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Abstract

Despite widespread use in online transactions, rating systems only provide summary

statistics of buyers’ diverse opinions at best. To investigate the consequences of this

coarse form of information aggregation, we consider a dynamic lemons market in which

buyers share their evaluations anonymously through a rating system. When the buyers

have diverse preferences, the value of a good rating depends endogenously on the seller’s

pricing strategy, which in turn creates complicated dynamic interactions and results in

stochastic price fluctuations. Occasional flash sales induced by the rating system yield

a non-trivial welfare effect that stands in sharp contrast to standard adverse selection

models: all buyers are weakly better off with information asymmetry than without.

Incentivizing buyers to leave ratings may backfire by exacerbating the seller’s strategic

pricing incentives.
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1 Introduction

The development of platform transactions has provided a channel for buyers to learn the

quality of a seller that is very different from traditional modes of learning such as word-of-mouth

communication and observational learning. Since transactions are centralized on a platform,

a standardized reputation mechanism, which we broadly refer to as the “rating system,” can

be designed to streamline the transmission of information. Under a rating system, buyers can

post their “ratings” for the products or sellers based on their experiences. Potential buyers can

observe the ratings, or a summary of them, left by previous buyers before they make purchasing

decisions. This trading environment constitutes a special form of social learning, which enables

potential buyers to collect information on a much wider scale than they could through word-

of-mouth communication and also to gain access to more detailed information—past buyers’

evaluations rather than their actions—than through observational learning.

Rating systems are, however, subject to substantial communication frictions. There are

several possible reasons for this,1 but the one that stands out is the fact that under a rating

system, buyers share their evaluations anonymously without knowing the identities, much less

the preferences, of the raters. This inherently anonymous nature of rating systems creates a

complication when the buyers have diverse preferences, as they may be satisfied for different

reasons, and hence what a “good rating” implies could differ considerably across them. Partic-

ularly relevant in this regard is the difference in the way buyers evaluate the tradeoff between

price and quality, where some are more sensitive to quality while others are more sensitive to

price. This structure suggests a possibility that a seller—even a low-quality one—can induce

good ratings from those who are more concerned about price by deliberately underpricing and

temporarily boost her reputation. Under this structure, the pricing strategy of a seller plays

a dual role: on one hand, it plays the conventional role of rent extraction; on the other hand,

it also influences the buyer’s rating directly and hence the beliefs of subsequent buyers and

future revenues indirectly. The seller’s pricing decisions must strategically balance the tradeoff

between current and future revenues as dictated by the rating system.

In this paper, we develop a dynamic adverse selection model to examine this strategic

incentive and its consequences on trading dynamics and welfare. The trading environment we

1 As we will later argue in Section 6.1, it is also important that platforms must in principle rely on the

voluntary participation of buyers: although some platforms offer small rewards for providing a rating, the size of

the rewards is typically quite negligible, and it is in general difficult for platforms to induce buyers to exchange

detailed information in an incentive-compatible manner. There are actually two sides to this limitation. On

one hand, it is highly time-consuming for any buyer to provide a detailed account of how and in what sense

he is satisfied. On the other hand, even if some previous buyers are somehow willing to provide such detailed

reports, current buyers often do not bother to go through a pile of reports to extract relevant information.
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consider consists of a long-lived seller and a sequence of short-lived buyers who arrive randomly

over time. The quality of the good supplied by the seller is either high or low and is her private

information. A crucial assumption of our analysis is that the buyers are also heterogeneous

and have diverse preferences in that they are either price shoppers (who only care about price)

or value shoppers (who also appreciate good quality). Upon arrival, a buyer observes the

history of ratings left by previous buyers and the current price offer and decides whether to

purchase the good given his belief.2 If he chooses to purchase the good, he learns its quality

after consumption and leaves a good rating (with some positive probability) if he is “satisfied.”

Within this setup, we argue that any rating system, which aggregates diverse opinions of

previous buyers into some summary statistics, entails an unintended consequence of inducing

strategic behaviors from the sellers. The driving force behind our argument is the combination

of anonymity and preference diversity (buyer heterogeneity) that is inevitably present in plat-

form transactions. In the presence of these two factors, the rating system can only provide a

crude indicator of quality because there are no cohesive standards among buyers for when to

give a good rating: specifically, while value shoppers are satisfied only by high quality, there

are also price shoppers who are satisfied by low price; as such, good ratings provided by price

shoppers do not necessarily indicate high quality. The buyers can observe ratings scattered

over time and the current price but have no means to differentiate informative signals (good

ratings from value shoppers) and uninformative ones (those from price shoppers) due to the

anonymous nature of rating systems. This implies that the value of a good rating is endogenous

in our model, depending on the seller’s pricing strategy at the time of purchase, which marks

a crucial point of departure from dynamic adverse selection models with exogenous news such

as Daley and Green (2012) and Kaya and Kim (2018).

Throughout the analysis, we focus on a natural class of equilibria, which we call monotone

equilibria, and derive properties that hold robustly within this class. This class of equilibria

exhibits an intuitive structure where both types of seller charge a higher price to extract surplus

when the belief is relatively high, while they hold a flash sale to attract a broader customer

base and garner good ratings when it is low. The seller’s pricing strategy thus repeatedly

and stochastically fluctuates between a high and a low price, giving rise to trading dynamics

induced by the rating system. When the seller charges a low price, price shoppers are satisfied

and leave good ratings which convey no information about the seller’s quality. This strategic

pricing introduces noise into the buyers’ inference process and consequently slows down social

learning. This finding is closely in line with Fan et al. (2016) who find that sellers tend to

2 We therefore consider a posted price platform. Although eBay has made auctions with rating systems

popular in the C2C environment, nowadays most of the items listed in eBay (or any other transaction platforms)

are in posted prices (Einav et al., 2018).
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underprice to acquire good ratings when their reputation is low, which incidentally indicates

that price shoppers indeed exist and play a major role in rating systems.

All monotone equilibria of our model exhibit two absorbing states. At the upper absorbing

state, the high-quality seller is identified as such, and the belief stays constant thereafter.

Moreover, by belief consistency, only the high-quality seller can reach the upper absorbing state

on the equilibrium path, meaning that the rating system we consider displays no false negative.

In contrast, at the lower absorbing state, value shoppers do not have enough confidence in the

seller and never purchase. Once the belief reaches this point, therefore, any good rating could

only come from price shoppers and its reputation value is entirely lost. Since the low-quality

seller cannot reach the upper absorbing state, she will eventually be trapped into the lower

absorbing state. The problem is that the high-quality seller also has a positive probability of

reaching the lower absorbing state, implying that the rating system may exhibit a false positive.

This result suggests that in addition to transaction delays, noisy social learning entails a social

cost that remains strictly positive even as the discount rate vanishes. To measure the extent

of this efficiency loss, we explicitly compute the asymptotic probability of identifying the high-

quality seller as such. Remarkably, the asymptotic probability is constant across all monotone

equilibria of our model and depends only on two factors: the seller’s initial reputation and the

sensitivity of the value shoppers to the good’s quality.3

It is worth noting, however, that despite this efficiency loss, distributional consequences of

noisy social learning are not uniformly negative across all parties involved. In fact, the seller’s

strategic pricing incentive yields a non-trivial welfare effect that stands in sharp contrast to

standard adverse selection models: the value shoppers are strictly better off with information

asymmetry than without. This result stems from a crucial feature of our model that the

seller’s information manipulation occurs through her pricing decisions. To see this, if the seller

is known to be of high quality for sure, there is no point in offering a low price as the seller

only loses her current revenue without gaining any reputation. In this case, the seller always

charges a price that equals the expected quality, and the value shoppers can capture no surplus.

The situation changes substantially once there is uncertainty about the seller’s type: when the

belief is close to the lower absorbing state, even the high-quality seller is forced to salvage her

reputation, which allows some value shoppers to capture positive surplus. Interestingly, an

important qualifier of this result is that there are some price shoppers around, because the

frequency of receiving a good rating would not depend on the current price otherwise, i.e.,

preference diversity benefits the value shoppers.

We also identify the seller-optimal equilibrium and examine how its efficiency is affected by

3 To be more precise, the asymptotic probability is constant across all pooling equilibria of our model which

constitute a larger set of equilibria including some non-monotone ones.
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changes in some underlying parameters of the model. We find that as the seller becomes less

patient, the efficiency of social learning improves. This is because when the seller discounts the

future payoffs more heavily, there is less incentive to offer a low price to garner good ratings.

This result suggests a counterintuitive possibility that the high-quality seller is often made

better off, while the value shoppers are worse off, as the market environment becomes more

competitive with higher market exit rates. Also, when satisfied buyers leave ratings at a higher

frequency, the seller’s strategic incentive might intensify and slow down social learning. This

means that although many platforms adopt various measures to encourage buyers to leave

ratings, such an attempt might backfire and actually impede social learning.

A distinctive feature of transactions mediated by platforms is that the platforms typically

have some control over the flow of information. In the baseline model, we consider a rating

system with minimum information content, where a buyer can only leave a good rating when

he is satisfied. To examine the impact of providing more information on trading dynamics, we

extend this rating system in two different directions. In the first, we make the history of prices

publicly observable, on top of the history of ratings. In the second, we allow the buyers to

leave bad ratings when they are unsatisfied. We argue that the first extension may drastically

improve the efficiency of social learning while the second has little qualitative impact.

2 Literature

Our analysis belongs to the vast literature on dynamic adverse selection and reputation

building. Although the literature has developed in various directions, there are very few works

which incorporate strategic pricing into this framework.4 As we will detail below, the key

departures of our analysis from the previous literature are summarized by the following two

elements: (i) both types of seller are strategic and attempt to maximize their payoffs; and (ii)

they strategically set prices to manipulate the flow of information to their advantage.

Starting with Milgrom and Roberts (1982), Kreps and Wilson (1982), and Fudenberg and

Levine (1989), many reputation models build on the framework where one long-run player

interacts with a sequence of myopic short-run players, as in our trading environment.5 This

strand of literature assumes that the long-run player is either a strategic type, who maximizes

his own payoffs, or a commitment type, who simply follows a pre-specified plan of action.

4 An obvious technical challenge is that if one allows the seller to set a price, it works as a signal and hence

changes the nature of the problem. For this reason, adverse selection models in trading environments typically

consider buyer-offer games, where the buyer makes an offer and the seller either accepts or rejects.
5 See Liu (2011), Liu and Skrzypacz (2014), and Pei (2020, 2022) for more recent examples of this approach.

A continuous-time version of this strand of literature is developed by Faingold and Sannikov (2011).

5



While earlier models of this strand of literature look at the situation where all the past actions

are perfectly observable to the current players, subsequent works extend this setting and in-

corporate imperfect observability of past actions (Fudenberg and Levine, 1992; Cripps et al.,

2004). Among them, Ekmekci (2011) introduces a “rating system” which aggregates all the

observable variables into a message in an arbitrary way and shows that a finite rating system

with information censoring allows the long-run player to perpetually sustain a reputation.6

The focus of this literature is different from ours, as it is generally concerned with whether the

strategic type can approximately achieve his best feasible payoff, often called the Stackelberg

payoff in the literature, when there are some commitment types around.

