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Abstract. We introduce behavioral diversity to an otherwise standard signaling

model, in which a fraction of agents choose their signaling actions according to

an exogenous distribution. These behavioral agents provide opportunities for

strategic low-type agents to successfully emulate higher types in equilibrium,

which in turn reduces the cost for strategic high-type agents to separate from

lower types. Behavioral diversity thus improves the equilibrium payoffs to

all types of strategic agents. The model also exhibits a convergence property

which is intuitively more appealing than the least-cost separating equilibrium

of the standard setting.
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1. Introduction

From the musical film My Fair Lady to the television drama Inventing Anna, emulating

the ways of the upper class is often depicted as a means to improving one’s social image

and gaining acceptance into high society. In real life, conspicuous consumption is used

by elites to signal their superior status (Veblen, 1899), but is increasingly also adopted

by the aspiring middle class to emulate the elites. LVMH, the world’s leading purveyor of

luxury products, has experienced an almost fourfold increase in its revenue from 2010 to

2022.1 Many of its luxury goods are no doubt bought by the truly affluent, but most of the

revenue growth is probably driven by the merely well-to-do. Conspicuous consumption is

often viewed in economics through the lens of the standard Spence (1973) signaling model

(in which perception about one’s type matters), or status signaling models such as Hopkins

and Kornienko (2004) and Hoppe et al. (2009) (in which perception about one’s relative

rank matters). The focus, however, is usually given to separating equilibria: despite the

incentive of lower types to mimic higher types, the higher types choose signaling actions

just costly enough to deter imitation. Successful emulation, in other words, is not an

equilibrium phenomenon in these models.

In reality, some low-type agents may have high gaming ability (witness the Elizas and

Annas of the real world) that allows them to pool with high types. Frankel and Kartik

(2019) show that in a signaling model with multi-dimensional heterogeneity, signaling

actions are not fully revealing, and successful emulation can occur in equilibrium. An-

other possible deviation from the idealized signaling model is preference diversity. In his

critique of Veblen’s (1899) thesis, Mencken (1919) wrote, “Do I enjoy a decent bath be-

cause I know that John Smith cannot afford one—or because I delight in being clean? Do

I admire Beethoven’s Fifth Symphony because it is incomprehensible to Congressmen and

Methodists—or because I genuinely love music?” If music lovers of high social status have

preferences that do not have reputation concerns as described by signaling models, then

these agents will not move on to more difficult repertoire even when the masses flock to

Beethoven in emulation of the higher class. Finally, some of the higher-type agents may

be financially constrained. The landed aristocracy of the nineteenth century might have

preferred to choose even more conspicuous luxury items to differentiate themselves from

bankers and industrialists, but many were not able to afford them.

1 Total revenue of the LVMH Group increased from 20 billion euors to 79 billion eu-

ros during this period. Source: https://www.statista.com/statistics/245852/
total-revenue-of-the-lvmh-group-worldwide/.
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In this paper, we capture these deviations due to varying signaling costs, preference het-

erogeneity, or financial constraints by positing that a fraction of the agents are behavioral

in the sense that their choice of signaling action is exogenously given by a possibly type-

dependent probability distribution. The remaining agents have standard single-crossing

preferences and may potentially gain from emulating the behavioral agents or emulating

other types of strategic agents. We use this simple model to explore how the possibility

of emulation affects the signaling choices and welfare of strategic agents and to elucidate

the underlying mechanism that leads to those changes.

Main results. Signaling models typically admit a plethora of equilibria. A number of

refinement criteria have been proposed to narrow down the set of “reasonable equilib-

ria.” Among those, the most widely adopted are the Intuitive Criterion and D1 of Cho and

Kreps (1987) as they provide a sharp characterization of equilibria: the least-cost separat-

ing equilibrium (LCSE) is the only possible form of equilibrium that survives those criteria.

This exclusive focus on LCSE, however, entails one undesirable feature that the equilib-

rium outcome is invariant to prior belief about the agent’s type. This feature precludes

us from discussing, for instance, the agent’s incentive to build reputation in an earlier

stage of a more dynamic setting. Moreover, insensitivity to the prior leads to an implau-

sible implication as noted by Mailath et al. (1993): consider a two-type signaling model

with almost complete information where there are very few low-type agents, say one in

a million; even in this case, high-type agents are still forced to choose an action, which

is bounded away from their complete information optimum, to separate from low-type

agents that are almost non-existent. This argument suggests that there is a sharp disconti-

nuity between complete information and near-complete information environments. Kreps

and Sobel (1994, p. 860) note that the lack of continuity is “the intuitively least appealing

aspect” of the refinement concepts.

