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Abstract

We prove a generalized, multi-factor version of the Uzawa steady-state
growth theorem. Balanced growth with capital-augmenting technical change
is possible when capital has a unitary elasticity of substitution with at least
one other factor of production. Thus, a neoclassical growth model with three or
more factors of production can be consistent with empirical evidence on both
the capital-labor elasticity of substitution and the declining price of invest-
ment relative to consumption. In a three-factor model calibrated to US data,
medium-run fluctuations in the investment price explain labor share movements
from 1960-2000, but not the subsequent fall in the labor share.
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1 Introduction

The neoclassical growth model was developed to explain a set of stylized macroeco-

nomic facts that can be classified under the umbrella of balanced growth (Solow, 1956,

1994). As conventionally understood, the Uzawa (1961) steady-state growth theorem

says that on the balanced growth path (BGP) of a neoclassical growth model, all tech-

nological change must be labor-augmenting, unless the aggregate production function

is Cobb-Douglas (Jones and Scrimgeour, 2008). This creates a significant problem

for the neoclassical growth model, because data from the United States strongly sug-

gest that (i) there is capital-augmenting technical change on the BGP and (ii) the

aggregate production function is not Cobb-Douglas (see, e.g., Antras et al., 2004;

Grossman et al., 2017; Oberfield and Raval, 2021).

The standard neoclassical growth model assumes that there are only two factors

of production, labor and reproducible capital. In reality, there are many other factors

of production, including various types of land, energy, and other natural resources.

These factors do not fit well in the notion of capital in the neoclassical growth model

in that they cannot be readily accumulated (or reproduced) through savings. In this

paper, we derive conditions under which it is possible to make neoclassical models

consistent with the data by adding additional factors of production. We then show

how these results can be used to model the behavior of the economy along the BGP.

We start by proving a multi-factor version of the Uzawa (1961) steady-state growth

theorem. When building macroeconomic models, researchers have incomplete knowl-

edge of how the aggregate production function evolves over time due to technological

change. We show that, if an economy has a BGP, the Uzawa theorem provides

guidance on how to choose a simple representation of the ever-changing production

function. We call this the Uzawa Representation. The Uzawa Representation gives

the correct relationship between aggregate inputs and aggregate output on the BGP,

while capturing steady-state technological change through factor-augmenting terms

on inputs other than reproducible capital. The Uzawa Representation has the same

derivatives and elasticity of substitution (EoS) as the true production function. How-

ever, this representation implies that there is no capital-augmenting technical change,

which is at odds with the evidence.

To identify other possible representations that are a better match with data,
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we prove a generalized version of the multi-factor Uzawa theorem. The generalized

theorem demonstrates that there are a continuum of representations with capital-

augmenting technical change, as long as reproducible capital has a unitary EoS with at

least one other factor. From this broader class of Factor-Augmenting Representations,

it is possible to choose a representation that matches the empirically-observed speed

of capital-augmenting technological progress. When we explicitly consider three or

more production factors, the factor-augmenting representations can be simultaneously

consistent with balanced growth, a non-unitary EoS between capital and labor, and

capital-augmenting technical change. We also provide conditions under which these

Factor-Augmenting Representations have the same derivatives and EoS as the true

production function. Therefore, even when the exact pattern of technological change

cannot be observed, factor-augmenting representations can be used as a production

function in economic analysis, as long as the economy follows a BGP in the long run.

We then discuss existing evidence on the elasticity of substitution between capital

and other factors of production. We highlight that long-run elasticities are relevant for

understanding balanced growth. While inconclusive, existing evidence suggests that

energy may have a unitary long-run EoS with capital (e.g., Koetse et al., 2008; Van der

Werf, 2008). To the best of our knowledge, evidence on capital-land substitution is

limited to sector-specific studies, where the EoS between land and structures is often

reported to be close to one (e.g., Epple et al., 2010; Ahlfeldt et al., 2015). We hope

that our theoretical results will spur further work estimating these elasticities, which

could make a significant contribution to the understanding of balanced growth.

We also demonstrate how to calibrate a three-factor production function to si-

multaneously match U.S. data on balanced growth, the negative trend in the relative

price of capital, and the non-unitary elasticity of substitution between capital and

labor. It is not possible to identify the true production function and the pattern of

technological change just from those data. However, given that we know that the

economy has a BGP, our propositions imply that the factor-augmenting representa-

tion constructed from the data matches the marginal properties of the true production

function near the BGP and can therefore be used in place of the production function

for a many of economic analyses.

As an example, we use our calibrated model to study how medium-run fluctuations
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in capital-augmenting technical change have influenced the labor share of income

over the last sixty years. Movements in capital-augmenting technical change are a

common explanation for labor share fluctuations (Grossman and Oberfield, 2022).

Our model provides a unique perspective on how the two are related in the vicinity

of the BGP. The generalized Uzawa theorem implies that the labor share is constant

on a BGP with a constant rate of capital-augmenting technological change, but the

labor share fluctuates when technology deviates from its BGP trend. This prediction

differs from those generated by two-factor production functions, which must imply

either that labor shares are always constant or that the labor share changes whenever

there is non-zero capital-augmenting technical change. We find that medium-run

deviations of capital-augmenting technology from the long-term trend explain labor

share movements from 1960-2000, but not the subsequent fall in the labor share.

Related Literature. This paper is related to a long literature on balanced growth

and the Uzawa steady-state growth theorem. Although the theorem is well known,

Uzawa (1961) does not provide a clear statement or proof of the theorem. A simple

and intuitive proof was proposed by Schlicht (2006) and updated by Jones and Scrim-

geour (2008), Acemoglu (2008), Irmen (2016), and Grossman et al. (2017). With the

exception of Acemoglu (2008), the literature has been concerned only with whether

a particular production function can match the level of output on the BGP. We con-

tribute to this literature in several ways. First, we extend the theorem to multiple

factors of production. Second, we prove a generalized version of the theorem that

provides a set of representations from which an economist can choose the one that

matches the data on capital-augmenting technological progress. Third, we derive

conditions under which representations have the same first-order derivatives and EoS

as the true production function.

As noted above, the existing literature has treated the Uzawa theorem as a re-

strictive condition. As a result, many studies have tried to explain why the economy

might endogenously conform to the two-factor version of the theorem. Acemoglu

(2003) and Irmen and Tabaković (2017) provide models where capital-augmenting

technical change disappears in the long run, while Jones (2005) and Leon-Ledesma

and Satchi (2019) specify models that are Cobb-Douglas in the long-run. We build
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on these works by presenting a model that is consistent with data on both the exis-

tence of capital-augmenting technical change and the less-than-unitary long-run EoS

between capital and labor.

To the best of our knowledge, Grossman et al. (2017, 2021) provide the only other

attempt to square the Uzawa steady-state growth theorem with data on the EoS and

the capital-augmenting technical change. In their model, schooling is both labor-

augmenting and capital-dis-augmenting. In this setting, they show that there is a

scope for additional capital-augmenting technological change. Our results indicate

that there is a wider scope for ways in which the neoclassical growth model can be

made to be consistent with the data. Indeed, their results can be understood as a

particular case of the two-factor Uzawa theorem (see subsection 5.2).

Our results also stress the importance of natural resources for understanding

macroeconomic outcomes. Historically, natural resources were only included in ag-

gregate macroeconomic analyses when the research question under study was explic-

itly about those natural resources. For example, energy is generally only included

in growth models when studying the depletion of finite resources (e.g., Hotelling,

1931; Heal, 1976; Hassler et al., 2021) or climate change (e.g., Nordhaus and Boyer,

2003; Golosov et al., 2014). Our results suggest a much broader importance of non-

reproducible factors. The neoclassical growth model was originally developed to ex-

plain the balanced growth facts (Solow, 1956, 1994). In order to explain a wider set

of stylized facts, including the existence of capital-augmenting technological change,

the model must incorporate factors beyond reproducible capital and labor.

Roadmap. The remainder of the paper proceeds as follows. Section 2 discusses

the evidence motivating this study. Section 3 proves a multi-factor version of the

Uzawa steady-state growth theorem. In Section 4, we generalize the theorem, prov-

ing that neoclassical models can have a positive rate of capital-augmenting on the

BGP. Section 5 presents three applications of these results, focusing on simple cases

and existing literature. Section 6 discusses existing evidence on the EoS between

capital and natural resources. Section 7 presents a simple calibration exercise and

an application for labor share. Section 8 extends our results to investment-specific

technological change. Section 9 concludes.
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(a) Real Aggregate Variables per Capita (b) Relative Price of Investment

Figure 1: Balanced Growth with Capital-Augmenting Technical Change

Note: See Appendix Section D.1 for data sources.

2 Motivation and Stylized Facts

The neoclassical growth model, first developed by Solow (1956) and Swan (1956),

serves as a basis for much contemporary research in macroeconomics. Such models

are designed to explain a set of stylized facts, known as ‘balanced’ or ‘steady’ growth

(Jones, 2016). The main stylized fact is that income per capita has grown at a

constant rate over long periods of time. Panel (a) in figure 1 presents U.S. data

from 1960-2020, which clearly demonstrates this fact. In addition, it shows that real

investment, consumption and capital per capita have grown at roughly the same rate

as real income per capita over this period, capturing the notion of ‘balance’.1

The neoclassical growth model is founded on two building blocks. The first is the

process of capital accumulation: capital is accumulated linearly from saved output.

This specification implies that capital ‘inherits’ the growth rate of output (Jones and

Scrimgeour, 2008). The second is a neoclassical aggregate production function that

has constant returns to scale (CRS) in all production factors. With a CRS production

function, balanced growth is achieved when all effective factors grow at the same rate

1See Papell and Prodan (2014), Jones (2016), and others for longer time series and data from
other countries.
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Factor Share Source

Natural Resources (incl. Land) 8% Caselli and Feyrer (2007)
Land 5% Valentinyi and Herrendorf (2008)
Energy 4% Golosov et al. (2014)

Table 1: This table presents some estimates of U.S. factor shares for inputs other than reproducible
capital and labor. Definitions and methodologies vary. Natural Resources in Caselli and Feyrer
(2007) encompasses land, energy, and other resources.

as output. Since capital grows at the same rate as output, this implies that there is

no capital-augmenting technological progress. In the two-factor neoclassical growth

model, the only exception is when the aggregate production function is Cobb-Douglas.

In this case, effective factors can grow at different speeds while keeping the growth

rate of output constant. These results are widely known as the Uzawa theorem.

A long literature has estimated the elasticity between capital and labor in a two-

factor production function and rejected the Cobb-Douglas specification. Most of

the papers in the literature argue that the elasticity is less than one (e.g., Antras

et al., 2004; Chirinko and Mallick, 2017; Oberfield and Raval, 2021). In addition,

there is evidence that capital-augmenting technical change has been occurring even

as the economy has exhibited signs of balanced growth (Grossman et al., 2017). As

shown in Appendix C.1, the speed of capital-augmenting technological change in the

neoclassical growth model can be measured by the rate of decline in the relative price

of investment, calculated as the ratio of the implicit price deflator for investment to

that for personal consumption expenditures in the NIPA statistics, with a one-period

lag. Panel (b) of Figure 1 shows that the price of investment goods, and equipment in

particular, has been falling relative to the price of consumption goods in the United

States over at least the last half a century. A long literature demonstrates that

declining investment price (equivalently, capital-augmenting technological change)

explains a quantitatively significant portion of economic growth in the United States

(e.g., Greenwood et al., 1997; Krusell et al., 2000).2

These findings create a puzzle. Given that the EoS between capital and labor is

not equal to one, the Uzawa theorem implies that any two-factor neoclassical growth

2See He et al. (2008) and Maliar and Maliar (2011) for discussions of the Uzawa steady-state
growth theorem in this context. Karabarbounis and Neiman (2014) show that declining investment
prices are a widespread phenomenon in cross-country data.
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model that is consistent with balanced growth is necessarily at odds with evidence

on capital-augmenting technical change. Put differently, the standard neoclassical

growth model cannot explain the broader set of stylized growth facts that we observe

in the United States.

In this paper, we examine production functions with additional inputs, beyond

reproducible capital and labor. It is obvious that other factors – such as land, energy,

and other natural resources – exist in the production process. Table 1 collects some

evidence on the importance of these factors in the United States. Broadly speaking,

estimates suggest that non-reproducible factors other than labor account for about

8-9% of total factor payments. In standard two-factor neoclassical growth models,

those factors are often implicitly included in capital. However, this is not an adequate

treatment unless they can be linearly accumulated with saved output. This paper

shows that explicitly separating these factors from capital is key to solving the puzzle

raised by the Uzawa theorem.

3 A Multi-factor Uzawa Theorem

In this section, we prove that the steady-state growth theorem by Uzawa (1961)

(hereafter, the Uzawa theorem) extends to multi-factor environments that explicitly

consider inputs beyond labor and reproducible capital. As shown by Solow (1956),

sustained economic growth requires the shape of the production function to change

over time, which economists usually call technological change. Given the existence

of a BGP, the Uzawa theorem provides a convenient representation of the evolution

of the production function. We stress the importance of making a clear distinction

between this representation and the true production function, for which we often have

limited information. In particular, we also prove a new set of propositions that clarify

the conditions under which the representation given by the Uzawa theorem matches

important properties of the true production function, implying that the representation

serves as a good approximation of the true production function in economic analysis.
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3.1 Neoclassical Growth Model

The Uzawa theorem depends on two assumptions: (a) the economy is described by a

neoclassical growth model, and (b) the economy has a balanced growth path (BGP).

We start with a description of a neoclassical growth model, which is defined broadly to

incorporate a wide range of dynamic macroeconomic models. We consider a discrete-

time setting, where t = 0, 1, 2, . . ., but it is straightforward to consider the continuous-

time equivalents of the results.

Definition 1. A multi-factor neoclassical growth model is an economic envi-

ronment that satisfies:

1. Output, Yt, is produced from capital, Kt, and J ≥ 1 kinds of other inputs,

{Xj,t}Jj=1 :3,4

Yt = F (Kt, X1,t, ..., XJ,t; t). (1)

In any t ≥ 0, it has constant returns to scale (CRS) in all inputs, Kt, X1,t, ..., XJ,t,

and each input has a positive and diminishing marginal product.

2. Capital, Kt, accumulates linearly with the saved output

Kt+1 = Yt − Ct −Rt + (1− δ)Kt, K0 > 0, (2)

where Ct > 0 is consumption, Rt ≥ 0 is expenditure other than capital in-

vestment or consumption, and δ ∈ [0, 1] is the depreciation rate. The term

Yt−Ct−Rt on the RHS represents the amount of saved output, or equivalently,

physical capital investment.

There are five points to note regarding Definition 1. First, production function

F (·; t) in (1) depends on t, capturing technological progress. Importantly, we place

no restrictions on how the shape of F (·; t) changes over time. As discussed below,

3If we allow J = 0, the only constant-returns-to-scale production function is in the form of
Yt = AK,tKt. Although it cannot satisfy decreasing marginal products of its input (Kt), this AK
functional form is also subject to the Uzawa theorem, in the sense that AK,t must be constant on
the BGP (i.e., there may not be any technological change).

4We follow Uzawa (1961) and Jones and Scrimgeour (2008) by including t as an argument in F .
Alternatively, We can write equation (1) as Yt = Ft(Kt, X1,t, ..., XJ,t) to highlight that Ft changes
with t.
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the Uzawa theorem provides insight into how to approximate the time dependence of

F (·; t) with standard factor-augmenting terms.

Second, if J equals 1 and X1,t is interpreted as labor, Lt, then equation (1) reduces

to a familiar two-factor neoclassical production function, Yt = F (Kt, Lt; t). In addi-

tion, if we assume Lt grows exogenously, Definition 1 essentially coincides with the

definition of a neoclassical growth model in Schlicht (2006) and Jones and Scrimgeour

(2008), who provide a simple statement and proof of the two-factor Uzawa theorem.

Third, the only reason why capital, Kt, is distinguished from other production

factors X1,t, ..., XJ,t is that we explicitly specify its linear accumulation process (2).

From a theoretical viewpoint, Kt needs not to be limited to physical capital. Kt can

be any combination of factors that can be accumulated linearly with saved output.5

Fourth, the Uzawa theorem holds regardless of the evolution process for other

inputs. The Xj,t’s can be either endogenous or exogenous. If some factors are en-

dogenous, Rt term in (2) may include costs to enhance them. For example, the future

growth of labor may be dependent on child-raising costs, which could be included in

Rt.
6 Technological change, represented by the last t term in the production function

(1), can also be exogenous or endogenous. If R&D expenditures enhance technologies,

such expenditures would also be included in Rt in (2).

