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Abstract

We present and conduct a novel experiment on a multi-period beauty contest game.

Leveraging the multi-period feature, we propose a new methodology to test the forward-

lookingness of expectations by studying how expectations are revised over time. Our

experimental results show that expectation formation is indeed forward-looking. More-

over, we uncover a new effect of strategic environment by exploring how expectations

are formed in our dynamic environment: only when the game exhibits strategic com-

plementarity do participants use extrapolation and expect increasingly higher prices in

the future. This finding implies that the mode of expectation formation is endogenous

to the economic environment of the participants.
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1 Introduction

Rational expectations have long been a cornerstone in macroeconomic modeling. Over the

last five decades, a substantial body of macroeconomic and experimental economics litera-

ture has evaluated the rational expectations equilibrium (REE), hypothesis. One notable

finding from the macroeconomics literature is that models with the strong form of rational

expectations can lead to erratic implications, such as the forward guidance puzzle. Con-

sequently, researchers have become increasingly skeptical of this assumption, proposing al-

ternative frameworks (for example, Angeletos and Lian, 2018; Farhi and Werning, 2019;

Garćıa-Schmidt and Woodford, 2019).

Experimental evidence from “learning-to-forecast” experiments further questions the va-

lidity of the REE hypothesis. These experiments, pioneered by Marimon and Sunder (1993),

reveal that participants’ behaviors often diverge from the rational expectations benchmark,

especially when the aggregate outcome is determined endogenously by individual forecasts

(Hommes et al., 2005; Heemeijer et al., 2009; Bao et al., 2017).1 The presence of expecta-

tional feedback – where individual expectations influence the aggregate outcome, which in

turn shapes future expectations – can lead to dynamics that are better captured by models

incorporating backward-looking expectation formation (Anufriev and Hommes, 2012; Evans

et al., Forthcoming).

However, most existing learning-to-forecast experiments are essentially of the single-

period type.2 Participants only need to forecast the outcome of today or in one future

1Note that unlike experiments in which participants actually trade in the market (e.g., Smith et al., 1988;
Haruvy et al., 2007; Akiyama et al., 2017; Asparouhova et al., 2016; Crockett et al., 2019), set prices (e.g.,
Fehr and Tyran, 2008; Noussair et al., 2015; Orland and Roos, 2013, 2019; Petersen, 2015), or set quantities
(e.g., Bosch-Domènech and Vriend, 2003; Huck et al., 1999, 2004; Offerman et al., 2002), in learning-to-
forecast experiments, participants do not trade, set prices or quantities; they only forecast. This eliminates
the need for participants to trade or set prices (or quantity) optimally and thus allows us to focus on their
expectation formation and its aggregate consequences. See Bao et al. (2013) for a comparison between
learning-to-forecast experiments and those where participants need to decide on the quantities (which the
authors call “learning-to-optimize” experiments). The learning-to-forecast experimental framework has been
used to investigate policy-relevant questions such as the causal impacts of the central bank communication on
the expectation and the aggregate outcomes (e.g., Kryvtsov and Petersen, 2021; Mokhtarzadeh and Petersen,
2021).

2There are several studies, mostly recent, that study multi-period experiments. We discuss them in detail
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period (e.g., tomorrow), and the realized outcome is a function of submitted forecasts re-

garding this single period (see Bao et al., 2021, for a survey).3 As a result, it is difficult

to provide useful insights for macroeconomists who study expectation formation in a multi-

period environment and policymakers who need to know how agents form expectations to

design better policies in a dynamic world. In typical macroeconomic models and dynamic

games more generally, individuals forecast not only actions of others in one period but also

their actions in multiple future periods, and these forecasts about multiple future periods

determine current outcomes. The single-period framework does not enable us to analyze how

these series of expectations change in such a multi-period environment, such as in response

to news about future shocks.

In order to fill this gap in the literature, we propose and conduct a novel experiment

of a multi-period beauty contest game where participants submit a sequence of forecasts

for multiple future periods. Building on this new experimental design, we make two main

contributions. First, we propose a new methodology to test the forward-lookingness of

expectations. Second, we explore how individuals form their expectations in a multi-period

beauty contest game.

Our experiment is motivated by the core component of the canonical New-Keynesian

model (e.g., Woodford (2003) and Gaĺı (2015), initially developed by Calvo (1983)). In our

theoretical model, there are many firms, and each firm faces the same linear demand curve.

The demand for a given firm depends on its own price and the aggregate price level. While

an increase in the firm’s own price reduces the demand for that firm, demand may increase

or decrease when other firms raise their prices. Suppose for a moment that firms can set

their prices freely. In this case, they choose prices to maximize profit, taking other firms’

prices as given. An REE price is a fixed point in this process and is often referred to as the

optimal flexible price.

later.
3This approach stands in stark contrast to survey-based studies on expectation formation, which elicit

expectations of the same future periods multiple times and study their evolution (e.g., Coibion et al., 2018).
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Following Calvo (1983), we now introduce a friction that limits firms’ ability to choose

an optimal flexible price. Instead, firms can only change their prices with a probability of

1− θ. This constraint induces them to take future prices into account because future profit

depends on current price choices; if prices cannot be adjusted later, firms must compete in

future periods with the price selected today. Hence, they must incorporate future market

conditions and price expectations into their current decisions. This mechanism introduces

an additional dynamic feedback effect, since beliefs about future prices influence today’s

actions.

We transform our theoretical model into a multi-period version of the “learning-to-

forecast” game as in Marimon and Sunder (1993). In each period, participants submit

forecasts for prices in multiple future periods all at once. These forecasts determine not

only participants’ payoffs but also the realized aggregate prices. Following the literature

on learning-to-forecast game experiments, participants merely need to anticipate aggregate

prices accurately. Their payoffs are maximized when they submit accurate forecasts each

period, regardless of whether the game features strategic substitutes or complements.

We adopt a three-by-two between-subjects experimental design that varies two key di-

mensions. First, we consider the strategic environment, examining treatments that feature

strong strategic complementarity, and those with equally strong and even stronger degrees

of substitutions. Second, we manipulate the timing of information about upward shifts in

the demand curve which we call shocks. In some treatments, participants face these shocks

unexpectedly; in others, they are announced two periods in advance. This design allows us

to investigate both how the strategic environment affects behavior and whether participants

form forward-looking expectations in response to anticipated shocks.

We begin by examining the effects of the strategic environment. This analysis serves

as a check to ensure that our findings align with those of existing one-period learning-to-

forecast games, rather than as a novel contribution.4 We find that well-documented patterns

4Existing learning-to-forecast experiments, such as Heemeijer et al. (2009) and Bao et al. (2017), demon-
strate that, on one hand, prices deviate substantially from those expected under REE when there is a strong
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of existing papers are replicated within our new experimental framework, thereby validating

the internal consistency of our setup before we move on to more substantive analyses.

Having replicated the known results of the strategic environment within our experimental

framework, we next examine the forward-looking nature of expectation formation. A key

innovation of our design is that participants submit a sequence of forecasts extending into

future periods, including those after an announced shock has occurred. For example, when a

shock scheduled two periods ahead is announced in advance, we can analyze how participants

revise their forecasts following the shock’s realization. This feature highlights the novelty of

our approach; rather than relying solely on forecasts made for the immediate next period,

we explicitly capture adjustments that unfold after anticipated events have materialized.

Individual responses to these announcements exhibit considerable heterogeneity. While

some participants anticipate prices that exceed the levels predicted by the REE, others

appear to disregard the announcements altogether. Such diversity in behavior underscores

the importance of focusing on average responses to determine whether, despite heterogeneity,

participants as a whole adjust their forecasts in a manner consistent with forward-looking

reasoning.

Our analysis demonstrates that, on average, participants do respond to the announce-

ments in line with forward-looking behavior. This finding provides new evidence of forward-

lookingness in expectation formation, offering a distinctive contribution to the literature.

Having established that participants exhibit forward-lookingness in their forecast revi-

sions, we shift our focus from average patterns to the finer details of individual expectation

formation. Specifically, we turn to periods absent of shocks and their announcements to

positive feedback between expectations and prices and on the other hand, converge quickly to REE prices
when there is a negative feedback between the two. Such an effect of strategic environment has also been
demonstrated in a price-setting game (Fehr and Tyran, 2008; Cooper et al., 2021; Funaki et al., 2023), a
duopoly game (Potters and Suetens, 2009), and one-shot beauty contest games (Sutan and Willinger, 2009;
Hanaki et al., 2019). Recently, however, Evans et al. (2022) and Anufriev et al. (2022a) have demonstrated
that eliciting forecasts for a longer horizon stabilizes the price dynamics under strategic complementarity,
although not to the extent that prices converge to REE prices. While the frameworks of Evans et al. (2022)
and Anufriev et al. (2022a) are different from ours, we would like to investigate whether the effect of a
strategic environment is observed in our multi-period framework.
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investigate how participants form beliefs in a dynamic environment under “normal” con-

ditions.5 For this objective, we estimate a reduced-form forecasting rule that encompasses

various heuristics like adaptive expectations and trend following, allowing coefficients to vary

across different forecast horizons.

