2

σx∗x∗,41 σx∗x∗,42

∗ ∗
∗ ∗

σx∗x∗,33 + λ2x,1σ
2
e,2 + σ2e,3 + 2σx∗e,3 ∗

σx∗x∗,43 + λx,1σ
2
e,3 + λx,1σx∗e,3 λ2x,1σ

2
e,3

 ,

H‡
xx(φ) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 σ2e,4 + 2σx∗e,4 + σx∗x∗,44

 .
Now, consider the identification of this model. Since the number of unknown parameters is

29 and that of moments is 36, the order condition is satisfied.

This model includes the parameters β, ρy,1, λx,1, σ
2
v,t, σ

2
e,t, σx∗η,t, σx∗e,t, σx∗x∗,st, for 1 ≤ t ≤

s ≤ 4. Since σyy,st, σxy,st and σxx,st, (1 ≤ t ≤ s ≤ 4) can be consistently estimated from data,

we assume that these are known.

First, it is clear that σx∗x∗,31, σx∗x∗,41 and σx∗x∗,42, which are the elements of H†
xx(φ), are

directly identified from σxx,31, σxx,41 and σxx,42, as follows:

σx∗x∗,31 = σxx,31, σx∗x∗,41 = σxx,41, σx∗x∗,42 = σxx,42.

Next, since σxy,31 and σxy,41 include two unknown parameters β and σx∗η,1, given identification

of σx∗x∗,31 and σx∗x∗,41, we can solve for these two parameters. Specifically, the solutions are

given by

β =
σxy,41 − σxy,31
σxx,41 − σxx,31

,

σx∗η,1 = σxy,31 − βσx∗x∗,31.

Hence, β and σx∗η,1 are identified. Note that this structure has an instrumental variable re-

gression interpretation that we estimate the first period yi1 = βxi1 + εi1 with an instrument

∆xi4 = xi4 − xi3.

In the following, we consider identification of remaining parameters. From σxy,42, σxy,13, and

σxy,14, we can show that σx∗η,2, σx∗η,3 and σx∗η,4 are identified as follows:

σx∗η,2 = σxy,42 − βσx∗x∗,42,

σx∗η,3 = σxy,13 − βσx∗x∗,31,

σx∗η,4 = σxy,14 − βσx∗x∗,41.
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Also, from σxy,12, σxy,23 and σxy,34, we can show that σx∗x∗,21, σx∗x∗,32, and σx∗x∗,43 are identified

as follows:

σx∗x∗,21 =
1

β
(σxy,12 − σx∗η,2) ,

σx∗x∗,32 =
1

β
(σxy,23 − σx∗η,3) ,

σx∗x∗,43 =
1

β
(σxy,34 − σx∗η,4) .

if β ̸= 0.33

Since three moments σyy,21, σyy,31 and σyy,41 include three parameters σ2η, ρy,1 and σ2v,1,

these parameters can be solved and hence identified as

ρy,1 =
σyy,41 − σyy,31 − (c41 − c31)

σyy,31 − σyy,21 − (c31 − c21)
,

σ2η =
σyy,41 − ρ0,1σyy,31 − (c41 − ρ0,1c31)

1− ρy,1
,

σ2v,1 =
σyy,21 − σ2η − c21

ρy,1

where c21 = β (σx∗η,1 + σx∗η,2)+β
2σx∗x∗,21, c31 = β (σx∗η,1 + σx∗η,3)+β

2σx∗x∗,31, c41 = β (σx∗η,1 + σx∗η,4)+

β2σx∗x∗,41.

From σyy,11, σyy,32 and σyy,22, we can show that σx∗x∗,11, σ
2
v,2 and σx∗x∗,22 are identified as

σx∗x∗,11 =
σyy,11 − σ2η − σ2v,1 − 2βσx∗η,1

β2
,

σ2v,2 =
σyy,32 − σ2η − ρ3y,1σ

2
v,1 − β (σx∗η,2 + σx∗η,3)− β2σx∗x∗,32

ρy,1
,

σx∗x∗,22 =
σyy,22 − σ2η − ρ2y,1σ

2
v,1 − σ2v,2 − 2βσx∗η,2

β2
.

From σyy,43 and σyy,33, it can be shown that σ2v,3 and σx∗x∗,33 are identified as

σ2v,3 =
σyy,43 − σ2η − ρ5y,1σ

2
v,1 − ρ3y,1σ

2
v,2 − β (σx∗η,3 + σx∗η,4)− β2σx∗x∗,43

ρy,1
,

σx∗x∗,33 =
σyy,33 − σ2η − ρ4y,1σ

2
v,1 − ρ2y,1σ

2
v,2 − σ2v,3 − 2βσx∗η,3

β2
.

From σxy,11, σxy,22 and σxy,33, we can show that σxe,1, σxe,2, σxe,3 are identified as

σx∗e,1 =
σxy,11 − σx∗η,1 − βσx∗x∗,11

β
,

σx∗e,2 =
σxy,22 − σx∗η,2 − βσx∗x∗,22

β
,

σx∗e,3 =
σxy,33 − σx∗η,3 − βσx∗x∗,33

β
.

33Note that the assumption that β ̸= 0 is not restrictive since an endogeneity does not happen and the
conventional fixed effects estimator becomes consistent when β = 0.
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From σxx,11 and σxx,21, we can show that σ2e,1 and λx,1 are identified as

σ2e,1 = σxx,11 − σx∗x∗,11 − 2σx∗e,1,

λx,1 =
σxx,21 − σx∗x∗,21
σ2e,1 + σx∗e,1

.

Finally, σ2e,2, and σ
2
e,3 are identified from σxx,22, σxx,33,

σ2e,2 = σxx,22 − σx∗x∗,22 − λ2x,1σ
2
e,1 − 2σx∗e,2,

σ2e,3 = σxx,33 − σx∗x∗,33 − λ2x,1σ
2
e,2 − 2σx∗e,3.

The parameters identified so far are all included in H†
yy(φ), H

†
xy(φ) and H†

xx(φ). Now, we

consider the remaining four parameters σ2v,4, σ
2
e,4, σx∗e,4 and σx∗x∗,44 which only appear in the

(4,4) position of three matrices H‡
yy(φ), H

‡
xy(φ) and H‡

xx(φ). This indicates that the available

information for identification of σ2v,4, σ
2
e,4, σx∗e,4 and σx∗x∗,44 are only σyy,44, σxy,44 and σxx,44.

From this it is clear that these four parameters cannot be identified since we have only three

moments.

The analysis so far is based on the case with T = 4. However, it is easy to see that the same

problem arises for general fixed T . Namely, since three observable moments σyy,TT , σxy,TT and

σxx,TT include four unknown parameters σ2v,T , σ
2
e,T , σx∗e,T and σx∗x∗,T , these four parameters

are not identified. Hence, this covariance structure is not identified and this induces the violation

of the rank condition in the regularity conditions.
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B.3 Proof of Theorem 1

Let us consider the model (7) with (9), (10) and (11) where the idiosyncratic and measurement

errors follow ARMA(Ly,AR,Ly,AR) and ARMA(Lx,AR,Lx,AR) process, respectively. Note that,

unlike Proposition 1(i), we consider the model with the regressor wit and allow for a general

ARMA process for idiosyncratic and measurement errors. The hypothetical covariance matrix

of zi = (y′
i,x

′
i,w

′
i)
′, Hzz (θ0), after reparametrization is defined by (23) and expressions of

Hyy (θ0), Hxy (θ0), Hxx (θ0), Hwy (θ0), Hwx (θ0) and Hww (θ0) are provided in (24), (25), (26),

(27), (28), and (29), respectively.

As in the proof of Proposition 1(ii), we consider the following Jacobian matrix:

G⋄ (θ) =
∂h⋄

zz (θ)

∂θ′
=

[
∂h⋄

zz (θ)

∂β

∂h⋄
zz (θ)

∂γ

∂h⋄
zz (θ)

∂ψ′
y

∂h⋄
zz (θ)

∂ψ′
x

∂h⋄
zz (θ)

∂θ′2

]
where

h⋄
zz (θ) =

[
vech [Hyy (θ)]

′ , vec [Hxy (θ)]
′ , vech [Hxx (θ)]

′ ,

vec [Hwy (θ)]
′ , vec [Hwx (θ)]

′ , vech [Hww (θ)]′
]′
,

θ = (θ′1,θ
′
2)

′, θ1 = (β, γ,ψ′
y,ψ

′
x)

′,

θ2 =
(
σ2η,σ

⋆′
vv, σyy,TT ,σ

′
x∗η,σ

⋆′
x∗e, σxy,TT ,σ

⋆′
ee, σxx,TT ,σ

⋆′
x∗x∗ ,σ

′
wη,σ

′
wx∗ ,σ

′
ww

)′
,

and dim(θ) = 2 + Ly + Lx + 6T + 2T 2.

We first reformulate the expression of Hyy (θ0), Hxy (θ0) and Hxx (θ0) which are pro-

vided in (24), (25) and (26). For this, let us define Σ⋆
vv = diag

(
σ2v,1, ..., σ

2
v,T−1

)
, Σ⋆

ee =

diag
(
σ2e,1, ..., σ

2
e,T−1

)
, and Σ⋆

x∗e = diag (σx∗e,1, ..., σx∗e,T−1). Then, we have

ΨyΣvvΨ
′
y = Ψ†

yΣ
⋆
vvΨ

†′
y + σ2v,TETT ,

ΨxΣeeΨ
′
x = Ψ†

xΣ
⋆
eeΨ

†′
x + σ2e,TETT ,

ΨxΣx∗e =
[
Ψ†
xΣ

⋆
x∗e σx∗e,T iT

]
=
[
Ψ†
xΣ

⋆
x∗e 0

]
+ σx∗e,TETT ,

Σx∗x∗ = Σ⋆
x∗x∗ + σx∗x∗,TTETT

where Ψ†
j , (j = y, x) is defined in (S.13), Σ⋆

x∗x∗ = Σ̇x∗x∗ (defined in (30)) and ETT = iT i
′
T is a

T × T matrix whose (T, T ) position is one and zeros otherwise. Using these, we have

Hyy (θ) = σ2ηιT ι
′
T +Ψ†

yΣ
⋆
vvΨ

†′
y + β

(
σx∗ηι

′
T + ιTσ

′
x∗η

)
+ β2Σx∗x∗ + σyy,TTETT

+γ
(
σwηι

′
T + ιTσ

′
wη

)
+ βγ

(
Σwx∗ +Σ′

wx∗
)
+ γ2Σww, (S.23)

Hxy (θ) = σx∗ηι
′
T + β

[
Ψ†
xΣ

⋆
x∗e 0

]
+ βΣ⋆

x∗x∗ + σxy,TTETT + γΣ′
wx∗ , (S.24)

Hxx (θ) =

([
Ψ†
xΣ

⋆
x∗e 0

]′
+
[
Ψ†
xΣ

⋆
x∗e 0

])
+Ψ†

xΣ
⋆
eeΨ

†′
x +Σ⋆

x∗x∗ + σxx,TTETT .

(S.25)

Then, from (S.23), (S.24), (S.25), (27), (28) and (29), we obtain

vech [Hyy (θ)] = σ2η vech
(
ιT ι

′
T

)
+ D+

TΥ
‡
yMT−1σ

⋆
vv + 2βD+

T (ιT ⊗ IT )σx∗η + β2I†T ∗σ
⋆
x∗x∗

+σyy,TT iT ∗ + 2γD+
T (ιT ⊗ IT )σwη + 2βγD+

Tσwx∗ + γ2σww, (S.26)

vec [Hxy (θ)] = (ιT ⊗ IT )σx∗η + βUT 2,T1T,1Γ
‡
xMT−1σ

†
x∗e + βD†

Tσ
⋆
x∗x∗
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+σxy,TT iT 2 + γKT,Tσwx∗ , (S.27)

vech [Hxx (θ)] = 2D+
TUT 2,T1T,1Γ

‡
xMT−1σ

⋆
x∗e + D+

TΥ
‡
xMT−1σ

⋆
ee

+I†T ∗σ
†
x∗x∗ + σxx,TT iT ∗ , (S.28)

vec [Hwy (θ)] = (ιT ⊗ IT )σwη + βσwx∗ + γDTσww, (S.29)

vec [Hwx (θ)] = σwx∗ (S.30)

vech [Hww (θ)] = σww, (S.31)

where Υ‡
j =

(
Ψ†
j ⊗Ψ†

j

)
, (j = y, x) and Γ‡

x =
(
IT ⊗Ψ†

x

)
, and we also used

vec (Σ⋆
x∗x∗) = DT vech (Σ⋆

x∗x∗) =
[
D†
T iT 2

] [ IT (T+1)/2−1

0

]
σ⋆x∗x∗ = D†

Tσ
⋆
x∗x∗ .

First, using (24), (25) and (27), the derivatives with regard to β and γ are given by

G⋄
βγ (θ) =

[
∂h⋄

zz (θ)

∂β

∂h⋄
zz (θ)

∂γ

]
=



∂βhyy (θ) ∂γhyy (θ)

∂βhxy (θ) ∂γhxy (θ)

0 0

∂βhwy (θ) ∂γhwy (θ)

0 0

0 0


=



cθ11 cθ12
cθ21 cθ22
0 0

cθ41 cθ42
0 0

0 0


= C (θ)

where

∂βhyy (θ) =
∂ vech [Hyy (θ)]

∂β
= 2D+

T

[
vec
(
σx∗ηι

′
T

)
+ β vec (Σ⋆

x∗x∗) + γ vec (Σwx∗)
]
,

∂βhxy (θ) =
∂ vec [Hxy (θ)]

∂β
= vec (Σ⋆

x∗x∗) + UT 2,T1T,1

(
IT ⊗Ψ†

x

)
vec (Σx∗e) ,

∂βhwy (θ) =
∂ vec [Hwy (θ)]

∂β
= vec (Σwx∗) ,

∂γhyy (θ) =
∂ vech [Hyy (θ)]

∂γ
= 2D+

T

[
vec
(
σwηι

′
T

)
+ β vec (Σwx∗) + γ vec (Σww)

]
,

∂γhxy (θ) =
∂ vec [Hxy (θ)]

∂γ
= KT,T vec (Σwx∗) ,

∂γhwy (θ) =
∂ vec [Hwy (θ)]

∂γ
= vec (Σww) .

Next, using (S.26), (S.27) and (S.28), the derivatives with regard to ψy and ψx are given by

G⋄
ψ (θ) =

[
∂h⋄

zz (θ)

∂ψ′
y

∂h⋄
zz (θ)

∂ψ′
x

]
=



∂ψyhyy (θ) ∂ψxhyy (θ)

∂ψyhxy (θ) ∂ψxhxy (θ)

∂ψyhxx (θ) ∂ψxhxx (θ)

0 0

0 0

0 0


=



Pθ
11 Pθ

12

Pθ
21 Pθ

22

Pθ
31 Pθ

32

0 0

0 0

0 0


= P (θ)

where Pθ
11

Pθ
21

Pθ
31

 =

 ∂ψyhyy (θ)

∂ψyhxy (θ)

∂ψyhxx (θ)

 =

 ∂ψy,1hyy (θ) · · · ∂ψy,Ly
hyy (θ)

∂ψy,1hxy (θ) · · · ∂ψy,Ly
hyy (θ)

∂ψy,1hxx (θ) · · · ∂ψy,Ly
hyy (θ)


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=

 ∂ψy,1hyy (θ) · · · ∂ψy,Ly
hyy (θ)

0 · · · 0

0 · · · 0


with

∂ψy,rhyy (θ) =
∂ vech [Hyy (θ)]

∂ψy,r
= D+

T

(
∂Υ‡

y

∂ψy,r

)
vec (Σ⋆

vv) ,

∂ψy,rhxy (θ) =
∂ vec [Hxy (θ)]

∂ψy,r
= 0,

∂ψy,rhxx (θ) =
∂ vech [Hxx (θ)]

∂ψy,r
= 0

for r = 1, ..., Ly, and Pθ
12

Pθ
22

Pθ
32

 =

 ∂ψxhyy (θ)

∂ψxhxy (θ)

∂ψxhxx (θ)

 =

 ∂ψx,1hyy (θ) · · · ∂ψx,Lx
hyy (θ)

∂ψx,1hxy (θ) · · · ∂ψx,Lx
hxy (θ)

∂ψx,1hxx (θ) · · · ∂ψx,Lx
hxx (θ)


=

 0 · · · 0

∂ψx,1hxy (θ) · · · ∂ψx,Lx
hxy (θ)

∂ψx,1hxx (θ) · · · ∂ψx,Lx
hxx (θ)

 ,
with

∂ψx,rhyy (θ) =
∂ vech [Hyy (θ)]

∂ψx,r
= 0,

∂ψx,rhxy (θ) =
∂ vec [Hxy (θ)]

∂ψx,r
= βUT 2,T1T,1

(
∂Γ‡

x

∂ψx,r

)
vec (Σ⋆

x∗e) ,

∂ψx,rhxx (θ) =
∂ vech [Hxx (θ)]

∂ψx,r
= D+

T

[
2UT 2,T1T,1

(
∂Γ‡

x

∂ψx,r

)
vec (Σ⋆

x∗e) +

(
∂Υ‡

x

∂ψx,r

)
vec (Σ⋆

ee)

]
for r = 1, ..., Lx.

To derive the explicit expression, note that

Ψ†
j =

[
Ψ†
j iT

] [ IT−1

0

]
= ΨjI

†
T , (j = y, x)

where I†T is defined in (S.13). Then, we have

∂Ψ†
j

∂ρj,r
=
∂Ψj

∂ρj,r
I†T = Dj,AR,rI

†
T and

∂Ψ†
j

∂λj,r
=
∂Ψj

∂λr
I†T = Dj,MA,rI

†
T .

Also note that

D+
T

(
∂Υ‡

y

∂ψy,r

)
vec (Σ⋆

vv) = 2D+
T vec

[
Ψ†
yΣ

⋆
vv

(
∂Ψ†

y

∂ψy,r

)′]
,(

∂Γ‡
x

∂ψx,r

)
vec (Σ⋆

x∗e) = vec

[(
∂Ψ†

x

∂ψx,r

)
Σ⋆
x∗e

]
,
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D+
T

(
∂Υ‡

x

∂ψx,r

)
vec (Σ⋆

ee) = 2D+
T vec

[
Ψ†
xΣ

⋆
ee

(
∂Ψ†

x

∂ψx,r

)′]
.

Hence, when ψj,r = ρj,r, we have

∂ψy,rhyy (θ) =
∂ vech [Hyy (θ)]

∂ρy,r
= 2D+

T vec
[
Ψ†
yΣ

⋆
vvI

†′
TD

′
y,AR,r

]
,

∂ψx,rhxy (θ) =
∂ vec [Hxy (θ)]

∂ρx,r
= βUT 2,T1T,1 vec

[
Dx,AR,rI

†
TΣ

†
x∗e

]
,

∂ψx,rhxx (θ) =
∂ vech [Hxx (θ)]

∂ρx,r
= 2D+

TUT 2,T1T,1 vec
[
Dx,AR,rI

†
TΣ

⋆
x∗e

]
+ 2D+

T vec
[
Ψ†
xΣ

⋆
eeI

†′
TD

′
x,AR,r

]
and when ψj,r = λj,r, we have

∂ψy,rhyy (θ) =
∂ vech [Hyy (θ)]

∂λy,r
= 2D+

T vec
[
Ψ†
yΣ

⋆
vvI

†′
TD

′
y,MA,r

]
,

∂ψx,rhxy (θ) =
∂ vec [Hxy (θ)]

∂λx,r
= βUT 2,T1T,1 vec

[
Dx,MA,rI

†
TΣ

⋆
x∗e

]
,

∂ψx,rhxx (θ) =
∂ vech [Hxx (θ)]

∂λx,r
= 2D+

TUT 2,T1T,1 vec
[
Dx,MA,rI

†
TΣ

⋆
x∗e

]
+ 2D+

T vec
[
Ψ†
xΣ

⋆
eeI

†′
TD

′
x,MA,r

]
.

Finally, let us consider the derivative with regard to θ2. Using using (S.26), (S.27), (S.28),

(S.29), (S.31) and (S.30), h⋄
zz (θ) can be written as

h⋄
zz (θ) =



vech [Hyy (θ)]

vec [Hxy (θ)]

vech [Hxx (θ)]

vec [Hwy (θ)]

vec [Hwx (θ)]

vech [Hww (θ)]


= L (θ)θ2

where L (θ) =
[
Q (θ) R (θ)

]
with

Q (θ) =



vech (ιT ι
′
T ) D+

TΥ
‡
yMT−1 iT ∗ 2βD+

T (ιT ⊗ IT )

0 0 0 (ιT ⊗ IT )

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 β2I†T ∗

βUT 2,T1T,1Γ
‡
xMT−1 iT 2 0 0 βD†

T

2D+
TUT 2,T1T,1Γ

‡
xMT−1 0 D+

TΥ
‡
xMT−1 iT ∗ I†T ∗

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


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=



qθ11 Qθ
12 qθ13 Qθ

14 0 0 0 0 Qθ
19

0 0 0 Qθ
24 Qθ

25 qθ26 0 0 Qθ
29

0 0 0 0 Qθ
35 0 Qθ

37 qθ38 Qθ
39

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


,

R (θ) =



2γD+
T (ιT ⊗ IT ) 2βγD+

T γ2IT ∗

0 γKT,T 0

0 0 0

(ιT ⊗ IT ) βIT 2 γDT
0 IT 2 0

0 0 IT ∗


=



Rθ
11 Rθ

12 Rθ
13

0 Rθ
22 0

0 0 0

Rθ
41 Rθ

42 Rθ
43

0 Rθ
52 0

0 0 Rθ
63


.

Hence, we have

∂h⋄
zz (θ)

∂θ′2
=
[
Q (θ) R (θ)

]
.

Now, let us consider the rank of G⋄ (θ). Since interchanging the columns does not affect the

rank of G⋄ (θ), we consider the following matrix

G∗ (θ) =
[
Q (θ) P (θ) C (θ) R (θ)

]
(S.32)

=


qθ
11 Qθ

12 qθ
13 Qθ

14 0 0 0 0 Qθ
19 Pθ

11 0 cθ11 cθ12 Rθ
11 Rθ

12 Rθ
13

0 0 0 Qθ
24 Qθ

25 qθ
26 0 0 Qθ

29 0 Pθ
22 cθ21 cθ22 0 Rθ

22 0

0 0 0 0 Qθ
35 qθ

36 Qθ
37 qθ

38 Qθ
39 0 Pθ

32 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 cθ41 cθ42 Rθ
41 Rθ

42 Rθ
43

0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rθ
52 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rθ
63


=

[
G∗

11 G∗
12 G∗

13 G∗
14

0 0 G∗
23 G∗

24

]
=

[
Kθ

11 Kθ
12

0 Kθ
22

]
.

Let us consider the rank of Kθ
11 and Kθ

22. First, we consider the rank of Kθ
22, which can be

written as

Kθ
22 =

 cθ41 cθ42 Rθ
41 Rθ

42 Rθ
43

0 0 0 Rθ
52 0

0 0 0 0 Rθ
63

 =

[
Sθ11 Sθ12
0 Sθ22

]
(S.33)

Since both Sθ11 and Sθ22 have full column rank, by using Lemma A(ii), Kθ
22 is shown to be of

full column rank with rank(Kθ
22) = T + 2 + T ∗ + T 2. Next, to investigate the rank of Kθ

11

since interchanging the columns does not affect the rank, we consider the following alternative

expression

Kθ∗
11 =

 qθ11 Qθ
12 qθ13 Pθ

11 Qθ
14 0 0 Qθ

19 0 0 0

0 0 0 0 Qθ
24 Qθ

25 qθ26 Qθ
29 Pθ

22 0 0

0 0 0 0 0 Qθ
35 qθ36 Qθ

39 Pθ
32 Qθ

37 qθ38


=

[
Mθ

11 Mθ
12

0 Mθ
22

]
.
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Mθ
11 is of full column rank with rank(Mθ

11) = T +1+Ly. With regard to the rank of Mθ
22, after

interchanging some columns, it can be written as

Mθ
22 =

[
Qθ

24 0 Qθ
25 Qθ

29 qθ26 0 Pθ
22

0 Qθ
37 Qθ

35 Qθ
39 qθ36 qθ38 Pθ

32

]

=

[
ιT ⊗ IT 0 βUT 2,T1T,1Γ

‡
xMT−1 βD†

T βiT 2 0 Pθ
22

0 D†
TUT 2,T1T,1Υ

‡
xMT−1 2D†

TUT 2,T1T,1Γ
‡
xMT−1 I†T ∗ 0 iT ∗ Pθ

32

]
.