In our model, the seller strategically sets prices to interfere with the buyers’ inference

process—a strategy that may be broadly referred to as “signal jamming” (Holmstrom, 1999;

Fudenberg and Tirole, 1986).7 Related in this respect are Ekmekci et al. (2022), who analyze

a dynamic stopping problem with manipulable signals. They consider a situation where a

principal decides whether to terminate the game when an opportunity arrives stochastically

while continuously receiving a signal about an agent’s type. The agent in their model is either

strategic (called noninvestible in their model) or committed (investible), where the strategic

type chooses how much effort to exert at each instance to manipulate the signal-generating

process. As noted above, a crucial point of departure is that both types of seller in our model are

strategic. Aside from this, it is also important to note that the seller’s information manipulation

in our model occurs through pricing choices and hence affects not only the learning process but

also the distribution of surplus directly. As we will discuss in more detail in Section 5.2, these

elements of our model generate different forms of dynamic interaction and different welfare

implications.

Several works analyze dynamic adverse selection models coupled with additional informa-

tion sources. Daley and Green (2012) consider a dynamic lemons market where the value of a

long-run seller’s asset is gradually and publicly revealed to the market via some news process

and characterize trading dynamics in this environment. Kaya and Kim (2018) consider a simi-

lar setup but instead introduce a news process that provides a private signal to each potential

buyer and show that the private nature of the news process gives rise to diverse patterns of

trading dynamics. These models share an important feature with our model that buyers have

access to an additional, albeit imperfect, information source. A key distinction is that the news

6 This is in contrast to Cripps et al. (2004) who are the first to analyze the long-run consequences of

reputation building and point out that it is impossible to sustain a reputation in the long run under imperfect

monitoring.
7 In our analysis, signal jamming works in a slightly different way. As in Holmstrom (1999) and Fudenberg

and Tirole (1986), the buyers correctly anticipate this manipulation, but it can still affect the way they aggregate

information because strategic pricing effectively introduces noise into the rating system.
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process in their models is exogenous whereas the rating system in our model is endogenous.8

Because of this feature, asymptotic learning fails in our model as even the high-quality seller

is driven out of the market with some probability.

Finally, while our analysis centers around the seller’s strategic incentive to influence the

flow of information, there are some works that examine the role of rating systems with more

direct focus on the process of buyer learning and its asymptotic properties (Crapis et al., 2017;

Ifrach et al., 2019; Acemoglu et al., 2022). These works consider a rating system similar to

ours, where a buyer leaves a good rating if his utility is above some threshold with preference

heterogeneity among buyers, but abstract away from information asymmetry and the seller’s

strategic behaviors. Most notably, Acemoglu et al. (2022) construct a symmetric-information

model of Bayesian learning from online reviews and investigate the speed of learning under

different rating systems with an exogenously fixed price.9 Their analysis identifies a selection

effect which arises from the fact that the types of user who purchase the good depend on

the information available at the time of purchase. Although cast in a different framework,

this consideration is also important in our analysis because different pricing strategies attract

different types of buyer, which in turn affects the value of a good rating.

3 Model

3.1 Setup

Consider a dynamic lemons market with a long-lived seller and a sequence of short-lived

buyers who arrive randomly over time. Time is continuous and extends from 0 to infinity.

Seller. The seller, who has an unlimited supply of a good, lists it on a platform for sales by

posted price. The seller is of fixed quality, which is either high (i = H) or low (i = L). The

seller’s type is her private information, and the common initial belief that the seller is of high

quality is q0. At each t, the seller posts a price pt, where the cost of production is normalized

8 Aside from the exogenous news process, another crucial difference is that the seller in their setting only

has a single indivisible good, so that the seller of an asset can signal her type by passing on transaction

opportunities. Signaling thus takes place in a different form. There are now several works which incorporate

signaling via exit decisions in dynamic adverse-selection models (Bar-Isaac, 2003; Gul and Pesendorfer, 2012;

Chen and Ishida, 2018).
9 Acemoglu et al. (2022) later extend their analysis and briefly consider the case with endogenous pricing.

Ifrach et al. (2019) also consider a similar symmetric-information environment, both with and without endoge-

nous pricing. In either case, however, strategic interactions between the seller and buyers are not their main

focus. Crapis et al. (2017) analyze optimal monopoly pricing in an asymmetric-information environment with

non-Bayesian information updating, but restrict their attention to the case where the monopolist can adjust

the price at most once.
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to 0 for both types. The seller maximizes the discounted sum of profits with discount rate

r > 0.

Buyers. The buyers have heterogeneous preferences, and hence what a good rating embodies

is potentially different across them. To capture this aspect in the simplest manner, we assume

that each arriving buyer is either a price shopper or a value shopper. Let uP (i, p) (uV (i, p)) be

the utility of a price (value) shopper when he purchases from the type i seller at price p. The

price shoppers do not care about quality, and we normalize their utility from consumption to

0, i.e., for both i = L,H,

uP (i, p) = −p.

In contrast, the value shoppers appreciate quality, and their utility is given by

uV (i, p) =

1− p if i = H,

−k − p if i = L,

where k > 0 is a parameter that measures the degree to which they value quality.10 Each

type of buyer arrives according to a Poisson process: for an interval of time [t, t+ dt), a price

shopper arrives with probability mdt, and a value shopper with probability dt. Each arriving

buyer is myopic and exits the market immediately, regardless of whether he makes a purchase

or not. In what follows, we refer to a buyer who arrives at time t as buyer t for clarity.

Rating system. Upon observing the price pt, buyer t, if any, decides whether to make a

purchase given his belief about the seller. The true quality is discovered after consumption,

and the buyer leaves a good rating with probability λ ∈ (0, 1] at time t if his utility is weakly

positive.

Remark: In our model, the buyers can only provide good ratings when they are satisfied,

but have no choice but to remain silent when they are not. This specification is motivated

by the fact that ratings are predominantly positive in online platforms (Nosko and Tadelis,

2015; Tadelis, 2016; Zervas et al., 2021).11 For most part, we focus on this simplest setting

10 It is worth noting that works such as Crapis et al. (2017), Ifrach et al. (2019), and Acemoglu et al. (2022)

also incorporate buyer heterogeneity, but the nature of buyer heterogeneity in these works qualitatively differs

from that in the current setting. In their works, the heterogeneity term is additive, so that buyers differ in

terms of the threshold to give a good rating. This is different from our setting where the heterogeneity term is

multiplicative, so that buyers differ in terms of the sensitivity to quality.
11 Fradkin et al. (2021) argue that this constitutes the largest source of inefficiency in the rating system.

There are many conceivable reasons for why buyers are reluctant to leave bad ratings, e.g., for fear of retaliation,

reciprocation or psychological discomfort of giving negative feedbacks. In this paper, we do not explore why
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for clarity, which allows us to illuminate how the seller’s pricing incentives are affected by the

rating system in a transparent manner. We will later discuss the case where there are more

rating categories in Section 6.2 and show that our main insight still holds even when the rating

system becomes “finer.”

3.2 Information and strategies

Buyer t observes all the past ratings left by previous buyers and the current price offer pt.

Observe that the ratings are publicly observable while the current price offer is only privately

observable to the current buyer. Let ht be the history of ratings (including the time at which

each rating is left) up to time t. The public belief at time t is defined as the probability that

the seller is of high quality conditional on ht and is denoted by qt. In addition, buyer t observes

pt and further updates his belief. We denote the private belief of buyer t by q̂t, which is the

probability conditional on both ht and pt.

We look for a Markov perfect Bayesian equilibrium in pure strategies (hereafter, simply an

equilibrium). Let πi : [0, 1]→ R+ be the strategy of the type i seller, which is a mapping from

qt to a non-negative price pt.

Definition 1. The two types of seller adopt a pooling strategy at q if πL(q) = πH(q); otherwise,

they adopt a separating strategy. An equilibrium is a pooling equilibrium if πL(q) = πH(q) for

all q and a separating equilibrium if πL(q) 6= πH(q) for some q.

If the two types adopt a pooling strategy at some qt, the current price offer reveals no

information and q̂t = qt. It is important to note, however, that the implication of “pooling” in

our model is qualitatively different from its conventional one and should thus be interpreted

with caution: even if the seller reveals her type by a separating price offer, this information

will not be transmitted to the future buyers, meaning that separation at this stage does not

contribute to building up her reputation (see Section 3.3 for more on this point).

Since the problem faced by myopic buyers is rather straightforward, instead of defining their

strategies formally, we simply take them as if they are a non-strategic information-generating

process. First, a price shopper purchases the good and is satisfied if and only if the price is

0, independently of his belief q̂t. Second, given q̂t, a value shopper purchases the good if pt is

no greater than p(q̂t) ≡ q̂t − k(1− q̂t), and is satisfied if the seller is of high quality. As such,

at any time t, a price shopper leaves a good rating with probability λ if pt = 0, and a value

this is the case, but rather take this nature of ratings as given and examine its consequences. In fact, since

positive feedbacks play a critical role for their success, platforms even try to impose costs for consumers to leave

negative ratings (Zervas et al., 2021). There are also reports on how Airbnb was accused of deleting negative

reviews (see, e.g., https://qz.com/1333242/airbnb-reviews/)
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shopper does so if p(q̂t) ≥ pt and the seller is of high quality, also with probability λ. Let

γi(pt; q̂t), or γi(pt) for short, denote the rate at which the type i seller receives a good rating.

If q̂t ≥ q ≡ k
1+k

, we have

γL(pt; q̂t) =

λm for pt = 0,

0 for pt ∈ (0, p(q̂t)],
γH(pt; q̂t) =

λ(1 +m) for pt = 0,

λ for pt ∈ (0, p(q̂t)].

If q̂t < q, value shoppers would never purchase the good, so that γH(0; q̂t) = λm and

γH(pt; q̂t) = 0 for any pt > 0.

3.3 The static signaling problem and equilibrium selection

Although our analytical focus is on the seller’s strategic response to the rating system, our

model also entails a static signaling problem at each instant, given that an informed party—the

seller—makes an observable pricing choice. The signaling problem in our model is somewhat

irregular, as it differs from a typical setting characterized by the single-crossing property. The

most distinctive feature of our signaling environment is that it is static in the sense that the

current price is observable only to the current buyer, and any information conveyed by the price

is not transmitted to the future buyers. As such, separation at this stage does not contribute

to improving her future reputation, and hence the high-quality seller has no strong incentive

to separate from the low-quality one by pricing differently.

As typical in signaling models, our model admits a plethora of signaling equilibria, but

standard refinement arguments cannot be applied directly to obtain a sharp prediction due to

its structure. Although it is possible to enumerate different signaling equilibria and analyze

trading dynamics for each possible case, such an exercise would be rather tedious and provide

little economic insight because all equilibria more or less exhibit similar dynamic properties

(see Sections 5.1 and 5.2 for more detail). In the subsequent analysis, therefore, we focus on

a class of equilibria which we deem as the most reasonable and admits a simple equilibrium

structure. Specifically, we restrict our attention to the following class of equilibria:

1. (Pooling equilibria) Both types of seller adopt a pooling strategy in equilibrium, i.e.,

πL(q) = πH(q) for all q;

2. (Full surplus extraction) Whenever the seller offers a strictly positive price, she always

offers the price that equals the maximum willingness-to-pay of a value shopper, both on

and off the equilibrium path.