The regression results show that most participants rely heavily on the most recent price

as a reference point, with coefficients close to one, and they also consider their past forecast

errors, indicating self-referential expectations. Notably, the influence of recent price changes

becomes more pronounced as the forecast horizon extends, especially in positive feedback

settings, where participants increasingly depend on trend-following behavior for longer-term

forecasts. This finding suggests that in positive feedback environments, participants expect

price increases to persist, potentially leading to de-anchored long-run inflation expectations.

Conversely, in negative feedback settings, participants view price increases as temporary, and

their expectations remain relatively stable across horizons.

Taken together, these findings indicate an important policy implication: expectation

formation depends qualitatively on whether the strategic environment features complemen-

tarity or substitutability. As a result, central banks must understand the strategic context

in which agents are operating to effectively conduct monetary policy and mitigate the risks

of expectation de-anchoring.

To the best of our knowledge, only a few mostly recent papers elicit forecasts for multiple

future periods in the framework of learning-to-forecast experiments.6 Colassante et al. (2020)

elicit a series of forecasts for multiple future periods; however, unlike our framework, the

forecasts beyond that for the next period do not determine the market outcome.

Evans et al. (2022) study the impact of forecasting horizon on the stability of the aggre-

gate outcome. Their experiment is based on Lucas’s asset pricing model (1978). Participants

5Unfortunately, it is difficult to study how each individual participant responded to the shocks and their
announcements since we only have two observations for each participant.

6There are, however, several papers that elicit forecasts for multiple future periods in the asset market
experiments pioneered by Smith et al. (1988). In these experiments, participants not only forecast future
prices but actually trade the asset; see, e.g., Haruvy et al. (2007) and Akiyama et al. (2014, 2017).
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submit their forecast for the average price over multiple future periods, instead of the fore-

casts about the prices for each of these future periods, which determines the prices. They

mix short-horizon (those who forecast only one period ahead) and long-horizon (those who

forecast over one to ten periods ahead) participants and change the fraction of each across

treatments. They find that while markets with only short-horizon forecasters exhibit sub-

stantial and prolonged deviation from the REE, those markets with even a modest share of

long-horizon forecasters converge.

Adam (2007), Rholes and Petersen (2021), and Petersen and Rhoes (2022) study a New

Keynesian learning-to-forecast experiment. In their experiments, the one- and two-period-

ahead forecasts of inflation rates elicited from participants determine current outcomes.

These studies differ from our paper in how they model the effects of these forecasts on to-

day’s equilibrium outcomes. In Rholes and Petersen (2021) and Petersen and Rhoes (2022),

two forecasts impact the outcome in the opposite way. The one-period ahead forecast is

positively related to the current outcome, and the two-period ahead forecast is negatively

related.

The paper most closely related to ours is Lustenhouwer and Salle (2022). Their experi-

ment is based on a New Keynesian model with an inflation-targeting interest rate rule and

a government sector. Participants submit their forecasts for output (in terms of its per-

centage deviation from the “normal” level) in multiple future periods. Like our study, these

forecasts determine the current outcome. Furthermore, those authors examine the impact

of the announcement regarding future policy changes on the expectations, as we do in our

experiment. In their study, participants receive only qualitative information regarding how

their forecasts, along with policy variables, collectively influence the output. In our study,

however, participants are informed about how their forecasts collectively affect the outcomes.

The rest of the paper is organized as follows. Section 2 presents a model of a multi-period

beauty contest based on Calvo (1983). The experiment’s design and procedure are presented

in Section 3, while Section 4 shows the REE as the benchmark. The results of the experiment
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are summarized in Section 5, including a discussion of implications for modeling expectation

formation. Section 6 concludes.

2 A Model of a Multi-Period Beauty Contest

We introduce our theoretical model, which serves as the foundation for our experiment design.

Consider a continuum of monopolistically competitive firms uniformly distributed over the

interval [0, 1]. Each firm i selects a price pi; for simplicity, we omit the subscript i. The

demand function for an individual firm is

D (p;P ) ≡ [a− bp+ cP ]+ , (1)

where P represents the aggregate price given by

P =

∫ 1

0

pidi. (2)

We assume that a > 0, b > 0, and c ∈ R, with the condition

−∞ < c ≤ 2b,

which ensures the existence of an REE price in the single-period version of the game. The

parameter c can be positive or negative, which governs the degree of strategic interaction

among firms. All firms share an identical linear technology function with a unit production

cost denoted by κ.

Each firm maximizes the present value of its profit but faces pricing frictions; firms cannot

adjust their prices every period and can only do so with probability 1− θ. If a firm cannot

change its price for T consecutive periods, it is allowed to adjust its price with certainty in

the next period.7 Additionally, with probability γ ∈ [0, 1), all firms may be forced to exit

the market. This assumption enables us to conduct experiments within a finite period that

7In New Keynesian models, T is set to infinity. However, in our experiment, we aim to ensure that
participants can reset their prices. Therefore, we choose a finite T .
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effectively replicate those of an infinite period (Duffy, 2017).

Firms that can reset their prices in period t solve the following optimization problem:

max
pt

T−1∑
s=0

((1− γ)θ)s (pt − κ)D (pt;Pt+s) . (3)

Recall that in every period, firm i can re-optimize its price with probability 1− θ. Since the

continuation payoffs in these future events are not a function of pt, they do not appear in

objective function (3).

Now, we formally define a rational expectation equilibrium. A rational expectation equi-

librium is a pair of prices (pt, Pt) such that given the aggregate price (Pt)t, pt solves the

maximization problem (3), and the consistency, Pt = pt, holds for all t.

We establish the following proposition:

Proposition 1. The optimal price for firms that can reset their prices at period t is given by

pt =
T−1∑
s=0

((1− γ)θ)s∑T−1
k=0 ((1− γ)θ)k

(α + βPt+s) , (4)

where

α =
1

2

(
κ+

a

b

)
β =

1

2

c

b
.

Moreover, the aggregate REE price evolves according to

Pt = (1− θ) pt + θPt−1. (5)

Proof. Taking the first-order conditions of the maximization problem in equation (3), we

obtain Eq. (4). To derive Eq. (5), recall that the aggregate price in Eq. (2) is given by

the average of individual prices and that only fraction 1 − θ of firms can reset their prices.

Because they are randomly chosen, the average price among firms that cannot reset their

price today is Pt−1. Firms that can reset their prices choose the same price level given by

Eq. (4). So, average price Pt satisfies Eq. (5).

Notably, α+βPt represents the optimal price in period t, if the firms can reset their prices
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freely. This price is often referred to as the optimal flexible price. Therefore, the optimal

price in our environment, as shown in Eq. (4), constitutes a weighted average of the optimal

flexible prices. Eq. (4) captures the dynamic thought process within firms; the optimal price,

pt, depends on current actions by others, as well as future actions, represented by (Pt+s)
T−1
s=0 .

Because of this inter-period interdependence, today’s aggregate price is also influenced by

expectations of future prices. This feature leads to the model being referred to as a dynamic

beauty contest model (e.g., Angeletos and Lian, 2018).

By contrast, when firms can adjust prices without friction, θ = 0, the dynamic aspect

disappears, and firms focus solely on predicting other firms’ current actions. Our proposed

experiment, inspired by this model, differs from existing single-period experiments by re-

quiring participants to anticipate not only others’ actions in period t but also in subsequent

periods t+ 1, . . . , t+ T − 1.

3 Experimental Design

3.1 Setup

In our experimental setup, we employ groups of six participants.8 These participants, indexed

by i, engage in the game over multiple periods. At the beginning of each period, they submit

their price forecasts for the next five periods including the current one; that is, T = 5.9 For

example, in the first period, participants submit their price forecasts for periods 1 to 5. In the

second period, they provide forecasts for periods 2 to 6, and so on. We denote the forecast of

the price in period k submitted in period t as f i
t,k. While not all submitted forecasts impact

the participants’ rewards, as detailed below, all five forecasts have the potential to do so

when submitted.

8One may consider a group of six to be too small for an experiment to have macroeconomic implications.
However, the main results of existing learning-to-forecast experiments do not change even if conducted with
larger groups of 20 to 30 participants (Bao et al., 2020) or even with close to 100 participants (Hommes et
al., 2021).

9All the forecasts are constrained to be integers.
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Let πi
t denote the reward of participant i in period t, as determined by

πi
t =

100

|F i
t − Pt|+ 1

,

where Pt is the realized price in period t, and F i
t is the payoff-relevant forecast of participant i

in period t, as defined below.10 If the reward is not an integer, then it is rounded to the

nearest integer.

In the first period t, the payoff-relevant forecast F i
t is set to F i

1 = f i
1,1. In period 2, the

payoff-relevant forecast F i
2 is determined probabilistically: with probability 1− θ, the newly

submitted set of forecasts become payoff-relevant, yielding F i
2 = f i

2,2; with probability θ, the

previous forecasts remain payoff-relevant, resulting in F i
2 = f i

1,2. This process continues in

subsequent periods. If the same set of forecasts has been payoff-relevant for five consecutive

periods (i.e., a firm cannot reset its price for five consecutive periods), then the new set of

forecasts submitted in the next period becomes payoff-relevant with certainty.