From this, we find that Mθ
11 is of full column rank with rank(Mθ

22) = 3T + T ∗ +Lx− 1. Hence,

using Lemma A(i), we have

rank(G⋄ (θ)) ≥ rank(Kθ
11) + rank(Kθ

22) = rank(Kθ∗
11) + rank(Kθ

22)

≥ rank(Mθ
11) + rank(Mθ

22) + rank(Kθ
22) = 2 + Ly + Lx + 6T + 2T 2

= dim(θ). (S.34)

Hence, combining (S.34) and rank(G (θ)) ≤ min (p(p+ 1)/2, dim(θ)) = dim(θ), we have rank(G∗ (θ)) =

rank(G (θ)) = dim(θ), and therefore G (θ) is has full column rank. ■
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C Models with multiple regressors

In this section, we extend the model to include multiple regressors.

C.1 Model

We consider the following model

yit = µy,t +

K∑
k=1

βkx
∗
k,it +

L∑
l=1

γlwl,it + ηi + ζit, (i = 1, ..., N ; t = 1, ..., T ) (S.35)

where µy,t and ηi denote time-specific and individual specific effects, respectively, and ζit is

an idiosyncratic error term. Time effect µy,t is assumed to be non-random parameters to be

estimated. We assume that yit and wl,it, (l = 1, ..., L) are observed without measurement errors

whereas x∗k,it, (k = 1, ...,K) are not observed due to measurement errors. Instead, we only

observe xk,it contaminated with measurement error ϵk,it as follows

xk,it = x∗k,it + ϵk,it, (k = 1, ...,K). (S.36)

Using (S.35) and (S.36), the model to be estimated is given by

yit = µy,t +

K∑
k=1

βkxk,it +

L∑
l=1

γlwl,it + εit, (S.37)

εit = ηi + ζit −
K∑
k=1

βkϵk,it. (S.38)

We assume that the idiosyncratic error ζit and the measurement error ϵk,it are serially correlated

in ARMA(Lj,AR, Lj,MA),(j = y, x1, ..., xK) form such that

ζit = ρy,1ζi,t−1 + · · ·+ ρy,Ly,AR
ζi,t−Ly,AR

+ vit + λy,1vi,t−1 + · · ·+ λy,Ly,MA
vi,t−Ly,MA

ϵk,it = ρxk,1ϵk,i,t−1 + · · ·+ ρxk,Lxk,AR
ϵk,i,t−Lxk,AR

+ek,it + λxk,1ek,i,t−1 + · · ·+ λxk,Lxk,MA
ek,i,t−Lxk,MA

, (k = 1, ...,K)

with ζi,ℓ = 0, (ℓ = 0, , ...,−Ly,AR + 1), vi,ℓ = 0, (ℓ = 0, , ...,−Ly,MA + 1), ϵk,i,ℓ = 0, (ℓ =

0, ...,−Lkx,AR + 1) and ek,i,ℓ = 0, (ℓ = 0, ....,−Lkx,MA + 1).

C.2 Assumption

We modify Assumptions ME, X and W so that multiple regressors are allowed.

Assumption ME’. (i) The error ek,it is independent over i and t and has E(ek,it) = 0,
V ar(ek,it) = σekek,t = σ2ek,t for k = 1, ...,K with 0 < σ2ek,t < ∞ and finite fourth-order
moment.34

(ii) The error ek,it is allowed to be correlated with the true regressor x∗k,it at the same period
such that Cov(x∗k,it, ek,it) = σx∗kek,t for k = 1, ...,K and t = 1, ..., T , but uncorrelated with
other true regressors such that Cov(x∗k,it, em,is) = 0 for k ̸= m and s, t = 1, ..., T .

34To simplify the notation, we use both σekek,t and σ2
ek,t interchangeably to denote the variance of ek,it.
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(iii) WhenK > 1, the measurement errors are allowed to be mutually correlated at the same pe-
riod such that Cov(ek,it, em,it) = σekem,t for k,m = 1, ...,K, (k ̸= m) and Cov(ek,it, em,is) =
0 for k,m = 1, ...,K and t ̸= s.

Remark S.1. Assumption ME(i) and (ii) are straightforward extension of Assumption ME.
Assumption ME(iii) is newly added and mutually correlated measurement errors are allowed.

Assumption X’. (i) We assume that x∗k,it, (k = 1, ...,K) is strictly exogenous in the sense
that Cov(x∗k,it, vis) = 0 for all s and t.

(ii) Let x∗
k,i = (x∗k,i1, ..., x

∗
k,iT )

′, (k = 1, ...,K) be a T × 1 vector that collects time series
observations of the kth regressor for each i. We assume that x∗

k,i has the following form:

x∗
k,i = µx∗k

+ ξx∗k,i
, (k = 1, 2, ...,K)

where E
(
x∗
k,i

)
= µ∗

xk
and ξx∗k,i

is a random variable that is independent over i with finite

fourth-order moment. We also let Cov
(
x∗
k,i,x

∗
m,i

)
= E

(
ξx∗k,i

ξ′x∗m,i

)
= Σx∗kx

∗
m
= {σx∗kx∗m,st}

for k,m = 1, ...,K and s, t = 1, ..., T .

(iii) The kth regressor x∗k,it is allowed to be correlated with ηi such that Cov
(
x∗k,it, ηi

)
= σx∗kη,t

for k = 1, ...,K and t = 1, ..., T .

Assumption W’. (i) We assume that wl,it, (l = 1, ..., L) is strictly exogenous in the sense
that Cov(wl,it, vis) = 0 for all s and t.

(ii) Let wl,i = (wl,i1, ..., xl,iT )
′, (l = 1, ..., L) be a T × 1 vector that collect time series observa-

tions of the lth regressor for each i. We assume that wl,i has the following form:

wl,i = µwl
+ ξwl,i

, (l = 1, 2, ..., L)

where E (wl,i) = µwl
and ξwl,i

is a random variable that is independent over i with
finite fourth-order moment. We also let Cov (wl,i,wr,i) = E

(
ξwl,i

ξ′wr,i

)
= Σwlwr for

l, r = 1, ..., L.
(iii) The lth regressor wl,it is allowed to be correlated with ηi such that Cov (wl,it, ηi) = σwlη,t

for l = 1, ..., L and t = 1, ..., T .
(iv) The regressor wl,it, (l = 1, ..., L) is uncorrelated with the measurement error ϵjs for all

i, j, s, t.
(v) The regressor wl,i is allowed to be correlated with x∗

k,i such that Cov(wl,i,x
∗
k,i) = Σwlx

∗
k
.

Remark S.2. Assumptions X’ and W’ are straightforward extension of Assumptions X and W
so that multiple x’s and w’s are allowed.

C.3 Latent expression of the model

We now consider a reformulation of the model given by (S.37) and (S.38). The basic idea is

to separate observed variables and unobserved latent variables. To do so, we first rewrite the

model in a matrix form as follow:

yi = µy +
K∑
k=1

J
(1)
βk

xk,i +
L∑
l=1

J(1)
γl

wl,i + εi (S.39)

where yi = (yi1, ..., yiT )
′, µy = (µy,1, ..., µy,T )

′, xk,i = x∗
k,i + ϵk,i, ϵk,i = (ϵk,i1, ..., ϵk,iT )

′, εi =

ηiιT + ζi −
∑K

m=1 J
(1)
βm
ϵm,i, ζi = (ζi1, ..., ζiT )

′, J
(1)
βk

= βkIT , (k = 1, ...,K) and J
(1)
γl = γlIT , (l =

1, ..., L).
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Since the ARMA models, ζi and ϵk,i can be written as

Ψy,ARζi = Ψy,MAvi, Ψxk,ARϵk,i = Ψxk,MAek,i, (k = 1, ...,K)

where vi = (vi1, ..., viT )
′, ek,i = (ek,i1, ..., ek,iT )

′,

Ψj,AR =



1 0

−ρj,1 1
...

. . .
. . .

−ρj,Lj,AR
· · · −ρj,1 1
. . .

. . .
. . .

0 −ρj,Lj,AR
· · · −ρj,1 1


, (j = y, x1, ..., xK),

Ψj,MA =



1 0

λj,1 1
...

. . .
. . .

λj,Lj,MA
· · · λj,1 1
. . .

. . .
. . .

0 λj,Lj,MA
· · · λj,1 1


, (j = y, x1, ..., xK),

we have the following expression

xk,i = x∗
k,i +Ψxkek,i, (k = 1, ...,K), (S.40)

εi = ηiιT +Ψyvi −
K∑
m=1

J
(1)
βm

Ψxmem,i (S.41)

where Ψj can be written as

Ψj = Ψ−1
j,ARΨj,MA =



1 0 · · · · · · 0

ψj,1 1
. . .

...

ψj,2 ψj,1
. . .

. . .
...

...
. . .

. . . 1 0

ψj,T−1 · · · ψj,2 ψj,1 1


, (j = y, x1, ..., xK). (S.42)

Next, let us define observed variables zi and unobserved variable ui as follows:

zi =
(
yi1, ..., yiT ,x

′
1,i, · · · ,x′

K,i,w
′
1,i, · · · ,w′

L,i

)′
=
(
y′
i,x

′
i,w

′
i

)′
=
(
y′
i, z

′
2i

)′
, z2i =

(
x′
i,w

′
i

)′
,

ui =

[
εi
ξz2,i

]

where xi =
(
x′
1,i, · · · ,x′

K,i

)′
,wi =

(
w′

1,i, · · · ,w′
L,i

)′
, ξz2,i =

(
ξ′x,i, ξ

′
w,i

)′
, ξx,i =

(
ξ′x1,i, · · · , ξ

′
xK ,i

,
)′
,

ξxk,i = ξx∗k,i
+Ψxkek,i, (k = 1, ...,K) and ξw,i =

(
ξ′w1,i, · · · , ξ

′
wL,i

,
)′
.

Then, the model (S.39) can be written as

Bzi = µ+ ui (S.43)
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where

B
(p×p)

=

[
B11 B12

0 Ip2

]
=

[
IT B12

0 Ip2

]
, B12

(p1×p2)
=
[
Bβ

12 Bγ
12

]
,

Bβ
12

(p1×px)
=

[
−J

(1)
β1

· · · −J
(1)
βK

]
, Bγ

12
(p1×pw)

=
[
−J

(1)
γ1 · · · −J

(1)
γL

]
, (S.44)

µ =
(
µy,1, · · · , µy,T ,µ′

x1 , · · · ,µ
′
xK

)′
.

p1 = T , p2 = px+ pw, px = TK, pw = TL and p = p1+ p2 so that p denotes the number of rows

of zi.

Since B is invertible, we have

zi = B−1µ+B−1ui.

Therefore, under Assumptions ERR, ME’, X’ and W’, the hypothetical covariance matrix of zi
is given by

Hzz (φ)
(p×p)

= B−1Σuu

(
B−1

)′
=

[
Hyy (φ) ∗
Hz2y (φ) Hz2z2 (φ)

]
(S.45)

where

B−1

(p×p)
=

[
B−1

11 −B−1
11 B12

0 Ip2

]
=

[
IT −B12

0 Ip2

]
,

Σuu
(p×p)

= V ar (ui) =

[
V ar (εi) ∗

Cov (z2i, εi) V ar (z2i)

]
=

[
Σεε ∗
Σz2ε Σz2z2

]
,

Hyy (φ)
(T×T )

= Σεε −Σ′
z2εB

′
12 −B12Σz2ε +B12Σz2z2B

′
12, (S.46)

Hz2y (φ)
(p2×T )

= Σz2ε −Hz2z2 (φ)B
′
12, (S.47)

Σεε
(T×T )

= σ2ηιT ι
′
T +ΨyΣvvΨ

′
y +

K∑
r=1

K∑
m=1

J
(1)
βr

ΨxrΣeremΨ
′
xmJ

(1)′
βm
, (S.48)

Σz2ε
(p2×T )

=
[
Σ′
x1ε, · · · ,Σ

′
xKε

,Σ′
w1ε, · · · ,Σ

′
wLε

]′
,

Σxkε
(T×T )

= Cov(xk,i, εi) = σx∗kηι
′
T −Σx∗kek

Ψ′
xk
J
(1)′
βk

−
K∑
m=1

ΨxkΣekemΨ
′
xmJ

(1)′
βm
, (k = 1, ...,K),

(S.49)

Σx∗kek
(T×T )

= diag
(
σx∗kek,1, · · · , σx∗kek,T

)
, Σekem

(T×T )
= diag (σekem,1, · · · , σekem,T ) ,

Σwlε
(T×T )

= Cov(wl,i, εi) = σwlηι
′
T , (l = 1, ..., L),

Hz2z2 (φ)
(p2×p2)

=

[
Hxx (φ) ∗
Hwx (φ) Hww (φ)

]

Hxx (φ)
(TK×TK)

=

 Hx1x1 (φ) ∗
...

. . .

HxKx1 (φ) · · · HxKxK (φ)

 , Hww (φ)
(TL×TL)

=

 Hw1w1 (φ) ∗
...

. . .

HwLw1 (φ) · · · HwLwL (φ)

 ,
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Hwx (φ)
(TL×TK)

=

 Hw1x1 (φ) · · · Hw1xK (φ)
...

...

HwLx1 (φ) · · · HwLxK (φ)

 ,
Hxkxk (φ)

(T×T )
= Σx∗kx

∗
k
+ΨxkΣekekΨ

′
xk

+ΨxkΣ
′
x∗kek

+Σx∗kek
Ψ′
xk
, (k = 1, ...,K), (S.50)

Hxkxm (φ)
(T×T )

= Σx∗kx
∗
m
+ΨxkΣekemΨ

′
xm , (k,m = 1, ...,K, k ̸= m), (S.51)

Hwlxk (φ)
(T×T )

= Σwlx
∗
k
, (k = 1, ...,K; l = 1, ..., L).

The parameters to be estimated in the model are given by

φ =
(
φ′

1,φ
′
2

)′
where φ1 =

(
δ′,ψ′)′, φ2 =

(
φ′
εε,φ

′
z2ε,φ

′
ee,φ

′
z2z2

)′
with

δ =
(
β′,γ ′)′ , β = (β1, · · · , βK)′ , γ = (γ1, · · · , γL)′

ψ′ =
(
ψ′
y,ψ

′
x1 , · · · ,ψ

′
xK

)′
ψj =

(
ρj,1, ..., ρj,Lj,AR

, λj,1, ..., λj,Lj,MA

)′
, (j = y, x1, ..., xK),

φεε =
(
σ2η,σ

′
vv

)′
, σvv =

(
σ2v,1, ..., σ

2
v,T

)′
φz2ε =

(
σ′
x∗1ε
, · · · ,σ′

x∗Kε
,σ′

w1η, · · · ,σ
′
wLη

)′
,

σx∗kε =
(
σ′
x∗kη

,σ′
x∗kek

)′
, (k = 1, ...,K)

σx∗kη =
(
σx∗kη,1, · · · , σx∗kη,T

)′
, σx∗kek =

(
σx∗kek,1, · · · , σx∗kek,T

)′
,

σwlη = (σwlη,1, · · · , σwlη,T )
′ , (l = 1, ..., L)

φz2z2 =
(
σ′
x∗x∗ ,σ

′
wx,σ

′
ww

)′
,

σx∗x∗ = vech(Σx∗x∗), σwx = vec(Σwx), σww = vech(Σww)

and φee includes the variance V ar(ek,it) and covariances Cov(ek,it, er,it) for k ̸= r. For instance,

φee is given by φee = σe1e1 for K = 1, and φee =
(
σ′
e1e1 ,σ

′
e2e2 ,σ

′
e1e2

)′
for K = 2 where

σeker = (σeker,1, ..., σeker,T )
′.

Note that φ1 includes the parameters associated with the “coefficient” of regressors and

latent variables while φ2 includes the variances and covariances of latent variables. In the

following, we consider the identification, estimation and inference of φ.

C.4 Model after reparametrization

We apply the reparametrization discussed in Section 3.2 to the general case. For this, we consider

a decomposition

Σvv = Σ̇vv + Σ̈vv,

Σerem = Σ̇erem + Σ̈erem , (r,m = 1, ...,K),

Σx∗kek
= Σ̇x∗kek

+ Σ̈x∗kek
, (k = 1, ...,K),

Σx∗rx
∗
m

= Σ̇x∗rx
∗
m
+ Σ̈x∗rx

∗
m
, (r,m = 1, ...,K),

Ψxk =

[
Ψxk,11 0

Ψxk,21 Ψxk,22

]
=
[
Ψ†
xk iT

]
, iT = (0, ..., 0, 1)′
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where

Σ̇vv = diag (Σ⋆
vv, 0) , Σ̈vv = diag

(
0, σ2v,T

)
, Σ⋆

vv = diag
(
σ2v,1, ..., σ

2
v,T−1

)
,

Σ̇erem = diag
(
Σ⋆
erem , 0

)
, Σ̈erem = diag (0, σerem,T ) , Σ⋆

erem = diag (σerem,1, ..., σerem,T−1) ,

Σ̇x∗kek
= diag

(
Σ⋆
x∗kek

, 0
)
, Σ̈x∗kek

= diag
(
0, σx∗kek,T

)
, Σ⋆

x∗kek
= diag

(
σx∗kek,1, ..., σx

∗
kek,T−1

)
,

Σ̇x∗rx
∗
m

=


σx∗rx∗m,11 · · · σx∗rx∗m,1,T−1 σx∗rx∗m,1T

...
. . .

...
...

σx∗rx∗m,T−1,1 · · · σx∗rx∗m,T−1,T−1 σx∗rx∗m,T−1,T

σx∗rx∗m,T1 · · · σx∗rx∗m,T,T−1 0

 , Σ̈x∗rx
∗
m
=


0 · · · 0 0
...

. . .
...

...

0 · · · 0 0

0 · · · 0 σx∗rx∗m,T,T


and Ψ†

xk
is a T × (T − 1) matrix composed with the first T − 1 columns of Ψxk .

Then, we have

ΨyΣvvΨ
′
y = ΨyΣ̇vvΨ

′
y +ΨyΣ̈vvΨ

′
y = Ψ†

yΣ
⋆
vvΨ

†′
y + σ2v,TETT , (S.52)

ΨxrΣeremΨ
′
xm = ΨxrΣ̇eremΨ

′
xm +ΨxrΣ̈eremΨ

′
xm = Ψ†

xrΣ
⋆
eremΨ

†′
xm + σerem,TETT ,

(S.53)

Σx∗kek
Ψ′
xk

= Σ̇x∗kek
Ψ′
xk

+ Σ̈x∗kek
Ψ′
xk

=

[
Σ⋆
x∗kek

Ψ†′
xk

0

]
+ σx∗kek,TETT . (S.54)

Then, using (S.52), (S.53) and (S.54) in (S.48), (S.49), (S.50) and (S.51), we can derive the

following reparametrized expression:

Hzz (θ)
(p×p)

=

[
Hyy (θ) ∗
Hz2y (θ) Hz2z2 (θ)

]
(S.55)

where

Hyy (θ)
(T×T )

= Σεε −Σ′
z2εB

′
12 −B12Σz2ε +B12Σz2z2B

′
12, (S.56)

Hz2y (θ)
(p2×T )

= Σz2ε −Hz2z2 (θ)B
′
12, (S.57)

Hz2z2 (φ)
(p2×p2)

=

[
Hxx (θ) ∗
Hwx (θ) Hww (θ)

]

Hxx (θ)
(TK×TK)

=

 Hx1x1 (θ) ∗
...

. . .

HxKx1 (θ) · · · HxKxK (θ)

 ,

Hwx (θ)
(TL×TK)

=

 Hw1x1 (θ) · · · Hw1xK (θ)
...

...

HwLx1 (θ) · · · HwLxK (θ)

 , Hww (θ)
(TL×TL)

=

 Hw1w1 (θ) ∗
...

. . .

HwLw1 (θ) · · · HwLwL (θ)

 ,
with

Σεε
(T×T )

= σ2ηιT ι
′
T +Ψ†

yΣ
⋆
vvΨ

†′
y +

K∑
r=1

K∑
m=1

J
(1)
βr

Ψ†
xrΣ

⋆
eremΨ

†′
xmJ

(1)′
βm

+ σ2ε,TETT , (S.58)

Σz2ε
(p2×T )

=
[
Σ′
x1ε, · · · ,Σ

′
xKε

,Σ′
w1ε, · · · ,Σ

′
wLε

]′
,
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Σxkε
(T×T )

= σx∗kηι
′
T −

[
Σ⋆
x∗kek

Ψ†′
xk

0

]
J
(1)′
βk

−
K∑
m=1

Ψ†
xk
Σ⋆
ekem

Ψ†′
xmJ

(1)′
βm

+ σxkε,TTETT ,

(k = 1, ...,K), (S.59)

Σwlε
(T×T )

= σwlηι
′
T , (l = 1, ..., L), (S.60)

Hxkxk (θ) = Σ̇x∗kx
∗
k
+Ψ†

xk
Σ⋆
ekek

Ψ†′
xk

+Σ⋆
x∗kek

Ψ′
xk

+ΨxkΣ
⋆′
x∗kek

+ σxkxk,TTETT ,

(k = 1, ...,K), (S.61)

Hxkxm (θ) = Σ̇x∗kx
∗
m
+Ψ†

xk
Σ⋆
ekem

Ψ†′
xm + σxkxm,TTETT , (k,m = 1, ...,K, k ̸= m) (S.62)

Hwlxk (φ)
(T×T )

= Σwlx
∗
k
, (k = 1, ...,K; l = 1, ..., L).

and

σ2ε,T = σ2v,T +

K∑
r=1

K∑
m=1

βrβmσerem,T ,

σxkε,TT = −βkσx∗kek,T −
K∑
m=1

βmσekem,T ,

σxkxk,TT = σekek,T + 2σx∗kek,T + σx∗kx
∗
k,TT

,

σxkxm,TT = σekem,T + σx∗kx∗m,TT .

The parameters to be estimated in this reparametrized model are given by

θ =
(
θ′1,θ

′
2

)′
(S.63)

where θ1 =
(
δ′,ψ′)′, θ2 = (θ′εε,θ′z2ε,θ′ee,θ′z2z2)′ with

θεε =
(
σ2η,σ

⋆′
vv, σ

2
ε,T

)′
, σ⋆vv =

(
σ2v,1, ..., σ

2
v,T−1

)′
,

θz2ε =
(
σ⋆′x1ε, · · · ,σ

⋆′
xKε

,σ′
w1η, · · · ,σ

′
wLη

)′
,

σ⋆xkε =
(
σ′
x∗kη

,σ⋆′x∗kek
, σx∗kεk,T

)′
, (k = 1, ...,K),

σ⋆x∗kek
=

(
σx∗kek,1, · · · , σx∗kek,T−1

)′
,

θz2z2 =
(
σ⋆′x∗x∗ ,σ

′
wx,σ

′
ww

)′
.

θee is given by θee = σ⋆e1e1 for K = 1, and θee =
(
σ⋆′e1e1 ,σ

⋆′
e2e2 ,σ

⋆′
e1e2

)′
for K = 2 where

σ⋆eker = (σeker,1, ..., σeker,T−1)
′, and σx∗x∗ = σ†

x∗1x
∗
1
forK = 1 and σx∗x∗ =

(
σ⋆x∗1x∗1

,σ⋆x∗2x∗1
,σ⋆x∗2x∗2

)′
for K = 2 where σx∗1x∗1 and σx∗2x∗2 include distinct T (T +1)/2− 1 elements of Σ̇x∗1x

∗
1
and Σ̇x∗2x

∗
2
,

respectively and σx∗2x∗1 includes T 2 − 1 elements of Σx∗2x
∗
1
excluding (T, T ) element.

Comparing φ and θ, σ2v,T , σx∗1e1,T , σe1e1,T and σx∗1x∗1,TT in φ are replaced with σ2ε,T , σx1ε1,T
and σx1x1,TT in θ when K = 1. Similarly, σ2v,T , σx∗1e1,T , σx∗2e2,T , σe1e1,T , σe2e2,T , σe1e2,T , σx∗1x∗1,TT ,

σx∗2x∗2,TT and σx∗1x∗2,TT in φ are replaced with σ2ε,T , σx1ε1,T , σx2ε2,T , σx1x1,TT , σx2x2,TT and

σx1x2,TT in θ when K = 2.35

35Since there are only six observed moments in the last period t = T , i.e., σyy,TT , σx1x1,TT , σx2x2,TT , σx1x2,TT ,
σyx1,TT , σyx2,TT , three parameters need to be reduced for identification.
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D Linear expression of hzz(θ)

In this section, we derive a linear expression of hzz(θ) with regard to θ2 for the model (S.39)

with (S.40), (S.41) and (S.42) where the hypothetical covariance matrix is given by (S.55).