In the model that admits behavioral diversity, we show that the equilibrium signaling

level is decreasing in the agent’s prior reputation. As a consequence, all types benefit

from having a better prior reputation. The driving force behind this result is the supply

of emulation opportunities relative to the demand. An improvement in the agent’s prior

reputation leads to more quality emulation opportunities, which directly benefit lower

types who are in need of emulation. In addition, this reduces the need for lower types to

mimic higher types, thereby enabling those higher types to separate more easily at lower

signaling actions.
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This finding leads to two important implications. On the empirical side, suppose we

want to test the Veblen effect by examining the statistical relationship between conspicuous

consumption and wealth. Regressing the level of consumption just on the level of wealth

is misspecified because conspicuous consumption depends also on the individual’s prior

reputation, which could well be correlated with the level of wealth. If we just look at

the correlation between conspicuous consumption and wealth, we may end up finding

a non-monotone relationship, because many truly wealthy individuals may have already

established their status (i.e., a high prior belief) and feel less compelling need to engage

in conspicuous consumption than the aspiring middle class who have no such status just

yet.2

On the theoretical side, this finding indicates the possibility of bridging the gap be-

tween complete information and near-complete information environments. In Section 3,

we consider a two-type example in which the equilibrium signaling level of the high type

decreases and converges to the complete information optimum as the prior probability

that the agent’s type is high tends to 1. Section 4 shows that this convergence result holds

generally, for an arbitrary number of types and arbitrary decision rules of the behavioral

types. Moreover, the extent of behavioral diversity required for the convergence can be

arbitrarily small—the condition that should be satisfied in virtually any signaling situation.

Our analysis thus suggests that the lack of convergence in the standard setup need not be

viewed as a shortcoming of the refinement concepts, as it may well be a consequence of

the theoretical simplification that excludes behavioral diversity from analysis.

Literature. In his celebrated treatise, Veblen (1899) emphasized two fundamental mo-

tives for conspicuous consumption: pecuniary emulation and invidious distinction. Pecu-

niary emulation refers to the act of a member of a lower class to meet the consumption

standards of a higher class to signal that he belongs to that class, whereas invidious dis-

tinction occurs when a member of a higher class consumes conspicuously to distinguish

himself from the lower classes. Between the two notions, there is indication that Veblen

saw pecuniary emulation as the more important force behind conspicuous consumption.

He noted that “[a]mong the motives which lead men to accumulate wealth, the primacy,

both in scope and intensity, therefore, continues to belong to this motive of pecuniary

emulation” (Veblen, 1899, p. 40) and devoted an entire chapter to the treatment of this

concept in his book. Despite his emphasis, however, the analytical focus of the signaling lit-

2 A standard approach to account for this potential non-monotonicity is counter-signaling; see Feltovich

et al. (2002), Araujo et al. (2007), and Chen et al. (2022).
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erature, ever since its inception by Spence (1973), has been primarily on the transmission

of information via the act of separation, which can be seen as a manifestation of invidious

distinction: in the standard setup, the agent’s behavior in equilibrium is driven solely by

the desire to distinguish himself but not by the desire to emulate others.3 In this paper,

we revisit Veblen’s old insight and explore the role of emulation that has hitherto received

scant attention in the literature.

Standard refinement criteria consistently select the LCSE in signaling models. Mailath

et al. (1993) are among the first to point out the rather disturbing implication of this

prediction, which promoted them to propose an alternative refinement criterion called

undefeated equilibrium. In this paper, instead of modifying the ways to refine equilibria, we

modify the model structure, by introducing potential behavioral diversity among agents of

the same type. In our model, we posit that the agent’s signaling action may be determined

by exogenous stochastic shocks. This approach is related to the literature on noisy signaling

(Matthews and Mirman, 1983; de Haan et al., 2011; Heinsalu, 2018), in which the agent’s

chosen action is subject to stochastic shocks. Also, closely related in this regard is Daley

and Green (2014) who consider a setting where the receiver can observe both the sender’s

action and a type-dependent noise. A crucial difference is that in this strand of models,

a shock occurs after the signaling choice is made, whereas in our model with behavioral

diversity, a shock occurs before the signaling choice.

There are several works that may fall under the category of “signaling under behavioral

diversity.” Frankel and Kartik (2019) and Ball (2022) consider a signaling model in which

agents have multidimensional attributes and may differ in gaming ability. Dilme and Li

(2016) consider a dynamic signaling model with dropout risk. They study how the possi-

bility of exogenous dropout affects the trading dynamics. Although we cast our model in a

static setting, their model can be seen as a special case of ours; as a consequence, the two

models share some technical properties.4 The focus of our study is, however, different,

3 In equilibrium, it is not possible for any type to emulate a higher type. The desire to emulate only

works behind the scenes to determine how far the higher type must go, but that itself does not impact his

own signaling choice.
4 Dilme and Li (2016) show that in the model with two types, the equilibrium signaling level decreases

and coincides with the complete information outcome as the prior belief becomes sufficiently high. Daley

and Green (2014) also obtain the convergence result under an extra condition called RC-informativeness,

but their underlying reasoning is different: in their model, it is the lack of single crossing that prevents the

high type from fully separating. This is manifested in the fact that pooling in their model occurs at the top

while pooling in ours occurs at the bottom.
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as we aim to make a broader point that the possibility of emulation is a ubiquitous and

integral aspect of signaling in society.

2. A signaling model with behavioral diversity

Consider a signaling model with an agent (sender) and a market (receiver). The agent

is characterized by his type i ∈ {1, . . . , I}. The agent’s type is his private information and

cannot be directly observed by the market. We denote the prior belief by P := (p1, . . . , pI),
where pi ∈ (0,1) is the probability that the agent’s type is i. The prior belief is an important

primitive of the model, which captures the agent’s prior reputation.