This adjustment process is motivated by the multi-period beauty contest model in Sec-

tion 2. The probability of firms being given an opportunity to re-optimize their prices in

period t, 1− θ, is translated into the probability of the new set of forecasts becoming payoff-

relevant for participants. The horizon over which firms optimize, T , in the model is equivalent

to the number of future periods, in addition to the current one, over which our participants

forecast in each period. As in Marimon and Sunder (1993) and Bao et al. (2017), we set

the payoffs so that the equilibrium path of the Nash equilibrium (subgame perfect Nash

equilibrium) corresponds to the REE of the multi-period beauty contest game in Section 2.

See Appendix A for a formal proof.

To illustrate how submitted forecasts determine the payoff-relevant forecasts, consider

the hypothetical forecasts of participant i shown in Table 1. Each row lists the forecasts

submitted in period t. For example, in period t = 1, the participant submits forecasts of the

10This way of rewarding forecast accuracy is also used in, for example, Adam (2007), Assenza et al. (2021),
and Anufriev et al. (2022b).
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Forecast Periods k
Period t k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 F i

t

t = 1 10 11 12 12 12 – – – 10
t = 2 – 12 11 12 13 13 – – 11
t = 3 – – 9 10 11 10 10 – 9
t = 4 – – – 13 12 12 10 10 13

Table 1: Hypothetical Submitted Forecasts

prices for periods 1 to 5:

(
f i
1,1, f

i
1,2, f

i
1,3, f

i
1,4, f

i
1,5

)
= (10, 11, 12, 12, 12) .

In period 1, this set of forecasts becomes payoff-relevant so that the payoff-relevant forecast

is F i
1 = 10. In period 2, the participant submits new forecasts f i

2,2, · · · , f i
2,6. Suppose that

the new forecasts do not become payoff-relevant. Then, F i
2 = f i

1,2 = 11. If the new set

of forecasts becomes payoff-relevant in periods 3 and 4, then the latest forecasts determine

the payoff-relevant forecasts. Thus, F i
3 = f i

3,3 = 9 and F i
4 = f i

4,4 = 13.11 The reward for

the participant is determined by the difference between the payoff-relevant forecasts F i
t and

aggregate price Pt.

We now explain how the aggregate price is determined in our experiments. In our ex-

periments, all participants submit their forecasts simultaneously every period, and these

submitted forecasts jointly determine aggregate price, Pt. Based on the model in Section 2,

the aggregate price is given by

Pt =
1

6

( ∑
i cannot reset

pit−1 +
∑

i can reset

T−1∑
j=0

((1− γ)θ)j∑T−1
l=0 ((1− γ)θ)l

(
α + βf i

t,t+j

))
, (6)

where α and β are parameters of the model and specified later. Eq. (6) is the empirical-

counterpart of Eq. (2). The first term on the right-hand side of Eq. (6) represents the prices

of participants who are unable to adjust their prices. The second term corresponds to the

prices of participants who can reset their prices. The mapping of submitted forecasts to the

11If the new forecasts in period 3 and 4 do not become payoff-relevant, then F i
3 = f i

1,3 = 12 and F i
4 =

f i
1,4 = 12.
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optimal price is given by Eq. (4).

On the screen in which participants submit their forecasts, the values of α and β are

presented clearly. On the same screen, participants are informed of the realized Pt and the

payoff-relevant forecast Ft in all past periods. See Appendix D for the screenshots.

In our experiment, we set the reset probability θ to 50% and assume that the game ends

with probability γ = 0.05 at the end of each period.12 Participants are rewarded based

on the total points they earn throughout the game. Moreover, we set T = 5. Eq. (6) can

be used for providing justification for T = 5. Note that when θ = 1/2 and γ = 0.05, the

impact of f i
t,t+4 on the optimal price is minimal. This is because the weight of f i

t,t+4 is

((1−γ)θ)4/
∑4

k=0((1−γ)θ)k , which is approximately 2.7%. Therefore, allowing participants

to make longer forecasts is unlikely to change the results.

While it is conceptually trivial to end a game stochastically, implementing such a prob-

abilistic termination rule in a laboratory experiment poses challenges, because the game

might end too soon to study the evolution of the forecasts in response to shocks, or the game

might not end within the scheduled time for participants. To address these challenges, we

use the block random termination method (Fréchette and Yuksel, 2017) commonly used in

experiments involving indefinitely repeated games.

Under this method, participants play the game in blocks of B periods. During each

block, the game proceeds without participants knowing whether or not it has ended. Only

at the end of a block are participants informed if the game actually ended at some point

during that block.13 If the game has ended during the block, they receive the sum of their

payoffs πi
t up to the period when the game ended. For example, if the game actually ended

in period τ where τ < B, participants are rewarded based on
∑τ

t=1 π
i
t. If the game has not

12Due to an oversight in the experiment, the price was determined with γ = 0 instead of γ = 0.05. The
incorrect price determination equation was also communicated to participants in the instructions. As shown
in Appendix B, however, this oversight results in the REE price differing only slightly (by less than 1).
Furthermore, because Pt is rounded to the nearest integer, we believe this oversight does not affect the
experimental outcomes.

13In our experiment, this information is communicated to the participants with the sequence of random
numbers that determine the termination of the game in each period displayed on the same screen.
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ended, it continues into the next block of B periods. They are also informed that the game

can continue beyond B periods; if that happens, they play the game for at least another B

periods. In our experiment, we set B = 20, so participants are told they will play the game

for at least 20 periods.

Furthermore, since game durations may differ among groups, participants are told that

the multi-period game can be repeated if all groups complete a game within 30 minutes from

the first game’s start. When a new game starts, participants are randomly re-grouped into

six (requiring everyone in the session to wait until all groups have finished), and they play

with the same parameter values.14 If the game is repeated multiple times, one of them will

be randomly selected for payment.15

During the games, we introduce (a maximum of) two shocks to α, which affects the

demand size, during the first two blocks of 20 periods (one shock in each block). The

literature suggests that under strategic substitution where prices often converge to the steady

state level, it may take several periods to do so. To allow for the prices to stabilize before

introducing a shock, we introduced the first shock at the beginning of period 14 and the

second shock, if reached, at period 29. We assume that the initial flexible REE price is 65,

after which it becomes 85 and 110 after the first and the second shocks, respectively. We

choose α to match these price levels for each value of β.

3.2 Treatments

Our three-by-two between-participants experiment focuses on altering two main aspects of

the games. The first is the degree of strategic interaction. We consider the games where

β takes values in {0.9,−0.9,−1.8} . That is, the games exhibit either strategic complemen-

14We choose random re-matching because repeating the game with the same parameters could lead to
coordination based on prior outcomes.

15To minimize variation in experiment duration and participant payments across sessions, we followed the
procedure of Duffy and Puzzello (2014, 2022) by predefining the random number sequence. Predefining it
ensured that all sessions repeated two blocks and concluded after the first game. Consistent with Duffy and
Puzzello (2014, 2022), this information was not disclosed to participants.
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tarity (positive feedback) or substitution (negative feedback).16 We also explicitly consider

a case of strong substitution with β = −1.8. This is motivated by the fact that New Key-

nesian models may exhibit strong substitutability, as demonstrated by Garćıa-Schmidt and

Woodford (2019).

The second is the announcement of the shocks to α. We examine treatments both with

and without pre-announcement of shocks. In the treatment without pre-announcement,

participants are informed of the new value of α only when the shocks occur – that is, in

period 14 for the first shock and in period 29 for the second shock. In the treatments with

pre-announcement, participants are informed of the new value of α in period 12 for the first

shock and in period 27 for the second shock. This announcement specification is desirable

because announcing the shocks two periods in advance allows us to examine participants’

forecasts for prices after the shocks, both before and after the announcements.17

3.3 Procedures

Our experiments were conducted online using oTree (Chen et al., 2016), an open source

platform for web-based interactive tasks. Participants joined from their own locations instead

of our physical laboratory. We used Zoom to manage and coordinate the experiments.18

Once participants had received general instructions about the online experiment and

were prepared, the prerecorded instruction video was shown on their screen. Although they

did not receive physical copies of the instruction slides, participants were informed that they

could access the same slides after the video finished, up until they finished the comprehension

quiz. To begin the first game, all participants had to correctly answer all six quiz questions.

Final rewards were provided through Amazon Gift Cards (e-mail version).

16Because participants are restricted to submitting integer forecasts, multiple equilibria may arise in cases
of strong strategic complementarity. Specifically, when β = 0.9, multiple equilibria exist. However, the set
of equilibria is limited, and this multiplicity does not significantly impact our results. Therefore, we do not
address this issue explicitly.

17With this specification, 75% (= 1−(0.5)2) of participants can change their forecasts before the realization
of the shocks.

18See Appendix C for details regarding how we conducted our online experiment.
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We recruited participants, who were students at Osaka University, using ORSEE (Greiner,

2015). An English translation of the instruction slides, examples of the decision screens, and

the comprehension quiz are provided in Appendix D.