Let Jβk denote either J
(1)
βk

or J
(2)
βk

unless otherwise stated. Using (S.58), (S.59), (S.60), (S.61),

(S.62) and (S.2), we have

vech (Σεε) = σ2η vech
(
ιT ι

′
T

)
+ D+

T

(
Ψ†
y ⊛Ψ†

y

)
σ⋆vv + σ2ε,T vech (ETT )

+

K∑
r=1

K∑
m=1

D+
T

(
JβmΨ

†
xm ⊛ JβrΨ

†
xr

)
σ⋆ekem , (S.64)

vec (Σxkε) = (ιT ⊗ IT )σx∗kη − (Jβk ⊗ IT )UT,T1,T
(
Ψ†
xk

⊛ IT1

)
σ⋆x∗kek

+ σxkε,TT vec (ETT )

−
K∑
m=1

(
JβmΨ

†
xm ⊛Ψ†

xk

)
σ⋆ekem , (S.65)

vec (Σwlε) = vec
(
σwlηι

′
T

)
= (ιT ⊗ IT )σwlη, (S.66)

vech (Hxkxk(θ)) = 2D+
TUT,T1,T

(
Ψ†
xk

⊛ IT1

)
σ†
x∗kek

+ D+
T

(
Ψ†
xk

⊛Ψ†
xk

)
σ†
ekek

+σ⋆x∗kx
∗
k
+ σx∗kx

∗
k,TT

vech(ETT ), (S.67)

vec (Hxkxm(θ)) = σ⋆x∗kx∗m
+
(
Ψ†
xm ⊛Ψ†

xk

)
σ⋆ekem + σx∗kx∗m,TT vec(ETT ), (k ̸= m). (S.68)

Using these, we consider the cases with K = 1 and K = 2, respectively. First, we consider the

case with K = 2 and the results for K = 1 will be obtained as a special case of K = 2.

First, note that (S.64), (S.65), (S.66), (S.67) and (S.68) can be written as

vech (Σεε) = Cεε,εε(θ1)θεε +Cεε,ee(θ1)θee, (S.69)

vec (Σxkε) = Cxkε,xkε(θ1)θxkε +Cxkε,ee(θ1)θee, (k = 1, 2), (S.70)

vec (Σwlε) = Cwlε,wlεθwlε, (l = 1, ..., L), (S.71)

vech (Hxkxk(θ)) = Cxkxk,xkε(θ1)θxkε +Cxkxk,ee(θ1)θ
⋆
ee +Cxkxk,x

∗
kx

∗
k
θx∗kx

∗
k
, (k = 1, 2),

vec (Hx2x1(θ)) = Cx2x1,ee(θ1)θ
⋆
ee +Cx2x1,x∗2x

∗
1
θx∗2x∗1

where

Cεε,εε(θ1) =
[
vech (ιT ι

′
T ) , D+

T

(
Ψ†
y ⊛Ψ†

y

)
, vech (ETT )

]
, θεε =

 σ2η
σ⋆vv
σ2ε,T

 ,
Cεε,ee(θ1) =

[
D+
T

(
Jβ1Ψ

†
x1 ⊛ Jβ1Ψ

†
x1

)
, D+

T

(
Jβ2Ψ

†
x2 ⊛ Jβ2Ψ

†
x2

)
,

D+
T

{(
Jβ2Ψ

†
x2 ⊗ Jβ1Ψ

†
x1

)
+
(
Jβ1Ψ

†
x1 ⊛ Jβ2Ψ

†
x2

)}]
, θee = σee =

 σ⋆e1e1σ⋆e2e2
σ⋆e1e2

 ,
Cxkε,xkε(θ1) =

[
(ιT ⊗ IT ) , − (Jβk ⊗ IT )UT,T1,T

(
Ψ†
xk ⊛ IT1

)
,

vec (ETT )
]
, θxkε =

 σx∗kη
σ⋆x∗kek
σxkε,TT

 , (k = 1, 2),
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Cx1ε,ee(θ1) = −
[ (

Jβ1Ψ
†
x1 ⊛Ψ†

x1

)
, 0,

(
Jβ2Ψ

†
x2 ⊛Ψ†

x1

) ]
,

Cx2ε,ee(θ1) = −
[
0,

(
Jβ2Ψ

†
x2 ⊛Ψ†

x2

)
,
(
Jβ1Ψ

†
x1 ⊛Ψ†

x2

) ]
,

Cwlε,wlε = (ιT ⊗ IT ) , θwlε = σwlη, (l = 1, ..., L),

Cxkxk,xkε(θ1) =
[
0, 2D+

TUT,T1,T
(
Ψ†
xk ⊛ IT1

)
, 0

]
(k = 1, 2),

Cxkxm,ee(θ1) = D+
T

(
Ψ†
xk

⊛Ψ†
xk

)
, (k = 1, 2),

Cx2x1,ee(θ1) =
(
Ψ†
x1 ⊛Ψ†

x2

)
,

Cxkxk,x
∗
kx

∗
k

=

[ [
IT (T+1)/2−1

0

]
vech(ETT )

]
, θx∗kx

∗
k
=

[
σ⋆x∗kx

∗
k

σxkxk,TT

]
(k = 1, 2)

Cx2x1,x∗2x
∗
1

=

[ [
IT 2−1

0

]
vec(ETT )

]
, θx∗2x∗1 =

[
σ⋆x∗2x∗1
σx2x1,TT

]
.

Using (S.70) and (S.71), we have the following expression
vec (Σx1ε)

vec (Σx2ε)

vec (Σw1ε)
...

vec (ΣwLε)

 =


Cx1ε,x1ε(θ1)θx1ε +Cx1ε,ee(θ1)θee
Cx2ε,x2ε(θ1)θx2ε +Cx2ε,ee(θ1)θee

Cw1ε,w1εθw1ε

...

CwLε,wLεθwLε


= Cz2ε,z2ε(θ1)θz2ε +Cz2ε,ee(θ1)θee (S.72)

where

Cz2ε,z2ε(θ1) =


Cx1ε,x1ε(θ1) 0 0 · · · 0

0 Cx2ε,x2ε(θ1) 0 · · · 0

0 0 Cw1ε,w1ε 0
...

. . .

0 0 0 CwLε,wLε

 , θz2ε =


θx1ε
θx2ε
θw1ε

...

θwLε

 ,

Cz2ε,ee(θ1) =
[
C′
x1ε,ee(θ1) C′

x2ε,ee(θ1) 0 · · · 0
]′
, θee = σ

⋆
ee.

We also have
vech (Hx1x1(θ))

vec (Hx2x1(θ))

vech (Hx2x2(θ))

vec (Hwx(θ))

vech (Hww(θ))

 =


Cx1x1,x1ε(θ1)θx1ε +Cx1x1,ee(θ1)θee +Cx1x1,x∗1x

∗
1
θx∗1x∗1

Cx2x1,ee(θ1)θee +Cx2x1,x∗2x
∗
1
θx∗2x∗1

Cx2x2,x2ε(θ1)θx2ε +Cx2x2,ee(θ1)θee +Cx2x2,x∗2x
∗
2
θx∗2x∗2

θwx
θww


= Cz2z2,z2ε(θ1)θz2ε +Cz2z2,ee(θ1)θee +Cz2z2,z∗2z

∗
2
θz∗2z∗2 (S.73)

where θwx = vec(Σwx) = σwx, θww = vech(Σww) = σww,

Cz2z2,z2ε(θ1) =


Cx1x1,x1ε(θ1) 0 0 · · · 0

0 0 0 · · · 0

0 Cx2x2,x2ε(θ1) 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0

 , Cz2z2,ee =


Cx1x1,ee(θ1)

Cx2x1,ee(θ1)

Cx2x2,ee(θ1)

0

0

 ,
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Cz2z2,z∗2z
∗
2

=


Cx1x1,x∗1x

∗
1

0 0 0 0

0 Cx2x1,x∗2x
∗
1

0 0 0

0 0 Cx2x2,x∗2x
∗
2

0 0

0 0 0 Ipwpx 0

0 0 0 0 Ipw(pw+1)/2

 , θz∗2z∗2 =


θx∗1x∗1
θx∗2x∗1
θx∗2x∗2
θwx
θww

 .

Furthermore, note that vec (Σz2ε) and vech(Σz2z2) can be written as

vec (Σz2ε) = KT,p2 vec
[
Σ′
x1ε Σ′

x2ε Σ′
w1ε · · · Σ′

wLε

]

= KT,p2


KT,T vec (Σx1ε)

KT,T vec (Σx2ε)

KT,T vec (Σw1ε)
...

KT,T vec (ΣwLε)

 = Qz2ε


vec (Σx1ε)

vec (Σx2ε)

vec (Σw1ε)
...

vec (ΣwLε)

 (S.74)

where Qz2ε = KT,p2 (IK+L ⊗KT,T ), and

vech (Hz2z2(θ)) = Rpx,pw vecb (Σz2z2) = Rpx,pw

 vech (Hxx(θ))

vec (Hwx(θ))

vech (Hww(θ))

 (S.75)

= Rpx,pw

 RT,T vecb (Hxx(θ))

vec (Hwx(θ))

vech (Hww(θ))



= Rpx,pw


RT,T

 vech (Hx1x1(θ))

vec (Hx2x1(θ))

vech (Hx2x2(θ))


vec (Hwx(θ))

vech (Hww(θ))

 = Qz2z2


vech (Hx1x1(θ))

vec (Hx2x1(θ))

vech (Hx2x2(θ))

vec (Hwx(θ))

vech (Hww(θ))

 ,
(S.76)

Qz2z2 = Rpx,pw

 RT,T 0 0

0 Ipxpw 0

0 0 Ipw(pw+1)/2

 .
Hence, using (S.72) and (S.73) in (S.74) and (S.76), we have

vec (Σz2ε) = Qz2ε (Cz2ε,z2ε(θ1)θz2ε +Cz2ε,ee(θ1)θee) , (S.77)

vech (Hz2z2(θ)) = Qz2z2

(
Cz2z2,z2ε(θ1)θz2ε +Cz2z2,ee(θ1)θee +Cz2z2,z2z2θz∗2z∗2

)
. (S.78)

Using (S.69), (S.77) and (S.78), the hypothetical covariance matrices can be written as

vech (Hyy(θ)) = vech (Σεε)− 2D+
T (IT ⊗B12) vec (Σz2ε) + D+

T (B12 ⊗B12)Dp2 vech (Hz2z2(θ))

= Ayy,εε(θ1)θεε +Ayy,z2ε(θ1)θz2ε +Ayy,ee(θ1)θee +Ayy,z∗2z
∗
2
(θ1)θz∗2z∗2 ,

vec (Hz2y(θ)) = vec (Σz2ε)− (B12 ⊗ Ip2)Dp2 vech (Hz2z2(θ))

= Az2y,z2ε(θ1)θz2ε +Az2y,ee(θ1)θee +Az2y,z∗2z
∗
2
(θ1)θz∗2z∗2 ,

vech (Hz2z2(θ)) = Az2z2,z2ε(θ1)θz2ε +Az2z2,ee(θ1)θee +Az2z2,z∗2z
∗
2
(θ1)θz∗2z∗2

S.30



where

Ayy,εε(θ1) = Cεε,εε(θ1),

Ayy,z2ε(θ1) = −2D+
T (IT ⊗B12)Qz2εCz2ε,z2ε(θ1) + D+

T (B12 ⊗B12)Dp2Qz2z2Cz2z2,z2ε(θ1),

Ayy,ee(θ1) = Cεε,ee(θ1)− 2D+
T (IT ⊗B12)Qz2εCz2ε,ee(θ1)

+D+
T (B12 ⊗B12)Dp2Qz2z2Cz2z2,ee(θ1),

Ayy,z∗2z
∗
2
(θ1) = D+

T (B12 ⊗B12)Dp2Qz2z2Cz2z2,z∗2z
∗
2
,

Az2y,z2ε(θ1) = Qz2εCz2ε,z2ε(θ1)− (B12 ⊗ Ip2)Dp2Qz2z2Cz2z2,z2ε(θ1),

Az2y,ee(θ1) = Qz2εCz2ε,ee(θ1)− (B12 ⊗ Ip2)Dp2Qz2z2Cz2z2,ee(θ1),

Az2y,z∗2z
∗
2
(θ1) = − (B12 ⊗ Ip2)Dp2Qz2z2Cz2z2,z∗2z

∗
2
,

Az2z2,z2ε(θ1) = Qz2z2Cz2z2,z2ε(θ1),

Az2z2,ee(θ1) = Qz2z2Cz2z2,ee(θ1),

Az2z2,z∗2z
∗
2
(θ1) = Qz2z2Cz2z2,z∗2z

∗
2
.

Using this, we obtain

hzz(θ) = Rp1,p2

 vech(Hyy(θ))

vec(Hz2y(θ))

vech(Hz2z2(θ))

 = Rp1,p2A(θ1)θ2 (S.79)

where

A(θ1) =

 Ayy,εε(θ1) Ayy,z2ε(θ1) Ayy,ee(θ1) Ayy,z∗2z
∗
2
(θ1)

Az2y,εε(θ1) Az2y,z2ε(θ1) Az2y,ee(θ1) Az2y,z∗2z
∗
2
(θ1)

0 Az2z2,z2ε(θ1) Az2z2,ee(θ1) Az2z2,z∗2z
∗
2
(θ1)

 . (S.80)

Note that the expression (S.79) has a notable structure that hzz(θ) is a linear function of θ2 for

a given θ1. This will be utilized to derive the closed form solution of θ2 below.

The above results are for the case of K = 2. The results for K = 1 are obtained by using

the followings expressions:

Cεε,ee(θ1) = D+
T

(
Jβ1Ψ

†
x1 ⊛ Jβ1Ψ

†
x1

)
, Cx1ε,ee(θ1) = −

(
Jβ1Ψ

†
x1 ⊛Ψ†

x1

)
, θee = σ

⋆
e1e1 ,

Cz2ε,z2ε(θ1) = diag(Cx1ε,x1ε(θ1),Cw1ε,w1ε, · · · ,CwLε,wLε), θz2ε =
(
θ′x1ε,θ

′
w1ε, · · · ,θ

′
wLε

)′
,

Cz2ε,ee(θ1) =
(
C′
x1ε,ee,0, ...,0

)′
,

Cz2z2,z2ε(θ1) =

 Cx1x1,x1ε(θ1) 0 · · · 0

0 0 · · · 0

0 0 · · · 0

 , Cz2z2,ee(θ1) =

 Cx1x1,ee(θ1)

0

0

 ,
Cz2z2,z∗2z

∗
2

= diag
(
Cx1x1,x∗1x

∗
1
, Ipwpx , Ipw(pw+1)/2

)
, θz∗2z∗2 =

(
θ′x∗1x∗1 ,θ

′
wx,θ

′
ww

)′
Qz2z2 = Rpx,pw .

Note that the formulas not mentioned here are identical to those of K = 2.

Finally, we derive (36). When weighting matrix does not depend on unknown parameters,

by using (S.79), the objective function can be written as

QMD(θ) = [s̄N − hzz(θ)]
′WN [s̄N − hzz(θ)]

S.31



= [s̄N − Rp1,p2A (θ1)θ2]
′WN [s̄N − Rp1,p2A (θ1)θ2] .

Then, the first-order condition associated with θ2 is given by

∂QMD(θ)

∂θ2
= −2A (θ1)

′R′
p1,p2WN s̄N + 2A (θ1)R′

p1,p2WNRp1,p2A (θ1)θ2 = 0.

From this, we obtain (36) as follows:

θ2 =
[
A′ (θ1)R′

p1,p2WNRp1,p2A (θ1)
]−1

A (θ1)
′R′

p1,p2WN s̄N = b (θ1) .
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E Derivation of Jacobian matrix G(θ) = ∂hzz(θ)/∂θ
′

In this section, we derive the Jacobian G(θ) = ∂hzz(θ)/∂θ
′ for the model (S.39) with (S.40),

(S.41) and (S.42) where the hypothetical covariance matrix is given by (S.55). To simplify the

notation, we omit “(θ)” from H (θ)’s and hzz (θ) in this section. Let Jβk denote either J
(1)
βk

or

J
(2)
βk

unless otherwise stated.

Recall that Hzz = B−1ΣuuB
−1′ and hzz = vech (Hzz) = Rp1,p2A (θ1)θ2. Also, note that

when K = 1, Σεε and Σx1ε can be written as

Σεε = σ2ηιT ι
′
T +ΨyΣ̇vvΨ

′
y + Jβ1Ψx1Σ̇e1e1Ψ

′
x1J

′
β1 + σ2ε,TETT ,

Σx1ε = σx∗1ηι
′
T − Σ̇x∗1e1

Ψ′
x1J

′
β1 −Ψx1Σ̇e1e1Ψ

′
x1J

′
β1 + σx1ε,TTETT

Hx1x1 (θ) = Σ̇x∗1x
∗
1
+Ψx1Σ̇e1e1Ψ

′
x1 + Σ̇x∗1e1

Ψ′
x1 +Ψx1Σ̇

′
x∗1e1

+ σx1x1,TTETT ,

and when K = 2, Σεε, Σx1ε and Σx2ε can be written as

Σεε = σ2ηιT ι
′
T +ΨyΣ̇vvΨ

′
y + Jβ1Ψx1Σ̇e1e1Ψ

′
x1J

′
β1 + Jβ2Ψx2Σ̇e2e2Ψ

′
x2J

′
β2

+
(
Jβ1Ψx1Σ̇e1e2Ψ

′
x2J

′
β2 + Jβ2Ψx2Σ̇e2e1Ψ

′
x1J

′
β1

)
+ σ2ε,TETT ,

Σx1ε = σx∗1ηι
′
T − Σ̇x∗1e1

Ψ′
x1J

′
β1 −Ψx1Σ̇e1e1Ψ

′
x1J

′
β1 −Ψx1Σ̇e1e2Ψ

′
x2J

′
β2 + σx1ε,TTETT ,

Σx2ε = σx∗2ηι
′
T − Σ̇x∗2e2

Ψ′
x2J

′
β2 −Ψx2Σ̇e2e1Ψ

′
x1J

′
β1 −Ψx2Σ̇e2e2Ψ

′
x2J

′
β2 + σx2ε,TTETT

Hxkxk (θ) = Σ̇x∗kx
∗
k
+ΨxkΣ̇ekekΨ

′
xk

+ Σ̇x∗kek
Ψ′
xk

+ΨxkΣ̇
′
x∗kek

+ σxkxk,TTETT , (k = 1, 2)

Hx2x1 (θ) = Σ̇x∗2x
∗
1
+Ψx2Σ̇e1e2Ψ

′
x1 + σx2x1,TTETT .

where ETT = iT i
′
T . We shall use these to derive the Jacobian of hzz given by

G (θ) =
∂hzz
∂θ′

=

[
∂hzz
∂θ′1

∂hzz
∂θ′2

]
=

[
∂hzz
∂δ′

∂hzz
∂ψ′ Rp1,p2A (θ1)

]
.

First, we consider ∂hzz/∂δ
′. By using

dHzz =
(
dB−1

)
ΣuuB

−1′ +B−1 (dΣuu)B
−1′ +B−1Σuu

(
dB−1′)

= −B−1 (dB)B−1ΣuuB
−1′ +B−1 (dΣuu)B

−1′ −B−1ΣuuB
−1′ (dB′)B−1′

= −B−1 (dB)Hzz +B−1 (dΣuu)B
−1′ −Hzz

(
dB′)B−1′,

we have

dhzz = D+
p vec (dHzz) = −2D+

p vec
(
B−1 (dB)Hzz

)
+ D+

p vec
(
B−1 (dΣuu)B

−1′) .
Hence, we have

∂hzz
∂δj

= −2D+
p vec

(
B−1

(
∂B

∂δj

)
Hzz

)
+ D+

p vec

(
B−1

(
∂Σuu

∂δj

)
B−1′

)
, (j = 1, ...,K + L)

= −2D+
p

(
Hzz ⊗B−1

)
vec

(
∂B

∂δj

)
+ D+

p

(
B−1 ⊗B−1

)
vec

(
∂Σuu

∂δj

)
where

∂B

∂δj
=

 0
∂B12

∂δj
0 0

 , ∂Σuu

∂δj
=


∂Σεε

∂δj
∗

∂Σz2ε

∂δj
0


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∂Σz2ε

∂δj
=

[
∂Σ′

x1ε

∂δj
· · ·

∂Σ′
xKε

∂δj
0 · · · 0

]′
.

Since the form of ∂hzz/∂δ
′ changes depending on whether we allow for a structural break or

not in δ, we consider separately the cases with or without a structural break.

When there is no structural break in δ, we have

∂hzz
∂δ′

=


[
∂hzz
∂β1

∂hzz
∂γ1

· · · ∂hzz
∂γL

]
K = 1[

∂hzz
∂β1

∂hzz
∂β2

∂hzz
∂γ1

· · · ∂hzz
∂γL

]
K = 2

.

First, note that

∂B12

∂δj
= −

(
e′K+L,j ⊗ IT

)
, (j = 1, ...,K + L)

where eK+L,j is a (K + L) × 1 vector whose jth element is one and zeros otherwise. Also, let

∂J
(1)
βk
/∂βk = I(1)T = IT . Then, ∂Σuu/∂δj for the case with K = 1 can be obtained from

∂Σεε

∂β1
= I(1)T Ψx1Σ̇e1e1Ψ

′
x1J

(1)′
β1

+ J
(1)
β1

Ψx1Σ̇e1e1Ψ
′
x1I

(1)′
T ,

∂Σεε

∂γl
= 0, (l = 1, ..., L),

∂Σz2ε

∂β1
=

[
∂Σ′

x1ε

∂β1
0 · · · 0

]′
,

∂Σx1ε

∂β1
= −Σ̇x∗1e1

Ψ′
x1I

(1)′
T −Ψx1Σ̇e1e1Ψ

′
x1I

(1)′
T ,

∂Σx1ε

∂γl
= 0, (l = 1, ..., L),

and ∂Σuu/∂δj for the case with K = 2 can be obtained from

∂Σεε

∂β1
= I(1)T Ψx1Σ̇e1e1Ψ

′
x1J

(1)′
β1

+ J
(1)
β1

Ψx1Σ̇e1e1Ψ
′
x1I

(1)′
T

+
(
I(1)T Ψx1Σ̇e1e2Ψ

′
x2J

(1)′
β2

+ J
(1)
β2

Ψx2Σ̇e2e1Ψ
′
x1I

(1)′
T

)
,

∂Σεε

∂β2
= I(1)T Ψx2Σ̇e2e2Ψ

′
x2J

(1)′
β2

+ J
(1)
β2

Ψx2Σ̇e2e2Ψ
′
x2I

(1)′
T

+
(
J
(1)
β1

Ψx1Σ̇e1e2Ψ
′
x2I

(1)′
T + I(1)T Ψx2Σ̇e2e1Ψ

′
x1J

(1)′
β1

)
,

∂Σεε

∂γl
= 0, (l = 1, ..., L),

∂Σz2ε

∂β1
=

[
∂Σ′

x1ε

∂β1

∂Σ′
x2ε

∂β1
0 · · · 0

]′
,

∂Σx1ε

∂β1
= −Σ̇x∗1e1

Ψ′
x1I

(1)′
T −Ψx1Σ̇e1e1Ψ

′
x1I

(1)′
T ,

∂Σx2ε

∂β1
= −Ψx2Σ̇e2e1Ψ

′
x1I

(1)′
T ,

∂Σz2ε

∂β2
=

[
∂Σ′

x1ε

∂β2

∂Σ′
x2ε

∂β2
0 · · · 0

]′
,
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∂Σx1ε

∂β2
= −Ψx1Σ̇e1e2Ψ

′
x2I

(1)′
T ,

∂Σx2ε

∂β2
= −Σ̇x∗2e2

Ψ′
x2I

(1)′
T −Ψx2Σ̇e2e2Ψ

′
x2I

(1)′
T .

Next, we consider the case with a structural break. In this case, ∂hzz/∂δ
′ is given by

∂hzz
∂δ′

=


[
∂hzz

∂β
[1]
1

∂hzz

∂β
[2]
1

∂hzz

∂γ
[1]
1

∂hzz

∂γ
[2]
1

· · · ∂hzz

∂γ
[1]
L

∂hzz

∂γ
[2]
L

]
K = 1[

∂hzz

∂β
[1]
1

∂hzz

∂β
[2]
1

∂hzz

∂β
[1]
2

∂hzz

∂β
[2]
2

∂hzz

∂γ
[1]
1

∂hzz

∂γ
[2]
1

· · · ∂hzz

∂γ
[1]
L

∂hzz

∂γ
[2]
L

]
K = 2

.

Also, let us define

I(2)
T [1] =

[
IT [1] 0

0 0

]
, I(2)

T [2] =

[
0 0

0 IT [2]

]
.

Note that ∂J
(2)
βk
/∂β

[1]
k = ∂J

(2)
γl /∂γ

[1]
l = I(2)

T [1] and ∂J
(2)
βk
/∂β

[2]
k = ∂J

(2)
γl /∂γ

[2]
l = I(2)

T [2] . Then, we have

∂B12

∂β
[r]
1

=
[
−I(2)

T [r] 0 · · · 0
]
,

∂B12

∂β
[r]
2

=
[
0 −I(2)

T [r] · · · 0
]
, (r = 1, 2).