Fifth, equation (2) implies that period t final output and period t+ 1 capital are

measured in the same units. Since this is merely a choice of units, it does not limit the

applicability of our results. In models with investment-specific technological change

(ISTC), one unit of output can be converted to increasingly many units of capital as

technology improves. Section 8 shows that all of our results can be translated to a

model with ISTC by a change of variables.

3.2 Balanced Growth Path

Now, we turn to the second requirement of the Uzawa theorem, the BGP.

Definition 2. A balanced growth path (BGP) in a multi-factor neoclassical

growth model is a path along which all quantities, {Yt, Kt, X1,t, ..., XJ,t, Ct, Rt}, grow

5 For example, in the pre-industrial Malthusian economy where population was proportional to
output (e.g., Galor, 2011; Li et al., 2016), labor could be included in Kt, not in Xj,t.

6As highlighted in footnote 5, child-rearing costs could be part of investment in a Malthusian
economy.
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at constant exponential rates for all t ≥ 0. On the BGP, we denote the growth factor

of output by g ≡ Yt/Yt−1, and the growth factors of any variable Zt ∈ { Kt, X1,t, ...,

XJ,t, Ct, Rt } by gZ ≡ Zt/Zt−1. A non-degenerate balanced growth path is a BGP

with gK > 1− δ.

From (2), condition gK > 1−δ means that physical capital investment Yt−Ct−Rt

is strictly positive along the BGP. The rest of the paper focuses on this non-trivial

case. We call it a non-degenerate BGP and simply mention it as a BGP when there

is no risk of confusion. Note that, while a BGP requires variables to grow at constant

rates, it does not require them to grow at the same rate. Still, the following lemma

confirms that capital and consumption need to grow at the same speed as output to

maintain a BGP.

Lemma 1. On any non-degenerate BGP in a multi-factor neoclassical growth model,

the capital-output ratio Kt/Yt and the consumption-output ratio Ct/Yt are constant

and strictly positive.

Proof. See Appendix A.2.

The proof utilizes the assumption of C0 > 0 from Definition 1. If R0 > 0, we can

similarly show that Rt/Yt is constant.

3.3 Uzawa Representation and Its Properties

Having defined the neoclassical growth model and the BGP, we are ready to present

a multi-factor version of the Uzawa theorem.

Proposition 1. (A Multi-Factor Uzawa Theorem) Consider a non-degenerate

BGP in a multi-factor neoclassical growth model, and define ÃXj ,t ≡ (g/gXj)
t where

j = 1, ..., J . Then, on the BGP,

Yt = F̃ (Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t) holds for all t ≥ 0, (3)

where F̃ (·) ≡ F (·; 0).

Proof. From the definition of ÃXj ,t ≡ (g/gXj)
t, the growth factor of ÃXj ,tXj,t is g for

all j. The growth factor of Kt is also g from Lemma 1. Therefore, all the arguments
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in function F̃ (·) are multiplied by g each period. This means that the RHS of (3)

is multiplied by g each period since F̃ (·) ≡ F (·; 0) has CRS. Note that in period 0,

equation (3) holds because it is identical with (1). Therefore, (3) holds for all t ≥ 0,

where both sides are multiplied by g in every period.

It is important to understand what the theorem does and does not imply. Recall

that the neoclassical production function F (·; t) in (1) is a time-varying function

that potentially depends on t in complex ways. If the economy is on the BGP, the

Uzawa theorem says that there should be a simple representation of this dependence

of function F (·; t) on t, which holds at least along this particular BGP. We call this

representation, which is given by (3), the Uzawa representation. It consists of a time-

invariant function F̃ (·) and exponentially growing ÃXj ,t terms. At t = 0, equation (3)

coincides with the true production function (1). The Uzawa representation illustrates

how the production function evolves from there as t changes.

However, caution is needed when interpreting F̃ (·) as a production function be-

yond t = 0, because Proposition 1 only guarantees that the value of F̃ (·) coincides

with that of the true production function F (·; t) exactly on a particular BGP. As is

clear from the proof of the proposition, function F̃ (·) contains no information about

what will happen when inputs deviate even slightly from the BGP. As a result, there

is no guarantee that the derivatives of function F̃ (·), even on the BGP, are equal to

the derivatives of the production function F (·; t), apart from time t = 0. Without

further information, therefore, the Uzawa theorem has little use in economic analysis.

In the following two propositions, we extend the theorem by focusing on the con-

ditions under which the Uzawa representation has the ‘correct’ marginal properties.

We start by looking at first-order derivatives.

Proposition 2. (Derivatives of the Uzawa representation) Let FZ(·; t) denote

the partial derivative of function F (·; t) with respect to its argument Z ∈ {Kt, X1,t, ..., XJ,t}.7

If the share of factor Z, i.e., sZ,t = FZ(·; t)Zt/Yt, is constant on a non-degenerate

BGP of a multi-factor neoclassical growth model, then the following holds on the BGP:

∂

∂Zt
F̃ (Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t) = FZ(Kt, X1,t, ..., XJ,t; t) for all t ≥ 0. (4)

7Appendix A.1 discusses the details regarding notation for derivatives.
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Proof. See Appendix A.3.

If the factor shares are constant on the BGP, equation (4) says that F̃ (·) has the

same derivatives as the true production function F (·; t) on the BGP. We can also

show that the elasticity of substitution (EoS) between capital and other production

factors in the Uzawa representation F̃ (·) coincides with the EoS in the true production

function F (·; t) on the BGP, if the latter does not change over time.8 Let us first define

the EoS when there are more than two inputs.9

Definition 3. The Elasticity of Substitution between capital Kt and input Xj in

multi-factor neoclassical production function F (K,X1, ..., XJ ; t) in (1) is defined by

σKXj ,t = − d ln(Kt/Xj,t)

d ln
(
FK(Kt, X1,t, ..., XJ,t; t)/FXj(Kt, X1,t, ..., XJ,t; t)

)∣∣∣∣∣
Yt,X−j,t:const

, (5)

where X−j,t ≡ {X1,t, ..., XJ,t}\Xj,t represents the inputs other than Kt and Xj,t.

Using this definition, we can show that the Uzawa representation has the correct

EoS if the true EoS is stationary on the BGP.

Proposition 3. (Elasticity of Substitution in the Uzawa Representation)

Let σ̃KXj ,t denote the EoS in the Uzawa representation, as in Definition 3. If the EoS

of the true production function, σKXj ,t for some j ∈ {1, ..., J}, is constant over time

on the BGP, then σ̃KXj ,t = σKXj ,t holds for all t ≥ 0 on the BGP.

Proof. See Appendix A.4.

4 A Generalized Uzawa Growth Theorem

By viewing ÃXj ,t as the factor Xj,t-augmenting technology term, Proposition 1 implies

that it is always possible to interpret the time variation of the true production function

8To the best of our knowledge, Acemoglu (2008) is the only example of previous work considering
first-order properties implied by the Uzawa theorem. He looks at first-order conditions in the two-
factor case, providing a special case of Proposition 2.

9When there are more than two production factors, there are various ways to define the elasticity
of technical substitution. See Stern (2011) for a concise taxonomy. The elasticity in (5) is calculated
using the inverse of the symmetric elasticity of complementarity (SEC), defined in Stern (2010),
which has a desirable property of symmetry between the two variables.
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F (·; t) on the BGP in terms of exponential augmentation of production factors. In

addition, Propositions 2 and 3 show that the Uzawa representation (3) is ‘correct’ in

terms of its marginal properties. It is tempting to conclude that there should be no

technological change that enhances the productivity of capital on the BGP, because

there is no ÃK,t term in (3). This reasoning is insufficient because Proposition 1 does

not establish uniqueness. As a result, it does not rule out the existence of better

representations of the true production function.

In this section, we prove a further generalized version of the Uzawa theorem that

allows for representations with capital-augmenting technical change. We explore the

possibility that the true production function has more than one factor-augmenting

representation and identify a condition under which there will be a representation that

matches the data on the capital-augmenting technological change shown in Section

2. To satisfy this condition while remaining consistent with empirical evidence, it is

essential to include factors of production beyond labor and reproducible capital in

the aggregate production function.

4.1 Factor-Augmenting Representation and Factor Substitu-

tion

We start by defining a factor-augmenting representation.

Definition 4. A Factor-Augmenting Representation of the true production func-

tion (1) is a combination of a time-invariant constant-returns-to-scale function F (·)
and the growth factors of factor-augmenting technologies γK > 0 and γXj > 0,

j ∈ {1, ..., J}, such that the paths of output and inputs on a BGP satisfy

Yt = F (AK,tKt, AX1,tX1,t, ..., AXJ ,tXJ,t) holds for all t ≥ 0, (6)

where AK,t = (γK)t and AXj ,t = (γXj)
t.

Our objective is to find a factor-augmenting representation F (·) that matches

a wider set of properties of the BGP, including the evidence of capital-augmenting

technological change. By comparing (3) with (6), it is clear that the Uzawa represen-

tation is a special case of a factor-augmenting representation. As we explain below,
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(3) assumes that all effective factors grow at the same rate of g, while (6) permits

different growth rates among different effective factors. In other words, the Uzawa

representation hypothesizes that there is no factor substitution taking place when the

economy grows along the BGP. The homothetic expansion of every effective input is

the simplest interpretation of a steadily growing economy, but it does not necessarily

constitute the best description of reality.

To see this, suppose that every effective input, including effective capital, grows at

the same speed as the output. Recall that physical capital is already growing at the

same speed as output on the BGP (Lemma 1). Then, there is no room for additional

capital-augmenting technological progress to further augment its effectiveness. As

discussed in Section 2, however, there is clear evidence that the productivity of capital,

measured in terms of output as in our model, has steadily been increasing on the BGP.

Thus, the interpretation of the BGP as being a homothetic expansion of every input

is at odds with a well-established stylized fact.

Motivated by this contradiction, we now consider a broader range of possibilities

in which effective inputs grow at different constant rates. To have balanced growth

with non-homothetic expansion of production factors, it is necessary to further re-

strict the possible functional forms of the factor-augmenting representation. Before

moving to formal propositions, we provide a heuristic discussion that highlights the

key intuition. Suppose that the true production function can be represented in the

factor-augmenting way (6) on the BGP with the correct derivatives and EoS. Then,

the growth rate of output can approximately be written as follows:10

g ≡ Yt+1/Yt ≈ sk,tγKgK +
J∑
j=1

sXj ,tγXjgXj , (7)

where sk,t ≡ FK(Kt, X1,t, ..., XJ,t; t)Kt/Yt is the share of capital at time t and similarly

for sXj ,t.

Equation (7) says that the growth rate of the output is the weighted average of the

growth rates of different effective factors, where the weights are factor shares. When

10To obtain this decomposition, we performed a Taylor-expansion on the RHS of (6) for t + 1
with respect to every effective factor around the period t values. Then, we divided the result by the
RHS of (6) for t. The Taylor expansion is exact when the variables in t and t + 1 are sufficiently
close, or equivalently, in continuous time.
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the effective factors grow at different speeds, γKgK and the γXjgXj ’s are different.

Specifically, let us assume that effective capital grows faster than output due to K-

augmenting technological change (γKgK > g). Then there must be at least one

effective factor that is growing slower than output. Let us say that this factor is X1

(i.e.,γX1gX1 < g) and that all the other effective factors are growing at the same rate

as output. Then, dividing the factor augmenting representation (6) by Yt gives

1 = F

(
AK,tKt

Yt
,
AX1,tX1,t

Yt
, constants

)
. (8)

In this form, it is evident the growing effective capital-output ratio AK,tKt/Yt

permits the production of unit output with the shrinking effective X1-output ratio

AX1,tX1,t/Yt. In other words, factor substitution is occurring.

Now, let us check if this ongoing factor substitution is consistent with the definition

of the BGP. On the BGP, output grows at a constant rate, g, which means that the

RHS of (7) must also be constant. Given γKgK > γX1gX1 , the RHS of (7) only remains

constant when the factor shares, sk,t and sX1,t, do not change over time. This happens

if and only if the EoS of F (·) between K and X1, defined in Definition 3, is equal to

one. To summarize, for K-augmenting technological change to happen on the BGP

in a factor-augmenting representation, the functional form of F (·) needs to have a

unitary EoS between capital and some other factor.11 In this case, it is possible to

have balanced growth even when effective capital grows faster than output.

Once we obtain a factor-augmenting representation, we hope to use it as an ap-

proximation of the true production function. In particular, as in Proposition 3, the

representation is especially useful if the EoS of F (·) matches that of the true pro-

duction function. This is only possible when the true production function F (·; t)
has a unitary EoS between capital and some other factor, because we already know

that F (·) must have a unitary EoS. As discussed in section 2, there is a great deal

of evidence suggesting that the EoS between capital and labor is different than one.

However, our definition of the neoclassical growth model allows for any number of

11In the Uzawa representation, γKgK = γXjgXj holds for all j. Because the production function

is assumed to have CRS (which guarantees sK,t +
∑J
j=1 sXj ,g = 1), the RHS is always constant.

Therefore, we can use F (·; 0) as the Uzawa representation without checking its EoS properties (see
Proposition 1) at the cost that it cannot accommodate the possibility of K-augmenting technological
change.
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inputs. Once we consider the realistic case with more than two factors of production,

it becomes more likely that at least one input has a unitary EoS with capital.

4.2 A Steady-State Growth Theorem with K-augmenting Tech-

nical Change

Here, we formally construct a function that can be used as a basis for a factor-

augmenting representation. Consider factors of production other than capital, {X1,t, ..., XJ,t},
and suppose that some of them are substitutable with capital, Kt, with unitary elas-

ticity in the period 0 production function, F (·; 0). Without loss of generality, we

reorder these factors so that the first j∗ ∈ {1, ..., J} of them can be substituted with

capital with the unitary EoS.

If capital is substitutable with j∗ other factors with a unitary elasticity, we

can interpret them as if they are combined together in the Cobb-Douglas fashion

to form an intermediate input. The intermediate input, which we call the capi-

tal composite, will then be one argument in the final production function. Using

the share of factors in period 0, sK,0 ≡ FK(K0, X1,0, ..., XJ,0; 0)Kt/Yt and sXj ,0 ≡
FK(K0, X1,0, ..., XJ,0; 0)Xj,t/Yt, we define period-0 relative shares within the capital

composite:

α = sK,0/(sK,0 +

j∗∑
j=1

sXj ,0), ξj = sXj ,0/(sK,0 +

j∗∑
j=1

sXj ,0). (9)

Using these relative shares, we can represent the production function in a nested

form:12

F (k, x1, ..., xJ) ≡ F̂

(
kα
∏j∗

j=1
x
ξj
j , xj∗+1, ..., xJ

)
. (10)

The first argument of the F̂ (·), m = kα
∏j∗

j=1 x
ξj
j , represents the capital composite,

which combines capital and the other j∗ factors that have a unitary EoS with capital.

Capital composite m is an argument in the outside function F̂ (·), along with other

12In this section, we use lowercase letters k, x1, ..., xJ to denote variables, while uppercase letters
Kt, X1,t, ..., XJ,t are the BGP values, unless otherwise noted. Also, with a slight abuse of notation,
here we define function F (·) by (10), while F (·) was previously used in a factor-augmenting repre-
sentation. This abuse will be resolved in Proposition 4, which shows F (·) in (10) actually constitutes
a factor-augmenting representation.
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factors xj∗+1, ..., xJ . The shape of the outside function F̂ (·) is defined using the

period-0 production function F (·; 0):13

F̂ (m,xj∗+1, ..., xJ) ≡ F

((∏j∗

j=1
X
ξj
j,0

)−1/α
m1/α, X1,0, ..., Xj∗,0, xj∗+1, ..., xJ ; 0

)
.

(11)

The first argument of F̂ (·), m, collects the j∗ relevant inputs and combines them with

capital in the first argument. As a result, function F̂ (·) has j∗ fewer arguments than

F (·; 0). Note that the RHS of (11) includes the BGP values Xj,0, J = 1, . . . , j∗, which

are treated as constants. Changes in the xj,0 terms only matter through m.