4 Benchmark Analysis: Rational Expectations Equilibrium

We take rational expectations as our benchmark. As shown in Proposition 1, the REE aggre-

gate price denoted by
(
PREE
t

)
is characterized by Eqs. (4) and (5) given the initial condition,

P−1. Unlike the theoretical analysis, parameter α is time-varying in our experiment. Thus,

we need to generalize Proposition 1 to accommodate this case. It is straightforward to show

that the REE price with time-varying α satisfies the following equation:

PREE
t = (1− θ)

T−t−1∑
k=t

((1− γ)θ)k−t∑T
s=0((1− γ)θ)s

(
αt,k + βPREE

t+k

)
+ θPREE

t−1 , (7)

where αt,k is the expected value of α in period k from the period-t perspective. When

the shocks are not announced, αt,k = αt,t for all k and t. When the shocks occur, then

αt,t suddenly increases. Suppose that the shocks are announced. Then αt,k changes when

the shocks are announced, not when they occur. Again, the announcement of the shocks

matters only if the game is a multi-period beauty contest game. If firms do not face any

pricing frictions θ = 0, then the announcement has no effect on the REE price.

Figure 1 shows the REE price sequence
(
PREE
t

)
t
when the shocks are announced two

periods in advance (left panel) and when the shocks are not announced (right panel). These

figures are intuitively understood. When the game demonstrates strategic complementarity

(β > 0), the transition to new steady state equilibrium prices is slower due to Calvo pricing

friction. Participants recognize that others may not adjust their prices swiftly because of

the pricing friction. Since individual optimal prices are positively related to others’ pricing

decisions, participants prefer to adjust their prices slowly.

By contrast, when the game exhibits strategic substitution (β < 0), the mechanism
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Figure 1: Aggregate Price Pt under Rational Expectation

Note: The solid vertical lines indicate when the two shocks occur, while the dotted lines in the left panel
show when these shocks are announced.

operates in the opposite direction. If some agents fail to adjust their prices, the prevailing

price becomes excessively low. This low price incentivizes agents to increase their prices.

Consequently, the transition to the new steady state equilibrium price occurs more rapidly.

5 Results of the Experiment

We conducted our experiments in April and May 2023, involving a total of 294 participants.19

Table 2 summarizes the number of groups per treatment. Each experiment lasted for ap-

proximately 90 minutes, and participants earned 2482 JPY (approximately 18 USD based

on the exchange rate at the time), including a show-up fee of 500 JPY on average.20 The

average payment varied across the value of β. It was lowest in the treatments with β = −1.8

(1778 JPY), followed by 2806 JPY and 2844 JPY in treatments with β = −0.9 and β = 0.9,

19However, in one session with announcement of the future shock with β = 0.9, one participant decided to
leave the experiment while answering the comprehension quiz. The experimenter replaced this participant,
allowing the experiment to continue. We exclude this group’s data from the analyses, but because we did
the same treatment in which 30 participants showed up, we have a total of eight groups for this treatment.
Furthermore, in one session without announcement of the shock and β = −1.8, one of the participants lost
his or her internet connection around period 11 and switched to a different mode of connection. As a result,
an error occurred, and the experiment could not continue for this group. In addition, in the same session,
an error occurred for a group in period 40. Thus, we only have data for seven groups for this treatment,
with one group missing the prices and forecasts submitted in period 40. Finally, in the treatment with
announcement of the shocks and β = −0.9, one group encountered a technical problem, and the experiment
stopped in period 33. Thus, while we have data for eight groups for this treatment, one lacks the data from
period 34 onward.

20The exchange rate between points earned during the experiments and JPY was 1 point = 2 JPY.
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Table 2: Number of Groups per Treatment

Treatments β = 0.9 β = −0.9 β = −1.8

With Announcement 8 8a 8

Without Announcement 8 8 7b

Notes: “With Announcement” represents the results where the shocks were announced, while “Without

Announcement” shows the results where the shocks were not pre-announced. a: One group stopped at

t = 33 due to a technical problem. b: One group stopped at t = 39 due to a technical problem.

respectively.

5.1 Aggregate Price Dynamics

We begin by presenting the dynamics of prices observed in each treatment in Figure 2. Each

line represents a group within each panel. As observed, irrespective of whether an announce-

ment is made, the prices follow the REE price closely when the game exhibits strategic

substitutes, β < 0. When the game exhibits strategic complements, β > 0, they persis-

tently deviate from the REE prices. As shown by Fehr and Tyran (2008), these features can

be understood intuitively. When the game exhibits strategic substitutes, the best response

function has a positive slope, and participants have a strong motive to choose a similar price

level of others. Consequently, the realized price remains close to the initial expectation of

others’ actions. Therefore, the initial expectation fulfills itself. This self-fulfilling mechanism

makes the adjustment slow, leading to persistent deviations from the REE price. When

the game exhibits strategic substitutes, then this mechanism does not operate. Participants

want to choose higher (lower) prices when others choose lower (higher) prices. Thus, their

initial expectation is not self-fulfilling unless it coincides with the REE price, and they often

quickly converge to the REE price. Note that our experimental findings are also found in

existing learning-to-forecast experiments, such as those by Heemeijer et al. (2009) and Bao

et al. (2012).
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(a) Positive Feedback: β = 0.9
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(b) Weak Negative Feedback: β = −0.9
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(c) Strong Negative Feedback: β = −1.8

Figure 2: Realized Aggregate Prices Pt

Notes: The red lines represents the aggregate price under the rational expectation. The solid vertical lines
indicate when the two shocks occur, while the dotted lines in the left panel show when these shocks are
announced.
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It is noteworthy that aggregate prices become more stable when the game has weak

strategic substitutes (β = −0.9). Conversely, with strong strategic substitutes, aggregate

prices hover around the REE price but exhibit greater deviations. This phenomenon likely

stems from difficulties in expectation coordination. When β is sufficiently negative, the

realized price depends sensitively on expectations. This sensitivity results in the observed

instability of prices.

5.2 Effect of the Degree of Strategic Interaction

We proceed to quantify the degree of deviation from the REE prices by following the method-

ology developed by Stöckl et al. (2010), which allows us to verify that our results align with

evidence from existing one-period learning-to-forecast games. We compute the relative ab-

solute deviation (RAD) and the relative deviation (RD) as proposed in their study. For each

group g, RADg and RDg are calculated as follows:

RADg =
1

K

∑
t

∣∣Pg,t − PREE
t

∣∣
PREE
t

RDg =
1

K

∑
t

Pg,t − PREE
t

PREE
t

,

where Pg,t is the realized period t price for group g, and PREE
t is the REE price in period

t.21 K represents the total number of periods (40 except for the two groups that faced a

technical problem).

Figure 3 shows the empirical cumulative distributions of RADs (top) and RDs (bottom)

in the treatments with (left) and without (right) announcement. In each panel, the dis-

tributions for each β are shown. The top panels show that, regardless of the existence of

announcement, RADs are positive for each β. Applying the signed-rank test to the dis-

tributions of RADs, the observed prices are significantly different from the REE prices.22

21Here we use the REE price based on the price determination equation used in the experiment, namely,
the one that set γ = 0. See footnote 12.

22They are all significantly different from zero at the 5% level, according to the signed-rank test. The
P -values are 0.018 for β = −1.8 without announcement and 0.012 for the other five treatments.
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Furthermore, the distributions of RADs are ranked in terms of first-order stochastic dom-

inance; regardless of whether an announcement was made, the distribution under β = 0.9

stochastically dominates those under β = −1.8 and β = −0.9. This indicates a higher

likelihood of larger deviations from the REE prices under β = 0.9 compared to the other

treatments, and the differences between the three treatments are statistically significant both

with and without announcement.23 Therefore, deviations from the REE prices are small-

est under weak substitution (β = −0.9), larger under strong substitution (β = −1.8), and

largest under strategic complementarity (β = 0.9).

The bottom panels build on these findings by showing that RDs are also larger under

strategic complementarity than under strategic substitution, mirroring the pattern observed

for RADs. However, in contrast to the results for RADs, there is no longer a statistically

significant difference between β = −0.9 and β = −1.8.24 This statistical insignificance

comes from the fact that RDs, by incorporating the direction of deviation from the REE

price, become nearly zero when prices fluctuate around the REE price, as in the case where

β = −1.8.25

5.3 Forward-Lookingness of Expectations

We now examine whether forecasts have responded to the announcement of future shocks.

To accomplish this objective, we analyze forecast revisions before and after those shock

announcements. By studying these revisions, we can assess whether individuals have reacted

to the announcements or disregarded them. In particular, if there are no revisions to forecasts

23p < 0.05 based on the Kruskal–Wallis test for both cases. For pairwise comparisons, p-values based on
the two-tailed Mann-Whitney test are always less than 1%.

24For pairwise comparisons, p-values based on the two-tailed Mann-Whitney test are 0.0002 (β = 0.9 vs.
β = −0.9), 0.0012 (β = 0.9 vs. β = −1.8), and 0.1520 (β = −0.9 vs. β = −1.8) without announcement, and
0.0650 (β = 0.9 vs. β = −0.9), 0.0379 (β = 0.9 vs. β = −1.8), and 0.2345 (β = −0.9 vs. β = −1.8) with
announcement.