Also, ∂Σuu/∂δj for the case with K = 1 and r = 1, 2 can be obtained from

∂Σεε

∂β
[r]
1

= I(2)
T [r]Ψx1Σ̇e1e1Ψ

′
x1J

(2)′
β1

+ J
(2)
β1

Ψx1Σ̇e1e1Ψ
′
x1I

(2)′
T [r] , (r = 1, 2),

∂Σεε

∂γ
[r]
l

= 0, (l = 1, ..., L; r = 1, 2),

∂Σz2ε

∂β
[r]
1

=

[
∂Σ′

x1ε

∂β
[r]
1

0 · · · 0

]′
, (r = 1, 2),

∂Σx1ε

∂β
[r]
1

= −Σ̇x∗1e1
Ψ′
x1I

(2)′
T [r] −Ψx1Σ̇e1e1Ψ

′
x1I

(2)′
T [r] , (r = 1, 2),

∂Σx1ε

∂γ
[r]
l

= 0, (l = 1, ..., L; r = 1, 2),

and ∂Σuu/∂δj for the case with K = 2 can be obtained from

∂Σεε

∂β
[r]
1

= I(2)
T [r]Ψx1Σ̇e1e1Ψ

′
x1J

(2)′
β1

+ J
(2)
β1

Ψx1Σ̇e1e1Ψ
′
x1I

(2)′
T [r]

+
(
I(2)
T [r]Ψx1Σ̇e1e2Ψ

′
x2J

(2)′
β2

+ J
(2)
β2

Ψx2Σ̇e2e1Ψ
′
x1I

(2)′
T [r]

)
,

∂Σεε

∂β
[r]
2

= I(2)
T [r]Ψx2Σ̇e2e2Ψ

′
x2J

(2)′
β2

+ J
(2)
β2

Ψx2Σ̇e2e2Ψ
′
x2I

(2)′
T [r]

+
(
J
(2)
β1

Ψx1Σ̇e1e2Ψ
′
x2I

(2)′
T [r] + I(2)

T [r]Ψx2Σ̇e2e1Ψ
′
x1J

(2)′
β1

)
,

∂Σεε

∂γ
[r]
l

= 0, (l = 1, ..., L),
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∂Σz2ε

∂β
[r]
1

=

[
∂Σ′

x1ε

∂β
[r]
1

∂Σ′
x2ε

∂β
[r]
1

0 · · · 0

]′
,

∂Σx1ε

∂β
[r]
1

= −Σ̇x∗1e1
Ψ′
x1I

(2)′
T [r] −Ψx1Σ̇e1e1Ψ

′
x1I

(2)′
T [r] ,

∂Σx2ε

∂β
[r]
1

= −Ψx2Σ̇e2e1Ψ
′
x1I

(2)′
T [r] ,

∂Σz2ε

∂β
[r]
2

=

[
∂Σ′

x1ε

∂β
[r]
2

∂Σ′
x2ε

∂β
[r]
2

0 · · · 0

]′
,

∂Σx1ε

∂β
[r]
2

= −Ψx1Σ̇e1e2Ψ
′
x2I

(2)′
T [r] ,

∂Σx2ε

∂β
[r]
2

= −Σ̇x∗2e2
Ψ′
x2I

(2)′
T [r] −Ψx2Σ̇e2e2Ψ

′
x2I

(2)′
T [r] .

Finally, we consider ∂hzz/∂ψ
′. Note that the form of ∂hzz/∂ψ

′ is identical regardless of

whether there is a structural break or not in δ. Note that ∂hzz/∂ψ
′ can be written as

∂hzz
∂ψ′ =

[
∂hzz
∂ψ′

y

∂hzz
∂ψ′

x1

· · · ∂hzz
∂ψ′

xK

]
where

∂hzz
∂ψ′

j

=

[
∂hzz
∂ψj,1

· · · ∂hzz
∂ψj,Lj

]
, Lj = Lj,AR + Lj,MA, (j = y, x1, ..., xK)

∂hzz
∂ψj,r

= vech

(
B−1

(
∂Σuu

∂ψj,r

)
B−1′

)
,

∂Σuu

∂ψj,r
=


∂Σεε

∂ψj,r

∂Σ′
z2ε

∂ψj,r
∂Σz2ε

∂ψj,r

∂Hz2z2

∂ψj,r

 ,
∂Σz2ε

∂ψj,r
=

[
∂Σ′

x1ε

∂ψj,r
· · ·

∂Σ′
xKε

∂ψj,r
0 · · · 0

]′
,

∂Hz2z2

∂ψj,r
=

 ∂Hxx

∂ψj,r
0

0 0


and ψj,r denotes the rth element of ψj , (j = y, x1, ..., xK , r = 1, ..., Lj).

Note that Let us define Ψj can be written as36

Ψj = Ψ−1
j,ARΨj,MA, (j = y, x1, ..., xK),

Ψj,AR = IT − ρj,1IT,1 − · · · − ρj,Lj,AR
IT,Lj,AR

,

Ψj,MA = IT + λj,1IT,1 + · · ·+ λj,Lj,MA
IT,Lj,MA

.

Since the differential of Ψj is given by

dΨj = −Ψ−1
j,AR (dΨj,AR)Ψ

−1
j,ARΨj,MA +Ψ−1

j,AR (dΨj,MA) ,

we have

∂Ψj

∂ρj,r
= −Ψ−1

j,AR

(
∂Ψj,AR

∂ρj,r

)
Ψ−1
j,ARΨj,MA = Ψ−1

j,ARIT,rΨ
−1
j,ARΨj,MA = Dj,AR,r,

36Note that this include AR, MA or ARMA models with any order less than or equal to T − 1.
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∂Ψk

∂λj,r
= Ψ−1

j,AR

(
∂Ψj,MA

∂λj,r

)
= Ψ−1

j,ARIT,j = Dj,MA,r

and ∂Ψj/∂ρh,r = ∂Ψj/∂λh,r = 0 for j ̸= h.

Using

dΣεε = (dΨy) Σ̇vvΨ
′
y +ΨyΣ̇vv

(
dΨ′

y

)
+Jβ1 (dΨx1) Σ̇e1e1Ψ

′
x1J

′
β1 + Jβ1Ψx1Σ̇e1e1

(
dΨ′

x1

)
J′
β1

+Jβ2 (dΨx2) Σ̇e2e2Ψ
′
x2J

′
β2 + Jβ2Ψx2Σ̇e2e2

(
dΨ′

x2

)
J′
β2

+Jβ1 (dΨx1) Σ̇e1e2Ψ
′
x2J

′
β2 + Jβ1Ψx1Σ̇e1e2

(
dΨ′

x2

)
J′
β2

+Jβ2 (dΨx2) Σ̇e2e1Ψ
′
x1J

′
β1 + Jβ2Ψx2Σ̇e2e1

(
dΨ′

x1

)
J′
β1 ,

we can show that ∂Σεε/∂ψj,r for the case with K = 1 can be obtained from

∂Σεε

∂ρy,r
= Dy,AR,rΣ̇vvΨ

′
y +ΨyΣ̇vvD

′
y,AR,r,

∂Σεε

∂ρx1,r
= Jβ1Dx1,AR,rΣ̇e1e1Ψ

′
x1J

′
β1 + Jβ1Ψx1Σ̇e1e1D

′
x1,AR,rJ

′
β1 ,

∂Σεε

∂λy,r
= Dy,MA,rΣ̇vvΨ

′
y +ΨyΣ̇vvD

′
y,MA,r,

∂Σεε

∂λx1,r
= Jβ1Dx1,MA,rΣ̇e1e1Ψ

′
x1J

′
β1 + Jβ1Ψx1Σ̇e1e1D

′
x1,MA,rJ

′
β1

and ∂Σεε/∂ψj,r for the case with K = 2 can be obtained from

∂Σεε

∂ρy,r
= Dy,AR,rΣ̇vvΨ

′
y +ΨyΣ̇vvD

′
y,AR,r,

∂Σεε

∂ρx1,r
= Jβ1Dx1,AR,rΣ̇e1e1Ψ

′
x1J

′
β1 + Jβ1Ψx1Σ̇e1e1D

′
x1,AR,rJ

′
β1

+Jβ1Dx1,AR,rΣ̇e1e2Ψ
′
x2J

′
β2 + Jβ2Ψx2Σ̇e2e1D

′
x1,AR,rJ

′
β1 ,

∂Σεε

∂ρx2,r
= Jβ2Dx2,AR,rΣ̇e2e2Ψ

′
x2J

′
β2 + Jβ2Ψx2Σ̇e2e2D

′
x2,AR,rJ

′
β2

+Jβ1Ψx1Σ̇e1e2D
′
x2,AR,rJ

′
β2 + Jβ2Dx2,AR,rΣ̇e2e1Ψ

′
x1J

′
β1 ,

∂Σεε

∂λy,r
= Dy,MA,rΣ̇vvΨ

′
y +ΨyΣ̇vvD

′
y,MA,r,

∂Σεε

∂λx1,r
= Jβ1Dx1,MA,rΣ̇e1e1Ψ

′
x1J

′
β1 + Jβ1Ψx1Σ̇e1e1D

′
x1,MA,rJ

′
β1

+Jβ1Dx1,MA,rΣ̇e1e2Ψ
′
x2J

′
β2 + Jβ2Ψx2Σ̇e2e1D

′
x1,MA,rJ

′
β1 ,

∂Σεε

∂λx2,r
= Jβ2Dx2,MA,rΣ̇e2e2Ψ

′
x2J

′
β2 + Jβ2Ψx2Σ̇e2e2D

′
x2,MA,rJ

′
β2

+Jβ1Ψx1Σ̇e1e2D
′
x2,MA,rJ

′
β2 + Jβ2Dx2,MA,rΣ̇e2e1Ψ

′
x1J

′
β1 .

Also, by using

dΣx1ε = −Σ̇x∗1e1

(
dΨ′

x1

)
J′
β1 −

[
(dΨx1) Σ̇e1e1Ψ

′
x1 +Ψx1Σ̇e1e1

(
dΨ′

x1

)]
J′
β1

−
[
(dΨx1) Σ̇e1e2Ψ

′
x2 +Ψx1Σ̇e1e2

(
dΨ′

x2

)]
J′
β2 ,

dΣx2ε = −Σ̇x∗2e2

(
dΨ′

x2

)
J′
β2 −

[
(dΨx2) Σ̇e2e1Ψ

′
x1 +Ψx2Σ̇e2e1

(
dΨ′

x1

)]
J′
β1
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−
[
(dΨx2) Σ̇e2e2Ψ

′
x2 +Ψx2Σ̇e2e2

(
dΨ′

x2

)]
J′
β2

∂Σz2ε/∂ψj,r for the case with K = 1 can be obtained from

∂Σz2ε

∂ψx1,r
=

[
∂Σ′

x1ε

∂ψx1,r
0 · · · 0

]′
,

∂Σx1ε

∂ρx1,r
= −Σ̇x∗1e1

D′
x1,AR,rJ

′
β1 −

[
Dx1,AR,rΣ̇e1e1Ψ

′
x1 +Ψx1Σ̇e1e1D

′
x1,AR,r

]
J′
β1 ,

∂Σx1ε

∂λx1,r
= −Σ̇x∗1e1

D′
x1,MA,rJ

′
β1 −

[
Dx1,MA,rΣ̇e1e1Ψ

′
x1 +Ψx1Σ̇e1e1D

′
x1,MA,r

]
J′
β1 ,

∂Σx1ε

∂ρy,r
=

∂Σx1ε

∂λy,r
= 0

and ∂Σz2ε/∂ψj,r for the case with K = 2 can be obtained from

∂Σz2ε

∂ψj,r
=

[
∂Σ′

x1ε

∂ψj,r

∂Σ′
x2ε

∂ψj,r
0 · · · 0

]′
,

∂Σx1ε

∂ρx1,r
= −Σ̇x∗1e1

D′
x1,AR,rJ

′
β1 −

[
Dx1,AR,rΣ̇e1e1Ψ

′
x1 +Ψx1Σ̇e1e1D

′
x1,AR,r

]
J′
β1

−Dx1,AR,rΣ̇e1e2Ψ
′
x2J

′
β2 ,

∂Σx1ε

∂ρx2,r
= −Ψx1Σ̇e1e2D

′
x2,AR,rJ

′
β2 ,

∂Σx1ε

∂λx1,r
= −Σ̇x∗1e1

D′
x1,MA,rJ

′
β1 −

[
Dx1,MA,rΣ̇e1e1Ψ

′
x1 +Ψx1Σ̇e1e1D

′
x1,MA,r

]
J′
β1

−Dx1,MA,rΣ̇e1e2Ψ
′
x2J

′
β2 ,

∂Σx1ε

∂λx2,r
= −Ψx1Σ̇e1e2D

′
x2,MA,rJ

′
β2 ,

∂Σx2ε

∂ρx1,r
= −Ψx2Σ̇e2e1D

′
x1,AR,rJ

′
β1 ,

∂Σx2ε

∂ρx2,r
= −Σ̇x∗2e2

D′
x2,AR,rJ

′
β2 −

[
Dx2,AR,rΣ̇e2e2Ψ

′
x2 +Ψx2Σ̇e2e2D

′
x2,AR,r

]
J′
β2

−Dx2,AR,rΣ̇e2e1Ψ
′
x1J

′
β1 ,

∂Σx2ε

∂λx1,r
= −Ψx2Σ̇e2e1D

′
x1,MA,rJ

′
β1 ,

∂Σx2ε

∂λx2,r
= −Σ̇x∗2e2

D′
x2,MA,rJ

′
β2 −

[
Dx2,MA,rΣ̇e2e2Ψ

′
2 +Ψx2Σ̇e2e2D

′
x2,MA,r

]
J′
β2

−Dx2,MA,rΣ̇e2e1Ψ
′
x1J

′
β1 ,

∂Σx1ε

∂ρy,r
=

∂Σx2ε

∂ρy,r
=
∂Σx1ε

∂λy,r
=
∂Σx2ε

∂λy,r
= 0.

Finally, ∂Hz2z2/∂ψj,r for the case with K = 1 can be obtained from

∂Hz2z2

∂ψx1,r
=

 ∂Hx1x1

∂ψx1,r
0

0 0

 ,
∂Hx1x1

∂ρx1,r
=

[
Dx1,AR,rΣ̇e1e1Ψ

′
x1 +Ψx1Σ̇e1e1D

′
x1,AR,r

]
+Dx1,AR,rΣ̇

′
x∗1e1

+ Σ̇x∗1e1
D′
x1,AR,r,
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∂Hx1x1

∂λx1,r
=

[
Dx1,MA,rΣ̇e1e1Ψ

′
x1 +Ψx1Σ̇e1e1D

′
x1,MA,r

]
+Dx1,MA,rΣ̇

′
x∗1e1

+ Σ̇x∗1e1
D′
x1,MA,r,

∂Hx1x1

∂ρy,r
=

∂Σx1x1

∂λy,r
= 0

and ∂Hz2z2/∂ψj,r for the case with K = 2 can be obtained from

∂Hz2z2

∂ψj,r
=


∂Hx1x1

∂ψj,r
∗ ∗

∂Hx2x1

∂ψj,r

∂Hx2x2

∂ψj,r
∗

0 0 0

 ,
∂Hx1x1

∂ρx1,r
=

[
Dx1,AR,rΣ̇e1e1Ψ

′
x1 +Ψx1Σ̇e1e1D

′
x1,AR,r

]
+Dx1,AR,rΣ̇

′
x∗1e1

+ Σ̇x∗1e1
D′
x1,AR,r,

∂Hx2x1

∂ρx1,r
= Ψx2Σ̇e1e2D

′
x1,AR,r,

∂Hx2x1

∂ρx2,r
= Dx2,AR,rΣ̇e1e2Ψ

′
x1 ,

∂Hx2x2

∂ρx2,r
=

[
Dx2,AR,rΣ̇e2e2Ψ

′
x2 +Ψx2Σ̇e2e2D

′
x2,AR,r

]
+Dx2,AR,rΣ̇

′
x∗2e2

+ Σ̇x∗2e2
D′
x2,AR,r,

∂Hx1x1

∂λx1,r
=

[
Dx1,MA,rΣ̇e1e1Ψ

′
x1 +Ψx1Σ̇e1e1D

′
x1,MA,r

]
+Dx1,MA,rΣ̇

′
x∗1e1

+ Σ̇x∗1e1
D′
x1,MA,r,

∂Hx2x1

∂λx1,r
= Ψx2Σ̇e1e2D

′
x1,MA,r,

∂Hx2x1

∂λx2,r
= Dx2,MA,rΣ̇e1e2Ψ

′
x1 ,

∂Hx2x2

∂λx2,r
=

[
Dx2,MA,rΣ̇e2e2Ψ

′
x2 +Ψx2Σ̇e2e2D

′
x2,MA,r

]
+Dx2,MA,rΣ̇

′
x∗2e2

+ Σ̇x∗2e2
D′
x2,MA,r,

∂Hx1x1

∂ρy,r
=

∂Hx2x1

∂ρy,r
=
∂Hx2x2

∂ρy,r
=
∂Hx2x2

∂ρx1,r
=
∂Hx1x1

∂ρx2,r
= 0,

∂Hx1x1

∂λy,r
=

∂Hx2x1

∂λy,r
=
∂Hx2x2

∂λy,r
=
∂Hx2x2

∂λx1,r
=
∂Hx1x1

∂λx2,r
= 0.
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F Jacobian for nonlinear least squares problem

We derive the Jacobian for nonlinear least squares criterion, which is used to compute the MD

estimators. First, let us consider the case where the weighting matrix does not depend on θ. In

this case, the objective function can be written as

QMD(θ) = r (θ)′ r (θ) (S.81)

where r (θ) = W
1/2
N (s̄N − hzz (θ)). Then, since the differential of r(θ) is given by dr (θ) =

−W
1/2
N dhzz (θ), the Jacobian is given by

J (θ) =
∂r (θ)

∂θ′
= −W

−1/2
N G (θ) .

Next, let us consider the objective function of the CUMD estimator. Below, we write Hzz(θ) as

H for simplicity except for the final expression. Note that the objective function of the CUMD

estimator can be written as

QCUMD (θ) = vec (SN −H)′
1

2

(
H−1 ⊗H−1

)
vec (SN −H) = r (θ)′ r (θ)

r (θ) =
1√
2

(
H−1/2 ⊗H−1/2

)
vec (SN −H)

=
1√
2
vec
[
H−1/2 (SN −H)H−1/2

]
=

1√
2
vec
[
H−1/2SNH

−1/2 − Ip

]
.

The differential of r(θ) is given by

dr (θ) =
1√
2
d vec

[
H−1/2SNH

−1/2
]

=
1√
2
vec
[(

dH−1/2
)
SNH

−1/2
]
+

1√
2
vec
[
H−1/2SN

(
dH−1/2

)]
=

1√
2

[
H−1/2SN ⊗ Ip

]
vec
(
dH−1/2

)
+

1√
2

[
Ip ⊗H−1/2SN

]
vec
(
dH−1/2

)
=

1√
2

{[
H−1/2SN ⊗ Ip

]
+
[
Ip ⊗H−1/2SN

]}
vec
(
dH−1/2

)
.

Let us derive the differential dH−1/2. Taking the differential of H−1/2H−1/2 = H−1 yields(
dH−1/2

)
H−1/2 +H−1/2

(
dH−1/2

)
= dH−1 = −H−1 (dH)H−1.

This is called the Sylvester equation. From this, we obtain[
H−1/2 ⊗ Ip

]
vec
(
dH−1/2

)
+
[
Ip ⊗H−1/2

]
vec
(
dH−1/2

)
= − vec

[
H−1 (dH)H−1

]
or37

vec
(
dH−1/2

)
= −

{[
H−1/2 ⊗ Ip

]
+
[
Ip ⊗H−1/2

]}−1 (
H−1 ⊗H−1

)
vec [(dH)] .

Hence, the differential can be written as

dr (θ) = − 1√
2

{[
H−1/2SN ⊗ Ip

]
+
[
Ip ⊗H−1/2SN

]}
37Note that this involves the Kronecker sum defined by A⊕B = A⊗ Im + In ⊗B where A and B are n× n

and m×m matrices, respectively.
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×
{[

H−1/2 ⊗ Ip

]
+
[
Ip ⊗H−1/2

]}−1 (
H−1 ⊗H−1

)
vec [(dH)]

and the Jacobian is given by

J (θ) =
∂r (θ)

∂θ′

=
1√
2

{[
H−1/2
zz (θ)SN ⊗ Ip

]
+
[
Ip ⊗H−1/2

zz (θ)SN

]}
×
{[

H−1/2
zz (θ)⊗ Ip

]
+
[
Ip ⊗H−1/2

zz (θ)
]}−1 (

H−1
zz (θ)⊗H−1

zz (θ)
)
G (θ) .

However, unfortunately, this expression is not computationally efficient since it involves a com-

putation of the inverse of p2×p2 matrix which can be huge for a large p. Therefore, we consider

an alternative expression that avoids the computation of p2 × p2 inverse matrix.

Consider the spectral decomposition of H
−1/2
zz (θ) given by H

−1/2
zz (θ) = PΛP′ where Λ is a

diagonal matrix whose diagonal components are eigenvalues of H
−1/2
zz (θ), and P is composed of

corresponding eigenvectors with P′P = Ip, which implies P′ = P−1. Then, we have[
H−1/2
zz (θ)⊗ Ip

]
+
[
Ip ⊗H−1/2

zz (θ)
]

=
[
PΛP′ ⊗ Ip

]
+
[
Ip ⊗PΛP′]

= (P⊗P) (Λ⊗ Ip + Ip ⊗Λ)
(
P′ ⊗P′)

and hence the inverse is given by{[
H−1/2
zz (θ)⊗ Ip

]
+
[
Ip ⊗H−1/2

zz (θ)
]}−1

= (P⊗P) (Λ⊗ Ip + Ip ⊗Λ)−1 (P′ ⊗P′) .
Although the middle matrix of the right-hand side is a p2 × p2 inverse matrix, the computation

is straightforward since it is a diagonal matrix. Consequently, the computationally efficient

expression of the Jacobian matrix is given by

J (θ) =
1√
2

{[
H−1/2
zz (θ)SNP⊗P

]
+
[
P⊗H−1/2

zz (θ)SNP
]}

× (Λ⊗ Ip + Ip ⊗Λ)−1 (P′H−1
zz (θ)⊗P′H−1

zz (θ)
)
G (θ) .
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G Additional simulation results

In this section, we provide further simulation results with additional two designs. However, for

completeness, we also include the simulation design used in the main body as Design I with

slight modification of notation.

G.1 Simulation Designs I and II

G.1.1 Data generating process

We consider the following two data generating processes:

(Design I): yit = µy,t + β1x
∗
1,it + γwit + ηi + ζit, (S.82)

(Design II): yit = µy,t + β1x
∗
1,it + β2x

∗
2,it + γwit + ηi + ζit (S.83)

where

x∗1,it = mx1,it + τx1ηi + κx1e1,it,

x∗2,it = ωx2x1mx1,it + ωx2x2mx2,it + τx2ηi + κx2e2,it,

wit = ωwx1mx1,it + ωwx2mw,it + τwηi.

We assume that the error term ζit follows AR(1) process:

ζit = ρy,1ζi,t−1 + vit, (t = 1, ..., T )

where vit is independent over i and t with E(vit) = 0 and V ar (vit) = σ2v,it, σ
2
v,it = ςiτt,

ςi ∼ U(0.5, 1.5), and τt = 0.5 + (t − 1)/(T − 1) so that T−1
∑T

t=1 τt = 1. Without loss of

generality, we set µy,t = 0. In Design I, there is a single mismeasured regressor while there are

two mis-measured regressors in Design II. Suppose that among the regressors, we cannot observe

x∗k,it, but can observe xk,it contaminated with measurement error ϵit

x1,it = x∗1,it + ϵ1,it,

x2,it = x∗2,it + ϵ2,it.

The serially correlated measurement errors ϵ1,it and ϵ2,it are generated according to ARMA(1,1)

and MA(2), respectively

ϵ1,it = ρx1,1ϵ1,it−1 + e1,it + λx1,1e1,i,t−1, (t = 2, ..., T )

ϵ2,it = e2,it + λx2,1e2,i,t−1 + λx2,2e2,i,t−2

with ϵ1,i0 = 0 and ϵ2,i0 = ϵ2,i,−1 = 0. e1,it and e2,it are jointly generated as[
e1,it
e2,it

]
∼ iid

([
0

0

]
,

[
σe1e1 σe1e2
σe1e2 σe2e2

])

where we set σe1e2 = ϖ (σe1e1 + σe2e2). Although time series homoskedasticity is assumed for

e1,it and e2,it for simplicity in DGP, we estimate them as if they are heteroskedastic.

Note that this specification allows the case where the true x∗k,it and the measurement error

ϵk,it are correlated, which is controlled by κxk , for each k.
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We assume that mj,it is generated as

mj,it = ϕjmj,i,t−1 + rj,it, (t = 2, ..., T ; j = x1, x2, w)

with mj,i0 = 0 and rj,it ∼ iid(0, σ2r,j), (j = x1, x2, w). For simplicity, we assume σ2r,1 = σ2r,2 =

σ2r,w = σ2r .