The model is otherwise standard, except that the agent’s action is determined exoge-

nously with some positive probability. Specifically, with probability δ ∈ (0,1), the agent is

a behavioral agent whose action is drawn from a set D := [0, d] of “exogenous actions.”

For each type, the distribution of exogenous actions is continuous on D with full support.

We use βi(a) to represent the density of type i choosing action a, which summarizes the

decision rules of a behavioral agent in a reduced-form way.5 Let q(a) :=
∑I

i=1 piβi(a) and

define

τ(a) :=

∑I
i=1 piβi(a)i

q(a)
∈ (1, I)

as the corresponding reputation at action a among the behavioral agents. With the re-

maining probability 1 − δ, the agent is strategic and chooses signaling action a ∈ R+ to

maximize his payoff. We view δ as capturing the extent of behavioral diversity that may

originate, for example, from differences in gaming ability, differences in preferences, or

the presence of external factors that exogenously constrain the agent’s signaling choice.

The payoff to type i is given by Ui(a, t) where t ∈ [1, I] denotes the market’s belief

(expectation) of the agent’s type. The payoff function is continuously differentiable, strictly

decreasing in a, and strictly increasing in t. It also satisfies the standard single-crossing

property. Let

MRSi(a, t) := −
∂ Ui(a, t)/∂ a
∂ Ui(a, t)/∂ t

5 All of our results hold for any arbitrary set D, although the argument becomes more involved when D is

finite and has probability masses. The simplest example of this situation is where the agent has no reputation

concerns and chooses the complete information optimum with probability δ, in which case D = {0}.
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be the marginal rate of substitution at (a, t). The single-crossing property is equivalent to

MRSi′(a, t)> MRSi′′(a, t) for all (a, t) and i′′ > i′.

Let µ(a) denote the market’s belief (expectation) of the agent’s type when his signaling

action is a. The strategy of each type i is denoted byπi, a probability distribution of actions

on R+. Throughout the analysis, we focus on signaling equilibria defined as follows:

1. Given µ(·), a′ ∈ argmaxa Ui(a,µ(a)) if a′ ∈ supp(πi);

2. µ(·) is consistent with {πi} and Bayes’ rule whenever applicable.

As usual, the set of signaling equilibria can be quite large. The D1 refinement requires

that, for any ai′ ∈ supp(πi′), ai′′ ∈ supp(πi′′), and any off-equilibrium action a′, if for all t,

Ui′(a
′, t)≥ Ui′(ai′ ,µ(ai′)) =⇒ Ui′′(a

′, t)> Ui′′(ai′′ ,µ(ai′′)),

then the off-equilibrium belief associated with action a′ must assign zero probability to the

agent being of type i′. In our setting, however, the standard D1 criterion is not directly

applicable because there are no off-path actions on D. We thus introduce an extended

version of the criterion. Consider a discretized space Dn := {dn
1 , . . . , dn

n} where dn
1 = 0 and

dn
j = ( j−1)d/n for j = 1, . . . , n, and let β n

i (d j) :=
∫ dn

j+1

dn
j
βi(a)da, so that a behavioral agent

of type i chooses d j ∈ Dn with probability β n
i (d j). We say that an equilibrium in our model

with continuous D satisfies (the extended version of) D1 if it is the limit of equilibria with

discrete Dn that satisfy D1 as n goes to infinity. We refer to such equilibrium simply as D1

equilibrium hereafter. In effect, this restriction requires that for any a′ ∈ D which is not in

the support of the equilibrium strategy of any type, no agent has an incentive to deviate

to a′ even when the belief µ(a′) = τ(a′) is replaced by some other “off-equilibrium” belief

µ̂(a′) that satisfies the D1 criterion.6

3. An example with two types

We may illustrate the main ideas by a simple example with two types. In this example, we

refer to type 1 as the low type and to type 2 as the high type, and let the prior probabilities

of these two types be 1− p and p respectively. Also assume for simplicity that the distribu-

tion of exogenous actions is type-independent and uniform on D, so that q(a) = 1/d and

τ(a) = 1+ p for all a ∈ D.

6 When there are only two types, we may require equilibrium to satisfy an extended version of the Intuitive

Criterion defined in a similar manner, and all the arguments will continue to hold.
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Let ui and ui be the payoff lower bound and upper bound, respectively, for type i. Since

the highest reputation that can be achieved is t = 2 and effort is costly, it is easy to see

ui := Ui(0,2) for both types. Note also that the low type can always choose a = 0 and

secure at least t = 1, so that u1 = U1(0,1). Finally, define s such that U1(s, 2) = U1(0, 1),
which is the action chosen by the high type in the LCSE. Since the low type can secure at

least a payoff of U1(0,1), we have u2 = U2(s, 2) as the payoff lower bound for the high

type. Note that u1 and u2 are the respective payoff that each type earns in the LCSE.

As we will detail in the general case, our model admits a unique D1 equilibrium. In

this equilibrium, the high type always chooses a least-cost separating action and gets the

reputation t = 2. This means that once we fix the high type’s payoff u2 ∈ Υ := [u2, u2], we

can uniquely pin down his corresponding action, s2(u2), from u2 = U2(s2(u2), 2). Define

x2(u2) := (s2(u2), 2) as the low type’s reservation allocation. We say that an action a is

binding for the low type if choosing that action unilaterally gives him a higher payoff than

the reservation allocation. Formally, let t = φ1(a; u2) represent the indifference curve of

type 1 that passes through x2(u2). Then, a is binding if τ(a)> φ1(a; u2)> 1.7 Define

B1(u2) := {a ∈ D : τ(a)> φ1(a; u2)> 1}

as the set of binding actions for the low type when the high type’s payoff is u2.