25In fact, RDs are not significantly different from zero for β = −1.8 without announcement (p = 0.6875,
signed-rank test), while they are significantly different from zero at the 5% significance level for the other five
other treatments (p = 0.0391 for β = 0.9 with announcement and 0.0078 for the remaining four treatments,
signed-rank test).
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Figure 3: Deviations from the Rational Expectation Prices

Note: p-values of Kruskal-Wallis test are reported.
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after an announcement, it suggests that the announcement was ignored.26

To operationalize this analysis, we define our measures of forecast revisions as follows.

We focus on the forecasts for changes in prices during periods 14 and 29, P14 − P13 and

P29 − P28, and analyze how these forecasts are revised before and after the associated shock

announcements. These revisions are mathematically represented as

∆f i
1 = Ei [P14 − P13 | t ≤ 13]− Ei [P14 − P13 | t ≤ 11] , and (8)

∆f i
2 = Ei [P29 − P28 | t ≤ 28]− Ei [P29 − P28 | t ≤ 26] , (9)

where the conditional expectations are taken over the relevant information sets. For example,

Ei [P14 − P13 | t ≤ 13] represents the expected value of the change of the price in period

14 conditional on all information available up to period 13. Thus, the differences in the

conditional expectations, ∆f i
1 and ∆f i

2, capture the revisions of the forecasts of the price

changes P14 − P13 and P29 − P28 in response to the announcement in period 12 and 27.27

The conditional mean is calculated based on information available through periods 13 and 28

instead of periods 12 and 27, aiming to minimize noise by including two post-announcement

observations.

By examining whether the values of these revisions are zero or not, we can infer that

individuals are responding to the announcements. In particular, observing nonzero revisions

strongly suggests that participants do react to the announcements. At the same time, because

our analysis focuses on revisions tied to price changes, there is another way to interpret

nonzero revisions: announcements exert a greater influence on forecasts for more distant

future prices relative to the near term. 28 However, it is important to emphasize that

identifying the forward-lookingness through these revisions is a sufficient but not strictly

26Note that this condition is sufficient but not necessary. As explained below, even if an individual revises
her forecasts, she might do so for another reason and ignore the announcement.

27It is important to emphasize that we cannot compare ∆f i
1 and ∆f i

2 with the actual price changes in our
data, P14 − P13 and P29 − P28. This is because ∆f i

1 and ∆f i
2 are revisions of the forecasts over P14 − P13

and P29 − P28, not the forecasts of these price changes.
28Indeed, we can consider a revision of longer price change, defined as ∆f i

1 = Ei (P15 − P12 | t ≤ 12) −
Ei (P15 − P12 | t ≤ 11). The analysis results below remain unchanged when using this measure.
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necessary condition. For example, even if participant i revises her forecasts of both P14 and

P13 by 10 points each in response to the first announcement, ∆f i
1 remains at zero. Thus,

according to our measure, this implies that she does not respond to the announcement. This

example highlights that our inference based on the revisions provides a conservative gauge

of the forward-lookingness. We intentionally adopt this conservative criterion to reduce the

likelihood of falsely concluding that participants are forward-looking when they are not,

thereby ensuring a more robust measure of genuine forward-looking behavior.

To calculate these revisions for each participant i, we take advantage of our experimental

design. We measure the forecasts for the price change in period 14, conditional on the infor-

mation available by period 13, as
∑13

t=12

(
f i
t,14 − f i

t,13

)
/2. Recall that f i

t,14 − f i
t,13 represents

the forecast of P14 − P13 in period t. Hence, this average corresponds to the conditional ex-

pectation after the first shock announcement, if any. Similarly, we measure the conditional

expectation before the first shock announcement, if any, as
∑11

t=10

(
f i
t,14 − f i

t,13

)
/2. The dif-

ference of these averages corresponds to ∆f i
1. We define ∆f i

2 in an analogous way. Note that

our multi-period experimental design uniquely allows us to measure these revisions. In the

majority of existing papers, these revision measures are simply unavailable since sequences

of forecasts are not collected.

To analyze the distributions of ∆f i
1 and ∆f i

2, it is useful to compare them with their

theoretical values under the REE. When the shocks are not announced, their theoretical

values are easily obtained. Under the REE hypothesis, the entire path of the prices Pt is

rationally expected at the beginning of the game. Thus, no additional information becomes

available over time, and forecasts are not revised at all. Therefore, both ∆f i
1 and ∆f i

2 are

zero in this case.

Consider the case where the shocks are announced. Since the announcements of the shocks

are new information, the announcements trigger revisions of the forecasts. To compute ∆f i
1

under the REE, we solve our model in Section 2 in two cases. We solve the model without

any shocks and then re-solve the model, assuming that the first shock is announced. We
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Figure 4: Forward-Lookingness of Expectations: Case without Announcement

then compute the difference, P14 − P13, for both cases. Finally, we subtract the difference

with no shocks from the difference with the first shock announcement. This double difference

corresponds to the theoretical counterpart of ∆f i
1. We compute the theoretical value of ∆f i

2,

using the same procedure.

We begin our analysis by considering the scenario where shocks are not announced.

This analysis serves as a sanity check for our experimental setup since we naturally expect

participants not to revise their forecasts in the absence of new information. Figure 4 presents

the histograms for ∆f i
1 and ∆f i

2 for various β values. The figure indicates that both ∆f i
1

and ∆f i
2 for all β are centered around zero, with their median values exactly equal to zero.29

As discussed above, this result aligns with the model’s prediction under the REE; most

participants do not revise their forecasts unless new information arrives. Nevertheless, it is

29The fractions of individuals who do not revise their forecasts are greater than 55%.
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Figure 5: Forward-Lookingness of Expectations: Case with Announcement

important to note that our finding constitutes a necessary condition for participants to hold

rational expectations, but it does not suffice on its own. For example, if participants strongly

believe that the environment is stationary and they would assume that Pt = Pt+1 = · · · ,

leading to Ei(Pt+1 −Pt|Pτ<t) = 0. In such cases, even though participants do not form their

expectations based on rational expectations, ∆f i
1 and ∆f i

2 still equal zero. We examine how

each participant forms her belief over the price levels in Section 5.4.

Next, we analyze the case where shocks are announced, as depicted in the histograms in

Figure 5. Several important observations emerge from this analysis. First, the histograms

appear right-skewed, and the median values have become positive, indicating that some par-

ticipants respond significantly to the announcements. Second, there is considerable hetero-

geneity in participants’ responses. To illustrate this heterogeneity more clearly, we compute

for each treatment in Table 3 the fraction of participants who did not revise their fore-
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First Announcement Overreaction Underreaction

No Revisions Other Types

β = 0.9 27% 17% 56%

β = −0.9 19% 27% 54%

β = −1.8 30% 21% 49%

Second Announcement Overreaction Underreaction

No Revisions Other Types

β = 0.9 13% 25% 62%

β = −0.9 44% 29% 57%

β = −1.8 29% 19% 57%

Table 3: Heterogeneity of Revisions

Notes: The Overreaction column shows the proportion of participants who adjusted their forecasts more than
the REE model predicts. The Underreaction column is divided into two categories. No Revisions indicates
the proportion of participants who did not alter their price forecasts at all, calculated as the percentage of
participants for whom ∆f i

j = 0. Other Types represents the proportion of participants who did not overreact
but still changed their price forecasts.

casts (∆f i
j = 0) and those who revised their forecasts to a greater extent than predicted

by the REE model. As shown in Figure 5, about a quarter of participants did not revise

their forecasts, implying that they ignored the announcement when forecasting price change.

However, a significant fraction of participants adjust their forecasts upward, accounting for

the announcements. Notably, some even overreact by revising their forecasts more than

the REE model predicts. For example, after the announcement of the second shock, 40%

of participants overreacted when β = −0.9. This finding suggests strong forward-looking

behavior.

Given the considerable heterogeneity in participants’ responses, it becomes essential to

formally examine whether participants respond to the announcement, on average. To this

end, we analyze whether the mean values of (∆f i
J)J=1,2 differ between conditions with and

without the announcement using the Mann-Whitney U test. Furthermore, we investigate

whether these values are drawn from the same distribution by applying the Kolmogorov-

Smirnov test. We hypothesize that the announcement causes a rightward shift in the distri-
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Figure 6: Forward-Lookingness of Expectations

Notes: The p-value for the Mann-Whitney U test is denoted by pMW , while the Kolmogorov-Smirnov test
is represented by pKS .
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bution of ∆f i
J ; therefore, we perform these tests with a one-sided alternative hypothesis.

Figure 6 presents the empirical distributions of ∆f i
1 and ∆f i

2 for both announced and

unannounced cases, along with the associated p-values from the tests. As shown in Figure 6,

the distributions tend to shift to the right, except in the case of β = 0.9 and J = 2. The

statistical tests confirm these visual patterns. Specifically, the distribution of ∆f i
J with

an announcement is significantly different from that without an announcement, suggesting

that participants generally revised their forecasts upward in response to an announcement.

We conclude this section by stating that participants responded to the announcements, on

average, indicating that they are forward-looking.