For parameter values, we set (β1, γ) = (1, 0.5) for Design I and (β1, β2, γ) = (1, 1.5, 0.5) for

Design II. Other parameters are set as ρy,1 = 0.8, (ρx1,1, λx1,1) = (0.4, 0.2), (λx2,1, λx2,2) =

(0.2, 0.2), ϕx1 = 0.8, ϕw = 0.4, ϕx2 = 0.2, τx1 = τx2 = τw = 0.3, κx1 = κx2 = κ =

{0, 0.3, 0.6, 0.9}, ωx2x1 =
√

1/5, ωx2x2 =
√

4/5, ωwx1 =
√
1/5, ωwx2 =

√
4/5 and ϖ = 0.2.

SNR is set at 5.

For the sample size, we consider T = {5, 10, 15} and N = {250, 500, 1000, 1500} and the

number of replications is 1,000. Significance level is set at 5%.

In the following, we first provide an explicit formula of Hzz,i(θ) and then provide formula to

determine the values of σ2η, σ
2
r , σe1e1 , σe2e2 and σe1e2 .

To derive the form of Hzz,i(θ), we rewrite the model in a vector form as follows

yi = µ+ β1x
∗
1,i + β2x

∗
2,i + γwi + ηiιT + ζi,

x∗
1,i = hx1,i + τx1ηiιT + κx1e1,it,

x∗
2,i = ωx2x1hx1,i + ωx2x2hx2,i + τx2ηiιT + κx2e2,it,

wi = ωwx1hx1,i + ωwx2hw,i + τwηiιT

where hj,i = Ajrj,i, (j = x1, x2, w), ζi = Ψyvi with Ψy = Ψy,MA, ϵ1,it = Ψx1e1,it with Ψx1 =

Ψ−1
x1,AR

Ψx1,MA, ϵ2,it = Ψx2e2,it with Ψx2 = Ψx2,MA and

Aj = A (ϕj) =


1 0

−ϕj 1
. . .

. . .

0 −ϕj 1


−1

.

Then, we have

yi = µ+ (β1 + ωx2x1β2 + ωwx1γ)Ax1rx1,i + ωx2x2β2Ax2rx2,i + ωwx2γAwrw,i

+β1κx1e1,it + β2κx2e2,it + (1 + τx1β1 + τx2β2 + τwγ) ηiιT +Ψyvi,

εi = ηiιT +Ψyvi − β1Ψx1e1,it − β2Ψx2e2,it,

x∗
1,i = Ax1rx1,i + τx1ηiιT + κx1e1,it,

x∗
2,i = ωx2x1Ax1rx1,i + ωx2x2Ax2rx2,i + τx2ηiιT + κx2e2,it,

x1,i = Ax1rx1,i + τx1ηiιT + (Ψx1 + κx1IT ) e1,i,

x2,i = ωx2x1Ax1rx1,i + ωx2x2Ax2rx2,i + τx2ηiιT + (Ψx2 + κx2IT ) e2,i,

wi = ωwx1Ax1rx1,i + ωwx2Awrw,i + τwηiιT .

Using these expressions, we can derive the following variances and covariances:

V ar (yi) = Hyy,i = σ2r,x1 (β1 + ωx2x1β2 + ωwx1γ)
2Ax1A

′
x1 + σ2r,x2 (ωx2x2β2)

2Ax2A
′
x2

+σ2r,w (ωwx2γ)
2AwA

′
w + β21κ

2
x1Σe1e1 + β22κ

2
x2Σe2e2 + 2β1β2κx1κx2Σe1e2
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+σ2η (1 + τx1β1 + τx2β2 + τwγ)
2 ιT ι

′
T +ΨyΣvv,iΨ

′
y,

V ar (εi) = Σεε,i = σ2ηιT ι
′
T +ΨyΣvv,iΨ

′
y + β21Ψx1Σe1e1Ψ

′
x1 + β22Ψx2Σe2e2Ψ

′
x2

+β1β2
(
Ψx1Σe1e2Ψ

′
x2 +Ψx2Σe2e1Ψ

′
x1

)
,

V ar
(
x∗
1,i

)
= σ2r,x1Ax1A

′
x1 + τ2x1σ

2
ηιT ι

′
T + κ2x1Σe1e1 ,

V ar
(
x∗
2,i

)
= σ2r,x1ω

2
x2x1Ax1A

′
x1 + σ2r,x2ω

2
x2x2Ax2A

′
x2 + τ2x2σ

2
ηιT ι

′
T + κ2x2Σe2e2 ,

V ar (x1,i) = Σx1x1 = σ2r,x1Ax1A
′
x1 + τ2x1σ

2
ηιT ι

′
T + (Ψx1 + κx1IT )Σe1e1 (Ψx1 + κx1IT )

′ ,

V ar (x2,i) = Σx2x2 = σ2r,x1ω
2
x2x1Ax1A

′
x1 + σ2r,x2ω

2
x2x2Ax2A

′
x2 + τ2x2σ

2
ηιT ι

′
T ,

+(Ψx2 + κx2IT )Σe2e2 (Ψx2 + κx2IT )
′

V ar (wi) = Σww = σ2r,x1ω
2
wx1Ax1A

′
x1 + σ2r,wω

2
wx2AwA

′
w + τ2wσ

2
ηιT ι

′
T .

Cov (x2,i,x1,i) = Σx2x1 = σ2r,x1ωx2x1Ax1A
′
x1 + τx1τx2σ

2
ηιT ι

′
T + (Ψx1 + κx1IT )Σe1e2 (Ψx2 + κx2IT )

′ ,

Cov (wi,x1,i) = Σwx1 = σ2r,x1ωwx1Ax1A
′
x1 + τx1τwσ

2
ηιT ι

′
T ,

Cov (wi,x2,i) = Σwx2 = σ2r,x1ωx2x1ωwx1Ax1A
′
x1 + τx2τwσ

2
ηιT ι

′
T ,

Cov (x1,i, εi) = Σx1ε = τx1σ
2
ηιT ι

′
T − β1 (Ψx1 + κx1IT )Σe1e1Ψ

′
x1 − β2 (Ψx1 + κx1IT )Σe1e2Ψ

′
x2 ,

Cov (x2,i, εi) = Σx2ε = τx2σ
2
ηιT ι

′
T − β1 (Ψx2 + κx2IT )Σe1e2Ψ

′
x1 − β2 (Ψx2 + κx2IT )Σe2e2Ψ

′
x2 ,

Cov (wi, εi) = Σwε = τwσ
2
ηιT ι

′
T .

From this, we obtain

Hzz,i(θ) = B−1Σuu,iB
′−1 (S.84)

where

Σuu,i =



 Σεε,i ∗ ∗
Σx1ε Σx1x1 ∗
Σwε Σwx1 Σww

 for Design I


Σεε,i ∗ ∗
Σx1ε Σx1x1 ∗ ∗
Σx2ε Σx2x1 Σx2x2 ∗
Σwε Σwx1 Σwx2 Σww

 for Design II

. (S.85)

Next, to derive the formula to compute the variances, assume that

1
T tr [V ar (ϵk,i)]

1
T tr

[
V ar

(
x∗
k,i

)] = ck.

Note that ck denotes the relative magnitude of the variance of the measurement error to that of

true regressor. We set c1 = c2 = 0.3. Then, after some algebra, we obtain

σe1e1 =
c1
(
σ2r,x1

1
T tr

[
Ax1A

′
x1

]
+ τ2x1σ

2
η

)
1
T tr

[
Ψx1Ψ

′
x1

]
− c1κ2x1

,

σe2e2 =
c2
(
σ2r,x1ω

2
x2x1

1
T tr

[
Ax1A

′
x1

]
+ σ2r,x2ω

2
x2x2

1
T tr

[
Ax2A

′
x2

]
+ τ2x2σ

2
η

)
1
T tr

[
Ψx2Ψ

′
x2

]
− c2κ2x2

.

We set σe1e2 = ϖ (σe1e1 + σe2e2) where ϖ = 0.2.
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For simplicity, to derive the formula of σ2r and σ2η, we assume that Σvv,i = Σvv for all i. The

average of variance of yit is given by

1

T

T∑
t=1

V ar (yit) = q1σ
2
r,x1 + q2σ

2
r,x2 + qwσ

2
r,w + qησ

2
η +

1

T
tr
(
ΨyΣvv,iΨ

′
y

)
where

q1 =
1

T
tr
(
Ax1A

′
x1

) [
(β1 + ωx2x1β2 + ωwx1γ)

2 +
c1β1κx1 (β1κx1 + 2β2κx2ϖ)

1
T tr

[
Ψx1Ψ

′
x1

]
− c1κ2x1

,

+
ω2
x2x1c2β2κx2 (β2κx2 + 2β1κx1ϖ)

1
T tr

[
Ψx2Ψ

′
x2

]
− c2κ2x2

]
,

q2 =
1

T
tr
(
Ax2A

′
x2

) [
(ωx2x2β2)

2 +
ω2
x2x2c2β2κx2 (β2κx2 + 2β1κx1ϖ)

1
T tr

[
Ψx2Ψ

′
x2

]
− c2κ2x2

]
,

qw = (ωwx2γ)
2 1

T
tr
(
AwA

′
w

)
,

qη =
c1τ

2
x1β1κx1 (β1κx1 + 2β2κx2ϖ)
1
T tr

[
Ψx1Ψ

′
x1

]
− c1κ2x1

+
c2τ

2
x2β2κx2 (β2κx2 + 2β1κx1ϖ)
1
T tr

[
Ψx2Ψ

′
x2

]
− c2κ2x2

+ (1 + β1τx1 + β2τx2 + γτw)
2 .

If we assume that σ2r,x1 = σ2r,x2 = σ2r,w = σ2r , we obtain

1

T
tr [V ar (yi)] = (q1 + q2 + qw)σ

2
r + qησ

2
η +

1

T
tr
(
ΨyΣvv,iΨ

′
y

)
.

Using this, SNR is defined as

SNR =
1
NT

∑
i

∑
t [V ar (yit|ηi)− V ar (ζit)]
1
NT

∑
i

∑
t V ar (ζit)

=
1
T

∑
t [V ar (yit|ηi)− V ar (ζit)]

1
T

∑
t V ar (ζit)

=
1
T tr [V ar (yi|ηi)]− 1

T tr
(
ΨyσvvΨ

′
y

)
1
T tr

(
ΨyΣvvΨ

′
y

) =
(q1 + q2 + qw)σ

2
r

1
T tr

(
ΨyΣvvΨ

′
y

)
from which we have

σ2r =
SNR× 1

T tr
(
ΨyΣvvΨ

′
y

)
(q1 + q2 + qw)

. (S.86)

We set SNR = 5 and also let

σ2η =
1

qη

1

T
tr
(
ΨyΣvvΨ

′
y

)
.

G.1.2 Results

Estimation and inference Tables S.1, S.2, and S.3 provide the simulation results of Design

I. Tables S.1, S.2 provide the results for various values of κ. From the tables, we find that the

results are very similar regardless the value of κ. Table S.3 provides the detailed results for the

case of balanced panel data. Comparing this with that of unbalanced panel data provided in

the main body, we find that the results are qualitatively similar.
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Tables S.4–S.13 provide the simulation results of Design II. From Tables S.4 and S.5, we

find that the CUMD estimator has little bias and reasonably small dispersion for all con-

figurations. Regarding inference, the empirical sizes are close to 5% in most cases. A few

exceptions are the cases with (K,T,N) = (2, 15, 250) for balanced panel and (K,T,N) =

(2, 10, 250), (2, 15, 250), (2, 15, 500) for unbalanced panel. In these case, the dimension of the

variable is relatively large compared to the sample size. However, as N gets larger, the empiri-

cal sizes get close to 5% in all cases.

Subsequently, we investigate the performance for the remaining parameters which are pro-

vided in Tables S.6 and S.7. To save space, we only report the result with T = 10 and N = 500

with κ = 0.3. From the tables, we find that the main parameter of interest, β1, β2, and γ are

estimated very precisely; the bias is relatively small and the empirical sizes are close to 5% for

most parameters. However, we find that σx∗1ϵ1,t, σx∗2ϵ2,t and σe1e2,t are somewhat biased with

some size distortions. This is due to the correlation between measurement errors in x1,it and

x2,it, controlled by ϖ. In the current DGP, we set ϖ = 0.2. However, unreported simulation

results reveal that if we let ϖ = 0, the bias of those parameters disappear and inference is

accurate. However they become more biased and inference becomes more inaccurate if we use

a larger ϖ, say, ϖ = 0.4. Hence, it is conjectured that the correlation between two measure-

ment errors makes the identification of these parameters challenging. Fortunately, this does not

affect the performance of main parameters of interest, β1, β2, and γ as shown in Tables S.4

and S.5. Therefore, we need to be careful when investigating σx∗1ϵ1,t, σx∗2ϵ2,t and σe1e2,t with two

mis-measured regressors.

Test for classical measurement error In Tables S.8–S.12, the size and power of the Wald

for the hypothesis H0 : σ⋆x∗kϵk
= 0 against H0 : σ⋆x∗kϵk

̸= 0 where σ⋆x∗kϵk
= (σx∗kϵk,1, ..., σx

∗
kϵk,T−1)

′

for k = 1, 2 and those of t test for the hypothesis H0 : σx∗kϵk,t = 0 against H0 : σx∗kϵk,t ̸= 0 for

each t = 1, ..., T − 1 for k = 1, 2. We consider κ = κx1 = κx2 = {0, 0.3, 0.6, 0.9}. Note that the

case with κ = 0 corresponds to the size and the case with κ = {0.3, 0.6, 0.9} corresponds to the

power.

From the tables, we find that, although the Wald test has correct empirical sizes when T = 5,

it is slightly size distorted when T = 10 and N = 250. However, it improves as N gets larger.

Regarding the power, the Wald test becomes more powerful as N and/or κ increase as expected.

Meanwhile, regarding the t test, we find that the t test has the correct empirical size for all the

configurations and the power of the t test increases as N and/or κ increase(s) as expected. For

the effects of the number of mismeasured regressors, we find that the test becomes less powerful

if K is increased from K = 1 to K = 2. However, the test is still reasonably powerful even in

such a case.

Test for no structural break To investigate the performance of the size and power of the

Wald test for a structural break, we consider the following data generating process

yit =

{
µy,t +

∑K
k=1 β

[1]
k x

∗
k,it + γ[1]wit + ηi + ζit, t = 1, ..., Tb

µy,t +
∑K

k=1 β
[2]
k x

∗
k,it + γ[2]wit + ηi + ζit, t = Tb + 1, ..., T

where K = 1 for Design I and K = 2 for Design II. We set Tb as the integer part of T/2.

For parameter values of the first period t = 1, ..., Tb, we set δ[1] = (β
[1]
1 , γ[1])′ = (1.00, 0.50) for
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K = 1 and δ[1] = (β
[1]
1 , β

[1]
2 , γ[1])′ = (1.00, 1.50, 0.50) for K = 2. For the parameter value of the

second period, t = Tb + 1, ..., T , we set δ[2] = δ[1] + ∆ × ιK with ∆ = {0.00, 0.05, 0.10}. Note

that the case with ∆ = 0.00 corresponds to the case with no structural break. We consider

this case to investigate the size property of the Wald test for structural break. The case with

∆ = {0.05, 0.10} corresponds to the case with a structural break. These cases are considered to

investigate the power property of the Wald test. We also set κ = 0.3.

The simulation results of the Wald test for a structural break for Design II are provided

in Table S.13. The table shows that the empirical size is close to the nominal level except for

T = 15 and N = 250, 500. Note that a similar size distortion problem is also observed in the

estimation of β1, β2 and γ in these cases(Table S.5). Regarding the power, the test is reasonably

powerful when N is larger than 500 and the power increases as N and/or T and/or ∆ increase(s)

as expected.

G.2 Simulation Design III

G.2.1 Data generating process

As the third simulation design, we consider the data generating process used in Erickson and

Whited (2012), which is given by

yit = µ+ βx∗it + γwit + ζit,

xit = x∗it + ϵit

where

x∗it = µx + σx1 x̃
∗
it,

wit = µw + σww̃it,[
x̃∗it
w̃it

]
=

[
σxx σxw
σxw σww

][ √
1− ρ2xx̆

∗
it√

1− ρ2ww̆it

]
,

x̆∗it = ρxx̆
∗
i,t−1 + r̃it, w̆it = ρww̆i,t−1 + s̃it,

ζit = σζ
√

1− ρ2v ζ̃it, ζ̃it = ρv ζ̃i,t−1 + ṽit,

ϵit = σϵ
√

1− ρ2ϵ ϵ̃it, ϵ̃it = ρϵϵ̃i,t−1 + ẽit,

ṽit = (vit − avbv)/
√
avb2v, ẽit = (eit − aebe)/

√
aeb2e, r̃it = (rit − arbr)/

√
arb2r , s̃it = (sit −

asbs)/
√
asb2s, vit ∼ iidGam(av, bv), eit ∼ iidGam(ae, be), rit ∼ iidGam(ar, br), and sit ∼

iidGam(as, bs) with Gam(a, b) being the gamma distribution with shape parameter a and the

scale parameter b. For the generation of AR processes, following Erickson and Whited (2012), we

generate T +10 periods and discard the first ten periods to reduce the effect of initial conditions.

This DGP is more restrictive than that of Design I in that (i) the idiosyncratic term ζit is

homoskedastic, (ii) measurement error is classical in the sense that x∗it and ϵit are uncorrelated,

and (iii)the fixed effects are not included. Note that configurations (ii) and (iii) are considered

somewhat restrictive since we obtain empirical results that measurement error is correlated with

the true regressor and that the presence of fixed effects is not rejected.

Erickson and Whited (2012) choose the parameter values carefully so that the simulated data

has higher moments that are close to the real data. Specifically, following Erickson and Whited

(2012), we set β = 0.02, γ = 0.05, (av, ae, ar, as) = (0.25, 0.023, 0.027, 0.8) and (bv, be, br, bs) =
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(1, 1, 1, 1). For other parameters, we set µy = 0.129, µx = 2.28, µw = 0.18, σxx = 0.978,

σxw = 0.209, σww = 0.978, ρx = 0.72, ρw = 0.46. For the value of ρv and ρϵ, we consider

(ρv, ρϵ) = (0.5, 0.5). For the computation of ση and σϵ, see Erickson and Whited (2012). For

the sample size, we consider T = {5, 10, 15}, N = {250, 500, 1000, 1500}. Following Erickson

and Whited (2012), the median bias (Bias), interquartile range (IQR), and median absolute

error (MAE), multiplied by 100, based on 1000 replications, are reported. The nominal size

is set to be 5% and the probability concentration that the estimate is within 20% of the true

value(Pr(|δ̂− δ|/δ ≤ 0.2) where δ denotes β or γ, is also reported. We report the results for the

cumulant estimator due to Erickson, Jiang and Whited (2014). Specifically, we consider third

or fourth-order cumulants estimator for data in levels or after within-group transformation,

thus considering four variants of the cumulant estimator. The cumulant estimator with third

and fourth-order cumulants for data in levels are denoted as “C3” and “C4,” respectively, and

those with data after within-group transformation are denoted as “C3-WG” and “C4-WG,”

respectively. Note that the performance of C3-WG and C4-WG will not be affected even if fixed

effects are included in DGP, which is not the case for C3 and C4.

G.2.2 Results

Simulation results are provided in Table S.14. From the table, we find that the CUMD estimator

for β and γ has little bias, and inference is accurate for all cases but has a large dispersion, making

MAE larger. Furthermore, we find that probability concentration improves as T gets larger.

Regarding the cumulant estimators, we find that the C3 and C4 tend to perform (sometimes

substantially) better than C3-WG and C4 FE in terms of bias, IQR, MAE, and probability

concentration and that C3 and C3-WG tend to perform better than C4 and C4-WG. The

former is because the within-group transformation removes data variation. We also find that

the performance for β and γ is very different, i.e., the performance of γ is much worse than that

of β in terms of bias, IQR, and accuracy of inference.

Let us compare the performance of CUMD, C3, and C3-WG. First, with regard to β, from

the table, we find that the CUMD outperforms C3 and C3-WG in terms of bias in all cases.

However, in terms of IQR, MAE, and probability concentration, C3 outperforms CUMD in

many cases. Furthermore, although C3 has a higher probability concentration than CUMD

when T = 5, the difference becomes negligible when T is increased to T = 15. The relative

performance between CUMD and C3-WG depends on T . When T = 5, the C3-WG tends to

outperform the CUMD in terms of IQR, MAE, and probability concentration. However, when

T = 10, the performance of CUMD and C3-WG is comparable, and when T = 15, the CUMD

tends to outperform C3-WG in many cases.

Subsequently, regarding γ, we find that the C3 and C3-WG are substantially biased, and

inference is (sometimes very) inaccurate. Hence, the cumulant estimators for γ are unreliable and

cannot be recommended in practice, although C3 has a smaller MAE than CUMD. Furthermore,

in many cases, C3-WG has a larger MAE than CUMD.

In summary, in the current somewhat restrictive simulation design, we find that C3 tends to

perform best and that the performance of CUMD and C3-WG is comparable.
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H Additional empirical results

In Tables S.15, S.16, S.17, estimation results omitted in the main body are provided.
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Table S.1: Simulation results for Design I (K = 1)
Balanced panel

β1 = 1 γ = 0.5

T N κ Mean SD RMSE Size Mean SD RMSE Size

5 250 0 1.028 0.148 0.151 8.8 0.491 0.064 0.065 6.7
5 250 0.3 1.034 0.141 0.145 7.9 0.486 0.064 0.066 6.2
5 250 0.6 1.036 0.137 0.142 6.1 0.485 0.063 0.065 4.5
5 250 0.9 1.031 0.127 0.131 6.4 0.489 0.065 0.066 5.6

5 500 0 1.013 0.119 0.120 7.4 0.494 0.051 0.051 6.9
5 500 0.3 1.019 0.116 0.118 6.9 0.494 0.049 0.049 5.4
5 500 0.6 1.028 0.113 0.117 6.1 0.490 0.049 0.050 5.4
5 500 0.9 1.025 0.109 0.111 5.7 0.492 0.048 0.049 4.7

5 1000 0 1.014 0.099 0.100 6.5 0.495 0.041 0.042 6.2
5 1000 0.3 1.018 0.094 0.096 6.5 0.493 0.040 0.041 5.2
5 1000 0.6 1.024 0.098 0.100 6.7 0.491 0.041 0.042 6.5
5 1000 0.9 1.024 0.097 0.100 7.8 0.491 0.041 0.042 6.3

5 1500 0 1.010 0.084 0.085 6.9 0.496 0.035 0.035 6.3
5 1500 0.3 1.015 0.088 0.089 6.1 0.494 0.036 0.037 5.7
5 1500 0.6 1.013 0.080 0.081 5.4 0.495 0.034 0.035 5.2
5 1500 0.9 1.020 0.085 0.088 6.1 0.493 0.036 0.036 5.9

10 250 0 1.014 0.071 0.073 5.9 0.495 0.037 0.037 6.1
10 250 0.3 1.016 0.068 0.069 5.6 0.493 0.034 0.035 6.2
10 250 0.6 1.021 0.063 0.066 4.9 0.493 0.033 0.033 4.7
10 250 0.9 1.017 0.064 0.066 6.1 0.493 0.034 0.035 5.2

10 500 0 1.009 0.063 0.064 5.8 0.498 0.029 0.029 5.4
10 500 0.3 1.016 0.061 0.063 6.2 0.493 0.029 0.029 5.3
10 500 0.6 1.013 0.056 0.058 6.0 0.494 0.028 0.028 6.3
10 500 0.9 1.016 0.055 0.057 6.1 0.494 0.027 0.028 4.7

10 1000 0 1.005 0.050 0.050 4.7 0.498 0.023 0.023 5.8
10 1000 0.3 1.009 0.049 0.050 5.4 0.497 0.022 0.023 5.4
10 1000 0.6 1.009 0.047 0.048 4.8 0.498 0.022 0.022 5.4
10 1000 0.9 1.012 0.049 0.050 6.7 0.495 0.022 0.023 5.6

10 1500 0 1.009 0.045 0.046 4.6 0.497 0.020 0.020 5.6
10 1500 0.3 1.006 0.044 0.044 6.4 0.498 0.020 0.020 7.2
10 1500 0.6 1.010 0.043 0.044 6.1 0.497 0.020 0.020 6.1
10 1500 0.9 1.009 0.041 0.042 5.0 0.497 0.019 0.019 4.5

15 250 0 1.007 0.046 0.046 4.8 0.498 0.025 0.025 4.4
15 250 0.3 1.010 0.043 0.044 4.9 0.496 0.025 0.025 4.4
15 250 0.6 1.012 0.043 0.045 5.5 0.496 0.024 0.025 4.0
15 250 0.9 1.016 0.042 0.045 6.5 0.493 0.025 0.026 4.9

15 500 0 1.008 0.044 0.044 5.1 0.496 0.021 0.022 4.9
15 500 0.3 1.009 0.043 0.044 5.7 0.498 0.021 0.021 5.6
15 500 0.6 1.009 0.040 0.041 6.4 0.496 0.021 0.021 4.9
15 500 0.9 1.013 0.038 0.041 5.2 0.495 0.020 0.021 4.2