As the following lemma shows, the nested representation, F (·) with F̂ (·), approx-

imates the true production function around the BGP in period 0.

Lemma 2. (Nested representation of the production function at t = 0)

a. F (K0, X1,0, ..., XJ,0) = F (K0, X1,0, ..., XJ,0; 0).

b. For any Z ∈ {K,X1, ..., XJ}, FZ(K0, X1,0, ..., XJ,0) = FZ(K0, X1,0, ..., XJ,0; 0).

c. For any j = 1, ..., j∗, σKXj ,0 = σKXj ,0, where σKXj ,0 is the EoS of function

F (k, x1, ..., xJ) between k and xj, evaluated at the period-0 BGP.

d. Functions F̂ (m,xj∗+1, ..., xJ) and F (k, x1, ..., xJ) have constant returns to scale.

Proof. See Appendix A.5.

Properties a, b, and c respectively confirm that the nested representation F (·)
matches the period-0 true production function, F (·; 0), in terms of the level of inputs

and output, the first derivatives for any input, and the EoS between K and any other

input Xj, when the function is evaluated around the period-0 BGP.14 Property d

confirms the CRS property.

Thanks to the CRS property, the nested representation can be used not only

for period 0, but also for representing how the production function evolves from

there along the BGP. The following proposition establishes that, with the nested

13F (·; 0) needs to satisfy σKXj ,0 = 1 for j = 1, ..., j∗. Other than that, the following analysis only
requires that the local properties of F (·; 0) are known to researchers. See Remarks 1-3 for related
discussions in the context of the multi-factor Uzawa theorem.

14Namely, when {k, x1, ..., xJ} are at the period-0 BGP values {K0, X1,0, ..., XJ,0}.
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representation F (·), there are multiple ways to represent the technological change in

a factor-augmenting fashion.

Proposition 4. (A Generalized Uzawa Growth Theorem) Suppose that σKXj ,0 =

1 for j = 1, ..., j∗. On a non-degenerate BGP, let γK > 0 and γXj > 0, j ∈ {1, ..., j∗},
be any combination that satisfies the technology condition

(γKg)α
∏j∗

j=1
(γXjgXj)

ξj = g. (12)

For j ∈ {j∗ + 1, ..., J}, let γXj = g/gXj . With γK and each γXj , define AK,t = (γK)t

and AXj ,t = (γXj)
t. Also, define function F (·) by (9) and (10). Then, on the BGP,

Yt = F (AK,tKt, AX1,tXj,t, ..., AXJ ,tXJ,t) for all t ≥ 0. (13)

Proof. See Appendix A.6.

Note that (13) constitutes a factor augmenting representation, as defined by Def-

inition 4.15 Thus, Proposition 4 characterizes the set of factor-augmenting represen-

tations of the true production function along the BGP. When there is no factor that

is substitutable with capital with a unitary elasticity at time 0 (i.e., j∗ = 0), then

Proposition 4 becomes identical to Proposition 1.16 However, given that there are

many factors of production in reality, it seems plausible that at least one of them is

substitutable with capital with a unitary elasticity (j∗ ≥ 1). In this case, there are

several aspects of the proposition that warrant further discussion.

First, unlike Proposition 1, the generalized theorem implies that there is a contin-

uum of representations. Factor-augmenting terms, γK and γXj for j = 1, ..., j∗, can

be any combination that satisfy condition (12). This enables applied researchers to

pick the representation that is most consistent with data on technical change. The

Uzawa representation is a special case of the factor-augmenting representation with

γK = 0.

15Recall that function F (·) has CRS from Lemma 2.
16If j∗ = 0, condition α+

∑j∗

j=1 ξj = 1 in Lemma 2 implies α = 1. Then, condition (12) reduces
to γK = 1, which means AK,t = 1 for all t. Then, (13) becomes identical to (3).
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Second, condition (12) implies that the amount of effective capital composite,

Mt = (AK,tKt)
α
∏j∗

j=1
(AXj ,tXj,t)

ξj ,

must grow at the same speed of output, g. This result can be expressed in a log-linear

form:

α log γK +
∑j∗

j=1
ξj log γXj = (1− α) log g −

∑j∗

j=1
ξj log gXj . (14)

When the growth rates of the factor-augmenting technologies are exogenous, this

log-linear condition may seem restrictive. In a model where the direction of techni-

cal change is endogenous, however, this condition can be endogenously satisfied as

the economy converges to the BGP. If the speed of capital-augmenting technological

change is slower than required in (14), then the effective capital composite gradually

becomes scarcer relative to the other effective factors. The scarcity will induce firms

to do more R&D to enhance the capital-augmenting technology rather than enhancing

other factors. As a result, condition (14) will necessarily be satisfied in the long run

as long as the economy converges to a BGP. We build such a model in a companion

paper (Casey and Horii, 2023). The results suggest that the log-linear condition does

not impose any extra restrictions.

Third, similar to the original Uzawa theorem (Proposition 1), equation (13) is

not a functional relationship. It only states that the level of inputs and outputs in

this representation match those of the true production function on the BGP. The

following propositions establish that, under conditions similar to Propositions 2 and

3, the factor-augmenting representation (13) gives the correct first derivatives and

the correct EoS between capital and other factors around the BGP.

Proposition 5. (Derivatives of the Factor-Augmenting Representation) Sup-

pose that σKXj ,0 = 1 for j = 1, ..., j∗. If the share of factor Zt ∈ {Kt, X1,t, ..., XJ,t},
i.e., sZ,t = FZ(·; t)Zt/Yt, is constant on a non-degenerate BGP of a multi-factor

neoclassical growth model, the following holds on the BGP:

∂

∂Zt
F (AK,tKt, AX1,tX1,t, ..., AXJ ,tXJ,t) = FZ(Kt, X1,t, ..., XJ,t; t) for all t ≥ 0. (15)

Proof. See Appendix A.7.
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Proposition 6. (The EoS of the Factor-Augmenting Representation) Sup-

pose that σKXj ,0 = 1 for j = 1, ..., j∗ and let σKXj ,t denote the EoS in the factor-

augmenting representation

F (AK,tKt, AX1,tX1,t, ..., AXJ ,tXJ,t). If the EoS of the true production function, σKXj ,t

for some j ∈ {1, ..., J}, is constant over time on the BGP, then σKXj ,t = σKXj ,t holds

for all t ≥ 0 on the BGP.

Proof. See Appendix A.8.

4.3 Practical Use and Comparison to Uzawa Theorem

Propositions 4-6 demonstrate that the factor-augmenting representation captures key

elements of the true production function and is potentially useful for economic anal-

ysis. When developing a dynamic macroeconomic model, researchers need to take a

stand on how to represent technical change. In other words, they need to decide how

the shape of the production function will evolve over time. This is a challenging task

that can influence the results, especially in a quantitative setting.

Given the requirement that the model should have a BGP, the propositions pro-

vide guidance in choosing a suitable representation of the evolution of the production

function. As shown in equation (1), the definition of the neoclassical growth model

allows the aggregate production function to evolve in any way. The factor-augmenting

representation captures this evolution only through factor-augmenting terms. Propo-

sition 4 demonstrates that the representation matches the level of all the key variables

on the BGP, recreating an important set of stylized facts. Proposition 5 implies that

the representation has the correct derivatives, and therefore factor shares, as long as

factor shares are constant on the BGP. Relatedly, Proposition 6 says that the Uzawa

representation has the correct EoS between capital and other variables, as long as

that elasticity is constant. Thus, the Uzawa representation can be useful as a local

approximation of the true function around the BGP.

These properties echo that of the Uzawa representation, as previously shown in

Propositions 1-3. However, the original Uzawa theorem explains the balanced growth

by homothetic expansion of every effective production factor. In other words, the

Uzawa representation hypothesizes that no factor substitution is taking place along

the BGP. As a result, it requires the productivity of capital to stay constant. Our
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generalized theorem in Proposition 4 clarifies that the Uzawa theorem is only a single

possibility out of a continuum of possible factor-augmenting representations, as long

as the production function allows factor substitution on the BGP (i.e., at least one

factor of production has a unitary EoS with capital).17 Every candidate representation

can explain the observed quantities on the BGP, but they differ in the rates of factor-

augmenting technological progress among different production factors. Given that

other properties are the same, it is useful to choose the candidate representation that

matches the rate of capital-augmenting technological progress observed in data.

In Propositions 4-6, we construct the factor-augmenting representation based on

the period-0 production function. Period 0 can be chosen freely by the researcher as

long as the economy is on the BGP in that period. Still, it may suggest that the

complete shape of the production function at some point in time must be known.

However, this assumption is made for the sake of clarity and is not necessary. The

following remarks state that we can apply the propositions even when only the local

properties of the period-0 production function are known.18

Remark 1. The proof of Proposition 4 holds as long as F̂ (·) in (10) is any CRS

function that matches the level of inputs and output in period 0: i.e.,

F̂
(
Kα

0

∏j∗

j=1X
ξj
j,0, Xj∗+1,0, ..., XJ,0

)
= Y0.

Remark 2. The proof of Proposition 5 hold as long as F̂ (·) matches the first deriva-

tive of F (·; 0) in period 0, i.e., ∂
∂Z0

F̂
(
Kα

0

∏j∗

j=1X
ξj
j,0, Xj∗+1,0, ..., XJ,0

)
= FZ(K0, X1,0, ..., XJ,0; 0)

for Z = Kt, X1, ..., XJ , in addition to the condition in Remark 1.

Remark 3. The proof of Proposition 6 holds as long as the EoS of F̂ (·) between

capital and all other inputs evaluated in period 0 match that of F (·; 0), in addition to

the conditions in Remark 1.

Thus, when building models for macroeconomic research, economists can pick a

CRS production function (e.g., a CES production function) and calibrate its parame-

ters to match the level, derivatives (or factor shares), and the EoS from the data at a

particular point in time, which can be regarded as time-0 BGP values. Then, the rep-

resentation will continue to match these moments on the BGP, as long as the factor

17The Uzawa representation, where γK = 1 and γXj = g/gXj for all j, satisfies condition (14).
Therefore, it is a special case of the factor-augmenting representation.

18Similar remarks apply to Propositions 1-3.
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shares and the EoS are stationary. In addition, according to the data on technologi-

cal change, the economist can calibrate the speed of factor-augmenting technological

change, γK and γXj ’s, using constraint (12) or, equivalently, its log-linear version (14).

5 Three Examples

In this section, we explain the use and implications of the generalized Uzawa the-

orem in three concrete settings. We choose examples to explore the simplest way

to make neoclassical models consistent with aggregate data on the relative price of

capital and the EoS between capital and labor. In subsection 5.1, we explain why

a standard neoclassical economy with only two factors cannot accomplish this goal.

Then, subsection 5.2 discusses the approach taken by Grossman et al. (2017) as a

special case of the 2-factor neoclassical environment. Finally, subsection 5.3 shows

that the conflict between data and neoclassical models can be resolved when includ-

ing factors of production beyond labor and reproducible capital. These examples will

also illustrate how the theorem can be applied to other settings.

5.1 Standard 2-Factor Neoclassical Growth Model

Suppose that the true production function uses only two kinds of inputs, capital, Kt,

and labor, Lt, i.e., Yt = F (Kt, Lt; t). The production function F (·; t) depends on

time due to the technological change. Then, Proposition 1 says that, on any BGP

with positive investment, technological change can always be represented as Yt =

F̃ (Kt, AL,tLt). If these two factors are substitutable with a unitary elasticity (σKL =

1), Proposition 4 shows there are other possible factor-augmenting representations of

the same BGP:19

Yt = A(AK,tKt)
α(AL,tLt)

1−α,where A > 0 is a constant, (16)

which includes an Uzawa representation Yt = AKα
t (ÃL,tLt)

1−α as a special case. Given

the growth factors of output and labor on the BGP, condition (12) implies that any

19When there are two factors (J = 1) and they are substitutable with a unitary elasticity (j∗ = 1),

equation (13) in Proposition 4 implies that Yt = F̂
(
(AK,tKt)

α(AL,tLt)
1−α). Because function F̂ (·)

has CRS and has only one argument, we can write F̂ (x) = Ax for some A > 0, which gives (16).
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combination of γK = AK,t+1/AK,t and γL = AL,t+1/AL,t is consistent with the BGP

as long as they satisfy γαK(γLgL)1−α = g1−α. By rewriting (16) as Yt = AtK
α
t L

1−α
t ,

where total factor productivity (TFP), At, is given by At ≡ AAαK,tA
1−α
L,t , it is clear that

various combinations of capital- and labor-augmenting technological changes give the

same rate of growth for TFP and, therefore, output.

This result confirms the widely understood version of the Uzawa theorem: on

a BGP, all technological progress must be labor-augmenting, unless the production

function is Cobb-Douglas. As we have seen in Section 2, this theoretical result is in

contradiction with two stylized facts: (i) the productivity of capital has been steadily

increasing, and (ii) the EoS between capital and labor is less than one, ruling out the

Cobb-Douglas production function. No standard two-factor production function can

reconcile these two stylized facts on a BGP.

5.2 Inclusion of Schooling in a Two-Factor model

Grossman et al. (2017) propose a possible solution to this contradiction by including

schooling, st ≥ 0, in a standard two-factor production function. Their result can

be understood intuitively in terms of our analytical framework. While they start

their analysis from a factor-augmenting representation, it is worthwhile to consider

an underlying time-varying true production function in the form of (1):20

Yt = F (Kt, Lt; t) = F s(D(st)
aKt, D(st)

−bLt; t), (17)

where a > 0, b > 0, D(·) ∈ [0, 1], and D′(·) < 0. With D(st) terms, the RHS of

(17) specifies the production function beyond the general form F (Kt, Lt; t). When st

increases, the multiplier D(st)
a on Kt shrinks, raising the marginal product of capital.

The opposite holds for labor. In this way, Grossman et al. (2017) specify a certain

type of complementarity between schooling and capital.

Note that st is not a production factor in the neoclassical sense, because the

production function has CRS only in capital and labor. Still, as the D(st) term

20They considered not only factor-augmenting technological progress, but also investment-specific
technological change. Definition 1 can include both cases as we will show in Section 8. In a subse-
quent study (Grossman et al., 2021), they used human capital instead of schooling as an argument
in the production function otherwise similar to (17). Our interpretation also applies to this paper.
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changes over time, it affects the amount of output produced from given quantities of

Kt and Lt. This is a particular form of technological change, and we can consider

D(st) as being included in the t term of F (Kt, Lt; t), as in the middle part of (17).

Therefore, it falls within the definition of a two-factor neoclassical growth model (i.e.,

Definition 1 with J = 1).

From Proposition 1, this production function has an Uzawa representation Yt =

F̃ (Kt, ÃL,tLt) with ÃL = (g/gL)t on a BGP, where both effective factors Kt and

ÃL,tLt grow at the same speed as output. The production function in Grossman

et al. (2017) can be interpreted in the following way, keeping the multiplier D(st)

term in the expression:

Yt = F̃ (Kt, ÃL,tLt) = F̃ (AK,tD(st)
aKt, AL,tD(st)

−bLt). (18)

Comparing the arguments in the RHS to those in the middle, we immediately obtain

AK,t = D(st)
−a and AL,t = ÃL,tD(st)

b on the BGP. Because the multiplier D(st)
a

shrinks as st increases, the capital-augmenting technology AK,t must grow so as to

exactly offset the shrinking D(st)
a term. Conversely, the labor-augmenting term AL,t

should grow slower than that in the Uzawa representation ÃL,t, because the multiplier

D(st)
−b is also augmenting labor.21 In this sense, there is no overall growth in capital

productivity in the Grossman et al. (2017) formulation.

Within the limits of the two-factor Uzawa theorem, Grossman et al. (2017) propose

a new interpretation of the production function, which provides the first possible

solution to the contradiction raised by the Uzawa theorem. In their formulation, it is

important that schooling enters the production function precisely in the form of (18),

where the same function D(st) appears both before capital and labor, with powers of

opposite signs. In addition, the functional form of D(st) and the dynamic path st in

equilibrium must be specified such that D(st) shrinks exponentially over time.

Future empirical work could inform the understanding of long-run economic growth

21From these observations, the main result of (Grossman et al., 2017, proposition 2) can easily be
obtained as follows. Taking the growth factor of the both sides of AK = D(st)

−a gives γK = g−aD .