5.4 Individual Expectation Formation

In the previous section, we analyzed how participants react to shocks or their announcements

on average. Unfortunately, understanding how each participant forms her beliefs about the

shocks and announcements is challenging since we essentially have only two shocks and the

associated announcement (two observations) per participant. Instead of understanding how

individuals respond to the shocks and their announcements, we examine how each participant

i forms expectations in the absence of shocks and announcements in this section. In other

words, we investigate how each participant forms her beliefs in a multi-period environment

during “normal” times.

Motivated by the work of Anufriev and Hommes (2012), we estimate a reduced-form

forecasting rule. We generalize their forecasting rule by allowing coefficients to vary across

different forecast horizons:

f i
t,t+j = αi

j + γi
jPt−1 + ωi

j (ft−1,t−1 − Pt−1) + χi
j (Pt−1 − Pt−2) + εit,t+j. (10)

This reduced-form learning equation can capture various expectation formation mechanisms.

For example, both adaptive heuristic and trend-following methods can be represented within
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this framework. Participant i uses an adaptive heuristic if the forecast rule is given by

f i
t,t+j = Pt−1 + ωi

j (ft−1,t−1 − Pt−1) .

Here, the coefficient ωi
j indicates the extent to which participant i incorporates her past ex-

pectation into her current expectation. Alternatively, participant i adopts a trend-following

method if her expectation is given by

f i
t,t+j = Pt−1 + χi

j (Pt−1 − Pt−2) ,

where χi
j governs the strength of extrapolation; a higher χi

j results in greater extrapolation

by the participant.

Note that the reduced-form forecasting rule in Eq. (10) is entirely backward-looking.

As discussed previously, some participants respond to the shocks and announcements. To

concentrate on belief formation during stable periods, we eliminate the influence of forward-

looking behavior by excluding data from periods with shocks and announcements, if any.

Because we drop these observations, we do not differentiate between cases with and without

announcements.

We begin our analysis by running the regression in Eq. (10) for each participant i. Similar

to Anufriev and Hommes (2012), the reduced-form forecasting rule in Eq. (10) captures most

of the variations in forecasts. Table 4 reports the average R2 for each treatment. The R2

values are high across all treatments and horizons, but vary with respect to both. Specifically,

the R2 decreases as the forecast horizon increases. Additionally, when β = −0.9, the R2 is

higher than in other cases, likely reflecting the fact that prices fluctuate less when β = −0.9.

Individual-level regressions allow us to categorize participants into different types. Ta-

ble 5 presents these classifications across various treatments and horizons, based on whether

the coefficients from the regression in Eq. (10) are significant at p < 0.1. Participants are

classified into types represented by triplets (e.g., 1-0-0), where each digit indicates the sta-

tistical significance (1) or non-significance (0) of the respective coefficients (γj
i , ω

j
i , χ

j
i ). The
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Treatment Horizon j

j = 0 j = 1 j = 2 j = 3 j = 4

β = 0.9 0.88 0.85 0.82 0.79 0.77

β = −0.9 0.91 0.87 0.85 0.84 0.80

β = −1.8 0.80 0.77 0.74 0.74 0.70

Table 4: Average R2 by Treatment

(1-0-0) type makes up a large portion of participants, suggesting that many rely exclusively

on past price information (Pt−1) in their forecasting. In contrast, very few participants do not

use past price information at all (0-*-*). Additionally, the (1-1-1) type is also common, indi-

cating that many participants employ both adaptive heuristic and trend-following strategies

in their forecasts. Types (1-0-1) and (1-1-0) are also significantly represented, demonstrating

the diversity in how participants form their expectations. Thus, Table 5 reveals substantial

heterogeneity in expectation formation among participants.

While Table 5 indicates how participants use past information, it does not reveal whether

the magnitudes of the coefficients are economically meaningful. To assess the sizes of the

coefficients, we report their conditional means and associated standard deviations among

significant coefficients in Table 6. Three key observations emerge. First, participants pre-

dominantly use the most recent price, Pt−1, as a reference point when forming their forecasts,

as evidenced by coefficients on Pt−1 being close to one across all forecast horizons.

Second, participants consider their own past forecast errors, ft−1,t−1 − Pt−1, indicating

that individual expectations are somewhat self-referential. While the coefficients could the-

oretically be negative, the regression results suggest they are positive and close to 0.5. This

implies that participants gradually adjust their expectations even if their previous forecast

exceeded the previous price, i.e., f i
t−1,t−1 > Pt−1.

Finally, the influence of the most recent price change, Pt−1 − Pt−2, becomes more pro-

nounced as the forecast horizon extends, when the game exhibits positive feedback. Specifi-

cally, the coefficients χi
j on Pt−1 − Pt−2 increase substantially from 0.53 for j = 0 to 1.95 for
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Treatment Horizon Type

1-0-0 1-1-1 1-1-0 1-0-1 0-1-0 0-1-1 0-0-1 0-0-0

β = 0.9

j = 0 29% 38% 15% 15% 0% 1% 0% 3%

j = 1 24% 41% 16% 16% 0% 1% 1% 2%

j = 2 28% 39% 14% 14% 1% 2% 1% 2%

j = 3 27% 42% 15% 11% 0% 1% 1% 3%

j = 4 30% 35% 14% 14% 0% 4% 1% 2%

β = −0.9

j = 0 34% 25% 26% 11% 1% 1% 1% 0%

j = 1 38% 18% 27% 14% 1% 0% 2% 1%

j = 2 32% 22% 29% 12% 1% 0% 2% 1%

j = 3 36% 23% 24% 12% 1% 0% 2% 1%

j = 4 40% 22% 22% 10% 1% 0% 2% 3%

β = −1.8

j = 0 27% 14% 30% 18% 2% 0% 1% 8%

j = 1 30% 16% 33% 13% 0% 0% 0% 8%

j = 2 29% 19% 27% 14% 3% 1% 0% 7%

j = 3 32% 19% 27% 12% 1% 0% 1% 8%

j = 4 32% 19% 24% 14% 1% 0% 1% 8%

Table 5: Classification of Types Across Treatments and Horizons

Notes: We run separate regressions, f i
t,t+j = αi

j + γijPt−1 +ωi
j(ft−1,t−1 −Pt−1) +χi

j(Pt−1 −Pt−2) +

εit,t+j , for each participant and determine the p-values of the coefficients. The three elements in

the triplets indicate the significance (1) or non-significance (0) of the coefficients γij , ωi
j , and χi

j ,
respectively.

j = 4 when β = 0.9. This significant increase suggests that participants place greater impor-

tance on recent price trends when making longer-term forecasts, relying more on momentum

or trend-following behavior for expectations about the distant future.

This last point mertis further attention. In typical experimental settings where only

one-period expectations are elicited, it is not possible to ascertain whether participants view

price increases as persistent or temporary. This point becomes clearer when we compare

the coefficients χi
0 when β = 0.9 to those when β = −0.9. Both coefficients are around 0.5,

suggesting that participants anticipate continued price increases based on recent trends. If

this were the only evidence available, one would conclude that participants employ similar
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Treatment Coefficients Horizon j

j = 0 j = 1 j = 2 j = 3 j = 4

β = 0.9 γij 1.02 (0.06) 1.04 (0.08) 1.05 (0.10) 1.11 (0.13) 1.19 (0.18)

β = −0.9 γij 0.98 (0.05) 0.96 (0.06) 0.95 (0.06) 0.95 (0.07) 0.94 (0.08)

β = −1.8 γij 0.96 (0.06) 0.90 (0.08) 0.89 (0.09) 0.97 (0.10) 0.90 (0.11)

β = 0.9 ωi
j 0.42 (0.11) 0.52 (0.15) 0.58 (0.21) 0.74 (0.25) 0.63 (0.32)

β = −0.9 ωi
j 0.34 (0.10) 0.38 (0.13) 0.46 (0.18) 0.50 (0.17) 0.56 (0.19)

β = −1.8 ωi
j 0.36 (0.11) 0.36 (0.13) 0.72 (0.34) 0.22 (0.19) 0.28 (0.15)

β = 0.9 χi
j 0.53 (0.18) 0.75 (0.25) 1.23 (0.31) 1.74 (0.52) 1.95 (0.46)

β = −0.9 χi
j 0.45 (0.22) 0.45 (0.22) 0.58 (0.26) 0.77 (0.27) 0.90 (0.30)

β = −1.8 χi
j -0.17 (0.16) 0.03 (0.16) 0.47 (0.42) -0.03 (0.21) -0.06 (0.26)

Table 6: Conditional Mean of Coefficients with Standard Errors

Notes; Recall that we run separate regressions, f i
t,t+j = αi

j + γi
jPt−1 + ωi

j(ft−1,t−1 − Pt−1) + χi
j(Pt−1 −

Pt−2) + εit,t+j , for each participant. We compute the average values and standard errors of the coefficients,
conditional on their associated p-values being less than 10%.

extrapolation when β = 0.9 and β = −0.9. However, our experiment can differentiate

whether participants perceive price increases as temporary or persistent. Because multiple

forecasts are elicited, we can estimate χi
j for j = 1, · · · , 4. As noted above, when β = 0.9,

participants expect higher and higher prices, indicating that they believe the trend will

persist. Conversely, when β = −0.9, participants do not clearly expect prices to keep rising,

suggesting they view the price increase as temporary. This highlights the novelty of our

experiment in allowing us to discern participants’ perceptions of the persistence of price

changes.