In D1 equilibrium in which the high type’s payoff is u2, the low type randomizes over

a ∈ B1(u2) with some density π1(a; u2). Given this, all of the low type’s on-path actions

must give him the same payoff, i.e., µ(a) = φ1(a; u2) for all a ∈ B1(u2). Thus, for each

u2 ∈ Υ and a ∈ B1(u2), the density π1(a; u2) must satisfy Bayes’ rule and the indifference

condition:

µ(a) =
δ(1+ p)(1/d) + (1−δ)(1− p)π1(a; u2)
δ(1/d) + (1−δ)(1− p)π1(a; u2)

= φ1(a; u2).

Note that we have π1(a; u2) = 0 for a /∈ B1(u2). Solving the above equation yields

π1(a; u2) =max
§

δ(1+ p−φ1(a; u2))
(1−δ)(1− p)d(φ1(a; u2)− 1)

, 0
ª

. (1)

The equilibrium value of u2 is determined by the requirement that the low type’s mixed

strategy is a valid probability distribution. Let

Π1(u2) :=

∫

a∈(0,d]

π1(a; u2)da. (2)

7 It is possible to have τ(a)> φ1(a; u2) = 1. In the general analysis, we treat this case separately because

the mixed strategy (given below) is not well defined at a such that φ1(a; u2) = 1.
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If Π1(u2) ≤ 1, then the equilibrium payoff to the high type is u∗2 = u2, and the low type’s

mixed strategy is given by the density π1(·; u∗2), with an atom of mass 1−Π1(u∗2) at a = 0.8

If Π(u2)> 1, then the equilibrium payoff u∗2 satisfies Π1(u∗2) = 1, and the low type’s mixed

strategy is given by the density π1(·; u∗2). Observe that Π1(u2) is strictly decreasing in u2

with Π1(u2) = 0. Therefore, u∗2 exists and is unique.

In this environment, the low type can potentially choose one of the binding actions

to emulate the behavioral agents, or the separating action to mimic the high type. These

two choices are substitutes for the low type and must yield the same payoff. The cost

of mimicking the high type is given by the cost of the separating action s2(u2), which

we call the “price of signaling.” The price of signaling is determined by the supply of

emulation opportunities relative to the demand, which is captured by (2). For a given u2,

if Π1(u2) > 1, emulation opportunities are in excess supply, and the price s2(u2) must go

down; if Π1(u2)< 1, they are in excess demand, and the price must go up.

The magnitude of the relative supply of emulation opportunities depends on the bal-

ance between the numerator and the denominator of π1(·; u2) in (1). Suppose, for exam-

ple, that the agent’s prior reputation p increases. Because a behavioral agent on average

has a higher type, emulating a behavioral agent leads to a higher inference about one’s

type. In a sense this effect represents an increase in the supply of emulation opportunities,

and is reflected in an increase in the numerator of π(·; u2). At the same time, a higher

p means that there are fewer low types who are attempting to emulate the behavioral

agents. The demand for emulation decreases, and this effect is reflected in a decrease in

the denominator of π(·; u2). Both effects raise the overall relative supply Π1(u2), making

emulation a more attractive choice. In equilibrium, the price of signaling s2(u2) has to fall

to compensate for the difference. Since s2(u2) is decreasing in u2, this shows that u∗2 must

increase with p. Of course, a lower price of signaling benefits the low type, and u∗1 also

increases with p.

Since φ1(a; u2) ≥ 1 for any u2 ∈ Υ , (1) shows that the supply of emulation opportu-

nities goes to 0 in the limit as p approaches 0, which raises the price of signaling to the

maximum level. The equilibrium then converges to the LCSE where the maximum level

of signaling is required, and the payoffs to both types approach their lower bounds ui. At

8 It is possible to have Π1(u2) converge to a finite number if the indifference curves are concave in a,

in which case there could be an equilibrium in which the low type chooses a = 0 with strictly positive

probability. This possibility can be ruled out and the equilibrium mixed strategies are always smooth if the

indifference curves are weakly convex. See Online Appendix.

8



the other end, as p approaches 1, the demand for emulation goes to 0. The relative supply

thus diverges to infinity, which makes emulation almost free. The equilibrium converges

to the complete information outcome that requires no signaling effort from the high type,

and the payoffs to both types approach their upper bounds ui.

4. General analysis

4.1. Equilibrium existence and characterization

We now extend the analysis to incorporate an arbitrary number of types and an arbitrary

distribution of exogenous actions. We propose an algorithm to find the set of binding

actions and the corresponding mixed strategy recursively for each type, from the second

highest type (type I − 1) to the lowest (type 1). Since the essence of this procedure is

already described in the previous section, we only provide a brief overview of the algorithm

and relegate its details to Appendix A.