10



Below, we comment on some technical issues specific to our signaling environment and provide

arguments for our equilibrium selection.

Pooling equilibria. Although one might be tempted to focus on separating equilibria, a

close inspection reveals that the structure of our signaling environment is not conducive to

separation. First, the static nature of the problem suggests that the seller has no incentive to

build reputation by sacrificing current gains: separation is beneficial only to the extent that it

induces the current buyer to purchase the good, and any reputation gains can be capitalized

only by charging a higher price to the current buyer. This essentially rules out all separating

strategies in which the low-quality seller offers a higher price than the high-quality seller. Given

this, the high-quality seller must set a higher price to separate from the low-quality seller, but

separation in this direction is clearly difficult to achieve as the low-quality seller can easily

mimic. In Section 5.1, we formalize this intuition and show that pooling equilibrium is the

only possible equilibrium if we focus on a natural and intuitive class of equilibria, which we call

monotone equilibria, in which the value functions are monotonically increasing in the belief.

Full surplus extraction. Even if we restrict our attention to pooling equilibria, the multi-

plicity of equilibria still remains. To fix ideas, suppose that the seller chooses to offer a strictly

positive price at some belief qt, and the maximum willingness-to-pay of a value shopper is p(qt)

in some pooling equilibrium (where q̂t = qt). The value shopper is then willing to accept an

offer as long as p(qt) ≥ pt. This means that we may construct an arbitrary equilibrium in

which πL(qt) = πH(qt) = ηp(qt) for some η < 1.12 We argue, however, that in our posted-price

environment where the seller retains all the bargaining power, it is unlikely that an equilibrium

in which the seller is forced to offer a suboptimal price survives in the long run.

4 Analysis

4.1 Preliminaries

The notion of full surplus extraction implies that the seller’s choice at each instant is

essentially binary, either to choose a low price pt = 0 or a high price pt = p(qt) > 0. For clarity,

we thus represent the seller’s strategy by a simpler and more intuitive form, defined over this

12 For instance, this can be done by assigning q̂t = 0 to all off-path deviations. Standard refinement

arguments, such as the Intuitive Criterion and D1, have no bite in selecting among different pooling equilibria

because both types benefit equally from deviating to any pt ∈ (ηp(qt), p(qt)]. To see this, consider an equilibrium

in which π(qt) = πL(qt) = πH(qt) < p(qt) for some qt. Suppose that we observe a deviation to some pt ∈
(π(qt), p(qt)]. For both types, this deviation is profitable if and only if the belief assigned to it is such that the

current buyer accepts pt, i.e., q̂t is high enough to satisfy p(q̂t) ≥ pt.
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binary choice with no direct reference to pt. Let σi : [0, 1]→ {0, 1} denote the (pure) strategy of

the type i seller, where she offers the low price if σi(qt) = 0 and the high price if σi(qt) = 1, with

the interpretation that the type i seller is “having a sale” at qt if σi(qt) = 0. In what follows,

we refer to σi(qt) = 0 and σi(qt) = 1 as the low-price and the high-price policy, respectively.

Define σ ≡ (σL, σH) as the seller’s strategy profile and σ(q) ≡ (σL(q), σH(q)) ∈ {0, 1}2 as the

profile at belief q. We also denote by st ∈ {0, 1} the seller’s actual pricing choice at time t

(as observed by buyer t) where st = σL(qt) = σH(qt) on the equilibrium path (in a pooling

equilibrium). Let q̂st be the private belief after observing st = s ∈ {0, 1}.
Since the price cannot be negative, a value shopper purchases the good only if his belief

is at least as high as q. For qt ∈ [0, q), there is a continuation equilibrium in which both

types of seller adopt the low-price policy.13 In this region, only price shoppers would purchase,

and hence any good ratings could only come from them. Since good ratings no longer reflect

quality, there is no way for the seller to improve her reputation once qt dips below q. The

seller’s continuation payoff is then 0 for both types, and the game effectively ends at that

point. We thus only define the seller’s strategy over Q ≡ [q, 1] for simplicity, and say that the

seller “exits the market” once qt reaches q. Note also that if the initial prior q0 is below q,

no transactions take place on the equilibrium path. To rule out this trivial case, we make the

following assumption.

Assumption 1. q0 > q.

Given our binary-choice framework and focus on pooling equilibria, the seller’s equilibrium

strategy can be expressed by two mutually exclusive belief sets (Ql, Qh), where σ(q) = (0, 0)

if q ∈ Ql and σ(q) = (1, 1) if q ∈ Qh, with the restriction that Ql ∪Qh = Q and Ql ∩Qh = ∅.

For clarity, we refer to Ql and Qh as the low-price and the high-price region, respectively. Note

that Ql and Qh may or may not be connected. When both Ql and Qh are connected, we

say that the strategy is a threshold strategy. Given this, we also say that an equilibrium is a

threshold equilibrium if both types of seller adopt a threshold strategy.

4.2 Belief updating

With abuse of notation, we now redefine γi(·; q̂t), or γi(·) for short, in terms of the binary

choice where for st = s ∈ {0, 1} and q̂st ≥ q,

γL(s; q̂st ) = λm(1− s), γH(s; q̂st ) = λ+ λm(1− s).

13 This constitutes an equilibrium if the belief after deviating to the high-price policy is low enough so that

no buyers would purchase. Under Assumption 2 which we will postulate below, this is the unique continuation

equilibrium within the class of equilibria under consideration.
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When q̂st < q, there is no difference between the low-price and the high-price policy, and

γi(s; q̂st ) = λm(1− s) for i = L,H and s = 0, 1. Given the seller’s strategy σ and the current

belief qt, the belief at the next instant is updated to qt+dt = q−t (σ(qt)) if the seller receives no

rating and jumps up to qt+dt = q+t (σ(qt)) if she receives a good rating, where

q−t (σ(qt)) = qt −
(
γH(σH(qt))− γL(σL(qt))

)
qt(1− qt)dt, (1)

q+t (σ(qt)) =
qtγ

H(σH(qt))

qtγH(σH(qt)) + (1− qt)γL(σL(qt))
. (2)

Observe that a good rating does not ensure high quality (because it might be left by a satisfied

price shopper), and its absence does not indicate low quality (either because no buyer arrives

or because a buyer arrives and is satisfied but fails to leave a rating). In what follows, we often

suppress σ(·) and simply write q−t and q+t whenever it is not confusing.

It is easy to see that if γH(σH(qt)) > γL(σL(qt)), the belief decreases continuously as long

as the seller receives no good rating. For qt ≥ q, this condition always holds in any pooling

equilibrium because γH(s)− γL(s) = λ for both s = 0, 1, which implies that the belief follows

q̇t = −λqt(1− qt),

for all qt ∈ Q in the absence of good ratings. Once the seller receives a good rating, qt jumps

up to q+t . In particular, if σL(qt) = 1, then γL(1) = 0 and qt jumps up to 1 after receiving a

good rating. In contrast, once qt dips below the threshold q, we have γL(0) = γH(0) = λm,

and the belief stays constant indefinitely as noted above. Both of these properties reflect an

essential aspect of our model where the reputation value of a good rating is endogenous and

depends on the seller’s strategy profile at the time of purchase.

4.3 Seller’s optimal strategy

Let V i(·) denote the value function of the type i seller. For qt ∈ Q, the value function is

defined as

V i(qt) = max
s∈{0,1}

{
p(q̂st )sdt+ e−rdtE[V i(qt + dqt) | σ, s]

}
, (3)

where

E[V i(qt + dqt) | σ, s] = γi(s)dtV i(q+t ) + (1− γi(s)dt)V i(q−t ).

13



This formulation leads to an intuitive incentive compatibility constraint for each type. From

(3), σi(qt) = 1 if and only if

e−rdtE[V i(qt + dqt) | σ, s = 0] ≤ p(q̂1t )dt+ e−rdtE[V i(qt + dqt) | σ, s = 1].

In the limit, the condition above is reduced to

(γi(0)− γi(1))∆V i(qt) ≤ p(q̂1t ), (4)

where ∆V i(qt) ≡ V i(q+t )− V i(qt) is the reputation value of a good rating. The left-hand side

of (4) measures the future benefit brought by the low-price policy, and the right-hand side

measures the loss of current revenue. Condition (4) provides an important characterization of

the tradeoff faced by the seller in framing her pricing policy.

4.4 Equilibrium

There are two key observations which help us identify the equilibrium. First, since only the

high-quality seller provides strictly positive benefits and is able to charge a strictly positive

price (to value shoppers), both types of seller have an incentive to present themselves as

the high-quality one. Second, since future buyers cannot distinguish good ratings from value

shoppers (informative signals) and those from price shoppers (uninformative signals), this can

be achieved by offering the low price and inducing good ratings from price shoppers. As is

made clear in (4), this gives rise to the tradeoff between the low-price and the high-price policy.

To balance this tradeoff, the seller may occasionally have a sale for qt > q, i.e., even when the

willingness-to-pay of a value shopper is strictly positive. Note that the incentive to have a sale

is intensified as the belief gets closer to the lower bound, because the seller is forced to exit

the market once qt gets below q. These considerations suggest that there should exist some

equilibria in which both types of seller adopt the high-price policy if and only if qt is greater

than some threshold q > q.

Consider a threshold strategy characterized by a pair of thresholds (q, q) such that

σH(qt) = σL(qt) =

1 if qt ≥ q,

0 if q > qt ≥ q.
(5)

We will henceforth call q the lower threshold and q the upper threshold. Since the lower

threshold is exogenously fixed at q = k
1+k

, each threshold equilibrium is uniquely characterized

by the upper threshold q. Under this class of strategies, we denote by V i(·; q) the value function
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of the type i seller when the upper threshold is set at q. In the case of threshold strategies,

the belief sets (Ql, Qh) reduce to Ql = [q, q) and Qh = [q, 1].

The following proposition states that we can always construct an equilibrium by a threshold

strategy described in (5). The class of threshold equilibria identified here is a natural one to

fucus on because it contains all the key insights of our model in a simple and intuitive form.

Proposition 1. For any given (λ,m, r), let q∗ be the solution to

λm

(
1

r
− V L(q∗; q∗)

)
= p(q∗), (6)

if it exists for q∗ < 1; let q∗ = 1 if not. Then, for every q ∈ [q∗, 1], there is a threshold

equilibrium with upper threshold q.

Proof. See Section 4.5 and Appendix A.