To further examine this feature, we run a regression with interaction terms

f i
t,t+j − f i

t,t = αi + FEj + γiPt−1 + ωi (ft−1,t−1 − Pt−1) + χi (Pt−1 − Pt−2)

+ γ̃ijPt−1 + ω̃ij (ft−1,t−1 − Pt−1) + χ̃ij (Pt−1 − Pt−2) ,

where FEj represents the fixed effects controlling for horizons. Our primary interest lies in

the coefficients γ̃i, ω̃i, and χ̃i, which govern the strength of the interaction terms. From the
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Treatment Term Mean Estimate (Std) p < 10%

β = 0.9 γ̃i 0.05 (0.01) 60%

β = −0.9 γ̃i -0.03 (0.01) 58%

β = −1.8 γ̃i -0.02 (0.02) 56%

β = 0.9 ω̃i 0.06 (0.03) 53%

β = −0.9 ω̃i 0.05 (0.02) 47%

β = −1.8 ω̃i -0.03 (0.01) 38%

β = 0.9 χ̃i 0.43 (0.07) 54%

β = −0.9 χ̃i 0.11 (0.02) 44%

β = −1.8 χ̃i 0.01 (0.03) 43%

Table 7: Summary of Interaction Terms

Note: We report the conditional means of the coefficients with standard deviations in parentheses, along
with the percentage of participants for whom the coefficients are significant at a level below 10% level.

argument above, we would expect χ̃i to be significant and positive.

The regression results are summarized in Table 7. As in previous tables, we report the

conditional means of these coefficients among cases where the p-values are less than 10%.

The associated standard deviations are reported in parentheses, along with the fraction of

participants whose coefficients exhibit statistical significance at levels below 10%.

Table 7 shows that while participants exhibit statistically significant coefficients on the

interaction terms involving horizon and other variables, these effects are economically negligi-

ble for all cases except those involving the most recent price change, Pt−1−Pt−2. Specifically,

consider the interaction terms with Pt−1 and (ft−1,t−1 − Pt−1). Although these interaction

coefficients, γ̃i and ω̃i, are statistically different from zero for a substantial fraction of par-

ticipants, their magnitudes remain small. In other words, even though some participants

adjust their reliance on current price levels or past forecast errors as they look further into

the future, these adjustments are tiny. Thus, for these variables, changes in horizon have

essentially no meaningful effect on participants’ forecasts.

Turning to the interaction involving Pt−1 − Pt−2, we first consider cases with strategic

substitutes (β < 0). Here, while the interaction coefficients are often statistically significant,
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they also remain economically small. In these environments, participants do not meaningfully

increase their reliance on recent price trends when forming longer-horizon forecasts, implying

that even if prices have risen recently, participants tend to view such increases as temporary

and not indicative of persistent inflation.

In contrast, when facing strategic complements (β > 0), the interaction coefficients for

Pt−1 − Pt−2 are large enough to be economically important. For example, a 10-unit increase

in Pt−1−Pt−2 leads to a 16-unit increase in five-periods-ahead price forecasts under strategic

complementarity. Participants extrapolate upward trends more aggressively as the forecast

horizon extends and anticipate that rising prices will persist. This new effect of strategic en-

vironment – horizon-dependent extrapolation occurring only in environments with strategic

complementarity – is a novel finding within our new multi-periods setting.

Our findings have important implications for monetary policy, which delicately depends

on how agents form expectations. In environments characterized by strategic complementar-

ity, our results demonstrate that agents’ long-run inflation expectation could be de-anchored.

This suggests that central banks need to be mindful of these variations in expectation for-

mation, especially because it is costly to re-anchor inflation expectations. Conversely, in

environments with strategic substitutes, the nature of forecasting remains relatively stable

across horizons. Thus, central banks could conduct their monetary policy without worrying

too much about de-anchoring, which simplifies their operations.

6 Concluding Remarks

This paper introduces and experimentally tests a multi-period extension of the standard

beauty contest game, inspired by the Calvo (1983) pricing model prevalent in macroeco-

nomics. By eliciting forecasts for multiple future periods, our new design allows us to examine

how expectations evolve over time and how agents respond to anticipated changes.

Exploiting this multi-period setup, we propose a novel test for forward-looking behav-
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ior. Our results show that participants revise their forecasts after announcements of future

shocks, demonstrating that, on average, they incorporate information about future states

into their current expectations. This analysis would not be feasible within the constraints

of traditional one-period designs, thereby emphasizing the importance of multi-period fore-

casting experiments in evaluating the forward-lookingness of expectations.

We also uncover significant heterogeneity in individual expectation formation. While

many participants rely predominantly on the most recent price level and their past forecast

errors, the manner in which they extrapolate trends varies with the strategic environment.

Specifically, only in the presence of strategic complementarity do participants strongly ex-

trapolate current price changes into the long run, a pattern that can lead to de-anchored

expectations. Under strategic substitution, by contrast, price movements are perceived as

more temporary, resulting in more stable long-run expectations.

These findings open several avenues for future research. Of particular interest is the role

that variations in the strategic environment play in shaping individual forecasting rules, and

how policies can best steer expectations in environments prone to self-fulfilling dynamics.

Our multi-period experimental design can serve as a useful tool for examining this issue.
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A Equivalence

In this section, we begin by introducing the price forecast game used in our experiment. We

then show that the (equilibrium outcome of) subgame-perfect Nash equilibrium coincides

with the REE of the multi-period beauty contest game discussed in the paper.

Before moving forward, we restate the characterization result for the REE of our multi-

period beauty contest game. It follows from Proposition 1 that a price sequence (Pt+s)
∞
s=0 is

a rational expectation equilibrium, given Pt−1, if and only if for all s ≥ 0,

Pt+s = (1− θ)Pt+s−1 + θ
T∑

k=0

(1− γθ)k∑T
l=0 (1− γθ)l

(α + βPt+s+k) . (A.1)

A.1 Setup for the Price Forecast Game

There is a continuum of identical individuals uniformly distributed over [0, 1], with time

being discrete and indexed by t = 0, 1, 2, . . . . The game terminates with probability γ,

which is given exogenously. In each period, individuals submit their forecasts for a sequence

of aggregate prices over the next T + 1 periods. The aggregate prices are endogenously

determined by these submitted forecasts. Let f it =
(
f i
t,t+s

)T
s=0

denote individual i’s forecast

sequence submitted in period t. We assume that each element of f it belongs to the space

A = [a, b], where 0 < a < b. The aggregate price Pt is assumed to also take a value from A.

We characterize the environment in terms of histories. We denote H t as the set of public

histories that records the sequence of the aggregate prices up to period t:30

H t ≡ At = A×A× · · · × A.

An element of H t is denoted by ht, which is a sequence of past public events (aggregate

prices):

ht = (P−1, P0, · · · , Pt−1) ,

30Technically, the termination event is part of the public information, but it is unnecessary to track it.
The game ends at this point, and there are no subsequent subgames.
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where P−1 is the given initial condition. Let H denote the set of all histories, H = ∪t≥0H
t.31

The static payoff for individual i in period t is given by

Π
(
F i
t − Pt

)
= 100/

(
1 +

∣∣F i
t − Pt

∣∣) ,
where F i

t is a payoff-relevant forecast of individual i, which is defined as follows. As mentioned

earlier and in Section 3, individual i can submit her forecasts f it every period t. With

probability 1− θ, the submitted forecast determines the payoff-relevant forecast F i
t : that is,

F i
t = f i

t,t. Let ωi
t denote an indicator that takes the value of one if i’s submitted forecasts

in period t become payoff-relevant in the same period and zero otherwise. If the submitted

forecasts do not become payoff-relevant, then the payoff-relevant forecast in period t − 1

remains effective in period t, so F i
t = f i

s,t, where s denotes the most recent period before

period t when the submitted forecasts became relevant. If the submitted forecasts fail to

become payoff-relevant for T +1 consecutive periods, then the next forecasts become payoff-

relevant with certainty. Moreover, the initial payoff-relevant forecasts
(
F i
−1

)
i
are given.

The mapping from these forecasts, (f it )i, to the aggregate price in period t is given by

Pt = θPt−1 +

∫
{i;ωt

i=1}

T∑
s=0

(1− γθ)s∑T
l=0 (1− γθ)l

(
α + βf i

t,t+s

)
di. (A.2)

For a micro-foundation for Eq. (A.2), see Section 2.

The present value of individual i’s payoff in period t is given by

Et

∞∑
s=0

γsΠ
(
F i
t+s − Pt+s

)
, (A.3)

The expectation operator is taken only over F i
t+s, because, with probability 1−θ, the payoff-

relevant forecast may change. Individual i maximizes this objective function by choosing

appropriate (f it )
∞
t=0 .