In any D1 equilibrium, the highest type must choose a least-cost separating action

and get reputation t = I . The algorithm thus starts with the highest type and his payoff

uI ∈ Υ := [uI , uI].9 Once we fix uI ∈ Υ , the fact that the highest type is getting reputation

t = I allows us to uniquely pin down the fully separating action. Denote this action by

sI(uI). In the following, we use ai(uI) to denote the lower bound of the support of type

i’s strategy when the payoff to type I is fixed at uI . Consider the indifference curve of

type I − 1 that passes through the reference allocation xI−1(uI) := (aI(uI), I), which we

denote by φI−1(·; uI). We derive the set of binding actions and the corresponding mixed

strategy for type I − 1, in a manner similar to that described in the two-type example. We

repeat this process to obtain ai(uI) recursively for each i. A necessary condition for finding

an equilibrium is that we reach the final round to determine a1(uI) for the lowest type.

An equilibrium is obtained if a1(uI) is well defined, and the mixed strategy of type 1 on

[a1(uI), a2(uI)) is a well-defined probability distribution.

According to this algorithm, each type i ≤ I − 1 adopts a possibly mixed strategy on

[ai(uI), ai+1(uI)). For each uI ∈ Υ , we can identify one indifference curve for each type

on which the allocations of that type lie. We refer to the lower envelope of those indiffer-

ence curves as the allocation path and denote it by Φ(·; uI); see Figure 1 for a graphical

illustration. For brevity, if u∗I is the equilibrium payoff to type I , we let φ∗i (·) := φi(·; u∗I )

9 The upper bound is uI = UI (0, I). If we let s be the action chosen by type I in the LCSE, the lower bound

is given by uI = UI (s, I).
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2

1

Figure 1. The equilibrium allocation path (with three types) is the lower envelope of the two equilib-

rium indifference curves, φ∗1(·) and φ∗2(·), depicted by the thick blue line. The thin blue line represents

the LCSE, whose allocation path stays strictly below the equilibrium allocation path.

be the equilibrium indifference curve of type i and Φ∗(·) := Φ(·; u∗I ) be the equilibrium

allocation path. In equilibrium, the action space is divided into I − 1 intervals, [a∗i , a∗i+1)
for i = 1, . . . , I − 1, where a∗i := ai(u∗I ). The equilibrium set of binding actions is:

B∗i := {a ∈ [a∗i , a∗i+1) : τ(a)> φ∗(a)> i}.

Also define s∗i := si(u∗I ) such that Φ∗(s∗i ) = i if it exists, which is the fully separating action

for type i.

Proposition 1. For any δ > 0 and {βi}, there exists a unique D1 equilibrium characterized
by Φ∗(·). In the equilibrium,

1. Type I chooses a fully separating action s∗I with probability 1;

2. Type i = 1, . . . , I −1 randomizes over B∗i ∪{s
∗
i } if B∗i is nonempty, and chooses the fully

separating action s∗i with probability 1 if it is empty.

Proof. See Appendix A.
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4.2. Comparative statics

Fix some equilibrium Φ∗(·). For a ∈ B∗i , when type i adopts an equilibrium mixed strategy

with density π∗i (·), the equilibrium strategy must satisfy

Φ∗(a) =
δq(a)τ(a) + (1−δ)piπ

∗
i (a)i

δq(a) + (1−δ)piπ
∗
i (a)

.

Define an indicator function ι(·) such that ι(a) = i if a ∈ [a∗i , a∗i+1). Let a := sup{a : τ(a)>
Φ∗(a)} be the largest binding action and S∗ := {s∗i } be the set of fully separating actions

under Φ∗(·). This formulation allows us to express the mixed strategy by

π∗(a) =max

�

δq(a)(τ(a)−Φ∗(a))
(1−δ)pι(a)(Φ∗(a)− ι(a))

, 0

�

, (3)

for a ∈ [0, a)\S∗,10 which can be interpreted as the equilibrium relative supply of emulation

opportunities at action a.

Aside from the preferences, the primitives of the model are summarized by Θ :=
(δ, P, {βi}). Now consider an alternative environment characterized by Θ̂ := (δ̂, P̂, {β̂i})
and define

π̂(a) =max

¨

δ̂q̂(a)(τ̂(a)−Φ∗(a))
(1− δ̂)p̂ι(a)(Φ∗(a)− ι(a))

, 0

«

,

where q̂(a) :=
∑I

i=1 p̂iβ̂i(a) and τ̂(a) :=
�∑I

i=1 p̂iβ̂i(a)i
�

/q̂(a).

Lemma 1. The equilibrium payoffs to all types increase weakly if π̂(a) ≥ π∗(a) for all a ∈
[0, a) \ S∗.

Proof. See Appendix B.

A change in parameters that changes π∗(·) to π̂(·) increases the relative supply of emu-

lation opportunities. Lemma 1 states that such a change increases the equilibrium payoffs

to all types.11 Propositions 2–3 below follow directly from this lemma.

Proposition 2. Suppose the type distribution changes from P to P̂, where (a) p̂i ≤ pi for
all i ≤ ι(a) (with at least one strict inequality); and (b) p̂i ≥ pi for all i > ι(a). Then, the
equilibrium payoffs to all types are weakly higher under P̂ than under P.