Proposition 1 states that we can construct a continuum of threshold equilibria with any

q ∈ [q∗, 1]. The threshold equilibria identified in Proposition 1 have a simple and intuitive

structure: both types of seller adopt a bang-bang-type strategy by charging a positive price

p(qt) if qt is higher than q, and having a sale if it is lower. What is especially important is the

fact that both types of seller must adopt the low-price policy at the lower end of the belief

space: when qt ∈ (q, q), although the willingness-to-pay of a value shopper is still strictly

positive, the seller nonetheless charges the low price to boost her reputation. Since the belief

enters this region with positive probability for any prior q0 > q, occasional flash sales must

occur with positive probability. The occurrence of flash sales is indeed a robust prediction of

our model, as we will discuss later in Section 5.2.

The case when q∗ = 1 merits some remark. It occurs when either λ or m is large, or when

r is small. When this happens, no tradeoff characterized by (4) exists, and both types of seller

simply charge the low price for all qt ∈ Q in the unique equilibrium. As this case is rather

trivial, we make the following assumption to focus our attention to more relevant cases.

Assumption 2. There is an interior solution to (6) so that q∗ < 1.

4.5 Sketch of the proof

Here, we provide a brief sketch of our equilibrium construction to develop some intuition

and illustrate how the equilibrium looks; technical details are relegated to Appendix A. For
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the subsequent analysis, it is convenient to define T (q, q′) for any q > q′ ≥ q such that

q′ =
qe−λT (q,q

′)

qe−λT (q,q′) + 1− q
. (7)

In words, T (q, q′) is the length of time it takes for the belief to drop from q to q′ in a pooling

equilibrium when the seller receives no good rating.14 Solving (7) for T (q, q′) gives

T (q, q′) =
1

λ
ln
q(1− q′)
q′(1− q)

.

Also, for any q ∈ Ql, define t as the length of time it takes for the belief to drop back to q

when the seller receives a good rating now and no rating afterwards. Since the belief jumps

up to q(1+m)
q(1+m)+(1−q)m after receiving a good rating, t is the solution to

q =
q(1 +m)e−λt

q(1 +m)e−λt + (1− q)m
,

from which we obtain

t =
1

λ
ln

1 +m

m
.

Note that t is independent of the initial belief, implying that if the seller receives a good rating

at time t and no rating afterwards, the belief goes back to qt at time t + t regardless of the

value of qt (as long as qt ∈ Ql). This fact reflects a convenient property of Poisson process.

To illustrate how the equilibrium looks like, it is instructive to categorize the lower-price

region Ql into different sets, based on how many ratings the seller needs to enter the high-price

region Qh. From (1) and (2), we know that q−t < qt under a pooling strategy, and that there

is a jump to q+t when the seller receives a good rating. Given any threshold strategy described

in (5) and any qt ∈ Ql, we define Qn ≡ [q
n
, q
n−1), n = 1, 2, ..., recursively as follows. Let

Q1 = [q
1
, q

0
), with q

0
= q and q

1
= max{q, qm

qm+(1−q)(1+m)
}, where qm

qm+(1−q)(1+m)
is the value of

qt such that q+t = q. This means that for any qt ∈ Q1, the belief enters Qh if the seller receives

a good rating within a period of length T (qt, q1). For n > 1, if q
n−1 > q, we recursively define

q
n
(qt) = max{q,

q
n−1

m

q
n−1

m+(1−q
n−1

)(1+m)
}. Similarly, for any qt ∈ Qn, it takes n good ratings within

a period of length T (qt, qn) for the belief to enter Qh. We continue this process until we find

some n such that max{q,
q
n−1

m

q
n−1

m+(1−q
n−1

)(1+m)
} = q. For any n 6= 1, Qn ⊆ Ql and both types of

14 Note that T (q, q′) can be determined independently of the strategy σ in any pooling equilibrium because

γH(s)− γL(s) = λ for both s = 0, 1.
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Figure 1: Construction of Qn and sample belief path. The figure depicts a sample belief path
of the high-quality seller. Each jump represents the arrival of a good rating. Once a good
rating arrives in Qh, the belief jumps up to 1 and stays there indefinitely.

seller adopt the low-price policy. Figure 2 plots the case with n = 2, which provides a succinct

view of how the belief evolves in equilibrium.

We now show by construction that any threshold strategy with q ≥ q∗ constitutes an

equilibrium. In the proof (in Appendix A), we prove that the following properties hold under

this class of strategies.

Lemma 1. V i(q; q) is increasing in q for all q ∈ [q, 1) and i = H,L.

Lemma 2. Given any q ∈ [q∗, 1), for all q ∈ [q, 1), (i) V H(q; q) − V L(q; q) > 0, and (ii)

V i(q; q) is increasing in q for i = H,L.

Lemma 2 is easy to understand. It simply says that, for any given belief, the continuation

payoff of the high-quality seller is always greater than that of the low-quality seller, and also

that the continuation payoff is strictly increasing in the belief for both types. Lemma 1 is less

obvious, but it says that the benefit of high reputation always dominates the potential loss of

an increase in q.

Given these results, we can verify that as long as q ≥ q∗, any pair (q, q) can constitute the

thresholds of an equilibrium. First, pick any q ≥ q∗. For qt ∈ Ql, we need to show that it is

the best response for both types of seller to adopt the low-price strategy. Suppose that the
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off-path belief after deviating to the high-price policy is low enough so that q̂1t < q.15 Then,

from (4), the condition for adopting the low-price policy is given by

λm∆V L(qt) > max{p(q̂1t ), 0} = 0 and λ∆V H(qt) > max{p(q̂1t ), 0} = 0.

These conditions hold ince ∆V i(q) > 0 for all q ∈ Q by Lemma 2. For qt ∈ Qh, to prevent

downward deviation, it must be that

(γi(0)− γi(1))

(
1

r
− V i(qt; q)

)
≤ p(q).

To show that this holds for the low-quality seller, note that

λm

(
1

r
− V L(qt; q)

)
< λm

(
1

r
− V L(q; q)

)
≤ λm

(
1

r
− V L(q∗; q∗)

)
= p(q∗) ≤ p(q) ≤ p(qt),

where the first inequality is by Lemma 2, and the second inequality is by Lemma 1. For the

high-quality seller, since γH(0; q̂0t )− γH(1; q̂1t ) ≤ λm,16 we have

λm

(
1

r
− V H(qt; q)

)
< λm

(
1

r
− V L(qt; q)

)
≤ p(qt),

which holds by Lemma 2. Again, it is optimal for both types to adopt the high-price policy

when qt ∈ Qh.

5 Discussion

5.1 Monotone equilibria

Our model admits a plethora of equilibria, including some unrealistic ones, which requires

us to adopt some restrictions to reduce the set of equilibria. One such restriction is our exclusive

focus on pooling equilibria, which at a glance does not appear to have any solid foundation.

15 As noted above, it is difficult to restrict off-path beliefs by the standard refinement arguments in our

model. The current choice of off-path beliefs reflects an intuitive restriction that there are “no reputation

gains from (upward) deviation.” If the off-path belief q̂1t is very high for some reason, we cannot construct

any monotone equilibrium in pure strategies. Since any equilibrium involving mixed strategies is substantially

more complicated, we leave it for future research. We must emphasize, however, that the prospect of such an

exercise is unclear since any monotone equilibrium must possess similar dynamic properties even if the seller

randomizes in some intermediate range of the belief.
16 The value of γH(0; q̂0t ) − γH(1; q̂1t ) depends on the off-path belief assigned to a downward deviation: if

q̂0t ≥ q, γH(0; q̂0t )− γH(1; q̂1t ) = λm; if not, γH(0; q̂0t )− γH(1; q̂1t ) = λ(m− 1).
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Before we discuss equilibrium properties of our model, we first deal with this issue and argue

that our focus on pooling equilibria is hardly restrictive, as it can be derived from a more

structural restriction. To this end, we consider an intuitive class of equilibria, which we call

monotone equilibria, defined as follows.

Definition 2. An equilibrium is a monotone equilibrium if the value function V i(·) is mono-

tonically increasing for both i = L,H.

The notion of monotone equilibrium is a natural restriction to impose, as it captures an

essential premise of all reputation models, i.e., higher reputation is always better for the seller.

The following statement provides a structural foundation of pooling equilibria in our setting.

Proposition 2. Any pure-strategy monotone equilibrium must be a pooling equilibrium.

Proof. See Appendix A.

It is out of the scope of the current analysis to explore whether there exists any pure-strategy

separating equilibrium. Proposition 2 suggests, however, that even if such an equilibrium

exists, it must possess an unappealing property of reputation non-monotonicity, i.e., the seller’s

continuation payoff decreases when her reputation improves at some point. It should be noted,

though, that the set of monotone equilibria is still potentially very large, as Proposition 2

does not imply that all pure-strategy monotone equilibria have been identified in Proposition

1: for instance, we can construct an equilibrium in which Ql and Qh are disconnected. In

what follows, we say that an equilibrium property holds robustly if it holds in all pure-strategy

monotone equilibria of our model.

5.2 Rating systems and occasional flash sales

One of the main contentions of our analysis is that any rating system entails an unintended

consequence of inducing strategic behaviors from sellers, which in turn introduces noise into

the buyers’ inference process and impedes social learning. In our model, the seller fluctuates

stochastically between the two policies, and hence occasionally engages in a sale to boost her

reputation. From the viewpoint of social learning, the existence of the low-price region creates

an efficiency loss. To see this, suppose q = q, so that σ(q) = (1, 1) for all q ∈ Q. Under this

strategy profile, a good rating is always a sure sign of high quality, and the low-quality seller

exits the market at the earliest timing T (q0, q). As we have seen above, however, this cannot

happen in equilibrium, since the seller always has an incentive to switch to the low-price policy

when the belief gets close enough to the lower threshold. Although we make this point under

a set of restrictions, slow social learning due to the occurrence of occasional flash sales is a

prediction that holds robustly in our setting.
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Proposition 3. In all pure-strategy monotone equilibria, σ(q) = (0, 0) for all q < q∗. More-

over, in all pure-strategy monotone equilibria in which both types of seller offer the high price

with positive probability, σ(q) = (1, 1) for q sufficiently close to 1.

Proof. Let V i(·) denote the value function of a monotone equilibrium. As we will show in

Proposition 5, the threshold equilibrium with q = q∗ maximizes the low-quality seller’s expected

payoff, i.e., V L(q; q∗) ≥ V L(q) for all q ∈ Q. This means that for all q ∈ Q, we have

λm

(
1

r
− V L(q)

)
≥ λm

(
1

r
− V L∗(q)

)
> p(q),

which implies that the incentive compatibility constraint cannot be satisfied in any monotone

equilibrium.

To show that the seller must adopt the high-price policy when the belief is sufficiently high,

fix some ε > 0 such that σ(q) = (0, 0) for all q ∈ (1− ε, 1). Then, in the limit, we have

lim
q→1

V i(q) ≤ lim
q→1

e−rT (q,1−ε)V i(1− ε) = 0,

where the second term is the best-case payoff where the seller receives no good rating until

qt reaches 1 − ε. This means that if there is such an ε, V i(·) must decrease at some point,

contradicting monotonicity. Therefore, the seller must adopt the high-price policy when the

belief is sufficiently high in any monotone equilibrium in which she offers the high price with

any positive probability.