From this, we obtain a discrete-time equivalent of their Proposition 2(ii): gD = γ
−1/a
K . Note

that Grossman et al. (2017) assumed Lt = D(st)Nt, which means gL = gDgN . Because effective
labor AL,tD(st)

−bLt in (18) must grow at the same rate as output, g = γLg
−b
D gL = γLg

1−b
D gN =

γLγ
(b−1)/a
K gN , which is a discrete time equivalent of their proposition 2(i).

24



by testing whether the formulation (17) is consistent with data. In this paper, we

propose a wider class of functions that are consistent with balanced growth. The next

subsection discusses a particularly simple example.

5.3 A Simple Three-Factor Model with Natural Resources

As shown in Section 2, a significant portion of GDP is paid to production factors that

do not fit well in the notion of Kt or Lt. Thus, it is natural to consider production

functions with more than two factors. Adding these additional factors makes it possi-

ble to reconcile neoclassical models with the data. While labor cannot be substituted

by capital with unitary elasticity (σKL 6= 1), Proposition 4 only requires that there is

a single production factor satisfies this requirement. In this case, there exist factor-

augmenting representations of the production function that have capital-augmenting

technological change (γK > 1).

Let us consider the simplest extension of the standard neoclassical production

function,

Yt = Ft(Kt, Lt, Xt; t), where Xt = X0g
t
X for all t,X0 > 0, gX > 0. (19)

Here, we have a third production factor Xt, which is either growing (gX > 1), shrink-

ing (gX ∈ (0, 1)), or constant (gX = 1). One example of such a factor is land. In that

case, gX represents the growth factor of the available land space. If the total area of

available land is constant, gX would be one on the BGP. Another example is fossil

fuels. Any kind of natural resource, or a collection of natural resources (including

land), is a candidate for Xt.

Among many candidates for the third production factor, we focus on those that

have a unitary EoS with capital: σKX = 1. Then, Proposition 4 implies that, along a

non-degenerate BGP, technological change can be represented in a factor-augmenting

fashion:

Yt = F̂

((
AK,tKt

)α(
AX,tXt

)1−α
, AL,tLt

)
, α ∈ (0, 1), (20)

where the growth factor of technology variables must satisfy γL = g/gL and γαK(γXgX)1−α =
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g1−α. As in (14), the latter condition can be written in a log-linear form:

log γK =
1− α
α

(log γL + log gL − log γX − log gX) . (21)

Thus, there must be a positive capital-augmenting technological change on a BGP

(γK > 1), as long as the economy is growing faster than the effective input of the third

factor (g = γLgL > γXgX). We will calibrate this simple three-factor model to U.S.

data in Section 7. Before doing so, we discuss empirical evidence on the elasticity of

substitution between capital and the third factor Xt.

6 The EoS: Linking Theory and Empirics

In this section, we discuss existing empirical evidence on the elasticity of substitution

between capital and other factors, and the link between these estimates and economic

theory. We start by highlighting the difference between short- and long-run elasticity

and then discuss existing empirical work on capital-labor, capital-energy, and capital-

land substitution.

6.1 Short- and Long-run EoS: Theory

When the relative factor prices change, firms try to adjust relative inputs to the

production function, substituting one factor with another. The EoS measures the

extent of this activity. The ability of firms to substitute between production factors

depends on the time horizon. In the short run, the ability of factor substitution is

typically limited, because firms face various constraints that are alleviated over time.

Put differently, there is a difference between the short-run EoS, which is affected by

these constraints, and the long-run EoS, which is not.

Leon-Ledesma and Satchi (2019) show that it is the long-run EoS that is relevant

for the Uzawa theorem, because the theorem is concerned only with outcomes along

the balanced growth path. They consider an aggregate production function in the

form of Yt = F short(AK,tKt, AL,tLt; θ), where technology parameter θ > 0 is taken as

given in the short run. In this formulation, the EoS of function F short(·; θ), given the

value of θ, provides the short-term (or constrained) EoS between Kt and Lt. In the
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long run, firms will choose θ optimally. Therefore, the long-run production function is

given as the solution to F long(AK,tKt, AL,tLt) ≡ maxθ F
short(AK,tKt, AL,tLt, θ). They

have theoretically shown that the EoS of F long(·) is higher than that of F short(·; θ),
consistent with the finding in the empirical literature. They also show that, to obtain

the BGP with capital-augmenting technological change, the long-term EoS between

capital and labor needs to be one, but there is no restriction on the short-run EoS.22

In other words, it is the long-run EoS that determines compliance with the two-factor

Uzawa growth theorem.

In our theory, we consider the neoclassical production function (1) without short-

term restrictions, such as θ above. Therefore, F (Kt, X1,t, ..., XJ,t; t) in (1) and its

factor-augmenting representation Yt = F (AK,tKt, AX1,tXj,t, ..., AXJ ,tXJ,t) in (13) are

unconstrained, long-run production functions. As with most neoclassical growth mod-

els, we implicitly assume that production function F includes all substitution possi-

bilities, given the currently available set of technologies in the economy.23 Differently

from Leon-Ledesma and Satchi (2019), we focus on the case where the long-term (or

unconstrained) EoS between Kt and Lt is less than one, which fits better the findings

in the empirical literature. To do so, we look for some other factor Xt such that EoS

between Kt and Xt in this long-term aggregate production function is one.

6.2 Long-run EoS: Empirical evidence

The distinction between the short-run and long-run EoS is important for interpreting

empirical estimates. Analyses with time-series and panel data looking at the imme-

diate reaction of factor use to relative price changes will estimate the short-run (con-

strained) elasticity, which may be very different than the long-run (unconstrained)

elasticity. To estimate long-run elasticities, it is often necessary to use cross-sectional

22To be consistent with the BGP, they have shown that production function Yt = F short(AK,tKt,

AL,tLt; θ) needs to take the form of F̃ (Atθ
α−1Kt, Atθ

αLt), where At is the general level of technol-

ogy. Since F̃ (·) is CRS, we can show that Yt = AtK
α
t L

1−α
t maxθ>0 F̃ ((θLt/Kt)

α−1, (θLt/Kt)
α).

The maximized value in the latter expression, a∗ = maxθ>0 F̃ ((θLt/Kt)
α−1, (θLt/Kt)

α) becomes
constant because the maximand depends only on the technology-adjusted factor intensity θLt/Kt,
which can be set to any positive value adjusting θ. Therefore, the long-term (or unconstrained)
production function is Cobb-Douglas: Yt = a∗AtK

α
t L

1−α
t .

23If Θt is the available set of technology in time t and F short(Kt, X1,t, ..., XJ,t; t, θ)
is the production function given technology θ, then F (Kt, X1,t, ..., XJ,t; t) = maxθ∈Θt

F short(Kt, X1,t, ..., XJ,t; t, θ).
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data or adopt other approaches that separate short- and long-run variation. In this

case, it is possible to observe the degree of factor substitution after short-run con-

straints have dissipated. In the following sections, we briefly review the existing ev-

idence on substitution between capital and labor (Section 6.2.1), capital and energy

(Section 6.2.2), capital and land (Section 6.2.3).

6.2.1 Capital and Labor

In Section 2 and other places, we mentioned that existing evidence suggests that

capital and labor have an EoS that is different than one. This is true for the long-run

EoS. Chirinko (2008) provides a helpful summary of the literature. He stresses the

distinction between the short- and long-run EoS and the fact that empirical evidence

suggests that the long-run EoS is less than one. This result is confirmed by more

recent work (e.g., Chirinko and Mallick, 2017; Oberfield and Raval, 2021).24

6.2.2 Capital and Energy

There is a long literature on the economic implications of changes in energy prices. A

key finding in this literature is that the long-run EoS between energy and non-energy

inputs is significantly higher than the short-run EoS, which is near zero (e.g., Berndt

and Wood, 1975; Griffin and Gregory, 1976; Pindyck and Rotemberg, 1983; Atkeson

and Kehoe, 1999). Indeed, the existing evidence is consistent with a long-run EoS

between capital and energy of one.

Koetse et al. (2008) perform a meta-study of existing literature on substitution

between capital and energy. They find country-level, cross-sectional elasticities that

are very close to one in North America. The estimates for Europe are around 0.8,

but do not reject unitary elasticities. This is the most direct test of the long-run

elasticity, as highlighted in the previous section.

Van der Werf (2008) estimates nested CES production functions. When he adopts

a nesting structure consistent with the existence of a capital composite, he finds elastic-

ities very close to one, although alternate nesting structures yield higher goodness-of-

fit measures. This estimation is done in panel data and does not distinguish between

24Karabarbounis and Neiman (2014) is an interesting exception. Their estimate of the long-run
elasticity is above one.
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short- and long-run elasticities.

Hassler et al. (2021) study a structural model of fossil fuel energy use and directed

technical change. Similarly to Leon-Ledesma and Satchi (2019), they stress the role

that endogenous technology plays in creating a difference between short- and long-run

elasticities and derive similar conditions under which the long-run elasticity between

energy and other factors is equal to one. In their estimated model, they assume a

nesting structure that is different from that implied by the generalized Uzawa theorem

and stress the lack of precision in their long-run estimates. Still, their estimates

suggest only a modest change in the energy expenditure share following a significant

change in trend energy prices, implying that the implied elasticity is not far from one.

Our reading of the empirical evidence is as follows. Energy use (or perhaps some

subset of energy) is a reasonable candidate for the third factor X that has a unitary

EoS with capital. However, more research is needed, both to estimate the relevant

elasticity and to determine the appropriate nesting structure. We hope that our

theoretical results will spur new empirical work, which could significantly improve

our understanding of balanced growth.

6.2.3 Capital and Land

Land is an intuitive candidate for the third factor, because it has a relatively large

factor share. Unfortunately, the existing literature on capital-land substitution is

more limited than the evidence regarding energy. In the urban economics literature,

it is common to estimate the EoS between land and other inputs from cross-sectional

data on the production of housing services, and the estimated elasticities are often

close to one (e.g., Epple et al., 2010; Ahlfeldt and McMillen, 2014; Ahlfeldt et al.,

2015). While this result is suggestive, the EoS estimated in the urban literature does

not necessarily coincide with the macro EoS, because the urban literature only exam-

ines the elasticity in housing, while the macro elasticity is affected by the elasticity

in all sectors and the reallocation between sectors induced by changes in relative

factor prices (Oberfield and Raval, 2021). Markandya and Pedroso-Galinato (2007)

use aggregate data to examine many different nesting structures that include land.

In several specifications, they find an EoS between capital and land that is close to
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one.25 Our interpretation of the evidence on the capital-land EoS is similar to our

interpretation for the capital-energy EoS. It seems plausible that the capital-land EoS

is close to one, but further research is needed. We hope that our theoretical results

will spur this empirical work.

7 Quantitative Exercise

7.1 Calibration

In this section, we show how the generalized Uzawa theorem can be used to calibrate

the three-factor neoclassical growth model from Section 5.3, assuming perfect com-

petition. We will obtain a factor-augmenting representation that is simultaneously

consistent with the data on balanced growth, capital-augmenting technical change,

and the elasticity of substitution between labor and capital. Our calibration uses

annual U.S. data from 1960-2020. Appendix D.2 contains details on data sources.

Table 2 lists the calibration targets and the parameters that are taken directly from

the data.

This calibration exercise assumes that the third factor X is a Cobb-Douglas com-

bination of land and fossil fuel energy, which we refer to as ‘natural resources.’ We

also assume that the EoS between K and X is one. As highlighted in Definition 1, the

common structure of the neoclassical growth model only specifies the accumulation

process for capital (2). The determinants of the supply of other factors, Lt and Xt,

depend on the application. We calibrate the model without relying on specifications

for the supply of other factors, demonstrating that our approach could be used in a

wide range of settings.26

The generalized Uzawa theorem (Proposition 4) implies that, along a non-degenerate

BGP, technological change can always be represented as in equation (20). The func-

tional form of F̂ (·) in this equation is given by (11), which depends on the shape of

25Some of their estimates for the capital-energy EoS are close to one, while others are lower.
26For example, energy could be available in finite supply and costlessly extracted from the environ-

ment as in Hotelling (1931) and Hassler et al. (2021), or it could be extracted from the environment
using the final good as in Casey (forthcoming). In the latter case, extraction costs would be a
component of Rt in the Definition 1. It is common to model land as an endowment that is renewed
every period, but it would also be reasonable to take into account the fact that some expenditure is
necessary to keep land in a usable state.
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Table 2: Calibration Targets and Parameters Taken from Data

Target Value Description Source

sL 62.5% Labor share NIPA
sX 9% Natural resource share NIPA

K0/Y0 2.9 Capital-output ratio NIPA
σKL 0.6 EoS between L and K Oberfield and Raval (2021)
gL − 1 1.02% Population growth NIPA
gfossil − 1 0.85% Fossil fuel energy growth EIA
γL − 1 1.93% Labor-augmenting tech. change NIPA
γK − 1 0.80% Capital-augmenting tech. change NIPA
Y0, L0, X0 1 Initial variables Normalization

the true aggregate production function on the BGP at some point in time, F (·; 0).

Even when we do not know the exact shape of F (·; 0), Remarks 1-3 indicate that we

can use a CES production function instead of F (·; 0), as long as it matches the levels,

first derivatives (or shares), and the EoS. Therefore, in this exercise, we consider a

CES function for F̂ (·, ·) and calibrate its parameters to match the U.S. long-run data.

Equation (20) now can be written as

Yt =
{
ηKX

(
(AK,tKt)

α (AX,tXt)
1−α) ε−1

ε + ηL(AL,tLt)
ε−1
ε

} ε
ε−1

,

AK,t = γtK , AX,t = γtX , AL,t = γtL,

(22)

where α ∈ (0, 1) is the share of physical capital in the capital composite, ε > 0 is the

elasticity of substitution between labor and the capital composite, and ηKX and ηL

are distribution parameters. Here, we assume ε 6= 1, since ε = 1 would imply that the

entire production function is Cobb-Douglas, which is inconsistent with the observed

long-term elasticity of substitution between capital and labor.

Our data indicate that sL = 62.5% was the average labor share of income over

this period. For the share of natural resources, sX , we use the results from Table 1,

which reports that the shares of land and energy are 4% and 5%, respectively. Thus,

sX = 4%+5% = 9%. This pins down the share of capital, sK = 1−sL−sX = 28.5%,

and the relative weights inside the capital composite, α = sK/(sK + sX) = 0.76.

Lemma 1 implies the BGP growth rate of capital, gK , always coincides with the

growth factor of output, g. The definition of balanced growth (Definition 2) implies
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that the growth factors of the other inputs, gL and gX , as well as the growth factors

technologies, γL, γK , and γX , are constant. In this environment, the capital composite,

(AK,tKt)
α (AX,tXt)

1−α, grows at a factor of (γKg)α(γXgX)1−α, and effective labor,

AL,tLt, grows at factor of γLgL. The generalized Uzawa theorem (Proposition 4 with

j∗ = 1) requires that these two growth factors coincide with g on the BGP:

g = (γKg)α(γXgX)1−α = γLgL, (23)

which is equivalent to equation (21) in Section 5.3. From the U.S. data, we take

the annual growth rate of real GDP per capita to be (γL − 1) = 1.93% and the

population growth rate to be (gL − 1) = 1.02%. This gives a GDP growth rate

of (g − 1) = γLgL − 1 = 2.95%. Average growth rates are measured by fitting an

exponential trend through the data using ordinary least squares.

The growth rate of natural resources, gX , is a geometric mean of the growth factors

of land and fossil energy, where the weights are the expenditure shares. We assume

that land is constant and take the growth rate of fossil energy to be (gfossil−1) = 0.85%

per year, based on data from the Energy Information Administration (2023). Thus,

(gX − 1) = 1
5
9 (gfossil)

4
9 − 1 = 0.38%.