10 As in the two-type example, we exclude the fully separating actions because the mixed strategy is not

well define at a ∈ S∗.
11 The result holds strictly if the indifference curves are weakly convex. See Online Appendix.
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The change from P to P̂ described in Proposition 2 implies stochastic dominance. Thus

the supply of emulation opportunities (numerator of π∗(·)) increases. Further, condition

(a) of the proposition implies that the demand for emulation from types below ι(a) (de-

nominator of π∗(·)) decreases. This proposition broadly suggests that better prior repu-

tation is beneficial for all types: lower types gain from emulating the behavioral agents,

which enables higher types to separate at lower costs.

Proposition 3. For any δ and δ̂ > δ, the equilibrium payoffs to all types are weakly higher
under δ̂ than under δ.

Proposition 3 concerns the impact of a change in the extent of behavioral diversity.

From (3), an increase in δ raises the relative supply π∗(·) of emulation opportunities,

which benefits all types by Lemma 1. Note that this result implies that all types are weakly

better off compared to the LCSE which prevails when δ = 0. Although the standard analy-

sis of signaling focuses on one particular dimension of reputation, there are typically many

different dimensions along which an agent can gain or lose his reputation. Which dimen-

sion to focus on clearly depends on the agent’s preferences about what should constitute

an important quality of life. In a homogeneous society where people have similar values

and aspire to achieve similar goals, more resources must be expended for signaling. A

society with diverse values and aspirations would muddle information and make signaling

less informative, but that can lead to a Pareto improvement as it reduces the intensity of

wasteful signaling.

4.3. Convergence

We now examine the convergence property as the underlying information asymmetry dis-

appears. To this end, we pay attention to the largest binding action and show that it con-

verges to 0 as the prior type distribution converges to a degenerate distribution at some

type j.

Proposition 4. For any ε > 0, there is pε < 1 such that a < ε for all p j > pε.

Proof. Observe that limp j→1τ(a) = j for all a ∈ D. Also, since limp j→1 =∞ for i 6= j, a∗j
converges to 0. If τ(a) converges from below in a neighborhood of a, a∗j ≥ a, and this

completes the proof. If τ(a) converges from above, type j randomizes over [a∗j , a∗j+1). As

τ(a) converges to j, a converges to 0

12



Given that limp j→1τ(a) = j for all a ∈ D, Proposition 4 implies that the allocations of

type j collapse to a single point (0, j), and so do the allocations of all types below j. Types

lower than j receive ui(0, j), which is higher than their respective complete information

payoff. For types above j, the allocations converge to the LCSE of the standard setting

where the lowest type is type j (rather than type 1). Their payoff is less than the complete

information payoff but is higher than their payoff from the LCSE of the standard setting.

5. Conclusion

The signaling literature often focuses on separating equilibria where the agent success-

fully coveys his private information via costly action. This paper looks at the flip side of

signaling, with emphasis on the possibility of emulation (pooling) in equilibrium, by intro-

ducing behavioral diversity into the standard setup. The possibility of emulation changes

the structure of incentives, not only for those who emulate higher types but also for those

who attempt to distinguish themselves from lower types. The extended model delivers

new insights into the role of external factors that are absent in the standard setup. We also

note that with the slightest degree of behavioral diversity, the model exhibits a convergence

property which is intuitively more appealing than the LCSE of the standard setting.
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Appendix A: Proof of Proposition 1

Characterization. In any discretized game, we can apply the standard D1 refinement to

rule out any pooling at a /∈ Dn. We first argue that any D1 equilibrium in a discretized

game must have the following properties:

• The highest type chooses a fully separating action with probability 1;

• The lowest action chosen by type i is on the equilibrium indifference curve of type

i − 1.

To show the first claim, suppose type I adopts a mixed strategy. For some action a′ in the

support of this mixed strategy such that µ(a′)< I , type I must be pooled with lower types.

Type I must then have an incentive to deviate slightly upward from those actions because

D1 would assign probability 1 to type I (observe that no type can randomize continuously

over an interval in a discretized game). This shows that type I must adopt a pure strategy.

The action chosen by type I must be fully separating because D1 assigns probability 1 to

any upward deviation, giving type I an incentive to deviate slightly above. To show the

second claim, suppose that there is some type i whose lowest action is bounded away from

the equilibrium indifference curve of type i − 1. Type i then has an incentive to deviate

slightly below because D1 assigns probability 1 to such a deviation.

Algorithm. In each round k ≥ 1, we determine the allocations of type I − k. Let

xI−k(uI) := (aI−k+1(uI), t I−k+1(uI))

be the reservation allocation of type I−k, where ai(uI) is the lowest action chosen by type

i and t i(uI) = µ(ai(uI)) is the corresponding reputation for that action. In round 1, for

each uI ∈ Υ , we obtain aI(uI) = sI(uI) such that UI(sI(uI), I) = uI and t I(uI) = I . For

k ≥ 2, the algorithm inherits a reservation allocation xI−k(uI) from the previous round,

and we let φI−k(·; uI) represent the indifference curve of type I − k that passes through

this reservation allocation. Define sI−k(uI) such that

I − k = φI−k(sI−k(uI); uI),

if φI−k(0; uI)≤ I − k, and let aI−k(uI) = sI−k(uI). If φI−k(0; uI)> I − k, sI−k(uI) is not well

defined, and we let aI−k(uI) = 0. Define the tentative set of binding actions for type I − k
by

B̂I−k(uI) := {a ∈ (aI−k(uI), aI−k+1(uI)) : τ(a)> φI−k(a; uI)}.