It is important to note that Proposition 3 is not a trivial restatement of Proposition 1: it

says that the seller adopts the low-price policy when qt is below q∗ and the high-price policy

when qt is close to 1 in any pure-strategy monotone equilibrium in which the seller offers

the high price with positive probability,17 including those that do not belong to the class

identified in Proposition 1. What is especially important is the fact that there is a threshold q∗

below which the seller cannot adopt the high-price policy. To see this, suppose that there is a

threshold equilibrium with q < q∗. In this equilibrium, the value of a good rating is extremely

high when qt ∈ [q, q∗) because qt jumps up to 1 after one good rating, which allows the seller

to charge pt = 1 indefinitely. More precisely, the value of a good rating in this range is given

17 We can trivially construct an equilibrium in which the seller never charges a positive price. This equilib-

rium is perhaps of little interest because the seller’s expected payoff is invariably 0, making it highly unlikely

for such a market to survive.
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by

∆V i(qt) = V i(1)− V i(qt),

which is strictly decreasing in qt in any monotone equilibrium by Lemma 2. By definition,

therefore, we have

∆V L(qt) > ∆V L(q∗) = p(q∗) > p(qt),

for any qt ∈ [q, q∗). In a nutshell, the incentive to deviate and (secretly) set a low price to

garner a good rating is too strong at this point.

Observe that our model exhibits two absorbing states: qt = 1 and qt = q. Once qt reaches

either one of them, no additional information will be revealed thereafter, and the belief stays

constant over time. On the equilibrium path, the low-quality seller can never receive a good

rating in Qh: once qt jumps above q, it will gradually fall back. This means that the rating

system never identifies a low-quality seller as a high-quality one, i.e, it never displays a false

negative. On the other hand, there is a strictly positive probability that qt reaches q for both

types. Since the low-quality seller can never reach the upper absorbing state, it is easy to

see that the low-quality seller will eventually be revealed as such as t tends to infinity. The

problem is that there is also a strictly positive probability that the high-quality seller reaches

the lower absorbing state and is forced to exit the market.

The fact that the rating system may display a false positive is the reason why even the

high-quality seller needs to engage in a sale when the belief is closer to the lower threshold.

The occurrence of flash sales by the high-quality seller generates an important welfare implica-

tion that stands in sharp contrast to standard adverse selection models. In standard adverse

selection models, either static or dynamic, buyers usually cannot benefit from the presence of

information asymmetry. This is not the case in our setting because information asymmetry

induces the high-quality seller to hold a sale occasionally, which generates potential surplus for

value shoppers. Since the expected payoff of a price shopper is always 0 by assumption, this

result implies that all buyers are weakly better off with information asymmetry than without.

A formal statement goes as follows.

Proposition 4. The expected payoff of a value shopper is always 0 if q0 = 1 (no asymmetric

information), whereas it is strictly positive in all pure-strategy monotone equilibria if q0 ∈ (q, 1).

Proof. The proof is straightforward. Suppose that the seller is known to be of high quality, so

that qt = 1 for any history of the game. Then, there is clearly no incentive for the high-quality

seller to offer the low price, and the expected payoff of a value shopper is always 0 in any
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equilibrium. If q0 < 1, on the other hand, Proposition 3 states that the high-quality seller

must offer σH(q) = 0 for q ≤ q∗. Since any arriving value shopper earns a payoff of p(qt) in

this region and also there is a strictly positive probability that the belief enters this region,

the expected payoff must be strictly positive in any monotone equilibrium with information

asymmetry.

Two elements of our model are essential for Propositions 3 and 4. First, it is important that

both types of seller we consider are strategic. This is a departure from canonical reputation

models which assume at least one commitment type and analyze how strategic types mimic

the commitment type. If we applied this standard approach to our setting, we would take the

high-quality seller as the commitment type, assuming that she always offers the high price,

and analyze how the low-quality seller mimics the high-quality type. While such an approach

makes the analysis more tractable and clarifies the distortion generated by the low-quality

seller, it cannot describe how the high-quality seller would respond. Our assumption that both

types are strategic allows us to capture dynamic interactions between the two types, which we

believe are crucial for the problem we consider.

Second, it is also important that the rating system is an endogenous information-generating

process in that the value of a good rating depends on the seller’s strategy profile at the time

of purchase. The contrast is clear with Daley and Green (2012) who consider an exogenous

news process in a dynamic lemons market. In their model, there is a belief lower bound which

serves as a reflecting barrier rather than an absorbing state. At the lower bound, low-quality

sellers exit gradually (by accepting a low offer) while high-quality sellers never exit. There is

no false positive in their setting because news arrives exogenously, and high-quality sellers can

afford to wait for the arrival of good news even if the belief is approaching the lower bound. In

our setting, on the other hand, once the belief reaches the lower threshold, the seller can only

sell to price shoppers, and therefore has no chance to improve her reputation thereafter.18

In our model, the value of a good rating is endogenous because the rating system aggregates

information anonymously from buyers with diverse preferences. The importance of anonymity

is evident, as our entire argument rests on the fact that buyers cannot differentiate informative

signals and uninformative ones. To see the role of preference diversity, note that if all buyers

are price shoppers, both types of seller obviously cannot charge any positive price. If all

buyers are value shoppers, on the other hand, there is no incentive to have a sale because the

likelihood of receiving a good rating is unaffected in this case; as such, the seller is willing to

have a sale only when there are buyers who are satisfied by low price. This suggests that the

combination of anonymity and preference diversity is the crucial driving force of the trading

18 Indeed, sellers with low ratings choose to leave the market (Fan et al., 2016).
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dynamics (Proposition 3) as well as of the welfare implication (Proposition 4).

5.3 Seller optimality

As noted above, Proposition 1 does not exhaust all possible forms of pooling equilibrium.

Moreover, even if we restrict attention to the class of equilibria identified in Proposition 1,

there is still a continuum of equilibria. Those different equilibria obviously entail different

efficiency properties, with some more favorable for the seller and others more favorable for

the buyers. In this subsection, we propose a selection criterion in order to identify the most

desirable equilibrium from the viewpoint of the high-quality seller.

Definition 3. An equilibrium is the seller-optimal equilibrium if it maximizes the high-quality

seller’s expected payoff among all pure-strategy monotone equilibria.

The notion of seller optimality is an important criterion for platforms when the seller’s

participation decision is endogenous: if the high-quality seller’s expected payoff from some

platform is not high enough, she may choose not to join the platform in the first place; in

the worst case, the initial prior q0 might dip below q, which forces the platform to shut down

entirely. The following result provides a characterization based on this notion.

Proposition 5. The threshold equilibrium with q = q∗ is the seller-optimal equilibrium. More-

over, it also maximizes the low-quality seller’s expected payoff.

Proof. See Appendix A.

Proposition 5 demonstrates the importance of Proposition 1 as it suggests that, if there is

an equilibrium that does not belong to the class in Proposition 1, then we can identify one in

that class that is more favorable to the seller. This result stems from the fact that the seller

has an excessively strong incentive to deviate unilaterally to the low-price policy: as noted in

Section 5.2, even if the high-price policy benefits the seller, she would be tempted to secretly

undercut the price and garner a good rating in the high-price region. As a consequence, the set

of beliefs in which the high-price policy benefits the seller is always larger and strictly contains

the set of beliefs in which the incentive compatibility constraints are satisfied for both types.

This observation implies that the seller-optimal equilibrium is the one in which the seller offers

the high price as much as possible, i.e., the threshold equilibrium with q = q∗.

5.4 Comparative statics

We now conduct some comparative statics to derive more specific implications of our model.

Since there is a continuum of equilibria, our comparative statics will focus on the seller-optimal
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equilibrium characterized in Proposition 5, i.e., we focus on how the value of q∗ changes in

response to changes in underlying parameters. Note that although we look at the seller-optimal

equilibrium, the value of q∗ itself has relevance beyond this particular equilibrium because this

indicates the lower bound of all possible upper thresholds.

Proposition 6. (i) There exists some r > 0 such that q∗ = 1 for all r < r and q∗ → q as

r → ∞, where q∗ is strictly decreasing in r for r ∈ [r,∞). (ii) There exists some λ > 0 such

that q∗ = 1 for all λ > λ and q∗ → q as λ→ 0. (iii) There exists some m > 0 such that q∗ = 1

for all m > m and q∗ → q as m→ 0.

Proof. We prove each part of the proposition in turn.

(i) Given some qt < 1, the expected payoff at each τ > t is bounded away from 1. Therefore,

as r increases, 1
r
−VL(q∗) must decrease. To satisfy (6), q∗ must decrease, which simultaneously

increases the left-hand side of (6) and decreases the right-hand side. Note also that the right-

hand side of (6) is bounded by 1, while the left-hand side goes to infinity as r goes to 0.

Therefore, when r is close enough to 0, (6) does not have a solution, so that q∗ = 1 by

definition. Finally, as r → ∞, 1
r
− VL(q∗) converges to 0, which implies that q∗ must also

converge to q.

(ii) As λ approaches 0, since 1
r
− V L(q∗) is bounded from above, the right-hand side of (6)

must also go to 0. The solution q∗ thus converges to the lower bound q as λ goes to 0. Also,

when λ becomes sufficiently large, (6) does not have a solution, so that q∗ = 1 by definition.

(iii) The proof is essentially the same as in case (ii) and is omitted.

The first result concerns the effect of the discount rate r. It is intuitively clear that as r

increases (more discounting), the seller’s preferences move towards the immediate revenue and

away from the future gains. Correspondingly, there is less incentive to offer the low price, and

the low-price region reduces. At the other end, when r is small enough, (6) does not admit a

solution, and q∗ = 1. This presents an intriguing situation given that the expected payoff is 0

for both types in this equilibrium. Nevertheless, when q∗ = 1, it is impossible to construct a

pooling equilibrium with q < 1 because the incentive to (secretly) set the low price and garner

a good rating is too strong, not just for the low-quality seller but also for the high-quality

seller.

The discount rate r can be interpreted in different ways, ranging from the seller’s patience

to the (exogenous) probability of exiting the market; in principle, it can include all factors

that make the seller more or less forward-looking. When the seller is more forward-looking,

the frequency of sales increases, which generally hurts the seller but benefits the value shoppers

as we have seen above. This suggests a counterintuitive possibility that the seller is made better
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off, while the buyers are worse off, in a more competitive market environment where the seller

is driven out of the market with higher frequency.

A comparative statistics result that might be of particular interest to platform designers is

the effect of λ, which measures the frequency of providing a rating after a transaction. Intuition

suggests that an increase in λ would provide more information to buyers and expedite social

learning; indeed, platforms usually adopt various measures to encourage buyers to leave ratings.

As it turns out, though, this type of intervention can backfire in our setting: with a higher

λ, the seller expects to receive more ratings in a given interval of time, which generates a

similar effect to a decrease in r and raises q∗. Table 1 shows this general tendency where an

increase in λ induces an increase in q∗.19 This finding leads to a conclusion, also emphasized

in other works such as Daley and Green (2012), Kaya and Kim (2018), Ekmekci et al. (2022),

and Acemoglu et al. (2022), that more information does not necessarily improve learning in

strategic environments.