With this information, we can use equation (23) to pick the growth rates of capital-

and natural resource-augmenting technological change, {γK , γX}. It is customary to

choose γK = 1 (constant AK,t) — because this is the only choice consistent with bal-

anced growth in two-factor neoclassical growth models without Cobb-Douglas pro-

duction (see Section 5.1) — and to exclude the third variable X. In our setting, we

can choose γK to be consistent with data. In particular, the growth rate of capital-

augmenting technical change can be chosen to match the fall in the relative price of

capital, yielding (γK − 1) = 0.80%. Then, from the technology condition (23), we

obtain (γX − 1) = 0.04%.27

Next, we show how to calibrate ε, assuming that a researcher has a target value

27As explained in Appendix C, the fall in the relative price of investment can be used to measure
the growth rate of capital-augmenting technological change, because the neoclassical growth model
(Definition 1) is built on the assumption that final goods in period t can be converted to Kt+1

linearly. This property does not hold for other production factors, implying that we can not use
price data to calibrate γX directly. For example, a standard Hotelling (1931) model would imply
that changes in the price of energy reflect changes in scarcity rents, rather than energy-augmenting
technical change. Therefore, we use condition (23) to calibrate γX .
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for the elasticity of substitution between capital and labor. In Appendix B.1, we

calculate the elasticity of substitution between K and L in function (22) according

to Definition 3, which yields

σKL =
sK/sL + 1

(sK/sL + α)ε−1 + (1− α)
≡ Σ(ε, α, sK/sL). (24)

Equation (24) shows that σKL = Σ(ε, α, sK/sL) is an increasing function ε, with

Σ(0, α, sK/sL) = 0, Σ(1, α, sK/sL) = 1, and limε→∞Σ(ε, α, sK/sL) = (sK/sL+1)/(1−
α). This means the researcher can pick ε > 0 to match any target value of σKL between

0 and (sK/sL + 1)/(1− α). Specifically,

ε =
sK/sL + α

(sK/sL + 1)σ−1KL − (1− α)
if 0 ≤ σKL <

sK/sL + 1

1− α
. (25)

We use σKL = 0.6 (see, e.g., Chirinko, 2008; Oberfield and Raval, 2021), which gives28

ε = 0.56.

Lastly, we discuss how to calibrate distribution parameters. We consider some

period t = 0 in which the economy is on a BGP. Appendix B.2 shows that the factor

shares and the distribution parameters on the BGP are related by

ηKX =
sK
α

(
Kα

0X
1−α
0

Y0

) 1−ε
ε

, ηL = sL

(
L0

Y0

) 1−ε
ε

. (26)

The values of ηKX and ηL in the above equations reflect the choice of units. To

set units for labor and natural resources, we normalize L0 = X0 = 1 without loss

of generality. Since the process of capital accumulation is given by (2), capital and

output must be measured in the same units.29 In the data, the capital-to-output ratio

is K0/Y0 = 2.9. So, we normalize Y0 = 1 and K0 = 2.9. This gives ηKX = 0.71 and

ηL = 0.63.

28While we think that this is a reasonable calibration of ε, it should be noted that most estimates
of σKL assume a two-factor production function. Our results suggest that there is considerable value
in re-estimating substitution elasticities in multi-factor settings that include natural resources.

29Strictly speaking, the amount of capital in a given period, Kt, should be measured in the unit
of the previous period’s output, Yt−1. However, there is no simple way to do this. The standard
convention in the calibration of the neoclassical growth model is to measure simply the nominal
value of the capital stock and output in the same year to attain the capital-output ratio. We follow
this convention. This compromise only affects the CES distribution parameters, ηKX and ηL.
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Table 3: Calibrated Parameters

Parameter Value Description

ε 0.56 EoS b/w capital composite and L
α 0.76 Capital share in capital composite
ηL 0.63 CES distribution parameter
ηKX 0.71 CES distribution parameter
gX − 1 0.38% Natural resource (X) growth
γX − 1 0.04% X-augmenting tech. change

This completes the simple calibration exercise. The calibrated parameter values

are shown in Table 3. We explained how a researcher could obtain a representation

of the evolution of production function in the form of (22), where all the parame-

ters, {α, ε, ηKX , ηL, γK , γX , γL} are specified. This representation can be used as an

approximation of the true production function around the BGP. Unlike standard two-

factor production functions, it simultaneously matches the declining price of capital

on the BGP (γK > 1) and the non-unitary elasticity of substitution between labor

and capital (σKL 6= 1).

7.2 Explaining movements in the labor share

Here, we present a simple application of the calibrated model from the previous

section. We use it to study how fluctuations in capital-augmenting technical change

(as reflected in the relative price of investment) have influenced the labor share over

the last sixty years. Our model provides a new perspective on this question. In a

standard CES production function, the labor share is constant only when AK,t is

constant, and a long-term increase in AK,t would imply that the labor share will

continue to rise (if σKL < 1) or fall (if σKL > 1). In a standard Cobb-Douglas

production function, the labor share is always constant. In our model, by contrast,

the labor share is constant when AK,t grows along the BGP at a rate determined

by the log-linear technology condition (21). Any deviation of capital-augmenting

technology from its BGP path will generate fluctuations in the labor share.

In the following, let AK,t represent the BGP value of capital-augmenting technical

change at time t, and aK,t denote its actual value, whether or not it is on the BGP.

To focus on the impacts of a deviation of aK,t from AK,t, we assume that all other
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technologies and production factors follow their respective balanced growth paths. In

Appendix B.3, we show that the labor share in period t implied by our calibrated

model is

sL,t =

((
1

sL
− 1

)(
aK,t
AK,t

)α(ε−1)/ε
+ 1

)−1
, (27)

where sL (without a timescript) is the labor share on the BGP.

It is straightforward to take this expression to the data. In our calibration,

α = sK/(1 − sL) and ε in (25) depend only on factors shares and the estimate of

σKL. Therefore, the calculation of (27) does not require much information other than

the deviation of capital-augmenting technology from its BGP path, aK,t/AK,t. The

relative price of investment can be used to measure this deviation. In Appendix C.1,

we derive
aK,t
AK,t

=

(
rpit−1
RPIt−1

)−1
, (28)

where rpit−1 is the relative price of investment and consumption in the NIPA statistics

at time t − 1, and RPIt−1 is the BGP value. The lag between the measurement of

capital-augmenting technical change and the relative price of investment reflects the

fact that the efficiency and quantity of period t capital depends on investment in

period t− 1. These results imply that the period length matters for our results. We

calculate results using period lengths of one year and five years.30

The results are shown in Figure 2. Panel (a) shows the relative price of investment

from the NIPA data and its exponential trend estimated via ordinary least squares,

which we take to be the BGP level. From (28), comparing the data and trend yields

a measure of how much capital-augmenting technical change has deviated from its

BGP. As noted in the previous section, the relative price of investment fell at an

average rate of 0.80% over this period. The actual data lie below the trend prior to

1975 and spike well above the trend in the early 1980s. Toward the end of the period,

the data lie close to the long-run trend.

Panel (b) shows the movements in the labor share in the BEA data and those

30For the calculation with five-year periods, we first compute the deviation of the actual relative
price of investment from its BGP value for each year. Then, we take averages over five-year periods,
starting with 1960-1964. For each of these five-year periods, we compute (28) using data from the
previous period. Finally, we plug back into (27). The markers in the figure show the first year of
each five-year period.
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(a) Investment Price (b) Labor Share

Figure 2: The Relative Price of Investment and the Labor Share.

Note: See Appendix D.3 for data sources.

implied by the model. When the relative price of investment is above its BGP level,

the ratio of the effective capital composite to the effective labor is below its BGP

level. Note that ε < 1 means that the labor share declines when labor becomes

abundant relative to the effective capital composite. Therefore, an upward deviation

of the relative price of investment from its BGP level implies a lower labor share in

our model. The opposite occurs when the relative price of investment is below its

BGP level. Thus, consistent with the data, the model correctly predicts that the

labor share was above its long-run level early in the 1960s and 1970s and fell below

its long-run level in the 1980s. Towards the end of the period, however, the data and

model diverge. There was a fall in the labor share starting in the early 2000s even

though the relative price of investment has been near its long-run trend.

Our results imply that changes in the relative price of investment can explain

swings in the labor share prior to 2000, but not the precipitous drop in this century.

These findings suggest that other potential explanations for the changing labor share,

like market power or trade, are more likely explanations (Grossman and Oberfield,

2022).
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8 Investment-Specific Technological Change

Throughout the paper, we have considered standard neoclassical models where one

unit of final output in period t can be transformed into one unit of capital at time t+1,

as specified by (2). The following lemma shows that our theory can accommodate

models where qt > 0 units capital can be produced from a unit of final output,

where qt is investment-specific technology (IST). The growth of qt over time is called

investment-specific technical change (ISTC).

Lemma 3. (Investment-Specific Technological Change) Consider an economic

environment where output Yt and capital KIST
t are determined by

Yt = F IST(KIST
t , X1,t, ..., XJ,t; t), (29)

KIST
t+1 = (Yt − Ct −Rt)qt + (1− δIST)KIST

t , (30)

where F IST(·) has CRS and positive and diminishing returns to all inputs. If the

growth factor of IST, gq = qt/qt−1, is constant,31 this environment can be transformed

into (1) and (2) in Definition 1 through a change of variables of Kt ≡ KIST
t /qt−1 and

δ = (δIST + gq − 1)/gq, as well as a redefinition of the production function,

F (Kt, X1,t, ..., XJ,t; t) = F IST(qt−1Kt, X1,t, ..., XJ,t; t). (31)

Proof. See Appendix A.9.

Note that the linearity of the accumulation function equation is still preserved

in (30), which is a key assumption of the neoclassical growth model in Definition

1. In Lemma 3, the change of variables effectively normalizes the unit of capital so

that capital Kt ≡ KIST
t /qt−1 is always measured in terms of the previous period’s

final good, as in (2). The depreciation rate after this normalization, δ, should be

higher than δIST, because positive investment-specific technological change decreases

the value of older capital.

All the results in this paper can be applied to models with ISTC by re-interpreting

the variables and the production function using Lemma 3. When the transformed

31We assume that gq is constant for simplicity. This condition is not necessary if we extend
Definition 1 to allow the depreciation rate to change over time. As long as we focus on the BGP,
the results will not be affected.
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production function (31) is used in Definition 1, it already includes a type of capital-

augmenting technological change, because qt−1, which multiplies Kt on the RHS,

grows over time. This component of capital-augmenting technological change is often

called embodied technological change. Even when the model has ISTC, the aggre-

gate production function (29) may exhibit further capital-augmenting technological

change that is not included in the growth of qt. Such technological change is called

disembodied technological change. When we convert the variables and the production

function using Lemma 3, the sum of embodied and disembodied technological change

will show up as overall capital-augmenting technological change in production func-

tion (1). Therefore, the original two-factor Uzawa theorem in the presence of ISTC

says that the sum of these technological changes must be zero on the BGP, unless the

production function is Cobb-Douglas.

We also note how the sum of these technological changes can be obtained from

data. Appendix C.2 shows that the relative price of investment in the NIPA statistics

measures the sum of the rates of embodied and disembodied technological changes

when capital accumulation is given by (30).32 Given that the ratio is falling, the

original two-factor Uzawa theorem requires any model with positive ISTC to adopt

a Cobb-Douglas aggregate production function (e.g., Greenwood et al., 1997, 2000).

This paper presents a way to relax this limitation.

9 Conclusion

The relative price of investment has been falling in the U.S. for long periods of time,

indicating the existence of capital-augmenting technological change on the balanced

growth path. Due to the Uzawa steady-state theorem, however, this fact could not

be incorporated into macroeconomic models that use empirically relevant values for

the elasticity of substitution between capital and labor. This paper presents a gener-

alized Uzawa theorem, which demonstrates how this limitation can be overcome by

taking the realistic step of adding additional inputs, such as land and energy, into the

32Since the NIPA data only gives γK · gq, we need another source of information either on the
embodied technological change, gq, or disembodied technological change, γK , to calibrate the model
with ISTC. Accordingly, we would have obtained a different value for γK in the calibration of
Subsection 7.1 if we used accumulation equation (30), rather than (2). This difference demonstrates
that the result of the calibration depends on the specification of the accumulation process.
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production function.

On a BGP, all effective factors of production grow at the same rate as output,

unless there is a unitary elasticity between two or more factors. As noted by Jones

and Scrimgeour (2008), the linear accumulation process implies that “capital inherits

the trend in output.” On a BGP where all effective factors grow proportionally to

output, there should be no capital-augmenting technological change, because capital

is already growing at the same rate as output. The generalized Uzawa growth the-

orem considers a hybrid of capital and other non-accumulable inputs, which we call

the capital composite. There is a unit EoS between the components of the capital

composite. If the capital composite would grow slower than output in the absence

of technological change, capital composite-augmenting technical change is necessary

for a BGP. Thus, capital-augmenting technical change, which is one component of

composite-augmenting technical change, is compatible with balanced growth and a

non-unitary EoS between capital and labor.

What if there is no Xj with σKXj = 1?

For a production factor to be a part of the capital composite, the long-run EoS

between capital and this factor must be unity, since otherwise factor shares and the

growth rate cannot be kept constant simultaneously. We discussed energy and land

as candidates in Section 6.2, and there are a wide range of other factors used in

production. However, it is still an open question whether there is a production factor

that has unit-elastic substitution with capital. If future research determines there is

no such factor, the generalized Uzawa Growth theorem would then imply that the

speed of capital-augmenting technological change must be exactly zero on any BGP

and the puzzle would persist.

In this case, it would be necessary to question the assumptions of the theorem.

A remarkable property of the generalized Uzawa theorem is that it depends on very

few assumptions: (i) the economy can be expressed by a neoclassical growth model,

and (ii) there is a BGP. The NIPA data strongly suggests the existence of the BGP.

Therefore, we can narrow down the concern to the assumptions in the neoclassical

growth model, as given in Definition 1. The definition consists of two parts, the

aggregate production function (1) and the capital accumulation equation (2). In the
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Uzawa theorem, the latter is only utilized in Lemma 1, which shows that K/Y must

be constant in the BGP. The result of this lemma is clearly visible in the NIPA

data depicted in Figure 1(a). Therefore, this accumulation equation seems to do no

additional harm.

The remaining suspect is the aggregate production function: Yt = F (Kt, X1,t, ...,

XJ,t; t). It assumes that there is a mapping from aggregate inputs to the aggre-

gate output. This is not a weak assumption. While the NIPA statistics show that the

price of investment is declining relative to consumption, it does not mean that various

kinds of equipment are becoming cheaper proportionally. If newer capital goods have

more margins for cost reductions and quality improvements, their quality-adjusted

prices will fall faster. Moreover, new kinds of capital goods are continually intro-

duced through R&D, whereas old goods disappear from the market. This cycle also

contributes to the fall in the quality-adjusted price of investment in the NIPA statis-

tics. However, in the framework of the neoclassical growth model, we need to map the

statistics to the model assuming that all kinds of capital goods can be aggregated into

one variable. The same can be said for the left-hand side of the production function,

i.e., aggregated output Yt. When the composition of inputs and outputs evolves over

time, it is not obvious whether we can define a functional relation over the aggregate

variables. If there is no Xj with σKXj = 1, it might suggest that aggregation created

the problem. Exploring disaggregated models seems important in this respect.33
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A Proofs of Propositions and Lemmas

A.1 Notation for derivatives

Unless mentioned otherwise, FK(·; t) denotes the partial derivative of function F (·; t)
with respect to its first argument, whereas FXj(·; t) denotes the partial derivative of

F (·; t) with respect to its (1 + j)th argument. The same applies to other functions,

such as F̃ (·).
Following the convention in economics, ∂

∂Kt
and ∂

∂Xj,t
represent the partial deriva-

tives with respect to variables Kt and Xj,t, respectively. For example, if F̃ (·) is the

production function, ∂
∂Xj,t

F̃ (·) gives the marginal product of factor Xj,t.

Note that these two definitions are different when the argument of function is not

a single variable. For example, using the chain rule, we have

∂

∂Xj,t

F̃ (Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t) = ÃXj ,tF̃Xj(Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t). (A.1)

A.2 Proof of Lemma 1

Using the notation in Definition 2, equation (2) can be written as K0g
t+1
K = Y0g

t −
C0g

t
C −R0g

t
R + (1− δ)K0g

t
K . Dividing all terms by gt and rearranging them gives

Y0 = C0(gC/g)t +R0(gR/g)t +K0(gK + δ − 1)(gK/g)t. (A.2)

Because all three terms on the right hand side (RHS) of (A.2) are non-negative

exponential functions of t, every one of them needs to be constant for the sum of

all the terms to become constant (Y0). For the first term C0(gC/g)t to be constant,

gC = g must hold since C0 > 0 from Definition 1. This means Ct/Yt = C0/Y0 > 0.

For the third term (gK +δ−1)(gK/g)t to be constant, gK = g must hold since K0 > 0
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and gK > 1− δ. This implies Kt/Yt = K0/Y0 > 0. If R0 > 0, gR = R must hold since

otherwise the second term cannot be constant.