14



For each a ∈ B̂I−k(uI), find πI−k(·; uI) such that

φI−k(a; uI) =
δq(a)τ(a) + (1−δ)pI−kπI−k(a; uI)(I − k)

δq(a) + (1−δ)pI−kπI−k(a; uI)
.

For a /∈ BI−k(uI), we let πI−k(a; uI) = 0. Solving the above equation yields

πI−k(a; uI) =max
§

δq(a)(τ(a)−φI−k(a; uI))
(1−δ)pI−k(φI−k(a; uI)− I + k)

, 0
ª

.

Let

ΠI−k(uI) :=

∫

a∈(aI−k ,aI−k+1)

πI−k(a; uI)da.

There are three possibilities.

• If ΠI−k(uI)> 1, there must be some aI−k(uI) ∈ B̂I−k(uI) such that
∫

a∈(aI−k(uI ),aI−k+1(uI ))

πI−k(a; uI)da = 1,

and we set t I−k(uI) = φI−k(aI−k(uI); uI).
• If ΠI−k(uI) ≤ 1 and sI−k(uI) is well defined, we let type I − k choose sI−k(uI) with

probability 1−ΠI−k(uI) and set (aI−k(uI), t I−k(uI)) = (sI−k(uI), I − k).
• If ΠI−k(uI) ≤ 1 but sI−k(uI) is not well defined, uI is too high, and we terminate the

algorithm.

Given a well-defined aI−k(uI), define BI−k(uI) := B̂I−k(uI)∩ [aI−k(uI), aI−k+1(uI)) as the set

of binding actions.

Suppose that uI is set in the right range, and the algorithm reaches the final round.

In round I − 1, given x1(uI), we derive s1(uI) if it is well defined. If s1(uI) > 0, uI is too

low, and we terminate the algorithm. A necessary condition for finding an equilibrium is

therefore φ1(0; uI) ≥ 0, so that a1 = 0. Given this, we obtain B1(uI) and Π1(uI) as above.

There are now four possibilities.

• If Π1(uI)> 1, uI is too low, and we terminate the algorithm.

• If Π1(uI) = 1, we have an equilibrium.

• If Π1(uI) < 1 and s1(uI) = 0, we let type 1 choose s1(uI) = 0 with probability 1 −
ΠI−k(uI) and we have an equilibrium.
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• If ΠI−k(uI) < 1 but sI−k(uI) is not well defined, uI is too high, and we terminate the

algorithm.

Existence. The characterization result suggests that the algorithm described above is the

only way to construct a D1 equilibrium, if any. The algorithm produces an allocation

path for each uI ∈ Υ . Observe that ai(·) is continuous and strictly decreasing at u′I if

ai(u′I) > 0. First, by definition, aI(·) is continuous and strictly decreasing. Now consider

how a change in ai+1(uI) affects ai(uI). Suppose there is an infinitesimal increase in uI

from u′I to u′′I , which in turn implies aI(u′I) < aI(u′′I ). Then, φI−1(a; u′I) < φI−1(a; u′′I ) for

all a. If BI−1(u′I) is empty, we have aI−1(u′I) > aI−1(u′′I ), again by definition. If BI−1(u′I) is

nonempty, πI−1(a; u′I)> πI−1(a; u′′I ) for all a ∈ BI−1(u′I). Since sup BI−1(u′I)> sup BI−1(u′′I ),
we must have

∫

a∈(aI−1(u′I ),sup BI−1(u′′I ))

πI−1(a; u′′I )da < 1,

which proves aI−1(u′I) > aI−1(u′′I ). The claim is established because this argument holds

for any i < I − 1 as long as ai(u′I)> 0.

This fact suggests that the allocation path shifts up continuously as uI increases. We

thus need to find an allocation path that can satisfy the equilibrium condition by adjusting

uI . Observe that for any δ > 0 and {βi}, we have aI−1(uI) > 1 and ΠI−k(uI) < 1 if uI is

close enough to uI . Therefore, uI is too high when it is close to the upper bound. At the

other end, as uI gets close to uI , there is u′I ≥ uI such that φ1(0; u′I) = 1. By continuity,

there must be u′′I > u′I such that φ2(0; u′′I ) = 2. For uI ∈ (u′I , u′′I ), Π1(uI) is well defined and

strictly decreasing in uI . Note that limuI↑u′′I
Π1(uI) = 0. If Π1(u′I)≥ 1, we can find a unique

u∗I such that Π1(u∗I ) = 1 and this constitutes an equilibrium. If u′I = uI and Π1(uI)< 1, we

let type 1 choose a = 0 with probability 1−Π1(uI), and this is a unique equilibrium.