15 1000 0 1.005 0.036 0.036 4.8 0.498 0.017 0.017 4.0
15 1000 0.3 1.008 0.034 0.035 4.9 0.497 0.016 0.016 3.9
15 1000 0.6 1.008 0.035 0.035 6.1 0.497 0.016 0.016 4.9
15 1000 0.9 1.011 0.033 0.035 6.1 0.496 0.018 0.018 6.4

15 1500 0 1.003 0.031 0.031 4.8 0.499 0.014 0.014 4.7
15 1500 0.3 1.004 0.030 0.030 5.1 0.499 0.014 0.014 5.0
15 1500 0.6 1.006 0.030 0.031 5.9 0.498 0.014 0.014 4.8
15 1500 0.9 1.008 0.029 0.030 4.7 0.497 0.014 0.015 5.0
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Table S.2: Simulation results for Design I (K = 1)
Unbalanced panel

β1 = 1 γ = 0.5

T N κ Mean StDev RMSE Size Mean StDev RMSE Size

5 250 0 1.025 0.144 0.146 8.4 0.489 0.064 0.064 6.0
5 250 0.3 1.030 0.131 0.134 6.5 0.488 0.060 0.061 5.4
5 250 0.6 1.037 0.142 0.147 7.1 0.486 0.067 0.068 5.1
5 250 0.9 1.040 0.131 0.136 7.0 0.483 0.064 0.067 5.1

5 500 0 1.021 0.125 0.126 6.7 0.491 0.053 0.054 6.9
5 500 0.3 1.024 0.123 0.125 6.7 0.490 0.055 0.056 6.2
5 500 0.6 1.034 0.118 0.122 5.9 0.488 0.051 0.053 5.2
5 500 0.9 1.038 0.117 0.123 5.2 0.485 0.053 0.055 5.3

5 1000 0 1.015 0.101 0.102 7.7 0.494 0.042 0.042 6.5
5 1000 0.3 1.017 0.100 0.101 6.4 0.493 0.040 0.041 4.9
5 1000 0.6 1.018 0.093 0.095 5.8 0.493 0.040 0.041 5.2
5 1000 0.9 1.027 0.098 0.102 7.2 0.490 0.043 0.044 6.2

5 1500 0 1.008 0.093 0.093 7.3 0.497 0.037 0.038 6.9
5 1500 0.3 1.015 0.092 0.094 6.7 0.494 0.038 0.038 5.6
5 1500 0.6 1.021 0.093 0.095 8.6 0.493 0.038 0.039 7.3
5 1500 0.9 1.022 0.083 0.086 6.4 0.492 0.035 0.036 5.9

10 250 0 1.019 0.072 0.075 5.5 0.493 0.037 0.038 3.2
10 250 0.3 1.019 0.071 0.073 4.0 0.493 0.036 0.037 3.6
10 250 0.6 1.019 0.063 0.066 3.6 0.493 0.036 0.036 3.4
10 250 0.9 1.021 0.063 0.066 5.4 0.493 0.035 0.035 3.1

10 500 0 1.008 0.065 0.065 5.2 0.497 0.030 0.031 5.8
10 500 0.3 1.017 0.064 0.066 5.7 0.494 0.030 0.031 5.6
10 500 0.6 1.018 0.060 0.063 6.0 0.495 0.029 0.030 4.9
10 500 0.9 1.019 0.059 0.062 5.2 0.493 0.029 0.030 4.4

10 1000 0 1.008 0.054 0.055 5.3 0.497 0.025 0.025 5.8
10 1000 0.3 1.009 0.055 0.055 6.0 0.497 0.025 0.025 5.8
10 1000 0.6 1.012 0.050 0.051 5.3 0.495 0.024 0.024 5.0
10 1000 0.9 1.015 0.050 0.052 5.5 0.494 0.023 0.024 5.2

10 1500 0 1.005 0.047 0.048 4.6 0.498 0.021 0.021 6.0
10 1500 0.3 1.009 0.046 0.047 4.1 0.497 0.021 0.022 4.9
10 1500 0.6 1.012 0.045 0.047 5.4 0.495 0.021 0.021 5.6
10 1500 0.9 1.013 0.045 0.047 5.5 0.496 0.021 0.021 4.4

15 250 0 1.009 0.037 0.038 0.2 0.497 0.023 0.023 0.1
15 250 0.3 1.011 0.038 0.039 0.4 0.496 0.024 0.024 0.3
15 250 0.6 1.011 0.035 0.037 0.3 0.496 0.022 0.022 0.1
15 250 0.9 1.013 0.033 0.035 0.1 0.496 0.023 0.024 0.0

15 500 0 1.009 0.045 0.046 3.9 0.497 0.023 0.023 2.8
15 500 0.3 1.009 0.043 0.044 2.9 0.496 0.023 0.023 3.4
15 500 0.6 1.012 0.044 0.045 5.1 0.495 0.023 0.024 3.9
15 500 0.9 1.015 0.043 0.046 4.9 0.494 0.023 0.024 4.1

15 1000 0 1.005 0.039 0.039 5.0 0.498 0.018 0.019 4.6
15 1000 0.3 1.009 0.040 0.041 5.8 0.496 0.020 0.020 6.4
15 1000 0.6 1.011 0.039 0.040 6.1 0.496 0.020 0.020 7.0
15 1000 0.9 1.012 0.037 0.039 5.9 0.495 0.019 0.019 4.4

15 1500 0 1.006 0.036 0.037 4.8 0.497 0.017 0.017 5.4
15 1500 0.3 1.008 0.035 0.036 4.1 0.497 0.016 0.017 5.5
15 1500 0.6 1.009 0.033 0.034 5.1 0.496 0.016 0.017 4.3
15 1500 0.9 1.011 0.033 0.035 3.8 0.496 0.017 0.017 5.4
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Table S.3: Detailed simulation results for Design I (K = 1, T = 10, N = 500, κ = 0.3)
Balanced panel data

Parameter True Mean SD RMSE Size Parameter True Mean SD RMSE Size

β1 1.00 1.016 0.061 0.063 6.2 σx∗
1ϵ1,1

0.45 0.434 0.267 0.267 8.1

γ 0.50 0.493 0.029 0.029 5.3 σx∗
1ϵ1,2

0.45 0.441 0.202 0.202 7.9

ρy,1 0.80 0.802 0.041 0.041 6.8 σx∗
1ϵ1,3

0.45 0.442 0.203 0.203 7.2

ρx1,1 0.40 0.394 0.071 0.072 8.3 σx∗
1ϵ1,4

0.45 0.440 0.208 0.208 5.6

λx1,1 0.20 0.202 0.065 0.065 8.9 σx∗
1ϵ1,5

0.45 0.440 0.224 0.224 7.4

σ2
η 1.01 1.009 0.259 0.259 3.8 σx∗

1ϵ1,6
0.45 0.449 0.231 0.231 6.7

σ2
v,1 0.50 0.467 0.488 0.488 7.9 σx∗

1ϵ1,7
0.45 0.446 0.238 0.238 6.2

σ2
v,2 0.61 0.581 0.261 0.262 7.6 σx∗

1ϵ1,8
0.45 0.453 0.252 0.252 6.1

σ2
v,3 0.72 0.688 0.263 0.266 9.4 σx∗

1ϵ1,9
0.45 0.453 0.285 0.285 7.0

σ2
v,4 0.83 0.797 0.263 0.265 7.4

σ2
v,5 0.94 0.908 0.295 0.297 9.3 σwη,1 0.30 0.302 0.143 0.143 4.6

σ2
v,6 1.06 1.032 0.305 0.306 8.2 σwη,2 0.30 0.286 0.168 0.169 6.0

σ2
v,7 1.17 1.120 0.318 0.321 6.4 σwη,3 0.30 0.288 0.177 0.177 6.6

σ2
v,8 1.28 1.249 0.322 0.323 6.4 σwη,4 0.30 0.290 0.182 0.182 5.7

σ2
v,9 1.39 1.367 0.360 0.361 6.5 σwη,5 0.30 0.279 0.180 0.182 6.0

σwη,6 0.30 0.287 0.180 0.181 5.0
σx∗

1η,1
0.30 0.298 0.226 0.226 6.8 σwη,7 0.30 0.283 0.182 0.183 5.3

σx∗
1η,2

0.30 0.291 0.263 0.263 6.6 σwη,8 0.30 0.288 0.183 0.184 6.1

σx∗
1η,3

0.30 0.282 0.277 0.278 6.2 σwη,9 0.30 0.290 0.182 0.183 5.8

σx∗
1η,4

0.30 0.280 0.281 0.282 5.5 σwη,10 0.30 0.289 0.184 0.184 4.9

σx∗
1η,5

0.30 0.277 0.281 0.282 4.6 σ2
e1,1 1.49 1.521 0.389 0.390 8.2

σx∗
1η,6

0.30 0.281 0.285 0.286 5.7 σ2
e1,2 1.49 1.514 0.317 0.319 6.5

σx∗
1η,7

0.30 0.288 0.281 0.281 4.9 σ2
e1,3 1.49 1.507 0.329 0.330 6.6

σx∗
1η,8

0.30 0.280 0.288 0.289 4.8 σ2
e1,4 1.49 1.518 0.338 0.339 6.6

σx∗
1η,9

0.30 0.275 0.286 0.288 5.8 σ2
e1,5 1.49 1.513 0.359 0.360 8.0

σx∗
1η,10

0.30 0.268 0.287 0.289 5.4 σ2
e1,6 1.49 1.516 0.346 0.347 6.3

σ2
e1,7 1.49 1.526 0.366 0.368 6.9

σ2
e1,8 1.49 1.507 0.387 0.388 7.3

σ2
e1,9 1.49 1.493 0.391 0.391 5.4
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Table S.4: Simulation results for Design II (K = 2)
Balanced panel

β1 = 1 β2 = 1.5 γ = 0.5

T N κ Mean SD RMSE Size Mean SD RMSE Size Mean SD RMSE Size

5 250 0 1.003 0.232 0.231 5.3 1.507 0.240 0.240 6.6 0.50 0.10 0.10 4.8
5 250 0.3 1.010 0.232 0.232 6.5 1.527 0.235 0.236 7.1 0.49 0.10 0.10 5.2
5 250 0.6 1.000 0.216 0.216 6.2 1.542 0.237 0.241 6.4 0.50 0.10 0.10 5.6
5 250 0.9 1.001 0.211 0.211 6.5 1.550 0.236 0.242 6.6 0.49 0.11 0.11 3.6

5 500 0 1.010 0.218 0.218 7.6 1.502 0.234 0.234 7.7 0.49 0.09 0.09 6.1
5 500 0.3 1.018 0.209 0.209 7.2 1.500 0.229 0.229 7.3 0.49 0.09 0.09 5.8
5 500 0.6 0.989 0.210 0.210 9.8 1.526 0.234 0.235 8.0 0.50 0.09 0.09 6.2
5 500 0.9 0.996 0.198 0.198 6.8 1.554 0.231 0.237 7.0 0.49 0.09 0.09 5.1

5 1000 0 1.030 0.185 0.187 6.3 1.482 0.218 0.219 7.7 0.49 0.07 0.07 6.2
5 1000 0.3 1.003 0.191 0.191 7.8 1.498 0.200 0.200 6.1 0.50 0.07 0.07 7.6
5 1000 0.6 1.010 0.178 0.179 6.0 1.510 0.194 0.195 7.0 0.49 0.07 0.07 6.7
5 1000 0.9 1.003 0.177 0.177 5.7 1.535 0.208 0.211 7.1 0.49 0.07 0.07 4.6

5 1500 0 1.019 0.169 0.170 5.6 1.488 0.205 0.205 7.7 0.50 0.06 0.06 6.3
5 1500 0.3 1.003 0.164 0.164 5.9 1.499 0.187 0.187 6.2 0.50 0.06 0.06 4.8
5 1500 0.6 1.002 0.162 0.162 6.4 1.501 0.179 0.179 6.6 0.50 0.06 0.06 6.3
5 1500 0.9 1.005 0.161 0.161 6.0 1.528 0.183 0.185 6.2 0.49 0.07 0.07 7.3

10 250 0 0.999 0.098 0.098 4.0 1.509 0.104 0.105 4.6 0.50 0.06 0.06 4.6
10 250 0.3 0.997 0.089 0.089 4.4 1.512 0.101 0.102 4.9 0.50 0.05 0.05 4.2
10 250 0.6 0.999 0.082 0.082 3.6 1.518 0.091 0.093 3.5 0.50 0.05 0.05 3.9
10 250 0.9 0.995 0.072 0.072 3.6 1.518 0.083 0.085 3.4 0.50 0.05 0.05 2.4

10 500 0 1.007 0.104 0.105 5.7 1.501 0.105 0.105 4.0 0.50 0.05 0.05 5.3
10 500 0.3 1.003 0.095 0.095 5.5 1.508 0.101 0.101 5.4 0.50 0.05 0.05 5.6
10 500 0.6 0.993 0.091 0.091 6.1 1.517 0.099 0.101 6.4 0.50 0.04 0.04 4.4
10 500 0.9 0.996 0.079 0.079 4.7 1.516 0.093 0.094 5.1 0.50 0.05 0.05 3.7

10 1000 0 1.003 0.086 0.086 6.1 1.502 0.096 0.096 6.2 0.50 0.04 0.04 5.5
10 1000 0.3 1.005 0.085 0.085 5.5 1.505 0.094 0.094 5.1 0.50 0.04 0.04 5.4
10 1000 0.6 0.999 0.081 0.081 5.6 1.511 0.089 0.090 5.6 0.50 0.04 0.04 4.8
10 1000 0.9 0.996 0.078 0.078 5.6 1.516 0.086 0.087 4.7 0.50 0.04 0.04 4.3

10 1500 0 1.004 0.078 0.078 5.0 1.503 0.090 0.090 5.3 0.50 0.03 0.03 4.2
10 1500 0.3 1.000 0.078 0.078 5.6 1.506 0.086 0.086 4.9 0.50 0.03 0.03 5.5
10 1500 0.6 1.006 0.072 0.072 5.2 1.500 0.082 0.082 5.7 0.50 0.03 0.03 4.9
10 1500 0.9 0.998 0.069 0.069 4.1 1.513 0.084 0.085 5.7 0.50 0.03 0.03 4.1

15 250 0 1.001 0.056 0.056 1.3 1.504 0.059 0.059 2.1 0.50 0.04 0.04 1.6
15 250 0.3 0.998 0.052 0.052 1.7 1.509 0.053 0.054 1.5 0.50 0.03 0.03 2.7
15 250 0.6 0.998 0.047 0.047 1.4 1.511 0.052 0.053 2.4 0.50 0.03 0.03 1.3
15 250 0.9 0.998 0.039 0.039 1.5 1.510 0.043 0.044 1.0 0.50 0.03 0.03 1.3

15 500 0 1.001 0.066 0.066 5.0 1.505 0.071 0.071 4.8 0.50 0.03 0.03 4.6
15 500 0.3 0.999 0.065 0.065 4.2 1.509 0.066 0.067 4.3 0.50 0.03 0.03 4.8
15 500 0.6 0.998 0.057 0.057 4.4 1.512 0.065 0.066 5.2 0.50 0.03 0.03 3.3
15 500 0.9 0.995 0.053 0.053 4.7 1.519 0.058 0.061 3.5 0.50 0.03 0.03 3.4

15 1000 0 1.006 0.059 0.059 5.3 1.498 0.069 0.069 4.4 0.50 0.03 0.03 3.9
15 1000 0.3 1.003 0.056 0.056 3.9 1.503 0.063 0.063 4.8 0.50 0.03 0.03 5.6
15 1000 0.6 0.999 0.052 0.052 4.5 1.506 0.062 0.062 4.8 0.50 0.03 0.03 5.2
15 1000 0.9 0.998 0.050 0.050 5.0 1.513 0.057 0.058 4.1 0.50 0.03 0.03 4.7

15 1500 0 1.004 0.053 0.053 5.0 1.501 0.064 0.064 5.5 0.50 0.02 0.02 3.7
15 1500 0.3 1.005 0.052 0.052 4.9 1.498 0.060 0.060 5.4 0.50 0.02 0.02 4.6
15 1500 0.6 1.002 0.049 0.049 5.1 1.505 0.057 0.057 4.5 0.50 0.02 0.02 4.5
15 1500 0.9 0.999 0.047 0.047 5.1 1.511 0.055 0.056 5.1 0.50 0.02 0.02 3.9
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Table S.5: Simulation results for Design II (K = 2)
Unbalanced panel

β1 = 1 β2 = 1.5 γ = 0.5

T N κ Mean StDev RMSE Size Mean StDev RMSE Size Mean StDev RMSE Size

5 250 0 1.009 0.245 0.245 7.3 1.520 0.246 0.247 6.5 0.490 0.110 0.110 5.1
5 250 0.3 1.012 0.237 0.237 6.8 1.507 0.236 0.236 7.2 0.498 0.108 0.108 5.4
5 250 0.6 0.997 0.213 0.213 6.0 1.543 0.223 0.227 4.8 0.494 0.104 0.104 4.2
5 250 0.9 0.998 0.197 0.197 6.0 1.547 0.241 0.245 6.6 0.491 0.104 0.105 4.1

5 500 0 1.014 0.226 0.226 5.8 1.514 0.235 0.235 7.7 0.490 0.094 0.095 7.1
5 500 0.3 1.002 0.220 0.220 6.6 1.522 0.235 0.236 6.7 0.494 0.095 0.095 5.8
5 500 0.6 1.014 0.200 0.200 5.8 1.531 0.225 0.227 6.0 0.492 0.087 0.088 5.2
5 500 0.9 0.990 0.201 0.201 6.6 1.554 0.240 0.246 6.7 0.492 0.090 0.090 4.0

5 1000 0 1.021 0.195 0.196 7.1 1.486 0.220 0.221 7.1 0.494 0.076 0.077 5.0
5 1000 0.3 1.019 0.185 0.186 7.3 1.492 0.200 0.200 7.6 0.494 0.074 0.074 5.8
5 1000 0.6 1.010 0.190 0.190 7.9 1.517 0.210 0.210 7.7 0.491 0.076 0.076 5.7
5 1000 0.9 1.008 0.182 0.183 6.6 1.531 0.201 0.203 6.6 0.490 0.079 0.079 5.7

5 1500 0 1.018 0.176 0.176 5.9 1.489 0.202 0.202 7.3 0.495 0.065 0.066 5.9
5 1500 0.3 1.008 0.174 0.174 6.3 1.500 0.204 0.204 7.7 0.498 0.065 0.065 6.4
5 1500 0.6 1.007 0.169 0.169 5.7 1.504 0.203 0.203 8.9 0.496 0.066 0.066 5.9
5 1500 0.9 0.996 0.163 0.163 5.8 1.526 0.200 0.202 7.4 0.498 0.065 0.065 5.7

10 250 0 1.004 0.095 0.095 1.3 1.509 0.091 0.092 0.9 0.495 0.054 0.054 0.9
10 250 0.3 0.999 0.080 0.080 0.8 1.509 0.085 0.085 0.9 0.498 0.051 0.051 0.7
10 250 0.6 0.998 0.076 0.076 1.1 1.512 0.081 0.082 0.8 0.500 0.052 0.052 1.4
10 250 0.9 1.000 0.065 0.065 1.0 1.520 0.070 0.073 0.3 0.497 0.050 0.050 1.0

10 500 0 1.005 0.105 0.105 4.7 1.504 0.112 0.112 5.9 0.496 0.051 0.051 4.1
10 500 0.3 1.000 0.097 0.097 5.3 1.515 0.103 0.104 4.2 0.495 0.048 0.048 3.8
10 500 0.6 0.998 0.088 0.088 4.8 1.520 0.097 0.099 4.4 0.496 0.048 0.048 3.7
10 500 0.9 0.994 0.079 0.079 5.2 1.521 0.091 0.093 3.3 0.499 0.048 0.048 3.8

10 1000 0 1.009 0.088 0.089 4.5 1.501 0.101 0.101 5.1 0.497 0.040 0.040 5.3
10 1000 0.3 1.001 0.088 0.088 5.2 1.508 0.095 0.096 6.0 0.498 0.041 0.041 5.2
10 1000 0.6 0.996 0.085 0.085 6.4 1.516 0.093 0.094 4.3 0.498 0.039 0.039 3.8
10 1000 0.9 0.996 0.078 0.078 5.0 1.523 0.090 0.093 4.8 0.497 0.041 0.041 3.9

10 1500 0 1.001 0.085 0.085 5.5 1.502 0.095 0.095 5.4 0.500 0.036 0.036 4.8
10 1500 0.3 0.999 0.084 0.084 5.3 1.507 0.090 0.091 4.5 0.499 0.036 0.036 4.1
10 1500 0.6 1.000 0.081 0.081 6.0 1.512 0.086 0.087 5.2 0.497 0.036 0.036 5.0
10 1500 0.9 1.000 0.074 0.074 5.7 1.519 0.085 0.087 4.2 0.497 0.036 0.036 4.0

15 250 0 1.000 0.025 0.025 0.0 1.504 0.027 0.027 0.0 0.499 0.019 0.019 0.0
15 250 0.3 1.000 0.020 0.020 0.0 1.503 0.023 0.023 0.0 0.499 0.017 0.017 0.0
15 250 0.6 0.999 0.019 0.019 0.0 1.503 0.021 0.021 0.0 0.500 0.018 0.018 0.0
15 250 0.9 1.000 0.016 0.016 0.0 1.502 0.018 0.018 0.0 0.499 0.017 0.017 0.0

15 500 0 1.000 0.062 0.062 1.0 1.503 0.066 0.066 0.5 0.499 0.036 0.036 0.8
15 500 0.3 0.999 0.058 0.058 0.5 1.508 0.063 0.063 0.8 0.498 0.034 0.034 0.7
15 500 0.6 1.000 0.053 0.052 0.7 1.510 0.057 0.057 0.9 0.495 0.033 0.033 0.7
15 500 0.9 0.997 0.044 0.044 0.5 1.516 0.054 0.057 0.5 0.498 0.034 0.034 0.6

15 1000 0 1.005 0.062 0.062 3.5 1.504 0.073 0.073 4.9 0.497 0.031 0.031 4.6
15 1000 0.3 1.000 0.063 0.063 4.9 1.509 0.066 0.066 4.7 0.497 0.031 0.031 3.7
15 1000 0.6 1.000 0.057 0.057 5.8 1.512 0.063 0.064 4.9 0.498 0.031 0.031 4.1
15 1000 0.9 0.998 0.051 0.051 3.6 1.516 0.059 0.061 3.8 0.498 0.030 0.030 3.4

15 1500 0 1.004 0.063 0.063 6.2 1.504 0.068 0.069 4.7 0.498 0.028 0.028 5.1
15 1500 0.3 1.003 0.059 0.059 5.3 1.506 0.064 0.064 4.2 0.497 0.028 0.029 5.0
15 1500 0.6 1.003 0.053 0.053 5.1 1.506 0.059 0.060 5.2 0.497 0.027 0.027 5.0
15 1500 0.9 0.998 0.050 0.050 4.6 1.514 0.056 0.058 4.1 0.498 0.027 0.027 3.5
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Table S.6: Detailed simulation results for Design II (K = 2, T = 10, N = 500, κ = 0.3)
Balanced panel data