A.3 Proof of Proposition 2

Because the production function in period 0 is F (·; 0) ≡ F̃ (·), we can write the share

of factor Z in period 0 as

sZ,0 = F̃Z(K0, X1,0, ..., XJ,0)
Z0

Y0
, (A.3)

where F̃Z(·) represents the derivative of function F̃ (·) with respect to its argument

(see Appendix Section A.1). Note that, since function F̃ (·) has constant returns to

scale, its partial derivative function F̃Z(·) must be homogeneous of degree 0 (See

Theorem M.B.1 in Mas-Colell et al., 1995). Therefore, the value of F̃Z(·) will be

unchanged when all of its arguments are multiplied by the same factor gt = Yt/Y0 =

Kt/K0 = ÃXj ,tXj,t/Xj,0. (Here we used gK = g from Lemma 1.) Applying this for

(A.3) gives

sZ,0 = F̃Z(Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t)
Z0

Y0
.

In addition, because the effective amount of production factors and the output grow

at the same speed, Z0/Y0 = ÃZ,tZt/Yt holds on the BGP. (In the case of Zt = Kt, we

define ÃK,t ≡ 1.) Therefore,

sZ,0 = F̃Z(Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t)ÃZ,t
Zt
Yt

=
∂F̃ (Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t)

∂Zt

Zt
Yt
,

(A.4)

where the validity of the second equality is guaranteed by the chain rule.34 Recall

that we assumed that the share is constant over time, which means

sZ,0 = sZ,t = FZ(Kt, X1,t, ..., XJ,t; t)
Zt
Yt
. (A.5)

By comparing (A.4) and (A.5), we obtain (4).

34See Appendix A.1.
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A.4 Proof of Proposition 3

As in Definition 3, the EoS between Kt and Xj, j ∈ {1, ..., J}, in the Uzawa Repre-

sentation F̃ (Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t) is defined as

σ̃KXj ,t = − d ln(Kt/Xj,t)

d ln

(
F̃K(Kt,ÃX1,t

X1,t,...,ÃXJ,tXJ,t)

ÃXj,tF̃Xj (Kt,ÃX1,t
X1,t,...,ÃXJ,tXJ,t)

)
∣∣∣∣∣∣∣∣
Yt,X−j,t:const

. (A.6)

We used (A.1) for calculating the marginal product of Xj in the denominator. Note

that, in addition to output Yt and other production factors X−j,t, we keep technologies

ÃX1,t, ..., ÃXJ ,t fixed when calculating the EoS.

In this proof, we evaluate the value of (A.6) on the BGP. This means Yt and

X−j,t are their BGP values, but we still need to consider (infinitesimally) small per-

turbations of Kt and Xj,t from these BGP values. To make this distinction, let

Yt, Kt, X1,t, ..., XJ,t denote the specific BGP values, and k and xj the variables to be

perturbed. Then, (A.6) can be written as35

σ̃KXj ,t = − d ln(k/xj)

d ln

(
F̃K(k,ÃX1,t

X1,t,...,ÃXj,txj ,...,ÃXJ,tXJ,t)

ÃXj,tF̃Xj (k,ÃX1,t
X1,t,...,ÃXj,txj ,...,ÃXJ,tXJ,t)

)
∣∣∣∣∣∣∣∣
F̃ (k,ÃX1,t

X1,t,...,ÃXj,txj ,...,ÃXJ,tXJ,t)=Yt

k=Kt,xj=Xj,t

.

(A.7)

Condition F̃ (k, ÃX1,tX1,t, ..., ÃXj ,txj, ..., ÃXJ ,tXJ,t) = Yt says that k and xj need to

move to ensure that this equality is satisfied. The other conditions k = Kt, xj = Xj,t

say that, after the differentiation is complete, the EoS is evaluated at the BGP values.

Now, consider a change of variables: k′ = g−tk and x′j = g−tÃXj ,txj. Then, k

in (A.7) is replaced by k = gtk′ and xj is by (gt/ÃXj ,t)x
′
j. Specifically, k/xj in the

numerator becomes ÃXj ,tk
′/x′j. In the denominator,

F̃K(k, ÃX1,tX1,t, ..., ÃXj ,txj, ..., ÃXJ ,tXJ,t) = F̃K(gtk′, gtX1,0, ..., g
tx′j, ..., g

tXJ,0)

= F̃K(k′, X1,0, ..., x
′
j, ..., XJ,0),

35We omit condition “X−j,t: const” because Xj,t’s BGP values, not variables.
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where we used the definition of ÃXj ,t ≡ gtXj,0/Xj,t and the homogeneity of degree 0

property of the F̃K(·) function.36 Similarly,

F̃Xj(k, ÃX1,tX1,t, ..., ÃXj ,txj, ..., ÃXJ ,tXJ,t) = F̃Xj(k
′, X1,0, ..., x

′
j, ..., XJ,0).

Note that, using the CRS property of F̃ (·), condition F̃ (k, ÃX1,tX1,t, ..., ÃXj ,txj, ..., ÃXJ ,tXJ,t) =

Yt can be simplified as

F̃ (gtk′, gtX1,0, ..., g
tx′j, ..., g

tXJ,0) = gtF̃ (k′, X1,0, ..., x
′
j, ..., XJ,0) = Yt.

Since Yt = gtY0, the condition reduces to F̃ (k′, X1,0, ..., x
′
j, ..., XJ,0) = Y0. The point

of evaluation, k = Kt, becomes gtk′ = Kt, or k′ = g−tKt = K0. Similarly, xj = Xj,t

becomes x′j = g−tÃXj ,tXj,t = Xj,0. Therefore, (A.7) can be expressed in terms of k′

and x′j as follows:

σ̃KXj ,t = −
d ln(ÃXj ,tk

′/x′j)

d ln

(
F̃K(k′,X1,0,...,x′j ,...,XJ,0)

ÃXj,tF̃Xj (k
′,X1,0,...,x′j ,...,XJ,0)

)
∣∣∣∣∣∣∣∣F̃ (k′,X1,0,...,x′j ,...,XJ,0)=Y0
k′=K0,x′j=Xj,0

. (A.8)

Recall that we keep technology ÃXj ,t fixed when calculating the EoS. We can

eliminate ÃXj ,t from the numerator from d ln(ÃXj ,tk
′/x′j) = d(ln(k′/x′j) + ln ÃXj ,t) =

d ln(k′/x′j). In the same way, ÃXj ,t in the denominator can also be eliminated (or

replaced by AXj ,0 ≡ 1). Finally, using F̃ (·) ≡ F (·; 0), (A.8) can be written as

σ̃KXj ,t = −
d ln(k′/x′j)

d ln
(
FK(k′,X1,0,...,x′j ,...,XJ,0;0)

FXj (k
′,X1,0,...,x′j ,...,XJ,0;0)

)
∣∣∣∣∣∣∣F (k′,X1,0,...,x′j ,...,XJ,0;0)=Y0
k′=K0,x′j=Xj,0

. (A.9)

Then, comparing with Definition 3, it turns out that the RHS of (A.9) exactly

matches the definition of σKXj ,0, evaluated at the period-0 BGP. Since it is assumed

that σKXj ,t does not change over time, we have σ̃KXj ,t = σKXj ,0 = σKXj ,t.

36For the homogeneity of degree 0 property, see the proof of Proposition 2 in appendix A.3.
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A.5 Proof of Lemma 2

Proof of part a

By substituting K0, X1,0, ..., XJ,0 into (10) and then using (11),

F (K0, X1,0, ..., XJ,0) = F̂

(
Kα

0

∏j∗

j=1
X
ξj
j,0, Xj∗+1,0, ..., XJ,0

)
= F

((∏j∗

j=1
X
ξj
j,0

)−1/α(
Kα

0

∏j∗

j=1
X
ξj
j,0

)1/α

, X1,0, ..., XJ,0; 0

)
= F (K0, X1,0, ..., XJ,0; 0) .

Proof of part b

Let M0 = Kα
0

∏j∗

j=1X
ξj
j,0 denote the amount of capital composite m in period 0, and

F̂M(·) denote the derivative of function F̂ (·) with respect to its first argument. By

differentiating both sides of (11) by m with the chain rule and substituting the period-

0 BGP values for k, xj∗+1, ..., xJ ,

F̂M (M0, Xj∗+1,0, ..., XJ,0) = FK(K0, X1,0, ..., XJ,0; 0)

(∏j∗

j=1
X
ξj
j,0

)−1/α
1

α
M

(1−α)/α
0

= FK(K0, X1,0, ..., XJ,0; 0)
K0

αM0

,

(A.10)

where the last equality follows from the definition of M0 = Kα
0

∏j∗

j=1X
ξj
j,0. Now,

consider the case of Z = K. By differentiating both sides of (10) by k with the chain

rule and substituting the period-0 BGP values,

FK(K0, X1,0, ..., XJ,0) = F̂M (M0, Xj∗+1,0, ..., XJ,0)αM0/K0

= FK(K0, X1,0, ..., XJ,0; 0),
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where the last equality is from (A.10). Similarly, for the case of Z = Xj, where

j ∈ {1, ..., j∗},

FXj(K0, X1,0, ..., XJ,0) = F̂M (M0, Xj∗+1,0, ..., XJ,0) ξjM0/Xj,0

= FK(K0, X1,0, ..., XJ,0; 0)
ξj
α

K0

Xj,0

.
(A.11)

Note that, from the definitions of α and ξj in (9), ξj/α = sXj ,0/sK,0. Therefore,

(A.11) becomes

FK(K0, X1,0, ..., XJ,0; 0)
FXj(K0, X1,0, ..., XJ,0; 0)Xj,0

FK(K0, X1,0, ..., XJ,0; 0)K0

K0

Xj,0

= FXj(K0, X1,0, ..., XJ,0; 0).

Finally, consider the case of Z = Xj, where j ∈ {j∗ + 1, ..., J}. Similarly to the

proof of part a, we can confirm that F (K0, X1,0, ..., Xj∗,0, xj∗+1, ...xJ) = F (K0, X1,0, ..., Xj∗,0, xj∗+1, ..., xJ ; 0)

for any xj∗+1, ..., xJ . This means that they are identical functions of xj∗+1, ..., xJ ,

and have the same derivatives with respect to these variables. Therefore, for j ∈
{j∗ + 1, ..., J}, we have FXj(K0, X1,0, ..., XJ,0) = FXj(K0, X1,0, ..., XJ,0; 0).

Proof of part c

The EoS for function F (·) between capital and factor j, evaluated at the period-0

BGP, is defined as

σKXj ,0 = − d ln(k/xj)

d ln

(
FK(k,X1,0,...,xj ,...,XJ,0)

FXj (k,X1,0,...,xj ,...,XJ,0)

)
∣∣∣∣∣∣∣∣
F (k,X1,0,...,xj ,...,XJ,0)=Y0
k=K0,xj=Xj,0

, (A.12)

where k and xj are variables to be perturbed and Y0, K0, X1,0, ..., XJ,0 are the period-0

BGP values.

Let us first examine σKXj ,0 for the case of j ∈ {1, ..., j∗}. In this case, factors

Xj∗+1,0, ..., XJ,0 are fixed at the BGP values. Using (10), function F (k,X1,0, ..., xj, ..., XJ,0)

can be written as F̂ (m,Xj∗+1,0, ..., XJ,0), where m is the amount of capital composite,

defined as m = kαx
ξj
j

∏
j′∈{1,...,j∗}\j X

ξj′

j′,0. Using the chain rule, its derivative with
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respect to k becomes

FK(k,X1,0, ..., xj, ..., XJ,0) =
∂

∂k
F̂ (m,Xj∗+1,0, ..., XJ,0)

= F̂M(m,Xj∗+1,0, ..., XJ,0)
∂m

∂k

= F̂M(m,Xj∗+1,0, ..., XJ,0)α
m

k
.

Similarly, FXj(k,X1,0, ..., xj, ..., XJ,0) = F̂M(m,Xj∗+1,0, ..., XJ,0)ξj
m
xj

. Substituting these

into (A.12) gives

σKXj ,0 = − d ln(k/xj)

d ln
(
α
ξj

xj
k

)
∣∣∣∣∣∣
F (k,X1,0,...,xj ,...,XJ,0)=Y0
k=K0,xj=Xj,0

. (A.13)

Since α and ξj are constant parameters, the denominator can be simplified as d ln ((α/ξj)(xj/k)) =

d (ln(α/ξj) + ln(xj/k)) = d ln(xj/k). Using this, (A.13) gives σKXj ,0 = 1. Recall that

σKXj ,0 = 1 because j ∈ {1, ..., j∗}. Therefore, σKXj ,0 = σKXj ,0 holds.

Next, we examine σKXj ,0 for the case of j ∈ {j∗+ 1, ..., J}. In this case, equations

(10) and (11) imply

F (k,X1,0, ..., xj, ..., XJ,0) = F (k,X1,0, ..., xj, ..., XJ,0; 0),

for any k > 0 and xj > 0. Therefore, the EoS of function F (k,X1,0, ..., xj, ..., XJ,0)

between k and xj is identical with that of function F (k,X1,0, ..., xj, ..., XJ,0; 0). This

means σKXj ,0 = σKXj ,0.
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Proof of part d

Let us first consider the CRS property of function F̂ (m,xj∗+1, ..., xJ). We multiply

every argument by an arbitrary factor of λ > 0. From (11),

F̂ (λm, λxj∗+1, ..., λxJ)

= F

(
λ1/α

(∏j∗

j=1
X
ξj
j,0

)−1/α
m1/α, X1,0, ..., Xj∗,0, λxj∗+1, ..., λxJ ; 0

)

= λF

(
λ(1−α)/α

(∏j∗

j=1
X
ξj
j,0

)−1/α
m1/α,

X1,0

λ
, ...,

Xj∗,0

λ
, xj∗+1, ..., xJ ; 0

)
,

(A.14)

where the last equality comes from the CRS property of the period-0 true production

function F (·; 0). (All the arguments are divided by λ.) Our objective it to show that

the last line of (A.14) coincides with λF̂ (m,xj∗+1, ..., xJ). Using (11), this desired

condition can be written as

F

((∏j∗

j=1
X
ξj
j,0

)−1/α
m1/α, X1,0, ..., Xj∗,0, xj∗+1, ..., xJ ; 0

)

= F

(
λ(1−α)/α

(∏j∗

j=1
X
ξj
j,0

)−1/α
m1/α,

X1,0

λ
, ...,

Xj∗,0

λ
, xj∗+1, ..., xJ ; 0

)
.

(A.15)

In the following, we establish this equality by focusing on the isoquants of function

F (·; 0).

Recall that we defined j∗ such that the period-0 true production function F (k, x1, x2, . . . , xJ ; 0)

satisfies σKXj = 1 for j = 1, ..., j∗. For concreteness, let us focus on capital k and

x1. From Definition 3, σKX1 = 1 means that equation d ln(FK/FX1)/d ln(k/x1) = −1

holds when the output and other inputs are kept constant.37 In other words, this

differential equation is satisfied on the isoquant curve in the k-x1 space. Integrating

equation d ln(FK/FX1)/d ln(k/x1) = −1 gives ln(FK/FX1) = − ln(k/x1) + ξ̃1, where

ξ̃1 is a constant of integration. Taking the exponential of the both sides gives

FK/FX1 = (exp ξ̃1)(x1/k). (A.16)

37To minimize notation we omit the arguments of the functions FK(k, x1, ..., xJ ; 0) and
FX1

(k, x1, ..., xJ ; 0).
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From the definition of the isoquant curve, the amount of output must be constant:

dY = FKdk + FX1dx1 = 0. Rearranging and using (A.16), we have the slope of the

isoquant curve as dx1/dk = −FK/FX1 = −(exp ξ̃1)(x1/k). Integrating this differential

equation by separation of variables gives ln k = −(1/ exp ξ̃1) lnx1 + ỹ1, where ỹ1 is

another constant of integration.38 By taking the exponential,

k = (exp ỹ1)x
−1/ exp ξ̃1
1 . (A.17)

Equation (A.17) defines an isoquant curve with two parameters, ỹ1 and ξ̃1. The

value ξ̃1 can be pinned down by the factor share. Using (A.16), the relative share

between k and x1 is written as kFK/x1FX1 = exp ξ̃1. The result does not depend

on k or x1, which means that the relative share is constant on the isoquant curve.