λ 0.2 0.4 0.6 0.8

q∗ 0.53 0.70 0.84 0.90

Table 1: Effect of λ on q∗

Finally, we also discuss the effect of m, which can be interpreted as measuring the extent

of buyer heterogeneity. Proposition 6 suggests that there is an equilibrium in which the upper

threshold q is arbitrarily close to q as the number of price shoppers goes to 0. To see this,

consider the case of homogeneous buyers where m = 0 and all arriving buyers are value

shoppers. Then, γL(s) = 0 and γH(s) = λ for both s = 0, 1, and there is no benefit from

having a sale. In equilibrium, therefore, σ(q) = (1, 1) for all q ∈ Q, which obviously benefits

the seller but hurts the buyers. This is a formal representation of the argument made in Section

5.2 that an important qualifier of Proposition 4 is m > 0, i.e., there is some preference diversity

among buyers.

5.5 Buyer preferences and asymptotic learning

As noted above, one distinctive feature of our model is that the value of a good rating is

endogenously determined: one good signal is enough to identify the high-quality seller when

the belief is above q while it has no reputation value once it gets below q. Because of this

feature, even the high-quality seller may be forced to exit the market, i.e., social learning not

19 The values in the table are computed by using the value functions derived in Appendix B. The parameter

values used in the exercise are r = 0.2, m = 0.3, and q = 1
3 .
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only takes time but may also fail in the long run. Since only the high-quality seller can generate

surplus, the likelihood of this event obviously yields a crucial welfare implication.

To measure the extent of this efficiency loss, let P i
t ≡ P[qt > q | i] be the probability that

the type i seller stays in the market at time t in a given equilibrium, and let P i ≡ limt→∞ P
i
t .

Since the low-quality seller never reaches the upper absorbing state, we clearly have PL = 0,

i.e., the low-quality seller is eventually driven out of the market. The asymptotic efficiency of

learning is thus determined by PH which we call the asymptotic probability of learning. Note

that there are infinitely many belief paths that can be realized under each equilibrium strategy

profile. The following result shows, however, that the asymptotic probability is independent of

the seller’s strategy and depends only on two parameters, q0 and k, in any pooling equilibrium.

Proposition 7. In all pooling equilibria, the asymptotic probability of leaning is

PH = 1−
q(1− q0)
q0(1− q)

= 1− k1− q0
q0

.

Proof. Although the low-quality seller exits the market at various points in time, the distri-

bution of exiting times actually does not matter for the asymptotic probability. Fix some

equilibrium σ∗, and let f i(t) be the probability of the type i seller exiting at time t under

σ∗. Define a discrete set T of t such that f i(t) > 0. Under this formulation, the asymptotic

probability can be written as P i = 1−
∑

t∈T f
i(t). Since the low-quality seller eventually exits

at some point, we know
∑

t∈T f
L(t) = 1.

Observe that in any pooling equilibrium, both types of seller are driven out of the market

if and only if qt reaches q. Therefore, for each t ∈ T , if the seller is forced to exit, we have

qt = q ⇔ q0f
H(t)

q0fH(t) + (1− q0)fL(t)
= q,

which can be written as

q0(1− q)fH(t) = q(1− q0)fL(t).

Summing them up for all t ∈ T then gives

q0(1− q)(1− PH) = q(1− q0)(1− PL) = q(1− q0).

Solving this for PH yields the result.

What is remarkable about this result is that the asymptotic probability of learning is
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constant across all pooling equilibria of this model. Observe that the asymptotic probability

depends linearly on and is strictly decreasing in k. In other words, aside from the seller’s initial

reputation q0, the asymptotic probability is determined by how selective the value shoppers

are. If the value shoppers care little about quality so that k goes to 0, the rating system can

almost surely identify the high-quality seller, despite its obvious limitations on information

transmission. If they are very selective, on the other hand, learning opportunities are limited,

and social learning fails asymptotically.

6 Extensions

In our baseline model, the buyers are only given coarse information, i.e., ratings which

only indicate that some buyers are satisfied. What then happens if we allow the buyers to

have access to more information? In this section, we discuss two possibilities—one in which

the buyers can observe past prices (instead of only the current one) and the other in which

the buyers are given the option to leave bad ratings—to address this issue and illuminate the

impact of providing more information to buyers.

6.1 Observable price history

Suppose that in addition to the history of ratings, the buyers can also observe the history

of prices, i.e., each buyer t can observe the whole history of prices {pτ}tτ=0. Alternatively, since

the price when there is no rating is irrelevant, we may simply assume that the price at the

time of purchase is appended to each rating; as we show below, these two cases are actually

equivalent. In our baseline model, given the current belief qt, there are two possible belief

realizations for the next instant, q−t and q+t , depending on whether a good rating is left or not.

When the price information is appended to a rating, there are three possible belief realizations,

depending not only on whether a good rating is left, but also on whether the price is high or

low. We denote these new possibilities by qs+t which indicates the updated belief when the

seller receives a good rating with st = s.

With this augmented rating system, we can construct an equilibrium in which the low-

price policy is never adopted. The reason for this is that the current price is now observable to

the future buyers as well, which suppresses the temptation to (secretly) undercut the price to

obtain a good rating. In this equilibrium, price shoppers never purchase, and hence the learning

process is as efficient as when there are no price shoppers (although this is detrimental to the

value shoppers as we have discussed above).

Proposition 8. Consider a rating system in which the price at the time of purchase is appended
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to each rating. Under this rating system, there exists an equilibrium in which σ(q) = (1, 1) for

all q ∈ Q.

Proof. The proof is straightforward. Given that both types of seller always adopt the high-

price policy, st = 0 is off the equilibrium path. For clarity, suppose we assign q̂0t = 0 to all

deviations. We then have q0+t = 0 even if the seller receives a good rating.20 This entirely

eliminates any deviation incentive, because this information is now transmitted to the future

buyers (in contrast to the case where the price can only be observed by the current buyer),

and the seller is forced to exit the market immediately after receiving a good rating.

Although not many platforms provide this information, there are actually several price-

tracking tools available online such as CamelCamelCamel, Honey, and Keepa. Proposition 8

indicates that these price trackers not only help buyers find the best timing to make a purchase

but also have the potential to improve social learning. More generally, the efficiency of social

learning can be improved substantially by providing the “right information” to buyers.

We must note, however, that it could be a tall order to implement such an outcome in

practice, because the augmented rating system requires far more cognitive effort from buyers.

The argument circles back to our original premise that the rating system is subject to various

communication frictions, which makes it difficult to convey detailed information to all buyers.

In fact, the augmented rating system requires buyers to figure out how ratings and prices are

correlated over time, whereas many buyers in reality do not bother to go into such details. It

is also not entirely clear whether there exist any summary statistics that are intuitively and

immediately understandable for all buyers. The simple rating system we consider has a definite

advantage in this sense since at any t such that qt < 1, a buyer simply needs to count how

many good ratings the seller has received.21

6.2 Bad ratings

The previous subsection shows that a rating system which provides two-dimensional infor-

mation can work quite well. Here, we enrich the rating system in a different way, by making

it “finer” with more rating categories. Suppose that, in addition to leaving a good rating with

20 Of course, this is a rather extreme, though simple, way to construct an equilibrium. A more conservative

approach would be to suppose that the buyers believe that the two types deviate randomly with equal proba-

bility such that q̂0t = qt. In this case, the two types receive a good rating with the same probability and hence

q̂0t = qt. Since the value of a good rating is 0, no type has an incentive to offer the low price.
21 The fact that qt < 1 implies that the seller has not received a good rating in the high-price region.

Given this, the current belief depends only on the number of good ratings due to the memoryless property of

exponential distribution.
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probability λg when a buyer is satisfied, he can also leave a bad rating with probability λb

if he is unsatisfied. We say that a buyer is unsatisfied when his utility from consumption is

negative. Given this classification, a value shopper is unsatisfied when he purchases from the

low-quality seller, regardless of the price, implying that only the low-quality seller can receive

a bad rating. Therefore, after a bad rating is left, qt drops down to 0, and the seller is forced

to exit the market. On the other hand, if no rating is left, the belief is updated to

q−t = qt − (γH(σH(qt))− γL(σL(qt))− λb)qt(1− qt)dt,

where for q̂st ≥ q,

γL(s) = λgm(1− s), γH(s) = λg + λgm(1− s).

Notice a slight difference from (1), where we now have λb in the second term. If λb < λg, the

belief would go down when there is no rating, but at a slower rate than in our baseline model

where bad ratings are not allowed, i.e., λb = 0. In this case, the analysis remains essentially

the same. The only notable difference is that the low-quality seller may receive a bad rating,

which drives her out of the market immediately. Since this event occurs whenever the good is

purchased by a value shopper, it is as if the low-quality seller is driven out of the market at a

constant rate for some exogenous reasons. The possibility of bad ratings then yields an effect

that is equivalent to an increase in the discount rate r, as long as she offers a price that is

acceptable for value shoppers. Other than this, the tradeoff involved in setting a low price still

works in the same way as before, and an equilibrium characterized by some upper threshold q

still exists. Furthermore, Proposition 6 implies that the presence of bad ratings benefits the

high-quality seller while it hurts the value shoppers.

If λb ≥ λg, on the other hand, the belief increases as long as the seller receives no rating,

i.e., “no news is good news.” Unless the seller receives a bad rating, in which case qt drops to

0, qt will always stay above q for any q0 ≥ q. This completely changes the incentive structure

of the seller, and may produce equilibria that are very different from what we characterize in

Proposition 1. However, though theoretically possible, it is highly unlikely that buyers leaves

bad ratings with higher frequency than good ones in online platforms, given that reviews are

predominantly positive (Nosko and Tadelis, 2015; Tadelis, 2016; Zervas et al., 2021); even at

some intuitive level, it is hard to conceive of a situation where a seller establishes her reputation

by having received no ratings. In all likelihood, λb may be positive but should lie somewhere

between 0 and λg, so that “no news is bad news” is the appropriate specification in online

platforms. It is nonetheless of some interest, from the purely theoretical point of view, to
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investigate this “no news is good news” case because this difference in the specification of

learning often leads to markedly different dynamics.22

Finally, one may conjecture that the efficiency of social learning can be improved by ex-

tending the rating scale in the other direction, e.g., creating an additional category of “very

good.” Suppose that a buyer can leave a very good rating when he is “very satisfied,” i.e., when

his utility is above some positive threshold. For instance, in our setting, we may allow a value

shopper to leave a very good rating when he purchases from the high-quality seller at the low

price. While this rating system allows the high-quality seller to separate from the low-quality

seller, and discourages the low-quality seller from having a sale, it does not fundamentally solve

the problem at hand. In our model, we assume that the utility of a price shopper is always 0

simply for clarity, but the same problem persists if we introduce a third type, say a bargain

shopper, who derives a very high utility regardless of the quality when he can purchase at the

low price. Ultimately, this problem boils down to the fact that we cannot compare utilities

across individuals. Different buyers not only have different preferences, with some emphasizing

quality and others emphasizing price, but also have different evaluation standards—different

rules to map a realized utility to a rating—and hence it is fundamentally infeasible for plat-

forms to device a clear rule of what should constitute a good rating, no matter how elaborate

the rating system becomes.