Parameter True Mean SD RMSE Size Parameter True Mean SD RMSE Size

β1 1.00 1.003 0.095 0.095 5.5 σx∗
2ϵ2,1

0.12 0.159 0.126 0.132 7.5

β2 1.50 1.508 0.101 0.101 5.4 σx∗
2ϵ2,2

0.12 0.157 0.116 0.122 7.8

γ 0.50 0.498 0.047 0.047 5.6 σx∗
2ϵ2,3

0.12 0.160 0.120 0.127 8.7

ρy,1 0.80 0.801 0.048 0.048 6.9 σx∗
2ϵ2,4

0.12 0.159 0.124 0.130 9.5

ρx1,1 0.40 0.394 0.085 0.085 8.2 σx∗
2ϵ2,5

0.12 0.161 0.129 0.135 8.2

λx1,1 0.20 0.203 0.106 0.106 8.8 σx∗
2ϵ2,6

0.12 0.158 0.130 0.136 7.5

λx2,1 0.20 0.195 0.055 0.056 8.9 σx∗
2ϵ2,7

0.12 0.162 0.132 0.139 9.3

λx2,2 0.20 0.199 0.041 0.041 7.7 σx∗
2ϵ2,8

0.12 0.156 0.142 0.147 7.9

σ2
η 0.59 0.568 0.294 0.295 3.0 σx∗

2ϵ2,9
0.12 0.160 0.144 0.150 7.0

σ2
v,1 0.50 0.519 0.465 0.465 7.4

σ2
v,2 0.61 0.601 0.268 0.268 7.0 σwη,1 0.18 0.171 0.081 0.081 4.9

σ2
v,3 0.72 0.723 0.291 0.291 9.3 σwη,2 0.18 0.167 0.087 0.087 4.6

σ2
v,4 0.83 0.815 0.294 0.295 8.7 σwη,3 0.18 0.168 0.092 0.093 5.2

σ2
v,5 0.94 0.943 0.318 0.318 8.8 σwη,4 0.18 0.175 0.095 0.095 5.2

σ2
v,6 1.06 1.057 0.330 0.330 7.6 σwη,5 0.18 0.175 0.099 0.099 4.5

σ2
v,7 1.17 1.142 0.347 0.348 8.5 σwη,6 0.18 0.171 0.101 0.101 5.0

σ2
v,8 1.28 1.267 0.381 0.381 9.4 σwη,7 0.18 0.176 0.097 0.097 3.9

σ2
v,9 1.39 1.371 0.401 0.402 8.4 σwη,8 0.18 0.175 0.099 0.099 5.3

σwη,9 0.18 0.175 0.100 0.100 4.6
σx∗

1η,1
0.18 0.170 0.124 0.125 4.9 σwη,10 0.18 0.173 0.098 0.098 4.6

σx∗
1η,2

0.18 0.174 0.149 0.149 5.4 σ2
e1,1 0.53 0.478 0.373 0.377 8.3

σx∗
1η,3

0.18 0.174 0.145 0.145 3.9 σ2
e1,2 0.53 0.484 0.382 0.385 10.4

σx∗
1η,4

0.18 0.179 0.151 0.151 4.5 σ2
e1,3 0.53 0.475 0.386 0.389 11.2

σx∗
1η,5

0.18 0.180 0.155 0.155 5.0 σ2
e1,4 0.53 0.473 0.392 0.396 11.0

σx∗
1η,6

0.18 0.177 0.156 0.156 3.7 σ2
e1,5 0.53 0.475 0.396 0.399 10.4

σx∗
1η,7

0.18 0.180 0.154 0.154 5.2 σ2
e1,6 0.53 0.468 0.378 0.383 9.2

σx∗
1η,8

0.18 0.179 0.158 0.158 4.4 σ2
e1,7 0.53 0.494 0.368 0.369 7.2

σx∗
1η,9

0.18 0.174 0.157 0.157 5.1 σ2
e1,8 0.53 0.474 0.399 0.403 9.0

σx∗
1η,10

0.18 0.177 0.153 0.153 5.4 σ2
e1,9 0.53 0.487 0.450 0.452 8.2

σx∗
1ϵ1,1

0.16 0.224 0.236 0.245 7.9 σ2
e2,1 0.39 0.359 0.148 0.152 8.3

σx∗
1ϵ1,2

0.16 0.237 0.214 0.228 10.1 σ2
e2,2 0.39 0.355 0.147 0.152 10.0

σx∗
1ϵ1,3

0.16 0.243 0.213 0.229 8.9 σ2
e2,3 0.39 0.352 0.151 0.157 9.3

σx∗
1ϵ1,4

0.16 0.236 0.228 0.240 10.7 σ2
e2,4 0.39 0.354 0.154 0.159 8.3

σx∗
1ϵ1,5

0.16 0.238 0.230 0.243 9.4 σ2
e2,5 0.39 0.345 0.155 0.162 8.3

σx∗
1ϵ1,6

0.16 0.241 0.224 0.239 9.6 σ2
e2,6 0.39 0.353 0.160 0.165 8.4

σx∗
1ϵ1,7

0.16 0.232 0.222 0.233 7.5 σ2
e2,7 0.39 0.353 0.165 0.170 8.8

σx∗
1ϵ1,8

0.16 0.239 0.238 0.251 9.5 σ2
e2,8 0.39 0.359 0.171 0.175 8.0

σx∗
1ϵ1,9

0.16 0.243 0.249 0.263 8.7 σ2
e2,9 0.39 0.354 0.183 0.187 5.8

σe1e2,1 0.18 0.230 0.164 0.170 9.7
σx∗

2η,1
0.18 0.170 0.110 0.110 4.2 σe1e2,2 0.18 0.238 0.174 0.182 10.6

σx∗
2η,2

0.18 0.172 0.106 0.106 3.6 σe1e2,3 0.18 0.237 0.177 0.184 11.8

σx∗
2η,3

0.18 0.173 0.102 0.102 3.4 σe1e2,4 0.18 0.241 0.173 0.182 12.2

σx∗
2η,4

0.18 0.177 0.105 0.105 5.8 σe1e2,5 0.18 0.241 0.179 0.188 12.4

σx∗
2η,5

0.18 0.177 0.108 0.108 4.7 σe1e2,6 0.18 0.241 0.174 0.182 10.0

σx∗
2η,6

0.18 0.174 0.106 0.106 5.3 σe1e2,7 0.18 0.232 0.170 0.176 8.6

σx∗
2η,7

0.18 0.173 0.110 0.110 5.8 σe1e2,8 0.18 0.238 0.174 0.182 9.8

σx∗
2η,8

0.18 0.180 0.102 0.102 3.8 σe1e2,9 0.18 0.234 0.207 0.213 10.0

σx∗
2η,9

0.18 0.178 0.109 0.109 5.4

σx∗
2η,10

0.18 0.172 0.108 0.108 5.7
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Table S.7: Detailed simulation results for Design II (K = 2, T = 10, N = 500, κ = 0.3)
Unbalanced panel data

Parameter True Mean SD RMSE Size Parameter True Mean SD RMSE Size

β1 1.00 1.000 0.097 0.097 5.3 σx∗
2ϵ2,1

0.12 0.162 0.131 0.138 8.9

β2 1.50 1.515 0.103 0.104 4.2 σx∗
2ϵ2,2

0.12 0.162 0.120 0.128 9.2

γ 0.50 0.495 0.048 0.048 3.8 σx∗
2ϵ2,3

0.12 0.161 0.124 0.131 7.7

ρy,1 0.80 0.801 0.055 0.055 6.8 σx∗
2ϵ2,4

0.12 0.159 0.127 0.134 7.7

ρ1,1 0.40 0.392 0.094 0.094 7.1 σx∗
2ϵ2,5

0.12 0.163 0.141 0.148 8.9

λx1,1 0.20 0.207 0.113 0.113 7.2 σx∗
2ϵ2,6

0.12 0.157 0.139 0.144 5.7

λx2,1 0.20 0.191 0.057 0.057 6.5 σx∗
2ϵ2,7

0.12 0.157 0.152 0.157 7.3

λx2,2 0.20 0.200 0.044 0.044 6.8 σx∗
2ϵ2,8

0.12 0.162 0.164 0.170 7.9

σ2
η 0.59 0.558 0.453 0.454 4.0 σx∗

2ϵ2,9
0.12 0.155 0.176 0.179 4.8

σ2
v,1 0.50 0.529 0.600 0.600 6.7

σ2
v,2 0.61 0.614 0.284 0.284 6.4 σwη,1 0.18 0.176 0.077 0.077 3.8

σ2
v,3 0.72 0.724 0.291 0.291 8.4 σwη,2 0.18 0.175 0.089 0.089 3.9

σ2
v,4 0.83 0.842 0.302 0.302 7.5 σwη,3 0.18 0.169 0.095 0.095 3.8

σ2
v,5 0.94 0.937 0.339 0.338 7.1 σwη,4 0.18 0.172 0.101 0.101 4.3

σ2
v,6 1.06 1.037 0.361 0.361 7.6 σwη,5 0.18 0.172 0.103 0.103 5.2

σ2
v,7 1.17 1.156 0.406 0.406 8.5 σwη,6 0.18 0.173 0.106 0.106 4.7

σ2
v,8 1.28 1.283 0.418 0.418 7.4 σwη,7 0.18 0.172 0.105 0.105 4.7

σ2
v,9 1.39 1.362 0.462 0.463 8.4 σwη,8 0.18 0.172 0.111 0.111 5.6

σwη,9 0.18 0.177 0.113 0.113 6.1
σx∗

1η,1
0.18 0.172 0.131 0.132 5.5 σwη,10 0.18 0.171 0.115 0.115 4.5

σx∗
1η,2

0.18 0.174 0.156 0.156 4.8 σ2
e1,1

0.53 0.467 0.409 0.413 8.7

σx∗
1η,3

0.18 0.171 0.156 0.156 4.6 σ2
e1,2

0.53 0.472 0.385 0.390 11.1

σx∗
1η,4

0.18 0.166 0.160 0.161 4.7 σ2
e1,3

0.53 0.472 0.392 0.396 10.3

σx∗
1η,5

0.18 0.176 0.162 0.162 4.0 σ2
e1,4

0.53 0.459 0.403 0.409 11.3

σx∗
1η,6

0.18 0.175 0.165 0.164 3.8 σ2
e1,5

0.53 0.486 0.428 0.430 9.4

σx∗
1η,7

0.18 0.178 0.164 0.164 4.3 σ2
e1,6

0.53 0.455 0.435 0.441 10.7

σx∗
1η,8

0.18 0.174 0.171 0.171 3.7 σ2
e1,7

0.53 0.451 0.471 0.478 11.3

σx∗
1η,9

0.18 0.176 0.180 0.180 4.9 σ2
e1,8

0.53 0.482 0.457 0.459 8.3

σx∗
1η,10

0.18 0.174 0.178 0.178 4.3 σ2
e1,9

0.53 0.482 0.528 0.530 8.7

σx∗
1ϵ1,1

0.16 0.227 0.250 0.259 7.4 σ2
e2,1

0.39 0.355 0.146 0.151 7.9

σx∗
1ϵ1,2

0.16 0.246 0.223 0.239 10.7 σ2
e2,2

0.39 0.355 0.153 0.157 10.3

σx∗
1ϵ1,3

0.16 0.252 0.235 0.253 11.8 σ2
e2,3

0.39 0.357 0.156 0.161 7.4

σx∗
1ϵ1,4

0.16 0.243 0.231 0.246 9.7 σ2
e2,4

0.39 0.347 0.160 0.166 8.7

σx∗
1ϵ1,5

0.16 0.231 0.258 0.268 9.9 σ2
e2,5

0.39 0.355 0.167 0.172 7.4

σx∗
1ϵ1,6

0.16 0.250 0.255 0.270 10.5 σ2
e2,6

0.39 0.355 0.182 0.186 8.3

σx∗
1ϵ1,7

0.16 0.253 0.255 0.271 9.1 σ2
e2,7

0.39 0.354 0.193 0.197 9.0

σx∗
1ϵ1,8

0.16 0.232 0.270 0.280 9.0 σ2
e2,8

0.39 0.356 0.201 0.204 7.3

σx∗
1ϵ1,9

0.16 0.239 0.297 0.307 7.9 σ2
e2,9

0.39 0.349 0.222 0.226 5.8

σe1e2,1 0.18 0.228 0.172 0.178 9.0
σx∗

2η,1
0.18 0.173 0.118 0.118 4.8 σe1e2,2 0.18 0.237 0.172 0.180 11.3

σx∗
2η,2

0.18 0.170 0.111 0.111 5.3 σe1e2,3 0.18 0.236 0.176 0.183 10.0

σx∗
2η,3

0.18 0.173 0.112 0.112 5.5 σe1e2,4 0.18 0.244 0.185 0.194 12.4

σx∗
2η,4

0.18 0.171 0.112 0.112 6.1 σe1e2,5 0.18 0.244 0.190 0.199 10.5

σx∗
2η,5

0.18 0.172 0.113 0.114 4.6 σe1e2,6 0.18 0.246 0.198 0.207 11.3

σx∗
2η,6

0.18 0.176 0.116 0.116 4.7 σe1e2,7 0.18 0.243 0.214 0.222 11.8

σx∗
2η,7

0.18 0.180 0.115 0.115 3.5 σe1e2,8 0.18 0.236 0.210 0.216 10.0

σx∗
2η,8

0.18 0.178 0.124 0.124 4.4 σe1e2,9 0.18 0.244 0.244 0.251 9.0

σx∗
2η,9

0.18 0.174 0.125 0.125 4.5

σx∗
2η,10

0.18 0.174 0.129 0.129 4.3
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Table S.8: Size and power of t and Wald tests for testing classical measurement error for Design
I (K = 1)

Balanced panel data

Wald t test for H0 : σx∗
1ϵ1,t

= 0, (t = 1, 2, ..., T − 1)

T N κ σx∗
1ϵ1

1 2 3 4 5 6 7 8 9

5 250 0 7.7 7.8 6.0 6.6 5.2
5 250 0.3 43.5 18.2 32.0 25.0 16.7
5 250 0.6 93.3 39.1 78.2 66.8 54.0
5 250 0.9 99.5 58.7 95.4 91.9 83.7

5 500 0 6.6 7.3 5.8 7.0 5.7
5 500 0.3 64.3 21.1 50.7 39.9 29.2
5 500 0.6 99.6 52.5 94.7 89.0 80.3
5 500 0.9 100.0 79.0 99.7 99.2 96.9

5 1000 0 4.5 6.3 3.7 5.8 5.7
5 1000 0.3 89.6 35.5 74.3 62.9 47.9
5 1000 0.6 100.0 77.5 99.5 98.6 95.2
5 1000 0.9 100.0 96.0 99.9 99.9 99.9

5 1500 0 4.9 5.3 5.1 5.7 4.9
5 1500 0.3 98.3 47.3 87.9 80.0 66.8
5 1500 0.6 100.0 89.7 100.0 100.0 99.7
5 1500 0.9 100.0 99.2 100.0 100.0 100.0

10 250 0 12.1 8.5 6.9 9.9 7.5 8.1 8.7 8.1 7.6 7.8
10 250 0.3 89.4 30.0 48.6 47.8 45.9 40.2 40.0 36.9 33.3 28.7
10 250 0.6 100.0 75.2 92.9 91.3 88.4 87.9 85.2 82.5 81.0 70.0
10 250 0.9 100.0 93.7 99.7 99.7 98.8 99.1 98.2 97.6 96.5 93.7

10 500 0 8.0 7.1 7.4 5.0 5.6 7.5 7.7 6.8 7.0 6.8
10 500 0.3 99.4 45.9 72.3 68.1 63.0 58.4 58.5 53.6 51.8 43.9
10 500 0.6 100.0 93.1 99.8 99.2 99.4 98.2 97.4 96.1 95.6 91.1
10 500 0.9 100.0 99.6 100.0 100.0 100.0 100.0 100.0 99.9 100.0 99.9

10 1000 0 5.5 6.7 5.1 5.3 5.7 5.4 6.1 5.4 6.6 5.2
10 1000 0.3 100.0 72.4 92.5 89.2 88.1 83.1 81.8 77.5 74.8 67.5
10 1000 0.6 100.0 99.6 100.0 100.0 100.0 100.0 99.9 99.9 99.7 99.2
10 1000 0.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 1500 0 5.3 6.8 6.6 5.6 5.1 5.1 5.5 5.3 5.1 5.4
10 1500 0.3 100.0 84.9 98.9 97.2 96.3 93.7 92.5 89.3 86.7 80.7
10 1500 0.6 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 99.7
10 1500 0.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

S.57



Table S.9: Size and power of t and Wald tests for testing classical measurement error for Design
II (K = 2)

Balanced panel data

Wald t test for H0 : σx∗
1ϵ1,t

= 0, (t = 1, 2, ..., T − 1)

T N κ σx∗
1ϵ1

1 2 3 4 5 6 7 8 9

5 250 0 4.8 4.6 5.6 5.5 3.3
5 250 0.3 14.1 9.8 14.7 13.5 11.7
5 250 0.6 33.0 17.6 29.5 27.6 19.9
5 250 0.9 54.4 30.4 46.6 41.4 34.9

5 500 0 4.9 5.5 5.7 5.5 4.5
5 500 0.3 17.8 13.0 18.7 15.4 14.3
5 500 0.6 42.7 28.0 38.7 36.4 33.6
5 500 0.9 64.7 44.1 60.7 55.6 49.2

5 1000 0 3.9 4.1 6.1 4.9 5.1
5 1000 0.3 22.8 18.1 23.8 24.7 21.5
5 1000 0.6 56.5 38.8 57.0 55.1 45.4
5 1000 0.9 83.1 61.2 80.7 76.1 68.4

5 1500 0 5.9 8.1 7.3 7.2 6.9
5 1500 0.3 32.3 24.7 35.6 30.6 29.8
5 1500 0.6 68.5 52.4 70.3 66.4 60.5
5 1500 0.9 92.9 77.8 92.0 88.9 83.5

10 250 0 12.2 7.3 7.5 8.5 8.4 8.5 6.7 7.8 7.2 6.9
10 250 0.3 40.0 22.4 23.0 22.6 23.9 23.2 21.1 20.1 20.7 18.6
10 250 0.6 80.5 40.9 48.9 48.5 47.2 45.3 46.8 44.9 42.3 38.9
10 250 0.9 96.7 59.7 73.2 72.6 69.5 69.0 68.6 65.6 64.7 56.0

10 500 0 8.4 7.2 6.8 6.4 6.4 6.8 7.0 7.7 6.8 7.6
10 500 0.3 42.4 23.2 30.4 29.4 27.2 29.8 26.6 25.8 24.9 23.7
10 500 0.6 89.0 54.6 69.9 68.6 64.0 63.1 59.8 61.8 57.8 56.6
10 500 0.9 99.3 80.8 90.5 88.8 88.8 86.0 87.9 82.4 83.2 75.2

10 1000 0 5.9 8.2 7.1 5.9 6.6 7.0 6.9 6.7 7.1 5.0
10 1000 0.3 53.4 34.4 44.9 42.9 43.1 42.4 42.8 38.3 38.3 34.0
10 1000 0.6 96.0 76.2 86.3 87.1 85.1 83.5 81.6 82.1 80.0 74.2
10 1000 0.9 100.0 95.9 98.6 98.8 97.6 98.0 97.2 97.1 96.2 93.1

10 1500 0 5.9 5.6 6.9 6.3 5.8 5.9 5.8 6.4 5.8 5.2
10 1500 0.3 60.4 42.2 51.4 53.3 49.1 49.6 48.6 49.8 46.9 43.1
10 1500 0.6 99.4 88.5 94.9 93.9 94.9 93.4 93.6 91.5 89.9 87.1
10 1500 0.9 100.0 99.0 99.7 99.8 99.9 99.8 99.3 99.3 99.4 97.9

S.58



Table S.10: Size and power of t and Wald tests for testing classical measurement error for Design
II (K = 2)

balanced panel data

Wald t test for H0 : σx∗
2ϵ2,t

= 0, (t = 1, 2, ..., T − 1)

T N κ σx∗
2ϵ2

1 2 3 4 5 6 7 8 9

5 250 0 4.6 6.0 5.1 6.1 2.8
5 250 0.3 19.1 15.2 16.4 15.7 8.0
5 250 0.6 57.9 35.3 42.6 37.7 26.3
5 250 0.9 83.5 56.8 71.7 64.7 50.2

5 500 0 4.3 5.9 4.8 4.7 2.7
5 500 0.3 28.5 20.5 25.8 21.2 13.0
5 500 0.6 70.0 50.2 58.8 55.3 41.1
5 500 0.9 92.9 77.7 87.0 84.0 75.0

5 1000 0 5.5 5.3 4.3 5.1 4.3
5 1000 0.3 40.8 31.1 34.1 31.6 25.2
5 1000 0.6 84.5 66.7 76.3 73.6 63.5
5 1000 0.9 97.2 90.7 94.6 92.8 88.6

5 1500 0 6.3 6.6 5.3 5.7 3.7
5 1500 0.3 44.7 33.7 40.5 37.4 32.5
5 1500 0.6 90.9 77.8 85.5 81.9 77.3
5 1500 0.9 99.3 96.6 98.8 97.6 96.1

10 250 0 7.4 8.8 7.1 7.8 7.9 7.6 7.6 8.1 6.9 6.1
10 250 0.3 49.9 25.1 25.9 24.3 23.8 23.5 23.3 21.5 21.1 17.2
10 250 0.6 97.3 60.4 66.6 64.4 60.2 61.4 58.0 53.2 50.6 48.1
10 250 0.9 100.0 88.8 94.6 93.1 91.2 88.6 87.1 86.0 83.0 80.5

10 500 0 6.3 6.1 5.9 6.0 6.7 6.8 7.5 7.9 5.9 6.8
10 500 0.3 61.6 31.7 35.5 35.7 33.6 33.3 30.8 29.3 26.6 24.5
10 500 0.6 99.0 76.9 84.8 83.5 80.5 78.1 75.8 75.1 75.5 64.5
10 500 0.9 100.0 97.8 99.3 98.5 97.9 98.0 97.0 96.0 95.3 94.8
10 1000 0 4.9 6.4 5.6 5.2 5.4 6.6 7.1 5.8 6.7 4.8
10 1000 0.3 78.3 47.2 51.1 49.5 50.8 48.0 43.1 44.9 39.2 37.6
10 1000 0.6 99.9 93.9 95.8 96.7 95.3 94.3 94.0 92.4 90.0 86.9
10 1000 0.9 100.0 99.9 100.0 100.0 99.9 99.8 99.7 99.9 99.5 99.5

10 1500 0 5.0 5.3 5.4 7.3 5.1 5.3 6.0 4.7 5.8 4.0
10 1500 0.3 87.4 59.1 63.1 65.8 62.0 59.2 57.8 55.3 52.4 49.9
10 1500 0.6 100.0 98.5 98.8 98.3 98.1 97.5 97.4 97.0 94.6 94.1
10 1500 0.9 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 99.9 100.0

S.59



Table S.11: Size and power of t and Wald tests for testing nonclassical measurement errors for
Design II (K = 2)

Unbalanced panel data

Wald t test for H0 : σx∗
1ϵ1,t

= 0, (t = 1, 2, ..., T − 1)

T N κ σx∗
1ϵ1

1 2 3 4 5 6 7 8 9

5 250 0 3.2 3.3 4.7 5.0 4.0
5 250 0.3 13.2 11.3 14.5 12.9 9.1
5 250 0.6 31.7 20.4 29.0 25.7 20.8
5 250 0.9 52.0 28.8 44.6 42.4 34.3

5 500 0 3.3 5.2 4.9 3.6 3.6
5 500 0.3 20.2 14.4 18.9 16.5 13.1
5 500 0.6 41.7 25.1 40.8 38.0 30.1
5 500 0.9 63.7 40.2 60.1 54.9 47.5

5 1000 0 3.4 4.6 7.1 6.2 5.8
5 1000 0.3 22.2 16.0 25.9 21.1 19.3
5 1000 0.6 55.1 42.5 57.3 53.6 46.1
5 1000 0.9 81.2 60.0 78.4 75.4 67.7

5 1500 0 5.5 5.6 7.7 4.3 5.7
5 1500 0.3 28.6 19.5 30.3 27.1 22.9
5 1500 0.6 66.3 48.3 67.8 63.1 55.3
5 1500 0.9 87.5 71.3 86.7 84.3 77.7

10 250 0 4.8 4.2 3.6 3.7 4.5 4.1 2.8 3.1 3.4 2.9
10 250 0.3 18.4 10.6 12.4 12.9 11.5 11.8 10.6 10.1 7.6 6.9
10 250 0.6 49.7 22.5 30.3 31.8 28.2 23.2 21.9 22.0 18.9 15.2
10 250 0.9 73.5 38.0 49.9 46.4 42.9 42.2 36.4 36.8 29.8 23.0

10 500 0 7.9 7.7 7.1 8.3 6.0 7.6 6.7 7.0 7.0 4.9
10 500 0.3 40.4 21.7 29.3 29.3 26.3 24.4 25.7 23.3 19.6 18.8
10 500 0.6 81.8 51.5 64.2 61.3 60.7 52.6 50.6 51.4 48.3 43.8
10 500 0.9 97.0 72.8 85.6 86.5 81.4 78.2 76.0 73.4 68.2 63.8
10 1000 0 7.7 6.8 7.4 8.2 6.1 7.0 7.1 7.0 6.1 5.4
10 1000 0.3 48.4 33.5 41.1 40.5 39.2 35.7 35.8 35.2 31.9 28.1
10 1000 0.6 94.0 72.5 83.6 81.6 79.8 75.1 73.1 73.9 67.7 62.8
10 1000 0.9 99.4 92.6 97.5 97.0 96.0 94.7 91.9 91.2 91.1 84.6

10 1500 0 5.4 6.9 6.1 6.9 6.6 6.1 6.8 5.5 5.3 6.8
10 1500 0.3 55.3 40.0 53.3 47.9 43.5 43.7 40.9 39.5 37.4 34.7
10 1500 0.6 97.1 84.3 91.8 92.8 87.7 88.1 85.6 82.3 79.8 70.3
10 1500 0.9 100.0 98.0 99.4 99.1 98.9 98.9 97.9 97.2 96.1 92.6

S.60



Table S.12: Size and power of t and Wald tests for testing nonclassical measurement errors for
Design II (K = 2)

Unbalanced panel data

Wald t test for H0 : σx∗
2ϵ2,t

= 0, (t = 1, 2, ..., T − 1)

T N κ σx∗
2ϵ2

1 2 3 4 5 6 7 8 9

5 250 0 5.6 7.1 4.8 6.1 3.2
5 250 0.3 18.7 14.2 16.4 14.1 6.8
5 250 0.6 54.1 33.7 42.9 36.9 24.1
5 250 0.9 81.4 54.9 68.3 63.4 44.2