Also, notice that the value of ξ̃1 must be the same across all isoquant curves, since

otherwise they intersect with each other, which is impossible by the definition of the

isoquant curve. From (9), we know that the relative share in period 0 is α/ξ1. Using

these, the isoquant curve (A.17) can be written as

k = (exp ỹ1)x
−ξ1/α
1 . (A.18)

The remaining parameter ỹ1 specifies the location of the isoquant curve. Now,

consider a particular isoquant curve that goes through k =
(∏j∗

j=1X
ξj
j,0

)−1/α
m1/α and

x1 = X1,0, which means exp ỹ1 =
(∏j∗

j=1X
ξj
j,0

)−1/α
m1/αX

ξ1/α
1,0 . From (A.18), we can

confirm that this isoquant curve also goes through k′ = λξ1/α
(∏j∗

j=1X
ξj
j,0

)−1/α
m1/α

38This integration can be done by separation of variables. Rearranging the equation dx1/dk =

−(exp ξ̃1)(x1/k), we have (1/k)dk = −(1/ exp ξ̃1)(1/x1)dx1. Integrating both sides of this equa-

tion separately gives
∫

(1/k)dk = −(1/ exp ξ̃1)
∫

(1/x1)dx1. Since
∫

(1/k)dk = ln k + constant and∫
(1/x1)dx = lnx1 + constant, we obtain the result in the text.
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and x′1 = X1,0/λ.39 Since the output is the same on an isoquant curve, we have

F

((∏j∗

j=1
X
ξj
j,0

)−1/α
m1/α, X1,0, ..., Xj∗,0, xj∗+1, ..., xJ ; 0

)

= F

(
λξ1/α

(∏j∗

j=1
X
ξj
j,0

)−1/α
m1/α,

X1,0

λ
, ..., Xj∗,0, xj∗+1, ..., xJ ; 0

)
.

(A.19)

By repeating this operation for j = 2, ..., j∗ and using
∑j∗

j=1 ξj = 1 − α from (9), we

obtain (A.15). This establishes the CRS property of function F (m,xj∗+1, ..., xJ).

Next, we prove the CRS property of function F (k, x1, ..., xJ). From (10),

F (λk, λx1, ..., λxJ) = F̂

(
(λk)α

∏j∗

j=1
(λxj)

ξj , λxj∗+1,0, ..., λxJ,0

)
= F̂

(
λkα

∏j∗

j=1
x
ξj
j , λxj∗+1,0, ..., λxJ,0

)
= λF̂

(
kα
∏j∗

j=1
x
ξj
j , xj∗+1,0, ..., xJ,0

)
= λF (k, x1, ..., xJ).

The second equality utilizes α +
∑j∗

j=1 ξj = 1 from (9), whereas the third equality is

from the CRS property of function F̂ (·).

A.6 Proof of Proposition 4

Using (10), the RHS of equation (13) can be written as

F̂

(
(AK,tKt)

α
∏j∗

j=1
(AXj ,tXj,t)

ξj , AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t

)
. (A.20)

The first argument of function F̂ (·) represent the effective amount of capital composite

on the BGP. It is multiplied by g each period from condition (12). Also, all the

other arguments of F̂ (·) are multiplied by g each period because it is assumed that

γXj = g/gXj for j ∈ {j∗+ 1, ..., J}. Since F̂ (·) has CRS from property d of Lemma 2,

(A.20) is multiplied by g each period.

39This can be confirmed by substituting k′ and x′1 into (A.18). It yields the same exp ỹ1 as in
the previous sentence.
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Also, the LHS of (13), Yt, is multiplied by g every period by the definition of the

BGP. In period 0, (13) holds from property a of Lemma 2. Therefore, (13) holds for

all t ≥ 0.

A.7 Proof of Proposition 5

The proof relies on Lemma 2, but otherwise it proceeds similarly to the proof for

Proposition 2. Let us first consider the case of Zt = Kt. Using property b of Lemma

2 and (10), the share of factor K in period 0 can be written as (10),

sK,0 = FK(K0, X1,0, ..., XJ,0; 0)
K0

Y0

= FK(K0, X1,0, ..., XJ,0)
K0

Y0

=
∂

∂K0

F̂

(
Kα

0

∏j∗

j=1
X
ξj
j,0, Xj∗+1,0, ..., XJ,0

)
K0

Y0
. (A.21)

Let F̂M(·) be the derivative of function F̂ (·) with respect to its first argument.

Note that, in (A.21), the first argument is the capital composite in period 0, M0 =

Kα
0

∏j∗

j=1X
ξj
j,0. Using the chain rule, (A.21) becomes

sK,0 = F̂M (M0, Xj∗+1,0, ..., XJ,0)
dM0

dK0

K0

Y0
= F̂M (M0, Xj∗+1,0, ..., XJ,0)

αM0

Y0
, (A.22)

where the second equality follows from dM0/dK0 = αM0/K0.

Recall that F̂ (·) has CRS from Lemma 2, and therefore its derivative F̂M(·) is a

homogeneous function of degree 0. Let Mt = (AK,tKt)
α
∏j∗

j=1(AXj ,tXj,t) denote the

effective amount of capital composite in period t. From condition (12), Mt grows by a

factor of g every period. The same applies to the effective amounts of factors not in the

capital composite: AXJ ,tXj,t for j = j∗+1, ..., J. Therefore, when we consider function

F̂M
(
Mt, AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t

)
, every argument is multiplied by g every period,

which does not change the value of FM(·) over time due to homogeneity of degree 0.

Therefore, (A.22) can be written as

sK,0 = F̂M
(
Mt, AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t

) αM0

Y0
. (A.23)
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Note that, because Mt and Yt grow at the same speed, the last term can be trans-

formed as αM0/Y0 = αMt/Yt = (αMt/Kt)(Kt/Yt). In addition, αMt/Kt in the

latter expression represents dMt/dKt, which can be confirmed by differentiating

Mt = (AK,tKt)
α
∏j∗

j=1(AXj ,tXj,t) by Kt. Therefore, (A.23) becomes

sK,0 = F̂M
(
Mt, AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t

) dMt

dKt

Kt

Yt

=
∂

∂Kt

F̂

(
(AK,tKt)

α
∏j∗

j=1
(AXj ,tXj,t), AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t

)
Kt

Yt

=
∂

∂Kt

FK (AK,tKt, AX1,tX1,t, ..., AXJ ,tXJ,t)
Kt

Yt
,

(A.24)

where the second equality uses the chain rule, and the third is from the definition of

function F (·) in (10). Note that the share of capital is the same in period t and 0,

which implies

sK,0 = sK,t = FK(Kt, X1,t, ..., XJ,t; t)
Kt

Yt
. (A.25)

By comparing (A.24) with (A.25), we obtain (15) for the case of Zt = Kt. The proof

of the proposition for the case of Zt = Xj,t, j ∈ {1, ..., j∗} proceeds exactly the same

way as above, with only the modification that Kt is replaced by Xj,t and α by ξj.

Finally, the case of Zt = Xj,t, j ∈ {j∗ + 1, ..., J}, can be confirmed in a simi-

lar way as in Proposition 2, because the value of AXj ,t is the same as ÃXj ,t in the

Uzawa theorem. In particular, we use F̂ (Mt, AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t) instead of

F̃ (Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t), and define F̂Xj(·), j ∈ {j∗, ..., J}, as the derivative of

function F̂ (·) with respect to its (j − j∗ + 1)th argument.40 Except for these slight

modifications, the proof proceeds exactly as in Appendix A.3.

40F̂Xj
(·) needs to be defined this way because j∗ arguments are eliminated from function F̂ (·) in

definition (11). Also, note that similarly to function F̃ (·), function F̂ (·) has a CRS property from
Lemma 2.
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A.8 Proof of Proposition 6

Similarly to Definition 3, the EoS σKXj ,t on the BGP is defined as

σKXj ,t = − d ln(k/xj)

d ln

(
AK,tFK(AK,tk,AX1,t

X1,t,...,AXj,txj ,...,AXJ,tXJ,t)

AXj,tFXj (AK,tk,AX1,t
X1,t,...,AXj,txj ,...,AXJ,tXJ,t)

)
∣∣∣∣∣∣∣∣
F (AK,tk,AX1,t

X1,t,...,AXj,txj ,...,AXJ,tXJ,t)=Yt

k=Kt,xj=Xj,t

.

(A.26)

where Yt, Kt, X1,t, ..., XJ,t indicate the BGP values, and k and xj are the variables to

be perturbed.41

Let us first consider the case of j ∈ {1, ..., j∗}. In this case, factors Xj∗+1,t, ..., XJ,t

are fixed at the BGP values. Now, we simplify the denominator of (A.26), particularly

focusing on the fraction inside ln(·). Using (10), function F (AK,tk,AX1,tX1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)

can be written as F̂ (m,AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t), where m is the effective amount

of capital composite, m = (AK,tk)α(AXj ,txj)
ξj
∏

j′∈{1,...,j∗}\j(AXj′ ,tXj′,0)
ξj′ . Note that

dm/dk = αm/k. Using these properties and the chain rule, we have

AK,tFK(AK,tk,AX1,tX1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)

=
∂

∂k
F (AK,tk,AX1,tX1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)

=
∂

∂k
F̂ (m,AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t)

= F̂M(m,AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t)α
m

k
.

(A.27)

Similarly,

AXj ,tFXj(AK,tk,AX1,tX1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)

= F̂M(m,AXj∗+1,tXj∗+1,t, ..., AXJ ,tXJ,t)ξj
m

xj
.

(A.28)

41In definition (A.26), condition F (AK,tk,AX1,tX1,t, ..., AXj ,txj , ..., AXJ ,tXJ,t) = Yt means that
k and xj are perturbed so that output Yt is unchanged from the BGP value. Condition k =
Kt, xj = Xj,t says that the EoS is evaluated at the BGP values. It is also important to keep in
mind the notation for derivatives: AK,tFK(AK,tk,AX1,tX1,t, ..., AXj ,txj , ..., AXJ ,tXJ,t) is the partial

derivative of F (·) with respect to k, which corresponds to FK(·; t) in Definition 3.
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Substituting (A.27) and (A.28) into (A.26) gives

σKXj ,t = − d ln(k/xj)

d ln
(
α
ξj

xj
k

)
∣∣∣∣∣∣
F (AK,tk,AX1,t

X1,t,...,AXj,txj ,...,AXJ,tXJ,t)=Yt

k=Kt,xj=Xj,t

. (A.29)

Since α and ξj are constant parameters, the denominator can be simplified as d ln ((α/ξj)(xj/k)) =

d (ln(α/ξj) + ln(xj/k)) = d ln(xj/k). Using this, (A.29) gives σKXj ,t = 1. Recall that

σKXj ,0 = 1 because j ∈ {1, ..., j∗}, and that σKXj ,t does not change over time on the

BGP. Therefore, σKXj ,t = σKXj ,0 = 1 = σKXj ,t holds.

Next, we examine σKXj ,t for the case of j ∈ {j∗ + 1, ..., J}. Similarly to the proof

of Proposition 3, consider a change of variables: k′ = g−tk and x′j = g−tAXj ,txj.

Then, k in (A.26) is replaced by k = gtk′ and xj is replaced by (gt/AXj ,t)x
′
j. In the

numerator, k/xj becomes AXj ,tk
′/x′j. In the denominator, by the same operations as

in (A.27), AK,tFK(·) can be written as

F̂M(m,AXj∗+1,tXj∗+1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)α
m

k
, (A.30)

where m = (AK,tk)α
∏j∗

j′=1(AXj′ ,tXj′,0)
ξj′ . The definition of m does not include xj

because j ∈ {j∗ + 1, ..., J} means that xj is not a part of capital composite. Instead,

AXj ,txj appears in (A.30) as the (j − j∗ + 1)th argument of the F̂ (·) function. Using

xj = (gt/AXj ,t)x
′
j, AXj ,txj can be written as gtx′j. SinceMt = (AK,tKt)

α
∏j∗

j=1(AXj ,tXj,t)

grows by a factor of g every period, the capital composite m can also be written as

m =
(
gtk′/Kt

)α
Mt = (k′/K0)

α
gtM0 = gtm′,

where m′ = (k′)α
∏j∗

j′=1(AX′j ,0Xj′,0). Other effective factors also grow by a factor of
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g: AXj′ ,tXj′,t = gtXj′,0 for j′ ∈ {j∗ + 1, ..., J}\j. Using these, (A.30) becomes

F̂M(gtm′, gtXj∗+1,0, ..., g
tx′j, ..., g

tXJ,0)α
gtm′

gtk′

= F̂M(m′, Xj∗+1,0, ..., x
′
j, ..., XJ,0)α

m′

k′

=
∂

∂k′
F̂ (m′, Xj∗+1,0, ..., x

′
j, ..., XJ,0)

= FK(k′, X1,0, ..., x
′
j, ..., XJ,0),

where the first equality is from the homogeneity of degree 0 property of the F̂M(·)
function, the second equality is from the chain rule and dm′/dk′ = αm′/k′, and the

last equality is from the definition of F (·) in (10).

Likewise, AXj ,tFXj(·) in the denominator of (A.26) can be expressed in terms of

k′ and x′j as

∂

∂xj
F (AK,tk,AX1,t,tX1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)

=
∂

∂xj
F̂ (m,AXj∗+1,tXj∗+1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)

= F̂Xj(m,AXj∗+1,tXj∗+1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)
dAXj ,txj

dxj

= F̂Xj(g
tm′, gtXj∗+1,0, ..., g

tx′j, ..., g
tXJ,0)AXj ,t

= F̂Xj(m
′, Xj∗+1,0, ..., x

′
j, ..., XJ,0)AXj ,t

=
∂

∂x′j
F̂ (m′, Xj∗+1,0, ..., x

′
j, ..., XJ,0)AXj ,t

= AXj ,tFXj(k
′, X1,0, ..., x

′
j, ..., XJ,0).

The definition in (A.26) evaluates F̄ (·) and its arguments at their BGP values.42

42I.e., the conditions that are written to the right of “|”.
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We also need to re-write these conditions in terms of their period-0 values. Note that

F (AK,tk,AX1,tX1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)

= F̂ (m,AXj∗+1,tXj∗+1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t)

= F̂ (gtm′, gtXj∗+1,0, ..., g
tx′j, ..., g

tXJ,0)AXj ,t

= gtF̂ (m′, Xj∗+1,0, ..., x
′
j, ..., XJ,0)AXj ,t

= gtF (k′, X1,0, ..., x
′
j, ..., XJ,0).

Therefore, condition F (AK,tk,AX1,tX1,t, ..., AXj ,txj, ..., AXJ ,tXJ,t) = Yt can be substi-

tuted by

F (k′, X1,0, ..., x
′
j, ..., XJ,0) = Y0.

The point of evaluation, k = Kt, becomes gtk′ = Kt, or k′ = g−tKt = K0. Similarly,

xj = Xj,t becomes x′j = g−tAXj ,tXj,t = Xj,0. Using all these results, (A.26) can be

expressed in terms of k′ and x′j as follows:

σKXj ,t = −
d ln(AXj ,tk

′/x′j)

d ln

(
FK(k′,X1,0,...,x′j ,...,XJ,0)

AXj,tFXj (k
′,X1,0,...,x′j ,...,XJ,0)

)
∣∣∣∣∣∣∣∣F (k′,X1,0,...,x′j ,...,XJ,0)=Y0
k′=K0,x′j=Xj,0

. (A.31)

We can eliminate constant AXj ,t from the numerator because d ln(AXj ,tk
′/x′j) =

d(ln(k′/x′j) + lnAXj ,t) = d ln(k′/x′j). In the same way, AXj ,t in the denominator can

also be eliminated. Also, recall that AK,0 = AXj ,0 = 1. Then, comparing (A.31) with

(A.26), it turns out that the RHS of (A.31) coincides with σKXj ,0. From Lemma 2,

σKXj ,0 = σKXj ,0 holds in period 0. In addition, it is assumed that σKXj ,0 does not

change over time. Therefore, σKXj ,t = σKXj ,0 = σKXj ,0 = σKXj ,t.

A.9 Proof of Lemma 3

Note that δ = (δIST + gq − 1)/gq means 1 − δIST = (1 − δ)gq = (1 − δ)qt/qt−1.