Formally, the strategy of individual i, σi, is a function from H to AT+1. A price function

σP is a function from H to A∞. This price function maps the current history to a sequence

31As becomes evident shortly, private histories do not affect the payoff or feasibility. Therefore, we do not
need to track them.
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of the prices:

σP
(
ht
)
= (Pt+s)

∞
s=0 .

This sequence σP (ht) is referred to as the continuation outcome path in ht.

Note that from σi and σP , the sequence of forecasts
(
f it+s

)∞
s=0

is uniquely determined,

which in turn uniquely determines the distribution of
(
F i
t+s

)∞
s=0

. Let
(
f it+s

(
ht;σi, σP

))∞
s=0

denote the forecasts induced from ht and
(
F i
t+s

(
ht;σi, σP

))∞
s=0

the induced payoff-relevant

forecasts, which are random variables. An equilibrium requirement imposes a cross restriction

on σP and (σi)i∈[0,1].

We now formally define a subgame-perfect Nash equilibrium in this dynamic game.

Definition 1. A subgame-perfect Nash equilibrium in this large game is a profile of the strate-

gies (σi)i∈[0,1] and a price function σP such that (i) for all history ht ∈ H,
(
f it+s (h

t;σi, σp)
)∞
s=0

maximizes the expected present-value payoff in Eqs. (A.3), and (ii) the consistency condition

is satisfied. For all history ht ∈ H,

Pt+s = θPt+s−1 +

∫
ωi
t=1

T∑
k=0

(1− γθ)k∑T
l=0 (1− γθ)l

(
α + βf i

t+s,t+s+k

)
di for all s ≥ 0, (A.4)

where (Pt+s)
∞
s=0 = σP (ht).

A.2 Equivalence Result

Before proving the equivalence result, we characterize the strategy profiles.

Lemma 1. In a subgame-perfect Nash equilibrium, for any ht ∈ H,

σi
(
ht
)
= (Pt+s)

T
s=0 , (A.5)

where (Pt+s)
T
s=0 corresponds to the first T + 1 elements of σP (ht) .

Proof. If σi (ht) = (Pt+s)
T
s=0 for all ht, then F i

t+s (h
t;σi, σp) = Pt+s for all s ≥ 0. Thus, the

static payoff in period t + s is maximized. If Eq. (A.5) is violated, there is a future event
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such that Π is not maximized, and this event happens with positive probability. Thus, in

any subgame-perfect Nash equilibrium, Eq. (A.5) follows.

An immediate corollary of Lemma 1 is that individuals choose the same strategy, σi = σ.

We now proceed to establish the equivalence result.

Proposition 2. Fix any history ht such that ht =Pt−1. The sequence of the aggregate prices,

(Pt+s)
∞
s=0, is the rational expectation equilibrium price given Pt−1 if and only if (Pt+s)

∞
s=0 is the

continuation outcome path of the subgame perfect equilibrium of
(
(σi)i , σ

P
)
given ht = Pt−1.

Proof. In any subgame-perfect equilibrium, the optimal strategy for individuals is given by

Eq. (A.5) and σi = σ. Thus, the consistency condition in Eq. (A.4) reduces to the following

equation: for all s ≥ 0,

Pt+s = θPt+s−1 + θ
T∑

k=0

(1− γθ)k∑T
l=0 (1− γθ)l

(α + βPt+s+k) . (A.6)

The continuation outcome of the subgame-perfect Nash equilibrium given any ht = Pt−1 sat-

isfies Eq. (A.6), which is equivalent to Eq. (A.1). Thus, (Pt+s)
∞
s=0 is the rational expectation

equilibrium price given Pt−1 if and only if the sequence is the continuation outcome of the

subgame-perfect Nash equilibrium given any ht = Pt−1.

Our results, Proposition 2, and Lemma 1, have two implications for our experimental

design. First, Proposition 2 validates the use of the learning-to-forecast game over the

original dynamic beauty contest game. A similar result was first established by Marimon

and Sunder (1993). Second, from Lemma 1, individuals maximize their payoffs by minimizing

forecast errors. This finding applies to games with strategic substitutes or complements and

forms the basis for our experimental design.
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Figure A.1: Comparison between the REE Prices with and without Termination Probability

B Comparison of REE Prices for γ > 0 and γ = 0

In our experiments, we inadvertently ignored the impacts of termination probability, γ, in

determining the price. However, this oversight is not likely to result in significant changes to

our study. This is because the impacts are minor, as noted in footnote 12. In this subsection,

we formally substantiate our claim. We calculate the REE prices under the assumption that

γ = 5% and compare the prices with those computed under the assumption that γ = 0. We

find that the prices are sufficiently similar between the two.

Let (pγt , P
γ
t ) denote the equilibrium individual price and the equilibrium price when γ ≥ 0.

Figure A.1 depicts the absolute difference between P 5%
t and P 0

t in cases with and without

announcement. Note that the differences are less than one in all the periods, including those

around the shocks.

C Detail of the Procedure in the Online Experiment

Participants join our experiments via Zoom with their cameras and microphone turned off.

The camera of the experimenter is always turned on, but his or her microphone is turned on

only when necessary.

Upon connecting to a Zoom session, participants first remain in the waiting room. We let

participants enter the main room one by one to check their names and to verify whether they
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are indeed registered for our experiments. Then, each participant is a given participant ID in

the form of “sub##”, where ## is the two-digit number that is valid during the experiment.

Once participants are assigned an ID, they are sent back to the waiting room until the start

of the experiment. By following this procedure, we ensure anonymity.

Once ready, participants re-enter the Zoom meeting room and are given general instruc-

tions regarding the online experiment (for example, what to do, including which number

to call if their internet connection fails during the experiment). Then, the prerecorded in-

struction video is played. Although participants are not given a hard copy of the instruction

slides, they are informed that they can go through that set of slides after the video finishes

until they finish answering the comprehension quiz. All the participants need to answer all

six questions of the quiz correctly for the first game to start. As noted, participants can

review the instruction slides before and while answering the quiz. While participants are

asked to communicate directly with the experimenter using the chat function of Zoom when

they have questions or encounter problems, they cannot communicate with each other via

Zoom chat.
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D English Translations of the Instructions and Examples of

Screenshots

English translation of the instruction slides can be found at https://osf.io/spgh5.

Figures A.2 to A.5 show examples of the decision screen participants faced in our exper-

iment.

Note: The values of α and β are shown in red and in a large point size in period 1 and when they change

(in periods 14 and 29) in all the treatments (see Figure A.4). In other periods, they are shown in black with

a regular point size (see Figure A.5).

Figure A.2: Screen (in period 1) in which participants submit their five forecasts (common to all
the treatments)
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Note: This is a demo screen in which the shock is introduced in period 5 (this is why the pre-announcement

is made in period 3). The text in the yellow box states that “This is information regarding the future changes

in the parameter values. The values of the parameters that determine the price will be α = xxx and β = yyy

from period T ,” where xxx, yyy, and T depend on the treatment and whether it is the first shock or the

second shock. The current values of α and β are shown in black text below the announcement.

Figure A.3: Screen with a pre-announcement of future shock (only for treatments with pre-
announcement)

Note: The values of α and β are shown in red and a large point size when they change (in periods 14 and

29) in all treatments.

Figure A.4: Screen when the shock is realized (common to all treatments)
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Note: The values of α and β are shown in black and a regular point size.

Figure A.5: Screen for normal periods (common to all treatments)
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D.1 Comprehension quiz

Here is an English translation of the comprehension quiz.

(1) In this experiment, every morning, you will be asked to predict prices up to K periods

ahead, including the current period. For the forecasts that will be rewarded in period

t (t > 1), please select all correct statements.

A) The latest price forecast entered in period t will be the subject of the reward.

B) There is a 0.5 probability that the latest price forecast entered in period t will be

the subject of the reward.

C) If the latest price forecast entered in period t is not the subject of the reward,

then the price forecasts entered in period t− 1 or earlier will be the subject of the

reward.

(2) Let’s assume the price forecast that is the subject of the reward in period t is 10. Let’s

also assume the price that materialized in period t is 14. In this case, how many points

can you earn?

A) 20 points.

B) 25 points.

C) 50 points.

(3) Regarding how the price in period t is determined, which statement is correct?

A) The realized price is determined based on the latest price forecasts submitted by

participants in the same group for period t.

B) For participants in the same group, the realized price is determined based on the

payoff-relevant price forecast in period t.

(4) Please select all correct statements about the repetition period of a single game.

52



A) A game is repeated for at least 20 periods.

B) The game can end after just one period, as there is a 0.05 probability of the game

ending at the end of each period.

C) The game is repeated for only 20 periods.

(5) Which statement is correct regarding the points that can be earned in a single game?

A) Since the game is repeated for at least 20 periods, you can earn all the points

accumulated during at least 20 periods.

B) Although the game is repeated for at least 20 periods, the number of points that

can be earned might be less than the total points accumulated over 20 periods,

because there is a probability of 0.05 that the game will end at the end of each

period.

(6) Please select all correct statements regarding today’s experiment.

A) The game is conducted only once, and the compensation is paid according to the

points earned in that game.

B) It is not known in advance how many times the game will be conducted.

C) One of the games conducted will be randomly selected to be the subject for

compensation.
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