7 Conclusion

Under a rating system, buyers share their evaluations anonymously without knowing the

identities of the raters. When the buyers have diverse preferences, this creates a room for

strategic sellers to exploit. This paper explores the consequences of this inherently coarse

nature of rating systems and its efficiency implications on social learning. In our model,

both types of seller switch back and forth between the two pricing policies and occasionally

hold a flash sale to garner good ratings. This form of strategic pricing introduces noise into

the buyers’ inference process and impedes social learning but at the same time generates a

non-trivial welfare effect that stands in sharp contrast to standard adverse selection models:

information asymmetry, when combined with preference heterogeneity among buyers, strictly

benefits buyers who value quality. Since information is generated endogenously, social learning

fails in the long run, as the high-quality seller is forced to exit the market after a string of bad

luck. Incentivizing buyers to leave ratings exacerbates the seller’s strategic pricing incentive

and can be detrimental to social learning.

22 See, for instance, Board and Meyer-ter-Vehn (2013) who show that reputation dynamics can be markedly

different between these two cases.
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Appendix A: Proofs

Proof of Proposition 1 : In the main text, we prove Proposition 1 based on Lemmas 1 and 2.

Here, we provide the proof of each statement.

Proof of Lemma 1. Consider two hypothetical situations: in situation 1, the thresholds are

given by (q′, q′) with initial prior q′; in situation 2, they are given by (q′′, q′′) with initial prior

q′′. Assume
(1−q′)q′

q′(1−q′) =
(1−q′′)q′′

q′′(1−q′′) , so that T (q′, q′) = T (q′′, q′′) ≡ T . Since we here consider

different lower thresholds, with abuse of notation, we write V i(·; q, q) to explicitly denote its

depends on the lower threshold as well.

We first show V i(q′; q′, q′) < V i(q′′; q′′, q′′). To this end, note that in the absence of any good

rating, the seller exits the market at time T in both scenarios by assumption. Moreover, since

both types of seller adopt the low-price policy when the belief is below the upper threshold,

the probability of receiving a good rating, and hence entering the high-price region, is the same

between the two situations. Since q′′ > q′, the seller can charge a higher price in situation 2

than in situation 1. Also, in the high-price region, a single good rating allows the seller to

earn a continuation payoff of 1
r
. Therefore, V i(q′′; q′′, q′′) > V i(q′; q′, q′). Given this, we lower

q′′ to q′ so as to compare the two situations with the same lower threshold. As this change

only makes the seller’s exit less likely, we in general have V i(q′′; q′, q′′) > V i(q′′; q′′, q′′), which

in turn implies V i(q′′; q′, q′′) > V i(q′; q′, q′). As this holds for any q′′ > q′ and q′ = q′′ = q,

V i(q; q, q) is increasing in q.

Proof of Lemma 2. We first prove V H(q) > V L(q) for all q ∈ Q. For any belief higher than

q, the high-quality seller always has a higher probability of receiving a good rating under the
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pooling strategy considered here. This implies that, starting with any qt and at any time

t′ > t, the belief distribution of the high-quality seller first-order stochastically dominates that

of the low-quality seller. Moreover, since the instantaneous payoff weakly increases with qt

(and strictly increases for qt ∈ Qh), the expected payoff of the high-quality seller is always

higher than that of the low-quality seller at any time t′ > t, which proves the claim.

We next show that V i(·) is increasing. For this purpose, consider two initial beliefs q0 = q′

and q0 = q′′, with q′′ > q′, and compare V i(q′) and V i(q′′). Let {q̃τ (q)}∞τ=0 denote the belief

path that is realized when it starts from q and the seller receives no good rating afterwards.

First consider the case q′′ > q′ > q, so that the seller charges the high price. With no good

rating, both q̃t(q
′) and q̃t(q

′′) gradually decrease. However, as long as q̃t(q
′′) > q̃t(q

′) ≥ q,

the seller charges a positive price under both cases, and receives a good rating with equal

probability. Moreover, the belief will jump to 1 with a single good rating, in which case the

seller receives a continuation payoff of 1
r
. This means that before time T (q′, q), the expected

payoff under p′′ is higher than that under q′. If the seller has received no good rating, we have

q̃t(q
′′) > q > q̃t(q

′) for t > T (q′, q). The comparison in this case is harder because although the

seller can charge a higher price under q′′, the probability of receiving a good rating is lower.

To show that the expected payoff under q′′ is higher in this contingency, we need to show that

V i(q′′) > V i(q′) when q′′ > p > q′, i.e., V i(q′′) > V i(q′) when q′′ > q′ > p if V i(q′′) > V i(q′)

when q′′ > p > q′. We will deal with this case in the final step of the proof.

Next consider the case where q > q′′ > q′. The argument in this case is similar to the

previous one. Since the seller charges the low price under both cases, the probability of receiving

a good rating is the same. However, given that q′′ > q′, it requires fewer good ratings to jump

back to the high-price region under q′′ than under q′. Moreover, the probability of hitting the

lower threshold is higher under q′ than under q′′. Again, this implies that V i(q′′) > V i(q′)

when p > q′′ > q′ if V i(q′′) > V i(q′) when q′′ > p > q′.

The argument above implies that the proof boils down to establishing V i(q′′) > V i(q′) when

q′′ > p > q′. Note that when the seller receives a good rating before time min{T (q′′, q), T (q′, q)},
the belief under q′′ reaches 1 while the belief under q′ jumps to a value strictly smaller than 1.

Therefore, the expected payoff under q′′ is higher than that under q′. If the seller has received

no rating until T (q′′, q), the seller charges a higher price under q′′ but has a lower probability of

receiving a good rating. Also, since q̃t(q
′′) > q ≥ q∗, we know that λm(1

r
−V L(q, q)) < p(q̃t(q

′′)).

Given that V H(q; q) > V L(q; q), this implies λm(1
r
− V H(q, q)) < p(q̃t(q

′′)) as well. Therefore,

by (4), the high-price policy yields a higher continuation payoff for both types of seller than the

low-price policy before time T (q′′, q). Note that, if the seller were to adopt the low-price policy

before reaching q, her continuation payoff would be exactly the same as the continuation payoff

under q′. Since the seller can do even better by adopting the high-price policy, V i(q′′) > V i(q′)
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when q′′ > p > q′, which completes the proof.

Proof of Proposition 2. The following proof exploits the value functions derived in Appendix

B. It is clear that there cannot be a separating equilibrium in which the low-quality seller offers

the high price and the high-quality seller offers the low price, i.e., σ(qt) = (1, 0) for some qt.

Under this profile of strategies, the belief jumps up to 1 after one good rating. The low-quality

seller surely finds it profitable to deviate since λm(1
r
− V L(qt; q)) > p(q̂1t ) = 0. The remainder

of the proof thus focuses on ruling out a separating strategy in which the low-quality seller

offers the low price and the high-quality seller offers the high price.

Consider σ(qt) = (0, 1) for some qt. We then have q̂1t = 1 and q+t < 1. The proof is still

straightforward in this case if m ≥ 1 because q+t ≤ qt by (2), which implies ∆V i(qt) < 0.

Since λm∆V i(qt) ≤ 0 < p(q̂t) = 1, a deviation to the high-price policy is profitable for the

low-quality seller. In what follows, we thus assume m < 1.

We now claim that if σ(qt) = (0, 1) for some qt, then there must be some interval of qt such

that σ(qt) = (1, 1). Suppose otherwise. Then, it is either σ(qt) = (0, 1) or σ(qt) = (0, 0) for all

qt, in which case the low-quality seller’s expected payoff is always 0. She would then deviate

to the high-price policy to receive a positive payoff every time the high-quality seller offers the

high price. This means that there must be some qt such that

λm

(
1

r
− V L(qt)

)
≤ p(qt).

Given that both V L(·) and p(·) are increasing, we can define

z ≡ inf

{
qt | λm

(
1

r
− V L(qt)

)
≤ p(qt)

}
.

Then, for all qt ∈ (z, 1),

λm∆V L(qt) ≤ λm

(
1

r
− V L(qt)

)
≤ p(qt) < 1. (8)

This implies that, by (4), we cannot have σ(qt) = (0, 1) for any qt ∈ (z, 1).

For notational simplicity, define

V̇ i
t ≡

dV i

dq
˙̃qt,

as the time derivative of the value function given that there is no rating. Following (13) and
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(14) derived in Appendix B, for qt such that σ(qt) = (1, 1), it must be

V̇ L
t = rV L(qt)− p(qt) > −1.

Also, for qt such that σ(qt) = (0, 0), it must be that

V̇ L
t = rV L(qt)− λm∆V L(qt) > −1

by (8). This argument establishes that V̇ L
t > −1 for all qt ∈ [z, 1).

For qt < z, since λm(1
r
− V L(qt)) > p(qt), we cannot have σ(qt) = (1, 1). Define

z ≡ sup {qt | σ(qt) = (0, 1)} .

Note that z < z by their definitions and by (8). Moreover, σ(qt) = (0, 1) requires that

λm∆V L(qt) > 1. For qt < z, only σ(qt) = (0, 0) or σ(qt) = (0, 1) is possible. On the other

hand, for qt > z, we cannot have σ(qt) = (0, 1) by definition. Therefore, for qt ∈ (z, z), it must

be that σ(qt) = (0, 0). If σ(qt) = (0, 0) for all qt ≤ z, the proof is complete. If not, by the

definition of z, we can find a small number ε > 0 such that σ(qt) = (0, 1) and

V̇ L
t = rV L(qt)− λm∆V L(qt) > −

λm

r
, (9)

for all qt ∈ (z − ε, z), given that V L(q+t ) < 1
r
. The equality in (9) comes from the fact that for

qt ∈ (z − ε, z), since σL(qt) = 0, the continuation payoff can be written as

V L(qt) = λmV L(q+t )dt+ (1− rdt)(1− λmdt)V L(q−t ),

which can be reduced to

λm∆V L(qt) = rV L(q−t )− V̇ L
t .

Also, for qt ∈ (z − ε, z), it will take at most 1
λ(1−m)

ln 1
m

for the belief to drop from q+t to qt.
23

23 Note that q+t can be either smaller or larger than z. If it is smaller, then σ(q+t ) = (0, 1). If it is larger,

then σ(q+t ) = (0, 0). The high-quality seller has a higher probability of receiving a good rating in the latter

case, since price shoppers can also leave good ratings. This means that when no rating is left after time t, the

belief will decrease faster when q+t > z than when q+t < z. In this case, the length of time it takes for the belief

to drop back to qt given by t̃ such that λqte
−λt̃

λqte−λt̃+λm(1−qt)e−λmt̃
= t̃, which yields t̃ = 1

λ(1−m) ln 1
m .
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If λm ≤ r, then V̇ L
t > −1 for all qt ∈ (z − ε, z) by (9), and therefore

λm∆V L(qt) = −λm
∫ t

t−t̃(qt)
V̇ L
τ dτ ≤ λ

λm

λ(1−m)
ln

1

m
=

m

1−m
ln

1

m
< 1,

given m < 1, which in turn implies that λm∆V L(qt) < 1. Therefore, a deviation to the high-

price policy is profitable for the low-quality seller. This implies that for qt ∈ [z − ε, z], it must

be σ(qt) = (0, 0) as well. We can then repeat this process to show that σ(qt) = (0, 0) for all

qt ≤ z − ε, which completes the proof.