5 500 0 4.8 5.5 5.9 5.0 3.1
5 500 0.3 30.6 21.3 26.2 21.7 13.8
5 500 0.6 67.0 51.1 58.1 52.5 41.1
5 500 0.9 92.7 76.1 87.3 81.9 70.8

5 1000 0 6.1 5.5 4.5 7.4 3.9
5 1000 0.3 37.9 25.7 32.3 33.3 24.0
5 1000 0.6 82.8 63.4 75.5 68.8 59.5
5 1000 0.9 97.8 90.3 94.8 91.9 88.5

5 1500 0 6.0 5.6 6.2 6.1 4.2
5 1500 0.3 46.0 36.2 42.5 35.2 30.1
5 1500 0.6 86.8 75.7 83.4 78.7 71.8
5 1500 0.9 98.0 94.7 97.6 94.7 93.6

10 250 0 2.8 3.8 2.7 4.4 3.8 3.8 4.3 4.5 3.1 2.9
10 250 0.3 23.8 13.2 14.4 16.7 14.1 12.3 10.8 11.7 8.8 7.3
10 250 0.6 75.9 38.8 44.2 43.5 38.6 35.4 33.9 30.1 23.2 17.8
10 250 0.9 93.5 64.8 73.3 71.8 69.4 63.9 60.3 55.7 47.5 39.0

10 500 0 6.8 7.4 5.5 7.0 6.7 6.5 6.3 5.3 5.7 6.3
10 500 0.3 57.0 30.2 36.2 34.9 31.1 29.6 25.6 24.1 22.8 19.9
10 500 0.6 98.5 75.9 80.3 82.6 78.5 76.0 69.2 62.5 59.0 57.2
10 500 0.9 99.7 95.1 97.9 98.1 97.4 95.5 93.7 92.0 88.6 86.8

10 1000 0 4.0 5.2 5.5 5.9 5.6 5.4 4.2 5.0 6.2 3.7
10 1000 0.3 75.2 46.0 50.4 49.2 43.0 42.7 38.1 36.6 32.9 29.8
10 1000 0.6 99.8 92.8 96.5 95.3 93.9 90.9 89.0 85.9 82.8 77.4
10 1000 0.9 100.0 99.8 100.0 100.0 99.7 99.6 99.9 98.8 98.9 97.3

10 1500 0 4.5 5.0 5.7 5.8 5.9 5.5 6.0 5.6 6.9 6.1
10 1500 0.3 82.7 54.3 62.4 59.1 53.8 51.9 46.6 44.5 41.1 37.1
10 1500 0.6 99.9 97.0 98.3 98.0 97.1 95.9 94.7 94.9 89.7 87.4
10 1500 0.9 100.0 99.7 100.0 100.0 100.0 100.0 99.9 99.7 99.9 98.8

Table S.13: Size and power of Wald test for no structural break for Design II (K = 2)

balanced panel data unbalanced panel data

∆ = ∆ =
T N 0.00 0.05 0.10 0.00 0.05 0.10

10 250 5.1 18.9 60.0 1.2 5.4 27.4
10 500 6.3 33.9 89.3 5.1 27.4 79.4
10 1000 5.3 58.7 99.7 5.0 52.2 97.9
10 1500 5.6 77.4 100.0 5.1 65.4 99.4
15 250 1.7 15.9 79.6 0.0 0.0 0.9
15 500 5.6 43.9 97.3 0.8 11.1 57.3
15 1000 5.5 72.9 100.0 4.1 57.5 98.9
15 1500 4.3 88.0 100.0 5.5 74.8 99.9

S.61



Table S.14: Simulation results for Design III (Unbalanced panel)
β γ

CUMD C3 C4 C3-WG C4-WG CUMD C3 C4 C3-WG C4-WG

T = 5, N = 250

Bias (×100) -0.001 -0.169 -0.232 -0.288 -0.517 0.085 0.513 0.940 1.299 2.074
IQR (×100) 0.855 0.357 0.567 0.781 1.153 2.787 2.210 2.182 2.613 2.555
MAE (×100) 0.432 0.237 0.264 0.375 0.556 1.399 1.142 1.246 1.571 2.098
Size (%) 8.4 7.0 8.1 3.5 5.1 8.0 15.6 30.3 26.8 56.5
Pr(b(δ) < 0.20) 47.1 71.8 62.6 51.7 43.0 36.3 44.8 41.9 32.4 24.6

T = 5, N = 500

Bias (×100) 0.006 -0.102 -0.162 -0.201 -0.361 0.020 0.318 0.632 0.938 1.665
IQR (×100) 0.792 0.275 0.309 0.578 0.961 2.487 1.581 1.564 2.207 2.239
MAE (×100) 0.396 0.159 0.190 0.287 0.375 1.239 0.796 0.887 1.265 1.695
Size (%) 8.6 4.6 7.8 4.5 5.1 8.3 14.8 27.9 25.4 59.9
Pr(b(δ) < 0.20) 50.6 87.1 77.9 61.2 51.7 40.9 60.5 55.7 40.1 30.8

T = 5, N = 1000

Bias (×100) 0.024 -0.064 -0.107 -0.142 -0.216 -0.011 0.166 0.377 0.633 1.076
IQR (×100) 0.759 0.199 0.163 0.369 0.506 2.272 1.080 1.020 1.510 1.740
MAE (×100) 0.379 0.113 0.124 0.207 0.234 1.130 0.555 0.588 0.894 1.140
Size (%) 8.8 5.0 6.8 3.8 5.1 8.8 12.5 23.8 18.8 53.3
Pr(b(δ) < 0.20) 52.1 97.0 93.5 75.5 65.9 45.0 76.0 72.9 56.4 46.0

T = 5, N = 1500

Bias (×100) 0.017 -0.036 -0.083 -0.113 -0.143 -0.012 0.122 0.299 0.442 0.711
IQR (×100) 0.680 0.161 0.153 0.311 0.323 2.107 0.859 0.829 1.273 1.385
MAE (×100) 0.339 0.084 0.103 0.162 0.161 1.069 0.430 0.459 0.695 0.812
Size (%) 9.7 4.7 6.6 1.1 4.8 9.2 10.3 20.3 19.4 45.5
Pr(b(δ) < 0.20) 56.7 99.0 97.2 82.1 77.6 48.1 87.1 84.7 65.7 58.5

T = 10, N = 250

Bias (×100) -0.005 -0.151 -0.260 -0.227 -0.489 0.017 0.547 1.008 1.241 2.033
IQR (×100) 0.420 0.282 0.535 0.540 0.931 1.473 1.482 1.462 2.114 1.752
MAE (×100) 0.209 0.177 0.286 0.278 0.510 0.732 0.843 1.097 1.438 2.036
Size (%) 3.2 6.3 8.2 7.1 5.3 3.0 19.8 41.5 34.4 71.5
Pr(b(δ) < 0.20) 78.4 81.7 62.8 63.0 40.9 61.4 57.6 45.2 35.6 21.1

T = 10, N = 500

Bias (×100) -0.009 -0.108 -0.171 -0.185 -0.398 0.000 0.285 0.723 0.771 1.668
IQR (×100) 0.430 0.198 0.300 0.332 0.713 1.347 1.204 1.240 1.575 1.638
MAE (×100) 0.215 0.132 0.182 0.213 0.404 0.674 0.632 0.805 0.971 1.668
Size (%) 5.0 3.9 6.1 3.7 3.5 4.8 17.1 39.3 28.5 70.6
Pr(b(δ) < 0.20) 80.2 92.5 76.4 76.1 49.6 67.5 70.5 59.7 51.0 28.7

T = 10, N = 1000

Bias (×100) -0.005 -0.071 -0.112 -0.135 -0.241 0.015 0.180 0.391 0.589 1.230
IQR (×100) 0.390 0.144 0.145 0.234 0.448 1.261 0.854 0.838 0.993 1.273
MAE (×100) 0.197 0.089 0.121 0.156 0.251 0.632 0.451 0.494 0.682 1.238
Size (%) 5.7 3.6 6.9 2.9 5.7 6.4 16.7 31.6 23.6 70.1
Pr(b(δ) < 0.20) 82.2 99.0 92.1 87.8 65.7 72.5 86.0 80.7 68.8 39.3

T = 10, N = 1500

Bias (×100) -0.010 -0.052 -0.088 -0.101 -0.184 0.030 0.084 0.275 0.408 0.892
IQR (×100) 0.356 0.120 0.117 0.196 0.303 1.142 0.702 0.647 0.918 1.055
MAE (×100) 0.178 0.074 0.098 0.133 0.187 0.574 0.354 0.393 0.535 0.898
Size (%) 6.0 4.4 6.8 2.9 4.6 5.9 13.0 23.7 21.2 64.1
Pr(b(δ) < 0.20) 85.7 100.0 96.7 94.8 76.3 75.6 93.9 92.3 79.1 54.8

T = 15, N = 250

Bias (×100) -0.032 -0.161 -0.277 -0.223 -0.515 0.065 0.532 0.967 1.139 1.902
IQR (×100) 0.246 0.273 0.518 0.433 0.776 0.938 1.362 1.412 1.740 1.515
MAE (×100) 0.127 0.188 0.298 0.252 0.521 0.466 0.780 1.010 1.251 1.902
Size (%) 0.8 6.7 6.9 6.8 4.8 0.1 26.0 47.8 38.6 76.2
Pr(b(δ) < 0.20) 90.7 82.1 60.0 67.2 41.8 79.3 61.3 49.5 41.7 22.3

T = 15, N = 500

Bias (×100) -0.033 -0.117 -0.187 -0.168 -0.362 0.085 0.350 0.733 0.789 1.665
IQR (×100) 0.284 0.176 0.337 0.271 0.658 0.983 1.049 1.040 1.305 1.299
MAE (×100) 0.146 0.128 0.194 0.182 0.374 0.521 0.582 0.802 0.884 1.665
Size (%) 1.5 4.2 6.5 3.4 4.2 1.2 22.9 46.7 35.9 81.8
Pr(b(δ) < 0.20) 90.7 93.9 73.6 80.9 52.4 80.9 74.0 62.1 56.0 24.4

T = 15, N = 1000

Bias (×100) -0.022 -0.075 -0.119 -0.129 -0.253 0.033 0.186 0.447 0.483 1.239
IQR (×100) 0.250 0.126 0.152 0.189 0.389 0.863 0.752 0.705 0.841 1.030
MAE (×100) 0.121 0.088 0.124 0.142 0.256 0.434 0.374 0.504 0.566 1.239
Size (%) 2.6 3.4 6.5 3.4 4.2 2.4 18.8 37.2 28.5 78.6
Pr(b(δ) < 0.20) 94.0 98.9 89.6 92.9 67.5 88.2 89.4 84.6 75.5 39.6

T = 15, N = 1500

Bias (×100) -0.008 -0.063 -0.100 -0.102 -0.190 0.029 0.132 0.353 0.459 1.025
IQR (×100) 0.250 0.112 0.114 0.151 0.280 0.810 0.584 0.575 0.754 0.860
MAE (×100) 0.125 0.076 0.104 0.111 0.200 0.416 0.326 0.393 0.512 1.025
Size (%) 3.8 3.9 5.4 2.3 5.3 3.6 14.4 34.4 27.9 76.8
Pr(b(δ) < 0.20) 94.5 99.7 95.2 96.9 77.1 89.0 96.7 93.2 84.3 48.9

Note: b(δ) = |δ̂ − δ|/δ where δ denotes β or γ. S.62



Table S.15: Estimation result of investment equation for 2002-2016
parameter coef. s.e. parameter coef. s.e.

β[1] 0.0057∗∗∗ (0.0006) Cov(x∗
2002, e2002) -3.3638∗∗ (1.4004)

β[2] 0.0056∗∗∗ (0.0006) Cov(x∗
2003, e2003) -2.4065∗∗ (1.0052)

γ[1] -0.0006 (0.0035) Cov(x∗
2004, e2004) -3.1172∗∗∗ (1.0367)

γ[2] 0.0096∗∗∗ (0.0024) Cov(x∗
2005, e2005) -2.0123∗∗ (0.8839)

ρy,1 0.5727∗∗∗ (0.0205) Cov(x∗
2006, e2006) -1.7319∗∗ (0.8542)

ρx1,1 1.0129∗∗∗ (0.0213) Cov(x∗
2007, e2007) -1.2772 (0.8248)

λx1,1 -0.7767∗∗∗ (0.0626) Cov(x∗
2008, e2008) -1.5196∗ (0.7963)

λx1,2 -0.0303∗∗ (0.0150) Cov(x∗
2009, e2009) -1.7122∗∗ (0.7842)

Cov(x∗
2010, e2010) -2.3385∗∗ (1.0037)

V ar(η) 0.0002∗∗∗ (0.0000) Cov(x∗
2011, e2011) -2.2943∗∗ (0.9416)

V ar(v2002) 0.0013∗∗∗ (0.0001) Cov(x∗
2012, e2012) -2.3171∗∗ (0.9368)

V ar(v2003) 0.0006∗∗∗ (0.0001) Cov(x∗
2013, e2013) -2.8099∗∗ (1.1486)

V ar(v2004) 0.0006∗∗∗ (0.0001) Cov(x∗
2014, e2014) -1.5277∗∗ (0.7471)

V ar(v2005) 0.0006∗∗∗ (0.0001) Cov(x∗
2015, e2015) -1.8965∗∗ (0.7437)

V ar(v2006) 0.0008∗∗∗ (0.0001)
V ar(v2007) 0.0006∗∗∗ (0.0001)
V ar(v2008) 0.0007∗∗∗ (0.0001) Cov(w2002, η) 0.0004∗∗ (0.0002)
V ar(v2009) 0.0005∗∗∗ (0.0001) Cov(w2003, η) 0.0006∗∗∗ (0.0001)
V ar(v2010) 0.0004∗∗∗ (0.0001) Cov(w2004, η) 0.0006∗∗∗ (0.0002)
V ar(v2011) 0.0004∗∗∗ (0.0000) Cov(w2005, η) 0.0006∗∗∗ (0.0001)
V ar(v2012) 0.0005∗∗∗ (0.0001) Cov(w2006, η) 0.0004∗∗∗ (0.0001)
V ar(v2013) 0.0005∗∗∗ (0.0001) Cov(w2007, η) 0.0004∗∗ (0.0002)
V ar(v2014) 0.0004∗∗∗ (0.0001) Cov(w2008, η) 0.0002 (0.0002)
V ar(v2015) 0.0003∗∗∗ (0.0000) Cov(w2009, η) 0.0002 (0.0001)

Cov(w2010, η) 0.0003∗∗ (0.0001)
Cov(w2011, η) 0.0001 (0.0001)

Cov(x∗
2002, η) 0.0036∗∗ (0.0016) Cov(w2012, η) 0.0001 (0.0001)

Cov(x∗
2003, η) 0.0107∗∗∗ (0.0023) Cov(w2013, η) -0.0001 (0.0001)

Cov(x∗
2004, η) 0.0110∗∗∗ (0.0023) Cov(w2014, η) -0.0001 (0.0001)

Cov(x∗
2005, η) 0.0123∗∗∗ (0.0024) Cov(w2015, η) -0.0003∗ (0.0002)

Cov(x∗
2006, η) 0.0118∗∗∗ (0.0023) Cov(w2016, η) -0.0004∗∗ (0.0002)

Cov(x∗
2007, η) 0.0113∗∗∗ (0.0023)

Cov(x∗
2008, η) 0.0055∗∗∗ (0.0019) V ar(e2002) 3.4670∗∗ (1.5361)

Cov(x∗
2009, η) 0.0075∗∗∗ (0.0021) V ar(e2003) 3.8217∗∗∗ (1.1033)

Cov(x∗
2010, η) 0.0069∗∗∗ (0.0023) V ar(e2004) 3.9340∗∗∗ (1.1147)

Cov(x∗
2011, η) 0.0058∗∗∗ (0.0025) V ar(e2005) 3.0486∗∗∗ (0.9643)

Cov(x∗
2012, η) 0.0053∗∗ (0.0027) V ar(e2006) 2.5111∗∗∗ (0.9243)

Cov(x∗
2013, η) 0.0038 (0.0030) V ar(e2007) 2.4213∗∗∗ (0.8675)

Cov(x∗
2014, η) 0.0025 (0.0031) V ar(e2008) 2.2878∗∗ (0.9038)

Cov(x∗
2015, η) 0.0015 (0.0031) V ar(e2009) 2.1822∗∗ (0.8444)

Cov(x∗
2016, η) -0.0002 (0.0033) V ar(e2010) 2.8280∗∗∗ (1.0667)

V ar(e2011) 2.8427∗∗∗ (1.0173)
V ar(e2012) 2.8354∗∗∗ (1.0017)
V ar(e2013) 3.2370∗∗∗ (1.2123)
V ar(e2014) 2.1186∗∗ (0.8180)
V ar(e2015) 2.4999∗∗∗ (0.7894)

Note: ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1, 5, and 10 percent levels, respectively.

Wald test (p-value)

H0 : Cov(q∗
i , ηi) = 0 65.39 (0.000)

H0 : Cov(cf i, ηi) = 0 52.15 (0.000)
H0 : Cov(q∗, ϵi) = 0 17.40 (0.235)
H0 : no structural break in β and γ 7.55 (0.023)

Goodness-of-fit test [d.f.] (p-value) 457.92 [487] (0.8237)
BIC -3155.03
Observations 15834

(Ly,AR, Ly,MA) (1, 0)
(Lx,AR, Lx,MA) (1, 2)
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Table S.16: Estimation results for OLS, FE and EW estimators(2002-2007)

All firms Small firms Large firms

β γ β γ β γ

OLS estimator

coef. 0.0032∗∗∗ 0.0029∗∗∗ 0.0021∗∗∗ 0.0022∗∗∗ 0.0049∗∗∗ 0.0039
s.e. (0.0001) (0.0008) (0.0001) (0.0009) (0.0002) (0.0027)

Fixed effects estimator

coef. 0.0004∗∗ -0.0008 0.0001 -0.0001 0.0010∗∗ -0.0022
s.e. (0.0002) (0.0023) (0.0002) (0.0022) (0.0005) (0.0045)

third-order cumulant estimator (level)

coef. 0.0066∗∗∗ -0.0056∗∗ 0.0045∗∗∗ 0.0012 0.0064∗∗∗ 0.0077
s.e. (0.0005) (0.0023) (0.0004) (0.0022) (0.0008) (0.0067)

Sargan test (p-value) 10.69 (0.0984) 24.34 (0.0005) 16.31 (0.0121)

fourth-order cumulant estimator (level)

coef. 0.0069∗∗∗ -0.0051∗∗ 0.0054∗∗∗ 0.0016 0.0089∗∗∗ -0.0007
s.e. (0.0003) (0.0023) (0.0003) (0.0023) (0.0002) (0.0041)

Sargan test (p-value) 9.18 (0.1636) 22.41 (0.0010) 73.74 (0.0000)

fifth-order cumulant estimator (level)

coef. 0.003∗ -0.0043∗ 0.0059∗∗∗ 0.0012 0.0083∗∗∗ 0.0083∗∗∗

s.e. (0.0002) (0.0023) (0.0003) (0.0024) (0.0002) (0.0032)
Sargan test (p-value) 352.63 (0.0000) 31.25 (0.0000) 165.36 (0.0000)

third-order cumulant estimator (WG)

coef. 0.0035∗ 0.004∗∗ 0.0034∗ 0.0007 0.0058∗∗∗ 0.0151∗∗

s.e. (0.0020) (0.0042) (0.0019) (0.0041) (0.0017) (0.0072)
Sargan test (p-value) 4.64 (0.5909) 0.81 (0.9917) 21.40 (0.0016)

fourth-order cumulant estimator (WG)

coef. -0.0012∗∗ 0.0079∗∗∗ 0.0036∗∗∗ -0.0062∗∗ 0.0022∗∗ 0.0153∗∗∗

s.e. (0.0005) (0.0026) (0.0007) (0.0030) (0.0010) (0.0055)
Sargan test (p-value) 21.23 (0.0017) 18.15 (0.0059) 117.45 (0.0000)

fifth-order cumulant estimator (WG)

coef. -0.001 0.0041∗ 0.0009∗∗∗ -0.0008 0.0085∗∗∗ 0.0150∗∗∗

s.e. (0.0004) (0.0023) (0.0002) (0.0025) (0.0002) (0.0051)
Sargan test (p-value) 51.67 (0.0000) 127.67 (0.0000) 279.17 (0.0000)

Note: ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1, 5, and 10 percent levels, respectively.
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Table S.17: Estimation results for OLS, FE and EW estimators(2009-2016)
All firms Small firms Large firms

β γ β γ β γ

OLS estimator

coef. 0.0013∗∗∗ -0.0015∗∗∗ 0.0012∗∗∗ -0.0014∗∗∗ 0.0006∗∗ 0.0300∗∗∗

s.e. (0.0001) (0.0004) (0.0001) (0.0005) (0.0003) (0.0038)

Fixed effects estimator

coef. 0.0001 0.0000 -0.0001 0.0016 0.0011 0.0131∗

s.e. (0.0003) (0.0009) (0.0002) (0.0015) (0.0007) (0.0070)

third-order cumulant estimator (level)

coef. 0.0039∗∗∗ 0.0059∗∗∗ 0.0032∗∗∗ 0.0046∗∗∗ 0.0049∗∗∗ -0.0007
s.e. (0.0004) (0.0015) (0.0004) (0.0013) (0.0012) (0.0088)

Sargan test (p-value) 6.38 (0.6049) 11.67 (0.1664) 18.00 (0.0213)

fourth-order cumulant estimator (level)

coef. 0.0022∗∗∗ 0.0020∗∗ 0.0032∗∗∗ 0.0050∗∗∗ 0.0030∗∗∗ 0.0030
s.e. (0.0002) (0.0008) (0.0003) (0.0011) (0.0004) (0.0025)

Sargan test (p-value) 53.21 (0.000) 40.52 (0.000) 29.58 (0.0003)

fifth-order cumulant estimator (level)

coef. 0.0014∗∗∗ 0.0027∗∗∗ 0.0012∗∗∗ 0.0018∗∗∗ 0.0011∗∗∗ 0.0007
s.e. (0.0001) (0.0007) (0.0001) (0.0007) (0.0002) (0.0021)

Sargan test (p-value) 148.64 (0.000) 275.18 (0.000) 119.78 (0.000)

third-order cumulant estimator (WG)

coef. 0.0006 0.0009 0.0006 0.0004 -0.0023 0.0100∗

s.e. (0.0006) (0.0027) (0.0005) (0.0013) (0.0015) (0.0061)
Sargan test (p-value) 17.49 (0.0254) 16.06 (0.0415) 7.41 (0.4936)

fourth-order cumulant estimator (WG)

coef. 0.0006∗∗∗ 0.0020∗∗ 0.0003∗ -0.0001 -0.0011∗∗∗ 0.0056∗

s.e. (0.0001) (0.0008) (0.0002) (0.0007) (0.0002) (0.0029)
Sargan test (p-value) 95.09 (0.000) 23.48 (0.0028) 113.95 (0.000)

fifth-order cumulant estimator (WG)

coef. 0.0013∗∗∗ 0.0028∗∗∗ 0.0000 0.0004 -0.0016∗∗∗ 0.0098∗∗∗

s.e. (0.0000) (0.0006) (0.0001) (0.0005) (0.0001) (0.0028)
Sargan test (p-value) 532.09 (0.000) 149.56 (0.000) 535.43 (0.000)

Note: ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1, 5, and 10 percent levels, respectively.

S.65


	1188.pdf
	DP1188.pdf
	Introduction
	Model and assumption
	Model
	Assumption
	Covariance structure of the model

	Moment conditions and identification problem
	Identification problem
	Reparametrization

	Minimum distance estimator and practical issues
	The MD estimator
	Tests associated with latent variables
	Test for classical measurement error
	Test for uncorrelatedness between true regressor and individual effects

	Discussion on some practical aspects
	Structural break
	Missing values
	Optimization algorithm
	Starting values for optimization

	Estimation procedure

	Monte Carlo simulation
	Data generating process
	Results

	Empirical analysis of investment equations
	Investment equation
	Source of non-classical measurement error 
	Cash flow sensitivity
	Empirical model
	United States manufacturing firm-level data
	Estimation results

	Conclusion
	Alternative vectorization operators: vecb and vecd
	vecb operator
	vecd operator
	The column-wise Khatri-Rao product
	vec operator for a partitioned matrix with a zero block

	Proof of Proposition 1 and Theorem 1
	Proof of Proposition 1
	Illustration of Proposition 1 with  T=4 
	Proof of Theorem 1

	Models with multiple regressors
	Model
	Assumption
	Latent expression of the model
	Model after reparametrization

	Linear expression of hzz()
	Derivation of Jacobian matrix G()=hzz()/
	Jacobian for nonlinear least squares problem
	Additional simulation results
	Simulation Designs I and II
	Data generating process
	Results

	Simulation Design III
	Data generating process
	Results


	Additional empirical results