Dividing equation (30) by qt and using the above result, we have Kt+1 = KIST
t+1/qt =

(Yt − Ct − Rt) + (1 − δIST)KIST
t /qt = (Yt − Ct − Rt) + (1 − δ)(qt/qt−1)K

IST
t /qt =

(Yt − Ct −Rt) + (1− δ)Kt, which coincides with (2).
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Using KIST
t = qt−1Kt, production function (29) can be written as Yt =

F IST(qt−1Kt, X1,t, ..., XJ,t; t). It is a CRS function of Kt, X1,t, ..., XJ,t and de-

pends on time both through the shape of F IST(·; t) and through the growth of qt.

Therefore, we can define a new production function (31), F (Kt, X1,t, ..., XJ,t; t) ≡
F IST(qt−1Kt, X1,t, ..., XJ,t; t), where dependence of F (·; t) on t includes the effect from

qt−1. From the assumptions on F IST(·), function F (·; t) obviously satisfies the required

marginal product properties in (1).

B Calibration Details

B.1 Deriving the Elasticity of Substitution in a Three-Factor

CES function (24)

In this proof, we write (22) as Yt = Ft(Kt, Lt, Xt) and drop time subscripts for

convenience.43 Also, in Appendix B, we use FK , FL and FX to denote the derivative

of F (K,L,X) with respect to K, L and X, respectively. From Definition 3, the

elasticity of substitution (EoS) between capital and labor for function F (K,L,X) is

defined as

σKL = − d ln(K/L)

d ln(FK/FL)

∣∣∣∣
Y,X: const

. (B.1)

Total differentiation of Y = F (K,L,X) gives

FKdK + FXdX + FLdL = dY.

Noting that σKL is defined with the constraint that X and Y are kept constant

(dX = dY = 0), the latter can be re-written as

dL = −FK
FL

dK. (B.2)

43Function (22) depends also on technologies AK,t, AL,t, and AX,t. This dependence is included
in Ft, which changes with time. However, because we are calculating the elasticity of substitution
of production function at a given t, technologies are fixed in this calculation. Therefore, we omit t
from Ft for simplicity.
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Therefore, the numerator of (B.1) can be written as

d ln

(
K

L

)
= d (lnK − lnL)

=
1

K
+

1

L

FK
FL

dK

=

(
1 +

KFK
LFL

)
dK

K
.

Since we assume perfect competition, KFK/LFL is the ratio of capital share sK to

labor share sL. Therefore,

d ln

(
K

L

)
=

(
sK
sL

+ 1

)
dK

K
. (B.3)

Next, we calculate the denominator. By taking the partial derivatives in (22), the

ratio of marginal products turns out to be

FK
FL

=
ηKXα (ALL)

1
ε (AKK)α

ε−1
ε (AXX)(1−α)

ε−1
ε

ηLALK
. (B.4)

Again noting that the EoS is defined for dX = dY = 0, the total differentiation of

the log of (B.4) becomes

d ln

(
FK
FL

)
= d

{
lnL

1
ε + lnKα ε−1

ε
−1
}

=
1

ε

dL

L
−
(

1− αε− 1

ε

)
dK

K

= − 1

εL

FK
FL

dK −
(

1− αε− 1

ε

)
dK

K

= −
[

1

ε

KFK
LFL

+ 1− αε− 1

ε

]
dK

K

= −
[(

sK
sL

+ α

)
1

ε
+ (1− α)

]
dK

K
. (B.5)

Substituting (B.3) and (B.5) into (B.1) gives (24) in the main text.
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B.2 Factor shares and distribution parameters (26)

The partial derivatives of (22) with respect to Lt and Kt are:

FL,t = ηL (AL,tLt)
ε−1
ε L−1t Y

1
ε
t (B.6)

FK,t = ηKXα
(
(AK,tKt)

α (AX,tX)1−α
)
K−1t Y

1
ε
t . (B.7)

With perfect competition, factors shares in period t are given by sL,t = LtFL,t/Yt and

sK,t = KtFK,t/Yt. First order conditions (B.6) and (B.7) implies that their values are

sL,t = ηL

[
AL,tLt
Yt

] ε−1
ε

(B.8)

sK,t = αηKX

[
(AK,tKt)

α (AX,tX)1−α

Yt

] ε−1
ε

. (B.9)

Note that the above result holds even when the economy is not on the BGP (sL,t can

be different from its BGP value sL).

We calibrate the model to a starting period t = 0 when the economy is on a BGP.

From (22), AK,0 = AX,0 = AL,0 = 1. Also, sL,0 = sL and sK,0 = sK . Then, evaluating

(B.8) and (B.9) at t = 0 gives equation (26) in the main text.

B.3 Deviation of the labor share from the BGP value

In this section, we derive (27), the labor share when the capital-augmenting technol-

ogy aK,t deviates from its BGP path AK,t. As explained in Subsection 7.2, we assume

that other technologies and inputs (AX,t, AL,t, Kt, Xt and Lt) follow the BGP path.

Then, from (22), the output deviates from the BGP value Yt and now becomes

yt =
{
ηKX

(
(aK,tKt)

α (AX,tXt)
1−α) ε−1

ε + ηL(AL,tLt)
ε−1
ε

} ε
ε−1

. (B.10)
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Substituting (B.10) into (B.8) gives the labor share when aK,t deviates from AK,t.

sL,t =
ηL(AL,tLt)

ε−1
ε

ηKX ((aK,tKt)
α (AX,tXt)1−α)

ε−1
ε + ηL(AL,tLt)

ε−1
ε

=

(
ηKX
ηL

(
(AK,tKt)

α (AX,tXt)
1−α

AL,tLt

) ε−1
ε
(
aK,t
AK,t

)α ε−1
ε

+ 1

)−1
.

(B.11)

In contrast, if all variables, including AK,t, follow the BGP, dividing (B.9) by (B.8)

gives

ηKX
ηL

(
(AK,tKt)

α (AX,tXt)
1−α

AL,tLt

) ε−1
ε

=
sK/α

sL
, (B.12)

where sK and sL are the shares on the BGP. Note that the LHS of (B.12) is the same

as the first term in the last line of (B.11). Note also that sK/α = 1 − sL since α

is defined as sK/(sK + sX) = sK/(1 − sL). Hence, the RHS of (B.12) is (1/sL) − 1.

Therefore, by substituting (B.12) into (B.11), we obtain (27) in Section 7.2.

C Mapping data on investment prices to K-

augmenting technical change in the model

In this appendix, we show how changes in the relative price of investment in the

NIPA statistics can be used to measure capital-augmenting technical change in the

neoclassical growth model. In Section C.1, we explain the mapping between the

NIPA data and the standard neoclassical growth model, as defined by Definition 1.

In Section C.2, we explain how the result changes when the data is mapped to a

neoclassical growth model with investment-specific technical change, as discussed in

Section 8. Both results follow from the property that capital can be accumulated

linearly from the previous period’s output, specified either by (2) or (30).

C.1 Relative Price of Investment in the NIPA Statistics In-

terpreted in the Standard Neoclassical Growth Model

In this section, we prove that the speed of capital-augmenting technological change in

the neoclassical growth model can be measured by the rate of decline in the relative
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investment price in the NIPA statistics with a one-period lag. This result will be given

in equation (C.4), which is a basis for the discussion in Section 2. We then use this

result to show how to measure the deviation of the capital-augmenting technological

change from its BGP path, which leads to equation (28) in Section 7.2.

We start by discussing the relative prices of investment and consumption in the

model. The unit of the consumption good is defined so that the period utility is a

time-invariant function of Ct/Lt. This implies that one unit of consumption in the

model always increases the argument of the utility function by one. The process of

capital accumulation (2) implies that one unit of the final good can be used as either

one unit of the consumption good or one unit of the investment good, implying that

the price of the investment good is also equal to one. In addition, one unit of the

investment good in period t becomes one unit of capital in period t + 1. Therefore,

Kt+1 is measured in the same units as Ct. One unit of investment in period t will

increase effective capital in t+ 1 by AK,t+1 efficiency units.

Now, we explain the mapping from relative prices in the NIPA statistics to vari-

ables in the model. First, we consider the mapping for the consumption good. In the

NIPA statistics, the prices and quantities are adjusted for quality changes. There-

fore, any improvement in the quality of consumption goods shows up as an increase

in quantity. When the statistics are mapped to the model, this means that one unit

of consumption in the NIPA statistics always increases the argument of the utility

function by the same amount. Let this amount be χC . Since one unit of consumption

in the model increases the argument of the same utility function by one, one unit of

consumption in the NIPA statistics should equal χC units of consumption in the neo-

classical growth model. Next, let PNIPA
C,t be the dollar price of one unit of consumption

in the NIPA statistics, and P $
t be the dollar price of one unit of consumption in the

neoclassical growth model. Then, since one unit of consumption in the NIPA is χC

times that in the model, we have

PNIPA
C,t = P $

t χC . (C.1)

Similarly, we can derive the mapping for the investment good. The NIPA statis-

tics are quality-adjusted also for investment goods. So, as before, any quality im-

provements will appear as quantity increases. As a result, one unit of investment in

A-21



the statistics should increase the next period’s effective capital by a time-invariant

amount, which we denote with χI . Recall that one unit of the investment good in pe-

riod t in the model increases the next period’s effective capital by AK,t+1. Therefore,

one unit of investment in NIPA should be the same as χI/AK,t+1 units of investment

in the model. Since the price of investment is the same as the price of consumption

in the model, the dollar price of investment in the model is given by P $
t . Then, since

one unit of investment in NIPA is χI/AK,t+1 times that in the model, the dollar price

of one unit of investment in the NIPA statistics is

PNIPA
I,t =

P $
t χI

AK,t+1

. (C.2)

Combining (C.1) and (C.2), the relative price of investment from the NIPA data,

denoted by RPIt, can be mapped to the model by

RPIt =
PNIPA
C,t

PNIPA
I,t

=
χC

χIAK,t+1

. (C.3)

Because χC and χI do not depend on time,

AK,t+1

AK,t
=

(
RPIt
RPIt−1

)−1
. (C.4)

The above equation means that the speed of capital-augmenting technological change

in the neoclassical growth model is given by the speed of the fall in the relative invest-

ment price in the NIPA statistic with a one-period lag. This property is mentioned

in Section 2. If the economy is on a BGP, equation (C.4) implies that RPIt changes

at a constant rate gRPI = 1/γK . This is the BGP path for RPIt.

Now, let us consider the situation in which capital-augmenting technical change

deviates from its BGP value. Below, we use AK,t to represent the BGP value, and

aK,t to denote the value of capital-augmenting technical change at time t, whether

or not it is on the BGP. Our analysis that leads to (C.3) does not assume that the

economy is on the BGP. Therefore, the relative price of investment in this case can

also be given by

rpit = (χC/χI)
1

aK,t+1

, (C.5)
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where rpit represents the relative price of investment that would be observed even

if the level of capital augmenting technical change, aK,t, deviates from its balanced

growth level, AK,t. Dividing (C.5) by (C.3) and substituting t by t− 1 gives (28).

C.2 Relative Price of Investment Interpreted in the Model

with Investment-Specific Technological Change

In the neoclassical growth model with IST, as shown in (30), one unit of consumption

good Ct in period t can be converted to qt units of capital KIST
t+1 in period t + 1.

(Similarly to Lemma 3, we put superscript IST on capital to show that it is now

measured in different units than in the standard neoclassical growth model). So, qt

represents investment-specific technology in period t, which may improve over time.

Then, the price of investing in one unit of KIST
t+1 at period t is 1/qt. Suppose that, in

addition the IST, there is also capital-augmenting technology AIST
K,t+1 in period t + 1

production. Then, one unit of investment in period t will increase effective capital in

t+ 1 by AIST
K,t+1 efficiency units.

Now, we explain how the relative price of investment in the NIPA statistics can

be represented by variables in the model with IST. Since there is no change in the

definition of consumption goods, the dollar price of consumption goods in the NIPA

can still be represented by (C.1). As noted in the previous subsection, the NIPA

statistics are also quality-adjusted for investment goods, and one unit of investment

in the statistics should increase the next period’s effective capital by a time-invariant

amount. Let us denote this by χIST
I . As shown above, one unit of the investment

good in period t in the model increases the next period’s effective capital by AIST
K,t+1.

Therefore, one unit of investment in NIPA should be the same as χIST
I /AIST

K,t+1 units

of investment in the model. Since the price of investment is 1/qt times that of the

consumption in the model, the dollar price of investment in the model is given by

P $
t /qt. Then, since one unit of investment in the NIPA is χIST

I /AIST
K,t+1 times that in

the model, the dollar price of one unit of investment in the NIPA statistics can be

represented as

PNIPA
I,t =

χIST
I

AIST
K,t+1

· P
$
t

qt
=

χIST
I P $

t

qtAK,t+1

. (C.6)

Combining (C.1) and (C.6), the relative price of investment in the NIPA now
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becomes

RPIt =
PNIPA
C,t

PNIPA
I,t

=
χC

χIST
I qtAIST

K,t+1

. (C.7)

Because χC and χIST
I do not depend on time,

qt
qt−1
·
AISTK,t+1

AISTK,t

=

(
RPIt
RPIt−1

)−1
. (C.8)

When the model includes IST, the rate of decline in the relative price of investment

in the NIPA statistics in period t is the sum of the rate of investment-specific techno-

logical change in period t and the rate of capital-augmenting technological change in

period t + 1. In the literature on IST, qt/qt−1 is called the rate of embodied techno-

logical change, while AISTK,t+1/A
IST
K,t is that of disembodied technological change. Both

technologies improve the process in which saved output in period t contributes to the

production t+ 1. The sum of both improvements shows up as the fall in the relative

price of investment in the NIPA statistic. In effect, the model with IST divides this

process into two parts. When we define the combination of the two technology as

AK,t+1 = qtA
IST
K,t+1 in (C.7) and (C.8), then we are back to the standard neoclassical

growth model and obtain (C.3) and (C.4).

D Data Sources and Definitions

Most data are originally from the Bureau of Economic Analysis (BEA) and retrieved

from FRED, Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org.

We reference these series by their codes in FRED. Energy use data are from the

Energy Information Administration (2023).

D.1 Figure 1

Panel (a) show several real aggregate variables per capita for the United States.

• Real GDP (GDPCA), real investment (GPDICA), and real personal con-

sumption expenditures (PCECCA) are originally from the National In-

come and Product Accounts (NIPA) collected by Bureau of Economic Analysis

(BEA).
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• The nominal capital stock is the current cost net stock of fixed assets

(K1TTOTL1ES000). It is taken from the fixed asset tables collected by the

BEA.

• The GDP deflator (A191RD3A086NBEA) is set to 100 in 2012. It is originally

from NIPA.

• The real capital stock is the ratio of the nominal capital stock and the GDP

deflator.

• Population (B230RC0A052NBEA) includes resident population and armed

force overseas. It is originally from NIPA.

• Real variables per capita are calculated by dividing the relevant aggregate

quantity by population.

Panel (b) shows the relative price of investment and consumption. All data are

originally from NIPA and indexed to be equal to 100 in 2012.

• We use three different price deflators for gross private investment: all

(A006RD3A086NBEA), non-residential (A008RD3A086NBEA), and equipment

(Y033RD3A086NBEA).

• The price deflator for consumption (DPCERD3A086NBEA) covers all per-

sonal consumption expenditures.

• To measure the relative price of investment, we divide the price deflator for

investment by the price deflator for consumption.

D.2 Calibration in Section 7

• The data for real GDP, population and the relative price of investment

are the same as shown in Section D.1.

• Nominal GDP (GDPA) is from NIPA.

• The relative price of investment comes from Figure 1 and cover all invest-

ment.

A-25



• Labor compensation compensation of employees (A033RC1A027NBEA) plus

proprietors’ income with inventory valuation and capital consumption adjust-

ments (A041RC1A027NBEA). Both series are originally from NIPA.

• The labor share of income is the ratio of labor compensation and nominal

GDP.

• The capital-output ratio is the ratio of nominal capital and nominal GDP.

• Total fossil fuel energy use is the total consumption of fossil fuels measured

in BTUs. It is taken from the Energy Information Administration (EIA)’s

Annual Review. See ‘Total Fossil Fuels Consumption’ in Section 1.1 of https:

//www.eia.gov/totalenergy/data/annual/.

D.3 Figure 2

• Panel (a) uses data on the relative price of investment from Section D.2.

• Panel (b) uses the labor share of income measure from Section D.2.
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