If λm > r, we can only ensure V̇ L
t > −1 for qt > z. In this case, we first show that there

exists some l > 0 such that V̇ L
t > −1 for qt ∈ (z − l, z). To this end, consider qt = z − l for

some l ∈ (0, z). Then,

λm∆V L(qt) = −λm
∫ t

t−T (z,z−l)
V̇ L
τ dτ

= −λm
[∫ t−tl

t−T (z,z−l)
V̇ L
τ dτ +

∫ t

t−tl
V̇ L
τ dτ

]
≤ λm

[(
1

λ(1−m)
ln

1

m
− tl

)
+ tl

λm

r

]
=

m

1−m
ln

1

m
+ λmtl

(
λm

r
− 1

)
,

where the inequality comes from the facts that: (i) V̇ L
t > −1 for qt > z; (ii) V̇ L

t > −λm
r

for

qt ∈ (z − l, z] by (9); (iii) T (qt, q) ≤ 1
λ(1−m)

ln 1
m

. If

T (z, z − l) <
1− m

1−m ln 1
m

λm(λm
r
− 1)

,

then λm∆V L(qt) < 1. Therefore, if l < l(z), where l(q) is such that

1

λ
ln
q[1− (q − l(q))]
(q − l(q))(1− q)

=
1− m

1−m ln 1
m

λm(λm
r
− 1)

,

then λm∆V L(qt) < 1, which implies V̇ L
t > −1. Since l(q) is continuous and strictly positive

on q ∈ [z, z], by the extreme value theorem (Royden and Fitzpatrick, 2010, p.26), there exists

l ≡ minq∈[z,z] l(q) > 0, which proves the claim.
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This argument suggests that

V̇ L
t = rV L(qt)− λm∆V L(qt) > −1,

for qt > z − l. By applying the same argument, we can next show that given that V̇ L
t > −1

for qt > z − l, there again exists l > 0 such that for qt ∈ (z − 2l, z − l], λm∆V L(qt) < 1. By

going through this procedure repeatedly, we can have λm∆V L(qt) < 1 for some qt ∈ (z− ε, z).
However, this contradicts the previous fact that σ(qt) = (0, 1) for qt slightly below z. Therefore,

we cannot have σ(qt) = (0, 1) for any qt ∈ Q in equilibrium, and the only possibility is

σ(qt) = (0, 0) for all qt < z. This proves that no separating strategies can constitute an

equilibrium, and hence that only pooling equilibrium is possible.

Proof of Proposition 5. For the following proof, we denote by V i(·;σ) the value function of the

type i seller under strategy σ. Let σ∗ be the strategy of the seller-optimal equilibrium and

V i∗(·) ≡ V i(·;σ∗) for brevity.

To obtain the seller-optimal equilibrium, consider a social planner who determines (Ql, Qh)

to maximize the type i seller’s expected payoff among all pure-strategy pooling equilibria.

Alternatively, the social planner determines whether to implement σ(qt) = (0, 0) or σ(qt) =

(1, 1) at each qt. Note that the social planner can implement σ(qt) = (0, 0) at any qt while she

can implement σ(qt) = (1, 1) only if qt is sufficiently large. Specifically, the social planner can

implement σ(qt) = (1, 1) only if

λm

(
1

r
− V i(qt;σ)

)
≤ p(qt), (10)

for both i = L,H. We impose (10) as a constraint because if this fails to hold, there is no

way to induce both types to offer the high price in a pooling equilibrium. Note that in any

monotone equilibrium with strategy σ, there is a unique qi(σ) such that

λm

(
1

r
− V i(qi(σ);σ)

)
= p(qi(σ)).

Under this formulation, the incentive compatibility constraint for σ(qt) = (1, 1) can be written

as qt ≥ max{qL(σ), qH(σ)}.
We first claim that the value function of the seller-optimal equilibrium must satisfy

V H∗(qt) = max
s∈{0,1}

{p(qt)sdt+ e−rdtE[V H∗(qt + dqt) | s]}
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for qt ≥ max{qL(σ∗), qH(σ∗)},24 where

E[V i∗(qt + dqt) | s] = γi(s)dtV i(q+t (s, s)) + (1− γi(s)dt)V i(q−t (s, s)).

Alternatively, for qt ≥ max{qL(σ∗), qH(σ∗)}, the social planner chooses the high-price policy if

and only if

e−rdtE[V H∗(qt + dqt) | s = 0] ≤ p(qt)dt+ e−rdtE[V H∗(qt + dqt) | s = 1],

which is in the limit reduced to

λ(1 +m)
(
V H∗(q+t (0, 0))− V H∗(qt)

)
≤ p(qt) + λ

(
1

r
− V H∗(qt)

)
. (11)

Now suppose on the contrary that there is a subset Q0 ⊂ [max{qL(σ∗), qH(σ∗)}, 1] such that

for qt ∈ Q0, (11) holds strictly but σ∗(qt) = (0, 0).25 We can then pick a q′ ∈ Q0 and construct

an alternative strategy σ′ such that σ′(q′) = (1, 1) and σ′(qt) = σ∗(qt) for all qt 6= q′. Then,

when (11) is satisfied, we have V i(qt;σ
′) > V ∗(qt). This means that the incentive compatibility

constraint is relaxed in that qi(σ′) < qi(σ∗). This is, however, a contradiction because σ′ raises

the expected payoff while satisfying the incentive compatibility constraint. This shows that

(11) is a necessary condition for the seller optimality.

Given this, we now claim that the seller-optimal equilibrium must be a threshold equi-

librium. Suppose on the contrary that there are q and q′ < q such that σ∗(q) = (0, 0) but

σ∗(q′) = (1, 1) in the seller-optimal equilibrium. Observe that σ∗(q′) = (1, 1) implies q′ ≥ qH .

Observe also that qt ≥ max{qL(σ∗), qH(σ∗)} implies (11) because V H∗(qt) ≤ 1
r
. These two facts

in turn imply σ∗(q) = (1, 1) because q > q′ ≥ qH and (11) must hold at q, a contradiction.

Therefore, the seller-optimal equilibrium must be a threshold equilibrium where σ∗(qt) = (1, 1)

if and only if qt ≥ max{qL, qH}. Then, by statement (i) of Lemma 2 and the definition of q∗,

we have qL = q∗ > qH , suggesting that the threshold equilibrium with q = q∗ achieves the

seller optimality.

By the same argument, to maximize the low-quality seller’s expected payoff, we must have

e−rdtE[V L∗(qt + dqt) | s = 0] ≤ p(qt)dt+ e−rdtE[V L∗(qt + dqt) | s = 1],

24 Notice a difference from the seller’s problem where each type chooses her own policy taking the other

type’s strategy as given. Here, a unilateral deviation by one type is not considered, and the maximum price

the seller can charge depends on the public belief rather than the private belief as a consequence.
25 When (11) holds with equality, the social planner is indifferent between the low-price and high-price

policy. In this case, we assume that the social planner implements the high-price policy.
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which becomes

λm
(
V L∗(q+t (0, 0))− V L∗(qt)

)
≤ p(qt).

Again, since V L∗(q+t (0, 0)) < 1
r
, this condition holds if qt ≥ qL. Given that the seller-optimal

equilibrium must be a threshold equilibrium, this condition holds for all qt ≥ qL = q∗. This

shows that the threshold equilibrium with q = q∗ also maximizes the low-quality seller’s ex-

pected payoff.

Appendix B: The value functions

In this appendix, we show how to derive the value function for each type, which we use

for the numerical example in Section 5.4 as well as for Proposition 2. Given the equilibrium

strategy of our focus, this can be done piecewise for Qh and each Qn. In what follows, we

denote by {q̃τ (q)}∞τ=0 the realized belief path, starting from q, when the seller receives no good

rating as defined in the proof of Lemma 2.

First, if the high-quality seller receives a good rating for any qt ∈ Qh, she can reveal her

true type and earns a continuation payoff of 1
r
. For an interval [t, t + dt), this event occurs

with probability λdt. The value function of the high-quality seller must hence satisfy

V H(qt) =

(
p(qt) +

λ

r

)
dt+ (1− rdt)(1− λdt)V H(q−t ).

Taking the limit, we obtain the following first-order ordinary differential equation:

p(qt) +
λ

r
= (r + λ)V H(qt)−

dV H

dq
˙̃qt,

where ˙̃qt = −λqt(1− qt) is the rate of change of q̃t. Solving this differential equation gives

e−(r+λ)T (q,q
∗)V H(q) = V H(q∗)−

∫ T (q,q∗)

0

e−(r+λ)τ
(
p(q̃τ (q

∗)) +
λ

r

)
dτ, (12)

for any q ∈ Qh, where q ≤ q∗ ≡ q(1+m)
q(1+m)+(1−q)m .26 Similarly, the value function of the low-quality

26 For the purpose of this proof, it suffice to construct a value function for q ∈ [q, q∗], because qt never goes

above q∗ on the equilibrium path (unless the initial prior q0 is greater than q∗). Obviously, we can derive V i(q)

for q ∈ (q∗, 1) by following the same procedure.
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seller must satisfy

V L(qt) = p(qt)dt+ (1− rdt)V L(q−t ),

which leads to

p(qt) = rV L(qt)−
dV L

dq
˙̃qt.

Again, solving the differential equation gives

e−rT (q,q
∗)V L(q) = V L(q∗)−

∫ T (q,q∗)

0

e−rτp(q̃τ (q
∗))dτ, (13)

for any q ∈ Qh.

We now go down the belief space and consider each Qn in turn. For qt ∈ Qn, the value

function of the type i seller must satisfy

V i(qt) = γi(0)V i(q+t )dt+ (1− rdt)(1− γi(0)dt)V i(q−t ),

which leads to

γi(0)∆V i(qt) = rV i(q−t )− dV i

dq
˙̃qt,

where ˙̃qt = −λmqt(1− qt). Solving this differential equation, we obtain

e−(r+γ
i(0))T (q,q′)V i(q) = V i(q′)−

∫ T (q,q′)

0

e−(r+γ
i(0))τγi(0)V i(q̃t(q

′))dτ, (14)

for q′, q ∈ Qn.

Given these, we can obtain the value function for the whole belief space. We first obtain

V i(q) for q ∈ Qh by assigning a value V i(q∗) to (12) and (13). Then, by continuity of the

value function, we can further derive V i(q) for q ∈ Q1, q ∈ Q2, and so forth, until we pin down

V i(q). Note that the value of V i(q) continuously increases with the initial value of V i(q∗). The

correct value of V i(q∗) should be the one that leads to V i(q) = 0.
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