Appendix B: Proof of Lemma 1

We first show that u∗I increases if π̂(a) ≥ π∗(a) for all a ∈ [0, a) \ S∗. Suppose we run the

algorithm under the new set of parameters Θ̂ with initial value u∗I for type I . Let Φ̃(·) be

the corresponding allocation path and [ãi, ãi+1) be the corresponding partition. Define

π̃(a) =max

¨

δ̂q̂(a)(τ̂(a)− Φ̃(a))
(1− δ̂)p̂ι̃(a)(Φ̃(a)− ι̃(a))

, 0

«

,
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where ι̃(a) = i if a ∈ [ãi, ãi+1). Also let i := ι(a). Because π̂(a)≥ π∗(a) for a ∈ [0, a) \ S∗,
we have ãi+1 ≥ a∗

i+1
, which also implies that ãi ≥ a∗

i
and Φ̃(a) ≤ Φ∗(a) for a such that

ι(a) = ι̃(a) = i−1. The last fact ensures that π̃(a)≥ π∗(a) for this interval of a. Together

with ãi ≥ a∗
i
, this implies ãi−1 ≥ a∗

i−1
. We can repeat this argument back to type 1 to show

that ã1 ≥ a∗1. Thus, the equilibrium payoff to type I must increase weakly.

We now argue that the equilibrium payoffs to all types weakly increase. Use Φ̂∗(·) to

denote the equilibrium allocation path under Θ̂. Define ι̂(·) analogously and let

π̂∗(a) =max

¨

δ̂q̂(a)(τ̂(a)− Φ̂∗(a))
(1− δ̂)p̂ι̂(a)(Φ̂∗(a)− ι̂(a))

, 0

«

.

Let î ≥ i be the new i and [â∗i , â∗i+1) be the new equilibrium partition under Θ̂. Suppose

the equilibrium payoff to some type k is strictly lower under Θ̂. If there are multiple types

that are made worse off by the change in distribution, let k represent the lowest such type.

Note that k cannot be greater than î, because this would imply that the least-cost separating

solution starting from type k would be entirely below the original allocation path, violating

the previously established result that the equilibrium payoff to type I increases. Because

the equilibrium indifference curve of type k − 1 under Θ̂ is weakly above that under Θ,

while the equilibrium indifference curve of type k under Θ̂ is below that under Θ, the

single-crossing property requires that â∗k < a∗k. If k = 1, we must have â∗k ≤ a∗k. Therefore,

in either case, â∗k ≤ a∗k. Furthermore, Φ̂∗(a) ≤ Φ∗(a) implies π̂∗(a) > π∗(a) for a such that

ι(a) = ι̂(a) = k. Together with â∗k ≤ a∗k, this implies â∗k+1 < a∗k+1. This in turn implies

that Φ̂∗(a) < Φ∗(a) and therefore π̂∗(a) > π∗(a) for a such that ι(a) = ι̂(a) = k + 1.

Together with â∗k+1 < a∗k+1, this implies â∗k+2 < a∗k+2. Repeating this argument shows that

Φ̂∗(a)< Φ∗(a) for a such that ι(a) = ι̂(a) = i. But a strictly lower equilibrium indifference

curve Φ̂∗(a) for type i would imply a strictly lower equilibrium indifference curve for type

I , contradicting the result that the equilibrium payoff to type I must increase.
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In the baseline model, we cannot rule out the possibility that some type i may choose a

fully separating action (i.e., the action that gives him the reputation of his own type) with

strictly positive probability, even when the set of binding actions is nonempty and this

type adopts a mixed strategy. This is because ΠI−k(a; uI) =
∫

a∈(sI−k(uI ),aI−k+1)
πI−k(a; uI)da

may converge to a number less than 1, even though lima↓sI−k(uI )πI−k(a; uI) =∞. Below,

we show that this possibility can be ruled out, and the mixed strategies are always smooth

with no probability masses if the indifference curves are weakly convex.12 Moreover, under

this condition, Lemma 1 and Propositions 2 and 3 hold strictly.

Letφi(·) be the indifference curve of type i that passes through (si, i) for some si. Given

that si is binding (i.e., τ(si)> φi(si)), it suffices to show that

lim
s↓si

∫ si+ε

s

1
φi(a)− i

da

diverges for any ε > 0. To show this, consider a linear function η(a − si) + i that passes

through (si, i), where η is set to satisfy ηε+ i = φi(si+ε). Observe that this linear function

always stays (weakly) above φi(a) for a ∈ [si, si+ε) if φi(·) is weakly convex. This in turn

implies that for any ε > 0,

lim
s↓si

∫ si+ε

s

1
φi(a)− i

da ≥ lim
s↓si

∫ si+ε

s

1
η(a− s)

da =∞.

This ensures that ΠI−k(uI) is always greater than 1 and hence aI−k(uI) > sI−k(uI), so that

S∗ is always empty.

Lemma 1 states that the equilibrium payoffs to all types increase weakly if π̂(a)≥ π∗(a)
for all a ∈ [0, a) \ S∗. This is because even if π̂(a)> π∗(a) for some a, this increase in the

relative supply of emulation opportunities may be entirely absorbed by the corresponding

12 If the reputation payoff is additively separable and linear in t, this is equivalent to assuming that the

cost of signaling effort is weakly convex in a, as often assumed in applications.
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decrease in the probability of choosing the fully separating action, in which case the equi-

librium allocation path would not shift up. Under the assumption that the indifference

curves are weakly convex, this can be restated as follows.

Lemma 1.A. The equilibrium payoffs to all types increase strictly if π̂(a) ≥ π∗(a) for all
a ∈ [0, a) with strict inequality for some a ∈ [0, a).

Given this result, both Propositions 2 and 3 can also be restated accordingly, where the

equilibrium payoffs are strictly higher under Θ̂ in each instance.
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